/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef short s16; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __be16; typedef __u32 __be32; typedef __u16 __sum16; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct device; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct __anonstruct____missing_field_name_10 { u32 read ; s32 write ; }; union __anonunion_arch_rwlock_t_9 { s64 lock ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; typedef union __anonunion_arch_rwlock_t_9 arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_12 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_13 { u16 limit0 ; u16 base0 ; unsigned int base1 : 8 ; unsigned int type : 4 ; unsigned int s : 1 ; unsigned int dpl : 2 ; unsigned int p : 1 ; unsigned int limit : 4 ; unsigned int avl : 1 ; unsigned int l : 1 ; unsigned int d : 1 ; unsigned int g : 1 ; unsigned int base2 : 8 ; }; union __anonunion____missing_field_name_11 { struct __anonstruct____missing_field_name_12 __annonCompField6 ; struct __anonstruct____missing_field_name_13 __annonCompField7 ; }; struct desc_struct { union __anonunion____missing_field_name_11 __annonCompField8 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_15 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_15 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; typedef void (*ctor_fn_t)(void); struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned int flags : 8 ; }; struct net_device; struct file_operations; struct completion; struct pid; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_18 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_18 __annonCompField9 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct static_key; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_23 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_24 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_22 { struct __anonstruct____missing_field_name_23 __annonCompField13 ; struct __anonstruct____missing_field_name_24 __annonCompField14 ; }; union __anonunion____missing_field_name_25 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_22 __annonCompField15 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_25 __annonCompField16 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndregs_struct { u64 bndregs[8U] ; }; struct bndcsr_struct { u64 cfg_reg_u ; u64 status_reg ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndregs_struct bndregs ; struct bndcsr_struct bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned int class_idx : 13 ; unsigned int irq_context : 2 ; unsigned int trylock : 1 ; unsigned int read : 2 ; unsigned int check : 2 ; unsigned int hardirqs_off : 1 ; unsigned int references : 11 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_29 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_28 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_29 __annonCompField18 ; }; struct spinlock { union __anonunion____missing_field_name_28 __annonCompField19 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_30 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_30 rwlock_t; struct ldv_thread; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct jump_entry; struct static_key_mod; struct static_key { atomic_t enabled ; struct jump_entry *entries ; struct static_key_mod *next ; }; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_35 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_35 seqlock_t; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct notifier_block; struct idr_layer { int prefix ; unsigned long bitmap[4U] ; struct idr_layer *ary[256U] ; int count ; int layer ; struct callback_head callback_head ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; struct idr_layer *id_free ; int layers ; int id_free_cnt ; int cur ; spinlock_t lock ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; }; union __anonunion_u_36 { struct completion *completion ; struct kernfs_node *removed_list ; }; union __anonunion____missing_field_name_37 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; union __anonunion_u_36 u ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_37 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_dir_ops { int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; struct ida ino_ida ; struct kernfs_dir_ops *dir_ops ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; struct mutex mutex ; int event ; struct list_head list ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct user_namespace; struct __anonstruct_kuid_t_38 { uid_t val ; }; typedef struct __anonstruct_kuid_t_38 kuid_t; struct __anonstruct_kgid_t_39 { gid_t val ; }; typedef struct __anonstruct_kgid_t_39 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep : 1 ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned int state_initialized : 1 ; unsigned int state_in_sysfs : 1 ; unsigned int state_add_uevent_sent : 1 ; unsigned int state_remove_uevent_sent : 1 ; unsigned int uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct inode; struct cdev { struct kobject kobj ; struct module *owner ; struct file_operations const *ops ; struct list_head list ; dev_t dev ; unsigned int count ; }; struct backing_dev_info; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct rw_semaphore; struct rw_semaphore { long count ; raw_spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_40 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_40 nodemask_t; struct path; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned int can_wakeup : 1 ; unsigned int async_suspend : 1 ; bool is_prepared : 1 ; bool is_suspended : 1 ; bool ignore_children : 1 ; bool early_init : 1 ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path : 1 ; bool syscore : 1 ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned int disable_depth : 3 ; unsigned int idle_notification : 1 ; unsigned int request_pending : 1 ; unsigned int deferred_resume : 1 ; unsigned int run_wake : 1 ; unsigned int runtime_auto : 1 ; unsigned int no_callbacks : 1 ; unsigned int irq_safe : 1 ; unsigned int use_autosuspend : 1 ; unsigned int timer_autosuspends : 1 ; unsigned int memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; }; struct ctl_table; struct pci_dev; struct pci_bus; struct __anonstruct_mm_context_t_105 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_105 mm_context_t; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct pdev_archdata { }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled : 1 ; bool offline : 1 ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active : 1 ; bool autosleep_enabled : 1 ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct pm_qos_flags_request { struct list_head node ; s32 flags ; }; enum dev_pm_qos_req_type { DEV_PM_QOS_LATENCY = 1, DEV_PM_QOS_FLAGS = 2 } ; union __anonunion_data_133 { struct plist_node pnode ; struct pm_qos_flags_request flr ; }; struct dev_pm_qos_request { enum dev_pm_qos_req_type type ; union __anonunion_data_133 data ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct pm_qos_flags { struct list_head list ; s32 effective_flags ; }; struct dev_pm_qos { struct pm_qos_constraints latency ; struct pm_qos_flags flags ; struct dev_pm_qos_request *latency_req ; struct dev_pm_qos_request *flags_req ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_136 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_137 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_135 { struct __anonstruct____missing_field_name_136 __annonCompField34 ; struct __anonstruct____missing_field_name_137 __annonCompField35 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_135 __annonCompField36 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; union __anonunion____missing_field_name_138 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_140 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_144 { unsigned int inuse : 16 ; unsigned int objects : 15 ; unsigned int frozen : 1 ; }; union __anonunion____missing_field_name_143 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_144 __annonCompField39 ; int units ; }; struct __anonstruct____missing_field_name_142 { union __anonunion____missing_field_name_143 __annonCompField40 ; atomic_t _count ; }; union __anonunion____missing_field_name_141 { unsigned long counters ; struct __anonstruct____missing_field_name_142 __annonCompField41 ; unsigned int active ; }; struct __anonstruct____missing_field_name_139 { union __anonunion____missing_field_name_140 __annonCompField38 ; union __anonunion____missing_field_name_141 __annonCompField42 ; }; struct __anonstruct____missing_field_name_146 { struct page *next ; int pages ; int pobjects ; }; struct slab; union __anonunion____missing_field_name_145 { struct list_head lru ; struct __anonstruct____missing_field_name_146 __annonCompField44 ; struct list_head list ; struct slab *slab_page ; struct callback_head callback_head ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_147 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_138 __annonCompField37 ; struct __anonstruct____missing_field_name_139 __annonCompField43 ; union __anonunion____missing_field_name_145 __annonCompField45 ; union __anonunion____missing_field_name_147 __annonCompField46 ; unsigned long debug_flags ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_linear_149 { struct rb_node rb ; unsigned long rb_subtree_last ; }; union __anonunion_shared_148 { struct __anonstruct_linear_149 linear ; struct list_head nonlinear ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; union __anonunion_shared_148 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; nodemask_t nodes_to_scan ; int nid ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct user_struct; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; int (*migrate)(struct vm_area_struct * , nodemask_t const * , nodemask_t const * , unsigned long ) ; int (*remap_pages)(struct vm_area_struct * , unsigned long , unsigned long , unsigned long ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; typedef s32 dma_cookie_t; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; typedef unsigned short __kernel_sa_family_t; struct cred; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct __anonstruct_sync_serial_settings_151 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_151 sync_serial_settings; struct __anonstruct_te1_settings_152 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_152 te1_settings; struct __anonstruct_raw_hdlc_proto_153 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_153 raw_hdlc_proto; struct __anonstruct_fr_proto_154 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_154 fr_proto; struct __anonstruct_fr_proto_pvc_155 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_155 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_156 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_156 fr_proto_pvc_info; struct __anonstruct_cisco_proto_157 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_157 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_158 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_158 ifs_ifsu ; }; union __anonunion_ifr_ifrn_159 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_160 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_159 ifr_ifrn ; union __anonunion_ifr_ifru_160 ifr_ifru ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_163 { spinlock_t lock ; unsigned int count ; }; union __anonunion____missing_field_name_162 { struct __anonstruct____missing_field_name_163 __annonCompField47 ; }; struct lockref { union __anonunion____missing_field_name_162 __annonCompField48 ; }; struct nameidata; struct vfsmount; struct __anonstruct____missing_field_name_165 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_164 { struct __anonstruct____missing_field_name_165 __annonCompField49 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_164 __annonCompField50 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_166 { struct list_head d_child ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; union __anonunion_d_u_166 d_u ; struct list_head d_subdirs ; struct hlist_node d_alias ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_node { spinlock_t lock ; struct list_head list ; long nr_items ; }; struct list_lru { struct list_lru_node *node ; nodemask_t active_nodes ; }; struct radix_tree_node; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct io_context; struct cgroup_subsys_state; struct export_operations; struct kiocb; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_168 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_168 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_169 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_169 __annonCompField51 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_on_meta)(struct super_block * , int , int ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; union __anonunion_arg_171 { char *buf ; void *data ; }; struct __anonstruct_read_descriptor_t_170 { size_t written ; size_t count ; union __anonunion_arg_171 arg ; int error ; }; typedef struct __anonstruct_read_descriptor_t_170 read_descriptor_t; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iovec const * , loff_t , unsigned long ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct rb_root i_mmap ; struct list_head i_mmap_nonlinear ; struct mutex i_mmap_mutex ; unsigned long nrpages ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_172 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_173 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock; union __anonunion____missing_field_name_174 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_172 __annonCompField52 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_173 __annonCompField53 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; struct file_operations const *i_fop ; struct file_lock *i_flock ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion____missing_field_name_174 __annonCompField54 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; atomic_t i_readcount ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_175 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_175 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; unsigned long f_mnt_write_state ; }; struct files_struct; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , struct file_lock * , int ) ; void (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock ** , int ) ; }; struct net; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_177 { struct list_head link ; int state ; }; union __anonunion_fl_u_176 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_177 afs ; }; struct file_lock { struct file_lock *fl_next ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_176 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context { int (*actor)(void * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; int (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , int ) ; long (*free_cached_objects)(struct super_block * , long , int ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; typedef unsigned long cputime_t; struct __anonstruct_sigset_t_178 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_178 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_180 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_181 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_182 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_183 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_184 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_185 { long _band ; int _fd ; }; struct __anonstruct__sigsys_186 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_179 { int _pad[28U] ; struct __anonstruct__kill_180 _kill ; struct __anonstruct__timer_181 _timer ; struct __anonstruct__rt_182 _rt ; struct __anonstruct__sigchld_183 _sigchld ; struct __anonstruct__sigfault_184 _sigfault ; struct __anonstruct__sigpoll_185 _sigpoll ; struct __anonstruct__sigsys_186 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_179 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct____missing_field_name_190 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion____missing_field_name_189 { struct __anonstruct____missing_field_name_190 __annonCompField55 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion____missing_field_name_189 __annonCompField56 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_191 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_192 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_194 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_193 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_194 __annonCompField59 ; }; union __anonunion_type_data_195 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_197 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_196 { union __anonunion_payload_197 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_191 __annonCompField57 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_192 __annonCompField58 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_193 __annonCompField60 ; union __anonunion_type_data_195 type_data ; union __anonunion____missing_field_name_196 __annonCompField61 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned int is_child_subreaper : 1 ; unsigned int has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; struct hrtimer dl_timer ; }; struct mem_cgroup; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned int may_oom : 1 ; }; struct sched_class; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned int brk_randomized : 1 ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned int in_execve : 1 ; unsigned int in_iowait : 1 ; unsigned int no_new_privs : 1 ; unsigned int sched_reset_on_fork : 1 ; unsigned int sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct task_struct *pi_top_task ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; int numa_migrate_deferred ; unsigned long numa_migrate_retry ; u64 node_stamp ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long *numa_faults_buffer ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; unsigned int memcg_kmem_skip_account ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; }; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; struct page *partial ; unsigned int stat[26U] ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct memcg_cache_params; struct kmem_cache_node; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int object_size ; int offset ; int cpu_partial ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; struct memcg_cache_params *memcg_params ; int max_attr_size ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; struct __anonstruct____missing_field_name_214 { struct callback_head callback_head ; struct kmem_cache *memcg_caches[0U] ; }; struct __anonstruct____missing_field_name_215 { struct mem_cgroup *memcg ; struct list_head list ; struct kmem_cache *root_cache ; bool dead ; atomic_t nr_pages ; struct work_struct destroy ; }; union __anonunion____missing_field_name_213 { struct __anonstruct____missing_field_name_214 __annonCompField63 ; struct __anonstruct____missing_field_name_215 __annonCompField64 ; }; struct memcg_cache_params { bool is_root_cache ; union __anonunion____missing_field_name_213 __annonCompField65 ; }; struct exception_table_entry { int insn ; int fixup ; }; struct sk_buff; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; typedef u64 netdev_features_t; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; struct skb_frag_struct; typedef struct skb_frag_struct skb_frag_t; struct __anonstruct_page_217 { struct page *p ; }; struct skb_frag_struct { struct __anonstruct_page_217 page ; __u32 page_offset ; __u32 size ; }; struct skb_shared_hwtstamps { ktime_t hwtstamp ; ktime_t syststamp ; }; struct skb_shared_info { unsigned char nr_frags ; __u8 tx_flags ; unsigned short gso_size ; unsigned short gso_segs ; unsigned short gso_type ; struct sk_buff *frag_list ; struct skb_shared_hwtstamps hwtstamps ; __be32 ip6_frag_id ; atomic_t dataref ; void *destructor_arg ; skb_frag_t frags[17U] ; }; typedef unsigned int sk_buff_data_t; struct sec_path; struct __anonstruct____missing_field_name_219 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_218 { __wsum csum ; struct __anonstruct____missing_field_name_219 __annonCompField67 ; }; union __anonunion____missing_field_name_220 { unsigned int napi_id ; dma_cookie_t dma_cookie ; }; union __anonunion____missing_field_name_221 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; struct sk_buff { struct sk_buff *next ; struct sk_buff *prev ; ktime_t tstamp ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; struct sec_path *sp ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; union __anonunion____missing_field_name_218 __annonCompField68 ; __u32 priority ; __u8 local_df : 1 ; __u8 cloned : 1 ; __u8 ip_summed : 2 ; __u8 nohdr : 1 ; __u8 nfctinfo : 3 ; __u8 pkt_type : 3 ; __u8 fclone : 2 ; __u8 ipvs_property : 1 ; __u8 peeked : 1 ; __u8 nf_trace : 1 ; __be16 protocol ; void (*destructor)(struct sk_buff * ) ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; int skb_iif ; __u32 rxhash ; __be16 vlan_proto ; __u16 vlan_tci ; __u16 tc_index ; __u16 tc_verd ; __u16 queue_mapping ; __u8 ndisc_nodetype : 2 ; __u8 pfmemalloc : 1 ; __u8 ooo_okay : 1 ; __u8 l4_rxhash : 1 ; __u8 wifi_acked_valid : 1 ; __u8 wifi_acked : 1 ; __u8 no_fcs : 1 ; __u8 head_frag : 1 ; __u8 encapsulation : 1 ; union __anonunion____missing_field_name_220 __annonCompField69 ; __u32 secmark ; union __anonunion____missing_field_name_221 __annonCompField70 ; __be16 inner_protocol ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char reserved1[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh_indir)(struct net_device * , u32 * ) ; int (*set_rxfh_indir)(struct net_device * , u32 const * ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[8U] ; }; struct linux_mib { unsigned long mibs[97U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct proc_dir_entry; struct netns_mib { struct tcp_mib *tcp_statistics[1U] ; struct ipstats_mib *ip_statistics[1U] ; struct linux_mib *net_statistics[1U] ; struct udp_mib *udp_statistics[1U] ; struct udp_mib *udplite_statistics[1U] ; struct icmp_mib *icmp_statistics[1U] ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6[1U] ; struct udp_mib *udplite_stats_in6[1U] ; struct ipstats_mib *ipv6_statistics[1U] ; struct icmpv6_mib *icmpv6_statistics[1U] ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics[1U] ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { int nqueues ; struct list_head lru_list ; spinlock_t lru_lock ; struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct tcpm_hash_bucket; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct inet_peer_base *peers ; struct tcpm_hash_bucket *tcp_metrics_hash ; unsigned int tcp_metrics_hash_log ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports sysctl_local_ports ; int sysctl_tcp_ecn ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; kgid_t sysctl_ping_group_range[2U] ; atomic_t dev_addr_genid ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int icmpv6_time ; int anycast_src_echo_reply ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t rt_genid ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics[1U] ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; struct nlattr; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; bool ulog_warn_deprecated ; bool ebt_ulog_warn_deprecated ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; unsigned int sysctl_events_retry_timeout ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; u8 gencursor ; u8 genctr ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[6U] ; struct xfrm_policy_hash policy_bydst[6U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; spinlock_t xfrm_policy_sk_bundle_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; unsigned int proc_inum ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; struct dsa_chip_data { struct device *mii_bus ; int sw_addr ; char *port_names[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; __be16 tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct mii_bus; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct mii_bus *master_mii_bus ; u32 dsa_port_mask ; u32 phys_port_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; __be16 tag_protocol ; int priv_size ; char *(*probe)(struct mii_bus * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; u8 (*setapp)(struct net_device * , u8 , u16 , u8 ) ; u8 (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct xattr_handler { char const *prefix ; int flags ; size_t (*list)(struct dentry * , char * , size_t , char const * , size_t , int ) ; int (*get)(struct dentry * , char const * , void * , size_t , int ) ; int (*set)(struct dentry * , char const * , void const * , size_t , int , int ) ; }; struct simple_xattrs { struct list_head head ; spinlock_t lock ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_t count ; unsigned int *pcpu_count ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_kill ; struct callback_head rcu ; }; struct cgroupfs_root; struct cgroup_subsys; struct cgroup; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; unsigned long flags ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct cgroup_name { struct callback_head callback_head ; char name[] ; }; struct cgroup { unsigned long flags ; int id ; int nr_css ; struct list_head sibling ; struct list_head children ; struct list_head files ; struct cgroup *parent ; struct dentry *dentry ; u64 serial_nr ; struct cgroup_name *name ; struct cgroup_subsys_state *subsys[12U] ; struct cgroupfs_root *root ; struct list_head cset_links ; struct list_head release_list ; struct list_head pidlists ; struct mutex pidlist_mutex ; struct cgroup_subsys_state dummy_css ; struct callback_head callback_head ; struct work_struct destroy_work ; struct simple_xattrs xattrs ; }; struct cgroupfs_root { struct super_block *sb ; unsigned long subsys_mask ; int hierarchy_id ; struct cgroup top_cgroup ; int number_of_cgroups ; struct list_head root_list ; unsigned long flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head cgrp_links ; struct cgroup_subsys_state *subsys[12U] ; struct callback_head callback_head ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; int (*write_string)(struct cgroup_subsys_state * , struct cftype * , char const * ) ; int (*trigger)(struct cgroup_subsys_state * , unsigned int ) ; }; struct cftype_set { struct list_head node ; struct cftype *cfts ; }; struct cgroup_taskset; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int subsys_id ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; char const *name ; struct cgroupfs_root *root ; struct list_head cftsets ; struct cftype *base_cftypes ; struct cftype_set base_cftset ; struct module *module ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 tx_rate ; __u32 spoofchk ; __u32 linkstate ; }; struct netpoll_info; struct phy_device; struct wireless_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr { struct list_head list ; unsigned char addr[32U] ; unsigned char type ; bool global_use ; int sync_cnt ; int refcount ; int synced ; struct callback_head callback_head ; }; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum gro_result { GRO_MERGED = 0, GRO_MERGED_FREE = 1, GRO_HELD = 2, GRO_NORMAL = 3, GRO_DROP = 4 } ; typedef enum gro_result gro_result_t; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_port_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * , gfp_t ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_tx_rate)(struct net_device * , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_port_id * ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; }; enum ldv_28478 { NETREG_UNINITIALIZED = 0, NETREG_REGISTERED = 1, NETREG_UNREGISTERING = 2, NETREG_UNREGISTERED = 3, NETREG_RELEASED = 4, NETREG_DUMMY = 5 } ; enum ldv_28479 { RTNL_LINK_INITIALIZED = 0, RTNL_LINK_INITIALIZING = 1 } ; struct __anonstruct_adj_list_235 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_236 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct forwarding_accel_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion____missing_field_name_237 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct __anonstruct_adj_list_235 adj_list ; struct __anonstruct_all_adj_list_236 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct forwarding_accel_ops const *fwd_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; bool uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; unsigned char broadcast[32U] ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; struct cpu_rmap *rx_cpu_rmap ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; enum ldv_28478 reg_state : 8 ; bool dismantle ; enum ldv_28479 rtnl_link_state : 16 ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion____missing_field_name_237 __annonCompField74 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; int group ; struct pm_qos_request pm_qos_req ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; struct netdev_notifier_info { struct net_device *dev ; }; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct dmi_strmatch { unsigned char slot : 7 ; unsigned char exact_match : 1 ; char substr[79U] ; }; struct dmi_system_id { int (*callback)(struct dmi_system_id const * ) ; char const *ident ; struct dmi_strmatch matches[4U] ; void *driver_data ; }; struct platform_device_id { char name[20U] ; kernel_ulong_t driver_data ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct pci_driver; union __anonunion____missing_field_name_241 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; u8 pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned int pme_support : 5 ; unsigned int pme_interrupt : 1 ; unsigned int pme_poll : 1 ; unsigned int d1_support : 1 ; unsigned int d2_support : 1 ; unsigned int no_d1d2 : 1 ; unsigned int no_d3cold : 1 ; unsigned int d3cold_allowed : 1 ; unsigned int mmio_always_on : 1 ; unsigned int wakeup_prepared : 1 ; unsigned int runtime_d3cold : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned int transparent : 1 ; unsigned int multifunction : 1 ; unsigned int is_added : 1 ; unsigned int is_busmaster : 1 ; unsigned int no_msi : 1 ; unsigned int block_cfg_access : 1 ; unsigned int broken_parity_status : 1 ; unsigned int irq_reroute_variant : 2 ; unsigned int msi_enabled : 1 ; unsigned int msix_enabled : 1 ; unsigned int ari_enabled : 1 ; unsigned int is_managed : 1 ; unsigned int needs_freset : 1 ; unsigned int state_saved : 1 ; unsigned int is_physfn : 1 ; unsigned int is_virtfn : 1 ; unsigned int reset_fn : 1 ; unsigned int is_hotplug_bridge : 1 ; unsigned int __aer_firmware_first_valid : 1 ; unsigned int __aer_firmware_first : 1 ; unsigned int broken_intx_masking : 1 ; unsigned int io_window_1k : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_241 __annonCompField75 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; }; struct pci_ops; struct msi_chip; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_chip *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned int is_added : 1 ; }; struct pci_ops { int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct mfd_cell; struct platform_device { char const *name ; int id ; bool id_auto ; struct device dev ; u32 num_resources ; struct resource *resource ; struct platform_device_id const *id_entry ; struct mfd_cell *mfd_cell ; struct pdev_archdata archdata ; }; struct platform_driver { int (*probe)(struct platform_device * ) ; int (*remove)(struct platform_device * ) ; void (*shutdown)(struct platform_device * ) ; int (*suspend)(struct platform_device * , pm_message_t ) ; int (*resume)(struct platform_device * ) ; struct device_driver driver ; struct platform_device_id const *id_table ; bool prevent_deferred_probe ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_246 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s16 level ; union __anonunion____missing_field_name_246 __annonCompField76 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct tracepoint; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct static_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_ref { unsigned long incs ; unsigned long decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct iphdr { __u8 ihl : 4 ; __u8 version : 4 ; __u8 tos ; __be16 tot_len ; __be16 id ; __be16 frag_off ; __u8 ttl ; __u8 protocol ; __sum16 check ; __be32 saddr ; __be32 daddr ; }; struct mii_ioctl_data { __u16 phy_id ; __u16 reg_num ; __u16 val_in ; __u16 val_out ; }; struct tasklet_struct { struct tasklet_struct *next ; unsigned long state ; atomic_t count ; void (*func)(unsigned long ) ; unsigned long data ; }; struct skge_rx_desc { u32 control ; u32 next_offset ; u32 dma_lo ; u32 dma_hi ; u32 status ; u32 timestamp ; u16 csum2 ; u16 csum1 ; u16 csum2_start ; u16 csum1_start ; }; struct skge_tx_desc { u32 control ; u32 next_offset ; u32 dma_lo ; u32 dma_hi ; u32 status ; u32 csum_offs ; u16 csum_write ; u16 csum_start ; u32 rsvd ; }; struct skge_element { struct skge_element *next ; void *desc ; struct sk_buff *skb ; dma_addr_t mapaddr ; __u32 maplen ; }; struct skge_ring { struct skge_element *to_clean ; struct skge_element *to_use ; struct skge_element *start ; unsigned long count ; }; struct skge_hw { void *regs ; struct pci_dev *pdev ; spinlock_t hw_lock ; u32 intr_mask ; struct net_device *dev[2U] ; u8 chip_id ; u8 chip_rev ; u8 copper ; u8 ports ; u8 phy_type ; u32 ram_size ; u32 ram_offset ; u16 phy_addr ; spinlock_t phy_lock ; struct tasklet_struct phy_task ; char irq_name[0U] ; }; enum pause_control { FLOW_MODE_NONE = 1, FLOW_MODE_LOC_SEND = 2, FLOW_MODE_SYMMETRIC = 3, FLOW_MODE_SYM_OR_REM = 4 } ; enum pause_status { FLOW_STAT_INDETERMINATED = 0, FLOW_STAT_NONE = 1, FLOW_STAT_REM_SEND = 2, FLOW_STAT_LOC_SEND = 3, FLOW_STAT_SYMMETRIC = 4 } ; struct skge_port { struct skge_hw *hw ; struct net_device *netdev ; struct napi_struct napi ; int port ; u32 msg_enable ; struct skge_ring tx_ring ; struct skge_ring rx_ring ; unsigned int rx_buf_size ; struct timer_list link_timer ; enum pause_control flow_control ; enum pause_status flow_status ; u8 blink_on ; u8 wol ; u8 autoneg ; u8 duplex ; u16 speed ; u32 advertising ; void *mem ; dma_addr_t dma ; unsigned long mem_size ; struct dentry *debugfs ; }; struct skge_stat { char name[32U] ; u16 xmac_offset ; u16 gma_offset ; }; enum led_mode { LED_MODE_OFF = 0, LED_MODE_ON = 1, LED_MODE_TST = 2 } ; struct __anonstruct_A1hack_255 { u16 reg ; u16 val ; }; struct __anonstruct_C0hack_256 { u16 reg ; u16 val ; }; struct __anonstruct_skge_chips_261 { u8 id ; char const *name ; }; struct ldv_struct_dummy_resourceless_instance_2 { struct net_device *arg0 ; int signal_pending ; }; struct ldv_struct_dummy_resourceless_instance_6 { struct notifier_block *arg0 ; int signal_pending ; }; struct ldv_struct_free_irq_10 { int arg0 ; int signal_pending ; }; struct ldv_struct_interrupt_instance_1 { int arg0 ; enum irqreturn (*arg1)(int , void * ) ; enum irqreturn (*arg2)(int , void * ) ; void *arg3 ; int signal_pending ; }; struct ldv_struct_pci_instance_3 { struct pci_driver *arg0 ; int signal_pending ; }; struct ldv_struct_platform_instance_5 { int signal_pending ; }; struct ldv_struct_timer_instance_7 { struct timer_list *arg0 ; int signal_pending ; }; typedef int ldv_func_ret_type___0; typedef int ldv_func_ret_type___1; typedef int ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; typedef int ldv_func_ret_type___4; typedef int ldv_func_ret_type___5; typedef int ldv_func_ret_type___6; typedef struct net_device *ldv_func_ret_type___7; typedef int ldv_func_ret_type___8; typedef int ldv_func_ret_type___9; typedef int ldv_func_ret_type___10; typedef int ldv_func_ret_type___11; struct device_private { void *driver_data ; }; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; wait_queue_head_t done ; struct kthread_worker *worker ; }; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; struct completion xfer_completion ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; unsigned int cs_change : 1 ; unsigned int tx_nbits : 3 ; unsigned int rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned int is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; void __builtin_prefetch(void const * , ...) ; long ldv__builtin_expect(long exp , long c ) ; extern void ldv_initialize(void) ; int ldv_post_init(int init_ret_val ) ; extern void ldv_pre_probe(void) ; int ldv_post_probe(int probe_ret_val ) ; int ldv_filter_err_code(int ret_val ) ; extern int ldv_pre_register_netdev(void) ; void ldv_check_final_state(void) ; long ldv_is_err(void const *ptr ) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; void *ldv_malloc_unknown_size(void) ; int ldv_undef_int(void) ; void ldv_check_alloc_flags(gfp_t flags ) ; extern void ldv_after_alloc(void * ) ; void *ldv_alloc_macro(gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } void *ldv_dev_get_drvdata(struct device const *dev ) ; int ldv_dev_set_drvdata(struct device *dev , void *data ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) ; extern struct module __this_module ; extern struct pv_irq_ops pv_irq_ops ; __inline static void set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static int test_and_set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("":); return (0); return (1); } } __inline static int constant_test_bit(long nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr >> 6)) >> ((int )nr & 63)) & 1); } } extern int printk(char const * , ...) ; extern int __dynamic_netdev_dbg(struct _ddebug * , struct net_device const * , char const * , ...) ; extern void __might_sleep(char const * , int , int ) ; extern int sprintf(char * , char const * , ...) ; extern int snprintf(char * , size_t , char const * , ...) ; extern void __bad_percpu_size(void) ; extern unsigned long __phys_addr(unsigned long ) ; extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern size_t strlen(char const * ) ; extern size_t strlcpy(char * , char const * , size_t ) ; extern void warn_slowpath_null(char const * , int const ) ; __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/7cdfae59d3ac602223400f61d8829e28/klever-core-work-dir/dfaa16b/linux-alloc-spinlock/lkbce/arch/x86/include/asm/paravirt.h"), "i" (804), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static long IS_ERR(void const *ptr ) ; __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } extern void __ldv_spin_lock(spinlock_t * ) ; static void ldv___ldv_spin_lock_89(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_108(spinlock_t *ldv_func_arg1 ) ; void ldv_spin_lock__xmit_lock_of_netdev_queue(void) ; void ldv_spin_unlock__xmit_lock_of_netdev_queue(void) ; void ldv_spin_lock_hw_lock_of_skge_hw(void) ; void ldv_spin_unlock_hw_lock_of_skge_hw(void) ; void ldv_spin_lock_phy_lock_of_skge_hw(void) ; void ldv_spin_unlock_phy_lock_of_skge_hw(void) ; void ldv_spin_lock_tx_global_lock_of_net_device(void) ; void ldv_spin_unlock_tx_global_lock_of_net_device(void) ; extern void ldv_switch_to_interrupt_context(void) ; extern void ldv_switch_to_process_context(void) ; extern void __local_bh_disable_ip(unsigned long , unsigned int ) ; __inline static void local_bh_disable(void) { { { __local_bh_disable_ip((unsigned long )((void *)0), 512U); } return; } } extern void __local_bh_enable_ip(unsigned long , unsigned int ) ; __inline static void local_bh_enable(void) { { { __local_bh_enable_ip((unsigned long )((void *)0), 512U); } return; } } extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_lock_bh(raw_spinlock_t * ) ; extern void _raw_spin_lock_irq(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_bh(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irq(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField19.rlock); } } __inline static void spin_lock(spinlock_t *lock ) { { { _raw_spin_lock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_lock_69(spinlock_t *lock ) ; __inline static void ldv_spin_lock_74(spinlock_t *lock ) ; __inline static void ldv_spin_lock_110(spinlock_t *lock ) ; __inline static void ldv_spin_lock_114(spinlock_t *lock ) ; __inline static void spin_lock_bh(spinlock_t *lock ) { { { _raw_spin_lock_bh(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_lock_bh_85(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_85(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_85(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_85(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_85(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_85(spinlock_t *lock ) ; __inline static void spin_lock_irq(spinlock_t *lock ) { { { _raw_spin_lock_irq(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_lock_irq_102(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_102(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_102(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_102(spinlock_t *lock ) ; __inline static void spin_unlock(spinlock_t *lock ) { { { _raw_spin_unlock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_unlock_72(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_75(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_111(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_115(spinlock_t *lock ) ; __inline static void spin_unlock_bh(spinlock_t *lock ) { { { _raw_spin_unlock_bh(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_unlock_bh_86(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_86(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_86(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_86(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_86(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_86(spinlock_t *lock ) ; __inline static void spin_unlock_irq(spinlock_t *lock ) { { { _raw_spin_unlock_irq(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_unlock_irq_103(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_103(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_103(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_103(spinlock_t *lock ) ; __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField19.rlock, flags); } return; } } __inline static void ldv_spin_unlock_irqrestore_91(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_109(spinlock_t *lock , unsigned long flags ) ; extern unsigned long volatile jiffies ; extern void init_timer_key(struct timer_list * , unsigned int , char const * , struct lock_class_key * ) ; extern int mod_timer(struct timer_list * , unsigned long ) ; static int ldv_mod_timer_88(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static int ldv_mod_timer_90(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static int ldv_mod_timer_92(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; extern int del_timer_sync(struct timer_list * ) ; static int ldv_del_timer_sync_104(struct timer_list *ldv_func_arg1 ) ; extern unsigned long round_jiffies(unsigned long ) ; __inline static char const *kobject_name(struct kobject const *kobj ) { { return ((char const *)kobj->name); } } extern ssize_t seq_read(struct file * , char * , size_t , loff_t * ) ; extern loff_t seq_lseek(struct file * , loff_t , int ) ; extern int seq_printf(struct seq_file * , char const * , ...) ; extern int single_open(struct file * , int (*)(struct seq_file * , void * ) , void * ) ; extern int single_release(struct inode * , struct file * ) ; __inline static unsigned char readb(void const volatile *addr ) { unsigned char ret ; { __asm__ volatile ("movb %1,%0": "=q" (ret): "m" (*((unsigned char volatile *)addr)): "memory"); return (ret); } } __inline static unsigned short readw(void const volatile *addr ) { unsigned short ret ; { __asm__ volatile ("movw %1,%0": "=r" (ret): "m" (*((unsigned short volatile *)addr)): "memory"); return (ret); } } __inline static unsigned int readl(void const volatile *addr ) { unsigned int ret ; { __asm__ volatile ("movl %1,%0": "=r" (ret): "m" (*((unsigned int volatile *)addr)): "memory"); return (ret); } } __inline static void writeb(unsigned char val , void volatile *addr ) { { __asm__ volatile ("movb %0,%1": : "q" (val), "m" (*((unsigned char volatile *)addr)): "memory"); return; } } __inline static void writew(unsigned short val , void volatile *addr ) { { __asm__ volatile ("movw %0,%1": : "r" (val), "m" (*((unsigned short volatile *)addr)): "memory"); return; } } __inline static void writel(unsigned int val , void volatile *addr ) { { __asm__ volatile ("movl %0,%1": : "r" (val), "m" (*((unsigned int volatile *)addr)): "memory"); return; } } extern void *ioremap_nocache(resource_size_t , unsigned long ) ; extern void iounmap(void volatile * ) ; __inline static void memcpy_fromio(void *dst , void const volatile *src , size_t count ) { { { memcpy(dst, (void const *)src, count); } return; } } __inline static void memcpy_toio(void volatile *dst , void const *src , size_t count ) { { { memcpy((void *)dst, src, count); } return; } } extern int cpu_number ; extern void __bad_size_call_parameter(void) ; __inline static bool device_can_wakeup(struct device *dev ) { { return ((int )dev->power.can_wakeup != 0); } } __inline static bool device_may_wakeup(struct device *dev ) { { return ((bool )((unsigned int )*((unsigned char *)dev + 524UL) != 0U && (unsigned long )dev->power.wakeup != (unsigned long )((struct wakeup_source *)0))); } } extern int device_set_wakeup_enable(struct device * , bool ) ; __inline static char const *dev_name(struct device const *dev ) { char const *tmp ; { if ((unsigned long )dev->init_name != (unsigned long )((char const */* const */)0)) { return ((char const *)dev->init_name); } else { } { tmp = kobject_name(& dev->kobj); } return (tmp); } } static void *ldv_dev_get_drvdata_81(struct device const *dev ) ; static int ldv_dev_set_drvdata_82(struct device *dev , void *data ) ; extern int dev_err(struct device const * , char const * , ...) ; extern int dev_warn(struct device const * , char const * , ...) ; extern void __const_udelay(unsigned long ) ; extern void msleep(unsigned int ) ; __inline static void *lowmem_page_address(struct page const *page ) { { return ((void *)((unsigned long )((unsigned long long )(((long )page + 24189255811072L) / 64L) << 12) + 0xffff880000000000UL)); } } __inline static void dql_queued(struct dql *dql , unsigned int count ) { long tmp ; { { tmp = ldv__builtin_expect(count > 268435455U, 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/dynamic_queue_limits.h"), "i" (74), "i" (12UL)); __builtin_unreachable(); } } else { } dql->num_queued = dql->num_queued + count; dql->last_obj_cnt = count; return; } } __inline static int dql_avail(struct dql const *dql ) { { return ((int )((unsigned int )dql->adj_limit - (unsigned int )dql->num_queued)); } } extern void dql_completed(struct dql * , unsigned int ) ; extern void dql_reset(struct dql * ) ; __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } extern int net_ratelimit(void) ; extern void kfree(void const * ) ; __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; __inline static int valid_dma_direction(int dma_direction ) { { return ((unsigned int )dma_direction <= 2U); } } __inline static int is_device_dma_capable(struct device *dev ) { { return ((unsigned long )dev->dma_mask != (unsigned long )((u64 *)0ULL) && *(dev->dma_mask) != 0ULL); } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_mapping_error(struct device * , dma_addr_t ) ; extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern void debug_dma_alloc_coherent(struct device * , size_t , dma_addr_t , void * ) ; extern void debug_dma_free_coherent(struct device * , size_t , void * , dma_addr_t ) ; extern void debug_dma_sync_single_for_cpu(struct device * , dma_addr_t , size_t , int ) ; extern void debug_dma_sync_single_for_device(struct device * , dma_addr_t , size_t , int ) ; extern struct device x86_dma_fallback_dev ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); } if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static dma_addr_t dma_map_single_attrs(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, (struct page *)-24189255811072L + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, (struct page *)-24189255811072L + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); } return (addr); } } __inline static void dma_unmap_single_attrs(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (36), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, attrs); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 1); } return; } } __inline static dma_addr_t dma_map_page(struct device *dev , struct page *page , size_t offset , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; void *tmp___0 ; int tmp___1 ; long tmp___2 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = lowmem_page_address((struct page const *)page); kmemcheck_mark_initialized(tmp___0 + offset, (unsigned int )size); tmp___1 = valid_dma_direction((int )dir); tmp___2 = ldv__builtin_expect(tmp___1 == 0, 0L); } if (tmp___2 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (79), "i" (12UL)); __builtin_unreachable(); } } else { } { addr = (*(ops->map_page))(dev, page, offset, size, dir, (struct dma_attrs *)0); debug_dma_map_page(dev, page, offset, size, (int )dir, addr, 0); } return (addr); } } __inline static void dma_unmap_page(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (91), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, (struct dma_attrs *)0); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 0); } return; } } __inline static void dma_sync_single_for_cpu(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (103), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->sync_single_for_cpu != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { { (*(ops->sync_single_for_cpu))(dev, addr, size, dir); } } else { } { debug_dma_sync_single_for_cpu(dev, addr, size, (int )dir); } return; } } __inline static void dma_sync_single_for_device(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (115), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->sync_single_for_device != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { { (*(ops->sync_single_for_device))(dev, addr, size, dir); } } else { } { debug_dma_sync_single_for_device(dev, addr, size, (int )dir); } return; } } __inline static int dma_mapping_error(struct device *dev , dma_addr_t dma_addr ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; { { tmp = get_dma_ops(dev); ops = tmp; debug_dma_mapping_error(dev, dma_addr); } if ((unsigned long )ops->mapping_error != (unsigned long )((int (*)(struct device * , dma_addr_t ))0)) { { tmp___0 = (*(ops->mapping_error))(dev, dma_addr); } return (tmp___0); } else { } return (dma_addr == 0ULL); } } extern int dma_supported(struct device * , u64 ) ; extern int dma_set_mask(struct device * , u64 ) ; __inline static unsigned long dma_alloc_coherent_mask(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; { dma_mask = 0UL; dma_mask = (unsigned long )dev->coherent_dma_mask; if (dma_mask == 0UL) { dma_mask = (int )gfp & 1 ? 16777215UL : 4294967295UL; } else { } return (dma_mask); } } __inline static gfp_t dma_alloc_coherent_gfp_flags(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; unsigned long tmp ; { { tmp = dma_alloc_coherent_mask(dev, gfp); dma_mask = tmp; } if ((unsigned long long )dma_mask <= 16777215ULL) { gfp = gfp | 1U; } else { } if ((unsigned long long )dma_mask <= 4294967295ULL && (gfp & 1U) == 0U) { gfp = gfp | 4U; } else { } return (gfp); } } __inline static void *dma_alloc_attrs(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t gfp , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; void *memory ; int tmp___0 ; gfp_t tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; gfp = gfp & 4294967288U; } if ((unsigned long )dev == (unsigned long )((struct device *)0)) { dev = & x86_dma_fallback_dev; } else { } { tmp___0 = is_device_dma_capable(dev); } if (tmp___0 == 0) { return ((void *)0); } else { } if ((unsigned long )ops->alloc == (unsigned long )((void *(*)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ))0)) { return ((void *)0); } else { } { tmp___1 = dma_alloc_coherent_gfp_flags(dev, gfp); memory = (*(ops->alloc))(dev, size, dma_handle, tmp___1, attrs); debug_dma_alloc_coherent(dev, size, *dma_handle, memory); } return (memory); } } __inline static void dma_free_attrs(struct device *dev , size_t size , void *vaddr , dma_addr_t bus , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int __ret_warn_on ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; _flags = arch_local_save_flags(); tmp___0 = arch_irqs_disabled_flags(_flags); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/7cdfae59d3ac602223400f61d8829e28/klever-core-work-dir/dfaa16b/linux-alloc-spinlock/lkbce/arch/x86/include/asm/dma-mapping.h", 166); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); debug_dma_free_coherent(dev, size, vaddr, bus); } if ((unsigned long )ops->free != (unsigned long )((void (*)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ))0)) { { (*(ops->free))(dev, size, vaddr, bus, attrs); } } else { } return; } } __inline static int dma_set_coherent_mask(struct device *dev , u64 mask ) { int tmp ; { { tmp = dma_supported(dev, mask); } if (tmp == 0) { return (-5); } else { } dev->coherent_dma_mask = mask; return (0); } } __inline static unsigned int skb_frag_size(skb_frag_t const *frag ) { { return ((unsigned int )frag->size); } } extern void consume_skb(struct sk_buff * ) ; extern int skb_pad(struct sk_buff * , int ) ; __inline static unsigned char *skb_end_pointer(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->end); } } __inline static unsigned int skb_headlen(struct sk_buff const *skb ) { { return ((unsigned int )skb->len - (unsigned int )skb->data_len); } } extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; __inline static unsigned int skb_headroom(struct sk_buff const *skb ) { { return ((unsigned int )((long )skb->data) - (unsigned int )((long )skb->head)); } } __inline static void skb_reserve(struct sk_buff *skb , int len ) { { skb->data = skb->data + (unsigned long )len; skb->tail = skb->tail + (sk_buff_data_t )len; return; } } __inline static unsigned char *skb_transport_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->transport_header); } } __inline static int skb_checksum_start_offset(struct sk_buff const *skb ) { unsigned int tmp ; { { tmp = skb_headroom(skb); } return ((int )((unsigned int )skb->__annonCompField68.__annonCompField67.csum_start - tmp)); } } static struct sk_buff *ldv___netdev_alloc_skb_59(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; static struct sk_buff *ldv___netdev_alloc_skb_87(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; __inline static struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev , unsigned int length , gfp_t gfp ) { struct sk_buff *skb ; struct sk_buff *tmp ; { { tmp = ldv___netdev_alloc_skb_59(dev, length, gfp); skb = tmp; } return (skb); } } __inline static struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev , unsigned int length ) { struct sk_buff *tmp ; { { tmp = __netdev_alloc_skb_ip_align(dev, length, 32U); } return (tmp); } } __inline static struct page *skb_frag_page(skb_frag_t const *frag ) { { return ((struct page *)frag->page.p); } } __inline static dma_addr_t skb_frag_dma_map(struct device *dev , skb_frag_t const *frag , size_t offset , size_t size , enum dma_data_direction dir ) { struct page *tmp ; dma_addr_t tmp___0 ; { { tmp = skb_frag_page(frag); tmp___0 = dma_map_page(dev, tmp, (size_t )frag->page_offset + offset, size, dir); } return (tmp___0); } } __inline static int skb_padto(struct sk_buff *skb , unsigned int len ) { unsigned int size ; long tmp ; int tmp___0 ; { { size = skb->len; tmp = ldv__builtin_expect(size >= len, 1L); } if (tmp != 0L) { return (0); } else { } { tmp___0 = skb_pad(skb, (int )(len - size)); } return (tmp___0); } } __inline static void skb_copy_from_linear_data(struct sk_buff const *skb , void *to , unsigned int const len ) { { { memcpy(to, (void const *)skb->data, (size_t )len); } return; } } __inline static void ethtool_cmd_speed_set(struct ethtool_cmd *ep , __u32 speed ) { { ep->speed = (unsigned short )speed; ep->speed_hi = (unsigned short )(speed >> 16); return; } } __inline static __u32 ethtool_cmd_speed(struct ethtool_cmd const *ep ) { { return ((__u32 )(((int )ep->speed_hi << 16) | (int )ep->speed)); } } extern u32 ethtool_op_get_link(struct net_device * ) ; extern void __napi_schedule(struct napi_struct * ) ; __inline static bool napi_disable_pending(struct napi_struct *n ) { int tmp ; { { tmp = constant_test_bit(1L, (unsigned long const volatile *)(& n->state)); } return (tmp != 0); } } __inline static bool napi_schedule_prep(struct napi_struct *n ) { bool tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = napi_disable_pending(n); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { tmp___1 = test_and_set_bit(0L, (unsigned long volatile *)(& n->state)); } if (tmp___1 == 0) { tmp___2 = 1; } else { tmp___2 = 0; } } else { tmp___2 = 0; } return ((bool )tmp___2); } } __inline static void napi_schedule(struct napi_struct *n ) { bool tmp ; { { tmp = napi_schedule_prep(n); } if ((int )tmp) { { __napi_schedule(n); } } else { } return; } } extern void __napi_complete(struct napi_struct * ) ; __inline static void napi_disable(struct napi_struct *n ) { int tmp ; { { __might_sleep("include/linux/netdevice.h", 486, 0); set_bit(1L, (unsigned long volatile *)(& n->state)); } goto ldv_38497; ldv_38496: { msleep(1U); } ldv_38497: { tmp = test_and_set_bit(0L, (unsigned long volatile *)(& n->state)); } if (tmp != 0) { goto ldv_38496; } else { } { clear_bit(1L, (unsigned long volatile *)(& n->state)); } return; } } __inline static void napi_enable(struct napi_struct *n ) { int tmp ; long tmp___0 ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& n->state)); tmp___0 = ldv__builtin_expect(tmp == 0, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/netdevice.h"), "i" (502), "i" (12UL)); __builtin_unreachable(); } } else { } { __asm__ volatile ("": : : "memory"); clear_bit(0L, (unsigned long volatile *)(& n->state)); } return; } } __inline static struct netdev_queue *netdev_get_tx_queue(struct net_device const *dev , unsigned int index ) { { return ((struct netdev_queue *)dev->_tx + (unsigned long )index); } } __inline static void *netdev_priv(struct net_device const *dev ) { { return ((void *)dev + 3200U); } } extern void netif_napi_add(struct net_device * , struct napi_struct * , int (*)(struct napi_struct * , int ) , int ) ; extern int register_netdevice_notifier(struct notifier_block * ) ; static int ldv_register_netdevice_notifier_118(struct notifier_block *ldv_func_arg1 ) ; extern int unregister_netdevice_notifier(struct notifier_block * ) ; static int ldv_unregister_netdevice_notifier_119(struct notifier_block *ldv_func_arg1 ) ; __inline static struct net_device *netdev_notifier_info_to_dev(struct netdev_notifier_info const *info ) { { return ((struct net_device *)info->dev); } } extern int dev_close(struct net_device * ) ; extern void free_netdev(struct net_device * ) ; static void ldv_free_netdev_125(struct net_device *ldv_func_arg1 ) ; static void ldv_free_netdev_127(struct net_device *ldv_func_arg1 ) ; static void ldv_free_netdev_134(struct net_device *ldv_func_arg1 ) ; static void ldv_free_netdev_135(struct net_device *ldv_func_arg1 ) ; extern int netpoll_trap(void) ; extern void __netif_schedule(struct Qdisc * ) ; __inline static void netif_schedule_queue(struct netdev_queue *txq ) { { if ((txq->state & 3UL) == 0UL) { { __netif_schedule(txq->qdisc); } } else { } return; } } __inline static void netif_tx_start_queue(struct netdev_queue *dev_queue ) { { { clear_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_tx_wake_queue(struct netdev_queue *dev_queue ) { int tmp ; int tmp___0 ; { { tmp = netpoll_trap(); } if (tmp != 0) { { netif_tx_start_queue(dev_queue); } return; } else { } { tmp___0 = test_and_set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } if (tmp___0 != 0) { { __netif_schedule(dev_queue->qdisc); } } else { } return; } } __inline static void netif_wake_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_wake_queue(tmp); } return; } } __inline static void netif_tx_stop_queue(struct netdev_queue *dev_queue ) { int __ret_warn_on ; long tmp ; long tmp___0 ; { { __ret_warn_on = (unsigned long )dev_queue == (unsigned long )((struct netdev_queue *)0); tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("include/linux/netdevice.h", 2128); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { printk("\016netif_stop_queue() cannot be called before register_netdev()\n"); } return; } else { } { set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_stop_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_stop_queue(tmp); } return; } } __inline static bool netif_tx_queue_stopped(struct netdev_queue const *dev_queue ) { int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev_queue->state)); } return (tmp != 0); } } __inline static bool netif_queue_stopped(struct net_device const *dev ) { struct netdev_queue *tmp ; bool tmp___0 ; { { tmp = netdev_get_tx_queue(dev, 0U); tmp___0 = netif_tx_queue_stopped((struct netdev_queue const *)tmp); } return (tmp___0); } } __inline static void netdev_tx_sent_queue(struct netdev_queue *dev_queue , unsigned int bytes ) { int tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; { { dql_queued(& dev_queue->dql, bytes); tmp = dql_avail((struct dql const *)(& dev_queue->dql)); tmp___0 = ldv__builtin_expect(tmp >= 0, 1L); } if (tmp___0 != 0L) { return; } else { } { set_bit(1L, (unsigned long volatile *)(& dev_queue->state)); __asm__ volatile ("mfence": : : "memory"); tmp___1 = dql_avail((struct dql const *)(& dev_queue->dql)); tmp___2 = ldv__builtin_expect(tmp___1 >= 0, 0L); } if (tmp___2 != 0L) { { clear_bit(1L, (unsigned long volatile *)(& dev_queue->state)); } } else { } return; } } __inline static void netdev_sent_queue(struct net_device *dev , unsigned int bytes ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netdev_tx_sent_queue(tmp, bytes); } return; } } __inline static void netdev_tx_completed_queue(struct netdev_queue *dev_queue , unsigned int pkts , unsigned int bytes ) { long tmp ; int tmp___0 ; int tmp___1 ; { { tmp = ldv__builtin_expect(bytes == 0U, 0L); } if (tmp != 0L) { return; } else { } { dql_completed(& dev_queue->dql, bytes); __asm__ volatile ("mfence": : : "memory"); tmp___0 = dql_avail((struct dql const *)(& dev_queue->dql)); } if (tmp___0 < 0) { return; } else { } { tmp___1 = test_and_set_bit(1L, (unsigned long volatile *)(& dev_queue->state)); } if (tmp___1 != 0) { { netif_schedule_queue(dev_queue); } } else { } return; } } __inline static void netdev_completed_queue(struct net_device *dev , unsigned int pkts , unsigned int bytes ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netdev_tx_completed_queue(tmp, pkts, bytes); } return; } } __inline static void netdev_tx_reset_queue(struct netdev_queue *q ) { { { clear_bit(1L, (unsigned long volatile *)(& q->state)); dql_reset(& q->dql); } return; } } __inline static void netdev_reset_queue(struct net_device *dev_queue ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev_queue, 0U); netdev_tx_reset_queue(tmp); } return; } } __inline static bool netif_running(struct net_device const *dev ) { int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev->state)); } return (tmp != 0); } } extern gro_result_t napi_gro_receive(struct napi_struct * , struct sk_buff * ) ; extern void napi_gro_flush(struct napi_struct * , bool ) ; __inline static bool netif_carrier_ok(struct net_device const *dev ) { int tmp ; { { tmp = constant_test_bit(2L, (unsigned long const volatile *)(& dev->state)); } return (tmp == 0); } } extern void netif_carrier_on(struct net_device * ) ; extern void netif_carrier_off(struct net_device * ) ; __inline static u32 netif_msg_init(int debug_value , int default_msg_enable_bits ) { { if ((unsigned int )debug_value > 31U) { return ((u32 )default_msg_enable_bits); } else { } if (debug_value == 0) { return (0U); } else { } return ((u32 )((1 << debug_value) + -1)); } } __inline static void __netif_tx_lock(struct netdev_queue *txq , int cpu ) { { { ldv_spin_lock_69(& txq->_xmit_lock); txq->xmit_lock_owner = cpu; } return; } } __inline static void __netif_tx_unlock(struct netdev_queue *txq ) { { { txq->xmit_lock_owner = -1; ldv_spin_unlock_72(& txq->_xmit_lock); } return; } } __inline static void netif_tx_lock(struct net_device *dev ) { unsigned int i ; int cpu ; int pscr_ret__ ; void const *__vpp_verify ; int pfo_ret__ ; int pfo_ret_____0 ; int pfo_ret_____1 ; int pfo_ret_____2 ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { { ldv_spin_lock_74(& dev->tx_global_lock); __vpp_verify = (void const *)0; } { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2___0; } else { } if (4UL == 4UL) { goto case_4___1; } else { } if (4UL == 8UL) { goto case_8___2; } else { } goto switch_default___3; case_1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___0; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1___0: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "m" (cpu_number)); goto ldv_39903; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_39903; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_39903; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_39903; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break___0: /* CIL Label */ ; } ldv_39903: pscr_ret__ = pfo_ret__; goto ldv_39909; case_2___0: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___1; } else { } if (4UL == 2UL) { goto case_2___1; } else { } if (4UL == 4UL) { goto case_4___0; } else { } if (4UL == 8UL) { goto case_8___0; } else { } goto switch_default___0; case_1___1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39913; case_2___1: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39913; case_4___0: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39913; case_8___0: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39913; switch_default___0: /* CIL Label */ { __bad_percpu_size(); } switch_break___1: /* CIL Label */ ; } ldv_39913: pscr_ret__ = pfo_ret_____0; goto ldv_39909; case_4___1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___2; } else { } if (4UL == 2UL) { goto case_2___2; } else { } if (4UL == 4UL) { goto case_4___2; } else { } if (4UL == 8UL) { goto case_8___1; } else { } goto switch_default___1; case_1___2: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39922; case_2___2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39922; case_4___2: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39922; case_8___1: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39922; switch_default___1: /* CIL Label */ { __bad_percpu_size(); } switch_break___2: /* CIL Label */ ; } ldv_39922: pscr_ret__ = pfo_ret_____1; goto ldv_39909; case_8___2: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___3; } else { } if (4UL == 2UL) { goto case_2___3; } else { } if (4UL == 4UL) { goto case_4___3; } else { } if (4UL == 8UL) { goto case_8___3; } else { } goto switch_default___2; case_1___3: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39931; case_2___3: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39931; case_4___3: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39931; case_8___3: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39931; switch_default___2: /* CIL Label */ { __bad_percpu_size(); } switch_break___3: /* CIL Label */ ; } ldv_39931: pscr_ret__ = pfo_ret_____2; goto ldv_39909; switch_default___3: /* CIL Label */ { __bad_size_call_parameter(); } goto ldv_39909; switch_break: /* CIL Label */ ; } ldv_39909: cpu = pscr_ret__; i = 0U; goto ldv_39941; ldv_39940: { tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; __netif_tx_lock(txq, cpu); set_bit(2L, (unsigned long volatile *)(& txq->state)); __netif_tx_unlock(txq); i = i + 1U; } ldv_39941: ; if (i < dev->num_tx_queues) { goto ldv_39940; } else { } return; } } __inline static void netif_tx_lock_bh(struct net_device *dev ) { { { local_bh_disable(); netif_tx_lock(dev); } return; } } __inline static void netif_tx_unlock(struct net_device *dev ) { unsigned int i ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { i = 0U; goto ldv_39952; ldv_39951: { tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; clear_bit(2L, (unsigned long volatile *)(& txq->state)); netif_schedule_queue(txq); i = i + 1U; } ldv_39952: ; if (i < dev->num_tx_queues) { goto ldv_39951; } else { } { ldv_spin_unlock_75(& dev->tx_global_lock); } return; } } __inline static void netif_tx_unlock_bh(struct net_device *dev ) { { { netif_tx_unlock(dev); local_bh_enable(); } return; } } __inline static void netif_tx_disable(struct net_device *dev ) { unsigned int i ; int cpu ; int pscr_ret__ ; void const *__vpp_verify ; int pfo_ret__ ; int pfo_ret_____0 ; int pfo_ret_____1 ; int pfo_ret_____2 ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { { local_bh_disable(); __vpp_verify = (void const *)0; } { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2___0; } else { } if (4UL == 4UL) { goto case_4___1; } else { } if (4UL == 8UL) { goto case_8___2; } else { } goto switch_default___3; case_1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___0; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1___0: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "m" (cpu_number)); goto ldv_39967; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_39967; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_39967; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_39967; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break___0: /* CIL Label */ ; } ldv_39967: pscr_ret__ = pfo_ret__; goto ldv_39973; case_2___0: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___1; } else { } if (4UL == 2UL) { goto case_2___1; } else { } if (4UL == 4UL) { goto case_4___0; } else { } if (4UL == 8UL) { goto case_8___0; } else { } goto switch_default___0; case_1___1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39977; case_2___1: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39977; case_4___0: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39977; case_8___0: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39977; switch_default___0: /* CIL Label */ { __bad_percpu_size(); } switch_break___1: /* CIL Label */ ; } ldv_39977: pscr_ret__ = pfo_ret_____0; goto ldv_39973; case_4___1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___2; } else { } if (4UL == 2UL) { goto case_2___2; } else { } if (4UL == 4UL) { goto case_4___2; } else { } if (4UL == 8UL) { goto case_8___1; } else { } goto switch_default___1; case_1___2: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39986; case_2___2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39986; case_4___2: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39986; case_8___1: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39986; switch_default___1: /* CIL Label */ { __bad_percpu_size(); } switch_break___2: /* CIL Label */ ; } ldv_39986: pscr_ret__ = pfo_ret_____1; goto ldv_39973; case_8___2: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___3; } else { } if (4UL == 2UL) { goto case_2___3; } else { } if (4UL == 4UL) { goto case_4___3; } else { } if (4UL == 8UL) { goto case_8___3; } else { } goto switch_default___2; case_1___3: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39995; case_2___3: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39995; case_4___3: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39995; case_8___3: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39995; switch_default___2: /* CIL Label */ { __bad_percpu_size(); } switch_break___3: /* CIL Label */ ; } ldv_39995: pscr_ret__ = pfo_ret_____2; goto ldv_39973; switch_default___3: /* CIL Label */ { __bad_size_call_parameter(); } goto ldv_39973; switch_break: /* CIL Label */ ; } ldv_39973: cpu = pscr_ret__; i = 0U; goto ldv_40005; ldv_40004: { tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; __netif_tx_lock(txq, cpu); netif_tx_stop_queue(txq); __netif_tx_unlock(txq); i = i + 1U; } ldv_40005: ; if (i < dev->num_tx_queues) { goto ldv_40004; } else { } { local_bh_enable(); } return; } } extern int register_netdev(struct net_device * ) ; static int ldv_register_netdev_121(struct net_device *ldv_func_arg1 ) ; static int ldv_register_netdev_122(struct net_device *ldv_func_arg1 ) ; extern void unregister_netdev(struct net_device * ) ; static void ldv_unregister_netdev_124(struct net_device *ldv_func_arg1 ) ; static void ldv_unregister_netdev_126(struct net_device *ldv_func_arg1 ) ; static void ldv_unregister_netdev_128(struct net_device *ldv_func_arg1 ) ; static void ldv_unregister_netdev_129(struct net_device *ldv_func_arg1 ) ; extern int netdev_printk(char const * , struct net_device const * , char const * , ...) ; extern int netdev_err(struct net_device const * , char const * , ...) ; extern int netdev_warn(struct net_device const * , char const * , ...) ; extern int netdev_notice(struct net_device const * , char const * , ...) ; extern int netdev_info(struct net_device const * , char const * , ...) ; extern int pci_find_capability(struct pci_dev * , int ) ; extern int pci_bus_read_config_word(struct pci_bus * , unsigned int , int , u16 * ) ; extern int pci_bus_read_config_dword(struct pci_bus * , unsigned int , int , u32 * ) ; extern int pci_bus_write_config_word(struct pci_bus * , unsigned int , int , u16 ) ; extern int pci_bus_write_config_dword(struct pci_bus * , unsigned int , int , u32 ) ; __inline static int pci_read_config_word(struct pci_dev const *dev , int where , u16 *val ) { int tmp ; { { tmp = pci_bus_read_config_word(dev->bus, dev->devfn, where, val); } return (tmp); } } __inline static int pci_read_config_dword(struct pci_dev const *dev , int where , u32 *val ) { int tmp ; { { tmp = pci_bus_read_config_dword(dev->bus, dev->devfn, where, val); } return (tmp); } } __inline static int pci_write_config_word(struct pci_dev const *dev , int where , u16 val ) { int tmp ; { { tmp = pci_bus_write_config_word(dev->bus, dev->devfn, where, (int )val); } return (tmp); } } __inline static int pci_write_config_dword(struct pci_dev const *dev , int where , u32 val ) { int tmp ; { { tmp = pci_bus_write_config_dword(dev->bus, dev->devfn, where, val); } return (tmp); } } extern int pci_enable_device(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pci_set_power_state(struct pci_dev * , pci_power_t ) ; extern int pci_wake_from_d3(struct pci_dev * , bool ) ; extern int pci_request_regions(struct pci_dev * , char const * ) ; extern void pci_release_regions(struct pci_dev * ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; static int ldv___pci_register_driver_136(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; static void ldv_pci_unregister_driver_137(struct pci_driver *ldv_func_arg1 ) ; __inline static void *pci_alloc_consistent(struct pci_dev *hwdev , size_t size , dma_addr_t *dma_handle ) { void *tmp ; { { tmp = dma_alloc_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, dma_handle, 32U, (struct dma_attrs *)0); } return (tmp); } } __inline static void pci_free_consistent(struct pci_dev *hwdev , size_t size , void *vaddr , dma_addr_t dma_handle ) { { { dma_free_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, vaddr, dma_handle, (struct dma_attrs *)0); } return; } } __inline static dma_addr_t pci_map_single(struct pci_dev *hwdev , void *ptr , size_t size , int direction ) { dma_addr_t tmp ; { { tmp = dma_map_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, ptr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); } return (tmp); } } __inline static void pci_unmap_single(struct pci_dev *hwdev , dma_addr_t dma_addr , size_t size , int direction ) { { { dma_unmap_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_addr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); } return; } } __inline static void pci_unmap_page(struct pci_dev *hwdev , dma_addr_t dma_address , size_t size , int direction ) { { { dma_unmap_page((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_address, size, (enum dma_data_direction )direction); } return; } } __inline static void pci_dma_sync_single_for_cpu(struct pci_dev *hwdev , dma_addr_t dma_handle , size_t size , int direction ) { { { dma_sync_single_for_cpu((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_handle, size, (enum dma_data_direction )direction); } return; } } __inline static void pci_dma_sync_single_for_device(struct pci_dev *hwdev , dma_addr_t dma_handle , size_t size , int direction ) { { { dma_sync_single_for_device((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_handle, size, (enum dma_data_direction )direction); } return; } } __inline static int pci_dma_mapping_error(struct pci_dev *pdev , dma_addr_t dma_addr ) { int tmp ; { { tmp = dma_mapping_error(& pdev->dev, dma_addr); } return (tmp); } } __inline static int pci_set_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_mask(& dev->dev, mask); } return (tmp); } } __inline static int pci_set_consistent_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_coherent_mask(& dev->dev, mask); } return (tmp); } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata_81((struct device const *)(& pdev->dev)); } return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { { ldv_dev_set_drvdata_82(& pdev->dev, data); } return; } } __inline static char const *pci_name(struct pci_dev const *pdev ) { char const *tmp ; { { tmp = dev_name(& pdev->dev); } return (tmp); } } extern __be16 eth_type_trans(struct sk_buff * , struct net_device * ) ; extern int eth_validate_addr(struct net_device * ) ; extern struct net_device *alloc_etherdev_mqs(int , unsigned int , unsigned int ) ; static struct net_device *ldv_alloc_etherdev_mqs_120(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) ; __inline static bool is_zero_ether_addr(u8 const *addr ) { { return (((unsigned int )*((u32 const *)addr) | (unsigned int )*((u16 const *)addr + 4U)) == 0U); } } __inline static bool is_multicast_ether_addr(u8 const *addr ) { { return (((int )*addr & 1) != 0); } } __inline static bool is_valid_ether_addr(u8 const *addr ) { bool tmp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; { { tmp = is_multicast_ether_addr(addr); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { tmp___1 = is_zero_ether_addr(addr); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { tmp___3 = 1; } else { tmp___3 = 0; } } else { tmp___3 = 0; } return ((bool )tmp___3); } } __inline static struct iphdr *ipip_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_transport_header(skb); } return ((struct iphdr *)tmp); } } extern u32 bitrev32(u32 ) ; extern u32 crc32_le(u32 , unsigned char const * , size_t ) ; extern struct dentry *debugfs_create_file(char const * , umode_t , struct dentry * , void * , struct file_operations const * ) ; extern struct dentry *debugfs_create_dir(char const * , struct dentry * ) ; extern void debugfs_remove(struct dentry * ) ; extern struct dentry *debugfs_rename(struct dentry * , struct dentry * , struct dentry * , char const * ) ; __inline static struct mii_ioctl_data *if_mii(struct ifreq *rq ) { { return ((struct mii_ioctl_data *)(& rq->ifr_ifru)); } } extern int dmi_check_system(struct dmi_system_id const * ) ; extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); } return (tmp); } } __inline static int ldv_request_irq_99(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; __inline static int ldv_request_irq_123(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; static void ldv_free_irq_107(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_131(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_133(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; extern void disable_irq(unsigned int ) ; extern void enable_irq(unsigned int ) ; extern void __tasklet_schedule(struct tasklet_struct * ) ; __inline static void tasklet_schedule(struct tasklet_struct *t ) { int tmp ; { { tmp = test_and_set_bit(0L, (unsigned long volatile *)(& t->state)); } if (tmp == 0) { { __tasklet_schedule(t); } } else { } return; } } extern void tasklet_kill(struct tasklet_struct * ) ; extern void tasklet_init(struct tasklet_struct * , void (*)(unsigned long ) , unsigned long ) ; __inline static u32 skge_read32(struct skge_hw const *hw , int reg ) { unsigned int tmp ; { { tmp = readl((void const volatile *)hw->regs + (unsigned long )reg); } return (tmp); } } __inline static u16 skge_read16(struct skge_hw const *hw , int reg ) { unsigned short tmp ; { { tmp = readw((void const volatile *)hw->regs + (unsigned long )reg); } return (tmp); } } __inline static u8 skge_read8(struct skge_hw const *hw , int reg ) { unsigned char tmp ; { { tmp = readb((void const volatile *)hw->regs + (unsigned long )reg); } return (tmp); } } __inline static void skge_write32(struct skge_hw const *hw , int reg , u32 val ) { { { writel(val, (void volatile *)hw->regs + (unsigned long )reg); } return; } } __inline static void skge_write16(struct skge_hw const *hw , int reg , u16 val ) { { { writew((int )val, (void volatile *)hw->regs + (unsigned long )reg); } return; } } __inline static void skge_write8(struct skge_hw const *hw , int reg , u8 val ) { { { writeb((int )val, (void volatile *)hw->regs + (unsigned long )reg); } return; } } __inline static u32 xm_read32(struct skge_hw const *hw , int port , int reg ) { u32 v ; u16 tmp ; u16 tmp___0 ; { { tmp = skge_read16(hw, (port + 2) * 4096 | (reg << 1)); v = (u32 )tmp; tmp___0 = skge_read16(hw, (port + 2) * 4096 | ((reg + 2) << 1)); v = v | ((unsigned int )tmp___0 << 16); } return (v); } } __inline static u16 xm_read16(struct skge_hw const *hw , int port , int reg ) { u16 tmp ; { { tmp = skge_read16(hw, (port + 2) * 4096 | (reg << 1)); } return (tmp); } } __inline static void xm_write32(struct skge_hw const *hw , int port , int r , u32 v ) { { { skge_write16(hw, (port + 2) * 4096 | (r << 1), (int )((u16 )v)); skge_write16(hw, (port + 2) * 4096 | ((r + 2) << 1), (int )((u16 )(v >> 16))); } return; } } __inline static void xm_write16(struct skge_hw const *hw , int port , int r , u16 v ) { { { skge_write16(hw, (port + 2) * 4096 | (r << 1), (int )v); } return; } } __inline static void xm_outhash(struct skge_hw const *hw , int port , int reg , u8 const *hash ) { { { xm_write16(hw, port, reg, (int )((u16 )((int )((short )*hash) | (int )((short )((int )*(hash + 1UL) << 8))))); xm_write16(hw, port, reg + 2, (int )((u16 )((int )((short )*(hash + 2UL)) | (int )((short )((int )*(hash + 3UL) << 8))))); xm_write16(hw, port, reg + 4, (int )((u16 )((int )((short )*(hash + 4UL)) | (int )((short )((int )*(hash + 5UL) << 8))))); xm_write16(hw, port, reg + 6, (int )((u16 )((int )((short )*(hash + 6UL)) | (int )((short )((int )*(hash + 7UL) << 8))))); } return; } } __inline static void xm_outaddr(struct skge_hw const *hw , int port , int reg , u8 const *addr ) { { { xm_write16(hw, port, reg, (int )((u16 )((int )((short )*addr) | (int )((short )((int )*(addr + 1UL) << 8))))); xm_write16(hw, port, reg + 2, (int )((u16 )((int )((short )*(addr + 2UL)) | (int )((short )((int )*(addr + 3UL) << 8))))); xm_write16(hw, port, reg + 4, (int )((u16 )((int )((short )*(addr + 4UL)) | (int )((short )((int )*(addr + 5UL) << 8))))); } return; } } __inline static u16 gma_read16(struct skge_hw const *hw , int port , int reg ) { u16 tmp ; { { tmp = skge_read16(hw, (port * 4096 + 10240) + reg); } return (tmp); } } __inline static u32 gma_read32(struct skge_hw const *hw , int port , int reg ) { u16 tmp ; u16 tmp___0 ; { { tmp = skge_read16(hw, (port * 4096 + 10240) + reg); tmp___0 = skge_read16(hw, (port * 4096 + 10240) + (reg + 4)); } return ((unsigned int )tmp | ((unsigned int )tmp___0 << 16)); } } __inline static void gma_write16(struct skge_hw const *hw , int port , int r , u16 v ) { { { skge_write16(hw, (port * 4096 + 10240) + r, (int )v); } return; } } __inline static void gma_set_addr(struct skge_hw *hw , int port , int reg , u8 const *addr ) { { { gma_write16((struct skge_hw const *)hw, port, reg, (int )((u16 )((int )((short )*addr) | (int )((short )((int )*(addr + 1UL) << 8))))); gma_write16((struct skge_hw const *)hw, port, reg + 4, (int )((u16 )((int )((short )*(addr + 2UL)) | (int )((short )((int )*(addr + 3UL) << 8))))); gma_write16((struct skge_hw const *)hw, port, reg + 8, (int )((u16 )((int )((short )*(addr + 4UL)) | (int )((short )((int )*(addr + 5UL) << 8))))); } return; } } static unsigned int const default_msg = 55U; static int debug = -1; static struct pci_device_id const skge_id_table[13U] = { {4279U, 5888U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4279U, 33003U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4424U, 17152U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4424U, 17184U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4486U, 19201U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4486U, 19456U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4486U, 17154U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4523U, 17184U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4523U, 20485U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4977U, 17230U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5943U, 4196U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5943U, 4146U, 4294967295U, 21U, 0U, 0U, 0UL}, {0U, 0U, 0U, 0U, 0U, 0U, 0UL}}; struct pci_device_id const __mod_pci_device_table ; static int skge_up(struct net_device *dev ) ; static int skge_down(struct net_device *dev ) ; static void skge_phy_reset(struct skge_port *skge ) ; static void skge_tx_clean(struct net_device *dev ) ; static int xm_phy_write(struct skge_hw *hw , int port , u16 reg , u16 val ) ; static int gm_phy_write(struct skge_hw *hw , int port , u16 reg , u16 val ) ; static void genesis_get_stats(struct skge_port *skge , u64 *data ) ; static void yukon_get_stats(struct skge_port *skge , u64 *data ) ; static void yukon_init(struct skge_hw *hw , int port ) ; static void genesis_mac_init(struct skge_hw *hw , int port ) ; static void genesis_link_up(struct skge_port *skge ) ; static void skge_set_multicast(struct net_device *dev ) ; static irqreturn_t skge_intr(int irq , void *dev_id ) ; static int const txqaddr[2U] = { 640, 896}; static int const rxqaddr[2U] = { 0, 128}; static u32 const rxirqmask[2U] = { 65536U, 8192U}; static u32 const txirqmask[2U] = { 128U, 2U}; static u32 const napimask[2U] = { 65664U, 8194U}; static u32 const portmask[2U] = { 673251456U, 336076802U}; __inline static bool is_genesis(struct skge_hw const *hw ) { { return ((unsigned int )((unsigned char )hw->chip_id) == 10U); } } static int skge_get_regs_len(struct net_device *dev ) { { return (16384); } } static void skge_get_regs(struct net_device *dev , struct ethtool_regs *regs , void *p ) { struct skge_port const *skge ; void *tmp ; void const *io ; { { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port const *)tmp; io = (void const *)(skge->hw)->regs; regs->version = 1U; memset(p, 0, (size_t )regs->len); memcpy_fromio(p, (void const volatile *)io, 384UL); memcpy_fromio(p + 400UL, (void const volatile *)io + 400U, (size_t )(regs->len - 400U)); } return; } } static u32 wol_supported(struct skge_hw const *hw ) { bool tmp ; { { tmp = is_genesis(hw); } if ((int )tmp) { return (0U); } else { } if ((unsigned int )*((unsigned short *)hw + 56UL) == 176U) { return (0U); } else { } return (33U); } } static void skge_wol_init(struct skge_port *skge ) { struct skge_hw *hw ; int port ; u16 ctrl ; u32 reg ; u32 tmp ; { { hw = skge->hw; port = skge->port; skge_write16((struct skge_hw const *)hw, 4, 2); skge_write16((struct skge_hw const *)hw, (port << 7) + 3856, 2); skge_write8((struct skge_hw const *)hw, 7, 169); } if ((unsigned int )hw->chip_id == 177U && (unsigned int )hw->chip_rev > 6U) { { tmp = skge_read32((struct skge_hw const *)hw, 348); reg = tmp; reg = reg | 33554432U; reg = reg & 4294966783U; skge_write32((struct skge_hw const *)hw, 348, reg); } } else { } { skge_write32((struct skge_hw const *)hw, (port << 7) + 3844, 32522241U); skge_write32((struct skge_hw const *)hw, (port << 7) + 3844, 32522242U); skge_write32((struct skge_hw const *)hw, (port << 7) + 3840, 2U); gm_phy_write(hw, port, 4, 481); gm_phy_write(hw, port, 9, 0); gm_phy_write(hw, port, 0, 45824); gma_write16((struct skge_hw const *)hw, port, 4, 14386); memcpy_toio((void volatile *)hw->regs + (unsigned long )(port * 128 + 3876), (void const *)(skge->netdev)->dev_addr, 6UL); skge_write16((struct skge_hw const *)hw, port * 128 + 3872, 4096); ctrl = 0U; } if ((int )skge->wol & 1) { ctrl = (u16 )((unsigned int )ctrl | 2080U); } else { ctrl = (u16 )((unsigned int )ctrl | 1040U); } if (((int )skge->wol & 32) != 0) { ctrl = (u16 )((unsigned int )ctrl | 520U); } else { ctrl = (u16 )((unsigned int )ctrl | 260U); } { ctrl = (u16 )((unsigned int )ctrl | 65U); skge_write16((struct skge_hw const *)hw, port * 128 + 3872, (int )ctrl); skge_write8((struct skge_hw const *)hw, (port << 7) + 3144, 1); } return; } } static void skge_get_wol(struct net_device *dev , struct ethtool_wolinfo *wol ) { struct skge_port *skge ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; wol->supported = wol_supported((struct skge_hw const *)skge->hw); wol->wolopts = (__u32 )skge->wol; } return; } } static int skge_set_wol(struct net_device *dev , struct ethtool_wolinfo *wol ) { struct skge_port *skge ; void *tmp ; struct skge_hw *hw ; u32 tmp___0 ; bool tmp___1 ; int tmp___2 ; { { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; hw = skge->hw; tmp___0 = wol_supported((struct skge_hw const *)hw); } if ((wol->wolopts & ~ tmp___0) != 0U) { return (-95); } else { { tmp___1 = device_can_wakeup(& (hw->pdev)->dev); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { return (-95); } else { } } { skge->wol = (u8 )wol->wolopts; device_set_wakeup_enable(& (hw->pdev)->dev, (unsigned int )skge->wol != 0U); } return (0); } } static u32 skge_supported_modes(struct skge_hw const *hw ) { u32 supported ; bool tmp ; { if ((unsigned int )((unsigned char )hw->copper) != 0U) { { supported = 255U; tmp = is_genesis(hw); } if ((int )tmp) { supported = supported & 4294967280U; } else if ((unsigned int )((unsigned char )hw->chip_id) == 176U) { supported = supported & 4294967279U; } else { } } else { supported = 1136U; } return (supported); } } static int skge_get_settings(struct net_device *dev , struct ethtool_cmd *ecmd ) { struct skge_port *skge ; void *tmp ; struct skge_hw *hw ; { { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; hw = skge->hw; ecmd->transceiver = 0U; ecmd->supported = skge_supported_modes((struct skge_hw const *)hw); } if ((unsigned int )hw->copper != 0U) { ecmd->port = 0U; ecmd->phy_address = (__u8 )hw->phy_addr; } else { ecmd->port = 3U; } { ecmd->advertising = skge->advertising; ecmd->autoneg = skge->autoneg; ethtool_cmd_speed_set(ecmd, (__u32 )skge->speed); ecmd->duplex = skge->duplex; } return (0); } } static int skge_set_settings(struct net_device *dev , struct ethtool_cmd *ecmd ) { struct skge_port *skge ; void *tmp ; struct skge_hw const *hw ; u32 supported ; u32 tmp___0 ; int err ; u32 setting ; u32 speed ; __u32 tmp___1 ; bool tmp___2 ; { { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; hw = (struct skge_hw const *)skge->hw; tmp___0 = skge_supported_modes(hw); supported = tmp___0; err = 0; } if ((unsigned int )ecmd->autoneg == 1U) { ecmd->advertising = supported; skge->duplex = 255U; skge->speed = 65535U; } else { { tmp___1 = ethtool_cmd_speed((struct ethtool_cmd const *)ecmd); speed = tmp___1; } { if (speed == 1000U) { goto case_1000; } else { } if (speed == 100U) { goto case_100; } else { } if (speed == 10U) { goto case_10; } else { } goto switch_default; case_1000: /* CIL Label */ ; if ((unsigned int )ecmd->duplex == 1U) { setting = 32U; } else if ((unsigned int )ecmd->duplex == 0U) { setting = 16U; } else { return (-22); } goto ldv_47055; case_100: /* CIL Label */ ; if ((unsigned int )ecmd->duplex == 1U) { setting = 8U; } else if ((unsigned int )ecmd->duplex == 0U) { setting = 4U; } else { return (-22); } goto ldv_47055; case_10: /* CIL Label */ ; if ((unsigned int )ecmd->duplex == 1U) { setting = 2U; } else if ((unsigned int )ecmd->duplex == 0U) { setting = 1U; } else { return (-22); } goto ldv_47055; switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } ldv_47055: ; if ((setting & supported) == 0U) { return (-22); } else { } skge->speed = (u16 )speed; skge->duplex = ecmd->duplex; } { skge->autoneg = ecmd->autoneg; skge->advertising = ecmd->advertising; tmp___2 = netif_running((struct net_device const *)dev); } if ((int )tmp___2) { { skge_down(dev); err = skge_up(dev); } if (err != 0) { { dev_close(dev); } return (err); } else { } } else { } return (0); } } static void skge_get_drvinfo(struct net_device *dev , struct ethtool_drvinfo *info ) { struct skge_port *skge ; void *tmp ; char const *tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; strlcpy((char *)(& info->driver), "skge", 32UL); strlcpy((char *)(& info->version), "1.14", 32UL); tmp___0 = pci_name((struct pci_dev const *)(skge->hw)->pdev); strlcpy((char *)(& info->bus_info), tmp___0, 32UL); } return; } } static struct skge_stat const skge_stats[21U] = { {{'t', 'x', '_', 'b', 'y', 't', 'e', 's', '\000'}, 644U, 488U}, {{'r', 'x', '_', 'b', 'y', 't', 'e', 's', '\000'}, 772U, 312U}, {{'t', 'x', '_', 'b', 'r', 'o', 'a', 'd', 'c', 'a', 's', 't', '\000'}, 652U, 456U}, {{'r', 'x', '_', 'b', 'r', 'o', 'a', 'd', 'c', 'a', 's', 't', '\000'}, 780U, 264U}, {{'t', 'x', '_', 'm', 'u', 'l', 't', 'i', 'c', 'a', 's', 't', '\000'}, 656U, 472U}, {{'r', 'x', '_', 'm', 'u', 'l', 't', 'i', 'c', 'a', 's', 't', '\000'}, 784U, 280U}, {{'t', 'x', '_', 'u', 'n', 'i', 'c', 'a', 's', 't', '\000'}, 660U, 448U}, {{'r', 'x', '_', 'u', 'n', 'i', 'c', 'a', 's', 't', '\000'}, 788U, 256U}, {{'t', 'x', '_', 'm', 'a', 'c', '_', 'p', 'a', 'u', 's', 'e', '\000'}, 672U, 464U}, {{'r', 'x', '_', 'm', 'a', 'c', '_', 'p', 'a', 'u', 's', 'e', '\000'}, 792U, 272U}, {{'c', 'o', 'l', 'l', 'i', 's', 'i', 'o', 'n', 's', '\000'}, 680U, 592U}, {{'m', 'u', 'l', 't', 'i', '_', 'c', 'o', 'l', 'l', 'i', 's', 'i', 'o', 'n', 's', '\000'}, 684U, 584U}, {{'a', 'b', 'o', 'r', 't', 'e', 'd', '\000'}, 688U, 576U}, {{'l', 'a', 't', 'e', '_', 'c', 'o', 'l', 'l', 'i', 's', 'i', 'o', 'n', '\000'}, 692U, 568U}, {{'f', 'i', 'f', 'o', '_', 'u', 'n', 'd', 'e', 'r', 'r', 'u', 'n', '\000'}, 704U, 600U}, {{'f', 'i', 'f', 'o', '_', 'o', 'v', 'e', 'r', 'f', 'l', 'o', 'w', '\000'}, 820U, 432U}, {{'r', 'x', '_', 't', 'o', 'o', 'l', 'o', 'n', 'g', '\000'}, 848U, 408U}, {{'r', 'x', '_', 'j', 'a', 'b', 'b', 'e', 'r', '\000'}, 824U, 416U}, {{'r', 'x', '_', 'r', 'u', 'n', 't', '\000'}, 844U, 344U}, {{'r', 'x', '_', 't', 'o', 'o', '_', 'l', 'o', 'n', 'g', '\000'}, 848U, 408U}, {{'r', 'x', '_', 'f', 'c', 's', '_', 'e', 'r', 'r', 'o', 'r', '\000'}, 852U, 288U}}; static int skge_get_sset_count(struct net_device *dev , int sset ) { { { if (sset == 1) { goto case_1; } else { } goto switch_default; case_1: /* CIL Label */ ; return (21); switch_default: /* CIL Label */ ; return (-95); switch_break: /* CIL Label */ ; } } } static void skge_get_ethtool_stats(struct net_device *dev , struct ethtool_stats *stats , u64 *data ) { struct skge_port *skge ; void *tmp ; bool tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; tmp___0 = is_genesis((struct skge_hw const *)skge->hw); } if ((int )tmp___0) { { genesis_get_stats(skge, data); } } else { { yukon_get_stats(skge, data); } } return; } } static struct net_device_stats *skge_get_stats(struct net_device *dev ) { struct skge_port *skge ; void *tmp ; u64 data[21U] ; bool tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; tmp___0 = is_genesis((struct skge_hw const *)skge->hw); } if ((int )tmp___0) { { genesis_get_stats(skge, (u64 *)(& data)); } } else { { yukon_get_stats(skge, (u64 *)(& data)); } } dev->stats.tx_bytes = (unsigned long )data[0]; dev->stats.rx_bytes = (unsigned long )data[1]; dev->stats.tx_packets = (unsigned long )((data[2] + data[4]) + data[6]); dev->stats.rx_packets = (unsigned long )((data[3] + data[5]) + data[7]); dev->stats.multicast = (unsigned long )(data[3] + data[5]); dev->stats.collisions = (unsigned long )data[10]; dev->stats.tx_aborted_errors = (unsigned long )data[12]; return (& dev->stats); } } static void skge_get_strings(struct net_device *dev , u32 stringset , u8 *data ) { int i ; { { if (stringset == 1U) { goto case_1; } else { } goto switch_break; case_1: /* CIL Label */ i = 0; goto ldv_47100; ldv_47099: { memcpy((void *)data + (unsigned long )(i * 32), (void const *)(& skge_stats[i].name), 32UL); i = i + 1; } ldv_47100: ; if ((unsigned int )i <= 20U) { goto ldv_47099; } else { } goto ldv_47102; switch_break: /* CIL Label */ ; } ldv_47102: ; return; } } static void skge_get_ring_param(struct net_device *dev , struct ethtool_ringparam *p ) { struct skge_port *skge ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; p->rx_max_pending = 4096U; p->tx_max_pending = 1024U; p->rx_pending = (__u32 )skge->rx_ring.count; p->tx_pending = (__u32 )skge->tx_ring.count; } return; } } static int skge_set_ring_param(struct net_device *dev , struct ethtool_ringparam *p ) { struct skge_port *skge ; void *tmp ; int err ; bool tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; err = 0; } if ((p->rx_pending - 1U > 4095U || p->tx_pending <= 17U) || p->tx_pending > 1024U) { return (-22); } else { } { skge->rx_ring.count = (unsigned long )p->rx_pending; skge->tx_ring.count = (unsigned long )p->tx_pending; tmp___0 = netif_running((struct net_device const *)dev); } if ((int )tmp___0) { { skge_down(dev); err = skge_up(dev); } if (err != 0) { { dev_close(dev); } } else { } } else { } return (err); } } static u32 skge_get_msglevel(struct net_device *netdev ) { struct skge_port *skge ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); skge = (struct skge_port *)tmp; } return (skge->msg_enable); } } static void skge_set_msglevel(struct net_device *netdev , u32 value ) { struct skge_port *skge ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); skge = (struct skge_port *)tmp; skge->msg_enable = value; } return; } } static int skge_nway_reset(struct net_device *dev ) { struct skge_port *skge ; void *tmp ; bool tmp___0 ; int tmp___1 ; { { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; } if ((unsigned int )skge->autoneg != 1U) { return (-22); } else { { tmp___0 = netif_running((struct net_device const *)dev); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (-22); } else { } } { skge_phy_reset(skge); } return (0); } } static void skge_get_pauseparam(struct net_device *dev , struct ethtool_pauseparam *ecmd ) { struct skge_port *skge ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; ecmd->rx_pause = (unsigned int )skge->flow_control - 3U <= 1U; ecmd->tx_pause = (__u32 )(ecmd->rx_pause != 0U || (unsigned int )skge->flow_control == 2U); ecmd->autoneg = (__u32 )(ecmd->rx_pause != 0U || ecmd->tx_pause != 0U); } return; } } static int skge_set_pauseparam(struct net_device *dev , struct ethtool_pauseparam *ecmd ) { struct skge_port *skge ; void *tmp ; struct ethtool_pauseparam old ; int err ; bool tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; err = 0; skge_get_pauseparam(dev, & old); } if (ecmd->autoneg != old.autoneg) { skge->flow_control = ecmd->autoneg != 0U ? 1 : 3; } else if (ecmd->rx_pause != 0U && ecmd->tx_pause != 0U) { skge->flow_control = 3; } else if (ecmd->rx_pause != 0U && ecmd->tx_pause == 0U) { skge->flow_control = 4; } else if (ecmd->rx_pause == 0U && ecmd->tx_pause != 0U) { skge->flow_control = 2; } else { skge->flow_control = 1; } { tmp___0 = netif_running((struct net_device const *)dev); } if ((int )tmp___0) { { skge_down(dev); err = skge_up(dev); } if (err != 0) { { dev_close(dev); } return (err); } else { } } else { } return (0); } } __inline static u32 hwkhz(struct skge_hw const *hw ) { bool tmp ; { { tmp = is_genesis(hw); } return ((int )tmp ? 53125U : 78125U); } } __inline static u32 skge_clk2usec(struct skge_hw const *hw , u32 ticks ) { u32 tmp ; { { tmp = hwkhz(hw); } return ((ticks * 1000U) / tmp); } } __inline static u32 skge_usecs2clk(struct skge_hw const *hw , u32 usec ) { u32 tmp ; { { tmp = hwkhz(hw); } return ((tmp * usec) / 1000U); } } static int skge_get_coalesce(struct net_device *dev , struct ethtool_coalesce *ecmd ) { struct skge_port *skge ; void *tmp ; struct skge_hw *hw ; int port ; u32 delay ; u32 tmp___0 ; u32 tmp___1 ; u32 msk ; u32 tmp___2 ; u32 tmp___3 ; { { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; hw = skge->hw; port = skge->port; ecmd->rx_coalesce_usecs = 0U; ecmd->tx_coalesce_usecs = 0U; tmp___3 = skge_read32((struct skge_hw const *)hw, 328); } if ((tmp___3 & 4U) != 0U) { { tmp___0 = skge_read32((struct skge_hw const *)hw, 320); tmp___1 = skge_clk2usec((struct skge_hw const *)hw, tmp___0); delay = tmp___1; tmp___2 = skge_read32((struct skge_hw const *)hw, 332); msk = tmp___2; } if ((msk & (u32 )rxirqmask[port]) != 0U) { ecmd->rx_coalesce_usecs = delay; } else { } if ((msk & (u32 )txirqmask[port]) != 0U) { ecmd->tx_coalesce_usecs = delay; } else { } } else { } return (0); } } static int skge_set_coalesce(struct net_device *dev , struct ethtool_coalesce *ecmd ) { struct skge_port *skge ; void *tmp ; struct skge_hw *hw ; int port ; u32 msk ; u32 tmp___0 ; u32 delay ; u32 _min1 ; __u32 _min2 ; u32 tmp___1 ; { { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; hw = skge->hw; port = skge->port; tmp___0 = skge_read32((struct skge_hw const *)hw, 332); msk = tmp___0; delay = 25U; } if (ecmd->rx_coalesce_usecs == 0U) { msk = msk & (u32 )(~ rxirqmask[port]); } else if (ecmd->rx_coalesce_usecs - 25U > 33308U) { return (-22); } else { msk = msk | (u32 )rxirqmask[port]; delay = ecmd->rx_coalesce_usecs; } if (ecmd->tx_coalesce_usecs == 0U) { msk = msk & (u32 )(~ txirqmask[port]); } else if (ecmd->tx_coalesce_usecs - 25U > 33308U) { return (-22); } else { msk = msk | (u32 )txirqmask[port]; _min1 = delay; _min2 = ecmd->rx_coalesce_usecs; delay = _min1 < _min2 ? _min1 : _min2; } { skge_write32((struct skge_hw const *)hw, 332, msk); } if (msk == 0U) { { skge_write32((struct skge_hw const *)hw, 328, 2U); } } else { { tmp___1 = skge_usecs2clk((struct skge_hw const *)hw, delay); skge_write32((struct skge_hw const *)hw, 320, tmp___1); skge_write32((struct skge_hw const *)hw, 328, 4U); } } return (0); } } static void skge_led(struct skge_port *skge , enum led_mode mode ) { struct skge_hw *hw ; int port ; bool tmp ; { { hw = skge->hw; port = skge->port; ldv_spin_lock_bh_85(& hw->phy_lock); tmp = is_genesis((struct skge_hw const *)hw); } if ((int )tmp) { { if ((unsigned int )mode == 0U) { goto case_0; } else { } if ((unsigned int )mode == 1U) { goto case_1; } else { } if ((unsigned int )mode == 2U) { goto case_2; } else { } goto switch_break; case_0: /* CIL Label */ ; if ((unsigned int )hw->phy_type == 1U) { { xm_phy_write(hw, port, 16, 8); } } else { { skge_write32((struct skge_hw const *)hw, (port << 7) + 3364, 0U); skge_write8((struct skge_hw const *)hw, (port << 7) + 3368, 2); } } { skge_write8((struct skge_hw const *)hw, (port << 7) + 3132, 1); skge_write32((struct skge_hw const *)hw, (port << 7) + 3108, 0U); skge_write8((struct skge_hw const *)hw, (port << 7) + 3112, 2); } goto ldv_47182; case_1: /* CIL Label */ { skge_write8((struct skge_hw const *)hw, (port << 7) + 3132, 2); skge_write8((struct skge_hw const *)hw, (port << 7) + 3132, 8); skge_write8((struct skge_hw const *)hw, (port << 7) + 3112, 4); skge_write8((struct skge_hw const *)hw, (port << 7) + 3368, 4); } goto ldv_47182; case_2: /* CIL Label */ { skge_write8((struct skge_hw const *)hw, (port << 7) + 3113, 4); skge_write32((struct skge_hw const *)hw, (port << 7) + 3108, 100U); skge_write8((struct skge_hw const *)hw, (port << 7) + 3112, 4); } if ((unsigned int )hw->phy_type == 1U) { { xm_phy_write(hw, port, 16, 16); } } else { { skge_write8((struct skge_hw const *)hw, (port << 7) + 3369, 4); skge_write32((struct skge_hw const *)hw, (port << 7) + 3364, 100U); skge_write8((struct skge_hw const *)hw, (port << 7) + 3368, 4); } } switch_break: /* CIL Label */ ; } ldv_47182: ; } else { { if ((unsigned int )mode == 0U) { goto case_0___0; } else { } if ((unsigned int )mode == 1U) { goto case_1___0; } else { } if ((unsigned int )mode == 2U) { goto case_2___0; } else { } goto switch_break___0; case_0___0: /* CIL Label */ { gm_phy_write(hw, port, 24, 0); gm_phy_write(hw, port, 25, 2728); } goto ldv_47186; case_1___0: /* CIL Label */ { gm_phy_write(hw, port, 24, 16645); gm_phy_write(hw, port, 25, (unsigned int )skge->speed == 100U ? 200 : 8); } goto ldv_47186; case_2___0: /* CIL Label */ { gm_phy_write(hw, port, 24, 0); gm_phy_write(hw, port, 25, 4092); } switch_break___0: /* CIL Label */ ; } ldv_47186: ; } { ldv_spin_unlock_bh_86(& hw->phy_lock); } return; } } static int skge_set_phys_id(struct net_device *dev , enum ethtool_phys_id_state state ) { struct skge_port *skge ; void *tmp ; bool tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; } { if ((unsigned int )state == 1U) { goto case_1; } else { } if ((unsigned int )state == 2U) { goto case_2; } else { } if ((unsigned int )state == 3U) { goto case_3; } else { } if ((unsigned int )state == 0U) { goto case_0; } else { } goto switch_break; case_1: /* CIL Label */ ; return (2); case_2: /* CIL Label */ { skge_led(skge, 2); } goto ldv_47196; case_3: /* CIL Label */ { skge_led(skge, 0); } goto ldv_47196; case_0: /* CIL Label */ { tmp___0 = netif_running((struct net_device const *)dev); skge_led(skge, (enum led_mode )tmp___0); } switch_break: /* CIL Label */ ; } ldv_47196: ; return (0); } } static int skge_get_eeprom_len(struct net_device *dev ) { struct skge_port *skge ; void *tmp ; u32 reg2 ; { { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; pci_read_config_dword((struct pci_dev const *)(skge->hw)->pdev, 68, & reg2); } return (1 << (int )((unsigned int )(((long )reg2 & 114688L) >> 14) + 8U)); } } static u32 skge_vpd_read(struct pci_dev *pdev , int cap , u16 offset ) { u32 val ; { { pci_write_config_word((struct pci_dev const *)pdev, cap + 2, (int )offset); } ldv_47210: { pci_read_config_word((struct pci_dev const *)pdev, cap + 2, & offset); } if ((int )((short )offset) >= 0) { goto ldv_47210; } else { } { pci_read_config_dword((struct pci_dev const *)pdev, cap + 4, & val); } return (val); } } static void skge_vpd_write(struct pci_dev *pdev , int cap , u16 offset , u32 val ) { { { pci_write_config_dword((struct pci_dev const *)pdev, cap + 4, val); pci_write_config_word((struct pci_dev const *)pdev, cap + 2, (int )((unsigned int )offset | 32768U)); } ldv_47218: { pci_read_config_word((struct pci_dev const *)pdev, cap + 2, & offset); } if ((int )((short )offset) < 0) { goto ldv_47218; } else { } return; } } static int skge_get_eeprom(struct net_device *dev , struct ethtool_eeprom *eeprom , u8 *data ) { struct skge_port *skge ; void *tmp ; struct pci_dev *pdev ; int cap ; int tmp___0 ; int length ; u16 offset ; u32 val ; u32 tmp___1 ; int n ; int __min1 ; int __min2 ; { { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; pdev = (skge->hw)->pdev; tmp___0 = pci_find_capability(pdev, 3); cap = tmp___0; length = (int )eeprom->len; offset = (u16 )eeprom->offset; } if (cap == 0) { return (-22); } else { } eeprom->magic = 2570300091U; goto ldv_47236; ldv_47235: { tmp___1 = skge_vpd_read(pdev, cap, (int )offset); val = tmp___1; __min1 = length; __min2 = 4; n = __min1 < __min2 ? __min1 : __min2; memcpy((void *)data, (void const *)(& val), (size_t )n); length = length - n; data = data + (unsigned long )n; offset = (int )offset + (int )((u16 )n); } ldv_47236: ; if (length > 0) { goto ldv_47235; } else { } return (0); } } static int skge_set_eeprom(struct net_device *dev , struct ethtool_eeprom *eeprom , u8 *data ) { struct skge_port *skge ; void *tmp ; struct pci_dev *pdev ; int cap ; int tmp___0 ; int length ; u16 offset ; u32 val ; int n ; int __min1 ; int __min2 ; { { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; pdev = (skge->hw)->pdev; tmp___0 = pci_find_capability(pdev, 3); cap = tmp___0; length = (int )eeprom->len; offset = (u16 )eeprom->offset; } if (cap == 0) { return (-22); } else { } if (eeprom->magic != 2570300091U) { return (-22); } else { } goto ldv_47254; ldv_47253: __min1 = length; __min2 = 4; n = __min1 < __min2 ? __min1 : __min2; if ((unsigned int )n <= 3U) { { val = skge_vpd_read(pdev, cap, (int )offset); } } else { } { memcpy((void *)(& val), (void const *)data, (size_t )n); skge_vpd_write(pdev, cap, (int )offset, val); length = length - n; data = data + (unsigned long )n; offset = (int )offset + (int )((u16 )n); } ldv_47254: ; if (length > 0) { goto ldv_47253; } else { } return (0); } } static struct ethtool_ops const skge_ethtool_ops = {& skge_get_settings, & skge_set_settings, & skge_get_drvinfo, & skge_get_regs_len, & skge_get_regs, & skge_get_wol, & skge_set_wol, & skge_get_msglevel, & skge_set_msglevel, & skge_nway_reset, & ethtool_op_get_link, & skge_get_eeprom_len, & skge_get_eeprom, & skge_set_eeprom, & skge_get_coalesce, & skge_set_coalesce, & skge_get_ring_param, & skge_set_ring_param, & skge_get_pauseparam, & skge_set_pauseparam, 0, & skge_get_strings, & skge_set_phys_id, & skge_get_ethtool_stats, 0, 0, 0, 0, & skge_get_sset_count, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static int skge_ring_alloc(struct skge_ring *ring , void *vaddr , u32 base ) { struct skge_tx_desc *d ; struct skge_element *e ; int i ; void *tmp ; struct skge_element *tmp___0 ; { { tmp = kcalloc(ring->count, 40UL, 208U); ring->start = (struct skge_element *)tmp; } if ((unsigned long )ring->start == (unsigned long )((struct skge_element *)0)) { return (-12); } else { } i = 0; e = ring->start; d = (struct skge_tx_desc *)vaddr; goto ldv_47266; ldv_47265: e->desc = (void *)d; if ((unsigned long )i == ring->count - 1UL) { e->next = ring->start; d->next_offset = base; } else { e->next = e + 1UL; d->next_offset = base + (u32 )((unsigned long )(i + 1)) * 32U; } i = i + 1; e = e + 1; d = d + 1; ldv_47266: ; if ((unsigned long )i < ring->count) { goto ldv_47265; } else { } tmp___0 = ring->start; ring->to_clean = tmp___0; ring->to_use = tmp___0; return (0); } } static int skge_rx_setup(struct skge_port *skge , struct skge_element *e , struct sk_buff *skb , unsigned int bufsize ) { struct skge_rx_desc *rd ; dma_addr_t map ; int tmp ; { { rd = (struct skge_rx_desc *)e->desc; map = pci_map_single((skge->hw)->pdev, (void *)skb->data, (size_t )bufsize, 2); tmp = pci_dma_mapping_error((skge->hw)->pdev, map); } if (tmp != 0) { return (-1); } else { } rd->dma_lo = (unsigned int )map; rd->dma_hi = (unsigned int )(map >> 32ULL); e->skb = skb; rd->csum1_start = 14U; rd->csum2_start = 14U; rd->csum1 = 0U; rd->csum2 = 0U; __asm__ volatile ("sfence": : : "memory"); rd->control = bufsize | 3361079296U; e->mapaddr = map; e->maplen = bufsize; return (0); } } __inline static void skge_rx_reuse(struct skge_element *e , unsigned int size ) { struct skge_rx_desc *rd ; { rd = (struct skge_rx_desc *)e->desc; rd->csum2 = 0U; rd->csum2_start = 14U; __asm__ volatile ("sfence": : : "memory"); rd->control = size | 3361079296U; return; } } static void skge_rx_clean(struct skge_port *skge ) { struct skge_hw *hw ; struct skge_ring *ring ; struct skge_element *e ; struct skge_rx_desc *rd ; { hw = skge->hw; ring = & skge->rx_ring; e = ring->start; ldv_47288: rd = (struct skge_rx_desc *)e->desc; rd->control = 0U; if ((unsigned long )e->skb != (unsigned long )((struct sk_buff *)0)) { { pci_unmap_single(hw->pdev, e->mapaddr, (size_t )e->maplen, 2); consume_skb(e->skb); e->skb = (struct sk_buff *)0; } } else { } e = e->next; if ((unsigned long )e != (unsigned long )ring->start) { goto ldv_47288; } else { } return; } } static int skge_rx_fill(struct net_device *dev ) { struct skge_port *skge ; void *tmp ; struct skge_ring *ring ; struct skge_element *e ; struct sk_buff *skb ; int tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; ring = & skge->rx_ring; e = ring->start; } ldv_47297: { skb = ldv___netdev_alloc_skb_87(dev, skge->rx_buf_size, 208U); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { return (-12); } else { } { skb_reserve(skb, 0); tmp___0 = skge_rx_setup(skge, e, skb, skge->rx_buf_size); } if (tmp___0 < 0) { { consume_skb(skb); } return (-5); } else { } e = e->next; if ((unsigned long )e != (unsigned long )ring->start) { goto ldv_47297; } else { } ring->to_clean = ring->start; return (0); } } static char const *skge_pause(enum pause_status status ) { { { if ((unsigned int )status == 1U) { goto case_1; } else { } if ((unsigned int )status == 2U) { goto case_2; } else { } if ((unsigned int )status == 3U) { goto case_3; } else { } if ((unsigned int )status == 4U) { goto case_4; } else { } goto switch_default; case_1: /* CIL Label */ ; return ("none"); case_2: /* CIL Label */ ; return ("rx only"); case_3: /* CIL Label */ ; return ("tx_only"); case_4: /* CIL Label */ ; return ("both"); switch_default: /* CIL Label */ ; return ("indeterminated"); switch_break: /* CIL Label */ ; } } } static void skge_link_up(struct skge_port *skge ) { char const *tmp ; { { skge_write8((struct skge_hw const *)skge->hw, (skge->port << 7) + 3132, 22); netif_carrier_on(skge->netdev); netif_wake_queue(skge->netdev); } if ((skge->msg_enable & 4U) != 0U) { { tmp = skge_pause(skge->flow_status); netdev_info((struct net_device const *)skge->netdev, "Link is up at %d Mbps, %s duplex, flow control %s\n", (int )skge->speed, (unsigned int )skge->duplex == 1U ? (char *)"full" : (char *)"half", tmp); } } else { } return; } } static void skge_link_down(struct skge_port *skge ) { { { skge_write8((struct skge_hw const *)skge->hw, (skge->port << 7) + 3132, 1); netif_carrier_off(skge->netdev); netif_stop_queue(skge->netdev); } if ((skge->msg_enable & 4U) != 0U) { { netdev_info((struct net_device const *)skge->netdev, "Link is down\n"); } } else { } return; } } static void xm_link_down(struct skge_hw *hw , int port ) { struct net_device *dev ; struct skge_port *skge ; void *tmp ; bool tmp___0 ; { { dev = hw->dev[port]; tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; xm_write16((struct skge_hw const *)hw, port, 68, 65535); tmp___0 = netif_carrier_ok((struct net_device const *)dev); } if ((int )tmp___0) { { skge_link_down(skge); } } else { } return; } } static int __xm_phy_read(struct skge_hw *hw , int port , u16 reg , u16 *val ) { int i ; u16 tmp ; { { xm_write16((struct skge_hw const *)hw, port, 52, (int )reg | (int )hw->phy_addr); *val = xm_read16((struct skge_hw const *)hw, port, 56); } if ((unsigned int )hw->phy_type == 0U) { goto ready; } else { } i = 0; goto ldv_47328; ldv_47327: { tmp = xm_read16((struct skge_hw const *)hw, port, 0); } if (((int )tmp & 4096) != 0) { goto ready; } else { } { __const_udelay(4295UL); i = i + 1; } ldv_47328: ; if (i <= 999) { goto ldv_47327; } else { } return (-110); ready: { *val = xm_read16((struct skge_hw const *)hw, port, 56); } return (0); } } static u16 xm_phy_read(struct skge_hw *hw , int port , u16 reg ) { u16 v ; int tmp ; { { v = 0U; tmp = __xm_phy_read(hw, port, (int )reg, & v); } if (tmp != 0) { { printk("\fskge: %s: phy read timed out\n", (char *)(& (hw->dev[port])->name)); } } else { } return (v); } } static int xm_phy_write(struct skge_hw *hw , int port , u16 reg , u16 val ) { int i ; u16 tmp ; u16 tmp___0 ; { { xm_write16((struct skge_hw const *)hw, port, 52, (int )reg | (int )hw->phy_addr); i = 0; } goto ldv_47345; ldv_47344: { tmp = xm_read16((struct skge_hw const *)hw, port, 0); } if (((int )tmp & 2048) == 0) { goto ready; } else { } { __const_udelay(4295UL); i = i + 1; } ldv_47345: ; if (i <= 999) { goto ldv_47344; } else { } return (-5); ready: { xm_write16((struct skge_hw const *)hw, port, 56, (int )val); i = 0; } goto ldv_47348; ldv_47347: { tmp___0 = xm_read16((struct skge_hw const *)hw, port, 0); } if (((int )tmp___0 & 2048) == 0) { return (0); } else { } { __const_udelay(4295UL); i = i + 1; } ldv_47348: ; if (i <= 999) { goto ldv_47347; } else { } return (-110); } } static void genesis_init(struct skge_hw *hw ) { { { skge_write32((struct skge_hw const *)hw, 368, 26562500U); skge_write8((struct skge_hw const *)hw, 376, 2); skge_write16((struct skge_hw const *)hw, 440, 2); skge_write8((struct skge_hw const *)hw, 432, 72); skge_write8((struct skge_hw const *)hw, 433, 72); skge_write8((struct skge_hw const *)hw, 434, 72); skge_write8((struct skge_hw const *)hw, 435, 72); skge_write8((struct skge_hw const *)hw, 448, 0); skge_write8((struct skge_hw const *)hw, 449, 0); skge_write8((struct skge_hw const *)hw, 450, 0); skge_write8((struct skge_hw const *)hw, 451, 0); skge_write16((struct skge_hw const *)hw, 496, 2); skge_write16((struct skge_hw const *)hw, 464, 65535); skge_write16((struct skge_hw const *)hw, 472, 65535); skge_write16((struct skge_hw const *)hw, 468, 65535); skge_write16((struct skge_hw const *)hw, 476, 65535); } return; } } static void genesis_reset(struct skge_hw *hw , int port ) { u8 zero[8U] ; unsigned int tmp ; u32 reg ; { zero[0] = 0U; tmp = 1U; { while (1) { while_continue: /* CIL Label */ ; if (tmp >= 8U) { goto while_break; } else { } zero[tmp] = (unsigned char)0; tmp = tmp + 1U; } while_break: /* CIL Label */ ; } { skge_write8((struct skge_hw const *)hw, (port << 7) + 3852, 0); xm_write32((struct skge_hw const *)hw, port, 64, 4U); xm_write16((struct skge_hw const *)hw, port, 68, 65535); xm_write32((struct skge_hw const *)hw, port, 292, 0U); xm_write16((struct skge_hw const *)hw, port, 32, 0); xm_write16((struct skge_hw const *)hw, port, 48, 0); } if ((unsigned int )hw->phy_type == 1U) { { xm_write16((struct skge_hw const *)hw, port, 27, 65535); } } else { } { xm_outhash((struct skge_hw const *)hw, port, 272, (u8 const *)(& zero)); reg = xm_read32((struct skge_hw const *)hw, port, 292); xm_write32((struct skge_hw const *)hw, port, 292, reg | 2U); xm_write32((struct skge_hw const *)hw, port, 292, reg | 1U); } return; } } static u16 const phy_pause_map[5U] = { (unsigned short)0, 0U, 2048U, 1024U, 3072U}; static u16 const fiber_pause_map[5U] = { (unsigned short)0, 0U, 256U, 128U, 384U}; static void bcom_check_link(struct skge_hw *hw , int port ) { struct net_device *dev ; struct skge_port *skge ; void *tmp ; u16 status ; u16 lpa ; u16 aux ; bool tmp___0 ; int tmp___1 ; { { dev = hw->dev[port]; tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; xm_phy_read(hw, port, 1); status = xm_phy_read(hw, port, 1); } if (((int )status & 4) == 0) { { xm_link_down(hw, port); } return; } else { } if ((unsigned int )skge->autoneg == 1U) { if (((int )status & 32) == 0) { return; } else { } { lpa = xm_phy_read(hw, port, 5); } if (((int )lpa & 8192) != 0) { { netdev_notice((struct net_device const *)dev, "remote fault\n"); } return; } else { } { aux = xm_phy_read(hw, port, 25); } { if (((int )aux & 1792) == 1792) { goto case_1792; } else { } if (((int )aux & 1792) == 1536) { goto case_1536; } else { } goto switch_default; case_1792: /* CIL Label */ skge->duplex = 1U; goto ldv_47371; case_1536: /* CIL Label */ skge->duplex = 0U; goto ldv_47371; switch_default: /* CIL Label */ { netdev_notice((struct net_device const *)dev, "duplex mismatch\n"); } return; switch_break: /* CIL Label */ ; } ldv_47371: ; { if (((int )aux & 3) == 3) { goto case_3; } else { } if (((int )aux & 3) == 2) { goto case_2; } else { } if (((int )aux & 3) == 1) { goto case_1; } else { } goto switch_default___0; case_3: /* CIL Label */ skge->flow_status = 4; goto ldv_47375; case_2: /* CIL Label */ skge->flow_status = 2; goto ldv_47375; case_1: /* CIL Label */ skge->flow_status = 3; goto ldv_47375; switch_default___0: /* CIL Label */ skge->flow_status = 1; switch_break___0: /* CIL Label */ ; } ldv_47375: skge->speed = 1000U; } else { } { tmp___0 = netif_carrier_ok((struct net_device const *)dev); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { { genesis_link_up(skge); } } else { } return; } } static void bcom_phy_init(struct skge_port *skge ) { struct skge_hw *hw ; int port ; int i ; u16 id1 ; u16 r ; u16 ext ; u16 ctl ; struct __anonstruct_A1hack_255 A1hack[12U] ; struct __anonstruct_C0hack_256 C0hack[6U] ; u16 adv ; { { hw = skge->hw; port = skge->port; A1hack[0].reg = 24U; A1hack[0].val = 3104U; A1hack[1].reg = 23U; A1hack[1].val = 18U; A1hack[2].reg = 21U; A1hack[2].val = 4356U; A1hack[3].reg = 23U; A1hack[3].val = 19U; A1hack[4].reg = 21U; A1hack[4].val = 1028U; A1hack[5].reg = 23U; A1hack[5].val = 32774U; A1hack[6].reg = 21U; A1hack[6].val = 306U; A1hack[7].reg = 23U; A1hack[7].val = 32774U; A1hack[8].reg = 21U; A1hack[8].val = 562U; A1hack[9].reg = 23U; A1hack[9].val = 32781U; A1hack[10].reg = 21U; A1hack[10].val = 15U; A1hack[11].reg = 24U; A1hack[11].val = 1056U; C0hack[0].reg = 24U; C0hack[0].val = 3104U; C0hack[1].reg = 23U; C0hack[1].val = 18U; C0hack[2].reg = 21U; C0hack[2].val = 4612U; C0hack[3].reg = 23U; C0hack[3].val = 19U; C0hack[4].reg = 21U; C0hack[4].val = 2564U; C0hack[5].reg = 24U; C0hack[5].val = 1056U; id1 = xm_phy_read(hw, port, 3); r = xm_read16((struct skge_hw const *)hw, port, 0); r = (u16 )((unsigned int )r | 32U); xm_write16((struct skge_hw const *)hw, port, 0, (int )r); } { if ((int )id1 == 24644) { goto case_24644; } else { } if ((int )id1 == 24641) { goto case_24641; } else { } goto switch_break; case_24644: /* CIL Label */ i = 0; goto ldv_47398; ldv_47397: { xm_phy_write(hw, port, (int )C0hack[i].reg, (int )C0hack[i].val); i = i + 1; } ldv_47398: ; if ((unsigned int )i <= 5U) { goto ldv_47397; } else { } goto ldv_47400; case_24641: /* CIL Label */ i = 0; goto ldv_47405; ldv_47404: { xm_phy_write(hw, port, (int )A1hack[i].reg, (int )A1hack[i].val); i = i + 1; } ldv_47405: ; if ((unsigned int )i <= 11U) { goto ldv_47404; } else { } goto ldv_47400; switch_break: /* CIL Label */ ; } ldv_47400: { r = xm_phy_read(hw, port, 24); r = (u16 )((unsigned int )r | 32U); xm_phy_write(hw, port, 24, (int )r); xm_read16((struct skge_hw const *)hw, port, 72); ext = 32U; ctl = 64U; } if ((unsigned int )skge->autoneg == 1U) { adv = 1024U; if ((skge->advertising & 16U) != 0U) { adv = (u16 )((unsigned int )adv | 256U); } else { } if ((skge->advertising & 32U) != 0U) { adv = (u16 )((unsigned int )adv | 512U); } else { } { xm_phy_write(hw, port, 9, (int )adv); ctl = (u16 )((unsigned int )ctl | 4608U); } } else { if ((unsigned int )skge->duplex == 1U) { ctl = (u16 )((unsigned int )ctl | 256U); } else { } { xm_phy_write(hw, port, 9, 4096); } } { xm_phy_write(hw, port, 4, (int )((unsigned int )((unsigned short )phy_pause_map[(unsigned int )skge->flow_control]) | 1U)); } if ((hw->dev[port])->mtu > 1500U) { { xm_phy_write(hw, port, 24, 17408); ext = (u16 )((unsigned int )ext | 1U); } } else { } { xm_phy_write(hw, port, 16, (int )ext); xm_phy_write(hw, port, 0, (int )ctl); xm_phy_write(hw, port, 27, 48113); } return; } } static void xm_phy_init(struct skge_port *skge ) { struct skge_hw *hw ; int port ; u16 ctrl ; { hw = skge->hw; port = skge->port; ctrl = 0U; if ((unsigned int )skge->autoneg == 1U) { if ((skge->advertising & 16U) != 0U) { ctrl = (u16 )((unsigned int )ctrl | 64U); } else { } if ((skge->advertising & 32U) != 0U) { ctrl = (u16 )((unsigned int )ctrl | 32U); } else { } { ctrl = (u16 )((int )ctrl | (int )((unsigned short )fiber_pause_map[(unsigned int )skge->flow_control])); xm_phy_write(hw, port, 4, (int )ctrl); ctrl = 4608U; } } else if ((unsigned int )skge->duplex == 1U) { ctrl = (u16 )((unsigned int )ctrl | 256U); } else { } { xm_phy_write(hw, port, 0, (int )ctrl); ldv_mod_timer_88(& skge->link_timer, (unsigned long )jiffies + 250UL); } return; } } static int xm_check_link(struct net_device *dev ) { struct skge_port *skge ; void *tmp ; struct skge_hw *hw ; int port ; u16 status ; u16 lpa ; u16 res ; bool tmp___0 ; int tmp___1 ; { { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; hw = skge->hw; port = skge->port; xm_phy_read(hw, port, 1); status = xm_phy_read(hw, port, 1); } if (((int )status & 4) == 0) { { xm_link_down(hw, port); } return (0); } else { } if ((unsigned int )skge->autoneg == 1U) { if (((int )status & 32) == 0) { return (0); } else { } { lpa = xm_phy_read(hw, port, 5); } if (((int )lpa & 8192) != 0) { { netdev_notice((struct net_device const *)dev, "remote fault\n"); } return (0); } else { } { res = xm_phy_read(hw, port, 16); } { if (((int )res & 96) == 32) { goto case_32; } else { } if (((int )res & 96) == 64) { goto case_64; } else { } goto switch_default; case_32: /* CIL Label */ skge->duplex = 1U; goto ldv_47424; case_64: /* CIL Label */ skge->duplex = 0U; goto ldv_47424; switch_default: /* CIL Label */ { netdev_notice((struct net_device const *)dev, "duplex mismatch\n"); } return (0); switch_break: /* CIL Label */ ; } ldv_47424: ; if ((unsigned int )skge->flow_control - 3U <= 1U && ((int )lpa & 128) != 0) { skge->flow_status = 4; } else if ((unsigned int )skge->flow_control == 4U && ((int )lpa & 384) == 256) { skge->flow_status = 2; } else if ((unsigned int )skge->flow_control == 2U && ((int )lpa & 384) == 384) { skge->flow_status = 3; } else { skge->flow_status = 1; } skge->speed = 1000U; } else { } { tmp___0 = netif_carrier_ok((struct net_device const *)dev); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { { genesis_link_up(skge); } } else { } return (1); } } static void xm_link_timer(unsigned long arg ) { struct skge_port *skge ; struct net_device *dev ; struct skge_hw *hw ; int port ; int i ; unsigned long flags ; bool tmp ; int tmp___0 ; u16 tmp___1 ; u16 msk ; u16 tmp___2 ; unsigned long tmp___3 ; int tmp___4 ; { { skge = (struct skge_port *)arg; dev = skge->netdev; hw = skge->hw; port = skge->port; tmp = netif_running((struct net_device const *)dev); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return; } else { } { ldv___ldv_spin_lock_89(& hw->phy_lock); i = 0; } goto ldv_47438; ldv_47437: { tmp___1 = xm_read16((struct skge_hw const *)hw, port, 64); } if ((int )tmp___1 & 1) { goto link_down; } else { } i = i + 1; ldv_47438: ; if (i <= 2) { goto ldv_47437; } else { } { tmp___4 = xm_check_link(dev); } if (tmp___4 != 0) { { tmp___2 = xm_read16((struct skge_hw const *)hw, port, 68); msk = tmp___2; msk = (unsigned int )msk & 63487U; xm_write16((struct skge_hw const *)hw, port, 68, (int )msk); xm_read16((struct skge_hw const *)hw, port, 72); } } else { link_down: { tmp___3 = round_jiffies((unsigned long )jiffies + 250UL); ldv_mod_timer_90(& skge->link_timer, tmp___3); } } { ldv_spin_unlock_irqrestore_91(& hw->phy_lock, flags); } return; } } static void genesis_mac_init(struct skge_hw *hw , int port ) { struct net_device *dev ; struct skge_port *skge ; void *tmp ; int jumbo ; int i ; u32 r ; u8 zero[6U] ; unsigned int tmp___0 ; u16 tmp___1 ; { { dev = hw->dev[port]; tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; jumbo = (hw->dev[port])->mtu > 1500U; zero[0] = 0U; tmp___0 = 1U; } { while (1) { while_continue: /* CIL Label */ ; if (tmp___0 >= 6U) { goto while_break; } else { } zero[tmp___0] = (unsigned char)0; tmp___0 = tmp___0 + 1U; } while_break: /* CIL Label */ ; } i = 0; goto ldv_47453; ldv_47452: { skge_write16((struct skge_hw const *)hw, (port << 7) + 3352, 1); tmp___1 = skge_read16((struct skge_hw const *)hw, (port << 7) + 3352); } if ((int )tmp___1 & 1) { goto reset_ok; } else { } { __const_udelay(4295UL); i = i + 1; } ldv_47453: ; if (i <= 9) { goto ldv_47452; } else { } { netdev_warn((struct net_device const *)dev, "genesis reset failed\n"); } reset_ok: { skge_write16((struct skge_hw const *)hw, (port << 7) + 3352, 2); } if ((unsigned int )hw->phy_type != 0U) { { r = skge_read32((struct skge_hw const *)hw, 348); } if (port == 0) { r = r | 65537U; } else { r = r | 262148U; } { skge_write32((struct skge_hw const *)hw, 348, r); xm_write16((struct skge_hw const *)hw, port, 76, 1); } } else { } { if ((int )hw->phy_type == 0) { goto case_0; } else { } if ((int )hw->phy_type == 1) { goto case_1; } else { } goto switch_break; case_0: /* CIL Label */ { xm_phy_init(skge); } goto ldv_47456; case_1: /* CIL Label */ { bcom_phy_init(skge); bcom_check_link(hw, port); } switch_break: /* CIL Label */ ; } ldv_47456: { xm_outaddr((struct skge_hw const *)hw, port, 264, (u8 const *)dev->dev_addr); i = 1; } goto ldv_47459; ldv_47458: { xm_outaddr((struct skge_hw const *)hw, port, (i << 3) + 128, (u8 const *)(& zero)); i = i + 1; } ldv_47459: ; if (i <= 15) { goto ldv_47458; } else { } { xm_write16((struct skge_hw const *)hw, port, 512, 3); xm_write16((struct skge_hw const *)hw, port, 512, 3); xm_write16((struct skge_hw const *)hw, port, 282, 1450); r = 272U; } if (jumbo != 0) { r = r | 128U; } else { } if ((unsigned int )skge->duplex == 0U) { r = r | 1U; } else { } { xm_write16((struct skge_hw const *)hw, port, 48, (int )((u16 )r)); xm_write16((struct skge_hw const *)hw, port, 32, 1); } if ((unsigned int )hw->ports > 1U && jumbo != 0) { { xm_write16((struct skge_hw const *)hw, port, 100, 1020); } } else { { xm_write16((struct skge_hw const *)hw, port, 100, 512); } } { xm_write32((struct skge_hw const *)hw, port, 292, 20352U); xm_write32((struct skge_hw const *)hw, port, 524, 6U); xm_write32((struct skge_hw const *)hw, port, 528, 6U); skge_write16((struct skge_hw const *)hw, 440, 2); skge_write8((struct skge_hw const *)hw, 432, 72); skge_write8((struct skge_hw const *)hw, 433, 72); skge_write8((struct skge_hw const *)hw, 434, 72); skge_write8((struct skge_hw const *)hw, 435, 72); skge_write8((struct skge_hw const *)hw, 448, 0); skge_write8((struct skge_hw const *)hw, 449, 0); skge_write8((struct skge_hw const *)hw, 450, 0); skge_write8((struct skge_hw const *)hw, 451, 0); skge_write8((struct skge_hw const *)hw, (port << 7) + 3100, 2); skge_write16((struct skge_hw const *)hw, (port << 7) + 3096, 2048); skge_write8((struct skge_hw const *)hw, (port << 7) + 3100, 8); skge_write8((struct skge_hw const *)hw, (port << 7) + 3356, 2); skge_write16((struct skge_hw const *)hw, (port << 7) + 3352, 10272); skge_write8((struct skge_hw const *)hw, (port << 7) + 3356, 8); } if (jumbo != 0) { { skge_write16((struct skge_hw const *)hw, (port << 7) + 3096, 32); } } else { { skge_write16((struct skge_hw const *)hw, 496, port == 0 ? 128 : 512); } } return; } } static void genesis_stop(struct skge_port *skge ) { struct skge_hw *hw ; int port ; unsigned int retries ; u16 cmd ; u16 tmp ; u32 reg ; u32 tmp___0 ; u16 tmp___1 ; { { hw = skge->hw; port = skge->port; retries = 1000U; cmd = xm_read16((struct skge_hw const *)hw, port, 0); cmd = (unsigned int )cmd & 65532U; xm_write16((struct skge_hw const *)hw, port, 0, (int )cmd); genesis_reset(hw, port); skge_write16((struct skge_hw const *)hw, 496, port == 0 ? 4096 : 8192); skge_write16((struct skge_hw const *)hw, (port << 7) + 3352, 2); } ldv_47469: { skge_write16((struct skge_hw const *)hw, (port << 7) + 3352, 1); tmp = skge_read16((struct skge_hw const *)hw, (port << 7) + 3352); } if (((int )tmp & 1) == 0) { goto ldv_47468; } else { } retries = retries - 1U; if (retries != 0U) { goto ldv_47469; } else { } ldv_47468: ; if ((unsigned int )hw->phy_type != 0U) { { tmp___0 = skge_read32((struct skge_hw const *)hw, 348); reg = tmp___0; } if (port == 0) { reg = reg | 65536U; reg = reg & 4294967294U; } else { reg = reg | 262144U; reg = reg & 4294967291U; } { skge_write32((struct skge_hw const *)hw, 348, reg); skge_read32((struct skge_hw const *)hw, 348); } } else { } { tmp___1 = xm_read16((struct skge_hw const *)hw, port, 0); xm_write16((struct skge_hw const *)hw, port, 0, (int )tmp___1 & 65532); xm_read16((struct skge_hw const *)hw, port, 0); } return; } } static void genesis_get_stats(struct skge_port *skge , u64 *data ) { struct skge_hw *hw ; int port ; int i ; unsigned long timeout ; u16 tmp ; u32 tmp___0 ; u32 tmp___1 ; u32 tmp___2 ; u32 tmp___3 ; u32 tmp___4 ; { { hw = skge->hw; port = skge->port; timeout = (unsigned long )jiffies + 250UL; xm_write16((struct skge_hw const *)hw, port, 512, 48); } goto ldv_47487; ldv_47486: ; if ((long )(timeout - (unsigned long )jiffies) < 0L) { goto ldv_47485; } else { } { __const_udelay(42950UL); } ldv_47487: { tmp = xm_read16((struct skge_hw const *)hw, port, 512); } if (((int )tmp & 48) != 0) { goto ldv_47486; } else { } ldv_47485: { tmp___0 = xm_read32((struct skge_hw const *)hw, port, 644); tmp___1 = xm_read32((struct skge_hw const *)hw, port, 648); *data = ((unsigned long long )tmp___0 << 32) | (unsigned long long )tmp___1; tmp___2 = xm_read32((struct skge_hw const *)hw, port, 772); tmp___3 = xm_read32((struct skge_hw const *)hw, port, 776); *(data + 1UL) = ((unsigned long long )tmp___2 << 32) | (unsigned long long )tmp___3; i = 2; } goto ldv_47491; ldv_47490: { tmp___4 = xm_read32((struct skge_hw const *)hw, port, (int )skge_stats[i].xmac_offset); *(data + (unsigned long )i) = (u64 )tmp___4; i = i + 1; } ldv_47491: ; if ((unsigned int )i <= 20U) { goto ldv_47490; } else { } return; } } static void genesis_mac_intr(struct skge_hw *hw , int port ) { struct net_device *dev ; struct skge_port *skge ; void *tmp ; u16 status ; u16 tmp___0 ; { { dev = hw->dev[port]; tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; tmp___0 = xm_read16((struct skge_hw const *)hw, port, 72); status = tmp___0; } if ((skge->msg_enable & 512U) != 0U) { { netdev_printk("\017", (struct net_device const *)skge->netdev, "mac interrupt status 0x%x\n", (int )status); } } else { } if ((unsigned int )hw->phy_type == 0U && ((int )status & 2048) != 0) { { xm_link_down(hw, port); ldv_mod_timer_92(& skge->link_timer, (unsigned long )jiffies + 1UL); } } else { } if (((int )status & 4) != 0) { { xm_write32((struct skge_hw const *)hw, port, 292, 2U); dev->stats.tx_fifo_errors = dev->stats.tx_fifo_errors + 1UL; } } else { } return; } } static void genesis_link_up(struct skge_port *skge ) { struct skge_hw *hw ; int port ; u16 cmd ; u16 msk ; u32 mode ; u16 tmp ; { { hw = skge->hw; port = skge->port; cmd = xm_read16((struct skge_hw const *)hw, port, 0); } if ((unsigned int )skge->flow_status == 1U || (unsigned int )skge->flow_status == 3U) { cmd = (u16 )((unsigned int )cmd | 1024U); } else { cmd = (unsigned int )cmd & 64511U; } { xm_write16((struct skge_hw const *)hw, port, 0, (int )cmd); mode = xm_read32((struct skge_hw const *)hw, port, 292); } if ((unsigned int )skge->flow_status - 3U <= 1U) { { xm_write16((struct skge_hw const *)hw, port, 118, 65535); mode = mode | 33947648U; skge_write16((struct skge_hw const *)hw, (port << 7) + 3096, 128); } } else { { mode = mode & 4261019647U; skge_write16((struct skge_hw const *)hw, (port << 7) + 3096, 64); } } { xm_write32((struct skge_hw const *)hw, port, 292, mode); msk = xm_read16((struct skge_hw const *)hw, port, 68); msk = (unsigned int )msk & 65531U; xm_write16((struct skge_hw const *)hw, port, 68, (int )msk); xm_read16((struct skge_hw const *)hw, port, 72); cmd = xm_read16((struct skge_hw const *)hw, port, 0); } if ((unsigned int )hw->phy_type != 0U && (unsigned int )skge->duplex == 1U) { cmd = (u16 )((unsigned int )cmd | 16U); } else { } if ((unsigned int )hw->phy_type == 1U) { { tmp = xm_phy_read(hw, port, 24); xm_phy_write(hw, port, 24, (int )tmp & 65503); xm_phy_write(hw, port, 27, 48113); } } else { } { xm_write16((struct skge_hw const *)hw, port, 0, (int )((unsigned int )cmd | 3U)); skge_link_up(skge); } return; } } __inline static void bcom_phy_intr(struct skge_port *skge ) { struct skge_hw *hw ; int port ; u16 isrc ; u16 ctrl ; u16 tmp ; { { hw = skge->hw; port = skge->port; isrc = xm_phy_read(hw, port, 26); } if ((skge->msg_enable & 512U) != 0U) { { netdev_printk("\017", (struct net_device const *)skge->netdev, "phy interrupt status 0x%x\n", (int )isrc); } } else { } if (((int )isrc & 16384) != 0) { { printk("\vskge: %s: uncorrectable pair swap error\n", (char *)(& (hw->dev[port])->name)); } } else { } if (((int )isrc & 512) != 0) { { tmp = xm_phy_read(hw, port, 0); ctrl = tmp; xm_phy_write(hw, port, 0, (int )((unsigned int )ctrl | 16384U)); xm_phy_write(hw, port, 0, (int )ctrl & 49151); } } else { } if (((int )isrc & 1026) != 0) { { bcom_check_link(hw, port); } } else { } return; } } static int gm_phy_write(struct skge_hw *hw , int port , u16 reg , u16 val ) { int i ; u16 tmp ; { { gma_write16((struct skge_hw const *)hw, port, 132, (int )val); gma_write16((struct skge_hw const *)hw, port, 128, (int )((u16 )((int )((short )((int )hw->phy_addr << 11)) | ((int )((short )((int )reg << 6)) & 1984)))); i = 0; } goto ldv_47523; ldv_47522: { __const_udelay(4295UL); tmp = gma_read16((struct skge_hw const *)hw, port, 128); } if (((int )tmp & 8) == 0) { return (0); } else { } i = i + 1; ldv_47523: ; if (i <= 999) { goto ldv_47522; } else { } { printk("\fskge: %s: phy write timeout\n", (char *)(& (hw->dev[port])->name)); } return (-5); } } static int __gm_phy_read(struct skge_hw *hw , int port , u16 reg , u16 *val ) { int i ; u16 tmp ; { { gma_write16((struct skge_hw const *)hw, port, 128, (int )((u16 )(((int )((short )((int )hw->phy_addr << 11)) | ((int )((short )((int )reg << 6)) & 1984)) | 32))); i = 0; } goto ldv_47534; ldv_47533: { __const_udelay(4295UL); tmp = gma_read16((struct skge_hw const *)hw, port, 128); } if (((int )tmp & 16) != 0) { goto ready; } else { } i = i + 1; ldv_47534: ; if (i <= 999) { goto ldv_47533; } else { } return (-110); ready: { *val = gma_read16((struct skge_hw const *)hw, port, 132); } return (0); } } static u16 gm_phy_read(struct skge_hw *hw , int port , u16 reg ) { u16 v ; int tmp ; { { v = 0U; tmp = __gm_phy_read(hw, port, (int )reg, & v); } if (tmp != 0) { { printk("\fskge: %s: phy read timeout\n", (char *)(& (hw->dev[port])->name)); } } else { } return (v); } } static void yukon_init(struct skge_hw *hw , int port ) { struct skge_port *skge ; void *tmp ; u16 ctrl ; u16 ct1000 ; u16 adv ; u16 ectrl ; u16 tmp___0 ; { { tmp = netdev_priv((struct net_device const *)hw->dev[port]); skge = (struct skge_port *)tmp; } if ((unsigned int )skge->autoneg == 1U) { { tmp___0 = gm_phy_read(hw, port, 20); ectrl = tmp___0; ectrl = (unsigned int )ectrl & 61583U; ectrl = (u16 )((unsigned int )ectrl | 112U); ectrl = (u16 )((unsigned int )ectrl | 256U); gm_phy_write(hw, port, 20, (int )ectrl); } } else { } { ctrl = gm_phy_read(hw, port, 0); } if ((unsigned int )skge->autoneg == 0U) { ctrl = (unsigned int )ctrl & 61439U; } else { } { ctrl = (u16 )((unsigned int )ctrl | 32768U); gm_phy_write(hw, port, 0, (int )ctrl); ctrl = 0U; ct1000 = 0U; adv = 1U; } if ((unsigned int )skge->autoneg == 1U) { if ((unsigned int )hw->copper != 0U) { if ((skge->advertising & 32U) != 0U) { ct1000 = (u16 )((unsigned int )ct1000 | 512U); } else { } if ((skge->advertising & 16U) != 0U) { ct1000 = (u16 )((unsigned int )ct1000 | 256U); } else { } if ((skge->advertising & 8U) != 0U) { adv = (u16 )((unsigned int )adv | 256U); } else { } if ((skge->advertising & 4U) != 0U) { adv = (u16 )((unsigned int )adv | 128U); } else { } if ((skge->advertising & 2U) != 0U) { adv = (u16 )((unsigned int )adv | 64U); } else { } if ((int )skge->advertising & 1) { adv = (u16 )((unsigned int )adv | 32U); } else { } adv = (u16 )((int )adv | (int )((unsigned short )phy_pause_map[(unsigned int )skge->flow_control])); } else { if ((skge->advertising & 32U) != 0U) { adv = (u16 )((unsigned int )adv | 32U); } else { } if ((skge->advertising & 16U) != 0U) { adv = (u16 )((unsigned int )adv | 64U); } else { } adv = (u16 )((int )adv | (int )((unsigned short )fiber_pause_map[(unsigned int )skge->flow_control])); } ctrl = (u16 )((unsigned int )ctrl | 4608U); } else { ct1000 = 4096U; if ((unsigned int )skge->duplex == 1U) { ctrl = (u16 )((unsigned int )ctrl | 256U); } else { } { if ((int )skge->speed == 1000) { goto case_1000; } else { } if ((int )skge->speed == 100) { goto case_100; } else { } goto switch_break; case_1000: /* CIL Label */ ctrl = (u16 )((unsigned int )ctrl | 64U); goto ldv_47552; case_100: /* CIL Label */ ctrl = (u16 )((unsigned int )ctrl | 8192U); goto ldv_47552; switch_break: /* CIL Label */ ; } ldv_47552: ctrl = (u16 )((unsigned int )ctrl | 32768U); } { gm_phy_write(hw, port, 9, (int )ct1000); gm_phy_write(hw, port, 4, (int )adv); gm_phy_write(hw, port, 0, (int )ctrl); } if ((unsigned int )skge->autoneg == 1U) { { gm_phy_write(hw, port, 18, 34816); } } else { { gm_phy_write(hw, port, 18, 50304); } } return; } } static void yukon_reset(struct skge_hw *hw , int port ) { u16 tmp ; { { gm_phy_write(hw, port, 18, 0); gma_write16((struct skge_hw const *)hw, port, 52, 0); gma_write16((struct skge_hw const *)hw, port, 56, 0); gma_write16((struct skge_hw const *)hw, port, 60, 0); gma_write16((struct skge_hw const *)hw, port, 64, 0); tmp = gma_read16((struct skge_hw const *)hw, port, 12); gma_write16((struct skge_hw const *)hw, port, 12, (int )((unsigned int )tmp | 49152U)); } return; } } static int is_yukon_lite_a0(struct skge_hw *hw ) { u32 reg ; int ret ; u8 tmp ; { if ((unsigned int )hw->chip_id != 176U) { return (0); } else { } { reg = skge_read32((struct skge_hw const *)hw, 288); skge_write8((struct skge_hw const *)hw, 291, 255); tmp = skge_read8((struct skge_hw const *)hw, 291); ret = (unsigned int )tmp != 0U; skge_write32((struct skge_hw const *)hw, 288, reg); } return (ret); } } static void yukon_mac_init(struct skge_hw *hw , int port ) { struct skge_port *skge ; void *tmp ; int i ; u32 reg ; u8 const *addr ; u16 tmp___0 ; u16 tmp___1 ; int tmp___2 ; { { tmp = netdev_priv((struct net_device const *)hw->dev[port]); skge = (struct skge_port *)tmp; addr = (u8 const *)(hw->dev[port])->dev_addr; } if ((unsigned int )hw->chip_id == 177U && (unsigned int )hw->chip_rev > 6U) { { reg = skge_read32((struct skge_hw const *)hw, 348); reg = reg | 33554944U; skge_write32((struct skge_hw const *)hw, 348, reg); } } else { } { skge_write32((struct skge_hw const *)hw, (port << 7) + 3844, 1U); skge_write32((struct skge_hw const *)hw, (port << 7) + 3840, 1U); } if ((unsigned int )hw->chip_id == 177U && (unsigned int )hw->chip_rev > 6U) { { reg = skge_read32((struct skge_hw const *)hw, 348); reg = reg | 33554432U; reg = reg & 4294966783U; skge_write32((struct skge_hw const *)hw, 348, reg); } } else { } { reg = 185458688U; reg = reg | ((unsigned int )hw->copper != 0U ? 15728640U : 7340032U); skge_write32((struct skge_hw const *)hw, (port << 7) + 3844, reg | 1U); skge_write32((struct skge_hw const *)hw, (port << 7) + 3844, reg | 2U); skge_write32((struct skge_hw const *)hw, (port << 7) + 3840, 10U); } if ((unsigned int )skge->autoneg == 0U) { { reg = 7U; tmp___0 = gma_read16((struct skge_hw const *)hw, port, 4); gma_write16((struct skge_hw const *)hw, port, 4, (int )tmp___0 | (int )((u16 )reg)); } { if ((int )skge->speed == 1000) { goto case_1000; } else { } if ((int )skge->speed == 100) { goto case_100; } else { } if ((int )skge->speed == 10) { goto case_10; } else { } goto switch_break; case_1000: /* CIL Label */ reg = reg & 4294967287U; reg = reg | 136U; goto ldv_47572; case_100: /* CIL Label */ reg = reg & 4294967159U; reg = reg | 8U; goto ldv_47572; case_10: /* CIL Label */ reg = reg & 4294967159U; goto ldv_47572; switch_break: /* CIL Label */ ; } ldv_47572: ; if ((unsigned int )skge->duplex == 1U) { reg = reg | 32U; } else { } } else { reg = 168U; } { if ((unsigned int )skge->flow_control == 1U) { goto case_1; } else { } if ((unsigned int )skge->flow_control == 2U) { goto case_2; } else { } if ((unsigned int )skge->flow_control == 3U) { goto case_3; } else { } if ((unsigned int )skge->flow_control == 4U) { goto case_4; } else { } goto switch_break___0; case_1: /* CIL Label */ { skge_write32((struct skge_hw const *)hw, (port << 7) + 3840, 4U); reg = reg | 8210U; } goto ldv_47576; case_2: /* CIL Label */ reg = reg | 18U; goto ldv_47576; case_3: /* CIL Label */ ; case_4: /* CIL Label */ ; goto ldv_47576; switch_break___0: /* CIL Label */ ; } ldv_47576: { gma_write16((struct skge_hw const *)hw, port, 4, (int )((u16 )reg)); skge_read16((struct skge_hw const *)hw, (port << 7) + 3848); yukon_init(hw, port); tmp___1 = gma_read16((struct skge_hw const *)hw, port, 136); reg = (u32 )tmp___1; gma_write16((struct skge_hw const *)hw, port, 136, (int )((unsigned int )((u16 )reg) | 32U)); i = 0; } goto ldv_47581; ldv_47580: { gma_read16((struct skge_hw const *)hw, port, (i + 32) * 8); i = i + 1; } ldv_47581: ; if (i <= 43) { goto ldv_47580; } else { } { gma_write16((struct skge_hw const *)hw, port, 136, (int )((u16 )reg)); gma_write16((struct skge_hw const *)hw, port, 8, 4096); gma_write16((struct skge_hw const *)hw, port, 12, 57344); gma_write16((struct skge_hw const *)hw, port, 16, 65535); gma_write16((struct skge_hw const *)hw, port, 20, 55232); reg = 8734U; } if ((hw->dev[port])->mtu > 1500U) { reg = reg | 256U; } else { } { gma_write16((struct skge_hw const *)hw, port, 24, (int )((u16 )reg)); gma_set_addr(hw, port, 28, addr); gma_set_addr(hw, port, 40, addr); gma_write16((struct skge_hw const *)hw, port, 80, 0); gma_write16((struct skge_hw const *)hw, port, 84, 0); gma_write16((struct skge_hw const *)hw, port, 88, 0); skge_write16((struct skge_hw const *)hw, (port << 7) + 3148, 6243); reg = 136U; tmp___2 = is_yukon_lite_a0(hw); } if (tmp___2 != 0) { reg = reg & 4294967167U; } else { } { skge_write8((struct skge_hw const *)hw, (port << 7) + 3144, 2); skge_write16((struct skge_hw const *)hw, (port << 7) + 3144, (int )((u16 )reg)); skge_write16((struct skge_hw const *)hw, (port << 7) + 3152, 11); skge_write8((struct skge_hw const *)hw, (port << 7) + 3400, 2); skge_write16((struct skge_hw const *)hw, (port << 7) + 3400, 8); } return; } } static void yukon_suspend(struct skge_hw *hw , int port ) { u16 ctrl ; { { ctrl = gm_phy_read(hw, port, 16); ctrl = (u16 )((unsigned int )ctrl | 2U); gm_phy_write(hw, port, 16, (int )ctrl); ctrl = gm_phy_read(hw, port, 0); ctrl = (u16 )((unsigned int )ctrl | 32768U); gm_phy_write(hw, port, 0, (int )ctrl); ctrl = gm_phy_read(hw, port, 0); ctrl = (u16 )((unsigned int )ctrl | 2048U); gm_phy_write(hw, port, 0, (int )ctrl); } return; } } static void yukon_stop(struct skge_port *skge ) { struct skge_hw *hw ; int port ; u16 tmp ; { { hw = skge->hw; port = skge->port; skge_write8((struct skge_hw const *)hw, (port << 7) + 3852, 0); yukon_reset(hw, port); tmp = gma_read16((struct skge_hw const *)hw, port, 4); gma_write16((struct skge_hw const *)hw, port, 4, (int )tmp & 59391); gma_read16((struct skge_hw const *)hw, port, 4); yukon_suspend(hw, port); skge_write8((struct skge_hw const *)hw, (port << 7) + 3844, 1); skge_write8((struct skge_hw const *)hw, (port << 7) + 3840, 1); } return; } } static void yukon_get_stats(struct skge_port *skge , u64 *data ) { struct skge_hw *hw ; int port ; int i ; u32 tmp ; u32 tmp___0 ; u32 tmp___1 ; u32 tmp___2 ; u32 tmp___3 ; { { hw = skge->hw; port = skge->port; tmp = gma_read32((struct skge_hw const *)hw, port, 488); tmp___0 = gma_read32((struct skge_hw const *)hw, port, 480); *data = ((unsigned long long )tmp << 32) | (unsigned long long )tmp___0; tmp___1 = gma_read32((struct skge_hw const *)hw, port, 312); tmp___2 = gma_read32((struct skge_hw const *)hw, port, 304); *(data + 1UL) = ((unsigned long long )tmp___1 << 32) | (unsigned long long )tmp___2; i = 2; } goto ldv_47603; ldv_47602: { tmp___3 = gma_read32((struct skge_hw const *)hw, port, (int )skge_stats[i].gma_offset); *(data + (unsigned long )i) = (u64 )tmp___3; i = i + 1; } ldv_47603: ; if ((unsigned int )i <= 20U) { goto ldv_47602; } else { } return; } } static void yukon_mac_intr(struct skge_hw *hw , int port ) { struct net_device *dev ; struct skge_port *skge ; void *tmp ; u8 status ; u8 tmp___0 ; { { dev = hw->dev[port]; tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; tmp___0 = skge_read8((struct skge_hw const *)hw, (port << 7) + 3848); status = tmp___0; } if ((skge->msg_enable & 512U) != 0U) { { netdev_printk("\017", (struct net_device const *)skge->netdev, "mac interrupt status 0x%x\n", (int )status); } } else { } if (((int )status & 2) != 0) { { dev->stats.rx_fifo_errors = dev->stats.rx_fifo_errors + 1UL; skge_write8((struct skge_hw const *)hw, (port << 7) + 3144, 32); } } else { } if (((int )status & 8) != 0) { { dev->stats.tx_fifo_errors = dev->stats.tx_fifo_errors + 1UL; skge_write8((struct skge_hw const *)hw, (port << 7) + 3400, 64); } } else { } return; } } static u16 yukon_speed(struct skge_hw const *hw , u16 aux ) { { { if (((int )aux & 49152) == 32768) { goto case_32768; } else { } if (((int )aux & 49152) == 16384) { goto case_16384; } else { } goto switch_default; case_32768: /* CIL Label */ ; return (1000U); case_16384: /* CIL Label */ ; return (100U); switch_default: /* CIL Label */ ; return (10U); switch_break: /* CIL Label */ ; } } } static void yukon_link_up(struct skge_port *skge ) { struct skge_hw *hw ; int port ; u16 reg ; { { hw = skge->hw; port = skge->port; skge_write8((struct skge_hw const *)hw, (port << 7) + 3852, 10); reg = gma_read16((struct skge_hw const *)hw, port, 4); } if ((unsigned int )skge->duplex == 1U || (unsigned int )skge->autoneg == 1U) { reg = (u16 )((unsigned int )reg | 32U); } else { } { reg = (u16 )((unsigned int )reg | 6144U); gma_write16((struct skge_hw const *)hw, port, 4, (int )reg); gm_phy_write(hw, port, 18, 50304); skge_link_up(skge); } return; } } static void yukon_link_down(struct skge_port *skge ) { struct skge_hw *hw ; int port ; u16 ctrl ; { { hw = skge->hw; port = skge->port; ctrl = gma_read16((struct skge_hw const *)hw, port, 4); ctrl = (unsigned int )ctrl & 59391U; gma_write16((struct skge_hw const *)hw, port, 4, (int )ctrl); } if ((unsigned int )skge->flow_status == 2U) { { ctrl = gm_phy_read(hw, port, 4); ctrl = (u16 )((unsigned int )ctrl | 2048U); gm_phy_write(hw, port, 4, (int )ctrl); } } else { } { skge_link_down(skge); yukon_init(hw, port); } return; } } static void yukon_phy_intr(struct skge_port *skge ) { struct skge_hw *hw ; int port ; char const *reason ; u16 istatus ; u16 phystat ; u16 tmp ; u16 tmp___0 ; { { hw = skge->hw; port = skge->port; reason = (char const *)0; istatus = gm_phy_read(hw, port, 19); phystat = gm_phy_read(hw, port, 17); } if ((skge->msg_enable & 512U) != 0U) { { netdev_printk("\017", (struct net_device const *)skge->netdev, "phy interrupt status 0x%x 0x%x\n", (int )istatus, (int )phystat); } } else { } if (((int )istatus & 2048) != 0) { { tmp = gm_phy_read(hw, port, 5); } if (((int )tmp & 8192) != 0) { reason = "remote fault"; goto failed; } else { } { tmp___0 = gm_phy_read(hw, port, 10); } if ((int )((short )tmp___0) < 0) { reason = "master/slave fault"; goto failed; } else { } if (((int )phystat & 2048) == 0) { reason = "speed/duplex"; goto failed; } else { } { skge->duplex = ((int )phystat & 8192) != 0; skge->speed = yukon_speed((struct skge_hw const *)hw, (int )phystat); } { if (((int )phystat & 12) == 12) { goto case_12; } else { } if (((int )phystat & 12) == 4) { goto case_4; } else { } if (((int )phystat & 12) == 8) { goto case_8; } else { } goto switch_default; case_12: /* CIL Label */ skge->flow_status = 4; goto ldv_47641; case_4: /* CIL Label */ skge->flow_status = 2; goto ldv_47641; case_8: /* CIL Label */ skge->flow_status = 3; goto ldv_47641; switch_default: /* CIL Label */ skge->flow_status = 1; switch_break: /* CIL Label */ ; } ldv_47641: ; if ((unsigned int )skge->flow_status == 1U || ((unsigned int )skge->speed <= 999U && (unsigned int )skge->duplex == 0U)) { { skge_write8((struct skge_hw const *)hw, (port << 7) + 3840, 4); } } else { { skge_write8((struct skge_hw const *)hw, (port << 7) + 3840, 8); } } { yukon_link_up(skge); } return; } else { } if (((int )istatus & 16384) != 0) { { skge->speed = yukon_speed((struct skge_hw const *)hw, (int )phystat); } } else { } if (((int )istatus & 8192) != 0) { skge->duplex = ((int )phystat & 8192) != 0; } else { } if (((int )istatus & 1024) != 0) { if (((int )phystat & 1024) != 0) { { yukon_link_up(skge); } } else { { yukon_link_down(skge); } } } else { } return; failed: { printk("\vskge: %s: autonegotiation failed (%s)\n", (char *)(& (skge->netdev)->name), reason); } return; } } static void skge_phy_reset(struct skge_port *skge ) { struct skge_hw *hw ; int port ; struct net_device *dev ; bool tmp ; { { hw = skge->hw; port = skge->port; dev = hw->dev[port]; netif_stop_queue(skge->netdev); netif_carrier_off(skge->netdev); ldv_spin_lock_bh_85(& hw->phy_lock); tmp = is_genesis((struct skge_hw const *)hw); } if ((int )tmp) { { genesis_reset(hw, port); genesis_mac_init(hw, port); } } else { { yukon_reset(hw, port); yukon_init(hw, port); } } { ldv_spin_unlock_bh_86(& hw->phy_lock); skge_set_multicast(dev); } return; } } static int skge_ioctl(struct net_device *dev , struct ifreq *ifr , int cmd ) { struct mii_ioctl_data *data ; struct mii_ioctl_data *tmp ; struct skge_port *skge ; void *tmp___0 ; struct skge_hw *hw ; int err ; bool tmp___1 ; int tmp___2 ; u16 val ; bool tmp___3 ; bool tmp___4 ; { { tmp = if_mii(ifr); data = tmp; tmp___0 = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp___0; hw = skge->hw; err = -95; tmp___1 = netif_running((struct net_device const *)dev); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { return (-19); } else { } { if (cmd == 35143) { goto case_35143; } else { } if (cmd == 35144) { goto case_35144; } else { } if (cmd == 35145) { goto case_35145; } else { } goto switch_break; case_35143: /* CIL Label */ data->phy_id = hw->phy_addr; case_35144: /* CIL Label */ { val = 0U; ldv_spin_lock_bh_85(& hw->phy_lock); tmp___3 = is_genesis((struct skge_hw const *)hw); } if ((int )tmp___3) { { err = __xm_phy_read(hw, skge->port, (int )data->reg_num & 31, & val); } } else { { err = __gm_phy_read(hw, skge->port, (int )data->reg_num & 31, & val); } } { ldv_spin_unlock_bh_86(& hw->phy_lock); data->val_out = val; } goto ldv_47663; case_35145: /* CIL Label */ { ldv_spin_lock_bh_85(& hw->phy_lock); tmp___4 = is_genesis((struct skge_hw const *)hw); } if ((int )tmp___4) { { err = xm_phy_write(hw, skge->port, (int )data->reg_num & 31, (int )data->val_in); } } else { { err = gm_phy_write(hw, skge->port, (int )data->reg_num & 31, (int )data->val_in); } } { ldv_spin_unlock_bh_86(& hw->phy_lock); } goto ldv_47663; switch_break: /* CIL Label */ ; } ldv_47663: ; return (err); } } static void skge_ramset(struct skge_hw *hw , u16 q , u32 start , size_t len ) { u32 end ; { { start = start / 8U; len = len / 8UL; end = (start + (u32 )len) - 1U; skge_write8((struct skge_hw const *)hw, (int )q + 2088, 2); skge_write32((struct skge_hw const *)hw, (int )q + 2048, start); skge_write32((struct skge_hw const *)hw, (int )q + 2056, start); skge_write32((struct skge_hw const *)hw, (int )q + 2060, start); skge_write32((struct skge_hw const *)hw, (int )q + 2052, end); } if ((unsigned int )q == 0U || (unsigned int )q == 128U) { { skge_write32((struct skge_hw const *)hw, (int )q + 2064, start + (u32 )((len * 2UL) / 3UL)); skge_write32((struct skge_hw const *)hw, (int )q + 2068, start + (u32 )(len / 3UL)); } } else { { skge_write8((struct skge_hw const *)hw, (int )q + 2088, 32); } } { skge_write8((struct skge_hw const *)hw, (int )q + 2088, 8); } return; } } static void skge_qset(struct skge_port *skge , u16 q , struct skge_element const *e ) { struct skge_hw *hw ; u32 watermark ; u64 base ; u16 tmp ; { { hw = skge->hw; watermark = 1536U; base = skge->dma + (unsigned long long )((long )e->desc - (long )skge->mem); tmp = skge_read16((struct skge_hw const *)hw, 4); } if (((int )tmp & 768) == 0) { watermark = watermark / 2U; } else { } { skge_write32((struct skge_hw const *)hw, (int )q + 1076, 2796032U); skge_write32((struct skge_hw const *)hw, (int )q + 1080, watermark); skge_write32((struct skge_hw const *)hw, (int )q + 1060, (unsigned int )(base >> 32)); skge_write32((struct skge_hw const *)hw, (int )q + 1056, (unsigned int )base); } return; } } static int skge_up(struct net_device *dev ) { struct skge_port *skge ; void *tmp ; struct skge_hw *hw ; int port ; u32 chunk ; u32 ram_addr ; size_t rx_size ; size_t tx_size ; int err ; bool tmp___0 ; int tmp___1 ; long tmp___2 ; bool tmp___3 ; long tmp___4 ; { { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; hw = skge->hw; port = skge->port; tmp___0 = is_valid_ether_addr((u8 const *)dev->dev_addr); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (-22); } else { } if ((skge->msg_enable & 32U) != 0U) { { netdev_info((struct net_device const *)skge->netdev, "enabling interface\n"); } } else { } if (dev->mtu > 1536U) { skge->rx_buf_size = dev->mtu + 14U; } else { skge->rx_buf_size = 1536U; } { rx_size = skge->rx_ring.count * 32UL; tx_size = skge->tx_ring.count * 32UL; skge->mem_size = tx_size + rx_size; skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, & skge->dma); } if ((unsigned long )skge->mem == (unsigned long )((void *)0)) { return (-12); } else { } { tmp___2 = ldv__builtin_expect((skge->dma & 7ULL) != 0ULL, 0L); } if (tmp___2 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/ethernet/marvell/skge.c"), "i" (2552), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned int )(skge->dma >> 32ULL) != (unsigned int )((skge->dma + (unsigned long long )skge->mem_size) >> 32ULL)) { { dev_err((struct device const *)(& (hw->pdev)->dev), "pci_alloc_consistent region crosses 4G boundary\n"); err = -22; } goto free_pci_mem; } else { } { memset(skge->mem, 0, skge->mem_size); err = skge_ring_alloc(& skge->rx_ring, skge->mem, (u32 )skge->dma); } if (err != 0) { goto free_pci_mem; } else { } { err = skge_rx_fill(dev); } if (err != 0) { goto free_rx_ring; } else { } { err = skge_ring_alloc(& skge->tx_ring, skge->mem + rx_size, (u32 )skge->dma + (u32 )rx_size); } if (err != 0) { goto free_rx_ring; } else { } if ((unsigned int )hw->ports == 1U) { { err = ldv_request_irq_99((hw->pdev)->irq, & skge_intr, 128UL, (char const *)(& dev->name), (void *)hw); } if (err != 0) { { netdev_err((struct net_device const *)dev, "Unable to allocate interrupt %d error: %d\n", (hw->pdev)->irq, err); } goto free_tx_ring; } else { } } else { } { netif_carrier_off(dev); ldv_spin_lock_bh_85(& hw->phy_lock); tmp___3 = is_genesis((struct skge_hw const *)hw); } if ((int )tmp___3) { { genesis_mac_init(hw, port); } } else { { yukon_mac_init(hw, port); } } { ldv_spin_unlock_bh_86(& hw->phy_lock); chunk = (hw->ram_size - hw->ram_offset) / (u32 )((int )hw->ports * 2); ram_addr = hw->ram_offset + (chunk * (u32 )port) * 2U; skge_ramset(hw, (int )((u16 )rxqaddr[port]), ram_addr, (size_t )chunk); skge_qset(skge, (int )((u16 )rxqaddr[port]), (struct skge_element const *)skge->rx_ring.to_clean); tmp___4 = ldv__builtin_expect((unsigned long )skge->tx_ring.to_use != (unsigned long )skge->tx_ring.to_clean, 0L); } if (tmp___4 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/ethernet/marvell/skge.c"), "i" (2601), "i" (12UL)); __builtin_unreachable(); } } else { } { skge_ramset(hw, (int )((u16 )txqaddr[port]), ram_addr + chunk, (size_t )chunk); skge_qset(skge, (int )((u16 )txqaddr[port]), (struct skge_element const *)skge->tx_ring.to_use); __asm__ volatile ("sfence": : : "memory"); skge_write8((struct skge_hw const *)hw, (int )rxqaddr[port] + 1076, 18); skge_led(skge, 1); ldv_spin_lock_irq_102(& hw->hw_lock); hw->intr_mask = hw->intr_mask | (u32 )portmask[port]; skge_write32((struct skge_hw const *)hw, 12, hw->intr_mask); skge_read32((struct skge_hw const *)hw, 12); ldv_spin_unlock_irq_103(& hw->hw_lock); napi_enable(& skge->napi); skge_set_multicast(dev); } return (0); free_tx_ring: { kfree((void const *)skge->tx_ring.start); } free_rx_ring: { skge_rx_clean(skge); kfree((void const *)skge->rx_ring.start); } free_pci_mem: { pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma); skge->mem = (void *)0; } return (err); } } static void skge_rx_stop(struct skge_hw *hw , int port ) { { { skge_write8((struct skge_hw const *)hw, (int )rxqaddr[port] + 1076, 32); skge_write32((struct skge_hw const *)hw, port != 0 ? 2216 : 2088, 5U); skge_write32((struct skge_hw const *)hw, (int )rxqaddr[port] + 1076, 1398016U); } return; } } static int skge_down(struct net_device *dev ) { struct skge_port *skge ; void *tmp ; struct skge_hw *hw ; int port ; bool tmp___0 ; bool tmp___1 ; bool tmp___2 ; { { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; hw = skge->hw; port = skge->port; } if ((unsigned long )skge->mem == (unsigned long )((void *)0)) { return (0); } else { } if ((skge->msg_enable & 16U) != 0U) { { netdev_info((struct net_device const *)skge->netdev, "disabling interface\n"); } } else { } { netif_tx_disable(dev); tmp___0 = is_genesis((struct skge_hw const *)hw); } if ((int )tmp___0 && (unsigned int )hw->phy_type == 0U) { { ldv_del_timer_sync_104(& skge->link_timer); } } else { } { napi_disable(& skge->napi); netif_carrier_off(dev); ldv_spin_lock_irq_102(& hw->hw_lock); hw->intr_mask = hw->intr_mask & (u32 )(~ portmask[port]); skge_write32((struct skge_hw const *)hw, 12, (unsigned int )hw->ports != 1U ? hw->intr_mask : 0U); skge_read32((struct skge_hw const *)hw, 12); ldv_spin_unlock_irq_103(& hw->hw_lock); } if ((unsigned int )hw->ports == 1U) { { ldv_free_irq_107((hw->pdev)->irq, (void *)hw); } } else { } { skge_write8((struct skge_hw const *)skge->hw, (skge->port << 7) + 3132, 1); tmp___1 = is_genesis((struct skge_hw const *)hw); } if ((int )tmp___1) { { genesis_stop(skge); } } else { { yukon_stop(skge); } } { skge_write8((struct skge_hw const *)hw, (int )txqaddr[port] + 1076, 32); skge_write32((struct skge_hw const *)hw, (int )txqaddr[port] + 2088, 5U); skge_write8((struct skge_hw const *)hw, (port << 7) + 528, 84); skge_write32((struct skge_hw const *)hw, (port << 7) + 512, 0U); skge_write32((struct skge_hw const *)hw, (port << 7) + 520, 0U); skge_write32((struct skge_hw const *)hw, (int )txqaddr[port] + 1076, 1398016U); skge_write32((struct skge_hw const *)hw, (int )txqaddr[port] + 2088, 1U); skge_write8((struct skge_hw const *)hw, port == 0 ? 2728 : 2984, 1); skge_rx_stop(hw, port); tmp___2 = is_genesis((struct skge_hw const *)hw); } if ((int )tmp___2) { { skge_write8((struct skge_hw const *)hw, (port << 7) + 3356, 1); skge_write8((struct skge_hw const *)hw, (port << 7) + 3100, 1); } } else { { skge_write8((struct skge_hw const *)hw, (port << 7) + 3144, 1); skge_write8((struct skge_hw const *)hw, (port << 7) + 3400, 1); } } { skge_led(skge, 0); netif_tx_lock_bh(dev); skge_tx_clean(dev); netif_tx_unlock_bh(dev); skge_rx_clean(skge); kfree((void const *)skge->rx_ring.start); kfree((void const *)skge->tx_ring.start); pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma); skge->mem = (void *)0; } return (0); } } __inline static int skge_avail(struct skge_ring const *ring ) { { __asm__ volatile ("mfence": : : "memory"); return ((int )((((unsigned long )ring->to_clean <= (unsigned long )ring->to_use ? (unsigned int )ring->count : 0U) + (unsigned int )(((long )ring->to_clean - (long )ring->to_use) / 40L)) - 1U)); } } static netdev_tx_t skge_xmit_frame(struct sk_buff *skb , struct net_device *dev ) { struct skge_port *skge ; void *tmp ; struct skge_hw *hw ; struct skge_element *e ; struct skge_tx_desc *td ; int i ; u32 control ; u32 len ; dma_addr_t map ; int tmp___0 ; int tmp___1 ; unsigned char *tmp___2 ; long tmp___3 ; long tmp___4 ; int tmp___5 ; int offset ; int tmp___6 ; struct iphdr *tmp___7 ; struct skge_tx_desc *tf ; skb_frag_t const *frag ; unsigned char *tmp___8 ; unsigned int tmp___9 ; int tmp___10 ; long tmp___11 ; unsigned int tmp___12 ; unsigned char *tmp___13 ; unsigned char *tmp___14 ; struct _ddebug descriptor ; long tmp___15 ; int tmp___16 ; int tmp___17 ; int tmp___18 ; { { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; hw = skge->hw; tmp___0 = skb_padto(skb, 60U); } if (tmp___0 != 0) { return (0); } else { } { tmp___1 = skge_avail((struct skge_ring const *)(& skge->tx_ring)); tmp___2 = skb_end_pointer((struct sk_buff const *)skb); tmp___3 = ldv__builtin_expect(tmp___1 < (int )((struct skb_shared_info *)tmp___2)->nr_frags + 1, 0L); } if (tmp___3 != 0L) { return (16); } else { } { e = skge->tx_ring.to_use; td = (struct skge_tx_desc *)e->desc; tmp___4 = ldv__builtin_expect((int )td->control < 0, 0L); } if (tmp___4 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/ethernet/marvell/skge.c"), "i" (2749), "i" (12UL)); __builtin_unreachable(); } } else { } { e->skb = skb; len = skb_headlen((struct sk_buff const *)skb); map = pci_map_single(hw->pdev, (void *)skb->data, (size_t )len, 1); tmp___5 = pci_dma_mapping_error(hw->pdev, map); } if (tmp___5 != 0) { goto mapping_error; } else { } e->mapaddr = map; e->maplen = len; td->dma_lo = (unsigned int )map; td->dma_hi = (unsigned int )(map >> 32ULL); if ((unsigned int )*((unsigned char *)skb + 124UL) == 12U) { { tmp___6 = skb_checksum_start_offset((struct sk_buff const *)skb); offset = tmp___6; tmp___7 = ipip_hdr((struct sk_buff const *)skb); } if ((unsigned int )tmp___7->protocol == 17U && (unsigned int )*((unsigned short *)hw + 56UL) == 176U) { control = 5636096U; } else { control = 5701632U; } td->csum_offs = 0U; td->csum_start = (u16 )offset; td->csum_write = (int )((u16 )offset) + (int )skb->__annonCompField68.__annonCompField67.csum_offset; } else { control = 5570560U; } { tmp___14 = skb_end_pointer((struct sk_buff const *)skb); } if ((unsigned int )((struct skb_shared_info *)tmp___14)->nr_frags == 0U) { control = control | 671088640U; } else { tf = td; control = control | 67108864U; i = 0; goto ldv_47725; ldv_47724: { tmp___8 = skb_end_pointer((struct sk_buff const *)skb); frag = (skb_frag_t const *)(& ((struct skb_shared_info *)tmp___8)->frags) + (unsigned long )i; tmp___9 = skb_frag_size(frag); map = skb_frag_dma_map(& (hw->pdev)->dev, frag, 0UL, (size_t )tmp___9, 1); tmp___10 = dma_mapping_error(& (hw->pdev)->dev, map); } if (tmp___10 != 0) { goto mapping_unwind; } else { } { e = e->next; e->skb = skb; tf = (struct skge_tx_desc *)e->desc; tmp___11 = ldv__builtin_expect((int )tf->control < 0, 0L); } if (tmp___11 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/ethernet/marvell/skge.c"), "i" (2797), "i" (12UL)); __builtin_unreachable(); } } else { } { tf->dma_lo = (unsigned int )map; tf->dma_hi = (unsigned int )(map >> 32ULL); e->mapaddr = map; e->maplen = skb_frag_size(frag); tmp___12 = skb_frag_size(frag); tf->control = (control | tmp___12) | 2164260864U; i = i + 1; } ldv_47725: { tmp___13 = skb_end_pointer((struct sk_buff const *)skb); } if (i < (int )((struct skb_shared_info *)tmp___13)->nr_frags) { goto ldv_47724; } else { } tf->control = tf->control | 671088640U; } { __asm__ volatile ("sfence": : : "memory"); td->control = (control | len) | 3238002688U; __asm__ volatile ("sfence": : : "memory"); netdev_sent_queue(dev, skb->len); skge_write8((struct skge_hw const *)hw, (int )txqaddr[skge->port] + 1076, 16); } if ((skge->msg_enable & 256U) != 0U) { { netdev_printk("\017", (struct net_device const *)skge->netdev, "tx queued, slot %td, len %d\n", ((long )e - (long )skge->tx_ring.start) / 40L, skb->len); } } else { } { skge->tx_ring.to_use = e->next; __asm__ volatile ("": : : "memory"); tmp___16 = skge_avail((struct skge_ring const *)(& skge->tx_ring)); } if ((unsigned int )tmp___16 <= 18U) { { descriptor.modname = "skge"; descriptor.function = "skge_xmit_frame"; descriptor.filename = "drivers/net/ethernet/marvell/skge.c"; descriptor.format = "transmit queue full\n"; descriptor.lineno = 2825U; descriptor.flags = 0U; tmp___15 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___15 != 0L) { { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)dev, "transmit queue full\n"); } } else { } { netif_stop_queue(dev); } } else { } return (0); mapping_unwind: { e = skge->tx_ring.to_use; pci_unmap_single(hw->pdev, e->mapaddr, (size_t )e->maplen, 1); } goto ldv_47730; ldv_47729: { e = e->next; pci_unmap_page(hw->pdev, e->mapaddr, (size_t )e->maplen, 1); } ldv_47730: tmp___17 = i; i = i - 1; if (tmp___17 > 0) { goto ldv_47729; } else { } mapping_error: { tmp___18 = net_ratelimit(); } if (tmp___18 != 0) { { dev_warn((struct device const *)(& (hw->pdev)->dev), "%s: tx mapping error\n", (char *)(& dev->name)); } } else { } { consume_skb(skb); } return (0); } } __inline static void skge_tx_unmap(struct pci_dev *pdev , struct skge_element *e , u32 control ) { { if ((control & 1073741824U) != 0U) { { pci_unmap_single(pdev, e->mapaddr, (size_t )e->maplen, 1); } } else { { pci_unmap_page(pdev, e->mapaddr, (size_t )e->maplen, 1); } } return; } } static void skge_tx_clean(struct net_device *dev ) { struct skge_port *skge ; void *tmp ; struct skge_element *e ; struct skge_tx_desc *td ; { { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; e = skge->tx_ring.to_clean; } goto ldv_47744; ldv_47743: { td = (struct skge_tx_desc *)e->desc; skge_tx_unmap((skge->hw)->pdev, e, td->control); } if ((td->control & 536870912U) != 0U) { { consume_skb(e->skb); } } else { } td->control = 0U; e = e->next; ldv_47744: ; if ((unsigned long )e != (unsigned long )skge->tx_ring.to_use) { goto ldv_47743; } else { } { netdev_reset_queue(dev); skge->tx_ring.to_clean = e; } return; } } static void skge_tx_timeout(struct net_device *dev ) { struct skge_port *skge ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; } if ((skge->msg_enable & 8U) != 0U) { { netdev_printk("\017", (struct net_device const *)skge->netdev, "tx timeout\n"); } } else { } { skge_write8((struct skge_hw const *)skge->hw, (int )txqaddr[skge->port] + 1076, 32); skge_tx_clean(dev); netif_wake_queue(dev); } return; } } static int skge_change_mtu(struct net_device *dev , int new_mtu ) { int err ; bool tmp ; int tmp___0 ; { if ((unsigned int )new_mtu - 60U > 8940U) { return (-22); } else { } { tmp = netif_running((struct net_device const *)dev); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { dev->mtu = (unsigned int )new_mtu; return (0); } else { } { skge_down(dev); dev->mtu = (unsigned int )new_mtu; err = skge_up(dev); } if (err != 0) { { dev_close(dev); } } else { } return (err); } } static u8 const pause_mc_addr[6U] = { 1U, 128U, 194U, 0U, 0U, 1U}; static void genesis_add_filter(u8 *filter , u8 const *addr ) { u32 crc ; u32 bit ; { { crc = crc32_le(4294967295U, addr, 6UL); bit = ~ crc & 63U; *(filter + (unsigned long )(bit / 8U)) = (u8 )((int )((signed char )*(filter + (unsigned long )(bit / 8U))) | (int )((signed char )(1 << ((int )bit & 7)))); } return; } } static void genesis_set_multicast(struct net_device *dev ) { struct skge_port *skge ; void *tmp ; struct skge_hw *hw ; int port ; struct netdev_hw_addr *ha ; u32 mode ; u8 filter[8U] ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; hw = skge->hw; port = skge->port; mode = xm_read32((struct skge_hw const *)hw, port, 292); mode = mode | 32768U; } if ((dev->flags & 256U) != 0U) { mode = mode | 8U; } else { mode = mode & 4294967287U; } if ((dev->flags & 512U) != 0U) { { memset((void *)(& filter), 255, 8UL); } } else { { memset((void *)(& filter), 0, 8UL); } if ((unsigned int )skge->flow_status == 2U || (unsigned int )skge->flow_status == 4U) { { genesis_add_filter((u8 *)(& filter), (u8 const *)(& pause_mc_addr)); } } else { } __mptr = (struct list_head const *)dev->mc.list.next; ha = (struct netdev_hw_addr *)__mptr; goto ldv_47776; ldv_47775: { genesis_add_filter((u8 *)(& filter), (u8 const *)(& ha->addr)); __mptr___0 = (struct list_head const *)ha->list.next; ha = (struct netdev_hw_addr *)__mptr___0; } ldv_47776: ; if ((unsigned long )(& ha->list) != (unsigned long )(& dev->mc.list)) { goto ldv_47775; } else { } } { xm_write32((struct skge_hw const *)hw, port, 292, mode); xm_outhash((struct skge_hw const *)hw, port, 272, (u8 const *)(& filter)); } return; } } static void yukon_add_filter(u8 *filter , u8 const *addr ) { u32 bit ; u32 tmp ; u32 tmp___0 ; { { tmp = crc32_le(4294967295U, addr, 6UL); tmp___0 = bitrev32(tmp); bit = tmp___0 & 63U; *(filter + (unsigned long )(bit / 8U)) = (u8 )((int )((signed char )*(filter + (unsigned long )(bit / 8U))) | (int )((signed char )(1 << ((int )bit & 7)))); } return; } } static void yukon_set_multicast(struct net_device *dev ) { struct skge_port *skge ; void *tmp ; struct skge_hw *hw ; int port ; struct netdev_hw_addr *ha ; int rx_pause ; u16 reg ; u8 filter[8U] ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; hw = skge->hw; port = skge->port; rx_pause = (unsigned int )skge->flow_status == 2U || (unsigned int )skge->flow_status == 4U; memset((void *)(& filter), 0, 8UL); reg = gma_read16((struct skge_hw const *)hw, port, 12); reg = (u16 )((unsigned int )reg | 32768U); } if ((dev->flags & 256U) != 0U) { reg = (unsigned int )reg & 16383U; } else if ((dev->flags & 512U) != 0U) { { memset((void *)(& filter), 255, 8UL); } } else if ((dev->mc.count | rx_pause) == 0) { reg = (unsigned int )reg & 49151U; } else { reg = (u16 )((unsigned int )reg | 16384U); if (rx_pause != 0) { { yukon_add_filter((u8 *)(& filter), (u8 const *)(& pause_mc_addr)); } } else { } __mptr = (struct list_head const *)dev->mc.list.next; ha = (struct netdev_hw_addr *)__mptr; goto ldv_47798; ldv_47797: { yukon_add_filter((u8 *)(& filter), (u8 const *)(& ha->addr)); __mptr___0 = (struct list_head const *)ha->list.next; ha = (struct netdev_hw_addr *)__mptr___0; } ldv_47798: ; if ((unsigned long )(& ha->list) != (unsigned long )(& dev->mc.list)) { goto ldv_47797; } else { } } { gma_write16((struct skge_hw const *)hw, port, 52, (int )((u16 )((int )((short )filter[0]) | (int )((short )((int )filter[1] << 8))))); gma_write16((struct skge_hw const *)hw, port, 56, (int )((u16 )((int )((short )filter[2]) | (int )((short )((int )filter[3] << 8))))); gma_write16((struct skge_hw const *)hw, port, 60, (int )((u16 )((int )((short )filter[4]) | (int )((short )((int )filter[5] << 8))))); gma_write16((struct skge_hw const *)hw, port, 64, (int )((u16 )((int )((short )filter[6]) | (int )((short )((int )filter[7] << 8))))); gma_write16((struct skge_hw const *)hw, port, 12, (int )reg); } return; } } __inline static u16 phy_length(struct skge_hw const *hw , u32 status ) { bool tmp ; { { tmp = is_genesis(hw); } if ((int )tmp) { return ((u16 )(status >> 18)); } else { return ((u16 )(status >> 16)); } } } __inline static int bad_phy_status(struct skge_hw const *hw , u32 status ) { bool tmp ; { { tmp = is_genesis(hw); } if ((int )tmp) { return ((status & 131074U) != 0U); } else { return ((status & 4594U) != 256U); } } } static void skge_set_multicast(struct net_device *dev ) { struct skge_port *skge ; void *tmp ; bool tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; tmp___0 = is_genesis((struct skge_hw const *)skge->hw); } if ((int )tmp___0) { { genesis_set_multicast(dev); } } else { { yukon_set_multicast(dev); } } return; } } static struct sk_buff *skge_rx_get(struct net_device *dev , struct skge_element *e , u32 control , u32 status , u16 csum ) { struct skge_port *skge ; void *tmp ; struct sk_buff *skb ; u16 len ; int tmp___0 ; u16 tmp___1 ; struct skge_element ee ; struct sk_buff *nskb ; int tmp___2 ; bool tmp___3 ; { { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; len = (u16 )control; } if ((skge->msg_enable & 2048U) != 0U) { { netdev_printk("\017", (struct net_device const *)skge->netdev, "rx slot %td status 0x%x len %d\n", ((long )e - (long )skge->rx_ring.start) / 40L, status, (int )len); } } else { } if ((unsigned int )len > skge->rx_buf_size) { goto error; } else { } if ((control & 1610612736U) != 1610612736U) { goto error; } else { } { tmp___0 = bad_phy_status((struct skge_hw const *)skge->hw, status); } if (tmp___0 != 0) { goto error; } else { } { tmp___1 = phy_length((struct skge_hw const *)skge->hw, status); } if ((int )tmp___1 != (int )len) { goto error; } else { } if ((unsigned int )len <= 127U) { { skb = netdev_alloc_skb_ip_align(dev, (unsigned int )len); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { goto resubmit; } else { } { pci_dma_sync_single_for_cpu((skge->hw)->pdev, e->mapaddr, (size_t )e->maplen, 2); skb_copy_from_linear_data((struct sk_buff const *)e->skb, (void *)skb->data, (unsigned int const )len); pci_dma_sync_single_for_device((skge->hw)->pdev, e->mapaddr, (size_t )e->maplen, 2); skge_rx_reuse(e, skge->rx_buf_size); } } else { { nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size); } if ((unsigned long )nskb == (unsigned long )((struct sk_buff *)0)) { goto resubmit; } else { } { ee = *e; skb = ee.skb; __builtin_prefetch((void const *)skb->data); tmp___2 = skge_rx_setup(skge, e, nskb, skge->rx_buf_size); } if (tmp___2 < 0) { { consume_skb(nskb); } goto resubmit; } else { } { pci_unmap_single((skge->hw)->pdev, ee.mapaddr, (size_t )ee.maplen, 2); } } { skb_put(skb, (unsigned int )len); } if ((dev->features & 4294967296ULL) != 0ULL) { skb->__annonCompField68.csum = (__wsum )csum; skb->ip_summed = 2U; } else { } { skb->protocol = eth_type_trans(skb, dev); } return (skb); error: ; if ((skge->msg_enable & 64U) != 0U) { { netdev_printk("\017", (struct net_device const *)skge->netdev, "rx err, slot %td control 0x%x status 0x%x\n", ((long )e - (long )skge->rx_ring.start) / 40L, control, status); } } else { } { tmp___3 = is_genesis((struct skge_hw const *)skge->hw); } if ((int )tmp___3) { if ((status & 24U) != 0U) { dev->stats.rx_length_errors = dev->stats.rx_length_errors + 1UL; } else { } if ((status & 32U) != 0U) { dev->stats.rx_frame_errors = dev->stats.rx_frame_errors + 1UL; } else { } if ((status & 4U) != 0U) { dev->stats.rx_crc_errors = dev->stats.rx_crc_errors + 1UL; } else { } } else { if ((status & 2064U) != 0U) { dev->stats.rx_length_errors = dev->stats.rx_length_errors + 1UL; } else { } if ((status & 8U) != 0U) { dev->stats.rx_frame_errors = dev->stats.rx_frame_errors + 1UL; } else { } if ((status & 2U) != 0U) { dev->stats.rx_crc_errors = dev->stats.rx_crc_errors + 1UL; } else { } } resubmit: { skge_rx_reuse(e, skge->rx_buf_size); } return ((struct sk_buff *)0); } } static void skge_tx_done(struct net_device *dev ) { struct skge_port *skge ; void *tmp ; struct skge_ring *ring ; struct skge_element *e ; unsigned int bytes_compl ; unsigned int pkts_compl ; u32 control ; bool tmp___0 ; long tmp___1 ; int tmp___2 ; long tmp___3 ; bool tmp___4 ; long tmp___5 ; int tmp___6 ; long tmp___7 ; { { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; ring = & skge->tx_ring; bytes_compl = 0U; pkts_compl = 0U; skge_write8((struct skge_hw const *)skge->hw, (int )txqaddr[skge->port] + 1076, 2); e = ring->to_clean; } goto ldv_47837; ldv_47836: control = ((struct skge_tx_desc const *)e->desc)->control; if ((int )control < 0) { goto ldv_47835; } else { } { skge_tx_unmap((skge->hw)->pdev, e, control); } if ((control & 536870912U) != 0U) { if ((skge->msg_enable & 1024U) != 0U) { { netdev_printk("\017", (struct net_device const *)skge->netdev, "tx done slot %td\n", ((long )e - (long )skge->tx_ring.start) / 40L); } } else { } { pkts_compl = pkts_compl + 1U; bytes_compl = bytes_compl + (e->skb)->len; consume_skb(e->skb); } } else { } e = e->next; ldv_47837: ; if ((unsigned long )e != (unsigned long )ring->to_use) { goto ldv_47836; } else { } ldv_47835: { netdev_completed_queue(dev, pkts_compl, bytes_compl); skge->tx_ring.to_clean = e; __asm__ volatile ("mfence": : : "memory"); tmp___4 = netif_queue_stopped((struct net_device const *)dev); tmp___5 = ldv__builtin_expect((long )tmp___4, 0L); } if (tmp___5 != 0L) { { tmp___6 = skge_avail((struct skge_ring const *)(& skge->tx_ring)); tmp___7 = ldv__builtin_expect((unsigned int )tmp___6 > 18U, 0L); } if (tmp___7 != 0L) { { netif_tx_lock(dev); tmp___0 = netif_queue_stopped((struct net_device const *)dev); tmp___1 = ldv__builtin_expect((long )tmp___0, 0L); } if (tmp___1 != 0L) { { tmp___2 = skge_avail((struct skge_ring const *)(& skge->tx_ring)); tmp___3 = ldv__builtin_expect((unsigned int )tmp___2 > 18U, 0L); } if (tmp___3 != 0L) { { netif_wake_queue(dev); } } else { } } else { } { netif_tx_unlock(dev); } } else { } } else { } return; } } static int skge_poll(struct napi_struct *napi , int to_do ) { struct skge_port *skge ; struct napi_struct const *__mptr ; struct net_device *dev ; struct skge_hw *hw ; struct skge_ring *ring ; struct skge_element *e ; int work_done ; struct skge_rx_desc *rd ; struct sk_buff *skb ; u32 control ; long tmp ; unsigned long flags ; { { __mptr = (struct napi_struct const *)napi; skge = (struct skge_port *)__mptr + 0xfffffffffffffff0UL; dev = skge->netdev; hw = skge->hw; ring = & skge->rx_ring; work_done = 0; skge_tx_done(dev); skge_write8((struct skge_hw const *)hw, (int )rxqaddr[skge->port] + 1076, 2); e = ring->to_clean; } goto ldv_47855; ldv_47854: rd = (struct skge_rx_desc *)e->desc; __asm__ volatile ("lfence": : : "memory"); control = rd->control; if ((int )control < 0) { goto ldv_47853; } else { } { skb = skge_rx_get(dev, e, control, rd->status, (int )rd->csum2); tmp = ldv__builtin_expect((unsigned long )skb != (unsigned long )((struct sk_buff *)0), 1L); } if (tmp != 0L) { { napi_gro_receive(napi, skb); work_done = work_done + 1; } } else { } e = e->next; ldv_47855: { __builtin_prefetch((void const *)e->next); } if (work_done < to_do) { goto ldv_47854; } else { } ldv_47853: { ring->to_clean = e; __asm__ volatile ("sfence": : : "memory"); skge_write8((struct skge_hw const *)hw, (int )rxqaddr[skge->port] + 1076, 16); } if (work_done < to_do) { { napi_gro_flush(napi, 0); ldv___ldv_spin_lock_108(& hw->hw_lock); __napi_complete(napi); hw->intr_mask = hw->intr_mask | (u32 )napimask[skge->port]; skge_write32((struct skge_hw const *)hw, 12, hw->intr_mask); skge_read32((struct skge_hw const *)hw, 12); ldv_spin_unlock_irqrestore_109(& hw->hw_lock, flags); } } else { } return (work_done); } } static void skge_mac_parity(struct skge_hw *hw , int port ) { struct net_device *dev ; bool tmp ; { { dev = hw->dev[port]; dev->stats.tx_heartbeat_errors = dev->stats.tx_heartbeat_errors + 1UL; tmp = is_genesis((struct skge_hw const *)hw); } if ((int )tmp) { { skge_write16((struct skge_hw const *)hw, (port << 7) + 3352, 32768); } } else { { skge_write8((struct skge_hw const *)hw, (port << 7) + 3400, (unsigned int )*((unsigned short *)hw + 56UL) == 176U ? 32 : 16); } } return; } } static void skge_mac_intr(struct skge_hw *hw , int port ) { bool tmp ; { { tmp = is_genesis((struct skge_hw const *)hw); } if ((int )tmp) { { genesis_mac_intr(hw, port); } } else { { yukon_mac_intr(hw, port); } } return; } } static void skge_error_irq(struct skge_hw *hw ) { struct pci_dev *pdev ; u32 hwstatus ; u32 tmp ; bool tmp___0 ; u16 pci_status ; u16 pci_cmd ; { { pdev = hw->pdev; tmp = skge_read32((struct skge_hw const *)hw, 16); hwstatus = tmp; tmp___0 = is_genesis((struct skge_hw const *)hw); } if ((int )tmp___0) { if ((hwstatus & 640U) != 0U) { { skge_write16((struct skge_hw const *)hw, 3096, 1); } } else { } if ((hwstatus & 320U) != 0U) { { skge_write16((struct skge_hw const *)hw, 3100, 1); } } else { } } else if ((hwstatus & 8192U) != 0U) { { skge_write8((struct skge_hw const *)hw, 3608, 1); } } else { } if ((hwstatus & 32U) != 0U) { { dev_err((struct device const *)(& pdev->dev), "Ram read data parity error\n"); skge_write16((struct skge_hw const *)hw, 416, 512); } } else { } if ((hwstatus & 16U) != 0U) { { dev_err((struct device const *)(& pdev->dev), "Ram write data parity error\n"); skge_write16((struct skge_hw const *)hw, 416, 256); } } else { } if ((hwstatus & 8U) != 0U) { { skge_mac_parity(hw, 0); } } else { } if ((hwstatus & 4U) != 0U) { { skge_mac_parity(hw, 1); } } else { } if ((hwstatus & 2U) != 0U) { { dev_err((struct device const *)(& pdev->dev), "%s: receive queue parity error\n", (char *)(& (hw->dev[0])->name)); skge_write32((struct skge_hw const *)hw, 96, 8U); } } else { } if ((int )hwstatus & 1) { { dev_err((struct device const *)(& pdev->dev), "%s: receive queue parity error\n", (char *)(& (hw->dev[1])->name)); skge_write32((struct skge_hw const *)hw, 100, 8U); } } else { } if ((hwstatus & 3072U) != 0U) { { pci_read_config_word((struct pci_dev const *)pdev, 4, & pci_cmd); pci_read_config_word((struct pci_dev const *)pdev, 6, & pci_status); dev_err((struct device const *)(& pdev->dev), "PCI error cmd=%#x status=%#x\n", (int )pci_cmd, (int )pci_status); pci_status = (unsigned int )pci_status & 61696U; skge_write8((struct skge_hw const *)hw, 344, 2); pci_write_config_word((struct pci_dev const *)pdev, 4, (int )((unsigned int )pci_cmd | 320U)); pci_write_config_word((struct pci_dev const *)pdev, 6, (int )pci_status); skge_write8((struct skge_hw const *)hw, 344, 1); hwstatus = skge_read32((struct skge_hw const *)hw, 16); } if ((hwstatus & 1024U) != 0U) { { dev_warn((struct device const *)(& (hw->pdev)->dev), "unable to clear error (so ignoring them)\n"); hw->intr_mask = hw->intr_mask & 2147483647U; } } else { } } else { } return; } } static void skge_extirq(unsigned long arg ) { struct skge_hw *hw ; int port ; struct net_device *dev ; struct skge_port *skge ; void *tmp ; bool tmp___0 ; int tmp___1 ; bool tmp___2 ; { hw = (struct skge_hw *)arg; port = 0; goto ldv_47881; ldv_47880: { dev = hw->dev[port]; tmp___2 = netif_running((struct net_device const *)dev); } if ((int )tmp___2) { { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; ldv_spin_lock_110(& hw->phy_lock); tmp___0 = is_genesis((struct skge_hw const *)hw); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { { yukon_phy_intr(skge); } } else if ((unsigned int )hw->phy_type == 1U) { { bcom_phy_intr(skge); } } else { } { ldv_spin_unlock_111(& hw->phy_lock); } } else { } port = port + 1; ldv_47881: ; if (port < (int )hw->ports) { goto ldv_47880; } else { } { ldv_spin_lock_irq_102(& hw->hw_lock); hw->intr_mask = hw->intr_mask | 8388608U; skge_write32((struct skge_hw const *)hw, 12, hw->intr_mask); skge_read32((struct skge_hw const *)hw, 12); ldv_spin_unlock_irq_103(& hw->hw_lock); } return; } } static irqreturn_t skge_intr(int irq , void *dev_id ) { struct skge_hw *hw ; u32 status ; int handled ; struct skge_port *skge ; void *tmp ; struct skge_port *skge___0 ; void *tmp___0 ; { { hw = (struct skge_hw *)dev_id; handled = 0; ldv_spin_lock_114(& hw->hw_lock); status = skge_read32((struct skge_hw const *)hw, 24); } if (status - 1U > 4294967293U) { goto out; } else { } handled = 1; status = status & hw->intr_mask; if ((status & 8388608U) != 0U) { { hw->intr_mask = hw->intr_mask & 4286578687U; tasklet_schedule(& hw->phy_task); } } else { } if ((status & 65664U) != 0U) { { tmp = netdev_priv((struct net_device const *)hw->dev[0]); skge = (struct skge_port *)tmp; hw->intr_mask = hw->intr_mask & 4294901631U; napi_schedule(& skge->napi); } } else { } if ((status & 134217728U) != 0U) { { skge_write16((struct skge_hw const *)hw, 496, 4096); } } else { } if ((status & 536870912U) != 0U) { { (hw->dev[0])->stats.rx_over_errors = (hw->dev[0])->stats.rx_over_errors + 1UL; skge_write16((struct skge_hw const *)hw, 496, 1024); } } else { } if ((status & 2097152U) != 0U) { { skge_mac_intr(hw, 0); } } else { } if ((unsigned long )hw->dev[1] != (unsigned long )((struct net_device *)0)) { { tmp___0 = netdev_priv((struct net_device const *)hw->dev[1]); skge___0 = (struct skge_port *)tmp___0; } if ((status & 8194U) != 0U) { { hw->intr_mask = hw->intr_mask & 4294959101U; napi_schedule(& skge___0->napi); } } else { } if ((status & 268435456U) != 0U) { { (hw->dev[1])->stats.rx_over_errors = (hw->dev[1])->stats.rx_over_errors + 1UL; skge_write16((struct skge_hw const *)hw, 496, 2048); } } else { } if ((status & 67108864U) != 0U) { { skge_write16((struct skge_hw const *)hw, 496, 8192); } } else { } if ((status & 524288U) != 0U) { { skge_mac_intr(hw, 1); } } else { } } else { } if ((int )status < 0) { { skge_error_irq(hw); } } else { } { skge_write32((struct skge_hw const *)hw, 12, hw->intr_mask); skge_read32((struct skge_hw const *)hw, 12); } out: { ldv_spin_unlock_115(& hw->hw_lock); } return (handled != 0); } } static void skge_netpoll(struct net_device *dev ) { struct skge_port *skge ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; disable_irq((unsigned int )dev->irq); skge_intr(dev->irq, (void *)skge->hw); enable_irq((unsigned int )dev->irq); } return; } } static int skge_set_mac_address(struct net_device *dev , void *p ) { struct skge_port *skge ; void *tmp ; struct skge_hw *hw ; unsigned int port ; struct sockaddr const *addr ; u16 ctrl ; bool tmp___0 ; int tmp___1 ; bool tmp___2 ; bool tmp___3 ; int tmp___4 ; { { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp; hw = skge->hw; port = (unsigned int )skge->port; addr = (struct sockaddr const *)p; tmp___0 = is_valid_ether_addr((u8 const *)(& addr->sa_data)); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (-99); } else { } { memcpy((void *)dev->dev_addr, (void const *)(& addr->sa_data), 6UL); tmp___3 = netif_running((struct net_device const *)dev); } if (tmp___3) { tmp___4 = 0; } else { tmp___4 = 1; } if (tmp___4) { { memcpy_toio((void volatile *)(hw->regs + ((unsigned long )(port * 8U) + 256UL)), (void const *)dev->dev_addr, 6UL); memcpy_toio((void volatile *)(hw->regs + ((unsigned long )(port * 8U) + 264UL)), (void const *)dev->dev_addr, 6UL); } } else { { ldv_spin_lock_bh_85(& hw->phy_lock); ctrl = gma_read16((struct skge_hw const *)hw, (int )port, 4); gma_write16((struct skge_hw const *)hw, (int )port, 4, (int )ctrl & 63487); memcpy_toio((void volatile *)(hw->regs + ((unsigned long )(port * 8U) + 256UL)), (void const *)dev->dev_addr, 6UL); memcpy_toio((void volatile *)(hw->regs + ((unsigned long )(port * 8U) + 264UL)), (void const *)dev->dev_addr, 6UL); tmp___2 = is_genesis((struct skge_hw const *)hw); } if ((int )tmp___2) { { xm_outaddr((struct skge_hw const *)hw, (int )port, 264, (u8 const *)dev->dev_addr); } } else { { gma_set_addr(hw, (int )port, 28, (u8 const *)dev->dev_addr); gma_set_addr(hw, (int )port, 40, (u8 const *)dev->dev_addr); } } { gma_write16((struct skge_hw const *)hw, (int )port, 4, (int )ctrl); ldv_spin_unlock_bh_86(& hw->phy_lock); } } return (0); } } static struct __anonstruct_skge_chips_261 const skge_chips[4U] = { {10U, "Genesis"}, {176U, "Yukon"}, {177U, "Yukon-Lite"}, {178U, "Yukon-LP"}}; static char const *skge_board_name(struct skge_hw const *hw ) { int i ; char buf[16U] ; { i = 0; goto ldv_47918; ldv_47917: ; if ((int )((unsigned char )skge_chips[i].id) == (int )((unsigned char )hw->chip_id)) { return ((char const *)skge_chips[i].name); } else { } i = i + 1; ldv_47918: ; if ((unsigned int )i <= 3U) { goto ldv_47917; } else { } { snprintf((char *)(& buf), 16UL, "chipid 0x%x", (int )hw->chip_id); } return ((char const *)(& buf)); } } static int skge_reset(struct skge_hw *hw ) { u32 reg ; u16 ctst ; u16 pci_status ; u8 t8 ; u8 mac_cfg ; u8 pmd_type ; int i ; u8 tmp ; bool tmp___0 ; bool tmp___1 ; int tmp___2 ; u32 tmp___3 ; u32 tmp___4 ; bool tmp___5 ; u32 tmp___6 ; bool tmp___7 ; { { ctst = skge_read16((struct skge_hw const *)hw, 4); skge_write8((struct skge_hw const *)hw, 4, 1); skge_write8((struct skge_hw const *)hw, 4, 2); skge_write8((struct skge_hw const *)hw, 344, 2); skge_write8((struct skge_hw const *)hw, 345, 0); pci_read_config_word((struct pci_dev const *)hw->pdev, 6, & pci_status); pci_write_config_word((struct pci_dev const *)hw->pdev, 6, (int )((unsigned int )pci_status | 61696U)); skge_write8((struct skge_hw const *)hw, 344, 1); skge_write8((struct skge_hw const *)hw, 4, 8); skge_write16((struct skge_hw const *)hw, 4, (int )ctst & 14336); hw->chip_id = skge_read8((struct skge_hw const *)hw, 283); tmp = skge_read8((struct skge_hw const *)hw, 285); hw->phy_type = (unsigned int )tmp & 15U; pmd_type = skge_read8((struct skge_hw const *)hw, 281); hw->copper = (u8 )((unsigned int )pmd_type == 84U || (unsigned int )pmd_type == 49U); } { if ((int )hw->chip_id == 10) { goto case_10; } else { } if ((int )hw->chip_id == 176) { goto case_176; } else { } if ((int )hw->chip_id == 177) { goto case_177; } else { } if ((int )hw->chip_id == 178) { goto case_178; } else { } goto switch_default___0; case_10: /* CIL Label */ ; { if ((int )hw->phy_type == 0) { goto case_0; } else { } if ((int )hw->phy_type == 1) { goto case_1; } else { } goto switch_default; case_0: /* CIL Label */ hw->phy_addr = 0U; goto ldv_47932; case_1: /* CIL Label */ hw->phy_addr = 256U; goto ldv_47932; switch_default: /* CIL Label */ { dev_err((struct device const *)(& (hw->pdev)->dev), "unsupported phy type 0x%x\n", (int )hw->phy_type); } return (-95); switch_break___0: /* CIL Label */ ; } ldv_47932: ; goto ldv_47935; case_176: /* CIL Label */ ; case_177: /* CIL Label */ ; case_178: /* CIL Label */ ; if ((unsigned int )hw->phy_type <= 3U && (unsigned int )pmd_type != 83U) { hw->copper = 1U; } else { } hw->phy_addr = 0U; goto ldv_47935; switch_default___0: /* CIL Label */ { dev_err((struct device const *)(& (hw->pdev)->dev), "unsupported chip type 0x%x\n", (int )hw->chip_id); } return (-95); switch_break: /* CIL Label */ ; } ldv_47935: { mac_cfg = skge_read8((struct skge_hw const *)hw, 282); hw->ports = (int )mac_cfg & 1 ? 1U : 2U; hw->chip_rev = (int )mac_cfg >> 4; t8 = skge_read8((struct skge_hw const *)hw, 284); tmp___0 = is_genesis((struct skge_hw const *)hw); } if ((int )tmp___0) { if ((unsigned int )t8 == 3U) { hw->ram_size = 1048576U; hw->ram_offset = 524288U; } else { hw->ram_size = (u32 )((int )t8 * 512); } } else if ((unsigned int )t8 == 0U) { hw->ram_size = 131072U; } else { hw->ram_size = (u32 )((int )t8 * 4096); } { hw->intr_mask = 2147483648U; tmp___1 = is_genesis((struct skge_hw const *)hw); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2 || (unsigned int )hw->phy_type != 0U) { hw->intr_mask = hw->intr_mask | 8388608U; } else { } { tmp___5 = is_genesis((struct skge_hw const *)hw); } if ((int )tmp___5) { { genesis_init(hw); } } else { { skge_write8((struct skge_hw const *)hw, 7, 166); tmp___3 = skge_read32((struct skge_hw const *)hw, 8); } if ((int )tmp___3 < 0) { { tmp___4 = skge_read32((struct skge_hw const *)hw, 16); } if ((tmp___4 & 4096U) != 0U) { { dev_warn((struct device const *)(& (hw->pdev)->dev), "stuck hardware sensor bit\n"); hw->intr_mask = hw->intr_mask & 2147483647U; } } else { } } else { } { skge_write8((struct skge_hw const *)hw, 344, 2); pci_read_config_dword((struct pci_dev const *)hw->pdev, 64, & reg); reg = reg & 4160749567U; pci_write_config_dword((struct pci_dev const *)hw->pdev, 64, reg); skge_write8((struct skge_hw const *)hw, 344, 1); i = 0; } goto ldv_47941; ldv_47940: { skge_write16((struct skge_hw const *)hw, (i << 7) + 3856, 1); skge_write16((struct skge_hw const *)hw, (i << 7) + 3856, 2); i = i + 1; } ldv_47941: ; if (i < (int )hw->ports) { goto ldv_47940; } else { } } { skge_write8((struct skge_hw const *)hw, 312, 2); skge_write8((struct skge_hw const *)hw, 312, 1); skge_write8((struct skge_hw const *)hw, 6, 2); i = 0; } goto ldv_47944; ldv_47943: { skge_write8((struct skge_hw const *)hw, (i << 7) + 528, 2); i = i + 1; } ldv_47944: ; if (i < (int )hw->ports) { goto ldv_47943; } else { } { skge_write16((struct skge_hw const *)hw, 416, 2); skge_write8((struct skge_hw const *)hw, 400, 36); skge_write8((struct skge_hw const *)hw, 401, 36); skge_write8((struct skge_hw const *)hw, 402, 36); skge_write8((struct skge_hw const *)hw, 403, 36); skge_write8((struct skge_hw const *)hw, 404, 36); skge_write8((struct skge_hw const *)hw, 405, 36); skge_write8((struct skge_hw const *)hw, 406, 36); skge_write8((struct skge_hw const *)hw, 407, 36); skge_write8((struct skge_hw const *)hw, 408, 36); skge_write8((struct skge_hw const *)hw, 409, 36); skge_write8((struct skge_hw const *)hw, 410, 36); skge_write8((struct skge_hw const *)hw, 411, 36); skge_write32((struct skge_hw const *)hw, 20, 3135U); skge_write32((struct skge_hw const *)hw, 332, 130U); tmp___6 = skge_usecs2clk((struct skge_hw const *)hw, 100U); skge_write32((struct skge_hw const *)hw, 320, tmp___6); skge_write32((struct skge_hw const *)hw, 328, 4U); skge_write32((struct skge_hw const *)hw, 12, 0U); i = 0; } goto ldv_47947; ldv_47946: { tmp___7 = is_genesis((struct skge_hw const *)hw); } if ((int )tmp___7) { { genesis_reset(hw, i); } } else { { yukon_reset(hw, i); } } i = i + 1; ldv_47947: ; if (i < (int )hw->ports) { goto ldv_47946; } else { } return (0); } } static struct dentry *skge_debug ; static int skge_debug_show(struct seq_file *seq , void *v ) { struct net_device *dev ; struct skge_port const *skge ; void *tmp ; struct skge_hw const *hw ; struct skge_element const *e ; bool tmp___0 ; int tmp___1 ; u32 tmp___2 ; u32 tmp___3 ; int tmp___4 ; struct skge_tx_desc const *t ; struct skge_rx_desc const *r ; { { dev = (struct net_device *)seq->private; tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port const *)tmp; hw = (struct skge_hw const *)skge->hw; tmp___0 = netif_running((struct net_device const *)dev); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (-100); } else { } { tmp___2 = skge_read32(hw, 12); tmp___3 = skge_read32(hw, 8); seq_printf(seq, "IRQ src=%x mask=%x\n", tmp___3, tmp___2); tmp___4 = skge_avail(& skge->tx_ring); seq_printf(seq, "Tx Ring: (%d)\n", tmp___4); e = (struct skge_element const *)skge->tx_ring.to_clean; } goto ldv_47960; ldv_47959: { t = (struct skge_tx_desc const *)e->desc; seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n", t->control, t->dma_hi, t->dma_lo, t->status, t->csum_offs, (int )t->csum_write, (int )t->csum_start); e = (struct skge_element const *)e->next; } ldv_47960: ; if ((unsigned long )e != (unsigned long )((struct skge_element const *)skge->tx_ring.to_use)) { goto ldv_47959; } else { } { seq_printf(seq, "\nRx Ring:\n"); e = (struct skge_element const *)skge->rx_ring.to_clean; } ldv_47964: r = (struct skge_rx_desc const *)e->desc; if ((int )r->control < 0) { goto ldv_47963; } else { } { seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n", r->control, r->dma_hi, r->dma_lo, r->status, r->timestamp, (int )r->csum1, (int )r->csum1_start); e = (struct skge_element const *)e->next; } goto ldv_47964; ldv_47963: ; return (0); } } static int skge_debug_open(struct inode *inode , struct file *file ) { int tmp ; { { tmp = single_open(file, & skge_debug_show, inode->i_private); } return (tmp); } } static struct file_operations const skge_debug_fops = {& __this_module, & seq_lseek, & seq_read, 0, 0, 0, 0, 0, 0, 0, 0, & skge_debug_open, 0, & single_release, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static int skge_device_event(struct notifier_block *unused , unsigned long event , void *ptr ) { struct net_device *dev ; struct net_device *tmp ; struct skge_port *skge ; struct dentry *d ; void *tmp___0 ; long tmp___1 ; { { tmp = netdev_notifier_info_to_dev((struct netdev_notifier_info const *)ptr); dev = tmp; } if ((unsigned long )((int (*)(struct net_device * ))(dev->netdev_ops)->ndo_open) != (unsigned long )(& skge_up) || (unsigned long )skge_debug == (unsigned long )((struct dentry *)0)) { goto done; } else { } { tmp___0 = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp___0; } { if (event == 10UL) { goto case_10; } else { } if (event == 9UL) { goto case_9; } else { } if (event == 1UL) { goto case_1; } else { } goto switch_break; case_10: /* CIL Label */ ; if ((unsigned long )skge->debugfs != (unsigned long )((struct dentry *)0)) { { d = debugfs_rename(skge_debug, skge->debugfs, skge_debug, (char const *)(& dev->name)); } if ((unsigned long )d != (unsigned long )((struct dentry *)0)) { skge->debugfs = d; } else { { netdev_info((struct net_device const *)dev, "rename failed\n"); debugfs_remove(skge->debugfs); } } } else { } goto ldv_47980; case_9: /* CIL Label */ ; if ((unsigned long )skge->debugfs != (unsigned long )((struct dentry *)0)) { { debugfs_remove(skge->debugfs); skge->debugfs = (struct dentry *)0; } } else { } goto ldv_47980; case_1: /* CIL Label */ { d = debugfs_create_file((char const *)(& dev->name), 292, skge_debug, (void *)dev, & skge_debug_fops); } if ((unsigned long )d == (unsigned long )((struct dentry *)0)) { { netdev_info((struct net_device const *)dev, "debugfs create failed\n"); } } else { { tmp___1 = IS_ERR((void const *)d); } if (tmp___1 != 0L) { { netdev_info((struct net_device const *)dev, "debugfs create failed\n"); } } else { skge->debugfs = d; } } goto ldv_47980; switch_break: /* CIL Label */ ; } ldv_47980: ; done: ; return (0); } } static struct notifier_block skge_notifier = {& skge_device_event, 0, 0}; static void skge_debug_init(void) { struct dentry *ent ; long tmp ; { { ent = debugfs_create_dir("skge", (struct dentry *)0); } if ((unsigned long )ent == (unsigned long )((struct dentry *)0)) { { printk("\016skge: debugfs create directory failed\n"); } return; } else { { tmp = IS_ERR((void const *)ent); } if (tmp != 0L) { { printk("\016skge: debugfs create directory failed\n"); } return; } else { } } { skge_debug = ent; ldv_register_netdevice_notifier_118(& skge_notifier); } return; } } static void skge_debug_cleanup(void) { { if ((unsigned long )skge_debug != (unsigned long )((struct dentry *)0)) { { ldv_unregister_netdevice_notifier_119(& skge_notifier); debugfs_remove(skge_debug); skge_debug = (struct dentry *)0; } } else { } return; } } static struct net_device_ops const skge_netdev_ops = {0, 0, & skge_up, & skge_down, & skge_xmit_frame, 0, 0, & skge_set_multicast, & skge_set_mac_address, & eth_validate_addr, & skge_ioctl, 0, & skge_change_mtu, 0, & skge_tx_timeout, 0, & skge_get_stats, 0, 0, & skge_netpoll, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct net_device *skge_devinit(struct skge_hw *hw , int port , int highmem ) { struct skge_port *skge ; struct net_device *dev ; struct net_device *tmp ; void *tmp___0 ; u32 tmp___1 ; bool tmp___2 ; struct lock_class_key __key ; bool tmp___3 ; { { tmp = ldv_alloc_etherdev_mqs_120(512, 1U, 1U); dev = tmp; } if ((unsigned long )dev == (unsigned long )((struct net_device *)0)) { return ((struct net_device *)0); } else { } dev->dev.parent = & (hw->pdev)->dev; dev->netdev_ops = & skge_netdev_ops; dev->ethtool_ops = & skge_ethtool_ops; dev->watchdog_timeo = 1250; dev->irq = (int )(hw->pdev)->irq; if (highmem != 0) { dev->features = dev->features | 32ULL; } else { } { tmp___0 = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp___0; netif_napi_add(dev, & skge->napi, & skge_poll, 64); skge->netdev = dev; skge->hw = hw; skge->msg_enable = netif_msg_init(debug, (int )default_msg); skge->tx_ring.count = 128UL; skge->rx_ring.count = 512UL; skge->autoneg = 1U; skge->flow_control = 4; skge->duplex = 255U; skge->speed = 65535U; skge->advertising = skge_supported_modes((struct skge_hw const *)hw); tmp___2 = device_can_wakeup(& (hw->pdev)->dev); } if ((int )tmp___2) { { tmp___1 = wol_supported((struct skge_hw const *)hw); skge->wol = (unsigned int )((u8 )tmp___1) & 32U; device_set_wakeup_enable(& (hw->pdev)->dev, (unsigned int )skge->wol != 0U); } } else { } { hw->dev[port] = dev; skge->port = port; tmp___3 = is_genesis((struct skge_hw const *)hw); } if ((int )tmp___3) { { init_timer_key(& skge->link_timer, 0U, "((&skge->link_timer))", & __key); skge->link_timer.function = & xm_link_timer; skge->link_timer.data = (unsigned long )skge; } } else { dev->hw_features = 4294967299ULL; dev->features = dev->features | dev->hw_features; } { memcpy_fromio((void *)dev->dev_addr, (void const volatile *)(hw->regs + ((unsigned long )(port * 8) + 256UL)), 6UL); } return (dev); } } static void skge_show_addr(struct net_device *dev ) { struct skge_port const *skge ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); skge = (struct skge_port const *)tmp; } if (((unsigned int )skge->msg_enable & 2U) != 0U) { { netdev_info((struct net_device const *)skge->netdev, "addr %pM\n", dev->dev_addr); } } else { } return; } } static int only_32bit_dma ; static int skge_probe(struct pci_dev *pdev , struct pci_device_id const *ent ) { struct net_device *dev ; struct net_device *dev1 ; struct skge_hw *hw ; int err ; int using_dac ; int tmp ; size_t tmp___0 ; char const *tmp___1 ; size_t tmp___2 ; void *tmp___3 ; char const *tmp___4 ; struct lock_class_key __key ; struct lock_class_key __key___0 ; char const *tmp___5 ; bool tmp___6 ; int tmp___7 ; { { using_dac = 0; err = pci_enable_device(pdev); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "cannot enable PCI device\n"); } goto err_out; } else { } { err = pci_request_regions(pdev, "skge"); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "cannot obtain PCI resources\n"); } goto err_out_disable_pdev; } else { } { pci_set_master(pdev); } if (only_32bit_dma == 0) { { tmp = pci_set_dma_mask(pdev, 0xffffffffffffffffULL); } if (tmp == 0) { { using_dac = 1; err = pci_set_consistent_dma_mask(pdev, 0xffffffffffffffffULL); } } else { goto _L; } } else { _L: /* CIL Label */ { err = pci_set_dma_mask(pdev, 4294967295ULL); } if (err == 0) { { using_dac = 0; err = pci_set_consistent_dma_mask(pdev, 4294967295ULL); } } else { } } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "no usable DMA configuration\n"); } goto err_out_free_regions; } else { } { err = -12; tmp___0 = strlen("skge@pci:"); tmp___1 = pci_name((struct pci_dev const *)pdev); tmp___2 = strlen(tmp___1); tmp___3 = kzalloc((tmp___0 + tmp___2) + 249UL, 208U); hw = (struct skge_hw *)tmp___3; } if ((unsigned long )hw == (unsigned long )((struct skge_hw *)0)) { goto err_out_free_regions; } else { } { tmp___4 = pci_name((struct pci_dev const *)pdev); sprintf((char *)(& hw->irq_name), "skge@pci:%s", tmp___4); hw->pdev = pdev; spinlock_check(& hw->hw_lock); __raw_spin_lock_init(& hw->hw_lock.__annonCompField19.rlock, "&(&hw->hw_lock)->rlock", & __key); spinlock_check(& hw->phy_lock); __raw_spin_lock_init(& hw->phy_lock.__annonCompField19.rlock, "&(&hw->phy_lock)->rlock", & __key___0); tasklet_init(& hw->phy_task, & skge_extirq, (unsigned long )hw); hw->regs = ioremap_nocache(pdev->resource[0].start, 16384UL); } if ((unsigned long )hw->regs == (unsigned long )((void *)0)) { { dev_err((struct device const *)(& pdev->dev), "cannot map device registers\n"); } goto err_out_free_hw; } else { } { err = skge_reset(hw); } if (err != 0) { goto err_out_iounmap; } else { } { tmp___5 = skge_board_name((struct skge_hw const *)hw); printk("\016skge: %s addr 0x%llx irq %d chip %s rev %d\n", (char *)"1.14", pdev->resource[0].start, pdev->irq, tmp___5, (int )hw->chip_rev); dev = skge_devinit(hw, 0, using_dac); } if ((unsigned long )dev == (unsigned long )((struct net_device *)0)) { err = -12; goto err_out_led_off; } else { } { tmp___6 = is_valid_ether_addr((u8 const *)dev->dev_addr); } if (tmp___6) { tmp___7 = 0; } else { tmp___7 = 1; } if (tmp___7) { { dev_warn((struct device const *)(& pdev->dev), "bad (zero?) ethernet address in rom\n"); } } else { } { err = ldv_register_netdev_121(dev); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "cannot register net device\n"); } goto err_out_free_netdev; } else { } { skge_show_addr(dev); } if ((unsigned int )hw->ports > 1U) { { dev1 = skge_devinit(hw, 1, using_dac); } if ((unsigned long )dev1 == (unsigned long )((struct net_device *)0)) { err = -12; goto err_out_unregister; } else { } { err = ldv_register_netdev_122(dev1); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "cannot register second net device\n"); } goto err_out_free_dev1; } else { } { err = ldv_request_irq_123(pdev->irq, & skge_intr, 128UL, (char const *)(& hw->irq_name), (void *)hw); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "cannot assign irq %d\n", pdev->irq); } goto err_out_unregister_dev1; } else { } { skge_show_addr(dev1); } } else { } { pci_set_drvdata(pdev, (void *)hw); } return (0); err_out_unregister_dev1: { ldv_unregister_netdev_124(dev1); } err_out_free_dev1: { ldv_free_netdev_125(dev1); } err_out_unregister: { ldv_unregister_netdev_126(dev); } err_out_free_netdev: { ldv_free_netdev_127(dev); } err_out_led_off: { skge_write16((struct skge_hw const *)hw, 6, 1); } err_out_iounmap: { iounmap((void volatile *)hw->regs); } err_out_free_hw: { kfree((void const *)hw); } err_out_free_regions: { pci_release_regions(pdev); } err_out_disable_pdev: { pci_disable_device(pdev); } err_out: ; return (err); } } static void skge_remove(struct pci_dev *pdev ) { struct skge_hw *hw ; void *tmp ; struct net_device *dev0 ; struct net_device *dev1 ; { { tmp = pci_get_drvdata(pdev); hw = (struct skge_hw *)tmp; } if ((unsigned long )hw == (unsigned long )((struct skge_hw *)0)) { return; } else { } dev1 = hw->dev[1]; if ((unsigned long )dev1 != (unsigned long )((struct net_device *)0)) { { ldv_unregister_netdev_128(dev1); } } else { } { dev0 = hw->dev[0]; ldv_unregister_netdev_129(dev0); tasklet_kill(& hw->phy_task); ldv_spin_lock_irq_102(& hw->hw_lock); hw->intr_mask = 0U; } if ((unsigned int )hw->ports > 1U) { { skge_write32((struct skge_hw const *)hw, 12, 0U); skge_read32((struct skge_hw const *)hw, 12); ldv_free_irq_131(pdev->irq, (void *)hw); } } else { } { ldv_spin_unlock_irq_103(& hw->hw_lock); skge_write16((struct skge_hw const *)hw, 6, 1); skge_write8((struct skge_hw const *)hw, 4, 1); } if ((unsigned int )hw->ports > 1U) { { ldv_free_irq_133(pdev->irq, (void *)hw); } } else { } { pci_release_regions(pdev); pci_disable_device(pdev); } if ((unsigned long )dev1 != (unsigned long )((struct net_device *)0)) { { ldv_free_netdev_134(dev1); } } else { } { ldv_free_netdev_135(dev0); iounmap((void volatile *)hw->regs); kfree((void const *)hw); } return; } } static int skge_suspend(struct device *dev ) { struct pci_dev *pdev ; struct device const *__mptr ; struct skge_hw *hw ; void *tmp ; int i ; struct net_device *dev___0 ; struct skge_port *skge ; void *tmp___0 ; bool tmp___1 ; { { __mptr = (struct device const *)dev; pdev = (struct pci_dev *)__mptr + 0xffffffffffffff68UL; tmp = pci_get_drvdata(pdev); hw = (struct skge_hw *)tmp; } if ((unsigned long )hw == (unsigned long )((struct skge_hw *)0)) { return (0); } else { } i = 0; goto ldv_48043; ldv_48042: { dev___0 = hw->dev[i]; tmp___0 = netdev_priv((struct net_device const *)dev___0); skge = (struct skge_port *)tmp___0; tmp___1 = netif_running((struct net_device const *)dev___0); } if ((int )tmp___1) { { skge_down(dev___0); } } else { } if ((unsigned int )skge->wol != 0U) { { skge_wol_init(skge); } } else { } i = i + 1; ldv_48043: ; if (i < (int )hw->ports) { goto ldv_48042; } else { } { skge_write32((struct skge_hw const *)hw, 12, 0U); } return (0); } } static int skge_resume(struct device *dev ) { struct pci_dev *pdev ; struct device const *__mptr ; struct skge_hw *hw ; void *tmp ; int i ; int err ; struct net_device *dev___0 ; bool tmp___0 ; { { __mptr = (struct device const *)dev; pdev = (struct pci_dev *)__mptr + 0xffffffffffffff68UL; tmp = pci_get_drvdata(pdev); hw = (struct skge_hw *)tmp; } if ((unsigned long )hw == (unsigned long )((struct skge_hw *)0)) { return (0); } else { } { err = skge_reset(hw); } if (err != 0) { goto out; } else { } i = 0; goto ldv_48057; ldv_48056: { dev___0 = hw->dev[i]; tmp___0 = netif_running((struct net_device const *)dev___0); } if ((int )tmp___0) { { err = skge_up(dev___0); } if (err != 0) { { netdev_err((struct net_device const *)dev___0, "could not up: %d\n", err); dev_close(dev___0); } goto out; } else { } } else { } i = i + 1; ldv_48057: ; if (i < (int )hw->ports) { goto ldv_48056; } else { } out: ; return (err); } } static struct dev_pm_ops const skge_pm_ops = {0, 0, & skge_suspend, & skge_resume, & skge_suspend, & skge_resume, & skge_suspend, & skge_resume, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static void skge_shutdown(struct pci_dev *pdev ) { struct skge_hw *hw ; void *tmp ; int i ; struct net_device *dev ; struct skge_port *skge ; void *tmp___0 ; bool tmp___1 ; { { tmp = pci_get_drvdata(pdev); hw = (struct skge_hw *)tmp; } if ((unsigned long )hw == (unsigned long )((struct skge_hw *)0)) { return; } else { } i = 0; goto ldv_48068; ldv_48067: { dev = hw->dev[i]; tmp___0 = netdev_priv((struct net_device const *)dev); skge = (struct skge_port *)tmp___0; } if ((unsigned int )skge->wol != 0U) { { skge_wol_init(skge); } } else { } i = i + 1; ldv_48068: ; if (i < (int )hw->ports) { goto ldv_48067; } else { } { tmp___1 = device_may_wakeup(& pdev->dev); pci_wake_from_d3(pdev, (int )tmp___1); pci_set_power_state(pdev, 3); } return; } } static struct pci_driver skge_driver = {{0, 0}, "skge", (struct pci_device_id const *)(& skge_id_table), & skge_probe, & skge_remove, 0, 0, 0, 0, & skge_shutdown, 0, 0, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, & skge_pm_ops, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static struct dmi_system_id skge_32bit_dma_boards[3U] = { {0, "Gigabyte nForce boards", {{9U, (unsigned char)0, {'G', 'i', 'g', 'a', 'b', 'y', 't', 'e', ' ', 'T', 'e', 'c', 'h', 'n', 'o', 'l', 'o', 'g', 'y', ' ', 'C', 'o', '\000'}}, {10U, (unsigned char)0, {'n', 'F', 'o', 'r', 'c', 'e', '\000'}}}, 0}, {0, "ASUS P5NSLI", {{9U, (unsigned char)0, {'A', 'S', 'U', 'S', 'T', 'e', 'K', ' ', 'C', 'o', 'm', 'p', 'u', 't', 'e', 'r', ' ', 'I', 'N', 'C', '.', '\000'}}, {10U, (unsigned char)0, {'P', '5', 'N', 'S', 'L', 'I', '\000'}}}, 0}}; static int skge_init_module(void) { int tmp ; int tmp___0 ; { { tmp = dmi_check_system((struct dmi_system_id const *)(& skge_32bit_dma_boards)); } if (tmp != 0) { only_32bit_dma = 1; } else { } { skge_debug_init(); tmp___0 = ldv___pci_register_driver_136(& skge_driver, & __this_module, "skge"); } return (tmp___0); } } static void skge_cleanup_module(void) { { { ldv_pci_unregister_driver_137(& skge_driver); skge_debug_cleanup(); } return; } } void ldv_EMGentry_exit_skge_cleanup_module_20_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_skge_init_module_20_11(int (*arg0)(void) ) ; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) ; struct net_device *ldv_alloc_etherdev_mqs(struct net_device *arg0 , int arg1 , unsigned int arg2 , unsigned int arg3 ) ; int ldv_del_timer_sync(int arg0 , struct timer_list *arg1 ) ; void ldv_dispatch_deregister_15_1(struct net_device *arg0 ) ; void ldv_dispatch_deregister_16_1(struct pci_driver *arg0 ) ; void ldv_dispatch_deregister_18_1(struct notifier_block *arg0 ) ; void ldv_dispatch_deregister_file_operations_instance_9_20_4(void) ; void ldv_dispatch_deregister_platform_instance_16_20_5(void) ; void ldv_dispatch_instance_deregister_9_1(struct timer_list *arg0 ) ; void ldv_dispatch_instance_register_12_2(struct timer_list *arg0 ) ; void ldv_dispatch_irq_deregister_10_1(int arg0 ) ; void ldv_dispatch_irq_register_14_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_pm_deregister_5_5(void) ; void ldv_dispatch_pm_register_5_6(void) ; void ldv_dispatch_register_13_4(struct net_device *arg0 ) ; void ldv_dispatch_register_17_2(struct pci_driver *arg0 ) ; void ldv_dispatch_register_19_2(struct notifier_block *arg0 ) ; void ldv_dispatch_register_file_operations_instance_9_20_6(void) ; void ldv_dispatch_register_platform_instance_16_20_7(void) ; void ldv_dummy_resourceless_instance_callback_2_11(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_12(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) ; void ldv_dummy_resourceless_instance_callback_2_15(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_16(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_17(void (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_18(void (*arg0)(struct net_device * , struct ethtool_regs * , void * ) , struct net_device *arg1 , struct ethtool_regs *arg2 , void *arg3 ) ; void ldv_dummy_resourceless_instance_callback_2_19(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_20(void (*arg0)(struct net_device * , struct ethtool_ringparam * ) , struct net_device *arg1 , struct ethtool_ringparam *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_21(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_22(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_25(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_2_28(void (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_29(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_3(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_32(int (*arg0)(struct net_device * , struct ifreq * , int ) , struct net_device *arg1 , struct ifreq *arg2 , int arg3 ) ; void ldv_dummy_resourceless_instance_callback_2_35(struct net_device_stats *(*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_36(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_37(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_38(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_39(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_40(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_41(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_42(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_43(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_44(int (*arg0)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) , struct net_device *arg1 , struct ethtool_eeprom *arg2 , unsigned char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_2_47(void (*arg0)(struct net_device * , unsigned int ) , struct net_device *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_50(int (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_51(int (*arg0)(struct net_device * , enum ethtool_phys_id_state ) , struct net_device *arg1 , enum ethtool_phys_id_state arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_52(int (*arg0)(struct net_device * , struct ethtool_ringparam * ) , struct net_device *arg1 , struct ethtool_ringparam *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_53(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_54(int (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_7(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_8(int (*arg0)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) , struct net_device *arg1 , struct ethtool_eeprom *arg2 , unsigned char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_6_3(int (*arg0)(struct notifier_block * , unsigned long , void * ) , struct notifier_block *arg1 , unsigned long arg2 , void *arg3 ) ; void ldv_entry_EMGentry_20(void *arg0 ) ; int main(void) ; void ldv_file_operations_file_operations_instance_0(void *arg0 ) ; void ldv_file_operations_instance_callback_0_22(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_callback_0_5(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) ; int ldv_file_operations_instance_probe_0_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_release_0_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_write_0_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) ; void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) ; enum irqreturn ldv_interrupt_instance_handler_1_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_1_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_interrupt_instance_1(void *arg0 ) ; int ldv_mod_timer(int arg0 , struct timer_list *arg1 , unsigned long arg2 ) ; void ldv_net_dummy_resourceless_instance_2(void *arg0 ) ; int ldv_pci_instance_probe_3_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_3_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_3_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_3_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_3_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_3_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_3_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_3(void *arg0 ) ; void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) ; int ldv_platform_instance_probe_5_14(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) ; void ldv_platform_instance_release_5_3(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) ; void ldv_pm_ops_instance_complete_4_3(void (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_4_15(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_late_4_14(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_noirq_4_12(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_4_9(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_late_4_8(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_noirq_4_6(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_prepare_4_22(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_4_4(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_early_4_7(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_noirq_4_5(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_4_16(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_early_4_17(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_noirq_4_19(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_idle_4_27(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_resume_4_24(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_suspend_4_25(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_4_21(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_late_4_18(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_noirq_4_20(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_4_10(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_early_4_13(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_noirq_4_11(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_platform_instance_5(void *arg0 ) ; void ldv_pm_pm_ops_instance_4(void *arg0 ) ; int ldv_register_netdev(int arg0 , struct net_device *arg1 ) ; int ldv_register_netdev_open_13_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; int ldv_register_netdevice_notifier(int arg0 , struct notifier_block *arg1 ) ; int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) ; void ldv_struct_notifier_block_dummy_resourceless_instance_6(void *arg0 ) ; void ldv_timer_instance_callback_7_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) ; void ldv_timer_timer_instance_7(void *arg0 ) ; void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) ; void ldv_unregister_netdev_stop_15_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; int ldv_unregister_netdevice_notifier(int arg0 , struct notifier_block *arg1 ) ; struct ldv_thread ldv_thread_0 ; struct ldv_thread ldv_thread_1 ; struct ldv_thread ldv_thread_2 ; struct ldv_thread ldv_thread_20 ; struct ldv_thread ldv_thread_3 ; struct ldv_thread ldv_thread_4 ; struct ldv_thread ldv_thread_5 ; struct ldv_thread ldv_thread_6 ; struct ldv_thread ldv_thread_7 ; void ldv_EMGentry_exit_skge_cleanup_module_20_2(void (*arg0)(void) ) { { { skge_cleanup_module(); } return; } } int ldv_EMGentry_init_skge_init_module_20_11(int (*arg0)(void) ) { int tmp ; { { tmp = skge_init_module(); } return (tmp); } } int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) { struct pci_driver *ldv_17_pci_driver_pci_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_17_pci_driver_pci_driver = arg1; ldv_dispatch_register_17_2(ldv_17_pci_driver_pci_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } struct net_device *ldv_alloc_etherdev_mqs(struct net_device *arg0 , int arg1 , unsigned int arg2 , unsigned int arg3 ) { struct net_device *ldv_8_netdev_net_device ; void *tmp ; int tmp___0 ; { { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { tmp = ldv_xmalloc(3200UL); ldv_8_netdev_net_device = (struct net_device *)tmp; } return (ldv_8_netdev_net_device); return (arg0); } else { return ((struct net_device *)0); return (arg0); } return (arg0); } } int ldv_del_timer_sync(int arg0 , struct timer_list *arg1 ) { struct timer_list *ldv_9_timer_list_timer_list ; { { ldv_9_timer_list_timer_list = arg1; ldv_dispatch_instance_deregister_9_1(ldv_9_timer_list_timer_list); } return (arg0); return (arg0); } } void ldv_dispatch_deregister_15_1(struct net_device *arg0 ) { { return; } } void ldv_dispatch_deregister_16_1(struct pci_driver *arg0 ) { { return; } } void ldv_dispatch_deregister_18_1(struct notifier_block *arg0 ) { { return; } } void ldv_dispatch_deregister_file_operations_instance_9_20_4(void) { { return; } } void ldv_dispatch_deregister_platform_instance_16_20_5(void) { { return; } } void ldv_dispatch_instance_deregister_9_1(struct timer_list *arg0 ) { { return; } } void ldv_dispatch_instance_register_12_2(struct timer_list *arg0 ) { struct ldv_struct_timer_instance_7 *cf_arg_7 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_7 = (struct ldv_struct_timer_instance_7 *)tmp; cf_arg_7->arg0 = arg0; ldv_timer_timer_instance_7((void *)cf_arg_7); } return; } } void ldv_dispatch_irq_deregister_10_1(int arg0 ) { { return; } } void ldv_dispatch_irq_register_14_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { struct ldv_struct_interrupt_instance_1 *cf_arg_1 ; void *tmp ; { { tmp = ldv_xmalloc(40UL); cf_arg_1 = (struct ldv_struct_interrupt_instance_1 *)tmp; cf_arg_1->arg0 = arg0; cf_arg_1->arg1 = arg1; cf_arg_1->arg2 = arg2; cf_arg_1->arg3 = arg3; ldv_interrupt_interrupt_instance_1((void *)cf_arg_1); } return; } } void ldv_dispatch_pm_deregister_5_5(void) { { return; } } void ldv_dispatch_pm_register_5_6(void) { struct ldv_struct_platform_instance_5 *cf_arg_4 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_4 = (struct ldv_struct_platform_instance_5 *)tmp; ldv_pm_pm_ops_instance_4((void *)cf_arg_4); } return; } } void ldv_dispatch_register_13_4(struct net_device *arg0 ) { struct ldv_struct_dummy_resourceless_instance_2 *cf_arg_2 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_2 = (struct ldv_struct_dummy_resourceless_instance_2 *)tmp; cf_arg_2->arg0 = arg0; ldv_net_dummy_resourceless_instance_2((void *)cf_arg_2); } return; } } void ldv_dispatch_register_17_2(struct pci_driver *arg0 ) { struct ldv_struct_pci_instance_3 *cf_arg_3 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_3 = (struct ldv_struct_pci_instance_3 *)tmp; cf_arg_3->arg0 = arg0; ldv_pci_pci_instance_3((void *)cf_arg_3); } return; } } void ldv_dispatch_register_19_2(struct notifier_block *arg0 ) { struct ldv_struct_dummy_resourceless_instance_6 *cf_arg_6 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_6 = (struct ldv_struct_dummy_resourceless_instance_6 *)tmp; cf_arg_6->arg0 = arg0; ldv_struct_notifier_block_dummy_resourceless_instance_6((void *)cf_arg_6); } return; } } void ldv_dispatch_register_file_operations_instance_9_20_6(void) { struct ldv_struct_platform_instance_5 *cf_arg_0 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_0 = (struct ldv_struct_platform_instance_5 *)tmp; ldv_file_operations_file_operations_instance_0((void *)cf_arg_0); } return; } } void ldv_dispatch_register_platform_instance_16_20_7(void) { struct ldv_struct_platform_instance_5 *cf_arg_5 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_5 = (struct ldv_struct_platform_instance_5 *)tmp; ldv_pm_platform_instance_5((void *)cf_arg_5); } return; } } void ldv_dummy_resourceless_instance_callback_2_11(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { skge_get_eeprom_len(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_12(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) { { { skge_get_ethtool_stats(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_2_15(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { ethtool_op_get_link(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_16(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { skge_get_msglevel(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_17(void (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) { { { skge_get_pauseparam(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_18(void (*arg0)(struct net_device * , struct ethtool_regs * , void * ) , struct net_device *arg1 , struct ethtool_regs *arg2 , void *arg3 ) { { { skge_get_regs(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_2_19(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { skge_get_regs_len(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_20(void (*arg0)(struct net_device * , struct ethtool_ringparam * ) , struct net_device *arg1 , struct ethtool_ringparam *arg2 ) { { { skge_get_ring_param(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_21(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) { { { skge_get_settings(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_22(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { skge_get_sset_count(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_25(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) { { { skge_get_strings(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_2_28(void (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) { { { skge_get_wol(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_29(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { skge_change_mtu(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_3(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) { { { skge_get_coalesce(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_32(int (*arg0)(struct net_device * , struct ifreq * , int ) , struct net_device *arg1 , struct ifreq *arg2 , int arg3 ) { { { skge_ioctl(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_2_35(struct net_device_stats *(*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { skge_get_stats(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_36(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { skge_netpoll(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_37(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) { { { skge_set_mac_address(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_38(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { skge_set_multicast(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_39(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) { { { skge_xmit_frame(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_40(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { skge_tx_timeout(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_41(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { eth_validate_addr(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_42(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { skge_nway_reset(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_43(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) { { { skge_set_coalesce(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_44(int (*arg0)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) , struct net_device *arg1 , struct ethtool_eeprom *arg2 , unsigned char *arg3 ) { { { skge_set_eeprom(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_2_47(void (*arg0)(struct net_device * , unsigned int ) , struct net_device *arg1 , unsigned int arg2 ) { { { skge_set_msglevel(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_50(int (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) { { { skge_set_pauseparam(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_51(int (*arg0)(struct net_device * , enum ethtool_phys_id_state ) , struct net_device *arg1 , enum ethtool_phys_id_state arg2 ) { { { skge_set_phys_id(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_52(int (*arg0)(struct net_device * , struct ethtool_ringparam * ) , struct net_device *arg1 , struct ethtool_ringparam *arg2 ) { { { skge_set_ring_param(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_53(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) { { { skge_set_settings(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_54(int (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) { { { skge_set_wol(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_7(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) { { { skge_get_drvinfo(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_8(int (*arg0)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) , struct net_device *arg1 , struct ethtool_eeprom *arg2 , unsigned char *arg3 ) { { { skge_get_eeprom(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_6_3(int (*arg0)(struct notifier_block * , unsigned long , void * ) , struct notifier_block *arg1 , unsigned long arg2 , void *arg3 ) { { { skge_device_event(arg1, arg2, arg3); } return; } } void ldv_entry_EMGentry_20(void *arg0 ) { void (*ldv_20_exit_skge_cleanup_module_default)(void) ; int (*ldv_20_init_skge_init_module_default)(void) ; int ldv_20_ret_default ; int tmp ; int tmp___0 ; { { ldv_20_ret_default = ldv_EMGentry_init_skge_init_module_20_11(ldv_20_init_skge_init_module_default); ldv_20_ret_default = ldv_post_init(ldv_20_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_20_ret_default != 0); ldv_check_final_state(); ldv_stop(); } return; } else { { ldv_assume(ldv_20_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dispatch_register_platform_instance_16_20_7(); ldv_dispatch_register_file_operations_instance_9_20_6(); ldv_dispatch_deregister_platform_instance_16_20_5(); ldv_dispatch_deregister_file_operations_instance_9_20_4(); } } else { } { ldv_EMGentry_exit_skge_cleanup_module_20_2(ldv_20_exit_skge_cleanup_module_default); ldv_check_final_state(); ldv_stop(); } return; } return; } } int main(void) { { { ldv_initialize(); ldv_entry_EMGentry_20((void *)0); } return 0; } } void ldv_file_operations_file_operations_instance_0(void *arg0 ) { long long (*ldv_0_callback_llseek)(struct file * , long long , int ) ; long (*ldv_0_callback_read)(struct file * , char * , unsigned long , long long * ) ; struct file_operations *ldv_0_container_file_operations ; char *ldv_0_ldv_param_22_1_default ; long long *ldv_0_ldv_param_22_3_default ; char *ldv_0_ldv_param_4_1_default ; long long *ldv_0_ldv_param_4_3_default ; long long ldv_0_ldv_param_5_1_default ; int ldv_0_ldv_param_5_2_default ; struct file *ldv_0_resource_file ; struct inode *ldv_0_resource_inode ; int ldv_0_ret_default ; unsigned long ldv_0_size_cnt_write_size ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; void *tmp___8 ; int tmp___9 ; { { ldv_0_ret_default = 1; tmp = ldv_xmalloc(520UL); ldv_0_resource_file = (struct file *)tmp; tmp___0 = ldv_xmalloc(1032UL); ldv_0_resource_inode = (struct inode *)tmp___0; tmp___1 = ldv_undef_int(); ldv_0_size_cnt_write_size = (unsigned long )tmp___1; } goto ldv_main_0; return; ldv_main_0: { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { ldv_0_ret_default = ldv_file_operations_instance_probe_0_12(ldv_0_container_file_operations->open, ldv_0_resource_inode, ldv_0_resource_file); ldv_0_ret_default = ldv_filter_err_code(ldv_0_ret_default); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_assume(ldv_0_ret_default == 0); } goto ldv_call_0; } else { { ldv_assume(ldv_0_ret_default != 0); } goto ldv_main_0; } } else { { ldv_free((void *)ldv_0_resource_file); ldv_free((void *)ldv_0_resource_inode); } return; } return; ldv_call_0: { tmp___4 = ldv_undef_int(); } { if (tmp___4 == 1) { goto case_1; } else { } if (tmp___4 == 2) { goto case_2; } else { } if (tmp___4 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___5 = ldv_xmalloc(1UL); ldv_0_ldv_param_4_1_default = (char *)tmp___5; tmp___6 = ldv_xmalloc(8UL); ldv_0_ldv_param_4_3_default = (long long *)tmp___6; ldv_assume(ldv_0_size_cnt_write_size <= 2147479552UL); } if ((unsigned long )ldv_0_container_file_operations->write != (unsigned long )((ssize_t (*)(struct file * , char const * , size_t , loff_t * ))0)) { { ldv_file_operations_instance_write_0_4((long (*)(struct file * , char * , unsigned long , long long * ))ldv_0_container_file_operations->write, ldv_0_resource_file, ldv_0_ldv_param_4_1_default, ldv_0_size_cnt_write_size, ldv_0_ldv_param_4_3_default); } } else { } { ldv_free((void *)ldv_0_ldv_param_4_1_default); ldv_free((void *)ldv_0_ldv_param_4_3_default); } goto ldv_call_0; case_2: /* CIL Label */ { ldv_file_operations_instance_release_0_2(ldv_0_container_file_operations->release, ldv_0_resource_inode, ldv_0_resource_file); } goto ldv_main_0; case_3: /* CIL Label */ { tmp___9 = ldv_undef_int(); } if (tmp___9 != 0) { { tmp___7 = ldv_xmalloc(1UL); ldv_0_ldv_param_22_1_default = (char *)tmp___7; tmp___8 = ldv_xmalloc(8UL); ldv_0_ldv_param_22_3_default = (long long *)tmp___8; ldv_file_operations_instance_callback_0_22(ldv_0_callback_read, ldv_0_resource_file, ldv_0_ldv_param_22_1_default, ldv_0_size_cnt_write_size, ldv_0_ldv_param_22_3_default); ldv_free((void *)ldv_0_ldv_param_22_1_default); ldv_free((void *)ldv_0_ldv_param_22_3_default); } } else { { ldv_file_operations_instance_callback_0_5(ldv_0_callback_llseek, ldv_0_resource_file, ldv_0_ldv_param_5_1_default, ldv_0_ldv_param_5_2_default); } } goto ldv_49011; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_49011: ; goto ldv_call_0; goto ldv_call_0; return; } } void ldv_file_operations_instance_callback_0_22(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { seq_read(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_0_5(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) { { { seq_lseek(arg1, arg2, arg3); } return; } } int ldv_file_operations_instance_probe_0_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { int tmp ; { { tmp = skge_debug_open(arg1, arg2); } return (tmp); } } void ldv_file_operations_instance_release_0_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { { { single_release(arg1, arg2); } return; } } void ldv_file_operations_instance_write_0_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { (*arg0)(arg1, arg2, arg3, arg4); } return; } } void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) { int ldv_10_line_line ; { { ldv_10_line_line = arg1; ldv_dispatch_irq_deregister_10_1(ldv_10_line_line); } return; return; } } void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_11_netdev_net_device ; { { ldv_11_netdev_net_device = arg1; ldv_free((void *)ldv_11_netdev_net_device); } return; return; } } enum irqreturn ldv_interrupt_instance_handler_1_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = skge_intr(arg1, arg2); } return (tmp); } } void ldv_interrupt_instance_thread_1_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_interrupt_instance_1(void *arg0 ) { enum irqreturn (*ldv_1_callback_handler)(int , void * ) ; void *ldv_1_data_data ; int ldv_1_line_line ; enum irqreturn ldv_1_ret_val_default ; enum irqreturn (*ldv_1_thread_thread)(int , void * ) ; struct ldv_struct_interrupt_instance_1 *data ; int tmp ; { data = (struct ldv_struct_interrupt_instance_1 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_interrupt_instance_1 *)0)) { { ldv_1_line_line = data->arg0; ldv_1_callback_handler = data->arg1; ldv_1_thread_thread = data->arg2; ldv_1_data_data = data->arg3; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); ldv_1_ret_val_default = ldv_interrupt_instance_handler_1_5(ldv_1_callback_handler, ldv_1_line_line, ldv_1_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume((unsigned int )ldv_1_ret_val_default == 2U); } if ((unsigned long )ldv_1_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_1_3(ldv_1_thread_thread, ldv_1_line_line, ldv_1_data_data); } } else { } } else { { ldv_assume((unsigned int )ldv_1_ret_val_default != 2U); } } return; return; } } int ldv_mod_timer(int arg0 , struct timer_list *arg1 , unsigned long arg2 ) { struct timer_list *ldv_12_timer_list_timer_list ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_12_timer_list_timer_list = arg1; ldv_dispatch_instance_register_12_2(ldv_12_timer_list_timer_list); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_net_dummy_resourceless_instance_2(void *arg0 ) { int (*ldv_2_callback_get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*ldv_2_callback_get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*ldv_2_callback_get_eeprom)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) ; int (*ldv_2_callback_get_eeprom_len)(struct net_device * ) ; void (*ldv_2_callback_get_ethtool_stats)(struct net_device * , struct ethtool_stats * , unsigned long long * ) ; unsigned int (*ldv_2_callback_get_link)(struct net_device * ) ; unsigned int (*ldv_2_callback_get_msglevel)(struct net_device * ) ; void (*ldv_2_callback_get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*ldv_2_callback_get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; int (*ldv_2_callback_get_regs_len)(struct net_device * ) ; void (*ldv_2_callback_get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*ldv_2_callback_get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*ldv_2_callback_get_sset_count)(struct net_device * , int ) ; void (*ldv_2_callback_get_strings)(struct net_device * , unsigned int , unsigned char * ) ; void (*ldv_2_callback_get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*ldv_2_callback_ndo_change_mtu)(struct net_device * , int ) ; int (*ldv_2_callback_ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; struct net_device_stats *(*ldv_2_callback_ndo_get_stats)(struct net_device * ) ; void (*ldv_2_callback_ndo_poll_controller)(struct net_device * ) ; int (*ldv_2_callback_ndo_set_mac_address)(struct net_device * , void * ) ; void (*ldv_2_callback_ndo_set_rx_mode)(struct net_device * ) ; enum netdev_tx (*ldv_2_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; void (*ldv_2_callback_ndo_tx_timeout)(struct net_device * ) ; int (*ldv_2_callback_ndo_validate_addr)(struct net_device * ) ; int (*ldv_2_callback_nway_reset)(struct net_device * ) ; int (*ldv_2_callback_set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*ldv_2_callback_set_eeprom)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) ; void (*ldv_2_callback_set_msglevel)(struct net_device * , unsigned int ) ; int (*ldv_2_callback_set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*ldv_2_callback_set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; int (*ldv_2_callback_set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*ldv_2_callback_set_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*ldv_2_callback_set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; enum ethtool_phys_id_state ldv_2_container_enum_ethtool_phys_id_state ; struct net_device *ldv_2_container_net_device ; struct ethtool_cmd *ldv_2_container_struct_ethtool_cmd_ptr ; struct ethtool_coalesce *ldv_2_container_struct_ethtool_coalesce_ptr ; struct ethtool_drvinfo *ldv_2_container_struct_ethtool_drvinfo_ptr ; struct ethtool_eeprom *ldv_2_container_struct_ethtool_eeprom_ptr ; struct ethtool_pauseparam *ldv_2_container_struct_ethtool_pauseparam_ptr ; struct ethtool_regs *ldv_2_container_struct_ethtool_regs_ptr ; struct ethtool_ringparam *ldv_2_container_struct_ethtool_ringparam_ptr ; struct ethtool_stats *ldv_2_container_struct_ethtool_stats_ptr ; struct ethtool_wolinfo *ldv_2_container_struct_ethtool_wolinfo_ptr ; struct ifreq *ldv_2_container_struct_ifreq_ptr ; struct sk_buff *ldv_2_container_struct_sk_buff_ptr ; unsigned long long *ldv_2_ldv_param_12_2_default ; int ldv_2_ldv_param_22_1_default ; unsigned int ldv_2_ldv_param_25_1_default ; unsigned char *ldv_2_ldv_param_25_2_default ; int ldv_2_ldv_param_29_1_default ; int ldv_2_ldv_param_32_2_default ; unsigned char *ldv_2_ldv_param_44_2_default ; unsigned int ldv_2_ldv_param_47_1_default ; unsigned char *ldv_2_ldv_param_8_2_default ; struct ldv_struct_dummy_resourceless_instance_2 *data ; int tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; { data = (struct ldv_struct_dummy_resourceless_instance_2 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_dummy_resourceless_instance_2 *)0)) { { ldv_2_container_net_device = data->arg0; ldv_free((void *)data); } } else { } goto ldv_call_2; return; ldv_call_2: { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } if (tmp == 9) { goto case_9; } else { } if (tmp == 10) { goto case_10; } else { } if (tmp == 11) { goto case_11; } else { } if (tmp == 12) { goto case_12; } else { } if (tmp == 13) { goto case_13; } else { } if (tmp == 14) { goto case_14; } else { } if (tmp == 15) { goto case_15; } else { } if (tmp == 16) { goto case_16; } else { } if (tmp == 17) { goto case_17; } else { } if (tmp == 18) { goto case_18; } else { } if (tmp == 19) { goto case_19; } else { } if (tmp == 20) { goto case_20; } else { } if (tmp == 21) { goto case_21; } else { } if (tmp == 22) { goto case_22; } else { } if (tmp == 23) { goto case_23; } else { } if (tmp == 24) { goto case_24; } else { } if (tmp == 25) { goto case_25; } else { } if (tmp == 26) { goto case_26; } else { } if (tmp == 27) { goto case_27; } else { } if (tmp == 28) { goto case_28; } else { } if (tmp == 29) { goto case_29; } else { } if (tmp == 30) { goto case_30; } else { } if (tmp == 31) { goto case_31; } else { } if (tmp == 32) { goto case_32; } else { } if (tmp == 33) { goto case_33; } else { } if (tmp == 34) { goto case_34; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_54(ldv_2_callback_set_wol, ldv_2_container_net_device, ldv_2_container_struct_ethtool_wolinfo_ptr); } goto ldv_call_2; case_2: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_53(ldv_2_callback_set_settings, ldv_2_container_net_device, ldv_2_container_struct_ethtool_cmd_ptr); } goto ldv_call_2; goto ldv_call_2; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_52(ldv_2_callback_set_ringparam, ldv_2_container_net_device, ldv_2_container_struct_ethtool_ringparam_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_4: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_51(ldv_2_callback_set_phys_id, ldv_2_container_net_device, ldv_2_container_enum_ethtool_phys_id_state); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_5: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_50(ldv_2_callback_set_pauseparam, ldv_2_container_net_device, ldv_2_container_struct_ethtool_pauseparam_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_6: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_47(ldv_2_callback_set_msglevel, ldv_2_container_net_device, ldv_2_ldv_param_47_1_default); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_7: /* CIL Label */ { tmp___0 = ldv_xmalloc(1UL); ldv_2_ldv_param_44_2_default = (unsigned char *)tmp___0; ldv_dummy_resourceless_instance_callback_2_44(ldv_2_callback_set_eeprom, ldv_2_container_net_device, ldv_2_container_struct_ethtool_eeprom_ptr, ldv_2_ldv_param_44_2_default); ldv_free((void *)ldv_2_ldv_param_44_2_default); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_8: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_43(ldv_2_callback_set_coalesce, ldv_2_container_net_device, ldv_2_container_struct_ethtool_coalesce_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_9: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_42(ldv_2_callback_nway_reset, ldv_2_container_net_device); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_10: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_41(ldv_2_callback_ndo_validate_addr, ldv_2_container_net_device); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_11: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_40(ldv_2_callback_ndo_tx_timeout, ldv_2_container_net_device); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_12: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_39(ldv_2_callback_ndo_start_xmit, ldv_2_container_struct_sk_buff_ptr, ldv_2_container_net_device); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_13: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_38(ldv_2_callback_ndo_set_rx_mode, ldv_2_container_net_device); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_14: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_37(ldv_2_callback_ndo_set_mac_address, ldv_2_container_net_device, (void *)ldv_2_container_struct_ethtool_cmd_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_15: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_36(ldv_2_callback_ndo_poll_controller, ldv_2_container_net_device); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_16: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_35(ldv_2_callback_ndo_get_stats, ldv_2_container_net_device); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_17: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_32(ldv_2_callback_ndo_do_ioctl, ldv_2_container_net_device, ldv_2_container_struct_ifreq_ptr, ldv_2_ldv_param_32_2_default); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_18: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_29(ldv_2_callback_ndo_change_mtu, ldv_2_container_net_device, ldv_2_ldv_param_29_1_default); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_19: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_28(ldv_2_callback_get_wol, ldv_2_container_net_device, ldv_2_container_struct_ethtool_wolinfo_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_20: /* CIL Label */ { tmp___1 = ldv_xmalloc(1UL); ldv_2_ldv_param_25_2_default = (unsigned char *)tmp___1; ldv_dummy_resourceless_instance_callback_2_25(ldv_2_callback_get_strings, ldv_2_container_net_device, ldv_2_ldv_param_25_1_default, ldv_2_ldv_param_25_2_default); ldv_free((void *)ldv_2_ldv_param_25_2_default); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_21: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_22(ldv_2_callback_get_sset_count, ldv_2_container_net_device, ldv_2_ldv_param_22_1_default); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_22: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_21(ldv_2_callback_get_settings, ldv_2_container_net_device, ldv_2_container_struct_ethtool_cmd_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_23: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_20(ldv_2_callback_get_ringparam, ldv_2_container_net_device, ldv_2_container_struct_ethtool_ringparam_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_24: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_19(ldv_2_callback_get_regs_len, ldv_2_container_net_device); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_25: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_18(ldv_2_callback_get_regs, ldv_2_container_net_device, ldv_2_container_struct_ethtool_regs_ptr, (void *)ldv_2_container_struct_ethtool_cmd_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_26: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_17(ldv_2_callback_get_pauseparam, ldv_2_container_net_device, ldv_2_container_struct_ethtool_pauseparam_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_27: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_16(ldv_2_callback_get_msglevel, ldv_2_container_net_device); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_28: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_15(ldv_2_callback_get_link, ldv_2_container_net_device); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_29: /* CIL Label */ { tmp___2 = ldv_xmalloc(8UL); ldv_2_ldv_param_12_2_default = (unsigned long long *)tmp___2; ldv_dummy_resourceless_instance_callback_2_12(ldv_2_callback_get_ethtool_stats, ldv_2_container_net_device, ldv_2_container_struct_ethtool_stats_ptr, ldv_2_ldv_param_12_2_default); ldv_free((void *)ldv_2_ldv_param_12_2_default); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_30: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_11(ldv_2_callback_get_eeprom_len, ldv_2_container_net_device); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_31: /* CIL Label */ { tmp___3 = ldv_xmalloc(1UL); ldv_2_ldv_param_8_2_default = (unsigned char *)tmp___3; ldv_dummy_resourceless_instance_callback_2_8(ldv_2_callback_get_eeprom, ldv_2_container_net_device, ldv_2_container_struct_ethtool_eeprom_ptr, ldv_2_ldv_param_8_2_default); ldv_free((void *)ldv_2_ldv_param_8_2_default); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_32: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_7(ldv_2_callback_get_drvinfo, ldv_2_container_net_device, ldv_2_container_struct_ethtool_drvinfo_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_33: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_3(ldv_2_callback_get_coalesce, ldv_2_container_net_device, ldv_2_container_struct_ethtool_coalesce_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_34: /* CIL Label */ ; return; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } int ldv_pci_instance_probe_3_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = skge_probe(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_3_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { skge_remove(arg1); } return; } } void ldv_pci_instance_resume_3_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_resume_early_3_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_3_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { skge_shutdown(arg1); } return; } } int ldv_pci_instance_suspend_3_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_3_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_3(void *arg0 ) { struct pci_driver *ldv_3_container_pci_driver ; struct pci_dev *ldv_3_resource_dev ; struct pm_message ldv_3_resource_pm_message ; struct pci_device_id *ldv_3_resource_struct_pci_device_id_ptr ; int ldv_3_ret_default ; struct ldv_struct_pci_instance_3 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { data = (struct ldv_struct_pci_instance_3 *)arg0; ldv_3_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_pci_instance_3 *)0)) { { ldv_3_container_pci_driver = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(2936UL); ldv_3_resource_dev = (struct pci_dev *)tmp; tmp___0 = ldv_xmalloc(32UL); ldv_3_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___0; } goto ldv_main_3; return; ldv_main_3: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_pre_probe(); ldv_3_ret_default = ldv_pci_instance_probe_3_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_3_container_pci_driver->probe, ldv_3_resource_dev, ldv_3_resource_struct_pci_device_id_ptr); ldv_3_ret_default = ldv_post_probe(ldv_3_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { ldv_assume(ldv_3_ret_default == 0); } goto ldv_call_3; } else { { ldv_assume(ldv_3_ret_default != 0); } goto ldv_main_3; } } else { { ldv_free((void *)ldv_3_resource_dev); ldv_free((void *)ldv_3_resource_struct_pci_device_id_ptr); } return; } return; ldv_call_3: { tmp___3 = ldv_undef_int(); } { if (tmp___3 == 1) { goto case_1; } else { } if (tmp___3 == 2) { goto case_2; } else { } if (tmp___3 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_call_3; case_2: /* CIL Label */ ; if ((unsigned long )ldv_3_container_pci_driver->suspend != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_3_ret_default = ldv_pci_instance_suspend_3_8(ldv_3_container_pci_driver->suspend, ldv_3_resource_dev, ldv_3_resource_pm_message); } } else { } { ldv_3_ret_default = ldv_filter_err_code(ldv_3_ret_default); } if ((unsigned long )ldv_3_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_3_ret_default = ldv_pci_instance_suspend_late_3_7(ldv_3_container_pci_driver->suspend_late, ldv_3_resource_dev, ldv_3_resource_pm_message); } } else { } { ldv_3_ret_default = ldv_filter_err_code(ldv_3_ret_default); } if ((unsigned long )ldv_3_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_3_6(ldv_3_container_pci_driver->resume_early, ldv_3_resource_dev); } } else { } if ((unsigned long )ldv_3_container_pci_driver->resume != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_3_5(ldv_3_container_pci_driver->resume, ldv_3_resource_dev); } } else { } goto ldv_call_3; case_3: /* CIL Label */ { ldv_pci_instance_shutdown_3_3(ldv_3_container_pci_driver->shutdown, ldv_3_resource_dev); ldv_pci_instance_release_3_2(ldv_3_container_pci_driver->remove, ldv_3_resource_dev); } goto ldv_main_3; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) { struct pci_driver *ldv_16_pci_driver_pci_driver ; { { ldv_16_pci_driver_pci_driver = arg1; ldv_dispatch_deregister_16_1(ldv_16_pci_driver_pci_driver); } return; return; } } int ldv_platform_instance_probe_5_14(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) { int tmp ; { { tmp = (*arg0)(arg1); } return (tmp); } } void ldv_platform_instance_release_5_3(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_complete_4_3(void (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_freeze_4_15(int (*arg0)(struct device * ) , struct device *arg1 ) { { { skge_suspend(arg1); } return; } } void ldv_pm_ops_instance_freeze_late_4_14(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_freeze_noirq_4_12(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_poweroff_4_9(int (*arg0)(struct device * ) , struct device *arg1 ) { { { skge_suspend(arg1); } return; } } void ldv_pm_ops_instance_poweroff_late_4_8(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_poweroff_noirq_4_6(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_prepare_4_22(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_restore_4_4(int (*arg0)(struct device * ) , struct device *arg1 ) { { { skge_resume(arg1); } return; } } void ldv_pm_ops_instance_restore_early_4_7(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_restore_noirq_4_5(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_resume_4_16(int (*arg0)(struct device * ) , struct device *arg1 ) { { { skge_resume(arg1); } return; } } void ldv_pm_ops_instance_resume_early_4_17(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_resume_noirq_4_19(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_idle_4_27(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_resume_4_24(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_suspend_4_25(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_suspend_4_21(int (*arg0)(struct device * ) , struct device *arg1 ) { { { skge_suspend(arg1); } return; } } void ldv_pm_ops_instance_suspend_late_4_18(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_suspend_noirq_4_20(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_thaw_4_10(int (*arg0)(struct device * ) , struct device *arg1 ) { { { skge_resume(arg1); } return; } } void ldv_pm_ops_instance_thaw_early_4_13(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_thaw_noirq_4_11(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_platform_instance_5(void *arg0 ) { struct platform_driver *ldv_5_container_platform_driver ; struct platform_device *ldv_5_ldv_param_14_0_default ; struct platform_device *ldv_5_ldv_param_3_0_default ; int ldv_5_probed_default ; void *tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; void *tmp___3 ; { ldv_5_probed_default = 1; goto ldv_main_5; return; ldv_main_5: { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = ldv_xmalloc(1432UL); ldv_5_ldv_param_14_0_default = (struct platform_device *)tmp; ldv_pre_probe(); } if ((unsigned long )ldv_5_container_platform_driver->probe != (unsigned long )((int (*)(struct platform_device * ))0)) { { ldv_5_probed_default = ldv_platform_instance_probe_5_14(ldv_5_container_platform_driver->probe, ldv_5_ldv_param_14_0_default); } } else { } { ldv_5_probed_default = ldv_post_probe(ldv_5_probed_default); ldv_free((void *)ldv_5_ldv_param_14_0_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_5_probed_default == 0); } goto ldv_call_5; } else { { ldv_assume(ldv_5_probed_default != 0); } goto ldv_main_5; } } else { return; } return; ldv_call_5: { tmp___2 = ldv_undef_int(); } { if (tmp___2 == 1) { goto case_1; } else { } if (tmp___2 == 2) { goto case_2; } else { } if (tmp___2 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___3 = ldv_xmalloc(1432UL); ldv_5_ldv_param_3_0_default = (struct platform_device *)tmp___3; } if ((unsigned long )ldv_5_container_platform_driver->remove != (unsigned long )((int (*)(struct platform_device * ))0)) { { ldv_platform_instance_release_5_3(ldv_5_container_platform_driver->remove, ldv_5_ldv_param_3_0_default); } } else { } { ldv_free((void *)ldv_5_ldv_param_3_0_default); ldv_5_probed_default = 1; } goto ldv_main_5; case_2: /* CIL Label */ ; goto ldv_call_5; case_3: /* CIL Label */ { ldv_dispatch_pm_register_5_6(); ldv_dispatch_pm_deregister_5_5(); } goto ldv_call_5; goto ldv_call_5; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_pm_pm_ops_instance_4(void *arg0 ) { struct device *ldv_4_device_device ; struct dev_pm_ops *ldv_4_pm_ops_dev_pm_ops ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { goto ldv_do_4; return; ldv_do_4: { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } goto switch_default___0; case_1: /* CIL Label */ ; if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->runtime_idle != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_idle_4_27(ldv_4_pm_ops_dev_pm_ops->runtime_idle, ldv_4_device_device); } } else { } goto ldv_do_4; case_2: /* CIL Label */ ; if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->runtime_suspend != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_suspend_4_25(ldv_4_pm_ops_dev_pm_ops->runtime_suspend, ldv_4_device_device); } } else { } if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->runtime_resume != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_resume_4_24(ldv_4_pm_ops_dev_pm_ops->runtime_resume, ldv_4_device_device); } } else { } goto ldv_do_4; case_3: /* CIL Label */ ; if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->prepare != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_prepare_4_22(ldv_4_pm_ops_dev_pm_ops->prepare, ldv_4_device_device); } } else { } { tmp___0 = ldv_undef_int(); } { if (tmp___0 == 1) { goto case_1___0; } else { } if (tmp___0 == 2) { goto case_2___0; } else { } if (tmp___0 == 3) { goto case_3___0; } else { } goto switch_default; case_1___0: /* CIL Label */ { ldv_pm_ops_instance_suspend_4_21(ldv_4_pm_ops_dev_pm_ops->suspend, ldv_4_device_device); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->suspend_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_suspend_noirq_4_20(ldv_4_pm_ops_dev_pm_ops->suspend_noirq, ldv_4_device_device); } } else { } if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->resume_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_resume_noirq_4_19(ldv_4_pm_ops_dev_pm_ops->resume_noirq, ldv_4_device_device); } } else { } } else { if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->suspend_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_suspend_late_4_18(ldv_4_pm_ops_dev_pm_ops->suspend_late, ldv_4_device_device); } } else { } if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->resume_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_resume_early_4_17(ldv_4_pm_ops_dev_pm_ops->resume_early, ldv_4_device_device); } } else { } } { ldv_pm_ops_instance_resume_4_16(ldv_4_pm_ops_dev_pm_ops->resume, ldv_4_device_device); } goto ldv_49468; case_2___0: /* CIL Label */ { ldv_pm_ops_instance_freeze_4_15(ldv_4_pm_ops_dev_pm_ops->freeze, ldv_4_device_device); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->freeze_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_freeze_late_4_14(ldv_4_pm_ops_dev_pm_ops->freeze_late, ldv_4_device_device); } } else { } if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->thaw_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_thaw_early_4_13(ldv_4_pm_ops_dev_pm_ops->thaw_early, ldv_4_device_device); } } else { } } else { if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->freeze_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_freeze_noirq_4_12(ldv_4_pm_ops_dev_pm_ops->freeze_noirq, ldv_4_device_device); } } else { } if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->thaw_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_thaw_noirq_4_11(ldv_4_pm_ops_dev_pm_ops->thaw_noirq, ldv_4_device_device); } } else { } } { ldv_pm_ops_instance_thaw_4_10(ldv_4_pm_ops_dev_pm_ops->thaw, ldv_4_device_device); } goto ldv_49468; case_3___0: /* CIL Label */ { ldv_pm_ops_instance_poweroff_4_9(ldv_4_pm_ops_dev_pm_ops->poweroff, ldv_4_device_device); tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->poweroff_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_poweroff_late_4_8(ldv_4_pm_ops_dev_pm_ops->poweroff_late, ldv_4_device_device); } } else { } if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->restore_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_restore_early_4_7(ldv_4_pm_ops_dev_pm_ops->restore_early, ldv_4_device_device); } } else { } } else { if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->poweroff_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_poweroff_noirq_4_6(ldv_4_pm_ops_dev_pm_ops->poweroff_noirq, ldv_4_device_device); } } else { } if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->restore_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_restore_noirq_4_5(ldv_4_pm_ops_dev_pm_ops->restore_noirq, ldv_4_device_device); } } else { } } { ldv_pm_ops_instance_restore_4_4(ldv_4_pm_ops_dev_pm_ops->restore, ldv_4_device_device); } goto ldv_49468; switch_default: /* CIL Label */ { ldv_stop(); } switch_break___0: /* CIL Label */ ; } ldv_49468: ; if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->complete != (unsigned long )((void (*)(struct device * ))0)) { { ldv_pm_ops_instance_complete_4_3(ldv_4_pm_ops_dev_pm_ops->complete, ldv_4_device_device); } } else { } goto ldv_do_4; case_4: /* CIL Label */ ; return; switch_default___0: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } int ldv_register_netdev(int arg0 , struct net_device *arg1 ) { struct net_device *ldv_13_netdev_net_device ; int ldv_13_ret_default ; int tmp ; int tmp___0 ; { { ldv_13_ret_default = 1; ldv_13_ret_default = ldv_pre_register_netdev(); ldv_13_netdev_net_device = arg1; tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_13_ret_default == 0); ldv_13_ret_default = ldv_register_netdev_open_13_6((ldv_13_netdev_net_device->netdev_ops)->ndo_open, ldv_13_netdev_net_device); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_13_ret_default == 0); ldv_dispatch_register_13_4(ldv_13_netdev_net_device); } } else { { ldv_assume(ldv_13_ret_default != 0); } } } else { { ldv_assume(ldv_13_ret_default != 0); } } return (ldv_13_ret_default); return (arg0); return (arg0); } } int ldv_register_netdev_open_13_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { int tmp ; { { tmp = skge_up(arg1); } return (tmp); } } int ldv_register_netdevice_notifier(int arg0 , struct notifier_block *arg1 ) { struct notifier_block *ldv_19_struct_notifier_block_struct_notifier_block ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_19_struct_notifier_block_struct_notifier_block = arg1; ldv_dispatch_register_19_2(ldv_19_struct_notifier_block_struct_notifier_block); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) { enum irqreturn (*ldv_14_callback_handler)(int , void * ) ; void *ldv_14_data_data ; int ldv_14_line_line ; enum irqreturn (*ldv_14_thread_thread)(int , void * ) ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_14_line_line = (int )arg1; ldv_14_callback_handler = arg2; ldv_14_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_14_data_data = arg5; ldv_dispatch_irq_register_14_2(ldv_14_line_line, ldv_14_callback_handler, ldv_14_thread_thread, ldv_14_data_data); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_struct_notifier_block_dummy_resourceless_instance_6(void *arg0 ) { int (*ldv_6_callback_notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *ldv_6_container_struct_notifier_block ; unsigned long ldv_6_ldv_param_3_1_default ; void *ldv_6_ldv_param_3_2_default ; struct ldv_struct_dummy_resourceless_instance_6 *data ; int tmp ; { data = (struct ldv_struct_dummy_resourceless_instance_6 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_dummy_resourceless_instance_6 *)0)) { { ldv_6_container_struct_notifier_block = data->arg0; ldv_free((void *)data); } } else { } goto ldv_call_6; return; ldv_call_6: { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_6_ldv_param_3_2_default = ldv_xmalloc(1UL); ldv_dummy_resourceless_instance_callback_6_3(ldv_6_callback_notifier_call, ldv_6_container_struct_notifier_block, ldv_6_ldv_param_3_1_default, ldv_6_ldv_param_3_2_default); ldv_free(ldv_6_ldv_param_3_2_default); } goto ldv_call_6; } else { return; } return; } } void ldv_timer_instance_callback_7_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_timer_timer_instance_7(void *arg0 ) { struct timer_list *ldv_7_container_timer_list ; struct ldv_struct_timer_instance_7 *data ; { data = (struct ldv_struct_timer_instance_7 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_timer_instance_7 *)0)) { { ldv_7_container_timer_list = data->arg0; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); } if ((unsigned long )ldv_7_container_timer_list->function != (unsigned long )((void (*)(unsigned long ))0)) { { ldv_timer_instance_callback_7_2(ldv_7_container_timer_list->function, ldv_7_container_timer_list->data); } } else { } { ldv_switch_to_process_context(); } return; return; } } void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_15_netdev_net_device ; { { ldv_15_netdev_net_device = arg1; ldv_unregister_netdev_stop_15_2((ldv_15_netdev_net_device->netdev_ops)->ndo_stop, ldv_15_netdev_net_device); ldv_dispatch_deregister_15_1(ldv_15_netdev_net_device); } return; return; } } void ldv_unregister_netdev_stop_15_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { skge_down(arg1); } return; } } int ldv_unregister_netdevice_notifier(int arg0 , struct notifier_block *arg1 ) { struct notifier_block *ldv_18_struct_notifier_block_struct_notifier_block ; { { ldv_18_struct_notifier_block_struct_notifier_block = arg1; ldv_dispatch_deregister_18_1(ldv_18_struct_notifier_block_struct_notifier_block); } return (arg0); return (arg0); } } __inline static long IS_ERR(void const *ptr ) { long tmp ; { { tmp = ldv_is_err(ptr); } return (tmp); } } __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_malloc_unknown_size(); ldv_after_alloc(res); } return (res); } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = ldv_kzalloc(size, flags); } return (tmp); } } static struct sk_buff *ldv___netdev_alloc_skb_59(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return ((struct sk_buff *)tmp); } } __inline static void ldv_spin_lock_69(spinlock_t *lock ) { { { ldv_spin_lock__xmit_lock_of_netdev_queue(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_72(spinlock_t *lock ) { { { ldv_spin_unlock__xmit_lock_of_netdev_queue(); spin_unlock(lock); } return; } } __inline static void ldv_spin_lock_74(spinlock_t *lock ) { { { ldv_spin_lock_tx_global_lock_of_net_device(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_75(spinlock_t *lock ) { { { ldv_spin_unlock_tx_global_lock_of_net_device(); spin_unlock(lock); } return; } } static void *ldv_dev_get_drvdata_81(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static int ldv_dev_set_drvdata_82(struct device *dev , void *data ) { int tmp ; { { tmp = ldv_dev_set_drvdata(dev, data); } return (tmp); } } __inline static void ldv_spin_lock_bh_85(spinlock_t *lock ) { { { ldv_spin_lock_phy_lock_of_skge_hw(); spin_lock_bh(lock); } return; } } __inline static void ldv_spin_unlock_bh_86(spinlock_t *lock ) { { { ldv_spin_unlock_phy_lock_of_skge_hw(); spin_unlock_bh(lock); } return; } } static struct sk_buff *ldv___netdev_alloc_skb_87(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return ((struct sk_buff *)tmp); } } static int ldv_mod_timer_88(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static void ldv___ldv_spin_lock_89(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_phy_lock_of_skge_hw(); __ldv_spin_lock(ldv_func_arg1); } return; } } static int ldv_mod_timer_90(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } __inline static void ldv_spin_unlock_irqrestore_91(spinlock_t *lock , unsigned long flags ) { { { ldv_spin_unlock_phy_lock_of_skge_hw(); spin_unlock_irqrestore(lock, flags); } return; } } static int ldv_mod_timer_92(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } __inline static int ldv_request_irq_99(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } __inline static void ldv_spin_lock_irq_102(spinlock_t *lock ) { { { ldv_spin_lock_hw_lock_of_skge_hw(); spin_lock_irq(lock); } return; } } __inline static void ldv_spin_unlock_irq_103(spinlock_t *lock ) { { { ldv_spin_unlock_hw_lock_of_skge_hw(); spin_unlock_irq(lock); } return; } } static int ldv_del_timer_sync_104(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_irq_107(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv___ldv_spin_lock_108(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_hw_lock_of_skge_hw(); __ldv_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_109(spinlock_t *lock , unsigned long flags ) { { { ldv_spin_unlock_hw_lock_of_skge_hw(); spin_unlock_irqrestore(lock, flags); } return; } } __inline static void ldv_spin_lock_110(spinlock_t *lock ) { { { ldv_spin_lock_phy_lock_of_skge_hw(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_111(spinlock_t *lock ) { { { ldv_spin_unlock_phy_lock_of_skge_hw(); spin_unlock(lock); } return; } } __inline static void ldv_spin_lock_114(spinlock_t *lock ) { { { ldv_spin_lock_hw_lock_of_skge_hw(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_115(spinlock_t *lock ) { { { ldv_spin_unlock_hw_lock_of_skge_hw(); spin_unlock(lock); } return; } } static int ldv_register_netdevice_notifier_118(struct notifier_block *ldv_func_arg1 ) { ldv_func_ret_type___5 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = register_netdevice_notifier(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_register_netdevice_notifier(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static int ldv_unregister_netdevice_notifier_119(struct notifier_block *ldv_func_arg1 ) { ldv_func_ret_type___6 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = unregister_netdevice_notifier(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_unregister_netdevice_notifier(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static struct net_device *ldv_alloc_etherdev_mqs_120(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) { ldv_func_ret_type___7 ldv_func_res ; struct net_device *tmp ; struct net_device *tmp___0 ; { { tmp = alloc_etherdev_mqs(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv_alloc_etherdev_mqs(ldv_func_res, ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static int ldv_register_netdev_121(struct net_device *ldv_func_arg1 ) { ldv_func_ret_type___8 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = register_netdev(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_register_netdev(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static int ldv_register_netdev_122(struct net_device *ldv_func_arg1 ) { ldv_func_ret_type___9 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = register_netdev(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_register_netdev(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } __inline static int ldv_request_irq_123(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___10 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static void ldv_unregister_netdev_124(struct net_device *ldv_func_arg1 ) { { { unregister_netdev(ldv_func_arg1); ldv_unregister_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_free_netdev_125(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_unregister_netdev_126(struct net_device *ldv_func_arg1 ) { { { unregister_netdev(ldv_func_arg1); ldv_unregister_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_free_netdev_127(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_unregister_netdev_128(struct net_device *ldv_func_arg1 ) { { { unregister_netdev(ldv_func_arg1); ldv_unregister_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_unregister_netdev_129(struct net_device *ldv_func_arg1 ) { { { unregister_netdev(ldv_func_arg1); ldv_unregister_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_free_irq_131(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv_free_irq_133(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv_free_netdev_134(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_free_netdev_135(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static int ldv___pci_register_driver_136(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___11 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___pci_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_pci_unregister_driver_137(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2200UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *external_allocated_data(void) ; void *ldv_calloc_unknown_size(void) ; void *ldv_zalloc_unknown_size(void) ; void *ldv_xmalloc_unknown_size(size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_malloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; memset(res, 0, 8UL); ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc_unknown_size(void) { void *tmp ; { { tmp = ldv_calloc_unknown_size(); } return (tmp); } } void *ldv_xmalloc_unknown_size(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_undef_ptr(void) ; unsigned long ldv_undef_ulong(void) ; int ldv_undef_int_negative(void) ; int ldv_undef_int_nonpositive(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { { tmp = __VERIFIER_nondet_pointer(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } static int ldv_spin__xmit_lock_of_netdev_queue = 1; void ldv_spin_lock__xmit_lock_of_netdev_queue(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_spin__xmit_lock_of_netdev_queue = 2; } return; } } void ldv_spin_unlock__xmit_lock_of_netdev_queue(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_spin__xmit_lock_of_netdev_queue = 1; } return; } } int ldv_spin_trylock__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } } } void ldv_spin_unlock_wait__xmit_lock_of_netdev_queue(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); } return; } } int ldv_spin_is_locked__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin__xmit_lock_of_netdev_queue == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock__xmit_lock_of_netdev_queue(void) { int tmp ; { { tmp = ldv_spin_is_locked__xmit_lock_of_netdev_queue(); } return (tmp == 0); } } int ldv_spin_is_contended__xmit_lock_of_netdev_queue(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock__xmit_lock_of_netdev_queue(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } else { } return (0); } } static int ldv_spin_addr_list_lock_of_net_device = 1; void ldv_spin_lock_addr_list_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); ldv_spin_addr_list_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_addr_list_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_addr_list_lock_of_net_device == 2); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 2); ldv_spin_addr_list_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_addr_list_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_addr_list_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_addr_list_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_addr_list_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_addr_list_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_addr_list_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } else { } return (0); } } static int ldv_spin_alloc_lock_of_task_struct = 1; void ldv_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); ldv_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 2); ldv_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_hw_lock_of_skge_hw = 1; void ldv_spin_lock_hw_lock_of_skge_hw(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_hw_lock_of_skge_hw == 1); ldv_assume(ldv_spin_hw_lock_of_skge_hw == 1); ldv_spin_hw_lock_of_skge_hw = 2; } return; } } void ldv_spin_unlock_hw_lock_of_skge_hw(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_hw_lock_of_skge_hw == 2); ldv_assume(ldv_spin_hw_lock_of_skge_hw == 2); ldv_spin_hw_lock_of_skge_hw = 1; } return; } } int ldv_spin_trylock_hw_lock_of_skge_hw(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_hw_lock_of_skge_hw == 1); ldv_assume(ldv_spin_hw_lock_of_skge_hw == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_hw_lock_of_skge_hw = 2; return (1); } } } void ldv_spin_unlock_wait_hw_lock_of_skge_hw(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_hw_lock_of_skge_hw == 1); ldv_assume(ldv_spin_hw_lock_of_skge_hw == 1); } return; } } int ldv_spin_is_locked_hw_lock_of_skge_hw(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_hw_lock_of_skge_hw == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_hw_lock_of_skge_hw(void) { int tmp ; { { tmp = ldv_spin_is_locked_hw_lock_of_skge_hw(); } return (tmp == 0); } } int ldv_spin_is_contended_hw_lock_of_skge_hw(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_hw_lock_of_skge_hw(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_hw_lock_of_skge_hw == 1); ldv_assume(ldv_spin_hw_lock_of_skge_hw == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_hw_lock_of_skge_hw = 2; return (1); } else { } return (0); } } static int ldv_spin_i_lock_of_inode = 1; void ldv_spin_lock_i_lock_of_inode(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); ldv_spin_i_lock_of_inode = 2; } return; } } void ldv_spin_unlock_i_lock_of_inode(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_i_lock_of_inode == 2); ldv_assume(ldv_spin_i_lock_of_inode == 2); ldv_spin_i_lock_of_inode = 1; } return; } } int ldv_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_i_lock_of_inode = 2; return (1); } } } void ldv_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); } return; } } int ldv_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_spin_lock = 1; void ldv_spin_lock_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); ldv_spin_lock = 2; } return; } } void ldv_spin_unlock_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lock == 2); ldv_assume(ldv_spin_lock == 2); ldv_spin_lock = 1; } return; } } int ldv_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock = 2; return (1); } } } void ldv_spin_unlock_wait_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); } return; } } int ldv_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_spin_lru_lock_of_netns_frags = 1; void ldv_spin_lock_lru_lock_of_netns_frags(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); ldv_spin_lru_lock_of_netns_frags = 2; } return; } } void ldv_spin_unlock_lru_lock_of_netns_frags(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lru_lock_of_netns_frags == 2); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 2); ldv_spin_lru_lock_of_netns_frags = 1; } return; } } int ldv_spin_trylock_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } } } void ldv_spin_unlock_wait_lru_lock_of_netns_frags(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); } return; } } int ldv_spin_is_locked_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lru_lock_of_netns_frags == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lru_lock_of_netns_frags(void) { int tmp ; { { tmp = ldv_spin_is_locked_lru_lock_of_netns_frags(); } return (tmp == 0); } } int ldv_spin_is_contended_lru_lock_of_netns_frags(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lru_lock_of_netns_frags(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } else { } return (0); } } static int ldv_spin_node_size_lock_of_pglist_data = 1; void ldv_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 2); ldv_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_spin_phy_lock_of_skge_hw = 1; void ldv_spin_lock_phy_lock_of_skge_hw(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_phy_lock_of_skge_hw == 1); ldv_assume(ldv_spin_phy_lock_of_skge_hw == 1); ldv_spin_phy_lock_of_skge_hw = 2; } return; } } void ldv_spin_unlock_phy_lock_of_skge_hw(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_phy_lock_of_skge_hw == 2); ldv_assume(ldv_spin_phy_lock_of_skge_hw == 2); ldv_spin_phy_lock_of_skge_hw = 1; } return; } } int ldv_spin_trylock_phy_lock_of_skge_hw(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_phy_lock_of_skge_hw == 1); ldv_assume(ldv_spin_phy_lock_of_skge_hw == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_phy_lock_of_skge_hw = 2; return (1); } } } void ldv_spin_unlock_wait_phy_lock_of_skge_hw(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_phy_lock_of_skge_hw == 1); ldv_assume(ldv_spin_phy_lock_of_skge_hw == 1); } return; } } int ldv_spin_is_locked_phy_lock_of_skge_hw(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_phy_lock_of_skge_hw == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_phy_lock_of_skge_hw(void) { int tmp ; { { tmp = ldv_spin_is_locked_phy_lock_of_skge_hw(); } return (tmp == 0); } } int ldv_spin_is_contended_phy_lock_of_skge_hw(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_phy_lock_of_skge_hw(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_phy_lock_of_skge_hw == 1); ldv_assume(ldv_spin_phy_lock_of_skge_hw == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_phy_lock_of_skge_hw = 2; return (1); } else { } return (0); } } static int ldv_spin_ptl = 1; void ldv_spin_lock_ptl(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); ldv_spin_ptl = 2; } return; } } void ldv_spin_unlock_ptl(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_ptl == 2); ldv_assume(ldv_spin_ptl == 2); ldv_spin_ptl = 1; } return; } } int ldv_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_ptl = 2; return (1); } } } void ldv_spin_unlock_wait_ptl(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); } return; } } int ldv_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_spin_siglock_of_sighand_struct = 1; void ldv_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); ldv_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_spin_siglock_of_sighand_struct == 2); ldv_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_tx_global_lock_of_net_device = 1; void ldv_spin_lock_tx_global_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); ldv_spin_tx_global_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_tx_global_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_tx_global_lock_of_net_device == 2); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 2); ldv_spin_tx_global_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_tx_global_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_tx_global_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_tx_global_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_tx_global_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_tx_global_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_tx_global_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } else { } return (0); } } void ldv_check_final_state(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_hw_lock_of_skge_hw == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_i_lock_of_inode == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lock == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_phy_lock_of_skge_hw == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_ptl == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_siglock_of_sighand_struct == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_spin__xmit_lock_of_netdev_queue == 2) { return (1); } else { } if (ldv_spin_addr_list_lock_of_net_device == 2) { return (1); } else { } if (ldv_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_spin_hw_lock_of_skge_hw == 2) { return (1); } else { } if (ldv_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_spin_lock == 2) { return (1); } else { } if (ldv_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_spin_lru_lock_of_netns_frags == 2) { return (1); } else { } if (ldv_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_spin_phy_lock_of_skge_hw == 2) { return (1); } else { } if (ldv_spin_ptl == 2) { return (1); } else { } if (ldv_spin_siglock_of_sighand_struct == 2) { return (1); } else { } if (ldv_spin_tx_global_lock_of_net_device == 2) { return (1); } else { } return (0); } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } }