/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef short s16; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __be16; typedef __u32 __be32; typedef __u16 __sum16; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct device; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct __anonstruct____missing_field_name_10 { u32 read ; s32 write ; }; union __anonunion_arch_rwlock_t_9 { s64 lock ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; typedef union __anonunion_arch_rwlock_t_9 arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_12 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_13 { u16 limit0 ; u16 base0 ; unsigned int base1 : 8 ; unsigned int type : 4 ; unsigned int s : 1 ; unsigned int dpl : 2 ; unsigned int p : 1 ; unsigned int limit : 4 ; unsigned int avl : 1 ; unsigned int l : 1 ; unsigned int d : 1 ; unsigned int g : 1 ; unsigned int base2 : 8 ; }; union __anonunion____missing_field_name_11 { struct __anonstruct____missing_field_name_12 __annonCompField6 ; struct __anonstruct____missing_field_name_13 __annonCompField7 ; }; struct desc_struct { union __anonunion____missing_field_name_11 __annonCompField8 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_15 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_15 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; typedef void (*ctor_fn_t)(void); struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned int flags : 8 ; }; struct net_device; struct file_operations; struct completion; struct pid; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_18 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_18 __annonCompField9 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct static_key; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_23 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_24 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_22 { struct __anonstruct____missing_field_name_23 __annonCompField13 ; struct __anonstruct____missing_field_name_24 __annonCompField14 ; }; union __anonunion____missing_field_name_25 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_22 __annonCompField15 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_25 __annonCompField16 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndregs_struct { u64 bndregs[8U] ; }; struct bndcsr_struct { u64 cfg_reg_u ; u64 status_reg ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndregs_struct bndregs ; struct bndcsr_struct bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned int class_idx : 13 ; unsigned int irq_context : 2 ; unsigned int trylock : 1 ; unsigned int read : 2 ; unsigned int check : 2 ; unsigned int hardirqs_off : 1 ; unsigned int references : 11 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_29 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_28 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_29 __annonCompField18 ; }; struct spinlock { union __anonunion____missing_field_name_28 __annonCompField19 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_30 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_30 rwlock_t; struct ldv_thread; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; typedef int pao_T__; typedef int pao_T_____0; struct jump_entry; struct static_key_mod; struct static_key { atomic_t enabled ; struct jump_entry *entries ; struct static_key_mod *next ; }; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_35 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_35 seqlock_t; struct __wait_queue; typedef struct __wait_queue wait_queue_t; struct __wait_queue { unsigned int flags ; void *private ; int (*func)(wait_queue_t * , unsigned int , int , void * ) ; struct list_head task_list ; }; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct notifier_block; struct idr_layer { int prefix ; unsigned long bitmap[4U] ; struct idr_layer *ary[256U] ; int count ; int layer ; struct callback_head callback_head ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; struct idr_layer *id_free ; int layers ; int id_free_cnt ; int cur ; spinlock_t lock ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; }; union __anonunion_u_36 { struct completion *completion ; struct kernfs_node *removed_list ; }; union __anonunion____missing_field_name_37 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; union __anonunion_u_36 u ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_37 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_dir_ops { int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; struct ida ino_ida ; struct kernfs_dir_ops *dir_ops ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; struct mutex mutex ; int event ; struct list_head list ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct user_namespace; struct __anonstruct_kuid_t_38 { uid_t val ; }; typedef struct __anonstruct_kuid_t_38 kuid_t; struct __anonstruct_kgid_t_39 { gid_t val ; }; typedef struct __anonstruct_kgid_t_39 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep : 1 ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned int state_initialized : 1 ; unsigned int state_in_sysfs : 1 ; unsigned int state_add_uevent_sent : 1 ; unsigned int state_remove_uevent_sent : 1 ; unsigned int uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_40 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_40 nodemask_t; struct path; struct inode; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned int can_wakeup : 1 ; unsigned int async_suspend : 1 ; bool is_prepared : 1 ; bool is_suspended : 1 ; bool ignore_children : 1 ; bool early_init : 1 ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path : 1 ; bool syscore : 1 ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned int disable_depth : 3 ; unsigned int idle_notification : 1 ; unsigned int request_pending : 1 ; unsigned int deferred_resume : 1 ; unsigned int run_wake : 1 ; unsigned int runtime_auto : 1 ; unsigned int no_callbacks : 1 ; unsigned int irq_safe : 1 ; unsigned int use_autosuspend : 1 ; unsigned int timer_autosuspends : 1 ; unsigned int memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; }; struct rw_semaphore; struct rw_semaphore { long count ; raw_spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct ctl_table; struct pci_dev; struct pci_bus; struct __anonstruct_mm_context_t_105 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_105 mm_context_t; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled : 1 ; bool offline : 1 ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active : 1 ; bool autosleep_enabled : 1 ; }; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct pm_qos_flags_request { struct list_head node ; s32 flags ; }; enum dev_pm_qos_req_type { DEV_PM_QOS_LATENCY = 1, DEV_PM_QOS_FLAGS = 2 } ; union __anonunion_data_133 { struct plist_node pnode ; struct pm_qos_flags_request flr ; }; struct dev_pm_qos_request { enum dev_pm_qos_req_type type ; union __anonunion_data_133 data ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct pm_qos_flags { struct list_head list ; s32 effective_flags ; }; struct dev_pm_qos { struct pm_qos_constraints latency ; struct pm_qos_flags flags ; struct dev_pm_qos_request *latency_req ; struct dev_pm_qos_request *flags_req ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_136 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_137 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_135 { struct __anonstruct____missing_field_name_136 __annonCompField34 ; struct __anonstruct____missing_field_name_137 __annonCompField35 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_135 __annonCompField36 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; union __anonunion____missing_field_name_138 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_140 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_144 { unsigned int inuse : 16 ; unsigned int objects : 15 ; unsigned int frozen : 1 ; }; union __anonunion____missing_field_name_143 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_144 __annonCompField39 ; int units ; }; struct __anonstruct____missing_field_name_142 { union __anonunion____missing_field_name_143 __annonCompField40 ; atomic_t _count ; }; union __anonunion____missing_field_name_141 { unsigned long counters ; struct __anonstruct____missing_field_name_142 __annonCompField41 ; unsigned int active ; }; struct __anonstruct____missing_field_name_139 { union __anonunion____missing_field_name_140 __annonCompField38 ; union __anonunion____missing_field_name_141 __annonCompField42 ; }; struct __anonstruct____missing_field_name_146 { struct page *next ; int pages ; int pobjects ; }; struct slab; union __anonunion____missing_field_name_145 { struct list_head lru ; struct __anonstruct____missing_field_name_146 __annonCompField44 ; struct list_head list ; struct slab *slab_page ; struct callback_head callback_head ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_147 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_138 __annonCompField37 ; struct __anonstruct____missing_field_name_139 __annonCompField43 ; union __anonunion____missing_field_name_145 __annonCompField45 ; union __anonunion____missing_field_name_147 __annonCompField46 ; unsigned long debug_flags ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_linear_149 { struct rb_node rb ; unsigned long rb_subtree_last ; }; union __anonunion_shared_148 { struct __anonstruct_linear_149 linear ; struct list_head nonlinear ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; union __anonunion_shared_148 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; nodemask_t nodes_to_scan ; int nid ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct user_struct; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; int (*migrate)(struct vm_area_struct * , nodemask_t const * , nodemask_t const * , unsigned long ) ; int (*remap_pages)(struct vm_area_struct * , unsigned long , unsigned long , unsigned long ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; typedef s32 dma_cookie_t; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; typedef unsigned short __kernel_sa_family_t; struct cred; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct msghdr { void *msg_name ; int msg_namelen ; struct iovec *msg_iov ; __kernel_size_t msg_iovlen ; void *msg_control ; __kernel_size_t msg_controllen ; unsigned int msg_flags ; }; struct __anonstruct_sync_serial_settings_151 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_151 sync_serial_settings; struct __anonstruct_te1_settings_152 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_152 te1_settings; struct __anonstruct_raw_hdlc_proto_153 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_153 raw_hdlc_proto; struct __anonstruct_fr_proto_154 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_154 fr_proto; struct __anonstruct_fr_proto_pvc_155 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_155 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_156 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_156 fr_proto_pvc_info; struct __anonstruct_cisco_proto_157 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_157 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_158 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_158 ifs_ifsu ; }; union __anonunion_ifr_ifrn_159 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_160 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_159 ifr_ifrn ; union __anonunion_ifr_ifru_160 ifr_ifru ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_163 { spinlock_t lock ; unsigned int count ; }; union __anonunion____missing_field_name_162 { struct __anonstruct____missing_field_name_163 __annonCompField47 ; }; struct lockref { union __anonunion____missing_field_name_162 __annonCompField48 ; }; struct nameidata; struct vfsmount; struct __anonstruct____missing_field_name_165 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_164 { struct __anonstruct____missing_field_name_165 __annonCompField49 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_164 __annonCompField50 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_166 { struct list_head d_child ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; union __anonunion_d_u_166 d_u ; struct list_head d_subdirs ; struct hlist_node d_alias ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_node { spinlock_t lock ; struct list_head list ; long nr_items ; }; struct list_lru { struct list_lru_node *node ; nodemask_t active_nodes ; }; struct radix_tree_node; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct io_context; struct cgroup_subsys_state; struct export_operations; struct kiocb; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_168 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_168 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_169 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_169 __annonCompField51 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_on_meta)(struct super_block * , int , int ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; union __anonunion_arg_171 { char *buf ; void *data ; }; struct __anonstruct_read_descriptor_t_170 { size_t written ; size_t count ; union __anonunion_arg_171 arg ; int error ; }; typedef struct __anonstruct_read_descriptor_t_170 read_descriptor_t; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iovec const * , loff_t , unsigned long ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct backing_dev_info; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct rb_root i_mmap ; struct list_head i_mmap_nonlinear ; struct mutex i_mmap_mutex ; unsigned long nrpages ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_172 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_173 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock; struct cdev; union __anonunion____missing_field_name_174 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_172 __annonCompField52 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_173 __annonCompField53 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; struct file_operations const *i_fop ; struct file_lock *i_flock ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion____missing_field_name_174 __annonCompField54 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; atomic_t i_readcount ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_175 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_175 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; unsigned long f_mnt_write_state ; }; struct files_struct; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , struct file_lock * , int ) ; void (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock ** , int ) ; }; struct net; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_177 { struct list_head link ; int state ; }; union __anonunion_fl_u_176 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_177 afs ; }; struct file_lock { struct file_lock *fl_next ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_176 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context { int (*actor)(void * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; int (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , int ) ; long (*free_cached_objects)(struct super_block * , long , int ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; typedef unsigned long cputime_t; struct __anonstruct_sigset_t_178 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_178 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_180 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_181 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_182 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_183 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_184 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_185 { long _band ; int _fd ; }; struct __anonstruct__sigsys_186 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_179 { int _pad[28U] ; struct __anonstruct__kill_180 _kill ; struct __anonstruct__timer_181 _timer ; struct __anonstruct__rt_182 _rt ; struct __anonstruct__sigchld_183 _sigchld ; struct __anonstruct__sigfault_184 _sigfault ; struct __anonstruct__sigpoll_185 _sigpoll ; struct __anonstruct__sigsys_186 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_179 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct____missing_field_name_190 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion____missing_field_name_189 { struct __anonstruct____missing_field_name_190 __annonCompField55 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion____missing_field_name_189 __annonCompField56 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_191 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_192 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_194 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_193 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_194 __annonCompField59 ; }; union __anonunion_type_data_195 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_197 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_196 { union __anonunion_payload_197 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_191 __annonCompField57 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_192 __annonCompField58 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_193 __annonCompField60 ; union __anonunion_type_data_195 type_data ; union __anonunion____missing_field_name_196 __annonCompField61 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned int is_child_subreaper : 1 ; unsigned int has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; struct hrtimer dl_timer ; }; struct mem_cgroup; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned int may_oom : 1 ; }; struct sched_class; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned int brk_randomized : 1 ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned int in_execve : 1 ; unsigned int in_iowait : 1 ; unsigned int no_new_privs : 1 ; unsigned int sched_reset_on_fork : 1 ; unsigned int sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct task_struct *pi_top_task ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; int numa_migrate_deferred ; unsigned long numa_migrate_retry ; u64 node_stamp ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long *numa_faults_buffer ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; unsigned int memcg_kmem_skip_account ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; }; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; enum ldv_22027 { SS_FREE = 0, SS_UNCONNECTED = 1, SS_CONNECTING = 2, SS_CONNECTED = 3, SS_DISCONNECTING = 4 } ; typedef enum ldv_22027 socket_state; struct socket_wq { wait_queue_head_t wait ; struct fasync_struct *fasync_list ; struct callback_head rcu ; }; struct proto_ops; struct socket { socket_state state ; short type ; unsigned long flags ; struct socket_wq *wq ; struct file *file ; struct sock *sk ; struct proto_ops const *ops ; }; struct proto_ops { int family ; struct module *owner ; int (*release)(struct socket * ) ; int (*bind)(struct socket * , struct sockaddr * , int ) ; int (*connect)(struct socket * , struct sockaddr * , int , int ) ; int (*socketpair)(struct socket * , struct socket * ) ; int (*accept)(struct socket * , struct socket * , int ) ; int (*getname)(struct socket * , struct sockaddr * , int * , int ) ; unsigned int (*poll)(struct file * , struct socket * , struct poll_table_struct * ) ; int (*ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*listen)(struct socket * , int ) ; int (*shutdown)(struct socket * , int ) ; int (*setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct socket * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct socket * , int , int , char * , int * ) ; int (*sendmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t , int ) ; int (*mmap)(struct file * , struct socket * , struct vm_area_struct * ) ; ssize_t (*sendpage)(struct socket * , struct page * , int , size_t , int ) ; ssize_t (*splice_read)(struct socket * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*set_peek_off)(struct sock * , int ) ; }; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; struct page *partial ; unsigned int stat[26U] ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct memcg_cache_params; struct kmem_cache_node; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int object_size ; int offset ; int cpu_partial ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; struct memcg_cache_params *memcg_params ; int max_attr_size ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; struct __anonstruct____missing_field_name_214 { struct callback_head callback_head ; struct kmem_cache *memcg_caches[0U] ; }; struct __anonstruct____missing_field_name_215 { struct mem_cgroup *memcg ; struct list_head list ; struct kmem_cache *root_cache ; bool dead ; atomic_t nr_pages ; struct work_struct destroy ; }; union __anonunion____missing_field_name_213 { struct __anonstruct____missing_field_name_214 __annonCompField63 ; struct __anonstruct____missing_field_name_215 __annonCompField64 ; }; struct memcg_cache_params { bool is_root_cache ; union __anonunion____missing_field_name_213 __annonCompField65 ; }; struct exception_table_entry { int insn ; int fixup ; }; struct in6_addr; struct sk_buff; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; typedef u64 netdev_features_t; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; struct skb_frag_struct; typedef struct skb_frag_struct skb_frag_t; struct __anonstruct_page_217 { struct page *p ; }; struct skb_frag_struct { struct __anonstruct_page_217 page ; __u32 page_offset ; __u32 size ; }; struct skb_shared_hwtstamps { ktime_t hwtstamp ; ktime_t syststamp ; }; struct skb_shared_info { unsigned char nr_frags ; __u8 tx_flags ; unsigned short gso_size ; unsigned short gso_segs ; unsigned short gso_type ; struct sk_buff *frag_list ; struct skb_shared_hwtstamps hwtstamps ; __be32 ip6_frag_id ; atomic_t dataref ; void *destructor_arg ; skb_frag_t frags[17U] ; }; typedef unsigned int sk_buff_data_t; struct sec_path; struct __anonstruct____missing_field_name_219 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_218 { __wsum csum ; struct __anonstruct____missing_field_name_219 __annonCompField67 ; }; union __anonunion____missing_field_name_220 { unsigned int napi_id ; dma_cookie_t dma_cookie ; }; union __anonunion____missing_field_name_221 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; struct sk_buff { struct sk_buff *next ; struct sk_buff *prev ; ktime_t tstamp ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; struct sec_path *sp ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; union __anonunion____missing_field_name_218 __annonCompField68 ; __u32 priority ; __u8 local_df : 1 ; __u8 cloned : 1 ; __u8 ip_summed : 2 ; __u8 nohdr : 1 ; __u8 nfctinfo : 3 ; __u8 pkt_type : 3 ; __u8 fclone : 2 ; __u8 ipvs_property : 1 ; __u8 peeked : 1 ; __u8 nf_trace : 1 ; __be16 protocol ; void (*destructor)(struct sk_buff * ) ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; int skb_iif ; __u32 rxhash ; __be16 vlan_proto ; __u16 vlan_tci ; __u16 tc_index ; __u16 tc_verd ; __u16 queue_mapping ; __u8 ndisc_nodetype : 2 ; __u8 pfmemalloc : 1 ; __u8 ooo_okay : 1 ; __u8 l4_rxhash : 1 ; __u8 wifi_acked_valid : 1 ; __u8 wifi_acked : 1 ; __u8 no_fcs : 1 ; __u8 head_frag : 1 ; __u8 encapsulation : 1 ; union __anonunion____missing_field_name_220 __annonCompField69 ; __u32 secmark ; union __anonunion____missing_field_name_221 __annonCompField70 ; __be16 inner_protocol ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct rtable; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char reserved1[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh_indir)(struct net_device * , u32 * ) ; int (*set_rxfh_indir)(struct net_device * , u32 const * ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6_mib_device { atomic_long_t mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6msg_mib_device { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[8U] ; }; struct linux_mib { unsigned long mibs[97U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct proc_dir_entry; struct netns_mib { struct tcp_mib *tcp_statistics[1U] ; struct ipstats_mib *ip_statistics[1U] ; struct linux_mib *net_statistics[1U] ; struct udp_mib *udp_statistics[1U] ; struct udp_mib *udplite_statistics[1U] ; struct icmp_mib *icmp_statistics[1U] ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6[1U] ; struct udp_mib *udplite_stats_in6[1U] ; struct ipstats_mib *ipv6_statistics[1U] ; struct icmpv6_mib *icmpv6_statistics[1U] ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics[1U] ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { int nqueues ; struct list_head lru_list ; spinlock_t lru_lock ; struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct tcpm_hash_bucket; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct inet_peer_base *peers ; struct tcpm_hash_bucket *tcp_metrics_hash ; unsigned int tcp_metrics_hash_log ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports sysctl_local_ports ; int sysctl_tcp_ecn ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; kgid_t sysctl_ping_group_range[2U] ; atomic_t dev_addr_genid ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int icmpv6_time ; int anycast_src_echo_reply ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t rt_genid ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics[1U] ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; union __anonunion_in6_u_224 { __u8 u6_addr8[16U] ; __be16 u6_addr16[8U] ; __be32 u6_addr32[4U] ; }; struct in6_addr { union __anonunion_in6_u_224 in6_u ; }; struct nlattr; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; bool ulog_warn_deprecated ; bool ebt_ulog_warn_deprecated ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; unsigned int sysctl_events_retry_timeout ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; u8 gencursor ; u8 genctr ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[6U] ; struct xfrm_policy_hash policy_bydst[6U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; spinlock_t xfrm_policy_sk_bundle_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; unsigned int proc_inum ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; struct dsa_chip_data { struct device *mii_bus ; int sw_addr ; char *port_names[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; __be16 tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct mii_bus; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct mii_bus *master_mii_bus ; u32 dsa_port_mask ; u32 phys_port_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; __be16 tag_protocol ; int priv_size ; char *(*probe)(struct mii_bus * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; u8 (*setapp)(struct net_device * , u8 , u16 , u8 ) ; u8 (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct xattr_handler { char const *prefix ; int flags ; size_t (*list)(struct dentry * , char * , size_t , char const * , size_t , int ) ; int (*get)(struct dentry * , char const * , void * , size_t , int ) ; int (*set)(struct dentry * , char const * , void const * , size_t , int , int ) ; }; struct simple_xattrs { struct list_head head ; spinlock_t lock ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_t count ; unsigned int *pcpu_count ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_kill ; struct callback_head rcu ; }; struct cgroupfs_root; struct cgroup_subsys; struct cgroup; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; unsigned long flags ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct cgroup_name { struct callback_head callback_head ; char name[] ; }; struct cgroup { unsigned long flags ; int id ; int nr_css ; struct list_head sibling ; struct list_head children ; struct list_head files ; struct cgroup *parent ; struct dentry *dentry ; u64 serial_nr ; struct cgroup_name *name ; struct cgroup_subsys_state *subsys[12U] ; struct cgroupfs_root *root ; struct list_head cset_links ; struct list_head release_list ; struct list_head pidlists ; struct mutex pidlist_mutex ; struct cgroup_subsys_state dummy_css ; struct callback_head callback_head ; struct work_struct destroy_work ; struct simple_xattrs xattrs ; }; struct cgroupfs_root { struct super_block *sb ; unsigned long subsys_mask ; int hierarchy_id ; struct cgroup top_cgroup ; int number_of_cgroups ; struct list_head root_list ; unsigned long flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head cgrp_links ; struct cgroup_subsys_state *subsys[12U] ; struct callback_head callback_head ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; int (*write_string)(struct cgroup_subsys_state * , struct cftype * , char const * ) ; int (*trigger)(struct cgroup_subsys_state * , unsigned int ) ; }; struct cftype_set { struct list_head node ; struct cftype *cfts ; }; struct cgroup_taskset; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int subsys_id ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; char const *name ; struct cgroupfs_root *root ; struct list_head cftsets ; struct cftype *base_cftypes ; struct cftype_set base_cftset ; struct module *module ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct xfrm_policy; struct xfrm_state; struct request_sock; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 tx_rate ; __u32 spoofchk ; __u32 linkstate ; }; struct netpoll_info; struct phy_device; struct wireless_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr { struct list_head list ; unsigned char addr[32U] ; unsigned char type ; bool global_use ; int sync_cnt ; int refcount ; int synced ; struct callback_head callback_head ; }; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum gro_result { GRO_MERGED = 0, GRO_MERGED_FREE = 1, GRO_HELD = 2, GRO_NORMAL = 3, GRO_DROP = 4 } ; typedef enum gro_result gro_result_t; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_port_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * , gfp_t ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_tx_rate)(struct net_device * , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_port_id * ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; }; enum ldv_28473 { NETREG_UNINITIALIZED = 0, NETREG_REGISTERED = 1, NETREG_UNREGISTERING = 2, NETREG_UNREGISTERED = 3, NETREG_RELEASED = 4, NETREG_DUMMY = 5 } ; enum ldv_28474 { RTNL_LINK_INITIALIZED = 0, RTNL_LINK_INITIALIZING = 1 } ; struct __anonstruct_adj_list_235 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_236 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct forwarding_accel_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion____missing_field_name_237 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct __anonstruct_adj_list_235 adj_list ; struct __anonstruct_all_adj_list_236 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct forwarding_accel_ops const *fwd_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; bool uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; unsigned char broadcast[32U] ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; struct cpu_rmap *rx_cpu_rmap ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; enum ldv_28473 reg_state : 8 ; bool dismantle ; enum ldv_28474 rtnl_link_state : 16 ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion____missing_field_name_237 __annonCompField74 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; int group ; struct pm_qos_request pm_qos_req ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; enum skb_free_reason { SKB_REASON_CONSUMED = 0, SKB_REASON_DROPPED = 1 } ; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct pci_driver; union __anonunion____missing_field_name_241 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; u8 pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned int pme_support : 5 ; unsigned int pme_interrupt : 1 ; unsigned int pme_poll : 1 ; unsigned int d1_support : 1 ; unsigned int d2_support : 1 ; unsigned int no_d1d2 : 1 ; unsigned int no_d3cold : 1 ; unsigned int d3cold_allowed : 1 ; unsigned int mmio_always_on : 1 ; unsigned int wakeup_prepared : 1 ; unsigned int runtime_d3cold : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned int transparent : 1 ; unsigned int multifunction : 1 ; unsigned int is_added : 1 ; unsigned int is_busmaster : 1 ; unsigned int no_msi : 1 ; unsigned int block_cfg_access : 1 ; unsigned int broken_parity_status : 1 ; unsigned int irq_reroute_variant : 2 ; unsigned int msi_enabled : 1 ; unsigned int msix_enabled : 1 ; unsigned int ari_enabled : 1 ; unsigned int is_managed : 1 ; unsigned int needs_freset : 1 ; unsigned int state_saved : 1 ; unsigned int is_physfn : 1 ; unsigned int is_virtfn : 1 ; unsigned int reset_fn : 1 ; unsigned int is_hotplug_bridge : 1 ; unsigned int __aer_firmware_first_valid : 1 ; unsigned int __aer_firmware_first : 1 ; unsigned int broken_intx_masking : 1 ; unsigned int io_window_1k : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_241 __annonCompField75 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; }; struct pci_ops; struct msi_chip; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_chip *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned int is_added : 1 ; }; struct pci_ops { int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct msix_entry { u32 vector ; u16 entry ; }; struct res_counter { unsigned long long usage ; unsigned long long max_usage ; unsigned long long limit ; unsigned long long soft_limit ; unsigned long long failcnt ; spinlock_t lock ; struct res_counter *parent ; }; struct kioctx; typedef int kiocb_cancel_fn(struct kiocb * ); union __anonunion_ki_obj_242 { void *user ; struct task_struct *tsk ; }; struct eventfd_ctx; struct kiocb { struct file *ki_filp ; struct kioctx *ki_ctx ; kiocb_cancel_fn *ki_cancel ; void *private ; union __anonunion_ki_obj_242 ki_obj ; __u64 ki_user_data ; loff_t ki_pos ; size_t ki_nbytes ; struct list_head ki_list ; struct eventfd_ctx *ki_eventfd ; }; struct sock_filter { __u16 code ; __u8 jt ; __u8 jf ; __u32 k ; }; union __anonunion____missing_field_name_243 { struct sock_filter insns[0U] ; struct work_struct work ; }; struct sk_filter { atomic_t refcnt ; unsigned int len ; struct callback_head rcu ; unsigned int (*bpf_func)(struct sk_buff const * , struct sock_filter const * ) ; union __anonunion____missing_field_name_243 __annonCompField76 ; }; struct poll_table_struct { void (*_qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long _key ; }; struct nla_policy { u16 type ; u16 len ; }; struct rtnl_link_ops { struct list_head list ; char const *kind ; size_t priv_size ; void (*setup)(struct net_device * ) ; int maxtype ; struct nla_policy const *policy ; int (*validate)(struct nlattr ** , struct nlattr ** ) ; int (*newlink)(struct net * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; int (*changelink)(struct net_device * , struct nlattr ** , struct nlattr ** ) ; void (*dellink)(struct net_device * , struct list_head * ) ; size_t (*get_size)(struct net_device const * ) ; int (*fill_info)(struct sk_buff * , struct net_device const * ) ; size_t (*get_xstats_size)(struct net_device const * ) ; int (*fill_xstats)(struct sk_buff * , struct net_device const * ) ; unsigned int (*get_num_tx_queues)(void) ; unsigned int (*get_num_rx_queues)(void) ; int slave_maxtype ; struct nla_policy const *slave_policy ; int (*slave_validate)(struct nlattr ** , struct nlattr ** ) ; int (*slave_changelink)(struct net_device * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; size_t (*get_slave_size)(struct net_device const * , struct net_device const * ) ; int (*fill_slave_info)(struct sk_buff * , struct net_device const * , struct net_device const * ) ; }; struct neigh_table; struct neigh_parms { struct net *net ; struct net_device *dev ; struct neigh_parms *next ; int (*neigh_setup)(struct neighbour * ) ; void (*neigh_cleanup)(struct neighbour * ) ; struct neigh_table *tbl ; void *sysctl_table ; int dead ; atomic_t refcnt ; struct callback_head callback_head ; int reachable_time ; int data[12U] ; unsigned long data_state[1U] ; }; struct neigh_statistics { unsigned long allocs ; unsigned long destroys ; unsigned long hash_grows ; unsigned long res_failed ; unsigned long lookups ; unsigned long hits ; unsigned long rcv_probes_mcast ; unsigned long rcv_probes_ucast ; unsigned long periodic_gc_runs ; unsigned long forced_gc_runs ; unsigned long unres_discards ; }; struct neigh_ops; struct neighbour { struct neighbour *next ; struct neigh_table *tbl ; struct neigh_parms *parms ; unsigned long confirmed ; unsigned long updated ; rwlock_t lock ; atomic_t refcnt ; struct sk_buff_head arp_queue ; unsigned int arp_queue_len_bytes ; struct timer_list timer ; unsigned long used ; atomic_t probes ; __u8 flags ; __u8 nud_state ; __u8 type ; __u8 dead ; seqlock_t ha_lock ; unsigned char ha[32U] ; struct hh_cache hh ; int (*output)(struct neighbour * , struct sk_buff * ) ; struct neigh_ops const *ops ; struct callback_head rcu ; struct net_device *dev ; u8 primary_key[0U] ; }; struct neigh_ops { int family ; void (*solicit)(struct neighbour * , struct sk_buff * ) ; void (*error_report)(struct neighbour * , struct sk_buff * ) ; int (*output)(struct neighbour * , struct sk_buff * ) ; int (*connected_output)(struct neighbour * , struct sk_buff * ) ; }; struct pneigh_entry { struct pneigh_entry *next ; struct net *net ; struct net_device *dev ; u8 flags ; u8 key[0U] ; }; struct neigh_hash_table { struct neighbour **hash_buckets ; unsigned int hash_shift ; __u32 hash_rnd[4U] ; struct callback_head rcu ; }; struct neigh_table { struct neigh_table *next ; int family ; int entry_size ; int key_len ; __u32 (*hash)(void const * , struct net_device const * , __u32 * ) ; int (*constructor)(struct neighbour * ) ; int (*pconstructor)(struct pneigh_entry * ) ; void (*pdestructor)(struct pneigh_entry * ) ; void (*proxy_redo)(struct sk_buff * ) ; char *id ; struct neigh_parms parms ; int gc_interval ; int gc_thresh1 ; int gc_thresh2 ; int gc_thresh3 ; unsigned long last_flush ; struct delayed_work gc_work ; struct timer_list proxy_timer ; struct sk_buff_head proxy_queue ; atomic_t entries ; rwlock_t lock ; unsigned long last_rand ; struct neigh_statistics *stats ; struct neigh_hash_table *nht ; struct pneigh_entry **phash_buckets ; }; struct dn_route; union __anonunion____missing_field_name_248 { struct dst_entry *next ; struct rtable *rt_next ; struct rt6_info *rt6_next ; struct dn_route *dn_next ; }; struct dst_entry { struct callback_head callback_head ; struct dst_entry *child ; struct net_device *dev ; struct dst_ops *ops ; unsigned long _metrics ; unsigned long expires ; struct dst_entry *path ; struct dst_entry *from ; struct xfrm_state *xfrm ; int (*input)(struct sk_buff * ) ; int (*output)(struct sk_buff * ) ; unsigned short flags ; unsigned short pending_confirm ; short error ; short obsolete ; unsigned short header_len ; unsigned short trailer_len ; __u32 tclassid ; long __pad_to_align_refcnt[2U] ; atomic_t __refcnt ; int __use ; unsigned long lastuse ; union __anonunion____missing_field_name_248 __annonCompField77 ; }; struct __anonstruct_socket_lock_t_249 { spinlock_t slock ; int owned ; wait_queue_head_t wq ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_socket_lock_t_249 socket_lock_t; struct proto; typedef __u32 __portpair; typedef __u64 __addrpair; struct __anonstruct____missing_field_name_251 { __be32 skc_daddr ; __be32 skc_rcv_saddr ; }; union __anonunion____missing_field_name_250 { __addrpair skc_addrpair ; struct __anonstruct____missing_field_name_251 __annonCompField78 ; }; union __anonunion____missing_field_name_252 { unsigned int skc_hash ; __u16 skc_u16hashes[2U] ; }; struct __anonstruct____missing_field_name_254 { __be16 skc_dport ; __u16 skc_num ; }; union __anonunion____missing_field_name_253 { __portpair skc_portpair ; struct __anonstruct____missing_field_name_254 __annonCompField81 ; }; union __anonunion____missing_field_name_255 { struct hlist_node skc_bind_node ; struct hlist_nulls_node skc_portaddr_node ; }; union __anonunion____missing_field_name_256 { struct hlist_node skc_node ; struct hlist_nulls_node skc_nulls_node ; }; struct sock_common { union __anonunion____missing_field_name_250 __annonCompField79 ; union __anonunion____missing_field_name_252 __annonCompField80 ; union __anonunion____missing_field_name_253 __annonCompField82 ; unsigned short skc_family ; unsigned char volatile skc_state ; unsigned char skc_reuse : 4 ; unsigned char skc_reuseport : 4 ; int skc_bound_dev_if ; union __anonunion____missing_field_name_255 __annonCompField83 ; struct proto *skc_prot ; struct net *skc_net ; struct in6_addr skc_v6_daddr ; struct in6_addr skc_v6_rcv_saddr ; int skc_dontcopy_begin[0U] ; union __anonunion____missing_field_name_256 __annonCompField84 ; int skc_tx_queue_mapping ; atomic_t skc_refcnt ; int skc_dontcopy_end[0U] ; }; struct cg_proto; struct __anonstruct_sk_backlog_257 { atomic_t rmem_alloc ; int len ; struct sk_buff *head ; struct sk_buff *tail ; }; struct sock { struct sock_common __sk_common ; socket_lock_t sk_lock ; struct sk_buff_head sk_receive_queue ; struct __anonstruct_sk_backlog_257 sk_backlog ; int sk_forward_alloc ; __u32 sk_rxhash ; unsigned int sk_napi_id ; unsigned int sk_ll_usec ; atomic_t sk_drops ; int sk_rcvbuf ; struct sk_filter *sk_filter ; struct socket_wq *sk_wq ; struct xfrm_policy *sk_policy[2U] ; unsigned long sk_flags ; struct dst_entry *sk_rx_dst ; struct dst_entry *sk_dst_cache ; spinlock_t sk_dst_lock ; atomic_t sk_wmem_alloc ; atomic_t sk_omem_alloc ; int sk_sndbuf ; struct sk_buff_head sk_write_queue ; unsigned int sk_shutdown : 2 ; unsigned int sk_no_check : 2 ; unsigned int sk_userlocks : 4 ; unsigned int sk_protocol : 8 ; unsigned int sk_type : 16 ; int sk_wmem_queued ; gfp_t sk_allocation ; u32 sk_pacing_rate ; u32 sk_max_pacing_rate ; netdev_features_t sk_route_caps ; netdev_features_t sk_route_nocaps ; int sk_gso_type ; unsigned int sk_gso_max_size ; u16 sk_gso_max_segs ; int sk_rcvlowat ; unsigned long sk_lingertime ; struct sk_buff_head sk_error_queue ; struct proto *sk_prot_creator ; rwlock_t sk_callback_lock ; int sk_err ; int sk_err_soft ; unsigned short sk_ack_backlog ; unsigned short sk_max_ack_backlog ; __u32 sk_priority ; __u32 sk_cgrp_prioidx ; struct pid *sk_peer_pid ; struct cred const *sk_peer_cred ; long sk_rcvtimeo ; long sk_sndtimeo ; void *sk_protinfo ; struct timer_list sk_timer ; ktime_t sk_stamp ; struct socket *sk_socket ; void *sk_user_data ; struct page_frag sk_frag ; struct sk_buff *sk_send_head ; __s32 sk_peek_off ; int sk_write_pending ; void *sk_security ; __u32 sk_mark ; u32 sk_classid ; struct cg_proto *sk_cgrp ; void (*sk_state_change)(struct sock * ) ; void (*sk_data_ready)(struct sock * , int ) ; void (*sk_write_space)(struct sock * ) ; void (*sk_error_report)(struct sock * ) ; int (*sk_backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*sk_destruct)(struct sock * ) ; }; struct request_sock_ops; struct timewait_sock_ops; struct inet_hashinfo; struct raw_hashinfo; struct udp_table; union __anonunion_h_258 { struct inet_hashinfo *hashinfo ; struct udp_table *udp_table ; struct raw_hashinfo *raw_hash ; }; struct proto { void (*close)(struct sock * , long ) ; int (*connect)(struct sock * , struct sockaddr * , int ) ; int (*disconnect)(struct sock * , int ) ; struct sock *(*accept)(struct sock * , int , int * ) ; int (*ioctl)(struct sock * , int , unsigned long ) ; int (*init)(struct sock * ) ; void (*destroy)(struct sock * ) ; void (*shutdown)(struct sock * , int ) ; int (*setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_ioctl)(struct sock * , unsigned int , unsigned long ) ; int (*sendmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t , int , int , int * ) ; int (*sendpage)(struct sock * , struct page * , int , size_t , int ) ; int (*bind)(struct sock * , struct sockaddr * , int ) ; int (*backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*release_cb)(struct sock * ) ; void (*mtu_reduced)(struct sock * ) ; void (*hash)(struct sock * ) ; void (*unhash)(struct sock * ) ; void (*rehash)(struct sock * ) ; int (*get_port)(struct sock * , unsigned short ) ; void (*clear_sk)(struct sock * , int ) ; unsigned int inuse_idx ; bool (*stream_memory_free)(struct sock const * ) ; void (*enter_memory_pressure)(struct sock * ) ; atomic_long_t *memory_allocated ; struct percpu_counter *sockets_allocated ; int *memory_pressure ; long *sysctl_mem ; int *sysctl_wmem ; int *sysctl_rmem ; int max_header ; bool no_autobind ; struct kmem_cache *slab ; unsigned int obj_size ; int slab_flags ; struct percpu_counter *orphan_count ; struct request_sock_ops *rsk_prot ; struct timewait_sock_ops *twsk_prot ; union __anonunion_h_258 h ; struct module *owner ; char name[32U] ; struct list_head node ; int (*init_cgroup)(struct mem_cgroup * , struct cgroup_subsys * ) ; void (*destroy_cgroup)(struct mem_cgroup * ) ; struct cg_proto *(*proto_cgroup)(struct mem_cgroup * ) ; }; struct cg_proto { struct res_counter memory_allocated ; struct percpu_counter sockets_allocated ; int memory_pressure ; long sysctl_mem[3U] ; unsigned long flags ; struct mem_cgroup *memcg ; }; struct request_sock_ops { int family ; int obj_size ; struct kmem_cache *slab ; char *slab_name ; int (*rtx_syn_ack)(struct sock * , struct request_sock * ) ; void (*send_ack)(struct sock * , struct sk_buff * , struct request_sock * ) ; void (*send_reset)(struct sock * , struct sk_buff * ) ; void (*destructor)(struct request_sock * ) ; void (*syn_ack_timeout)(struct sock * , struct request_sock * ) ; }; struct request_sock { struct sock_common __req_common ; struct request_sock *dl_next ; u16 mss ; u8 num_retrans ; u8 cookie_ts : 1 ; u8 num_timeout : 7 ; u32 window_clamp ; u32 rcv_wnd ; u32 ts_recent ; unsigned long expires ; struct request_sock_ops const *rsk_ops ; struct sock *sk ; u32 secid ; u32 peer_secid ; }; struct timewait_sock_ops { struct kmem_cache *twsk_slab ; char *twsk_slab_name ; unsigned int twsk_obj_size ; int (*twsk_unique)(struct sock * , struct sock * , void * ) ; void (*twsk_destructor)(struct sock * ) ; }; struct tcphdr { __be16 source ; __be16 dest ; __be32 seq ; __be32 ack_seq ; __u16 res1 : 4 ; __u16 doff : 4 ; __u16 fin : 1 ; __u16 syn : 1 ; __u16 rst : 1 ; __u16 psh : 1 ; __u16 ack : 1 ; __u16 urg : 1 ; __u16 ece : 1 ; __u16 cwr : 1 ; __be16 window ; __sum16 check ; __be16 urg_ptr ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_269 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s16 level ; union __anonunion____missing_field_name_269 __annonCompField85 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct tracepoint; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct static_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_ref { unsigned long incs ; unsigned long decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct vlan_ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_vlan_proto ; __be16 h_vlan_TCI ; __be16 h_vlan_encapsulated_proto ; }; struct firmware { size_t size ; u8 const *data ; struct page **pages ; void *priv ; }; struct ipv6_devconf { __s32 forwarding ; __s32 hop_limit ; __s32 mtu6 ; __s32 accept_ra ; __s32 accept_redirects ; __s32 autoconf ; __s32 dad_transmits ; __s32 rtr_solicits ; __s32 rtr_solicit_interval ; __s32 rtr_solicit_delay ; __s32 force_mld_version ; __s32 mldv1_unsolicited_report_interval ; __s32 mldv2_unsolicited_report_interval ; __s32 use_tempaddr ; __s32 temp_valid_lft ; __s32 temp_prefered_lft ; __s32 regen_max_retry ; __s32 max_desync_factor ; __s32 max_addresses ; __s32 accept_ra_defrtr ; __s32 accept_ra_pinfo ; __s32 accept_ra_rtr_pref ; __s32 rtr_probe_interval ; __s32 accept_ra_rt_info_max_plen ; __s32 proxy_ndp ; __s32 accept_source_route ; __s32 optimistic_dad ; __s32 mc_forwarding ; __s32 disable_ipv6 ; __s32 accept_dad ; __s32 force_tllao ; __s32 ndisc_notify ; __s32 suppress_frag_ndisc ; void *sysctl ; }; struct ip6_sf_list { struct ip6_sf_list *sf_next ; struct in6_addr sf_addr ; unsigned long sf_count[2U] ; unsigned char sf_gsresp ; unsigned char sf_oldin ; unsigned char sf_crcount ; }; struct ifmcaddr6 { struct in6_addr mca_addr ; struct inet6_dev *idev ; struct ifmcaddr6 *next ; struct ip6_sf_list *mca_sources ; struct ip6_sf_list *mca_tomb ; unsigned int mca_sfmode ; unsigned char mca_crcount ; unsigned long mca_sfcount[2U] ; struct timer_list mca_timer ; unsigned int mca_flags ; int mca_users ; atomic_t mca_refcnt ; spinlock_t mca_lock ; unsigned long mca_cstamp ; unsigned long mca_tstamp ; }; struct ifacaddr6 { struct in6_addr aca_addr ; struct inet6_dev *aca_idev ; struct rt6_info *aca_rt ; struct ifacaddr6 *aca_next ; int aca_users ; atomic_t aca_refcnt ; spinlock_t aca_lock ; unsigned long aca_cstamp ; unsigned long aca_tstamp ; }; struct ipv6_devstat { struct proc_dir_entry *proc_dir_entry ; struct ipstats_mib *ipv6[1U] ; struct icmpv6_mib_device *icmpv6dev ; struct icmpv6msg_mib_device *icmpv6msgdev ; }; struct inet6_dev { struct net_device *dev ; struct list_head addr_list ; struct ifmcaddr6 *mc_list ; struct ifmcaddr6 *mc_tomb ; spinlock_t mc_lock ; unsigned char mc_qrv ; unsigned char mc_gq_running ; unsigned char mc_ifc_count ; unsigned char mc_dad_count ; unsigned long mc_v1_seen ; unsigned long mc_qi ; unsigned long mc_qri ; unsigned long mc_maxdelay ; struct timer_list mc_gq_timer ; struct timer_list mc_ifc_timer ; struct timer_list mc_dad_timer ; struct ifacaddr6 *ac_list ; rwlock_t lock ; atomic_t refcnt ; __u32 if_flags ; int dead ; u8 rndid[8U] ; struct timer_list regen_timer ; struct list_head tempaddr_list ; struct in6_addr token ; struct neigh_parms *nd_parms ; struct ipv6_devconf cnf ; struct ipv6_devstat stats ; struct timer_list rs_timer ; __u8 rs_probes ; unsigned long tstamp ; struct callback_head rcu ; }; union __anonunion____missing_field_name_276 { __be32 a4 ; __be32 a6[4U] ; }; struct inetpeer_addr_base { union __anonunion____missing_field_name_276 __annonCompField86 ; }; struct inetpeer_addr { struct inetpeer_addr_base addr ; __u16 family ; }; union __anonunion____missing_field_name_277 { struct list_head gc_list ; struct callback_head gc_rcu ; }; struct __anonstruct____missing_field_name_279 { atomic_t rid ; atomic_t ip_id_count ; }; union __anonunion____missing_field_name_278 { struct __anonstruct____missing_field_name_279 __annonCompField88 ; struct callback_head rcu ; struct inet_peer *gc_next ; }; struct inet_peer { struct inet_peer *avl_left ; struct inet_peer *avl_right ; struct inetpeer_addr daddr ; __u32 avl_height ; u32 metrics[15U] ; u32 rate_tokens ; unsigned long rate_last ; union __anonunion____missing_field_name_277 __annonCompField87 ; union __anonunion____missing_field_name_278 __annonCompField89 ; __u32 dtime ; atomic_t refcnt ; }; struct inet_peer_base { struct inet_peer *root ; seqlock_t lock ; u32 flush_seq ; int total ; }; struct rtable { struct dst_entry dst ; int rt_genid ; unsigned int rt_flags ; __u16 rt_type ; __u8 rt_is_input ; __u8 rt_uses_gateway ; int rt_iif ; __be32 rt_gateway ; u32 rt_pmtu ; struct list_head rt_uncached ; }; struct inet_ehash_bucket { struct hlist_nulls_head chain ; }; struct inet_bind_hashbucket { spinlock_t lock ; struct hlist_head chain ; }; struct inet_listen_hashbucket { spinlock_t lock ; struct hlist_nulls_head head ; }; struct inet_hashinfo { struct inet_ehash_bucket *ehash ; spinlock_t *ehash_locks ; unsigned int ehash_mask ; unsigned int ehash_locks_mask ; struct inet_bind_hashbucket *bhash ; unsigned int bhash_size ; struct kmem_cache *bind_bucket_cachep ; struct inet_listen_hashbucket listening_hash[32U] ; atomic_t bsockets ; }; struct mcp_dma_addr { __be32 high ; __be32 low ; }; struct mcp_slot { __sum16 checksum ; __be16 length ; }; struct mcp_cmd { __be32 cmd ; __be32 data0 ; __be32 data1 ; __be32 data2 ; struct mcp_dma_addr response_addr ; u8 pad[40U] ; }; struct mcp_cmd_response { __be32 data ; __be32 result ; }; struct mcp_kreq_ether_send { __be32 addr_high ; __be32 addr_low ; __be16 pseudo_hdr_offset ; __be16 length ; u8 pad ; u8 rdma_count ; u8 cksum_offset ; u8 flags ; }; struct mcp_kreq_ether_recv { __be32 addr_high ; __be32 addr_low ; }; struct mcp_irq_data { __be32 future_use[1U] ; __be32 dropped_pause ; __be32 dropped_unicast_filtered ; __be32 dropped_bad_crc32 ; __be32 dropped_bad_phy ; __be32 dropped_multicast_filtered ; __be32 send_done_count ; __be32 link_up ; __be32 dropped_link_overflow ; __be32 dropped_link_error_or_filtered ; __be32 dropped_runt ; __be32 dropped_overrun ; __be32 dropped_no_small_buffer ; __be32 dropped_no_big_buffer ; __be32 rdma_tags_available ; u8 tx_stopped ; u8 link_down ; u8 stats_updated ; u8 valid ; }; struct mcp_gen_header { unsigned int header_length ; __be32 mcp_type ; char version[128U] ; unsigned int mcp_private ; unsigned int sram_size ; unsigned int string_specs ; unsigned int string_specs_len ; unsigned char mcp_index ; unsigned char disable_rabbit ; unsigned char unaligned_tlp ; unsigned char pcie_link_algo ; unsigned int counters_addr ; unsigned int copy_block_info ; unsigned short handoff_id_major ; unsigned short handoff_id_caps ; unsigned int msix_table_addr ; unsigned int bss_addr ; unsigned int features ; unsigned int ee_hdr_addr ; unsigned int led_pattern ; unsigned int led_pattern_dflt ; }; struct myri10ge_rx_buffer_state { struct page *page ; int page_offset ; dma_addr_t bus ; __u32 len ; }; struct myri10ge_tx_buffer_state { struct sk_buff *skb ; int last ; dma_addr_t bus ; __u32 len ; }; struct myri10ge_cmd { u32 data0 ; u32 data1 ; u32 data2 ; }; struct myri10ge_rx_buf { struct mcp_kreq_ether_recv *lanai ; struct mcp_kreq_ether_recv *shadow ; struct myri10ge_rx_buffer_state *info ; struct page *page ; dma_addr_t bus ; int page_offset ; int cnt ; int fill_cnt ; int alloc_fail ; int mask ; int watchdog_needed ; }; struct myri10ge_tx_buf { struct mcp_kreq_ether_send *lanai ; __be32 *send_go ; __be32 *send_stop ; struct mcp_kreq_ether_send *req_list ; char *req_bytes ; struct myri10ge_tx_buffer_state *info ; int mask ; int req ; int pkt_start ; int stop_queue ; int linearized ; int done ; int pkt_done ; int wake_queue ; int queue_active ; }; struct myri10ge_rx_done { struct mcp_slot *entry ; dma_addr_t bus ; int cnt ; int idx ; }; struct myri10ge_slice_netstats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_dropped ; unsigned long tx_dropped ; }; struct myri10ge_priv; struct myri10ge_slice_state { struct myri10ge_tx_buf tx ; struct myri10ge_rx_buf rx_small ; struct myri10ge_rx_buf rx_big ; struct myri10ge_rx_done rx_done ; struct net_device *dev ; struct napi_struct napi ; struct myri10ge_priv *mgp ; struct myri10ge_slice_netstats stats ; __be32 *irq_claim ; struct mcp_irq_data *fw_stats ; dma_addr_t fw_stats_bus ; int watchdog_tx_done ; int watchdog_tx_req ; int watchdog_rx_done ; int stuck ; int cached_dca_tag ; int cpu ; __be32 *dca_tag ; unsigned int state ; spinlock_t lock ; unsigned long lock_napi_yield ; unsigned long lock_poll_yield ; unsigned long busy_poll_miss ; unsigned long busy_poll_cnt ; char irq_desc[32U] ; }; struct myri10ge_priv { struct myri10ge_slice_state *ss ; int tx_boundary ; int num_slices ; int running ; int small_bytes ; int big_bytes ; int max_intr_slots ; struct net_device *dev ; u8 *sram ; int sram_size ; unsigned long board_span ; unsigned long iomem_base ; __be32 *irq_deassert ; char *mac_addr_string ; struct mcp_cmd_response *cmd ; dma_addr_t cmd_bus ; struct pci_dev *pdev ; int msi_enabled ; int msix_enabled ; struct msix_entry *msix_vectors ; int dca_enabled ; int relaxed_order ; u32 link_state ; unsigned int rdma_tags_available ; int intr_coal_delay ; __be32 *intr_coal_delay_ptr ; int mtrr ; int wc_enabled ; int down_cnt ; wait_queue_head_t down_wq ; struct work_struct watchdog_work ; struct timer_list watchdog_timer ; int watchdog_resets ; int watchdog_pause ; int pause ; bool fw_name_allocated ; char *fw_name ; char eeprom_strings[256U] ; char *product_code_string ; char fw_version[128U] ; int fw_ver_major ; int fw_ver_minor ; int fw_ver_tiny ; int adopted_rx_filter_bug ; u8 mac_addr[6U] ; unsigned long serial_number ; int vendor_specific_offset ; int fw_multicast_support ; u32 features ; u32 max_tso6 ; u32 read_dma ; u32 write_dma ; u32 read_write_dma ; u32 link_changes ; u32 msg_enable ; unsigned int board_number ; int rebooted ; }; struct ldv_struct_dummy_resourceless_instance_1 { struct net_device *arg0 ; int signal_pending ; }; struct ldv_struct_dummy_resourceless_instance_3 { struct notifier_block *arg0 ; int signal_pending ; }; struct ldv_struct_free_irq_7 { int arg0 ; int signal_pending ; }; struct ldv_struct_interrupt_instance_0 { int arg0 ; enum irqreturn (*arg1)(int , void * ) ; enum irqreturn (*arg2)(int , void * ) ; void *arg3 ; int signal_pending ; }; struct ldv_struct_pci_instance_2 { struct pci_driver *arg0 ; int signal_pending ; }; struct ldv_struct_timer_instance_4 { struct timer_list *arg0 ; int signal_pending ; }; typedef int ldv_func_ret_type; typedef int ldv_func_ret_type___0; typedef int ldv_func_ret_type___1; typedef int ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; typedef struct net_device *ldv_func_ret_type___4; typedef int ldv_func_ret_type___5; typedef int ldv_func_ret_type___6; struct device_private { void *driver_data ; }; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; wait_queue_head_t done ; struct kthread_worker *worker ; }; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; struct completion xfer_completion ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; unsigned int cs_change : 1 ; unsigned int tx_nbits : 3 ; unsigned int rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned int is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; void __builtin_prefetch(void const * , ...) ; long ldv__builtin_expect(long exp , long c ) ; extern void ldv_initialize(void) ; int ldv_post_init(int init_ret_val ) ; extern void ldv_pre_probe(void) ; int ldv_post_probe(int probe_ret_val ) ; int ldv_filter_err_code(int ret_val ) ; extern int ldv_pre_register_netdev(void) ; void ldv_check_final_state(void) ; long ldv_is_err(void const *ptr ) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; void *ldv_malloc_unknown_size(void) ; int ldv_undef_int(void) ; void ldv_check_alloc_flags(gfp_t flags ) ; void ldv_check_alloc_nonatomic(void) ; extern void ldv_after_alloc(void * ) ; void *ldv_alloc_macro(gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } void *ldv_dev_get_drvdata(struct device const *dev ) ; int ldv_dev_set_drvdata(struct device *dev , void *data ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) ; extern struct module __this_module ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern struct pv_irq_ops pv_irq_ops ; __inline static void set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static int test_and_set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("":); return (0); return (1); } } __inline static int constant_test_bit(long nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr >> 6)) >> ((int )nr & 63)) & 1); } } __inline static __u16 __fswab16(__u16 val ) { { return ((__u16 )((int )((short )((int )val << 8)) | (int )((short )((int )val >> 8)))); } } __inline static __u32 __fswab32(__u32 val ) { int tmp ; { { tmp = __builtin_bswap32(val); } return ((__u32 )tmp); } } __inline static bool is_power_of_2(unsigned long n ) { { return ((bool )(n != 0UL && (n & (n - 1UL)) == 0UL)); } } extern int printk(char const * , ...) ; extern int __dynamic_netdev_dbg(struct _ddebug * , struct net_device const * , char const * , ...) ; extern void __might_sleep(char const * , int , int ) ; extern unsigned long simple_strtoul(char const * , char ** , unsigned int ) ; extern int snprintf(char * , size_t , char const * , ...) ; extern int sscanf(char const * , char const * , ...) ; extern void __bad_percpu_size(void) ; extern unsigned long __phys_addr(unsigned long ) ; extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern void *memmove(void * , void const * , size_t ) ; extern int memcmp(void const * , void const * , size_t ) ; extern size_t strlen(char const * ) ; extern char *strncpy(char * , char const * , __kernel_size_t ) ; extern size_t strlcpy(char * , char const * , size_t ) ; extern char *strchr(char const * , int ) ; extern char *kstrdup(char const * , gfp_t ) ; extern void warn_slowpath_null(char const * , int const ) ; __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/7cdfae59d3ac602223400f61d8829e28/klever-core-work-dir/dfaa16b/linux-alloc-spinlock/lkbce/arch/x86/include/asm/paravirt.h"), "i" (804), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static long IS_ERR(void const *ptr ) ; __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } __inline static void rep_nop(void) { { __asm__ volatile ("rep; nop": : : "memory"); return; } } __inline static void cpu_relax(void) { { { rep_nop(); } return; } } __inline static int atomic_read(atomic_t const *v ) { { return ((int )*((int volatile *)(& v->counter))); } } __inline static void atomic_inc(atomic_t *v ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; incl %0": "+m" (v->counter)); return; } } extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; void ldv_spin_lock__xmit_lock_of_netdev_queue(void) ; void ldv_spin_unlock__xmit_lock_of_netdev_queue(void) ; int ldv_spin_trylock__xmit_lock_of_netdev_queue(void) ; void ldv_spin_lock_lock_of_myri10ge_slice_state(void) ; void ldv_spin_unlock_lock_of_myri10ge_slice_state(void) ; extern void ldv_switch_to_interrupt_context(void) ; extern void ldv_switch_to_process_context(void) ; extern int __preempt_count ; __inline static void __preempt_count_add(int val ) { int pao_ID__ ; { pao_ID__ = 0; { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incb %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decb %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addb %1, %%gs:%P0": "+m" (__preempt_count): "qi" (val)); } goto ldv_6685; case_2: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incw %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decw %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addw %1, %%gs:%P0": "+m" (__preempt_count): "ri" (val)); } goto ldv_6685; case_4: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incl %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decl %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addl %1, %%gs:%P0": "+m" (__preempt_count): "ri" (val)); } goto ldv_6685; case_8: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incq %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decq %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addq %1, %%gs:%P0": "+m" (__preempt_count): "re" (val)); } goto ldv_6685; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_6685: ; return; } } __inline static void __preempt_count_sub(int val ) { int pao_ID__ ; { pao_ID__ = 0; { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incb %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decb %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addb %1, %%gs:%P0": "+m" (__preempt_count): "qi" (- val)); } goto ldv_6697; case_2: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incw %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decw %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addw %1, %%gs:%P0": "+m" (__preempt_count): "ri" (- val)); } goto ldv_6697; case_4: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incl %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decl %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addl %1, %%gs:%P0": "+m" (__preempt_count): "ri" (- val)); } goto ldv_6697; case_8: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incq %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decq %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addq %1, %%gs:%P0": "+m" (__preempt_count): "re" (- val)); } goto ldv_6697; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_6697: ; return; } } extern void __local_bh_disable_ip(unsigned long , unsigned int ) ; __inline static void local_bh_disable(void) { { { __local_bh_disable_ip((unsigned long )((void *)0), 512U); } return; } } extern void __local_bh_enable_ip(unsigned long , unsigned int ) ; __inline static void local_bh_enable(void) { { { __local_bh_enable_ip((unsigned long )((void *)0), 512U); } return; } } extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_lock_bh(raw_spinlock_t * ) ; extern int _raw_spin_trylock(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_bh(raw_spinlock_t * ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField19.rlock); } } __inline static void spin_lock(spinlock_t *lock ) { { { _raw_spin_lock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_lock_69(spinlock_t *lock ) ; __inline static void ldv_spin_lock_103(spinlock_t *lock ) ; __inline static void ldv_spin_lock_103(spinlock_t *lock ) ; __inline static void spin_lock_bh(spinlock_t *lock ) { { { _raw_spin_lock_bh(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_lock_bh_107(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_107(spinlock_t *lock ) ; __inline static int spin_trylock(spinlock_t *lock ) { int tmp ; { { tmp = _raw_spin_trylock(& lock->__annonCompField19.rlock); } return (tmp); } } __inline static int ldv_spin_trylock_71(spinlock_t *lock ) ; __inline static void spin_unlock(spinlock_t *lock ) { { { _raw_spin_unlock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_unlock_72(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_104(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_104(spinlock_t *lock ) ; __inline static void spin_unlock_bh(spinlock_t *lock ) { { { _raw_spin_unlock_bh(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_unlock_bh_108(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_108(spinlock_t *lock ) ; extern void __init_waitqueue_head(wait_queue_head_t * , char const * , struct lock_class_key * ) ; extern void __wake_up(wait_queue_head_t * , unsigned int , int , void * ) ; extern long prepare_to_wait_event(wait_queue_head_t * , wait_queue_t * , int ) ; extern void finish_wait(wait_queue_head_t * , wait_queue_t * ) ; extern void synchronize_sched(void) ; __inline static void synchronize_rcu(void) { { { synchronize_sched(); } return; } } extern unsigned long volatile jiffies ; extern void init_timer_key(struct timer_list * , unsigned int , char const * , struct lock_class_key * ) ; extern int mod_timer(struct timer_list * , unsigned long ) ; static int ldv_mod_timer_118(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; extern void add_timer(struct timer_list * ) ; extern int del_timer_sync(struct timer_list * ) ; static int ldv_del_timer_sync_117(struct timer_list *ldv_func_arg1 ) ; extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *system_wq ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; extern bool cancel_work_sync(struct work_struct * ) ; __inline static bool queue_work(struct workqueue_struct *wq , struct work_struct *work ) { bool tmp ; { { tmp = queue_work_on(8192, wq, work); } return (tmp); } } __inline static bool schedule_work(struct work_struct *work ) { bool tmp ; { { tmp = queue_work(system_wq, work); } return (tmp); } } __inline static char const *kobject_name(struct kobject const *kobj ) { { return ((char const *)kobj->name); } } extern void dump_page(struct page * , char * ) ; __inline static unsigned char readb(void const volatile *addr ) { unsigned char ret ; { __asm__ volatile ("movb %1,%0": "=q" (ret): "m" (*((unsigned char volatile *)addr)): "memory"); return (ret); } } __inline static unsigned int readl(void const volatile *addr ) { unsigned int ret ; { __asm__ volatile ("movl %1,%0": "=r" (ret): "m" (*((unsigned int volatile *)addr)): "memory"); return (ret); } } __inline static void writel(unsigned int val , void volatile *addr ) { { __asm__ volatile ("movl %0,%1": : "r" (val), "m" (*((unsigned int volatile *)addr)): "memory"); return; } } __inline static void __writeb(unsigned char val , void volatile *addr ) { { __asm__ volatile ("movb %0,%1": : "q" (val), "m" (*((unsigned char volatile *)addr))); return; } } __inline static void __writel(unsigned int val , void volatile *addr ) { { __asm__ volatile ("movl %0,%1": : "r" (val), "m" (*((unsigned int volatile *)addr))); return; } } extern void iounmap(void volatile * ) ; static void *ldv_vmalloc_102(unsigned long ldv_func_arg1 ) ; extern void vfree(void const * ) ; __inline static void memcpy_fromio(void *dst , void const volatile *src , size_t count ) { { { memcpy(dst, (void const *)src, count); } return; } } extern void *ioremap_wc(resource_size_t , unsigned long ) ; extern int cpu_number ; extern void __bad_size_call_parameter(void) ; __inline static struct page *alloc_pages(gfp_t flags , unsigned int order ) ; extern int driver_for_each_device(struct device_driver * , struct device * , void * , int (*)(struct device * , void * ) ) ; __inline static char const *dev_name(struct device const *dev ) { char const *tmp ; { if ((unsigned long )dev->init_name != (unsigned long )((char const */* const */)0)) { return ((char const *)dev->init_name); } else { } { tmp = kobject_name(& dev->kobj); } return (tmp); } } static void *ldv_dev_get_drvdata_81(struct device const *dev ) ; static void *ldv_dev_get_drvdata_111(struct device const *dev ) ; static int ldv_dev_set_drvdata_82(struct device *dev , void *data ) ; extern int dev_err(struct device const * , char const * , ...) ; extern int dev_warn(struct device const * , char const * , ...) ; extern int _dev_info(struct device const * , char const * , ...) ; extern void __const_udelay(unsigned long ) ; extern void msleep(unsigned int ) ; __inline static int PageTail(struct page const *page ) { int tmp ; { { tmp = constant_test_bit(15L, (unsigned long const volatile *)(& page->flags)); } return (tmp); } } __inline static struct page *compound_head(struct page *page ) { struct page *head ; int tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; { { tmp___1 = PageTail((struct page const *)page); tmp___2 = ldv__builtin_expect(tmp___1 != 0, 0L); } if (tmp___2 != 0L) { { head = page->__annonCompField46.first_page; __asm__ volatile ("": : : "memory"); tmp = PageTail((struct page const *)page); tmp___0 = ldv__builtin_expect(tmp != 0, 1L); } if (tmp___0 != 0L) { return (head); } else { } } else { } return (page); } } extern bool __get_page_tail(struct page * ) ; __inline static void get_page(struct page *page ) { bool tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; int tmp___3 ; long tmp___4 ; { { tmp___1 = PageTail((struct page const *)page); tmp___2 = ldv__builtin_expect(tmp___1 != 0, 0L); } if (tmp___2 != 0L) { { tmp = __get_page_tail(page); tmp___0 = ldv__builtin_expect((long )tmp, 1L); } if (tmp___0 != 0L) { return; } else { } } else { } { tmp___3 = atomic_read((atomic_t const *)(& page->__annonCompField43.__annonCompField42.__annonCompField41._count)); tmp___4 = ldv__builtin_expect(tmp___3 <= 0, 0L); } if (tmp___4 != 0L) { { dump_page(page, (char *)0); __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/mm.h"), "i" (488), "i" (12UL)); __builtin_unreachable(); } } else { } { atomic_inc(& page->__annonCompField43.__annonCompField42.__annonCompField41._count); } return; } } extern void put_page(struct page * ) ; __inline static void *lowmem_page_address(struct page const *page ) { { return ((void *)((unsigned long )((unsigned long long )(((long )page + 24189255811072L) / 64L) << 12) + 0xffff880000000000UL)); } } extern long schedule_timeout(long ) ; __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } extern int net_ratelimit(void) ; extern void kfree(void const * ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) ; __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; extern __wsum csum_partial(void const * , int , __wsum ) ; __inline static __wsum csum_add(__wsum csum , __wsum addend ) { u32 res ; { res = csum; res = res + addend; return (res + (u32 )(res < addend)); } } __inline static __wsum csum_sub(__wsum csum , __wsum addend ) { __wsum tmp ; { { tmp = csum_add(csum, ~ addend); } return (tmp); } } __inline static __wsum csum_unfold(__sum16 n ) { { return ((__wsum )n); } } __inline static int valid_dma_direction(int dma_direction ) { { return ((unsigned int )dma_direction <= 2U); } } __inline static int is_device_dma_capable(struct device *dev ) { { return ((unsigned long )dev->dma_mask != (unsigned long )((u64 *)0ULL) && *(dev->dma_mask) != 0ULL); } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern void debug_dma_alloc_coherent(struct device * , size_t , dma_addr_t , void * ) ; extern void debug_dma_free_coherent(struct device * , size_t , void * , dma_addr_t ) ; extern struct device x86_dma_fallback_dev ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); } if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static dma_addr_t dma_map_single_attrs(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, (struct page *)-24189255811072L + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, (struct page *)-24189255811072L + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); } return (addr); } } __inline static void dma_unmap_single_attrs(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (36), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, attrs); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 1); } return; } } __inline static dma_addr_t dma_map_page(struct device *dev , struct page *page , size_t offset , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; void *tmp___0 ; int tmp___1 ; long tmp___2 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = lowmem_page_address((struct page const *)page); kmemcheck_mark_initialized(tmp___0 + offset, (unsigned int )size); tmp___1 = valid_dma_direction((int )dir); tmp___2 = ldv__builtin_expect(tmp___1 == 0, 0L); } if (tmp___2 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (79), "i" (12UL)); __builtin_unreachable(); } } else { } { addr = (*(ops->map_page))(dev, page, offset, size, dir, (struct dma_attrs *)0); debug_dma_map_page(dev, page, offset, size, (int )dir, addr, 0); } return (addr); } } __inline static void dma_unmap_page(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (91), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, (struct dma_attrs *)0); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 0); } return; } } extern int dma_supported(struct device * , u64 ) ; extern int dma_set_mask(struct device * , u64 ) ; __inline static unsigned long dma_alloc_coherent_mask(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; { dma_mask = 0UL; dma_mask = (unsigned long )dev->coherent_dma_mask; if (dma_mask == 0UL) { dma_mask = (int )gfp & 1 ? 16777215UL : 4294967295UL; } else { } return (dma_mask); } } __inline static gfp_t dma_alloc_coherent_gfp_flags(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; unsigned long tmp ; { { tmp = dma_alloc_coherent_mask(dev, gfp); dma_mask = tmp; } if ((unsigned long long )dma_mask <= 16777215ULL) { gfp = gfp | 1U; } else { } if ((unsigned long long )dma_mask <= 4294967295ULL && (gfp & 1U) == 0U) { gfp = gfp | 4U; } else { } return (gfp); } } __inline static void *dma_alloc_attrs(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t gfp , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; void *memory ; int tmp___0 ; gfp_t tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; gfp = gfp & 4294967288U; } if ((unsigned long )dev == (unsigned long )((struct device *)0)) { dev = & x86_dma_fallback_dev; } else { } { tmp___0 = is_device_dma_capable(dev); } if (tmp___0 == 0) { return ((void *)0); } else { } if ((unsigned long )ops->alloc == (unsigned long )((void *(*)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ))0)) { return ((void *)0); } else { } { tmp___1 = dma_alloc_coherent_gfp_flags(dev, gfp); memory = (*(ops->alloc))(dev, size, dma_handle, tmp___1, attrs); debug_dma_alloc_coherent(dev, size, *dma_handle, memory); } return (memory); } } __inline static void dma_free_attrs(struct device *dev , size_t size , void *vaddr , dma_addr_t bus , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int __ret_warn_on ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; _flags = arch_local_save_flags(); tmp___0 = arch_irqs_disabled_flags(_flags); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/7cdfae59d3ac602223400f61d8829e28/klever-core-work-dir/dfaa16b/linux-alloc-spinlock/lkbce/arch/x86/include/asm/dma-mapping.h", 166); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); debug_dma_free_coherent(dev, size, vaddr, bus); } if ((unsigned long )ops->free != (unsigned long )((void (*)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ))0)) { { (*(ops->free))(dev, size, vaddr, bus, attrs); } } else { } return; } } __inline static int dma_set_coherent_mask(struct device *dev , u64 mask ) { int tmp ; { { tmp = dma_supported(dev, mask); } if (tmp == 0) { return (-5); } else { } dev->coherent_dma_mask = mask; return (0); } } __inline static void *dma_zalloc_coherent(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t flags ) ; __inline static unsigned int skb_frag_size(skb_frag_t const *frag ) { { return ((unsigned int )frag->size); } } __inline static void skb_frag_size_set(skb_frag_t *frag , unsigned int size ) { { frag->size = size; return; } } extern int skb_pad(struct sk_buff * , int ) ; __inline static unsigned char *skb_end_pointer(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->end); } } __inline static bool skb_is_nonlinear(struct sk_buff const *skb ) { { return ((unsigned int )skb->data_len != 0U); } } __inline static unsigned int skb_headlen(struct sk_buff const *skb ) { { return ((unsigned int )skb->len - (unsigned int )skb->data_len); } } __inline static void __skb_fill_page_desc(struct sk_buff *skb , int i , struct page *page , int off , int size ) { skb_frag_t *frag ; unsigned char *tmp ; { { tmp = skb_end_pointer((struct sk_buff const *)skb); frag = (skb_frag_t *)(& ((struct skb_shared_info *)tmp)->frags) + (unsigned long )i; frag->page.p = page; frag->page_offset = (__u32 )off; skb_frag_size_set(frag, (unsigned int )size); page = compound_head(page); } if ((int )page->__annonCompField43.__annonCompField38.pfmemalloc && (unsigned long )page->__annonCompField37.mapping == (unsigned long )((struct address_space *)0)) { skb->pfmemalloc = 1U; } else { } return; } } __inline static void skb_fill_page_desc(struct sk_buff *skb , int i , struct page *page , int off , int size ) { unsigned char *tmp ; { { __skb_fill_page_desc(skb, i, page, off, size); tmp = skb_end_pointer((struct sk_buff const *)skb); ((struct skb_shared_info *)tmp)->nr_frags = (unsigned int )((unsigned char )i) + 1U; } return; } } extern unsigned char *__pskb_pull_tail(struct sk_buff * , int ) ; __inline static unsigned int skb_headroom(struct sk_buff const *skb ) { { return ((unsigned int )((long )skb->data) - (unsigned int )((long )skb->head)); } } __inline static unsigned char *skb_transport_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->transport_header); } } __inline static int skb_checksum_start_offset(struct sk_buff const *skb ) { unsigned int tmp ; { { tmp = skb_headroom(skb); } return ((int )((unsigned int )skb->__annonCompField68.__annonCompField67.csum_start - tmp)); } } __inline static int skb_transport_offset(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_transport_header(skb); } return ((int )((unsigned int )((long )tmp) - (unsigned int )((long )skb->data))); } } static struct sk_buff *ldv___netdev_alloc_skb_57(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; __inline static struct sk_buff *netdev_alloc_skb(struct net_device *dev , unsigned int length ) { struct sk_buff *tmp ; { { tmp = ldv___netdev_alloc_skb_57(dev, length, 32U); } return (tmp); } } __inline static struct page *skb_frag_page(skb_frag_t const *frag ) { { return ((struct page *)frag->page.p); } } __inline static dma_addr_t skb_frag_dma_map(struct device *dev , skb_frag_t const *frag , size_t offset , size_t size , enum dma_data_direction dir ) { struct page *tmp ; dma_addr_t tmp___0 ; { { tmp = skb_frag_page(frag); tmp___0 = dma_map_page(dev, tmp, (size_t )frag->page_offset + offset, size, dir); } return (tmp___0); } } __inline static int skb_padto(struct sk_buff *skb , unsigned int len ) { unsigned int size ; long tmp ; int tmp___0 ; { { size = skb->len; tmp = ldv__builtin_expect(size >= len, 1L); } if (tmp != 0L) { return (0); } else { } { tmp___0 = skb_pad(skb, (int )(len - size)); } return (tmp___0); } } __inline static int __skb_linearize(struct sk_buff *skb ) { unsigned char *tmp ; { { tmp = __pskb_pull_tail(skb, (int )skb->data_len); } return ((unsigned long )tmp != (unsigned long )((unsigned char *)0U) ? 0 : -12); } } __inline static int skb_linearize(struct sk_buff *skb ) { int tmp___0 ; int tmp___1 ; bool tmp___2 ; { { tmp___2 = skb_is_nonlinear((struct sk_buff const *)skb); } if ((int )tmp___2) { { tmp___0 = __skb_linearize(skb); tmp___1 = tmp___0; } } else { tmp___1 = 0; } return (tmp___1); } } __inline static void skb_copy_to_linear_data(struct sk_buff *skb , void const *from , unsigned int const len ) { { { memcpy((void *)skb->data, from, (size_t )len); } return; } } __inline static u16 skb_get_queue_mapping(struct sk_buff const *skb ) { { return ((u16 )skb->queue_mapping); } } __inline static void skb_record_rx_queue(struct sk_buff *skb , u16 rx_queue ) { { skb->queue_mapping = (unsigned int )rx_queue + 1U; return; } } __inline static bool skb_is_gso(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_end_pointer(skb); } return ((unsigned int )((struct skb_shared_info *)tmp)->gso_size != 0U); } } __inline static bool skb_is_gso_v6(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_end_pointer(skb); } return (((int )((struct skb_shared_info *)tmp)->gso_type & 16) != 0); } } __inline static void ethtool_cmd_speed_set(struct ethtool_cmd *ep , __u32 speed ) { { ep->speed = (unsigned short )speed; ep->speed_hi = (unsigned short )(speed >> 16); return; } } extern u32 ethtool_op_get_link(struct net_device * ) ; extern void __napi_schedule(struct napi_struct * ) ; __inline static bool napi_disable_pending(struct napi_struct *n ) { int tmp ; { { tmp = constant_test_bit(1L, (unsigned long const volatile *)(& n->state)); } return (tmp != 0); } } __inline static bool napi_schedule_prep(struct napi_struct *n ) { bool tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = napi_disable_pending(n); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { tmp___1 = test_and_set_bit(0L, (unsigned long volatile *)(& n->state)); } if (tmp___1 == 0) { tmp___2 = 1; } else { tmp___2 = 0; } } else { tmp___2 = 0; } return ((bool )tmp___2); } } __inline static void napi_schedule(struct napi_struct *n ) { bool tmp ; { { tmp = napi_schedule_prep(n); } if ((int )tmp) { { __napi_schedule(n); } } else { } return; } } extern void napi_complete(struct napi_struct * ) ; extern void napi_hash_add(struct napi_struct * ) ; extern void napi_hash_del(struct napi_struct * ) ; __inline static void napi_disable(struct napi_struct *n ) { int tmp ; { { __might_sleep("include/linux/netdevice.h", 486, 0); set_bit(1L, (unsigned long volatile *)(& n->state)); } goto ldv_38488; ldv_38487: { msleep(1U); } ldv_38488: { tmp = test_and_set_bit(0L, (unsigned long volatile *)(& n->state)); } if (tmp != 0) { goto ldv_38487; } else { } { clear_bit(1L, (unsigned long volatile *)(& n->state)); } return; } } __inline static void napi_enable(struct napi_struct *n ) { int tmp ; long tmp___0 ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& n->state)); tmp___0 = ldv__builtin_expect(tmp == 0, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/netdevice.h"), "i" (502), "i" (12UL)); __builtin_unreachable(); } } else { } { __asm__ volatile ("": : : "memory"); clear_bit(0L, (unsigned long volatile *)(& n->state)); } return; } } __inline static struct netdev_queue *netdev_get_tx_queue(struct net_device const *dev , unsigned int index ) { { return ((struct netdev_queue *)dev->_tx + (unsigned long )index); } } __inline static void *netdev_priv(struct net_device const *dev ) { { return ((void *)dev + 3200U); } } extern void netif_napi_add(struct net_device * , struct napi_struct * , int (*)(struct napi_struct * , int ) , int ) ; extern void netif_napi_del(struct napi_struct * ) ; extern void free_netdev(struct net_device * ) ; static void ldv_free_netdev_121(struct net_device *ldv_func_arg1 ) ; static void ldv_free_netdev_123(struct net_device *ldv_func_arg1 ) ; extern int netpoll_trap(void) ; extern void __netif_schedule(struct Qdisc * ) ; __inline static void netif_tx_start_queue(struct netdev_queue *dev_queue ) { { { clear_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_tx_wake_queue(struct netdev_queue *dev_queue ) { int tmp ; int tmp___0 ; { { tmp = netpoll_trap(); } if (tmp != 0) { { netif_tx_start_queue(dev_queue); } return; } else { } { tmp___0 = test_and_set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } if (tmp___0 != 0) { { __netif_schedule(dev_queue->qdisc); } } else { } return; } } __inline static void netif_tx_wake_all_queues(struct net_device *dev ) { unsigned int i ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { i = 0U; goto ldv_39397; ldv_39396: { tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; netif_tx_wake_queue(txq); i = i + 1U; } ldv_39397: ; if (i < dev->num_tx_queues) { goto ldv_39396; } else { } return; } } __inline static void netif_tx_stop_queue(struct netdev_queue *dev_queue ) { int __ret_warn_on ; long tmp ; long tmp___0 ; { { __ret_warn_on = (unsigned long )dev_queue == (unsigned long )((struct netdev_queue *)0); tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("include/linux/netdevice.h", 2128); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { printk("\016netif_stop_queue() cannot be called before register_netdev()\n"); } return; } else { } { set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_tx_stop_all_queues(struct net_device *dev ) { unsigned int i ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { i = 0U; goto ldv_39413; ldv_39412: { tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; netif_tx_stop_queue(txq); i = i + 1U; } ldv_39413: ; if (i < dev->num_tx_queues) { goto ldv_39412; } else { } return; } } __inline static bool netif_tx_queue_stopped(struct netdev_queue const *dev_queue ) { int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev_queue->state)); } return (tmp != 0); } } __inline static bool netif_running(struct net_device const *dev ) { int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev->state)); } return (tmp != 0); } } extern int netif_set_real_num_tx_queues(struct net_device * , unsigned int ) ; extern int netif_set_real_num_rx_queues(struct net_device * , unsigned int ) ; extern int netif_get_num_default_rss_queues(void) ; extern void __dev_kfree_skb_irq(struct sk_buff * , enum skb_free_reason ) ; extern void __dev_kfree_skb_any(struct sk_buff * , enum skb_free_reason ) ; __inline static void dev_kfree_skb_irq(struct sk_buff *skb ) { { { __dev_kfree_skb_irq(skb, 1); } return; } } __inline static void dev_kfree_skb_any(struct sk_buff *skb ) { { { __dev_kfree_skb_any(skb, 1); } return; } } extern int netif_receive_skb(struct sk_buff * ) ; extern struct sk_buff *napi_get_frags(struct napi_struct * ) ; extern gro_result_t napi_gro_frags(struct napi_struct * ) ; extern void netif_carrier_on(struct net_device * ) ; extern void netif_carrier_off(struct net_device * ) ; extern void netif_device_detach(struct net_device * ) ; extern void netif_device_attach(struct net_device * ) ; __inline static u32 netif_msg_init(int debug_value , int default_msg_enable_bits ) { { if ((unsigned int )debug_value > 31U) { return ((u32 )default_msg_enable_bits); } else { } if (debug_value == 0) { return (0U); } else { } return ((u32 )((1 << debug_value) + -1)); } } __inline static void __netif_tx_lock(struct netdev_queue *txq , int cpu ) { { { ldv_spin_lock_69(& txq->_xmit_lock); txq->xmit_lock_owner = cpu; } return; } } __inline static bool __netif_tx_trylock(struct netdev_queue *txq ) { bool ok ; int tmp ; int pscr_ret__ ; void const *__vpp_verify ; int pfo_ret__ ; int pfo_ret_____0 ; int pfo_ret_____1 ; int pfo_ret_____2 ; long tmp___0 ; { { tmp = ldv_spin_trylock_71(& txq->_xmit_lock); ok = tmp != 0; tmp___0 = ldv__builtin_expect((long )ok, 1L); } if (tmp___0 != 0L) { __vpp_verify = (void const *)0; { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2___0; } else { } if (4UL == 4UL) { goto case_4___1; } else { } if (4UL == 8UL) { goto case_8___2; } else { } goto switch_default___3; case_1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___0; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1___0: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "m" (cpu_number)); goto ldv_39823; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_39823; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_39823; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_39823; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break___0: /* CIL Label */ ; } ldv_39823: pscr_ret__ = pfo_ret__; goto ldv_39829; case_2___0: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___1; } else { } if (4UL == 2UL) { goto case_2___1; } else { } if (4UL == 4UL) { goto case_4___0; } else { } if (4UL == 8UL) { goto case_8___0; } else { } goto switch_default___0; case_1___1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39833; case_2___1: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39833; case_4___0: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39833; case_8___0: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39833; switch_default___0: /* CIL Label */ { __bad_percpu_size(); } switch_break___1: /* CIL Label */ ; } ldv_39833: pscr_ret__ = pfo_ret_____0; goto ldv_39829; case_4___1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___2; } else { } if (4UL == 2UL) { goto case_2___2; } else { } if (4UL == 4UL) { goto case_4___2; } else { } if (4UL == 8UL) { goto case_8___1; } else { } goto switch_default___1; case_1___2: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39842; case_2___2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39842; case_4___2: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39842; case_8___1: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39842; switch_default___1: /* CIL Label */ { __bad_percpu_size(); } switch_break___2: /* CIL Label */ ; } ldv_39842: pscr_ret__ = pfo_ret_____1; goto ldv_39829; case_8___2: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___3; } else { } if (4UL == 2UL) { goto case_2___3; } else { } if (4UL == 4UL) { goto case_4___3; } else { } if (4UL == 8UL) { goto case_8___3; } else { } goto switch_default___2; case_1___3: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39851; case_2___3: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39851; case_4___3: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39851; case_8___3: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39851; switch_default___2: /* CIL Label */ { __bad_percpu_size(); } switch_break___3: /* CIL Label */ ; } ldv_39851: pscr_ret__ = pfo_ret_____2; goto ldv_39829; switch_default___3: /* CIL Label */ { __bad_size_call_parameter(); } goto ldv_39829; switch_break: /* CIL Label */ ; } ldv_39829: txq->xmit_lock_owner = pscr_ret__; } else { } return (ok); } } __inline static void __netif_tx_unlock(struct netdev_queue *txq ) { { { txq->xmit_lock_owner = -1; ldv_spin_unlock_72(& txq->_xmit_lock); } return; } } __inline static void netif_tx_disable(struct net_device *dev ) { unsigned int i ; int cpu ; int pscr_ret__ ; void const *__vpp_verify ; int pfo_ret__ ; int pfo_ret_____0 ; int pfo_ret_____1 ; int pfo_ret_____2 ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { { local_bh_disable(); __vpp_verify = (void const *)0; } { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2___0; } else { } if (4UL == 4UL) { goto case_4___1; } else { } if (4UL == 8UL) { goto case_8___2; } else { } goto switch_default___3; case_1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___0; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1___0: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "m" (cpu_number)); goto ldv_39942; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_39942; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_39942; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_39942; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break___0: /* CIL Label */ ; } ldv_39942: pscr_ret__ = pfo_ret__; goto ldv_39948; case_2___0: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___1; } else { } if (4UL == 2UL) { goto case_2___1; } else { } if (4UL == 4UL) { goto case_4___0; } else { } if (4UL == 8UL) { goto case_8___0; } else { } goto switch_default___0; case_1___1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39952; case_2___1: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39952; case_4___0: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39952; case_8___0: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39952; switch_default___0: /* CIL Label */ { __bad_percpu_size(); } switch_break___1: /* CIL Label */ ; } ldv_39952: pscr_ret__ = pfo_ret_____0; goto ldv_39948; case_4___1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___2; } else { } if (4UL == 2UL) { goto case_2___2; } else { } if (4UL == 4UL) { goto case_4___2; } else { } if (4UL == 8UL) { goto case_8___1; } else { } goto switch_default___1; case_1___2: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39961; case_2___2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39961; case_4___2: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39961; case_8___1: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39961; switch_default___1: /* CIL Label */ { __bad_percpu_size(); } switch_break___2: /* CIL Label */ ; } ldv_39961: pscr_ret__ = pfo_ret_____1; goto ldv_39948; case_8___2: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___3; } else { } if (4UL == 2UL) { goto case_2___3; } else { } if (4UL == 4UL) { goto case_4___3; } else { } if (4UL == 8UL) { goto case_8___3; } else { } goto switch_default___2; case_1___3: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39970; case_2___3: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39970; case_4___3: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39970; case_8___3: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39970; switch_default___2: /* CIL Label */ { __bad_percpu_size(); } switch_break___3: /* CIL Label */ ; } ldv_39970: pscr_ret__ = pfo_ret_____2; goto ldv_39948; switch_default___3: /* CIL Label */ { __bad_size_call_parameter(); } goto ldv_39948; switch_break: /* CIL Label */ ; } ldv_39948: cpu = pscr_ret__; i = 0U; goto ldv_39980; ldv_39979: { tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; __netif_tx_lock(txq, cpu); netif_tx_stop_queue(txq); __netif_tx_unlock(txq); i = i + 1U; } ldv_39980: ; if (i < dev->num_tx_queues) { goto ldv_39979; } else { } { local_bh_enable(); } return; } } extern int register_netdev(struct net_device * ) ; static int ldv_register_netdev_120(struct net_device *ldv_func_arg1 ) ; extern void unregister_netdev(struct net_device * ) ; static void ldv_unregister_netdev_122(struct net_device *ldv_func_arg1 ) ; extern int skb_checksum_help(struct sk_buff * ) ; extern struct sk_buff *__skb_gso_segment(struct sk_buff * , netdev_features_t , bool ) ; __inline static struct sk_buff *skb_gso_segment(struct sk_buff *skb , netdev_features_t features ) { struct sk_buff *tmp ; { { tmp = __skb_gso_segment(skb, features, 1); } return (tmp); } } extern int netdev_err(struct net_device const * , char const * , ...) ; extern int netdev_warn(struct net_device const * , char const * , ...) ; extern int netdev_info(struct net_device const * , char const * , ...) ; extern void __iowrite64_copy(void * , void const * , size_t ) ; extern int pci_find_capability(struct pci_dev * , int ) ; extern int pci_find_ext_capability(struct pci_dev * , int ) ; extern int pci_bus_read_config_word(struct pci_bus * , unsigned int , int , u16 * ) ; extern int pci_bus_read_config_dword(struct pci_bus * , unsigned int , int , u32 * ) ; extern int pci_bus_write_config_byte(struct pci_bus * , unsigned int , int , u8 ) ; extern int pci_bus_write_config_dword(struct pci_bus * , unsigned int , int , u32 ) ; __inline static int pci_read_config_word(struct pci_dev const *dev , int where , u16 *val ) { int tmp ; { { tmp = pci_bus_read_config_word(dev->bus, dev->devfn, where, val); } return (tmp); } } __inline static int pci_read_config_dword(struct pci_dev const *dev , int where , u32 *val ) { int tmp ; { { tmp = pci_bus_read_config_dword(dev->bus, dev->devfn, where, val); } return (tmp); } } __inline static int pci_write_config_byte(struct pci_dev const *dev , int where , u8 val ) { int tmp ; { { tmp = pci_bus_write_config_byte(dev->bus, dev->devfn, where, (int )val); } return (tmp); } } __inline static int pci_write_config_dword(struct pci_dev const *dev , int where , u32 val ) { int tmp ; { { tmp = pci_bus_write_config_dword(dev->bus, dev->devfn, where, val); } return (tmp); } } extern int pcie_capability_read_word(struct pci_dev * , int , u16 * ) ; extern int pcie_capability_write_word(struct pci_dev * , int , u16 ) ; extern int pci_enable_device(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pcie_get_readrq(struct pci_dev * ) ; extern int pcie_set_readrq(struct pci_dev * , int ) ; extern int pci_save_state(struct pci_dev * ) ; extern void pci_restore_state(struct pci_dev * ) ; extern int pci_set_power_state(struct pci_dev * , pci_power_t ) ; extern pci_power_t pci_choose_state(struct pci_dev * , pm_message_t ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; static int ldv___pci_register_driver_125(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; static void ldv_pci_unregister_driver_127(struct pci_driver *ldv_func_arg1 ) ; extern int pci_enable_msi_block(struct pci_dev * , int ) ; extern void pci_disable_msi(struct pci_dev * ) ; extern int pci_enable_msix(struct pci_dev * , struct msix_entry * , int ) ; extern void pci_disable_msix(struct pci_dev * ) ; __inline static dma_addr_t pci_map_single(struct pci_dev *hwdev , void *ptr , size_t size , int direction ) { dma_addr_t tmp ; { { tmp = dma_map_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, ptr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); } return (tmp); } } __inline static void pci_unmap_single(struct pci_dev *hwdev , dma_addr_t dma_addr , size_t size , int direction ) { { { dma_unmap_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_addr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); } return; } } __inline static dma_addr_t pci_map_page(struct pci_dev *hwdev , struct page *page , unsigned long offset , size_t size , int direction ) { dma_addr_t tmp ; { { tmp = dma_map_page((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, page, offset, size, (enum dma_data_direction )direction); } return (tmp); } } __inline static void pci_unmap_page(struct pci_dev *hwdev , dma_addr_t dma_address , size_t size , int direction ) { { { dma_unmap_page((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_address, size, (enum dma_data_direction )direction); } return; } } __inline static int pci_set_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_mask(& dev->dev, mask); } return (tmp); } } __inline static int pci_set_consistent_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_coherent_mask(& dev->dev, mask); } return (tmp); } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata_81((struct device const *)(& pdev->dev)); } return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { { ldv_dev_set_drvdata_82(& pdev->dev, data); } return; } } __inline static char const *pci_name(struct pci_dev const *pdev ) { char const *tmp ; { { tmp = dev_name(& pdev->dev); } return (tmp); } } __inline static u16 pcie_caps_reg(struct pci_dev const *dev ) { { return ((u16 )dev->pcie_flags_reg); } } __inline static int pci_pcie_type(struct pci_dev const *dev ) { u16 tmp ; { { tmp = pcie_caps_reg(dev); } return (((int )tmp & 240) >> 4); } } extern void rtnl_lock(void) ; extern void rtnl_unlock(void) ; __inline static struct tcphdr *tcp_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_transport_header(skb); } return ((struct tcphdr *)tmp); } } __inline static unsigned int tcp_hdrlen(struct sk_buff const *skb ) { struct tcphdr *tmp ; { { tmp = tcp_hdr(skb); } return ((unsigned int )((int )tmp->doff * 4)); } } extern void __kernel_param_lock(void) ; extern void __kernel_param_unlock(void) ; extern struct kernel_param_ops param_ops_charp ; extern __be16 eth_type_trans(struct sk_buff * , struct net_device * ) ; extern int eth_validate_addr(struct net_device * ) ; extern struct net_device *alloc_etherdev_mqs(int , unsigned int , unsigned int ) ; static struct net_device *ldv_alloc_etherdev_mqs_119(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) ; __inline static bool is_zero_ether_addr(u8 const *addr ) { { return (((unsigned int )*((u32 const *)addr) | (unsigned int )*((u16 const *)addr + 4U)) == 0U); } } __inline static bool is_multicast_ether_addr(u8 const *addr ) { { return (((int )*addr & 1) != 0); } } __inline static bool is_valid_ether_addr(u8 const *addr ) { bool tmp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; { { tmp = is_multicast_ether_addr(addr); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { tmp___1 = is_zero_ether_addr(addr); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { tmp___3 = 1; } else { tmp___3 = 0; } } else { tmp___3 = 0; } return ((bool )tmp___3); } } __inline static struct sk_buff *__vlan_hwaccel_put_tag(struct sk_buff *skb , __be16 vlan_proto , u16 vlan_tci ) { { skb->vlan_proto = vlan_proto; skb->vlan_tci = (__u16 )((unsigned int )vlan_tci | 4096U); return (skb); } } extern void dca_register_notify(struct notifier_block * ) ; static void ldv_dca_register_notify_124(struct notifier_block *ldv_func_arg1 ) ; extern void dca_unregister_notify(struct notifier_block * ) ; static void ldv_dca_unregister_notify_126(struct notifier_block *ldv_func_arg1 ) ; extern int dca_add_requester(struct device * ) ; extern int dca_remove_requester(struct device * ) ; extern u8 dca3_get_tag(struct device * , int ) ; extern int request_firmware(struct firmware const ** , char const * , struct device * ) ; extern void release_firmware(struct firmware const * ) ; extern u32 crc32_le(u32 , unsigned char const * , size_t ) ; extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); } return (tmp); } } __inline static int ldv_request_irq_112(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; __inline static int ldv_request_irq_114(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; static void ldv_free_irq_113(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_115(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_116(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; extern int mtrr_add(unsigned long , unsigned long , unsigned int , bool ) ; extern int mtrr_del(int , unsigned long , unsigned long ) ; __inline static void skb_mark_napi_id(struct sk_buff *skb , struct napi_struct *napi ) { { skb->__annonCompField69.napi_id = napi->napi_id; return; } } static char *myri10ge_fw_unaligned = (char *)"myri10ge_ethp_z8e.dat"; static char *myri10ge_fw_aligned = (char *)"myri10ge_eth_z8e.dat"; static char *myri10ge_fw_rss_unaligned = (char *)"myri10ge_rss_ethp_z8e.dat"; static char *myri10ge_fw_rss_aligned = (char *)"myri10ge_rss_eth_z8e.dat"; static char *myri10ge_fw_name = (char *)0; static char const __param_str_myri10ge_fw_name[17U] = { 'm', 'y', 'r', 'i', '1', '0', 'g', 'e', '_', 'f', 'w', '_', 'n', 'a', 'm', 'e', '\000'}; static struct kernel_param const __param_myri10ge_fw_name = {(char const *)(& __param_str_myri10ge_fw_name), (struct kernel_param_ops const *)(& param_ops_charp), 420U, -1, {(void *)(& myri10ge_fw_name)}}; static char *myri10ge_fw_names[8U] = { (char *)0, (char *)0, (char *)0, (char *)0, (char *)0, (char *)0, (char *)0, (char *)0}; static int myri10ge_ecrc_enable = 1; static int myri10ge_small_bytes = -1; static int myri10ge_msi = 1; static int myri10ge_intr_coal_delay = 75; static int myri10ge_flow_control = 1; static int myri10ge_deassert_wait = 1; static int myri10ge_force_firmware = 0; static int myri10ge_initial_mtu = 9000; static int myri10ge_napi_weight = 64; static int myri10ge_watchdog_timeout = 1; static int myri10ge_max_irq_loops = 1048576; static int myri10ge_debug = -1; static int myri10ge_fill_thresh = 256; static int myri10ge_reset_recover = 1; static int myri10ge_max_slices = 1; static int myri10ge_rss_hash = 5; static int myri10ge_dca = 1; static void myri10ge_set_multicast_list(struct net_device *dev ) ; static netdev_tx_t myri10ge_sw_tso(struct sk_buff *skb , struct net_device *dev ) ; __inline static void put_be32(__be32 val , __be32 *p ) { { { __writel(val, (void volatile *)p); } return; } } static struct rtnl_link_stats64 *myri10ge_get_stats(struct net_device *dev , struct rtnl_link_stats64 *stats ) ; static void set_fw_name(struct myri10ge_priv *mgp , char *name , bool allocated ) { { if ((int )mgp->fw_name_allocated) { { kfree((void const *)mgp->fw_name); } } else { } mgp->fw_name = name; mgp->fw_name_allocated = allocated; return; } } static int myri10ge_send_cmd(struct myri10ge_priv *mgp , u32 cmd , struct myri10ge_cmd *data , int atomic ) { struct mcp_cmd *buf ; char buf_bytes[72U] ; struct mcp_cmd_response *response ; char *cmd_addr ; u32 dma_low ; u32 dma_high ; u32 result ; u32 value ; int sleep_total ; __u32 tmp ; __u32 tmp___0 ; __u32 tmp___1 ; __u32 tmp___2 ; __u32 tmp___3 ; __u32 tmp___4 ; __u32 tmp___5 ; __u32 tmp___6 ; { { response = mgp->cmd; cmd_addr = (char *)mgp->sram + 16252928U; sleep_total = 0; buf = (struct mcp_cmd *)(((unsigned long )(& buf_bytes) + 7UL) & 0xfffffffffffffff8UL); tmp = __fswab32(data->data0); buf->data0 = tmp; tmp___0 = __fswab32(data->data1); buf->data1 = tmp___0; tmp___1 = __fswab32(data->data2); buf->data2 = tmp___1; tmp___2 = __fswab32(cmd); buf->cmd = tmp___2; dma_low = (unsigned int )mgp->cmd_bus; dma_high = (unsigned int )(mgp->cmd_bus >> 32); tmp___3 = __fswab32(dma_low); buf->response_addr.low = tmp___3; tmp___4 = __fswab32(dma_high); buf->response_addr.high = tmp___4; response->result = 4294967295U; __asm__ volatile ("mfence": : : "memory"); __iowrite64_copy((void *)cmd_addr, (void const *)buf, 8UL); } if (atomic != 0) { sleep_total = 0; goto ldv_53182; ldv_53181: { __const_udelay(42950UL); __asm__ volatile ("mfence": : : "memory"); sleep_total = sleep_total + 10; } ldv_53182: ; if (sleep_total <= 999 && response->result == 4294967295U) { goto ldv_53181; } else { } } else { sleep_total = 0; goto ldv_53185; ldv_53184: { msleep(1U); sleep_total = sleep_total + 1; } ldv_53185: ; if (sleep_total <= 14 && response->result == 4294967295U) { goto ldv_53184; } else { } } { tmp___5 = __fswab32(response->result); result = tmp___5; tmp___6 = __fswab32(response->data); value = tmp___6; } if (result != 4294967295U) { if (result == 0U) { data->data0 = value; return (0); } else if (result == 1U) { return (-38); } else if (result == 10U) { return (-7); } else if ((result == 2U && cmd == 36U) && (data->data1 & 2U) != 0U) { return (-34); } else { { dev_err((struct device const *)(& (mgp->pdev)->dev), "command %d failed, result = %d\n", cmd, result); } return (-6); } } else { } { dev_err((struct device const *)(& (mgp->pdev)->dev), "command %d timed out, result = %d\n", cmd, result); } return (-11); } } static int myri10ge_read_mac_addr(struct myri10ge_priv *mgp ) { char *ptr ; char *limit ; int i ; unsigned long tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; char *tmp___3 ; { ptr = (char *)(& mgp->eeprom_strings); limit = (char *)(& mgp->eeprom_strings) + 256UL; goto ldv_53201; ldv_53200: { tmp___0 = memcmp((void const *)ptr, (void const *)"MAC=", 4UL); } if (tmp___0 == 0) { ptr = ptr + 4UL; mgp->mac_addr_string = ptr; i = 0; goto ldv_53195; ldv_53194: ; if ((unsigned long )(ptr + 2UL) > (unsigned long )limit) { goto abort; } else { } { tmp = simple_strtoul((char const *)ptr, & ptr, 16U); mgp->mac_addr[i] = (u8 )tmp; ptr = ptr + 1UL; i = i + 1; } ldv_53195: ; if (i <= 5) { goto ldv_53194; } else { } } else { } { tmp___1 = memcmp((void const *)ptr, (void const *)"PC=", 3UL); } if (tmp___1 == 0) { ptr = ptr + 3UL; mgp->product_code_string = ptr; } else { } { tmp___2 = memcmp((void const *)ptr, (void const *)"SN=", 3UL); } if (tmp___2 == 0) { { ptr = ptr + 3UL; mgp->serial_number = simple_strtoul((char const *)ptr, & ptr, 10U); } } else { } goto ldv_53198; ldv_53197: ; ldv_53198: ; if ((unsigned long )ptr < (unsigned long )limit) { tmp___3 = ptr; ptr = ptr + 1; if ((int )((signed char )*tmp___3) != 0) { goto ldv_53197; } else { goto ldv_53199; } } else { } ldv_53199: ; ldv_53201: ; if ((int )((signed char )*ptr) != 0 && (unsigned long )ptr < (unsigned long )limit) { goto ldv_53200; } else { } return (0); abort: { dev_err((struct device const *)(& (mgp->pdev)->dev), "failed to parse eeprom_strings\n"); } return (-6); } } static void myri10ge_dummy_rdma(struct myri10ge_priv *mgp , int enable ) { char *submit ; __be32 buf[16U] ; u32 dma_low ; u32 dma_high ; int i ; __u32 tmp ; __u32 tmp___0 ; __u32 tmp___1 ; __u32 tmp___2 ; __u32 tmp___3 ; { { (mgp->cmd)->data = 0U; __asm__ volatile ("mfence": : : "memory"); dma_low = (unsigned int )mgp->cmd_bus; dma_high = (unsigned int )(mgp->cmd_bus >> 32); tmp = __fswab32(dma_high); buf[0] = tmp; tmp___0 = __fswab32(dma_low); buf[1] = tmp___0; buf[2] = 4294967295U; tmp___1 = __fswab32(dma_high); buf[3] = tmp___1; tmp___2 = __fswab32(dma_low); buf[4] = tmp___2; tmp___3 = __fswab32((__u32 )enable); buf[5] = tmp___3; submit = (char *)mgp->sram + 16515520U; __iowrite64_copy((void *)submit, (void const *)(& buf), 8UL); i = 0; } goto ldv_53213; ldv_53212: { msleep(1U); i = i + 1; } ldv_53213: ; if ((mgp->cmd)->data != 4294967295U && i <= 19) { goto ldv_53212; } else { } if ((mgp->cmd)->data != 4294967295U) { { dev_err((struct device const *)(& (mgp->pdev)->dev), "dummy rdma %s failed\n", enable != 0 ? (char *)"enable" : (char *)"disable"); } } else { } return; } } static int myri10ge_validate_firmware(struct myri10ge_priv *mgp , struct mcp_gen_header *hdr ) { struct device *dev ; __u32 tmp ; __u32 tmp___0 ; { { dev = & (mgp->pdev)->dev; tmp___0 = __fswab32(hdr->mcp_type); } if (tmp___0 != 1163151392U) { { tmp = __fswab32(hdr->mcp_type); dev_err((struct device const *)dev, "Bad firmware type: 0x%x\n", tmp); } return (-22); } else { } { strncpy((char *)(& mgp->fw_version), (char const *)(& hdr->version), 128UL); sscanf((char const *)(& mgp->fw_version), "%d.%d.%d", & mgp->fw_ver_major, & mgp->fw_ver_minor, & mgp->fw_ver_tiny); } if (((unsigned long )*((long *)mgp + 111UL) & 0xffffffffffffffffUL) != 17179869185UL) { { dev_err((struct device const *)dev, "Found firmware version %s\n", (char *)(& mgp->fw_version)); dev_err((struct device const *)dev, "Driver needs %d.%d\n", 1, 4); } return (-22); } else { } return (0); } } static int myri10ge_load_hotplug_firmware(struct myri10ge_priv *mgp , u32 *size ) { unsigned int crc ; unsigned int reread_crc ; struct firmware const *fw ; struct device *dev ; unsigned char *fw_readback ; struct mcp_gen_header *hdr ; size_t hdr_offset ; int status ; unsigned int i ; __u32 tmp ; unsigned int _min1 ; unsigned int _min2 ; void *tmp___0 ; { { dev = & (mgp->pdev)->dev; status = request_firmware(& fw, (char const *)mgp->fw_name, dev); } if (status < 0) { { dev_err((struct device const *)dev, "Unable to load %s firmware image via hotplug\n", mgp->fw_name); status = -22; } goto abort_with_nothing; } else { } if ((unsigned long )fw->size >= (unsigned long )(mgp->sram_size + -1048576) || (unsigned long )fw->size <= 63UL) { { dev_err((struct device const *)dev, "Firmware size invalid:%d\n", (int )fw->size); status = -22; } goto abort_with_fw; } else { } { tmp = __fswab32(*((__be32 *)fw->data + 60U)); hdr_offset = (size_t )tmp; } if ((hdr_offset & 3UL) != 0UL || hdr_offset + 192UL > (unsigned long )fw->size) { { dev_err((struct device const *)dev, "Bad firmware file\n"); status = -22; } goto abort_with_fw; } else { } { hdr = (struct mcp_gen_header *)(fw->data + hdr_offset); status = myri10ge_validate_firmware(mgp, hdr); } if (status != 0) { goto abort_with_fw; } else { } { crc = crc32_le(4294967295U, (unsigned char const *)fw->data, fw->size); i = 0U; } goto ldv_53239; ldv_53238: { _min1 = 256U; _min2 = (unsigned int )fw->size - i; __iowrite64_copy((void *)(mgp->sram + ((unsigned long )i + 1048576UL)), (void const *)fw->data + (unsigned long )i, (size_t )((_min1 < _min2 ? _min1 : _min2) / 8U)); __asm__ volatile ("mfence": : : "memory"); readb((void const volatile *)mgp->sram); i = i + 256U; } ldv_53239: ; if ((unsigned long )i < (unsigned long )fw->size) { goto ldv_53238; } else { } { tmp___0 = ldv_vmalloc_102(fw->size); fw_readback = (unsigned char *)tmp___0; } if ((unsigned long )fw_readback == (unsigned long )((unsigned char *)0U)) { status = -12; goto abort_with_fw; } else { } { memcpy_fromio((void *)fw_readback, (void const volatile *)mgp->sram + 1048576U, fw->size); reread_crc = crc32_le(4294967295U, (unsigned char const *)fw_readback, fw->size); vfree((void const *)fw_readback); } if (crc != reread_crc) { { dev_err((struct device const *)dev, "CRC failed(fw-len=%u), got 0x%x (expect 0x%x)\n", (unsigned int )fw->size, reread_crc, crc); status = -5; } goto abort_with_fw; } else { } *size = (unsigned int )fw->size; abort_with_fw: { release_firmware(fw); } abort_with_nothing: ; return (status); } } static int myri10ge_adopt_running_firmware(struct myri10ge_priv *mgp ) { struct mcp_gen_header *hdr ; struct device *dev ; size_t bytes ; size_t hdr_offset ; int status ; unsigned int tmp ; __u32 tmp___0 ; void *tmp___1 ; { { dev = & (mgp->pdev)->dev; bytes = 192UL; tmp = readl((void const volatile *)mgp->sram + 60U); tmp___0 = __fswab32(tmp); hdr_offset = (size_t )tmp___0; } if ((hdr_offset & 3UL) != 0UL || hdr_offset + 192UL > (unsigned long )mgp->sram_size) { { dev_err((struct device const *)dev, "Running firmware has bad header offset (%d)\n", (int )hdr_offset); } return (-5); } else { } { tmp___1 = kmalloc(bytes, 208U); hdr = (struct mcp_gen_header *)tmp___1; } if ((unsigned long )hdr == (unsigned long )((struct mcp_gen_header *)0)) { return (-12); } else { } { memcpy_fromio((void *)hdr, (void const volatile *)(mgp->sram + hdr_offset), bytes); status = myri10ge_validate_firmware(mgp, hdr); kfree((void const *)hdr); } if ((((unsigned long )*((long *)mgp + 111UL) & 0xffffffffffffffffUL) == 17179869185UL && mgp->fw_ver_tiny > 3) && mgp->fw_ver_tiny <= 11) { { mgp->adopted_rx_filter_bug = 1; dev_warn((struct device const *)dev, "Adopting fw %d.%d.%d: working around rx filter bug\n", mgp->fw_ver_major, mgp->fw_ver_minor, mgp->fw_ver_tiny); } } else { } return (status); } } static int myri10ge_get_firmware_capabilities(struct myri10ge_priv *mgp ) { struct myri10ge_cmd cmd ; int status ; { { mgp->features = 65545U; status = myri10ge_send_cmd(mgp, 44U, & cmd, 0); } if (status == 0) { mgp->max_tso6 = cmd.data0; mgp->features = mgp->features | 1048576U; } else { } { status = myri10ge_send_cmd(mgp, 12U, & cmd, 0); } if (status != 0) { { dev_err((struct device const *)(& (mgp->pdev)->dev), "failed MXGEFW_CMD_GET_RX_RING_SIZE\n"); } return (-6); } else { } mgp->max_intr_slots = (int )((cmd.data0 / 8U) * 2U); return (0); } } static int myri10ge_load_firmware(struct myri10ge_priv *mgp , int adopt ) { char *submit ; __be32 buf[16U] ; u32 dma_low ; u32 dma_high ; u32 size ; int status ; int i ; __u32 tmp ; __u32 tmp___0 ; __u32 tmp___1 ; { { size = 0U; status = myri10ge_load_hotplug_firmware(mgp, & size); } if (status != 0) { if (adopt == 0) { return (status); } else { } { dev_warn((struct device const *)(& (mgp->pdev)->dev), "hotplug firmware loading failed\n"); } if (status == -5) { return (status); } else { } { status = myri10ge_adopt_running_firmware(mgp); } if (status != 0) { { dev_err((struct device const *)(& (mgp->pdev)->dev), "failed to adopt running firmware\n"); } return (status); } else { } { _dev_info((struct device const *)(& (mgp->pdev)->dev), "Successfully adopted running firmware\n"); } if (mgp->tx_boundary == 4096) { { dev_warn((struct device const *)(& (mgp->pdev)->dev), "Using firmware currently running on NIC. For optimal\n"); dev_warn((struct device const *)(& (mgp->pdev)->dev), "performance consider loading optimized firmware\n"); dev_warn((struct device const *)(& (mgp->pdev)->dev), "via hotplug\n"); } } else { } { set_fw_name(mgp, (char *)"adopted", 0); mgp->tx_boundary = 2048; myri10ge_dummy_rdma(mgp, 1); status = myri10ge_get_firmware_capabilities(mgp); } return (status); } else { } { (mgp->cmd)->data = 0U; __asm__ volatile ("mfence": : : "memory"); dma_low = (unsigned int )mgp->cmd_bus; dma_high = (unsigned int )(mgp->cmd_bus >> 32); tmp = __fswab32(dma_high); buf[0] = tmp; tmp___0 = __fswab32(dma_low); buf[1] = tmp___0; buf[2] = 4294967295U; buf[3] = 134221824U; tmp___1 = __fswab32(size - 8U); buf[4] = tmp___1; buf[5] = 134217728U; buf[6] = 0U; submit = (char *)mgp->sram + 16515072U; __iowrite64_copy((void *)submit, (void const *)(& buf), 8UL); __asm__ volatile ("mfence": : : "memory"); msleep(1U); __asm__ volatile ("mfence": : : "memory"); i = 0; } goto ldv_53266; ldv_53265: { msleep((unsigned int )(1 << i)); i = i + 1; } ldv_53266: ; if ((mgp->cmd)->data != 4294967295U && i <= 8) { goto ldv_53265; } else { } if ((mgp->cmd)->data != 4294967295U) { { dev_err((struct device const *)(& (mgp->pdev)->dev), "handoff failed\n"); } return (-6); } else { } { myri10ge_dummy_rdma(mgp, 1); status = myri10ge_get_firmware_capabilities(mgp); } return (status); } } static int myri10ge_update_mac_address(struct myri10ge_priv *mgp , u8 *addr ) { struct myri10ge_cmd cmd ; int status ; { { cmd.data0 = (u32 )(((((int )*addr << 24) | ((int )*(addr + 1UL) << 16)) | ((int )*(addr + 2UL) << 8)) | (int )*(addr + 3UL)); cmd.data1 = (u32 )(((int )*(addr + 4UL) << 8) | (int )*(addr + 5UL)); status = myri10ge_send_cmd(mgp, 22U, & cmd, 0); } return (status); } } static int myri10ge_change_pause(struct myri10ge_priv *mgp , int pause ) { struct myri10ge_cmd cmd ; int status ; int ctl ; { { ctl = pause != 0 ? 23 : 24; status = myri10ge_send_cmd(mgp, (u32 )ctl, & cmd, 0); } if (status != 0) { { netdev_err((struct net_device const *)mgp->dev, "Failed to set flow control mode\n"); } return (status); } else { } mgp->pause = pause; return (0); } } static void myri10ge_change_promisc(struct myri10ge_priv *mgp , int promisc , int atomic ) { struct myri10ge_cmd cmd ; int status ; int ctl ; { { ctl = promisc != 0 ? 20 : 21; status = myri10ge_send_cmd(mgp, (u32 )ctl, & cmd, atomic); } if (status != 0) { { netdev_err((struct net_device const *)mgp->dev, "Failed to set promisc mode\n"); } } else { } return; } } static int myri10ge_dma_test(struct myri10ge_priv *mgp , int test_type ) { struct myri10ge_cmd cmd ; int status ; u32 len ; struct page *dmatest_page ; dma_addr_t dmatest_bus ; char *test ; { { test = (char *)" "; dmatest_page = alloc_pages(208U, 0U); } if ((unsigned long )dmatest_page == (unsigned long )((struct page *)0)) { return (-12); } else { } { dmatest_bus = pci_map_page(mgp->pdev, dmatest_page, 0UL, 4096UL, 0); len = (u32 )mgp->tx_boundary; cmd.data0 = (unsigned int )dmatest_bus; cmd.data1 = (unsigned int )(dmatest_bus >> 32); cmd.data2 = len * 65536U; status = myri10ge_send_cmd(mgp, (u32 )test_type, & cmd, 0); } if (status != 0) { test = (char *)"read"; goto abort; } else { } { mgp->read_dma = (((cmd.data0 >> 16) * len) * 2U) / (cmd.data0 & 65535U); cmd.data0 = (unsigned int )dmatest_bus; cmd.data1 = (unsigned int )(dmatest_bus >> 32); cmd.data2 = len; status = myri10ge_send_cmd(mgp, (u32 )test_type, & cmd, 0); } if (status != 0) { test = (char *)"write"; goto abort; } else { } { mgp->write_dma = (((cmd.data0 >> 16) * len) * 2U) / (cmd.data0 & 65535U); cmd.data0 = (unsigned int )dmatest_bus; cmd.data1 = (unsigned int )(dmatest_bus >> 32); cmd.data2 = len * 65537U; status = myri10ge_send_cmd(mgp, (u32 )test_type, & cmd, 0); } if (status != 0) { test = (char *)"read/write"; goto abort; } else { } mgp->read_write_dma = (((cmd.data0 >> 16) * len) * 4U) / (cmd.data0 & 65535U); abort: { pci_unmap_page(mgp->pdev, dmatest_bus, 4096UL, 0); put_page(dmatest_page); } if (status != 0 && test_type != 32) { { dev_warn((struct device const *)(& (mgp->pdev)->dev), "DMA %s benchmark failed: %d\n", test, status); } } else { } return (status); } } __inline static void myri10ge_ss_init_lock(struct myri10ge_slice_state *ss ) { struct lock_class_key __key ; { { spinlock_check(& ss->lock); __raw_spin_lock_init(& ss->lock.__annonCompField19.rlock, "&(&ss->lock)->rlock", & __key); ss->state = 0U; } return; } } __inline static bool myri10ge_ss_lock_napi(struct myri10ge_slice_state *ss ) { bool rc ; int __ret_warn_on ; long tmp ; { { rc = 1; ldv_spin_lock_103(& ss->lock); } if ((ss->state & 3U) != 0U) { { __ret_warn_on = (int )ss->state & 1; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/ethernet/myricom/myri10ge/myri10ge.c", 940); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); ss->state = ss->state | 4U; rc = 0; ss->lock_napi_yield = ss->lock_napi_yield + 1UL; } } else { ss->state = 1U; } { ldv_spin_unlock_104(& ss->lock); } return (rc); } } __inline static void myri10ge_ss_unlock_napi(struct myri10ge_slice_state *ss ) { int __ret_warn_on ; long tmp ; { { ldv_spin_lock_103(& ss->lock); __ret_warn_on = (ss->state & 6U) != 0U; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/ethernet/myricom/myri10ge/myri10ge.c", 953); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); ss->state = 0U; ldv_spin_unlock_104(& ss->lock); } return; } } __inline static bool myri10ge_ss_lock_poll(struct myri10ge_slice_state *ss ) { bool rc ; { { rc = 1; ldv_spin_lock_bh_107(& ss->lock); } if ((ss->state & 3U) != 0U) { ss->state = ss->state | 8U; rc = 0; ss->lock_poll_yield = ss->lock_poll_yield + 1UL; } else { ss->state = ss->state | 2U; } { ldv_spin_unlock_bh_108(& ss->lock); } return (rc); } } __inline static void myri10ge_ss_unlock_poll(struct myri10ge_slice_state *ss ) { int __ret_warn_on ; long tmp ; { { ldv_spin_lock_bh_107(& ss->lock); __ret_warn_on = (int )ss->state & 1; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/ethernet/myricom/myri10ge/myri10ge.c", 975); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); ss->state = 0U; ldv_spin_unlock_bh_108(& ss->lock); } return; } } __inline static bool myri10ge_ss_busy_polling(struct myri10ge_slice_state *ss ) { int __ret_warn_on ; long tmp ; { { __ret_warn_on = (ss->state & 3U) == 0U; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/ethernet/myricom/myri10ge/myri10ge.c", 982); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } return ((ss->state & 10U) != 0U); } } static int myri10ge_reset(struct myri10ge_priv *mgp ) { struct myri10ge_cmd cmd ; struct myri10ge_slice_state *ss ; int i ; int status ; size_t bytes ; unsigned long dca_tag_off ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; __u32 tmp___3 ; { { memset((void *)(& cmd), 0, 12UL); status = myri10ge_send_cmd(mgp, 1U, & cmd, 0); } if (status != 0) { { dev_err((struct device const *)(& (mgp->pdev)->dev), "failed reset\n"); } return (-6); } else { } { myri10ge_dma_test(mgp, 25); cmd.data0 = 0U; myri10ge_send_cmd(mgp, 52U, & cmd, 0); bytes = (unsigned long )mgp->max_intr_slots * 4UL; cmd.data0 = (unsigned int )bytes; status = myri10ge_send_cmd(mgp, 13U, & cmd, 0); } if (mgp->num_slices > 1) { { status = myri10ge_send_cmd(mgp, 35U, & cmd, 0); } if (status != 0) { { dev_err((struct device const *)(& (mgp->pdev)->dev), "failed to get number of slices\n"); } } else { } cmd.data0 = (u32 )mgp->num_slices; cmd.data1 = 1U; if ((mgp->dev)->real_num_tx_queues > 1U) { cmd.data1 = cmd.data1 | 2U; } else { } { status = myri10ge_send_cmd(mgp, 36U, & cmd, 0); } if (status != 0 && (mgp->dev)->real_num_tx_queues > 1U) { { netif_set_real_num_tx_queues(mgp->dev, 1U); cmd.data0 = (u32 )mgp->num_slices; cmd.data1 = 1U; status = myri10ge_send_cmd(mgp, 36U, & cmd, 0); } } else { } if (status != 0) { { dev_err((struct device const *)(& (mgp->pdev)->dev), "failed to set number of slices\n"); } return (status); } else { } } else { } i = 0; goto ldv_53339; ldv_53338: { ss = mgp->ss + (unsigned long )i; cmd.data0 = (unsigned int )ss->rx_done.bus; cmd.data1 = (unsigned int )(ss->rx_done.bus >> 32); cmd.data2 = (u32 )i; tmp = myri10ge_send_cmd(mgp, 3U, & cmd, 0); status = status | tmp; i = i + 1; } ldv_53339: ; if (i < mgp->num_slices) { goto ldv_53338; } else { } { tmp___0 = myri10ge_send_cmd(mgp, 9U, & cmd, 0); status = status | tmp___0; i = 0; } goto ldv_53342; ldv_53341: ss = mgp->ss + (unsigned long )i; ss->irq_claim = (__be32 *)(mgp->sram + ((unsigned long )cmd.data0 + (unsigned long )(i * 8))); i = i + 1; ldv_53342: ; if (i < mgp->num_slices) { goto ldv_53341; } else { } { tmp___1 = myri10ge_send_cmd(mgp, 10U, & cmd, 0); status = status | tmp___1; mgp->irq_deassert = (__be32 *)mgp->sram + (unsigned long )cmd.data0; tmp___2 = myri10ge_send_cmd(mgp, 17U, & cmd, 0); status = status | tmp___2; mgp->intr_coal_delay_ptr = (__be32 *)mgp->sram + (unsigned long )cmd.data0; } if (status != 0) { { dev_err((struct device const *)(& (mgp->pdev)->dev), "failed set interrupt parameters\n"); } return (status); } else { } { tmp___3 = __fswab32((__u32 )mgp->intr_coal_delay); put_be32(tmp___3, mgp->intr_coal_delay_ptr); status = myri10ge_send_cmd(mgp, 56U, & cmd, 0); dca_tag_off = (unsigned long )cmd.data0; i = 0; } goto ldv_53345; ldv_53344: ss = mgp->ss + (unsigned long )i; if (status == 0) { ss->dca_tag = (__be32 *)(mgp->sram + (dca_tag_off + (unsigned long )(i * 4))); } else { ss->dca_tag = (__be32 *)0U; } i = i + 1; ldv_53345: ; if (i < mgp->num_slices) { goto ldv_53344; } else { } mgp->link_changes = 0U; i = 0; goto ldv_53348; ldv_53347: { ss = mgp->ss + (unsigned long )i; memset((void *)ss->rx_done.entry, 0, bytes); ss->tx.req = 0; ss->tx.done = 0; ss->tx.pkt_start = 0; ss->tx.pkt_done = 0; ss->rx_big.cnt = 0; ss->rx_small.cnt = 0; ss->rx_done.idx = 0; ss->rx_done.cnt = 0; ss->tx.wake_queue = 0; ss->tx.stop_queue = 0; i = i + 1; } ldv_53348: ; if (i < mgp->num_slices) { goto ldv_53347; } else { } { status = myri10ge_update_mac_address(mgp, (mgp->dev)->dev_addr); myri10ge_change_pause(mgp, mgp->pause); myri10ge_set_multicast_list(mgp->dev); } return (status); } } static int myri10ge_toggle_relaxed(struct pci_dev *pdev , int on ) { int ret ; u16 ctl ; { { pcie_capability_read_word(pdev, 8, & ctl); ret = ((int )ctl & 16) >> 4; } if (ret != on) { { ctl = (unsigned int )ctl & 65519U; ctl = (u16 )((int )((short )ctl) | (int )((short )(on << 4))); pcie_capability_write_word(pdev, 8, (int )ctl); } } else { } return (ret); } } static void myri10ge_write_dca(struct myri10ge_slice_state *ss , int cpu , int tag ) { __u32 tmp ; { { ss->cached_dca_tag = tag; tmp = __fswab32((__u32 )tag); put_be32(tmp, ss->dca_tag); } return; } } __inline static void myri10ge_update_dca(struct myri10ge_slice_state *ss ) { int cpu ; int pscr_ret__ ; void const *__vpp_verify ; int pfo_ret__ ; int pfo_ret_____0 ; int pfo_ret_____1 ; int pfo_ret_____2 ; int tag ; u8 tmp ; { { __preempt_count_add(1); __asm__ volatile ("": : : "memory"); __vpp_verify = (void const *)0; } { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2___0; } else { } if (4UL == 4UL) { goto case_4___1; } else { } if (4UL == 8UL) { goto case_8___2; } else { } goto switch_default___3; case_1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___0; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1___0: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "m" (cpu_number)); goto ldv_53370; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_53370; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_53370; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_53370; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break___0: /* CIL Label */ ; } ldv_53370: pscr_ret__ = pfo_ret__; goto ldv_53376; case_2___0: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___1; } else { } if (4UL == 2UL) { goto case_2___1; } else { } if (4UL == 4UL) { goto case_4___0; } else { } if (4UL == 8UL) { goto case_8___0; } else { } goto switch_default___0; case_1___1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____0): "m" (cpu_number)); goto ldv_53380; case_2___1: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_53380; case_4___0: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_53380; case_8___0: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_53380; switch_default___0: /* CIL Label */ { __bad_percpu_size(); } switch_break___1: /* CIL Label */ ; } ldv_53380: pscr_ret__ = pfo_ret_____0; goto ldv_53376; case_4___1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___2; } else { } if (4UL == 2UL) { goto case_2___2; } else { } if (4UL == 4UL) { goto case_4___2; } else { } if (4UL == 8UL) { goto case_8___1; } else { } goto switch_default___1; case_1___2: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____1): "m" (cpu_number)); goto ldv_53389; case_2___2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_53389; case_4___2: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_53389; case_8___1: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_53389; switch_default___1: /* CIL Label */ { __bad_percpu_size(); } switch_break___2: /* CIL Label */ ; } ldv_53389: pscr_ret__ = pfo_ret_____1; goto ldv_53376; case_8___2: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___3; } else { } if (4UL == 2UL) { goto case_2___3; } else { } if (4UL == 4UL) { goto case_4___3; } else { } if (4UL == 8UL) { goto case_8___3; } else { } goto switch_default___2; case_1___3: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____2): "m" (cpu_number)); goto ldv_53398; case_2___3: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_53398; case_4___3: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_53398; case_8___3: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_53398; switch_default___2: /* CIL Label */ { __bad_percpu_size(); } switch_break___3: /* CIL Label */ ; } ldv_53398: pscr_ret__ = pfo_ret_____2; goto ldv_53376; switch_default___3: /* CIL Label */ { __bad_size_call_parameter(); } goto ldv_53376; switch_break: /* CIL Label */ ; } ldv_53376: cpu = pscr_ret__; if (cpu != ss->cpu) { { tmp = dca3_get_tag(& ((ss->mgp)->pdev)->dev, cpu); tag = (int )tmp; } if (ss->cached_dca_tag != tag) { { myri10ge_write_dca(ss, cpu, tag); } } else { } ss->cpu = cpu; } else { } { __asm__ volatile ("": : : "memory"); __preempt_count_sub(1); } return; } } static void myri10ge_setup_dca(struct myri10ge_priv *mgp ) { int err ; int i ; struct pci_dev *pdev ; { pdev = mgp->pdev; if ((unsigned long )(mgp->ss)->dca_tag == (unsigned long )((__be32 *)0U) || mgp->dca_enabled != 0) { return; } else { } if (myri10ge_dca == 0) { { dev_err((struct device const *)(& pdev->dev), "dca disabled by administrator\n"); } return; } else { } { err = dca_add_requester(& pdev->dev); } if (err != 0) { if (err != -19) { { dev_err((struct device const *)(& pdev->dev), "dca_add_requester() failed, err=%d\n", err); } } else { } return; } else { } { mgp->relaxed_order = myri10ge_toggle_relaxed(pdev, 0); mgp->dca_enabled = 1; i = 0; } goto ldv_53415; ldv_53414: { (mgp->ss + (unsigned long )i)->cpu = -1; (mgp->ss + (unsigned long )i)->cached_dca_tag = -1; myri10ge_update_dca(mgp->ss + (unsigned long )i); i = i + 1; } ldv_53415: ; if (i < mgp->num_slices) { goto ldv_53414; } else { } return; } } static void myri10ge_teardown_dca(struct myri10ge_priv *mgp ) { struct pci_dev *pdev ; { pdev = mgp->pdev; if (mgp->dca_enabled == 0) { return; } else { } mgp->dca_enabled = 0; if (mgp->relaxed_order != 0) { { myri10ge_toggle_relaxed(pdev, 1); } } else { } { dca_remove_requester(& pdev->dev); } return; } } static int myri10ge_notify_dca_device(struct device *dev , void *data ) { struct myri10ge_priv *mgp ; unsigned long event ; void *tmp ; { { tmp = ldv_dev_get_drvdata_111((struct device const *)dev); mgp = (struct myri10ge_priv *)tmp; event = *((unsigned long *)data); } if (event == 1UL) { { myri10ge_setup_dca(mgp); } } else if (event == 2UL) { { myri10ge_teardown_dca(mgp); } } else { } return (0); } } __inline static void myri10ge_submit_8rx(struct mcp_kreq_ether_recv *dst , struct mcp_kreq_ether_recv *src ) { __be32 low ; { { low = src->addr_low; src->addr_low = 4294967295U; __iowrite64_copy((void *)dst, (void const *)src, 4UL); __asm__ volatile ("mfence": : : "memory"); __iowrite64_copy((void *)dst + 4U, (void const *)src + 4U, 4UL); __asm__ volatile ("mfence": : : "memory"); src->addr_low = low; put_be32(low, & dst->addr_low); __asm__ volatile ("mfence": : : "memory"); } return; } } static void myri10ge_alloc_rx_pages(struct myri10ge_priv *mgp , struct myri10ge_rx_buf *rx , int bytes , int watchdog ) { struct page *page ; int idx ; long tmp ; long tmp___0 ; __u32 tmp___1 ; __u32 tmp___2 ; { { tmp = ldv__builtin_expect((long )(rx->watchdog_needed != 0 && watchdog == 0), 0L); } if (tmp != 0L) { return; } else { } goto ldv_53446; ldv_53445: idx = rx->fill_cnt & rx->mask; if ((unsigned int )(rx->page_offset + bytes) <= 4096U) { { get_page(rx->page); } } else { { page = alloc_pages(16416U, 0U); tmp___0 = ldv__builtin_expect((unsigned long )page == (unsigned long )((struct page *)0), 0L); } if (tmp___0 != 0L) { if (rx->fill_cnt - rx->cnt <= 15) { rx->watchdog_needed = 1; } else { } return; } else { } { rx->page = page; rx->page_offset = 0; rx->bus = pci_map_page(mgp->pdev, page, 0UL, 4096UL, 2); } } { (rx->info + (unsigned long )idx)->page = rx->page; (rx->info + (unsigned long )idx)->page_offset = rx->page_offset; (rx->info + (unsigned long )idx)->bus = rx->bus; tmp___1 = __fswab32((unsigned int )rx->bus + (unsigned int )rx->page_offset); (rx->shadow + (unsigned long )idx)->addr_low = tmp___1; tmp___2 = __fswab32((unsigned int )(rx->bus >> 32)); (rx->shadow + (unsigned long )idx)->addr_high = tmp___2; rx->page_offset = rx->page_offset + ((bytes + 63) & -64); rx->fill_cnt = rx->fill_cnt + 1; } if ((idx & 7) == 7) { { myri10ge_submit_8rx(rx->lanai + ((unsigned long )idx + 0xfffffffffffffff9UL), rx->shadow + ((unsigned long )idx + 0xfffffffffffffff9UL)); } } else { } ldv_53446: ; if (rx->fill_cnt != (rx->cnt + rx->mask) + 1) { goto ldv_53445; } else { } return; } } __inline static void myri10ge_unmap_rx_page(struct pci_dev *pdev , struct myri10ge_rx_buffer_state *info , int bytes ) { { if ((unsigned int )bytes > 2047U || (unsigned int )(info->page_offset + bytes * 2) > 4096U) { { pci_unmap_page(pdev, info->bus & 0xfffffffffffff000ULL, 4096UL, 2); } } else { } return; } } __inline static void myri10ge_vlan_rx(struct net_device *dev , void *addr , struct sk_buff *skb ) { u8 *va ; struct vlan_ethhdr *veh ; struct skb_frag_struct *frag ; __wsum vsum ; __u16 tmp ; unsigned char *tmp___0 ; unsigned int tmp___1 ; { va = (u8 *)addr; va = va + 2UL; veh = (struct vlan_ethhdr *)va; if ((dev->features & 256ULL) != 0ULL && (unsigned int )veh->h_vlan_proto == 129U) { if ((unsigned int )*((unsigned char *)skb + 124UL) == 8U) { { vsum = csum_partial((void const *)va + 14U, 4, 0U); skb->__annonCompField68.csum = csum_sub(skb->__annonCompField68.csum, vsum); } } else { } { tmp = __fswab16((int )veh->h_vlan_TCI); __vlan_hwaccel_put_tag(skb, 129, (int )tmp); memmove((void *)va + 4U, (void const *)va, 12UL); skb->len = skb->len - 4U; skb->data_len = skb->data_len - 4U; tmp___0 = skb_end_pointer((struct sk_buff const *)skb); frag = (struct skb_frag_struct *)(& ((struct skb_shared_info *)tmp___0)->frags); frag->page_offset = frag->page_offset + 4U; tmp___1 = skb_frag_size((skb_frag_t const *)frag); skb_frag_size_set(frag, tmp___1 - 4U); } } else { } return; } } __inline static int myri10ge_rx_done(struct myri10ge_slice_state *ss , int len , __wsum csum ) { struct myri10ge_priv *mgp ; struct sk_buff *skb ; struct skb_frag_struct *rx_frags ; struct myri10ge_rx_buf *rx ; int i ; int idx ; int remainder ; int bytes ; struct pci_dev *pdev ; struct net_device *dev ; u8 *va ; bool polling ; void *tmp ; long tmp___0 ; unsigned char *tmp___1 ; int hlen ; struct page *tmp___2 ; void *tmp___3 ; { mgp = ss->mgp; pdev = mgp->pdev; dev = mgp->dev; if (len <= mgp->small_bytes) { rx = & ss->rx_small; bytes = mgp->small_bytes; } else { rx = & ss->rx_big; bytes = mgp->big_bytes; } { len = len + 2; idx = rx->cnt & rx->mask; tmp = lowmem_page_address((struct page const *)(rx->info + (unsigned long )idx)->page); va = (u8 *)tmp + (unsigned long )(rx->info + (unsigned long )idx)->page_offset; __builtin_prefetch((void const *)va); polling = myri10ge_ss_busy_polling(ss); } if ((int )polling) { { skb = netdev_alloc_skb(dev, 80U); } } else { { skb = napi_get_frags(& ss->napi); } } { tmp___0 = ldv__builtin_expect((unsigned long )skb == (unsigned long )((struct sk_buff *)0), 0L); } if (tmp___0 != 0L) { ss->stats.rx_dropped = ss->stats.rx_dropped + 1UL; i = 0; remainder = len; goto ldv_53480; ldv_53479: { myri10ge_unmap_rx_page(pdev, rx->info + (unsigned long )idx, bytes); put_page((rx->info + (unsigned long )idx)->page); rx->cnt = rx->cnt + 1; idx = rx->cnt & rx->mask; remainder = (int )((unsigned int )remainder - 4096U); i = i + 1; } ldv_53480: ; if (remainder > 0) { goto ldv_53479; } else { } return (0); } else { } { tmp___1 = skb_end_pointer((struct sk_buff const *)skb); rx_frags = (struct skb_frag_struct *)(& ((struct skb_shared_info *)tmp___1)->frags); i = 0; remainder = len; } goto ldv_53483; ldv_53482: { myri10ge_unmap_rx_page(pdev, rx->info + (unsigned long )idx, bytes); skb_fill_page_desc(skb, i, (rx->info + (unsigned long )idx)->page, (rx->info + (unsigned long )idx)->page_offset, (int )(4096U < (unsigned int )remainder ? 4096U : (unsigned int )remainder)); rx->cnt = rx->cnt + 1; idx = rx->cnt & rx->mask; remainder = (int )((unsigned int )remainder - 4096U); i = i + 1; } ldv_53483: ; if (remainder > 0) { goto ldv_53482; } else { } rx_frags->page_offset = rx_frags->page_offset + 2U; rx_frags->size = rx_frags->size - 2U; len = len + -2; skb->len = (unsigned int )len; skb->data_len = (unsigned int )len; skb->truesize = skb->truesize + (unsigned int )len; if ((dev->features & 4294967296ULL) != 0ULL) { skb->ip_summed = 2U; skb->__annonCompField68.csum = csum; } else { } { myri10ge_vlan_rx(mgp->dev, (void *)va, skb); skb_record_rx_queue(skb, (int )((u16 )(((long )ss - (long )mgp->ss) / 832L))); skb_mark_napi_id(skb, & ss->napi); } if ((int )polling) { { hlen = (int )(64U < skb->len ? 64U : skb->len); tmp___2 = skb_frag_page((skb_frag_t const *)rx_frags); tmp___3 = lowmem_page_address((struct page const *)tmp___2); va = (u8 *)tmp___3 + (unsigned long )rx_frags->page_offset; skb_copy_to_linear_data(skb, (void const *)va, (unsigned int const )hlen); rx_frags->page_offset = rx_frags->page_offset + (__u32 )hlen; rx_frags->size = rx_frags->size - (__u32 )hlen; skb->data_len = skb->data_len - (unsigned int )hlen; skb->tail = skb->tail + (sk_buff_data_t )hlen; skb->protocol = eth_type_trans(skb, dev); netif_receive_skb(skb); } } else { { napi_gro_frags(& ss->napi); } } return (1); } } __inline static void myri10ge_tx_done(struct myri10ge_slice_state *ss , int mcp_index ) { struct pci_dev *pdev ; struct myri10ge_tx_buf *tx ; struct netdev_queue *dev_queue ; struct sk_buff *skb ; int idx ; int len ; bool tmp ; bool tmp___0 ; { pdev = (ss->mgp)->pdev; tx = & ss->tx; goto ldv_53497; ldv_53496: idx = tx->done & tx->mask; skb = (tx->info + (unsigned long )idx)->skb; (tx->info + (unsigned long )idx)->skb = (struct sk_buff *)0; if ((tx->info + (unsigned long )idx)->last != 0) { tx->pkt_done = tx->pkt_done + 1; (tx->info + (unsigned long )idx)->last = 0; } else { } tx->done = tx->done + 1; len = (int )(tx->info + (unsigned long )idx)->len; (tx->info + (unsigned long )idx)->len = 0U; if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { { ss->stats.tx_bytes = ss->stats.tx_bytes + (unsigned long )skb->len; ss->stats.tx_packets = ss->stats.tx_packets + 1UL; dev_kfree_skb_irq(skb); } if (len != 0) { { pci_unmap_single(pdev, (tx->info + (unsigned long )idx)->bus, (size_t )len, 1); } } else { } } else if (len != 0) { { pci_unmap_page(pdev, (tx->info + (unsigned long )idx)->bus, (size_t )len, 1); } } else { } ldv_53497: ; if (tx->pkt_done != mcp_index) { goto ldv_53496; } else { } { dev_queue = netdev_get_tx_queue((struct net_device const *)ss->dev, (unsigned int )(((long )ss - (long )(ss->mgp)->ss) / 832L)); } if (((ss->mgp)->dev)->real_num_tx_queues > 1U) { { tmp = __netif_tx_trylock(dev_queue); } if ((int )tmp) { if (tx->req == tx->done) { { tx->queue_active = 0; put_be32(16777216U, tx->send_stop); __asm__ volatile ("mfence": : : "memory"); __asm__ volatile ("": : : "memory"); } } else { } { __netif_tx_unlock(dev_queue); } } else { } } else { } { tmp___0 = netif_tx_queue_stopped((struct netdev_queue const *)dev_queue); } if (((int )tmp___0 && tx->req - tx->done < tx->mask >> 1) && (ss->mgp)->running == 3) { { tx->wake_queue = tx->wake_queue + 1; netif_tx_wake_queue(dev_queue); } } else { } return; } } __inline static int myri10ge_clean_rx_done(struct myri10ge_slice_state *ss , int budget ) { struct myri10ge_rx_done *rx_done ; struct myri10ge_priv *mgp ; unsigned long rx_bytes ; unsigned long rx_packets ; unsigned long rx_ok ; int idx ; int cnt ; int work_done ; u16 length ; __wsum checksum ; __u16 tmp ; int tmp___0 ; { rx_done = & ss->rx_done; mgp = ss->mgp; rx_bytes = 0UL; rx_packets = 0UL; idx = rx_done->idx; cnt = rx_done->cnt; work_done = 0; goto ldv_53514; ldv_53513: { tmp = __fswab16((int )(rx_done->entry + (unsigned long )idx)->length); length = tmp; (rx_done->entry + (unsigned long )idx)->length = 0U; checksum = csum_unfold((int )(rx_done->entry + (unsigned long )idx)->checksum); tmp___0 = myri10ge_rx_done(ss, (int )length, checksum); rx_ok = (unsigned long )tmp___0; rx_packets = rx_packets + rx_ok; rx_bytes = rx_bytes + rx_ok * (unsigned long )length; cnt = cnt + 1; idx = cnt & (mgp->max_intr_slots + -1); work_done = work_done + 1; } ldv_53514: ; if ((unsigned int )(rx_done->entry + (unsigned long )idx)->length != 0U && work_done < budget) { goto ldv_53513; } else { } rx_done->idx = idx; rx_done->cnt = cnt; ss->stats.rx_packets = ss->stats.rx_packets + rx_packets; ss->stats.rx_bytes = ss->stats.rx_bytes + rx_bytes; if (ss->rx_small.fill_cnt - ss->rx_small.cnt < myri10ge_fill_thresh) { { myri10ge_alloc_rx_pages(mgp, & ss->rx_small, mgp->small_bytes + 2, 0); } } else { } if (ss->rx_big.fill_cnt - ss->rx_big.cnt < myri10ge_fill_thresh) { { myri10ge_alloc_rx_pages(mgp, & ss->rx_big, mgp->big_bytes, 0); } } else { } return (work_done); } } __inline static void myri10ge_check_statblock(struct myri10ge_priv *mgp ) { struct mcp_irq_data *stats ; unsigned int link_up ; __u32 tmp ; __u32 tmp___0 ; __u32 tmp___1 ; long tmp___2 ; { { stats = (mgp->ss)->fw_stats; tmp___2 = ldv__builtin_expect((unsigned int )stats->stats_updated != 0U, 0L); } if (tmp___2 != 0L) { { tmp = __fswab32(stats->link_up); link_up = tmp; } if (mgp->link_state != link_up) { mgp->link_state = link_up; if (mgp->link_state == 1U) { if ((mgp->msg_enable & 4U) != 0U) { { netdev_info((struct net_device const *)mgp->dev, "link up\n"); } } else { } { netif_carrier_on(mgp->dev); mgp->link_changes = mgp->link_changes + 1U; } } else { if ((mgp->msg_enable & 4U) != 0U) { { netdev_info((struct net_device const *)mgp->dev, "link %s\n", link_up == 2U ? (char *)"mismatch (Myrinet detected)" : (char *)"down"); } } else { } { netif_carrier_off(mgp->dev); mgp->link_changes = mgp->link_changes + 1U; } } } else { } { tmp___1 = __fswab32(stats->rdma_tags_available); } if (mgp->rdma_tags_available != tmp___1) { { tmp___0 = __fswab32(stats->rdma_tags_available); mgp->rdma_tags_available = tmp___0; netdev_warn((struct net_device const *)mgp->dev, "RDMA timed out! %d tags left\n", mgp->rdma_tags_available); } } else { } mgp->down_cnt = mgp->down_cnt + (int )stats->link_down; if ((unsigned int )stats->link_down != 0U) { { __wake_up(& mgp->down_wq, 3U, 1, (void *)0); } } else { } } else { } return; } } static int myri10ge_poll(struct napi_struct *napi , int budget ) { struct myri10ge_slice_state *ss ; struct napi_struct const *__mptr ; int work_done ; bool tmp ; int tmp___0 ; { __mptr = (struct napi_struct const *)napi; ss = (struct myri10ge_slice_state *)__mptr + 0xfffffffffffffea0UL; if ((ss->mgp)->dca_enabled != 0) { { myri10ge_update_dca(ss); } } else { } { tmp = myri10ge_ss_lock_napi(ss); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (budget); } else { } { work_done = myri10ge_clean_rx_done(ss, budget); myri10ge_ss_unlock_napi(ss); } if (work_done < budget) { { napi_complete(napi); put_be32(50331648U, ss->irq_claim); } } else { } return (work_done); } } static int myri10ge_busy_poll(struct napi_struct *napi ) { struct myri10ge_slice_state *ss ; struct napi_struct const *__mptr ; struct myri10ge_priv *mgp ; int work_done ; bool tmp ; int tmp___0 ; { __mptr = (struct napi_struct const *)napi; ss = (struct myri10ge_slice_state *)__mptr + 0xfffffffffffffea0UL; mgp = ss->mgp; if (mgp->link_state != 1U) { return (-1); } else { } { tmp = myri10ge_ss_lock_poll(ss); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (-2); } else { } { work_done = myri10ge_clean_rx_done(ss, 4); } if (work_done != 0) { ss->busy_poll_cnt = ss->busy_poll_cnt + (unsigned long )work_done; } else { ss->busy_poll_miss = ss->busy_poll_miss + 1UL; } { myri10ge_ss_unlock_poll(ss); } return (work_done); } } static irqreturn_t myri10ge_intr(int irq , void *arg ) { struct myri10ge_slice_state *ss ; struct myri10ge_priv *mgp ; struct mcp_irq_data *stats ; struct myri10ge_tx_buf *tx ; u32 send_done_count ; int i ; long tmp ; __u32 tmp___0 ; long tmp___1 ; long tmp___2 ; { ss = (struct myri10ge_slice_state *)arg; mgp = ss->mgp; stats = ss->fw_stats; tx = & ss->tx; if ((mgp->dev)->real_num_tx_queues == 1U && (unsigned long )ss != (unsigned long )mgp->ss) { { napi_schedule(& ss->napi); } return (1); } else { } { tmp = ldv__builtin_expect((unsigned int )stats->valid == 0U, 0L); } if (tmp != 0L) { return (0); } else { } if ((int )stats->valid & 1) { { napi_schedule(& ss->napi); } } else { } if (((unsigned long )*((long *)mgp + 14UL) & 0xffffffffffffffffUL) == 0UL) { { put_be32(0U, mgp->irq_deassert); } if (myri10ge_deassert_wait == 0) { stats->valid = 0U; } else { } __asm__ volatile ("mfence": : : "memory"); } else { stats->valid = 0U; } i = 0; ldv_53548: { i = i + 1; tmp___0 = __fswab32(stats->send_done_count); send_done_count = tmp___0; } if (send_done_count != (u32 )tx->pkt_done) { { myri10ge_tx_done(ss, (int )send_done_count); } } else { } { tmp___1 = ldv__builtin_expect(i > myri10ge_max_irq_loops, 0L); } if (tmp___1 != 0L) { { netdev_warn((struct net_device const *)mgp->dev, "irq stuck?\n"); stats->valid = 0U; schedule_work(& mgp->watchdog_work); } } else { } { tmp___2 = ldv__builtin_expect((unsigned int )stats->valid == 0U, 1L); } if (tmp___2 != 0L) { goto ldv_53547; } else { } { cpu_relax(); __asm__ volatile ("": : : "memory"); } goto ldv_53548; ldv_53547: ; if ((unsigned long )ss == (unsigned long )mgp->ss) { { myri10ge_check_statblock(mgp); } } else { } { put_be32(50331648U, ss->irq_claim + 1UL); } return (1); } } static int myri10ge_get_settings(struct net_device *netdev , struct ethtool_cmd *cmd ) { struct myri10ge_priv *mgp ; void *tmp ; char *ptr ; int i ; { { tmp = netdev_priv((struct net_device const *)netdev); mgp = (struct myri10ge_priv *)tmp; cmd->autoneg = 0U; ethtool_cmd_speed_set(cmd, 10000U); cmd->duplex = 1U; ptr = mgp->product_code_string; } if ((unsigned long )ptr == (unsigned long )((char *)0)) { { netdev_err((struct net_device const *)netdev, "Missing product code\n"); } return (0); } else { } i = 0; goto ldv_53557; ldv_53556: { ptr = strchr((char const *)ptr, 45); } if ((unsigned long )ptr == (unsigned long )((char *)0)) { { netdev_err((struct net_device const *)netdev, "Invalid product code %s\n", mgp->product_code_string); } return (0); } else { } i = i + 1; ptr = ptr + 1; ldv_53557: ; if (i <= 2) { goto ldv_53556; } else { } if ((int )((signed char )*ptr) == 50) { ptr = ptr + 1; } else { } if ((unsigned int )((unsigned char )*ptr) - 81U <= 2U) { cmd->port = 3U; cmd->supported = cmd->supported | 1024U; cmd->advertising = cmd->advertising | 1024U; } else { cmd->port = 255U; } if ((unsigned int )((unsigned char )*ptr) - 82U <= 1U) { cmd->transceiver = 1U; } else { cmd->transceiver = 0U; } return (0); } } static void myri10ge_get_drvinfo(struct net_device *netdev , struct ethtool_drvinfo *info ) { struct myri10ge_priv *mgp ; void *tmp ; char const *tmp___0 ; { { tmp = netdev_priv((struct net_device const *)netdev); mgp = (struct myri10ge_priv *)tmp; strlcpy((char *)(& info->driver), "myri10ge", 32UL); strlcpy((char *)(& info->version), "1.5.3-1.534", 32UL); strlcpy((char *)(& info->fw_version), (char const *)(& mgp->fw_version), 32UL); tmp___0 = pci_name((struct pci_dev const *)mgp->pdev); strlcpy((char *)(& info->bus_info), tmp___0, 32UL); } return; } } static int myri10ge_get_coalesce(struct net_device *netdev , struct ethtool_coalesce *coal ) { struct myri10ge_priv *mgp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); mgp = (struct myri10ge_priv *)tmp; coal->rx_coalesce_usecs = (__u32 )mgp->intr_coal_delay; } return (0); } } static int myri10ge_set_coalesce(struct net_device *netdev , struct ethtool_coalesce *coal ) { struct myri10ge_priv *mgp ; void *tmp ; __u32 tmp___0 ; { { tmp = netdev_priv((struct net_device const *)netdev); mgp = (struct myri10ge_priv *)tmp; mgp->intr_coal_delay = (int )coal->rx_coalesce_usecs; tmp___0 = __fswab32((__u32 )mgp->intr_coal_delay); put_be32(tmp___0, mgp->intr_coal_delay_ptr); } return (0); } } static void myri10ge_get_pauseparam(struct net_device *netdev , struct ethtool_pauseparam *pause ) { struct myri10ge_priv *mgp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); mgp = (struct myri10ge_priv *)tmp; pause->autoneg = 0U; pause->rx_pause = (__u32 )mgp->pause; pause->tx_pause = (__u32 )mgp->pause; } return; } } static int myri10ge_set_pauseparam(struct net_device *netdev , struct ethtool_pauseparam *pause ) { struct myri10ge_priv *mgp ; void *tmp ; int tmp___0 ; int tmp___1 ; { { tmp = netdev_priv((struct net_device const *)netdev); mgp = (struct myri10ge_priv *)tmp; } if (pause->tx_pause != (__u32 )mgp->pause) { { tmp___0 = myri10ge_change_pause(mgp, (int )pause->tx_pause); } return (tmp___0); } else { } if (pause->rx_pause != (__u32 )mgp->pause) { { tmp___1 = myri10ge_change_pause(mgp, (int )pause->rx_pause); } return (tmp___1); } else { } if (pause->autoneg != 0U) { return (-22); } else { } return (0); } } static void myri10ge_get_ringparam(struct net_device *netdev , struct ethtool_ringparam *ring ) { struct myri10ge_priv *mgp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); mgp = (struct myri10ge_priv *)tmp; ring->rx_mini_max_pending = (__u32 )((mgp->ss)->rx_small.mask + 1); ring->rx_max_pending = (__u32 )((mgp->ss)->rx_big.mask + 1); ring->rx_jumbo_max_pending = 0U; ring->tx_max_pending = (__u32 )((mgp->ss)->tx.mask + 1); ring->rx_mini_pending = ring->rx_mini_max_pending; ring->rx_pending = ring->rx_max_pending; ring->rx_jumbo_pending = ring->rx_jumbo_max_pending; ring->tx_pending = ring->tx_max_pending; } return; } } static char const myri10ge_gstrings_main_stats[46U][32U] = { { 'r', 'x', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}, { 't', 'x', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}, { 'r', 'x', '_', 'b', 'y', 't', 'e', 's', '\000'}, { 't', 'x', '_', 'b', 'y', 't', 'e', 's', '\000'}, { 'r', 'x', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, { 't', 'x', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, { 'r', 'x', '_', 'd', 'r', 'o', 'p', 'p', 'e', 'd', '\000'}, { 't', 'x', '_', 'd', 'r', 'o', 'p', 'p', 'e', 'd', '\000'}, { 'm', 'u', 'l', 't', 'i', 'c', 'a', 's', 't', '\000'}, { 'c', 'o', 'l', 'l', 'i', 's', 'i', 'o', 'n', 's', '\000'}, { 'r', 'x', '_', 'l', 'e', 'n', 'g', 't', 'h', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, { 'r', 'x', '_', 'o', 'v', 'e', 'r', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, { 'r', 'x', '_', 'c', 'r', 'c', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, { 'r', 'x', '_', 'f', 'r', 'a', 'm', 'e', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, { 'r', 'x', '_', 'f', 'i', 'f', 'o', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, { 'r', 'x', '_', 'm', 'i', 's', 's', 'e', 'd', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, { 't', 'x', '_', 'a', 'b', 'o', 'r', 't', 'e', 'd', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, { 't', 'x', '_', 'c', 'a', 'r', 'r', 'i', 'e', 'r', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, { 't', 'x', '_', 'f', 'i', 'f', 'o', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, { 't', 'x', '_', 'h', 'e', 'a', 'r', 't', 'b', 'e', 'a', 't', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, { 't', 'x', '_', 'w', 'i', 'n', 'd', 'o', 'w', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, { 't', 'x', '_', 'b', 'o', 'u', 'n', 'd', 'a', 'r', 'y', '\000'}, { 'W', 'C', '\000'}, { 'i', 'r', 'q', '\000'}, { 'M', 'S', 'I', '\000'}, { 'M', 'S', 'I', 'X', '\000'}, { 'r', 'e', 'a', 'd', '_', 'd', 'm', 'a', '_', 'b', 'w', '_', 'M', 'B', 's', '\000'}, { 'w', 'r', 'i', 't', 'e', '_', 'd', 'm', 'a', '_', 'b', 'w', '_', 'M', 'B', 's', '\000'}, { 'r', 'e', 'a', 'd', '_', 'w', 'r', 'i', 't', 'e', '_', 'd', 'm', 'a', '_', 'b', 'w', '_', 'M', 'B', 's', '\000'}, { 's', 'e', 'r', 'i', 'a', 'l', '_', 'n', 'u', 'm', 'b', 'e', 'r', '\000'}, { 'w', 'a', 't', 'c', 'h', 'd', 'o', 'g', '_', 'r', 'e', 's', 'e', 't', 's', '\000'}, { 'd', 'c', 'a', '_', 'c', 'a', 'p', 'a', 'b', 'l', 'e', '_', 'f', 'i', 'r', 'm', 'w', 'a', 'r', 'e', '\000'}, { 'd', 'c', 'a', '_', 'd', 'e', 'v', 'i', 'c', 'e', '_', 'p', 'r', 'e', 's', 'e', 'n', 't', '\000'}, { 'l', 'i', 'n', 'k', '_', 'c', 'h', 'a', 'n', 'g', 'e', 's', '\000'}, { 'l', 'i', 'n', 'k', '_', 'u', 'p', '\000'}, { 'd', 'r', 'o', 'p', 'p', 'e', 'd', '_', 'l', 'i', 'n', 'k', '_', 'o', 'v', 'e', 'r', 'f', 'l', 'o', 'w', '\000'}, { 'd', 'r', 'o', 'p', 'p', 'e', 'd', '_', 'l', 'i', 'n', 'k', '_', 'e', 'r', 'r', 'o', 'r', '_', 'o', 'r', '_', 'f', 'i', 'l', 't', 'e', 'r', 'e', 'd', '\000'}, { 'd', 'r', 'o', 'p', 'p', 'e', 'd', '_', 'p', 'a', 'u', 's', 'e', '\000'}, { 'd', 'r', 'o', 'p', 'p', 'e', 'd', '_', 'b', 'a', 'd', '_', 'p', 'h', 'y', '\000'}, { 'd', 'r', 'o', 'p', 'p', 'e', 'd', '_', 'b', 'a', 'd', '_', 'c', 'r', 'c', '3', '2', '\000'}, { 'd', 'r', 'o', 'p', 'p', 'e', 'd', '_', 'u', 'n', 'i', 'c', 'a', 's', 't', '_', 'f', 'i', 'l', 't', 'e', 'r', 'e', 'd', '\000'}, { 'd', 'r', 'o', 'p', 'p', 'e', 'd', '_', 'm', 'u', 'l', 't', 'i', 'c', 'a', 's', 't', '_', 'f', 'i', 'l', 't', 'e', 'r', 'e', 'd', '\000'}, { 'd', 'r', 'o', 'p', 'p', 'e', 'd', '_', 'r', 'u', 'n', 't', '\000'}, { 'd', 'r', 'o', 'p', 'p', 'e', 'd', '_', 'o', 'v', 'e', 'r', 'r', 'u', 'n', '\000'}, { 'd', 'r', 'o', 'p', 'p', 'e', 'd', '_', 'n', 'o', '_', 's', 'm', 'a', 'l', 'l', '_', 'b', 'u', 'f', 'f', 'e', 'r', '\000'}, { 'd', 'r', 'o', 'p', 'p', 'e', 'd', '_', 'n', 'o', '_', 'b', 'i', 'g', '_', 'b', 'u', 'f', 'f', 'e', 'r', '\000'}}; static char const myri10ge_gstrings_slice_stats[14U][32U] = { { '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', ' ', 's', 'l', 'i', 'c', 'e', ' ', '-', '-', '-', '-', '-', '-', '-', '-', '-', '\000'}, { 't', 'x', '_', 'p', 'k', 't', '_', 's', 't', 'a', 'r', 't', '\000'}, { 't', 'x', '_', 'p', 'k', 't', '_', 'd', 'o', 'n', 'e', '\000'}, { 't', 'x', '_', 'r', 'e', 'q', '\000'}, { 't', 'x', '_', 'd', 'o', 'n', 'e', '\000'}, { 'r', 'x', '_', 's', 'm', 'a', 'l', 'l', '_', 'c', 'n', 't', '\000'}, { 'r', 'x', '_', 'b', 'i', 'g', '_', 'c', 'n', 't', '\000'}, { 'w', 'a', 'k', 'e', '_', 'q', 'u', 'e', 'u', 'e', '\000'}, { 's', 't', 'o', 'p', '_', 'q', 'u', 'e', 'u', 'e', '\000'}, { 't', 'x', '_', 'l', 'i', 'n', 'e', 'a', 'r', 'i', 'z', 'e', 'd', '\000'}, { 'r', 'x', '_', 'l', 'o', 'c', 'k', '_', 'n', 'a', 'p', 'i', '_', 'y', 'i', 'e', 'l', 'd', '\000'}, { 'r', 'x', '_', 'l', 'o', 'c', 'k', '_', 'p', 'o', 'l', 'l', '_', 'y', 'i', 'e', 'l', 'd', '\000'}, { 'r', 'x', '_', 'b', 'u', 's', 'y', '_', 'p', 'o', 'l', 'l', '_', 'm', 'i', 's', 's', '\000'}, { 'r', 'x', '_', 'b', 'u', 's', 'y', '_', 'p', 'o', 'l', 'l', '_', 'c', 'n', 't', '\000'}}; static void myri10ge_get_strings(struct net_device *netdev , u32 stringset , u8 *data ) { struct myri10ge_priv *mgp ; void *tmp ; int i ; { { tmp = netdev_priv((struct net_device const *)netdev); mgp = (struct myri10ge_priv *)tmp; } { if (stringset == 1U) { goto case_1; } else { } goto switch_break; case_1: /* CIL Label */ { memcpy((void *)data, (void const *)(& myri10ge_gstrings_main_stats), 1472UL); data = data + 1472UL; i = 0; } goto ldv_53600; ldv_53599: { memcpy((void *)data, (void const *)(& myri10ge_gstrings_slice_stats), 448UL); data = data + 448UL; i = i + 1; } ldv_53600: ; if (i < mgp->num_slices) { goto ldv_53599; } else { } goto ldv_53602; switch_break: /* CIL Label */ ; } ldv_53602: ; return; } } static int myri10ge_get_sset_count(struct net_device *netdev , int sset ) { struct myri10ge_priv *mgp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); mgp = (struct myri10ge_priv *)tmp; } { if (sset == 1) { goto case_1; } else { } goto switch_default; case_1: /* CIL Label */ ; return ((int )((unsigned int )((unsigned long )mgp->num_slices) * 14U + 46U)); switch_default: /* CIL Label */ ; return (-95); switch_break: /* CIL Label */ ; } } } static void myri10ge_get_ethtool_stats(struct net_device *netdev , struct ethtool_stats *stats , u64 *data ) { struct myri10ge_priv *mgp ; void *tmp ; struct myri10ge_slice_state *ss ; struct rtnl_link_stats64 link_stats ; int slice ; int i ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; int tmp___12 ; int tmp___13 ; __u32 tmp___14 ; int tmp___15 ; __u32 tmp___16 ; int tmp___17 ; __u32 tmp___18 ; int tmp___19 ; __u32 tmp___20 ; int tmp___21 ; __u32 tmp___22 ; int tmp___23 ; __u32 tmp___24 ; int tmp___25 ; __u32 tmp___26 ; int tmp___27 ; __u32 tmp___28 ; int tmp___29 ; __u32 tmp___30 ; int tmp___31 ; __u32 tmp___32 ; int tmp___33 ; __u32 tmp___34 ; int tmp___35 ; __u32 tmp___36 ; int tmp___37 ; int tmp___38 ; int tmp___39 ; int tmp___40 ; int tmp___41 ; int tmp___42 ; int tmp___43 ; int tmp___44 ; int tmp___45 ; int tmp___46 ; int tmp___47 ; int tmp___48 ; int tmp___49 ; int tmp___50 ; { { tmp = netdev_priv((struct net_device const *)netdev); mgp = (struct myri10ge_priv *)tmp; memset((void *)(& link_stats), 0, 184UL); myri10ge_get_stats(netdev, & link_stats); i = 0; } goto ldv_53625; ldv_53624: *(data + (unsigned long )i) = *((u64 *)(& link_stats) + (unsigned long )i); i = i + 1; ldv_53625: ; if (i <= 20) { goto ldv_53624; } else { } { tmp___0 = i; i = i + 1; *(data + (unsigned long )tmp___0) = (u64 )((unsigned int )mgp->tx_boundary); tmp___1 = i; i = i + 1; *(data + (unsigned long )tmp___1) = (u64 )((unsigned int )mgp->wc_enabled); tmp___2 = i; i = i + 1; *(data + (unsigned long )tmp___2) = (u64 )(mgp->pdev)->irq; tmp___3 = i; i = i + 1; *(data + (unsigned long )tmp___3) = (u64 )((unsigned int )mgp->msi_enabled); tmp___4 = i; i = i + 1; *(data + (unsigned long )tmp___4) = (u64 )((unsigned int )mgp->msix_enabled); tmp___5 = i; i = i + 1; *(data + (unsigned long )tmp___5) = (u64 )mgp->read_dma; tmp___6 = i; i = i + 1; *(data + (unsigned long )tmp___6) = (u64 )mgp->write_dma; tmp___7 = i; i = i + 1; *(data + (unsigned long )tmp___7) = (u64 )mgp->read_write_dma; tmp___8 = i; i = i + 1; *(data + (unsigned long )tmp___8) = (u64 )((unsigned int )mgp->serial_number); tmp___9 = i; i = i + 1; *(data + (unsigned long )tmp___9) = (u64 )((unsigned int )mgp->watchdog_resets); tmp___10 = i; i = i + 1; *(data + (unsigned long )tmp___10) = (unsigned long )(mgp->ss)->dca_tag != (unsigned long )((__be32 *)0U); tmp___11 = i; i = i + 1; *(data + (unsigned long )tmp___11) = (u64 )((unsigned int )mgp->dca_enabled); tmp___12 = i; i = i + 1; *(data + (unsigned long )tmp___12) = (u64 )mgp->link_changes; ss = mgp->ss; tmp___13 = i; i = i + 1; tmp___14 = __fswab32((ss->fw_stats)->link_up); *(data + (unsigned long )tmp___13) = (u64 )tmp___14; tmp___15 = i; i = i + 1; tmp___16 = __fswab32((ss->fw_stats)->dropped_link_overflow); *(data + (unsigned long )tmp___15) = (u64 )tmp___16; tmp___17 = i; i = i + 1; tmp___18 = __fswab32((ss->fw_stats)->dropped_link_error_or_filtered); *(data + (unsigned long )tmp___17) = (u64 )tmp___18; tmp___19 = i; i = i + 1; tmp___20 = __fswab32((ss->fw_stats)->dropped_pause); *(data + (unsigned long )tmp___19) = (u64 )tmp___20; tmp___21 = i; i = i + 1; tmp___22 = __fswab32((ss->fw_stats)->dropped_bad_phy); *(data + (unsigned long )tmp___21) = (u64 )tmp___22; tmp___23 = i; i = i + 1; tmp___24 = __fswab32((ss->fw_stats)->dropped_bad_crc32); *(data + (unsigned long )tmp___23) = (u64 )tmp___24; tmp___25 = i; i = i + 1; tmp___26 = __fswab32((ss->fw_stats)->dropped_unicast_filtered); *(data + (unsigned long )tmp___25) = (u64 )tmp___26; tmp___27 = i; i = i + 1; tmp___28 = __fswab32((ss->fw_stats)->dropped_multicast_filtered); *(data + (unsigned long )tmp___27) = (u64 )tmp___28; tmp___29 = i; i = i + 1; tmp___30 = __fswab32((ss->fw_stats)->dropped_runt); *(data + (unsigned long )tmp___29) = (u64 )tmp___30; tmp___31 = i; i = i + 1; tmp___32 = __fswab32((ss->fw_stats)->dropped_overrun); *(data + (unsigned long )tmp___31) = (u64 )tmp___32; tmp___33 = i; i = i + 1; tmp___34 = __fswab32((ss->fw_stats)->dropped_no_small_buffer); *(data + (unsigned long )tmp___33) = (u64 )tmp___34; tmp___35 = i; i = i + 1; tmp___36 = __fswab32((ss->fw_stats)->dropped_no_big_buffer); *(data + (unsigned long )tmp___35) = (u64 )tmp___36; slice = 0; } goto ldv_53628; ldv_53627: ss = mgp->ss + (unsigned long )slice; tmp___37 = i; i = i + 1; *(data + (unsigned long )tmp___37) = (u64 )slice; tmp___38 = i; i = i + 1; *(data + (unsigned long )tmp___38) = (u64 )((unsigned int )ss->tx.pkt_start); tmp___39 = i; i = i + 1; *(data + (unsigned long )tmp___39) = (u64 )((unsigned int )ss->tx.pkt_done); tmp___40 = i; i = i + 1; *(data + (unsigned long )tmp___40) = (u64 )((unsigned int )ss->tx.req); tmp___41 = i; i = i + 1; *(data + (unsigned long )tmp___41) = (u64 )((unsigned int )ss->tx.done); tmp___42 = i; i = i + 1; *(data + (unsigned long )tmp___42) = (u64 )((unsigned int )ss->rx_small.cnt); tmp___43 = i; i = i + 1; *(data + (unsigned long )tmp___43) = (u64 )((unsigned int )ss->rx_big.cnt); tmp___44 = i; i = i + 1; *(data + (unsigned long )tmp___44) = (u64 )((unsigned int )ss->tx.wake_queue); tmp___45 = i; i = i + 1; *(data + (unsigned long )tmp___45) = (u64 )((unsigned int )ss->tx.stop_queue); tmp___46 = i; i = i + 1; *(data + (unsigned long )tmp___46) = (u64 )((unsigned int )ss->tx.linearized); tmp___47 = i; i = i + 1; *(data + (unsigned long )tmp___47) = (u64 )ss->lock_napi_yield; tmp___48 = i; i = i + 1; *(data + (unsigned long )tmp___48) = (u64 )ss->lock_poll_yield; tmp___49 = i; i = i + 1; *(data + (unsigned long )tmp___49) = (u64 )ss->busy_poll_miss; tmp___50 = i; i = i + 1; *(data + (unsigned long )tmp___50) = (u64 )ss->busy_poll_cnt; slice = slice + 1; ldv_53628: ; if (slice < mgp->num_slices) { goto ldv_53627; } else { } return; } } static void myri10ge_set_msglevel(struct net_device *netdev , u32 value ) { struct myri10ge_priv *mgp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); mgp = (struct myri10ge_priv *)tmp; mgp->msg_enable = value; } return; } } static u32 myri10ge_get_msglevel(struct net_device *netdev ) { struct myri10ge_priv *mgp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); mgp = (struct myri10ge_priv *)tmp; } return (mgp->msg_enable); } } static int myri10ge_led(struct myri10ge_priv *mgp , int on ) { struct device *dev ; size_t hdr_off ; size_t pattern_off ; size_t hdr_len ; u32 pattern ; unsigned int tmp ; __u32 tmp___0 ; unsigned int tmp___1 ; __u32 tmp___2 ; unsigned int tmp___3 ; __u32 tmp___4 ; __u32 tmp___5 ; { { dev = & (mgp->pdev)->dev; pattern = 4294967294U; tmp = readl((void const volatile *)mgp->sram + 60U); tmp___0 = __fswab32(tmp); hdr_off = (size_t )tmp___0; } if ((hdr_off & 3UL) != 0UL || hdr_off + 192UL > (unsigned long )mgp->sram_size) { { dev_err((struct device const *)dev, "Running firmware has bad header offset (%d)\n", (int )hdr_off); } return (-5); } else { } { tmp___1 = readl((void const volatile *)(mgp->sram + hdr_off)); tmp___2 = __fswab32(tmp___1); hdr_len = (size_t )tmp___2; pattern_off = hdr_off + 184UL; } if (pattern_off >= hdr_len + hdr_off) { { _dev_info((struct device const *)dev, "Firmware does not support LED identification\n"); } return (-22); } else { } if (on == 0) { { tmp___3 = readl((void const volatile *)(mgp->sram + (pattern_off + 4UL))); tmp___4 = __fswab32(tmp___3); pattern = tmp___4; } } else { } { tmp___5 = __fswab32(pattern); writel(tmp___5, (void volatile *)(mgp->sram + pattern_off)); } return (0); } } static int myri10ge_phys_id(struct net_device *netdev , enum ethtool_phys_id_state state ) { struct myri10ge_priv *mgp ; void *tmp ; int rc ; { { tmp = netdev_priv((struct net_device const *)netdev); mgp = (struct myri10ge_priv *)tmp; } { if ((unsigned int )state == 1U) { goto case_1; } else { } if ((unsigned int )state == 0U) { goto case_0; } else { } goto switch_default; case_1: /* CIL Label */ { rc = myri10ge_led(mgp, 1); } goto ldv_53656; case_0: /* CIL Label */ { rc = myri10ge_led(mgp, 0); } goto ldv_53656; switch_default: /* CIL Label */ rc = -22; switch_break: /* CIL Label */ ; } ldv_53656: ; return (rc); } } static struct ethtool_ops const myri10ge_ethtool_ops = {& myri10ge_get_settings, 0, & myri10ge_get_drvinfo, 0, 0, 0, 0, & myri10ge_get_msglevel, & myri10ge_set_msglevel, 0, & ethtool_op_get_link, 0, 0, 0, & myri10ge_get_coalesce, & myri10ge_set_coalesce, & myri10ge_get_ringparam, 0, & myri10ge_get_pauseparam, & myri10ge_set_pauseparam, 0, & myri10ge_get_strings, & myri10ge_phys_id, & myri10ge_get_ethtool_stats, 0, 0, 0, 0, & myri10ge_get_sset_count, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static int myri10ge_allocate_rings(struct myri10ge_slice_state *ss ) { struct myri10ge_priv *mgp ; struct myri10ge_cmd cmd ; struct net_device *dev ; int tx_ring_size ; int rx_ring_size ; int tx_ring_entries ; int rx_ring_entries ; int i ; int slice ; int status ; size_t bytes ; int tmp ; int tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; void *tmp___5 ; void *tmp___6 ; int idx ; int idx___0 ; { { mgp = ss->mgp; dev = mgp->dev; slice = (int )(((long )ss - (long )mgp->ss) / 832L); cmd.data0 = (u32 )slice; status = myri10ge_send_cmd(mgp, 11U, & cmd, 0); tx_ring_size = (int )cmd.data0; cmd.data0 = (u32 )slice; tmp = myri10ge_send_cmd(mgp, 12U, & cmd, 0); status = status | tmp; } if (status != 0) { return (status); } else { } { rx_ring_size = (int )cmd.data0; tx_ring_entries = (int )((unsigned long )tx_ring_size / 16UL); rx_ring_entries = (int )((unsigned long )rx_ring_size / 8UL); ss->tx.mask = tx_ring_entries + -1; tmp___0 = rx_ring_entries + -1; ss->rx_big.mask = tmp___0; ss->rx_small.mask = tmp___0; status = -12; bytes = 1096UL; tmp___1 = kzalloc(bytes, 208U); ss->tx.req_bytes = (char *)tmp___1; } if ((unsigned long )ss->tx.req_bytes == (unsigned long )((char *)0)) { goto abort_with_nothing; } else { } { ss->tx.req_list = (struct mcp_kreq_ether_send *)(((unsigned long )ss->tx.req_bytes + 7UL) & 0xfffffffffffffff8UL); ss->tx.queue_active = 0; bytes = (unsigned long )rx_ring_entries * 8UL; tmp___2 = kzalloc(bytes, 208U); ss->rx_small.shadow = (struct mcp_kreq_ether_recv *)tmp___2; } if ((unsigned long )ss->rx_small.shadow == (unsigned long )((struct mcp_kreq_ether_recv *)0)) { goto abort_with_tx_req_bytes; } else { } { bytes = (unsigned long )rx_ring_entries * 8UL; tmp___3 = kzalloc(bytes, 208U); ss->rx_big.shadow = (struct mcp_kreq_ether_recv *)tmp___3; } if ((unsigned long )ss->rx_big.shadow == (unsigned long )((struct mcp_kreq_ether_recv *)0)) { goto abort_with_rx_small_shadow; } else { } { bytes = (unsigned long )tx_ring_entries * 32UL; tmp___4 = kzalloc(bytes, 208U); ss->tx.info = (struct myri10ge_tx_buffer_state *)tmp___4; } if ((unsigned long )ss->tx.info == (unsigned long )((struct myri10ge_tx_buffer_state *)0)) { goto abort_with_rx_big_shadow; } else { } { bytes = (unsigned long )rx_ring_entries * 32UL; tmp___5 = kzalloc(bytes, 208U); ss->rx_small.info = (struct myri10ge_rx_buffer_state *)tmp___5; } if ((unsigned long )ss->rx_small.info == (unsigned long )((struct myri10ge_rx_buffer_state *)0)) { goto abort_with_tx_info; } else { } { bytes = (unsigned long )rx_ring_entries * 32UL; tmp___6 = kzalloc(bytes, 208U); ss->rx_big.info = (struct myri10ge_rx_buffer_state *)tmp___6; } if ((unsigned long )ss->rx_big.info == (unsigned long )((struct myri10ge_rx_buffer_state *)0)) { goto abort_with_rx_small_info; } else { } ss->rx_big.cnt = 0; ss->rx_small.cnt = 0; ss->rx_big.fill_cnt = 0; ss->rx_small.fill_cnt = 0; ss->rx_small.page_offset = 4096; ss->rx_big.page_offset = 4096; ss->rx_small.watchdog_needed = 0; ss->rx_big.watchdog_needed = 0; if (mgp->small_bytes == 0) { ss->rx_small.fill_cnt = ss->rx_small.mask + 1; } else { { myri10ge_alloc_rx_pages(mgp, & ss->rx_small, mgp->small_bytes + 2, 0); } } if (ss->rx_small.fill_cnt < ss->rx_small.mask + 1) { { netdev_err((struct net_device const *)dev, "slice-%d: alloced only %d small bufs\n", slice, ss->rx_small.fill_cnt); } goto abort_with_rx_small_ring; } else { } { myri10ge_alloc_rx_pages(mgp, & ss->rx_big, mgp->big_bytes, 0); } if (ss->rx_big.fill_cnt < ss->rx_big.mask + 1) { { netdev_err((struct net_device const *)dev, "slice-%d: alloced only %d big bufs\n", slice, ss->rx_big.fill_cnt); } goto abort_with_rx_big_ring; } else { } return (0); abort_with_rx_big_ring: i = ss->rx_big.cnt; goto ldv_53684; ldv_53683: { idx = i & ss->rx_big.mask; myri10ge_unmap_rx_page(mgp->pdev, ss->rx_big.info + (unsigned long )idx, mgp->big_bytes); put_page((ss->rx_big.info + (unsigned long )idx)->page); i = i + 1; } ldv_53684: ; if (i < ss->rx_big.fill_cnt) { goto ldv_53683; } else { } abort_with_rx_small_ring: ; if (mgp->small_bytes == 0) { ss->rx_small.fill_cnt = ss->rx_small.cnt; } else { } i = ss->rx_small.cnt; goto ldv_53688; ldv_53687: { idx___0 = i & ss->rx_small.mask; myri10ge_unmap_rx_page(mgp->pdev, ss->rx_small.info + (unsigned long )idx___0, mgp->small_bytes + 2); put_page((ss->rx_small.info + (unsigned long )idx___0)->page); i = i + 1; } ldv_53688: ; if (i < ss->rx_small.fill_cnt) { goto ldv_53687; } else { } { kfree((void const *)ss->rx_big.info); } abort_with_rx_small_info: { kfree((void const *)ss->rx_small.info); } abort_with_tx_info: { kfree((void const *)ss->tx.info); } abort_with_rx_big_shadow: { kfree((void const *)ss->rx_big.shadow); } abort_with_rx_small_shadow: { kfree((void const *)ss->rx_small.shadow); } abort_with_tx_req_bytes: { kfree((void const *)ss->tx.req_bytes); ss->tx.req_bytes = (char *)0; ss->tx.req_list = (struct mcp_kreq_ether_send *)0; } abort_with_nothing: ; return (status); } } static void myri10ge_free_rings(struct myri10ge_slice_state *ss ) { struct myri10ge_priv *mgp ; struct sk_buff *skb ; struct myri10ge_tx_buf *tx ; int i ; int len ; int idx ; { mgp = ss->mgp; if ((unsigned long )ss->tx.req_list == (unsigned long )((struct mcp_kreq_ether_send *)0)) { return; } else { } i = ss->rx_big.cnt; goto ldv_53700; ldv_53699: idx = i & ss->rx_big.mask; if (i == ss->rx_big.fill_cnt + -1) { (ss->rx_big.info + (unsigned long )idx)->page_offset = 4096; } else { } { myri10ge_unmap_rx_page(mgp->pdev, ss->rx_big.info + (unsigned long )idx, mgp->big_bytes); put_page((ss->rx_big.info + (unsigned long )idx)->page); i = i + 1; } ldv_53700: ; if (i < ss->rx_big.fill_cnt) { goto ldv_53699; } else { } if (mgp->small_bytes == 0) { ss->rx_small.fill_cnt = ss->rx_small.cnt; } else { } i = ss->rx_small.cnt; goto ldv_53703; ldv_53702: idx = i & ss->rx_small.mask; if (i == ss->rx_small.fill_cnt + -1) { (ss->rx_small.info + (unsigned long )idx)->page_offset = 4096; } else { } { myri10ge_unmap_rx_page(mgp->pdev, ss->rx_small.info + (unsigned long )idx, mgp->small_bytes + 2); put_page((ss->rx_small.info + (unsigned long )idx)->page); i = i + 1; } ldv_53703: ; if (i < ss->rx_small.fill_cnt) { goto ldv_53702; } else { } tx = & ss->tx; goto ldv_53706; ldv_53705: idx = tx->done & tx->mask; skb = (tx->info + (unsigned long )idx)->skb; (tx->info + (unsigned long )idx)->skb = (struct sk_buff *)0; tx->done = tx->done + 1; len = (int )(tx->info + (unsigned long )idx)->len; (tx->info + (unsigned long )idx)->len = 0U; if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { { ss->stats.tx_dropped = ss->stats.tx_dropped + 1UL; dev_kfree_skb_any(skb); } if (len != 0) { { pci_unmap_single(mgp->pdev, (tx->info + (unsigned long )idx)->bus, (size_t )len, 1); } } else { } } else if (len != 0) { { pci_unmap_page(mgp->pdev, (tx->info + (unsigned long )idx)->bus, (size_t )len, 1); } } else { } ldv_53706: ; if (tx->done != tx->req) { goto ldv_53705; } else { } { kfree((void const *)ss->rx_big.info); kfree((void const *)ss->rx_small.info); kfree((void const *)ss->tx.info); kfree((void const *)ss->rx_big.shadow); kfree((void const *)ss->rx_small.shadow); kfree((void const *)ss->tx.req_bytes); ss->tx.req_bytes = (char *)0; ss->tx.req_list = (struct mcp_kreq_ether_send *)0; } return; } } static int myri10ge_request_irq(struct myri10ge_priv *mgp ) { struct pci_dev *pdev ; struct myri10ge_slice_state *ss ; struct net_device *netdev ; int i ; int status ; { pdev = mgp->pdev; netdev = mgp->dev; mgp->msi_enabled = 0; mgp->msix_enabled = 0; status = 0; if (myri10ge_msi != 0) { if (mgp->num_slices > 1) { { status = pci_enable_msix(pdev, mgp->msix_vectors, mgp->num_slices); } if (status == 0) { mgp->msix_enabled = 1; } else { { dev_err((struct device const *)(& pdev->dev), "Error %d setting up MSI-X\n", status); } return (status); } } else { } if (mgp->msix_enabled == 0) { { status = pci_enable_msi_block(pdev, 1); } if (status != 0) { { dev_err((struct device const *)(& pdev->dev), "Error %d setting up MSI; falling back to xPIC\n", status); } } else { mgp->msi_enabled = 1; } } else { } } else { } if (mgp->msix_enabled != 0) { i = 0; goto ldv_53720; ldv_53719: { ss = mgp->ss + (unsigned long )i; snprintf((char *)(& ss->irq_desc), 32UL, "%s:slice-%d", (char *)(& netdev->name), i); status = ldv_request_irq_112((mgp->msix_vectors + (unsigned long )i)->vector, & myri10ge_intr, 0UL, (char const *)(& ss->irq_desc), (void *)ss); } if (status != 0) { { dev_err((struct device const *)(& pdev->dev), "slice %d failed to allocate IRQ\n", i); i = i - 1; } goto ldv_53717; ldv_53716: { ldv_free_irq_113((mgp->msix_vectors + (unsigned long )i)->vector, (void *)mgp->ss + (unsigned long )i); i = i - 1; } ldv_53717: ; if (i >= 0) { goto ldv_53716; } else { } { pci_disable_msix(pdev); } return (status); } else { } i = i + 1; ldv_53720: ; if (i < mgp->num_slices) { goto ldv_53719; } else { } } else { { status = ldv_request_irq_114(pdev->irq, & myri10ge_intr, 128UL, (char const *)(& (mgp->dev)->name), (void *)mgp->ss); } if (status != 0) { { dev_err((struct device const *)(& pdev->dev), "failed to allocate IRQ\n"); } if (mgp->msi_enabled != 0) { { pci_disable_msi(pdev); } } else { } } else { } } return (status); } } static void myri10ge_free_irq(struct myri10ge_priv *mgp ) { struct pci_dev *pdev ; int i ; { pdev = mgp->pdev; if (mgp->msix_enabled != 0) { i = 0; goto ldv_53728; ldv_53727: { ldv_free_irq_115((mgp->msix_vectors + (unsigned long )i)->vector, (void *)mgp->ss + (unsigned long )i); i = i + 1; } ldv_53728: ; if (i < mgp->num_slices) { goto ldv_53727; } else { } } else { { ldv_free_irq_116(pdev->irq, (void *)mgp->ss); } } if (mgp->msi_enabled != 0) { { pci_disable_msi(pdev); } } else { } if (mgp->msix_enabled != 0) { { pci_disable_msix(pdev); } } else { } return; } } static int myri10ge_get_txrx(struct myri10ge_priv *mgp , int slice ) { struct myri10ge_cmd cmd ; struct myri10ge_slice_state *ss ; int status ; int tmp ; int tmp___0 ; { ss = mgp->ss + (unsigned long )slice; status = 0; if (slice == 0 || (mgp->dev)->real_num_tx_queues > 1U) { { cmd.data0 = (u32 )slice; status = myri10ge_send_cmd(mgp, 6U, & cmd, 0); ss->tx.lanai = (struct mcp_kreq_ether_send *)mgp->sram + (unsigned long )cmd.data0; } } else { } { cmd.data0 = (u32 )slice; tmp = myri10ge_send_cmd(mgp, 7U, & cmd, 0); status = status | tmp; ss->rx_small.lanai = (struct mcp_kreq_ether_recv *)mgp->sram + (unsigned long )cmd.data0; cmd.data0 = (u32 )slice; tmp___0 = myri10ge_send_cmd(mgp, 8U, & cmd, 0); status = status | tmp___0; ss->rx_big.lanai = (struct mcp_kreq_ether_recv *)mgp->sram + (unsigned long )cmd.data0; ss->tx.send_go = (__be32 *)(mgp->sram + ((unsigned long )(slice * 64) + 3670016UL)); ss->tx.send_stop = (__be32 *)(mgp->sram + ((unsigned long )(slice * 64) + 3932160UL)); } return (status); } } static int myri10ge_set_stats(struct myri10ge_priv *mgp , int slice ) { struct myri10ge_cmd cmd ; struct myri10ge_slice_state *ss ; int status ; dma_addr_t bus ; { { ss = mgp->ss + (unsigned long )slice; cmd.data0 = (unsigned int )ss->fw_stats_bus; cmd.data1 = (unsigned int )(ss->fw_stats_bus >> 32); cmd.data2 = (u32 )((slice << 16) | 64); status = myri10ge_send_cmd(mgp, 31U, & cmd, 0); } if (status == -38) { bus = ss->fw_stats_bus; if (slice != 0) { return (-22); } else { } { bus = bus + 24ULL; cmd.data0 = (unsigned int )bus; cmd.data1 = (unsigned int )(bus >> 32); status = myri10ge_send_cmd(mgp, 19U, & cmd, 0); mgp->fw_multicast_support = 0; } } else { mgp->fw_multicast_support = 1; } return (0); } } static int myri10ge_open(struct net_device *dev ) { struct myri10ge_slice_state *ss ; struct myri10ge_priv *mgp ; void *tmp ; struct myri10ge_cmd cmd ; int i ; int status ; int big_pow2 ; int slice ; u8 *itable ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; { { tmp = netdev_priv((struct net_device const *)dev); mgp = (struct myri10ge_priv *)tmp; } if (mgp->running != 0) { return (-16); } else { } { mgp->running = 2; status = myri10ge_reset(mgp); } if (status != 0) { { netdev_err((struct net_device const *)dev, "failed reset\n"); } goto abort_with_nothing; } else { } if (mgp->num_slices > 1) { cmd.data0 = (u32 )mgp->num_slices; cmd.data1 = 1U; if ((mgp->dev)->real_num_tx_queues > 1U) { cmd.data1 = cmd.data1 | 2U; } else { } { status = myri10ge_send_cmd(mgp, 36U, & cmd, 0); } if (status != 0) { { netdev_err((struct net_device const *)dev, "failed to set number of slices\n"); } goto abort_with_nothing; } else { } { cmd.data0 = (u32 )mgp->num_slices; status = myri10ge_send_cmd(mgp, 40U, & cmd, 0); tmp___0 = myri10ge_send_cmd(mgp, 39U, & cmd, 0); status = status | tmp___0; } if (status != 0) { { netdev_err((struct net_device const *)dev, "failed to setup rss tables\n"); } goto abort_with_nothing; } else { } itable = mgp->sram + (unsigned long )cmd.data0; i = 0; goto ldv_53758; ldv_53757: { __writeb((int )((unsigned char )i), (void volatile *)itable + (unsigned long )i); i = i + 1; } ldv_53758: ; if (i < mgp->num_slices) { goto ldv_53757; } else { } { cmd.data0 = 1U; cmd.data1 = (u32 )myri10ge_rss_hash; status = myri10ge_send_cmd(mgp, 43U, & cmd, 0); } if (status != 0) { { netdev_err((struct net_device const *)dev, "failed to enable slices\n"); } goto abort_with_nothing; } else { } } else { } { status = myri10ge_request_irq(mgp); } if (status != 0) { goto abort_with_nothing; } else { } if (dev->mtu <= 1500U) { mgp->small_bytes = 126; } else { mgp->small_bytes = 1518; } if (myri10ge_small_bytes >= 0) { mgp->small_bytes = myri10ge_small_bytes; } else { } big_pow2 = (int )(dev->mtu + 20U); if ((unsigned int )big_pow2 <= 2047U) { goto ldv_53761; ldv_53760: big_pow2 = big_pow2 + 1; ldv_53761: { tmp___1 = is_power_of_2((unsigned long )big_pow2); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { goto ldv_53760; } else { } mgp->big_bytes = (int )(dev->mtu + 20U); } else { big_pow2 = 4096; mgp->big_bytes = big_pow2; } slice = 0; goto ldv_53765; ldv_53764: { ss = mgp->ss + (unsigned long )slice; status = myri10ge_get_txrx(mgp, slice); } if (status != 0) { { netdev_err((struct net_device const *)dev, "failed to get ring sizes or locations\n"); } goto abort_with_rings; } else { } { status = myri10ge_allocate_rings(ss); } if (status != 0) { goto abort_with_rings; } else { } if (slice == 0 || (mgp->dev)->real_num_tx_queues > 1U) { { status = myri10ge_set_stats(mgp, slice); } } else { } if (status != 0) { { netdev_err((struct net_device const *)dev, "Couldn\'t set stats DMA\n"); } goto abort_with_rings; } else { } { myri10ge_ss_init_lock(ss); napi_enable(& ss->napi); slice = slice + 1; } ldv_53765: ; if (slice < mgp->num_slices) { goto ldv_53764; } else { } { cmd.data0 = dev->mtu + 18U; status = myri10ge_send_cmd(mgp, 16U, & cmd, 0); cmd.data0 = (u32 )mgp->small_bytes; tmp___3 = myri10ge_send_cmd(mgp, 5U, & cmd, 0); status = status | tmp___3; cmd.data0 = (u32 )big_pow2; tmp___4 = myri10ge_send_cmd(mgp, 4U, & cmd, 0); status = status | tmp___4; } if (status != 0) { { netdev_err((struct net_device const *)dev, "Couldn\'t set buffer sizes\n"); } goto abort_with_rings; } else { } { cmd.data0 = 0U; status = myri10ge_send_cmd(mgp, 45U, & cmd, 0); } if (status != 0 && status != -38) { { netdev_err((struct net_device const *)dev, "Couldn\'t set TSO mode\n"); } goto abort_with_rings; } else { } { mgp->link_state = 4294967295U; mgp->rdma_tags_available = 15U; status = myri10ge_send_cmd(mgp, 14U, & cmd, 0); } if (status != 0) { { netdev_err((struct net_device const *)dev, "Couldn\'t bring up link\n"); } goto abort_with_rings; } else { } { mgp->running = 3; mgp->watchdog_timer.expires = (unsigned long )jiffies + (unsigned long )(myri10ge_watchdog_timeout * 250); add_timer(& mgp->watchdog_timer); netif_tx_wake_all_queues(dev); } return (0); abort_with_rings: ; goto ldv_53768; ldv_53767: { slice = slice - 1; napi_disable(& (mgp->ss + (unsigned long )slice)->napi); } ldv_53768: ; if (slice != 0) { goto ldv_53767; } else { } i = 0; goto ldv_53771; ldv_53770: { myri10ge_free_rings(mgp->ss + (unsigned long )i); i = i + 1; } ldv_53771: ; if (i < mgp->num_slices) { goto ldv_53770; } else { } { myri10ge_free_irq(mgp); } abort_with_nothing: mgp->running = 0; return (-12); } } static int myri10ge_close(struct net_device *dev ) { struct myri10ge_priv *mgp ; void *tmp ; struct myri10ge_cmd cmd ; int status ; int old_down_cnt ; int i ; unsigned long __ms ; unsigned long tmp___0 ; bool tmp___1 ; int tmp___2 ; long __ret ; wait_queue_t __wait ; long __ret___0 ; long __int ; long tmp___3 ; bool __cond ; bool __cond___0 ; { { tmp = netdev_priv((struct net_device const *)dev); mgp = (struct myri10ge_priv *)tmp; } if (mgp->running != 3) { return (0); } else { } if ((unsigned long )(mgp->ss)->tx.req_bytes == (unsigned long )((char *)0)) { return (0); } else { } { ldv_del_timer_sync_117(& mgp->watchdog_timer); mgp->running = 1; local_bh_disable(); i = 0; } goto ldv_53789; ldv_53788: { napi_disable(& (mgp->ss + (unsigned long )i)->napi); } goto ldv_53786; ldv_53785: { printk("\016myri10ge: Slice %d locked\n", i); } if (1) { { __const_udelay(4295000UL); } } else { __ms = 1UL; goto ldv_53783; ldv_53782: { __const_udelay(4295000UL); } ldv_53783: tmp___0 = __ms; __ms = __ms - 1UL; if (tmp___0 != 0UL) { goto ldv_53782; } else { } } ldv_53786: { tmp___1 = myri10ge_ss_lock_napi(mgp->ss + (unsigned long )i); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { goto ldv_53785; } else { } i = i + 1; ldv_53789: ; if (i < mgp->num_slices) { goto ldv_53788; } else { } { local_bh_enable(); netif_carrier_off(dev); netif_tx_stop_all_queues(dev); } if (mgp->rebooted == 0) { { old_down_cnt = mgp->down_cnt; __asm__ volatile ("mfence": : : "memory"); status = myri10ge_send_cmd(mgp, 15U, & cmd, 0); } if (status != 0) { { netdev_err((struct net_device const *)dev, "Couldn\'t bring down link\n"); } } else { } __ret = 250L; __cond___0 = old_down_cnt != mgp->down_cnt; if ((int )__cond___0 && __ret == 0L) { __ret = 1L; } else { } if (((int )__cond___0 || __ret == 0L) == 0) { { __ret___0 = 250L; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; } ldv_53801: { tmp___3 = prepare_to_wait_event(& mgp->down_wq, & __wait, 2); __int = tmp___3; __cond = old_down_cnt != mgp->down_cnt; } if ((int )__cond && __ret___0 == 0L) { __ret___0 = 1L; } else { } if (((int )__cond || __ret___0 == 0L) != 0) { goto ldv_53800; } else { } { __ret___0 = schedule_timeout(__ret___0); } goto ldv_53801; ldv_53800: { finish_wait(& mgp->down_wq, & __wait); } __ret = __ret___0; } else { } if (old_down_cnt == mgp->down_cnt) { { netdev_err((struct net_device const *)dev, "never got down irq\n"); } } else { } } else { } { netif_tx_disable(dev); myri10ge_free_irq(mgp); i = 0; } goto ldv_53805; ldv_53804: { myri10ge_free_rings(mgp->ss + (unsigned long )i); i = i + 1; } ldv_53805: ; if (i < mgp->num_slices) { goto ldv_53804; } else { } mgp->running = 0; return (0); } } __inline static void myri10ge_submit_req_backwards(struct myri10ge_tx_buf *tx , struct mcp_kreq_ether_send *src , int cnt ) { int idx ; int starting_slot ; { starting_slot = tx->req; goto ldv_53815; ldv_53814: { cnt = cnt - 1; idx = (starting_slot + cnt) & tx->mask; __iowrite64_copy((void *)tx->lanai + (unsigned long )idx, (void const *)src + (unsigned long )cnt, 2UL); __asm__ volatile ("mfence": : : "memory"); } ldv_53815: ; if (cnt > 1) { goto ldv_53814; } else { } return; } } __inline static void myri10ge_submit_req(struct myri10ge_tx_buf *tx , struct mcp_kreq_ether_send *src , int cnt ) { int idx ; int i ; struct mcp_kreq_ether_send *dstp ; struct mcp_kreq_ether_send *dst ; struct mcp_kreq_ether_send *srcp ; u8 last_flags ; { idx = tx->req & tx->mask; last_flags = src->flags; src->flags = 0U; __asm__ volatile ("mfence": : : "memory"); dstp = tx->lanai + (unsigned long )idx; dst = dstp; srcp = src; if (idx + cnt < tx->mask) { i = 0; goto ldv_53829; ldv_53828: { __iowrite64_copy((void *)dstp, (void const *)srcp, 4UL); __asm__ volatile ("mfence": : : "memory"); srcp = srcp + 2UL; dstp = dstp + 2UL; i = i + 2; } ldv_53829: ; if (i < cnt + -1) { goto ldv_53828; } else { } } else { { myri10ge_submit_req_backwards(tx, src, cnt); i = 0; } } if (i < cnt) { { __iowrite64_copy((void *)dstp, (void const *)srcp, 2UL); __asm__ volatile ("mfence": : : "memory"); } } else { } { src->flags = last_flags; put_be32(*((__be32 *)src + 3UL), (__be32 *)dst + 3UL); tx->req = tx->req + cnt; __asm__ volatile ("mfence": : : "memory"); } return; } } static netdev_tx_t myri10ge_xmit(struct sk_buff *skb , struct net_device *dev ) { struct myri10ge_priv *mgp ; void *tmp ; struct myri10ge_slice_state *ss ; struct mcp_kreq_ether_send *req ; struct myri10ge_tx_buf *tx ; struct skb_frag_struct *frag ; struct netdev_queue *netdev_queue ; dma_addr_t bus ; u32 low ; __be32 high_swapped ; unsigned int len ; int idx ; int last_idx ; int avail ; int frag_cnt ; int frag_idx ; int count ; int mss ; int max_segments ; u16 pseudo_hdr_offset ; u16 cksum_offset ; u16 queue ; int cum_len ; int seglen ; int boundary ; int rdma_count ; u8 flags ; u8 odd_flag ; unsigned char *tmp___0 ; bool tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; long tmp___7 ; int tmp___8 ; unsigned int tmp___9 ; unsigned int tmp___10 ; netdev_tx_t tmp___11 ; long tmp___12 ; bool tmp___13 ; int tmp___14 ; long tmp___15 ; unsigned char *tmp___16 ; __u32 tmp___17 ; u8 flags_next ; int cum_len_next ; long tmp___18 ; int next_is_first ; int chop ; int small ; long tmp___19 ; long tmp___20 ; __u32 tmp___21 ; __u16 tmp___22 ; __u16 tmp___23 ; long tmp___24 ; bool tmp___25 ; int tmp___26 ; unsigned char *tmp___27 ; bool tmp___28 ; int tmp___29 ; { { tmp = netdev_priv((struct net_device const *)dev); mgp = (struct myri10ge_priv *)tmp; queue = skb_get_queue_mapping((struct sk_buff const *)skb); ss = mgp->ss + (unsigned long )queue; netdev_queue = netdev_get_tx_queue((struct net_device const *)mgp->dev, (unsigned int )queue); tx = & ss->tx; } again: { req = tx->req_list; avail = (tx->mask + -1) + (tx->done - tx->req); mss = 0; max_segments = 12; tmp___1 = skb_is_gso((struct sk_buff const *)skb); } if ((int )tmp___1) { { tmp___0 = skb_end_pointer((struct sk_buff const *)skb); mss = (int )((struct skb_shared_info *)tmp___0)->gso_size; max_segments = 64; } } else { } { tmp___2 = ldv__builtin_expect(avail < max_segments, 0L); } if (tmp___2 != 0L) { { tx->stop_queue = tx->stop_queue + 1; netif_tx_stop_queue(netdev_queue); } return (16); } else { } { cksum_offset = 0U; pseudo_hdr_offset = 0U; odd_flag = 0U; flags = 18U; tmp___7 = ldv__builtin_expect((unsigned int )*((unsigned char *)skb + 124UL) == 12U, 1L); } if (tmp___7 != 0L) { { tmp___3 = skb_checksum_start_offset((struct sk_buff const *)skb); cksum_offset = (u16 )tmp___3; pseudo_hdr_offset = (int )cksum_offset + (int )skb->__annonCompField68.__annonCompField67.csum_offset; tmp___5 = ldv__builtin_expect(mss == 0, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect((long )((unsigned int )cksum_offset > 255U || (unsigned int )pseudo_hdr_offset > 127U), 0L); } if (tmp___6 != 0L) { { tmp___4 = skb_checksum_help(skb); } if (tmp___4 != 0) { goto drop; } else { } cksum_offset = 0U; pseudo_hdr_offset = 0U; } else { odd_flag = 4U; flags = (u8 )((unsigned int )flags | 8U); } } else { odd_flag = 4U; flags = (u8 )((unsigned int )flags | 8U); } } else { } cum_len = 0; if (mss != 0) { { flags = 3U; tmp___8 = skb_transport_offset((struct sk_buff const *)skb); tmp___9 = tcp_hdrlen((struct sk_buff const *)skb); cum_len = (int )(- ((unsigned int )tmp___8 + tmp___9)); tmp___13 = skb_is_gso_v6((struct sk_buff const *)skb); } if ((int )tmp___13) { { tmp___10 = tcp_hdrlen((struct sk_buff const *)skb); cksum_offset = (u16 )tmp___10; tmp___12 = ldv__builtin_expect((u32 )(- cum_len) > mgp->max_tso6, 0L); } if (tmp___12 != 0L) { { tmp___11 = myri10ge_sw_tso(skb, dev); } return (tmp___11); } else { } } else { } pseudo_hdr_offset = (u16 )mss; } else if (skb->len <= 1520U) { { flags = (u8 )((unsigned int )flags | 1U); tmp___15 = ldv__builtin_expect(skb->len <= 59U, 0L); } if (tmp___15 != 0L) { { tmp___14 = skb_padto(skb, 60U); } if (tmp___14 != 0) { ss->stats.tx_dropped = ss->stats.tx_dropped + 1UL; return (0); } else { } skb->len = 60U; } else { } } else { } { len = skb_headlen((struct sk_buff const *)skb); idx = tx->req & tx->mask; (tx->info + (unsigned long )idx)->skb = skb; bus = pci_map_single(mgp->pdev, (void *)skb->data, (size_t )len, 1); (tx->info + (unsigned long )idx)->bus = bus; (tx->info + (unsigned long )idx)->len = len; tmp___16 = skb_end_pointer((struct sk_buff const *)skb); frag_cnt = (int )((struct skb_shared_info *)tmp___16)->nr_frags; frag_idx = 0; count = 0; rdma_count = 0; } ldv_53874: { low = (unsigned int )bus; tmp___17 = __fswab32((unsigned int )(bus >> 32)); high_swapped = tmp___17; } goto ldv_53871; ldv_53870: { tmp___18 = ldv__builtin_expect(count == max_segments, 0L); } if (tmp___18 != 0L) { goto abort_linearize; } else { } boundary = (int )((low + (u32 )mgp->tx_boundary) & (u32 )(- mgp->tx_boundary)); seglen = (int )((u32 )boundary - low); if ((unsigned int )seglen > len) { seglen = (int )len; } else { } flags_next = (unsigned int )flags & 253U; cum_len_next = cum_len + seglen; if (mss != 0) { { (req + - ((unsigned long )rdma_count))->rdma_count = (unsigned int )((u8 )rdma_count) + 1U; tmp___20 = ldv__builtin_expect(cum_len >= 0, 1L); } if (tmp___20 != 0L) { chop = cum_len_next > mss; cum_len_next = cum_len_next % mss; next_is_first = cum_len_next == 0; flags = (u8 )((int )((signed char )flags) | (int )((signed char )((unsigned int )((unsigned char )chop) * 16U))); flags_next = (u8 )((int )((signed char )flags_next) | (int )((signed char )((unsigned int )((unsigned char )next_is_first) * 2U))); rdma_count = rdma_count | - (chop | next_is_first); rdma_count = rdma_count + (chop & ~ next_is_first); } else { { tmp___19 = ldv__builtin_expect(cum_len_next >= 0, 1L); } if (tmp___19 != 0L) { rdma_count = -1; cum_len_next = 0; seglen = - cum_len; small = mss <= 1520; flags_next = (u8 )((int )((signed char )small) | 34); } else { } } } else { } { req->addr_high = high_swapped; tmp___21 = __fswab32(low); req->addr_low = tmp___21; tmp___22 = __fswab16((int )pseudo_hdr_offset); req->pseudo_hdr_offset = tmp___22; req->pad = 0U; req->rdma_count = 1U; tmp___23 = __fswab16((int )((__u16 )seglen)); req->length = tmp___23; req->cksum_offset = (u8 )cksum_offset; req->flags = (u8 )((int )((signed char )flags) | (int )((signed char )(((unsigned int )((unsigned char )cum_len) & 1U) * (unsigned int )odd_flag))); low = low + (u32 )seglen; len = len - (unsigned int )seglen; cum_len = cum_len_next; flags = flags_next; req = req + 1; count = count + 1; rdma_count = rdma_count + 1; } if ((unsigned int )cksum_offset != 0U) { if (mss == 0) { goto _L; } else { { tmp___25 = skb_is_gso_v6((struct sk_buff const *)skb); } if (tmp___25) { tmp___26 = 0; } else { tmp___26 = 1; } if (tmp___26) { _L: /* CIL Label */ { tmp___24 = ldv__builtin_expect((int )cksum_offset > seglen, 0L); } if (tmp___24 != 0L) { cksum_offset = (int )cksum_offset - (int )((u16 )seglen); } else { cksum_offset = 0U; } } else { } } } else { } ldv_53871: ; if (len != 0U) { goto ldv_53870; } else { } if (frag_idx == frag_cnt) { goto ldv_53873; } else { } { idx = (count + tx->req) & tx->mask; tmp___27 = skb_end_pointer((struct sk_buff const *)skb); frag = (struct skb_frag_struct *)(& ((struct skb_shared_info *)tmp___27)->frags) + (unsigned long )frag_idx; frag_idx = frag_idx + 1; len = skb_frag_size((skb_frag_t const *)frag); bus = skb_frag_dma_map(& (mgp->pdev)->dev, (skb_frag_t const *)frag, 0UL, (size_t )len, 1); (tx->info + (unsigned long )idx)->bus = bus; (tx->info + (unsigned long )idx)->len = len; } goto ldv_53874; ldv_53873: (req + - ((unsigned long )rdma_count))->rdma_count = (u8 )rdma_count; if (mss != 0) { ldv_53875: req = req - 1; req->flags = (u8 )((unsigned int )req->flags | 8U); if (((int )req->flags & 18) == 0) { goto ldv_53875; } else { } } else { } { idx = ((count + -1) + tx->req) & tx->mask; (tx->info + (unsigned long )idx)->last = 1; myri10ge_submit_req(tx, tx->req_list, count); } if ((mgp->dev)->real_num_tx_queues > 1U && tx->queue_active == 0) { { tx->queue_active = 1; put_be32(16777216U, tx->send_go); __asm__ volatile ("mfence": : : "memory"); __asm__ volatile ("": : : "memory"); } } else { } tx->pkt_start = tx->pkt_start + 1; if (avail - count <= 11) { { tx->stop_queue = tx->stop_queue + 1; netif_tx_stop_queue(netdev_queue); } } else { } return (0); abort_linearize: last_idx = (idx + 1) & tx->mask; idx = tx->req & tx->mask; (tx->info + (unsigned long )idx)->skb = (struct sk_buff *)0; ldv_53877: len = (tx->info + (unsigned long )idx)->len; if (len != 0U) { if ((unsigned long )(tx->info + (unsigned long )idx)->skb != (unsigned long )((struct sk_buff *)0)) { { pci_unmap_single(mgp->pdev, (tx->info + (unsigned long )idx)->bus, (size_t )len, 1); } } else { { pci_unmap_page(mgp->pdev, (tx->info + (unsigned long )idx)->bus, (size_t )len, 1); } } (tx->info + (unsigned long )idx)->len = 0U; (tx->info + (unsigned long )idx)->skb = (struct sk_buff *)0; } else { } idx = (idx + 1) & tx->mask; if (idx != last_idx) { goto ldv_53877; } else { } { tmp___28 = skb_is_gso((struct sk_buff const *)skb); } if ((int )tmp___28) { { netdev_err((struct net_device const *)mgp->dev, "TSO but wanted to linearize?!?!?\n"); } goto drop; } else { } { tmp___29 = skb_linearize(skb); } if (tmp___29 != 0) { goto drop; } else { } tx->linearized = tx->linearized + 1; goto again; drop: { dev_kfree_skb_any(skb); ss->stats.tx_dropped = ss->stats.tx_dropped + 1UL; } return (0); } } static netdev_tx_t myri10ge_sw_tso(struct sk_buff *skb , struct net_device *dev ) { struct sk_buff *segs ; struct sk_buff *curr ; struct myri10ge_priv *mgp ; void *tmp ; struct myri10ge_slice_state *ss ; netdev_tx_t status ; long tmp___0 ; u16 tmp___1 ; { { tmp = netdev_priv((struct net_device const *)dev); mgp = (struct myri10ge_priv *)tmp; segs = skb_gso_segment(skb, dev->features & 0xffffffffffefffffULL); tmp___0 = IS_ERR((void const *)segs); } if (tmp___0 != 0L) { goto drop; } else { } goto ldv_53890; ldv_53889: { curr = segs; segs = segs->next; curr->next = (struct sk_buff *)0; status = myri10ge_xmit(curr, dev); } if ((int )status != 0) { { dev_kfree_skb_any(curr); } if ((unsigned long )segs != (unsigned long )((struct sk_buff *)0)) { { curr = segs; segs = segs->next; curr->next = (struct sk_buff *)0; dev_kfree_skb_any(segs); } } else { } goto drop; } else { } ldv_53890: ; if ((unsigned long )segs != (unsigned long )((struct sk_buff *)0)) { goto ldv_53889; } else { } { dev_kfree_skb_any(skb); } return (0); drop: { tmp___1 = skb_get_queue_mapping((struct sk_buff const *)skb); ss = mgp->ss + (unsigned long )tmp___1; dev_kfree_skb_any(skb); ss->stats.tx_dropped = ss->stats.tx_dropped + 1UL; } return (0); } } static struct rtnl_link_stats64 *myri10ge_get_stats(struct net_device *dev , struct rtnl_link_stats64 *stats ) { struct myri10ge_priv const *mgp ; void *tmp ; struct myri10ge_slice_netstats const *slice_stats ; int i ; { { tmp = netdev_priv((struct net_device const *)dev); mgp = (struct myri10ge_priv const *)tmp; i = 0; } goto ldv_53900; ldv_53899: slice_stats = (struct myri10ge_slice_netstats const *)(& (mgp->ss + (unsigned long )i)->stats); stats->rx_packets = stats->rx_packets + (unsigned long long )slice_stats->rx_packets; stats->tx_packets = stats->tx_packets + (unsigned long long )slice_stats->tx_packets; stats->rx_bytes = stats->rx_bytes + (unsigned long long )slice_stats->rx_bytes; stats->tx_bytes = stats->tx_bytes + (unsigned long long )slice_stats->tx_bytes; stats->rx_dropped = stats->rx_dropped + (unsigned long long )slice_stats->rx_dropped; stats->tx_dropped = stats->tx_dropped + (unsigned long long )slice_stats->tx_dropped; i = i + 1; ldv_53900: ; if (i < (int )mgp->num_slices) { goto ldv_53899; } else { } return (stats); } } static void myri10ge_set_multicast_list(struct net_device *dev ) { struct myri10ge_priv *mgp ; void *tmp ; struct myri10ge_cmd cmd ; struct netdev_hw_addr *ha ; __be32 data[2U] ; int err ; struct list_head const *__mptr ; __u32 tmp___0 ; __u32 tmp___1 ; struct list_head const *__mptr___0 ; { { tmp = netdev_priv((struct net_device const *)dev); mgp = (struct myri10ge_priv *)tmp; data[0] = 0U; data[1] = 0U; myri10ge_change_promisc(mgp, (int )dev->flags & 256, 1); } if (mgp->fw_multicast_support == 0) { return; } else { } { err = myri10ge_send_cmd(mgp, 26U, & cmd, 1); } if (err != 0) { { netdev_err((struct net_device const *)dev, "Failed MXGEFW_ENABLE_ALLMULTI, error status: %d\n", err); } goto abort; } else { } if ((dev->flags & 512U) != 0U || mgp->adopted_rx_filter_bug != 0) { return; } else { } { err = myri10ge_send_cmd(mgp, 30U, & cmd, 1); } if (err != 0) { { netdev_err((struct net_device const *)dev, "Failed MXGEFW_LEAVE_ALL_MULTICAST_GROUPS, error status: %d\n", err); } goto abort; } else { } __mptr = (struct list_head const *)dev->mc.list.next; ha = (struct netdev_hw_addr *)__mptr; goto ldv_53916; ldv_53915: { memcpy((void *)(& data), (void const *)(& ha->addr), 6UL); tmp___0 = __fswab32(data[0]); cmd.data0 = tmp___0; tmp___1 = __fswab32(data[1]); cmd.data1 = tmp___1; err = myri10ge_send_cmd(mgp, 28U, & cmd, 1); } if (err != 0) { { netdev_err((struct net_device const *)dev, "Failed MXGEFW_JOIN_MULTICAST_GROUP, error status:%d %pM\n", err, (unsigned char *)(& ha->addr)); } goto abort; } else { } __mptr___0 = (struct list_head const *)ha->list.next; ha = (struct netdev_hw_addr *)__mptr___0; ldv_53916: ; if ((unsigned long )(& ha->list) != (unsigned long )(& dev->mc.list)) { goto ldv_53915; } else { } { err = myri10ge_send_cmd(mgp, 27U, & cmd, 1); } if (err != 0) { { netdev_err((struct net_device const *)dev, "Failed MXGEFW_DISABLE_ALLMULTI, error status: %d\n", err); } goto abort; } else { } return; abort: ; return; } } static int myri10ge_set_mac_address(struct net_device *dev , void *addr ) { struct sockaddr *sa ; struct myri10ge_priv *mgp ; void *tmp ; int status ; bool tmp___0 ; int tmp___1 ; { { sa = (struct sockaddr *)addr; tmp = netdev_priv((struct net_device const *)dev); mgp = (struct myri10ge_priv *)tmp; tmp___0 = is_valid_ether_addr((u8 const *)(& sa->sa_data)); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (-99); } else { } { status = myri10ge_update_mac_address(mgp, (u8 *)(& sa->sa_data)); } if (status != 0) { { netdev_err((struct net_device const *)dev, "changing mac address failed with %d\n", status); } return (status); } else { } { memcpy((void *)dev->dev_addr, (void const *)(& sa->sa_data), 6UL); } return (0); } } static int myri10ge_change_mtu(struct net_device *dev , int new_mtu ) { struct myri10ge_priv *mgp ; void *tmp ; int error ; { { tmp = netdev_priv((struct net_device const *)dev); mgp = (struct myri10ge_priv *)tmp; error = 0; } if (new_mtu <= 67 || new_mtu + 14 > 9014) { { netdev_err((struct net_device const *)dev, "new mtu (%d) is not valid\n", new_mtu); } return (-22); } else { } { netdev_info((struct net_device const *)dev, "changing mtu from %d to %d\n", dev->mtu, new_mtu); } if (mgp->running != 0) { { myri10ge_close(dev); dev->mtu = (unsigned int )new_mtu; myri10ge_open(dev); } } else { dev->mtu = (unsigned int )new_mtu; } return (error); } } static void myri10ge_enable_ecrc(struct myri10ge_priv *mgp ) { struct pci_dev *bridge ; struct device *dev ; int cap ; unsigned int err_cap ; int ret ; struct pci_dev *prev_bridge ; struct pci_dev *old_bridge ; int tmp ; char const *tmp___0 ; char const *tmp___1 ; char const *tmp___2 ; int tmp___3 ; char const *tmp___4 ; char const *tmp___5 ; { bridge = ((mgp->pdev)->bus)->self; dev = & (mgp->pdev)->dev; if (myri10ge_ecrc_enable == 0 || (unsigned long )bridge == (unsigned long )((struct pci_dev *)0)) { return; } else { } { tmp___3 = pci_pcie_type((struct pci_dev const *)bridge); } if (tmp___3 != 4) { if (myri10ge_ecrc_enable > 1) { old_bridge = bridge; ldv_53941: prev_bridge = bridge; bridge = (bridge->bus)->self; if ((unsigned long )bridge == (unsigned long )((struct pci_dev *)0) || (unsigned long )prev_bridge == (unsigned long )bridge) { { dev_err((struct device const *)dev, "Failed to find root port to force ECRC\n"); } return; } else { } { tmp = pci_pcie_type((struct pci_dev const *)bridge); } if (tmp != 4) { goto ldv_53941; } else { } { tmp___0 = pci_name((struct pci_dev const *)bridge); tmp___1 = pci_name((struct pci_dev const *)old_bridge); _dev_info((struct device const *)dev, "Forcing ECRC on non-root port %s (enabling on root port %s)\n", tmp___1, tmp___0); } } else { { tmp___2 = pci_name((struct pci_dev const *)bridge); dev_err((struct device const *)dev, "Not enabling ECRC on non-root port %s\n", tmp___2); } return; } } else { } { cap = pci_find_ext_capability(bridge, 1); } if (cap == 0) { return; } else { } { ret = pci_read_config_dword((struct pci_dev const *)bridge, cap + 24, & err_cap); } if (ret != 0) { { tmp___4 = pci_name((struct pci_dev const *)bridge); dev_err((struct device const *)dev, "failed reading ext-conf-space of %s\n", tmp___4); dev_err((struct device const *)dev, "\t pci=nommconf in use? or buggy/incomplete/absent ACPI MCFG attr?\n"); } return; } else { } if ((err_cap & 32U) == 0U) { return; } else { } { err_cap = err_cap | 64U; pci_write_config_dword((struct pci_dev const *)bridge, cap + 24, err_cap); tmp___5 = pci_name((struct pci_dev const *)bridge); _dev_info((struct device const *)dev, "Enabled ECRC on upstream bridge %s\n", tmp___5); } return; } } static void myri10ge_firmware_probe(struct myri10ge_priv *mgp ) { struct pci_dev *pdev ; struct device *dev ; int status ; { { pdev = mgp->pdev; dev = & pdev->dev; mgp->tx_boundary = 4096; status = pcie_get_readrq(pdev); } if (status < 0) { { dev_err((struct device const *)dev, "Couldn\'t read max read req size: %d\n", status); } goto abort; } else { } if (status != 4096) { { dev_warn((struct device const *)dev, "Max Read Request size != 4096 (%d)\n", status); mgp->tx_boundary = 2048; } } else { } { set_fw_name(mgp, myri10ge_fw_aligned, 0); status = myri10ge_load_firmware(mgp, 1); } if (status != 0) { goto abort; } else { } { myri10ge_enable_ecrc(mgp); status = myri10ge_dma_test(mgp, 32); } if (status == 0) { return; } else { } if (status != -7) { { dev_warn((struct device const *)dev, "DMA test failed: %d\n", status); } } else { } if (status == -38) { { dev_warn((struct device const *)dev, "Falling back to ethp! Please install up to date fw\n"); } } else { } abort: { mgp->tx_boundary = 2048; set_fw_name(mgp, myri10ge_fw_unaligned, 0); } return; } } static void myri10ge_select_firmware(struct myri10ge_priv *mgp ) { int overridden ; int link_width ; u16 lnk ; long tmp ; char *fw_name ; char *tmp___0 ; long tmp___1 ; size_t tmp___2 ; { overridden = 0; if (myri10ge_force_firmware == 0) { { pcie_capability_read_word(mgp->pdev, 18, & lnk); link_width = ((int )lnk >> 4) & 63; } if (link_width <= 7) { { _dev_info((struct device const *)(& (mgp->pdev)->dev), "PCIE x%d Link\n", link_width); mgp->tx_boundary = 4096; set_fw_name(mgp, myri10ge_fw_aligned, 0); } } else { { myri10ge_firmware_probe(mgp); } } } else if (myri10ge_force_firmware == 1) { { _dev_info((struct device const *)(& (mgp->pdev)->dev), "Assuming aligned completions (forced)\n"); mgp->tx_boundary = 4096; set_fw_name(mgp, myri10ge_fw_aligned, 0); } } else { { _dev_info((struct device const *)(& (mgp->pdev)->dev), "Assuming unaligned completions (forced)\n"); mgp->tx_boundary = 2048; set_fw_name(mgp, myri10ge_fw_unaligned, 0); } } { tmp = ldv__builtin_expect(((int )__param_myri10ge_fw_name.perm & 146) == 0, 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/ethernet/myricom/myri10ge/myri10ge.c"), "i" (3414), "i" (12UL)); __builtin_unreachable(); } } else { } { __kernel_param_lock(); } if ((unsigned long )myri10ge_fw_name != (unsigned long )((char *)0)) { { tmp___0 = kstrdup((char const *)myri10ge_fw_name, 208U); fw_name = tmp___0; } if ((unsigned long )fw_name != (unsigned long )((char *)0)) { { overridden = 1; set_fw_name(mgp, fw_name, 1); } } else { } } else { } { tmp___1 = ldv__builtin_expect(((int )__param_myri10ge_fw_name.perm & 146) == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/ethernet/myricom/myri10ge/myri10ge.c"), "i" (3422), "i" (12UL)); __builtin_unreachable(); } } else { } { __kernel_param_unlock(); } if (mgp->board_number <= 7U && (unsigned long )myri10ge_fw_names[mgp->board_number] != (unsigned long )((char *)0)) { { tmp___2 = strlen((char const *)myri10ge_fw_names[mgp->board_number]); } if (tmp___2 != 0UL) { { set_fw_name(mgp, myri10ge_fw_names[mgp->board_number], 0); overridden = 1; } } else { } } else { } if (overridden != 0) { { _dev_info((struct device const *)(& (mgp->pdev)->dev), "overriding firmware to %s\n", mgp->fw_name); } } else { } return; } } static void myri10ge_mask_surprise_down(struct pci_dev *pdev ) { struct pci_dev *bridge ; int cap ; u32 mask ; { bridge = (pdev->bus)->self; if ((unsigned long )bridge == (unsigned long )((struct pci_dev *)0)) { return; } else { } { cap = pci_find_ext_capability(bridge, 1); } if (cap != 0) { { pci_read_config_dword((struct pci_dev const *)bridge, cap + 8, & mask); mask = mask | 32U; pci_write_config_dword((struct pci_dev const *)bridge, cap + 8, mask); } } else { } return; } } static int myri10ge_suspend(struct pci_dev *pdev , pm_message_t state ) { struct myri10ge_priv *mgp ; struct net_device *netdev ; void *tmp ; bool tmp___0 ; pci_power_t tmp___1 ; int tmp___2 ; { { tmp = pci_get_drvdata(pdev); mgp = (struct myri10ge_priv *)tmp; } if ((unsigned long )mgp == (unsigned long )((struct myri10ge_priv *)0)) { return (-22); } else { } { netdev = mgp->dev; netif_device_detach(netdev); tmp___0 = netif_running((struct net_device const *)netdev); } if ((int )tmp___0) { { netdev_info((struct net_device const *)netdev, "closing\n"); rtnl_lock(); myri10ge_close(netdev); rtnl_unlock(); } } else { } { myri10ge_dummy_rdma(mgp, 0); pci_save_state(pdev); pci_disable_device(pdev); tmp___1 = pci_choose_state(pdev, state); tmp___2 = pci_set_power_state(pdev, tmp___1); } return (tmp___2); } } static int myri10ge_resume(struct pci_dev *pdev ) { struct myri10ge_priv *mgp ; struct net_device *netdev ; int status ; u16 vendor ; void *tmp ; bool tmp___0 ; { { tmp = pci_get_drvdata(pdev); mgp = (struct myri10ge_priv *)tmp; } if ((unsigned long )mgp == (unsigned long )((struct myri10ge_priv *)0)) { return (-22); } else { } { netdev = mgp->dev; pci_set_power_state(pdev, 0); msleep(5U); pci_read_config_word((struct pci_dev const *)mgp->pdev, 0, & vendor); } if ((unsigned int )vendor == 65535U) { { netdev_err((struct net_device const *)mgp->dev, "device disappeared!\n"); } return (-5); } else { } { pci_restore_state(pdev); status = pci_enable_device(pdev); } if (status != 0) { { dev_err((struct device const *)(& pdev->dev), "failed to enable device\n"); } return (status); } else { } { pci_set_master(pdev); myri10ge_reset(mgp); myri10ge_dummy_rdma(mgp, 1); pci_save_state(pdev); tmp___0 = netif_running((struct net_device const *)netdev); } if ((int )tmp___0) { { rtnl_lock(); status = myri10ge_open(netdev); rtnl_unlock(); } if (status != 0) { goto abort_with_enabled; } else { } } else { } { netif_device_attach(netdev); } return (0); abort_with_enabled: { pci_disable_device(pdev); } return (-5); } } static u32 myri10ge_read_reboot(struct myri10ge_priv *mgp ) { struct pci_dev *pdev ; int vs ; u32 reboot ; { { pdev = mgp->pdev; vs = mgp->vendor_specific_offset; pci_write_config_byte((struct pci_dev const *)pdev, vs + 16, 3); pci_write_config_dword((struct pci_dev const *)pdev, vs + 24, 4294967280U); pci_read_config_dword((struct pci_dev const *)pdev, vs + 20, & reboot); } return (reboot); } } static void myri10ge_check_slice(struct myri10ge_slice_state *ss , int *reset_needed , int *busy_slice_cnt , u32 rx_pause_cnt ) { struct myri10ge_priv *mgp ; int slice ; int tmp ; __u32 tmp___0 ; { mgp = ss->mgp; slice = (int )(((long )ss - (long )mgp->ss) / 832L); if ((ss->tx.req != ss->tx.done && ss->tx.done == ss->watchdog_tx_done) && ss->watchdog_tx_req != ss->watchdog_tx_done) { if (rx_pause_cnt != (u32 )mgp->watchdog_pause) { { tmp = net_ratelimit(); } if (tmp != 0) { { netdev_warn((struct net_device const *)mgp->dev, "slice %d: TX paused, check link partner\n", slice); } } else { } } else { { tmp___0 = __fswab32(((mgp->ss + (unsigned long )slice)->fw_stats)->send_done_count); netdev_warn((struct net_device const *)mgp->dev, "slice %d: TX stuck %d %d %d %d %d %d\n", slice, ss->tx.queue_active, ss->tx.req, ss->tx.done, ss->tx.pkt_start, ss->tx.pkt_done, (int )tmp___0); *reset_needed = 1; ss->stuck = 1; } } } else { } if (ss->watchdog_tx_done != ss->tx.done || ss->watchdog_rx_done != ss->rx_done.cnt) { *busy_slice_cnt = *busy_slice_cnt + 1; } else { } ss->watchdog_tx_done = ss->tx.done; ss->watchdog_tx_req = ss->tx.req; ss->watchdog_rx_done = ss->rx_done.cnt; return; } } static void myri10ge_watchdog(struct work_struct *work ) { struct myri10ge_priv *mgp ; struct work_struct const *__mptr ; struct myri10ge_slice_state *ss ; u32 reboot ; u32 rx_pause_cnt ; int status ; int rebooted ; int i ; int reset_needed ; int busy_slice_cnt ; u16 cmd ; u16 vendor ; __u32 tmp ; struct _ddebug descriptor ; long tmp___0 ; { { __mptr = (struct work_struct const *)work; mgp = (struct myri10ge_priv *)__mptr + 0xfffffffffffffef8UL; reset_needed = 0; busy_slice_cnt = 0; mgp->watchdog_resets = mgp->watchdog_resets + 1; pci_read_config_word((struct pci_dev const *)mgp->pdev, 4, & cmd); rebooted = 0; } if (((int )cmd & 4) == 0) { { reboot = myri10ge_read_reboot(mgp); netdev_err((struct net_device const *)mgp->dev, "NIC rebooted (0x%x),%s resetting\n", reboot, myri10ge_reset_recover != 0 ? (char *)"" : (char *)" not"); } if (myri10ge_reset_recover == 0) { return; } else { } { rtnl_lock(); mgp->rebooted = 1; rebooted = 1; myri10ge_close(mgp->dev); myri10ge_reset_recover = myri10ge_reset_recover - 1; mgp->rebooted = 0; pci_restore_state(mgp->pdev); pci_save_state(mgp->pdev); } } else { if ((unsigned int )cmd == 65535U) { { pci_read_config_word((struct pci_dev const *)mgp->pdev, 0, & vendor); } if ((unsigned int )vendor == 65535U) { { netdev_err((struct net_device const *)mgp->dev, "device disappeared!\n"); } return; } else { } } else { } { tmp = __fswab32(((mgp->ss)->fw_stats)->dropped_pause); rx_pause_cnt = tmp; i = 0; } goto ldv_54008; ldv_54007: ss = mgp->ss; if (ss->stuck != 0) { { myri10ge_check_slice(ss, & reset_needed, & busy_slice_cnt, rx_pause_cnt); ss->stuck = 0; } } else { } i = i + 1; ldv_54008: ; if (i < mgp->num_slices) { goto ldv_54007; } else { } if (reset_needed == 0) { { descriptor.modname = "myri10ge"; descriptor.function = "myri10ge_watchdog"; descriptor.filename = "drivers/net/ethernet/myricom/myri10ge/myri10ge.c"; descriptor.format = "not resetting\n"; descriptor.lineno = 3656U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)mgp->dev, "not resetting\n"); } } else { } return; } else { } { netdev_err((struct net_device const *)mgp->dev, "device timeout, resetting\n"); } } if (rebooted == 0) { { rtnl_lock(); myri10ge_close(mgp->dev); } } else { } { status = myri10ge_load_firmware(mgp, 1); } if (status != 0) { { netdev_err((struct net_device const *)mgp->dev, "failed to load firmware\n"); } } else { { myri10ge_open(mgp->dev); } } { rtnl_unlock(); } return; } } static void myri10ge_watchdog_timer(unsigned long arg ) { struct myri10ge_priv *mgp ; struct myri10ge_slice_state *ss ; int i ; int reset_needed ; int busy_slice_cnt ; u32 rx_pause_cnt ; u16 cmd ; __u32 tmp ; { { mgp = (struct myri10ge_priv *)arg; tmp = __fswab32(((mgp->ss)->fw_stats)->dropped_pause); rx_pause_cnt = tmp; busy_slice_cnt = 0; i = 0; reset_needed = 0; } goto ldv_54023; ldv_54022: ss = mgp->ss + (unsigned long )i; if (ss->rx_small.watchdog_needed != 0) { { myri10ge_alloc_rx_pages(mgp, & ss->rx_small, mgp->small_bytes + 2, 1); } if (ss->rx_small.fill_cnt - ss->rx_small.cnt >= myri10ge_fill_thresh) { ss->rx_small.watchdog_needed = 0; } else { } } else { } if (ss->rx_big.watchdog_needed != 0) { { myri10ge_alloc_rx_pages(mgp, & ss->rx_big, mgp->big_bytes, 1); } if (ss->rx_big.fill_cnt - ss->rx_big.cnt >= myri10ge_fill_thresh) { ss->rx_big.watchdog_needed = 0; } else { } } else { } { myri10ge_check_slice(ss, & reset_needed, & busy_slice_cnt, rx_pause_cnt); i = i + 1; } ldv_54023: ; if (i < mgp->num_slices && reset_needed == 0) { goto ldv_54022; } else { } if (busy_slice_cnt == 0) { { pci_read_config_word((struct pci_dev const *)mgp->pdev, 4, & cmd); } if (((int )cmd & 4) == 0) { reset_needed = 1; } else { } } else { } mgp->watchdog_pause = (int )rx_pause_cnt; if (reset_needed != 0) { { schedule_work(& mgp->watchdog_work); } } else { { ldv_mod_timer_118(& mgp->watchdog_timer, (unsigned long )jiffies + (unsigned long )(myri10ge_watchdog_timeout * 250)); } } return; } } static void myri10ge_free_slices(struct myri10ge_priv *mgp ) { struct myri10ge_slice_state *ss ; struct pci_dev *pdev ; size_t bytes ; int i ; { pdev = mgp->pdev; if ((unsigned long )mgp->ss == (unsigned long )((struct myri10ge_slice_state *)0)) { return; } else { } i = 0; goto ldv_54033; ldv_54032: ss = mgp->ss + (unsigned long )i; if ((unsigned long )ss->rx_done.entry != (unsigned long )((struct mcp_slot *)0)) { { bytes = (unsigned long )mgp->max_intr_slots * 4UL; dma_free_attrs(& pdev->dev, bytes, (void *)ss->rx_done.entry, ss->rx_done.bus, (struct dma_attrs *)0); ss->rx_done.entry = (struct mcp_slot *)0; } } else { } if ((unsigned long )ss->fw_stats != (unsigned long )((struct mcp_irq_data *)0)) { { bytes = 64UL; dma_free_attrs(& pdev->dev, bytes, (void *)ss->fw_stats, ss->fw_stats_bus, (struct dma_attrs *)0); ss->fw_stats = (struct mcp_irq_data *)0; } } else { } { napi_hash_del(& ss->napi); netif_napi_del(& ss->napi); i = i + 1; } ldv_54033: ; if (i < mgp->num_slices) { goto ldv_54032; } else { } { synchronize_rcu(); kfree((void const *)mgp->ss); mgp->ss = (struct myri10ge_slice_state *)0; } return; } } static int myri10ge_alloc_slices(struct myri10ge_priv *mgp ) { struct myri10ge_slice_state *ss ; struct pci_dev *pdev ; size_t bytes ; int i ; void *tmp ; void *tmp___0 ; void *tmp___1 ; { { pdev = mgp->pdev; bytes = (unsigned long )mgp->num_slices * 832UL; tmp = kzalloc(bytes, 208U); mgp->ss = (struct myri10ge_slice_state *)tmp; } if ((unsigned long )mgp->ss == (unsigned long )((struct myri10ge_slice_state *)0)) { return (-12); } else { } i = 0; goto ldv_54044; ldv_54043: { ss = mgp->ss + (unsigned long )i; bytes = (unsigned long )mgp->max_intr_slots * 4UL; tmp___0 = dma_zalloc_coherent(& pdev->dev, bytes, & ss->rx_done.bus, 208U); ss->rx_done.entry = (struct mcp_slot *)tmp___0; } if ((unsigned long )ss->rx_done.entry == (unsigned long )((struct mcp_slot *)0)) { goto abort; } else { } { bytes = 64UL; tmp___1 = dma_alloc_attrs(& pdev->dev, bytes, & ss->fw_stats_bus, 208U, (struct dma_attrs *)0); ss->fw_stats = (struct mcp_irq_data *)tmp___1; } if ((unsigned long )ss->fw_stats == (unsigned long )((struct mcp_irq_data *)0)) { goto abort; } else { } { ss->mgp = mgp; ss->dev = mgp->dev; netif_napi_add(ss->dev, & ss->napi, & myri10ge_poll, myri10ge_napi_weight); napi_hash_add(& ss->napi); i = i + 1; } ldv_54044: ; if (i < mgp->num_slices) { goto ldv_54043; } else { } return (0); abort: { myri10ge_free_slices(mgp); } return (-12); } } static void myri10ge_probe_slices(struct myri10ge_priv *mgp ) { struct myri10ge_cmd cmd ; struct pci_dev *pdev ; char *old_fw ; bool old_allocated ; int i ; int status ; int ncpus ; void *tmp ; bool tmp___0 ; int tmp___1 ; { { pdev = mgp->pdev; mgp->num_slices = 1; ncpus = netif_get_num_default_rss_queues(); } if ((myri10ge_max_slices == 1 || (unsigned int )pdev->msix_cap == 0U) || (myri10ge_max_slices == -1 && ncpus <= 1)) { return; } else { } old_fw = mgp->fw_name; old_allocated = mgp->fw_name_allocated; mgp->fw_name_allocated = 0; if ((unsigned long )myri10ge_fw_name != (unsigned long )((char *)0)) { { _dev_info((struct device const *)(& (mgp->pdev)->dev), "overriding rss firmware to %s\n", myri10ge_fw_name); set_fw_name(mgp, myri10ge_fw_name, 0); } } else if ((unsigned long )old_fw == (unsigned long )myri10ge_fw_aligned) { { set_fw_name(mgp, myri10ge_fw_rss_aligned, 0); } } else { { set_fw_name(mgp, myri10ge_fw_rss_unaligned, 0); } } { status = myri10ge_load_firmware(mgp, 0); } if (status != 0) { { _dev_info((struct device const *)(& pdev->dev), "Rss firmware not found\n"); } if ((int )old_allocated) { { kfree((void const *)old_fw); } } else { } return; } else { } { memset((void *)(& cmd), 0, 12UL); status = myri10ge_send_cmd(mgp, 1U, & cmd, 0); } if (status != 0) { { dev_err((struct device const *)(& (mgp->pdev)->dev), "failed reset\n"); } goto abort_with_fw; } else { } { mgp->max_intr_slots = (int )(cmd.data0 / 4U); cmd.data0 = (u32 )((unsigned long )mgp->max_intr_slots) * 4U; status = myri10ge_send_cmd(mgp, 13U, & cmd, 0); } if (status != 0) { { dev_err((struct device const *)(& (mgp->pdev)->dev), "failed MXGEFW_CMD_SET_INTRQ_SIZE\n"); } goto abort_with_fw; } else { } { status = myri10ge_send_cmd(mgp, 35U, & cmd, 0); } if (status != 0) { goto abort_with_fw; } else { mgp->num_slices = (int )cmd.data0; } if (myri10ge_msi == 0) { goto abort_with_fw; } else { } if (myri10ge_max_slices == -1) { myri10ge_max_slices = ncpus; } else { } if (mgp->num_slices > myri10ge_max_slices) { mgp->num_slices = myri10ge_max_slices; } else { } { tmp = kcalloc((size_t )mgp->num_slices, 8UL, 208U); mgp->msix_vectors = (struct msix_entry *)tmp; } if ((unsigned long )mgp->msix_vectors == (unsigned long )((struct msix_entry *)0)) { goto disable_msix; } else { } i = 0; goto ldv_54059; ldv_54058: (mgp->msix_vectors + (unsigned long )i)->entry = (u16 )i; i = i + 1; ldv_54059: ; if (i < mgp->num_slices) { goto ldv_54058; } else { } goto ldv_54065; ldv_54064: ; goto ldv_54062; ldv_54061: mgp->num_slices = mgp->num_slices - 1; ldv_54062: { tmp___0 = is_power_of_2((unsigned long )mgp->num_slices); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { goto ldv_54061; } else { } if (mgp->num_slices == 1) { goto disable_msix; } else { } { status = pci_enable_msix(pdev, mgp->msix_vectors, mgp->num_slices); } if (status == 0) { { pci_disable_msix(pdev); } if ((int )old_allocated) { { kfree((void const *)old_fw); } } else { } return; } else { } if (status > 0) { mgp->num_slices = status; } else { goto disable_msix; } ldv_54065: ; if (mgp->num_slices > 1) { goto ldv_54064; } else { } disable_msix: ; if ((unsigned long )mgp->msix_vectors != (unsigned long )((struct msix_entry *)0)) { { kfree((void const *)mgp->msix_vectors); mgp->msix_vectors = (struct msix_entry *)0; } } else { } abort_with_fw: { mgp->num_slices = 1; set_fw_name(mgp, old_fw, (int )old_allocated); myri10ge_load_firmware(mgp, 0); } return; } } static struct net_device_ops const myri10ge_netdev_ops = {0, 0, & myri10ge_open, & myri10ge_close, & myri10ge_xmit, 0, 0, & myri10ge_set_multicast_list, & myri10ge_set_mac_address, & eth_validate_addr, 0, 0, & myri10ge_change_mtu, 0, 0, & myri10ge_get_stats, 0, 0, 0, 0, 0, 0, & myri10ge_busy_poll, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static int myri10ge_probe(struct pci_dev *pdev , struct pci_device_id const *ent ) { struct net_device *netdev ; struct myri10ge_priv *mgp ; struct device *dev ; int i ; int status ; int dac_enabled ; unsigned int hdr_offset ; unsigned int ss_offset ; int board_number ; void *tmp ; struct lock_class_key __key ; int tmp___0 ; void *tmp___1 ; void *tmp___2 ; unsigned int tmp___3 ; __u32 tmp___4 ; unsigned int tmp___5 ; __u32 tmp___6 ; struct lock_class_key __key___0 ; struct lock_class_key __key___1 ; atomic_long_t __constr_expr_0 ; { { dev = & pdev->dev; status = -6; netdev = ldv_alloc_etherdev_mqs_119(968, 32U, 32U); } if ((unsigned long )netdev == (unsigned long )((struct net_device *)0)) { return (-12); } else { } { netdev->dev.parent = & pdev->dev; tmp = netdev_priv((struct net_device const *)netdev); mgp = (struct myri10ge_priv *)tmp; mgp->dev = netdev; mgp->pdev = pdev; mgp->pause = myri10ge_flow_control; mgp->intr_coal_delay = myri10ge_intr_coal_delay; mgp->msg_enable = netif_msg_init(myri10ge_debug, 4); mgp->board_number = (unsigned int )board_number; __init_waitqueue_head(& mgp->down_wq, "&mgp->down_wq", & __key); tmp___0 = pci_enable_device(pdev); } if (tmp___0 != 0) { { dev_err((struct device const *)(& pdev->dev), "pci_enable_device call failed\n"); status = -19; } goto abort_with_netdev; } else { } { mgp->vendor_specific_offset = pci_find_capability(pdev, 9); status = pcie_set_readrq(pdev, 4096); } if (status != 0) { { dev_err((struct device const *)(& pdev->dev), "Error %d writing PCI_EXP_DEVCTL\n", status); } goto abort_with_enabled; } else { } { myri10ge_mask_surprise_down(pdev); pci_set_master(pdev); dac_enabled = 1; status = pci_set_dma_mask(pdev, 0xffffffffffffffffULL); } if (status != 0) { { dac_enabled = 0; dev_err((struct device const *)(& pdev->dev), "64-bit pci address mask was refused, trying 32-bit\n"); status = pci_set_dma_mask(pdev, 4294967295ULL); } } else { } if (status != 0) { { dev_err((struct device const *)(& pdev->dev), "Error %d setting DMA mask\n", status); } goto abort_with_enabled; } else { } { pci_set_consistent_dma_mask(pdev, 0xffffffffffffffffULL); tmp___1 = dma_alloc_attrs(& pdev->dev, 8UL, & mgp->cmd_bus, 208U, (struct dma_attrs *)0); mgp->cmd = (struct mcp_cmd_response *)tmp___1; } if ((unsigned long )mgp->cmd == (unsigned long )((struct mcp_cmd_response *)0)) { goto abort_with_enabled; } else { } { mgp->board_span = pdev->resource[0].start != 0ULL || pdev->resource[0].end != pdev->resource[0].start ? (unsigned long )((pdev->resource[0].end - pdev->resource[0].start) + 1ULL) : 0UL; mgp->iomem_base = (unsigned long )pdev->resource[0].start; mgp->mtrr = -1; mgp->wc_enabled = 0; mgp->mtrr = mtrr_add(mgp->iomem_base, mgp->board_span, 1U, 1); } if (mgp->mtrr >= 0) { mgp->wc_enabled = 1; } else { } { tmp___2 = ioremap_wc((resource_size_t )mgp->iomem_base, mgp->board_span); mgp->sram = (u8 *)tmp___2; } if ((unsigned long )mgp->sram == (unsigned long )((u8 *)0U)) { { dev_err((struct device const *)(& pdev->dev), "ioremap failed for %ld bytes at 0x%lx\n", mgp->board_span, mgp->iomem_base); status = -6; } goto abort_with_mtrr; } else { } { tmp___3 = readl((void const volatile *)mgp->sram + 60U); tmp___4 = __fswab32(tmp___3); hdr_offset = tmp___4 & 1048572U; ss_offset = hdr_offset + 144U; tmp___5 = readl((void const volatile *)mgp->sram + (unsigned long )ss_offset); tmp___6 = __fswab32(tmp___5); mgp->sram_size = (int )tmp___6; } if ((unsigned long )mgp->sram_size > mgp->board_span || mgp->sram_size <= 1048576) { { dev_err((struct device const *)(& pdev->dev), "invalid sram_size %dB or board span %ldB\n", mgp->sram_size, mgp->board_span); } goto abort_with_ioremap; } else { } { memcpy_fromio((void *)(& mgp->eeprom_strings), (void const volatile *)mgp->sram + (unsigned long )mgp->sram_size, 256UL); memset((void *)(& mgp->eeprom_strings) + 254U, 0, 2UL); status = myri10ge_read_mac_addr(mgp); } if (status != 0) { goto abort_with_ioremap; } else { } i = 0; goto ldv_54087; ldv_54086: *(netdev->dev_addr + (unsigned long )i) = mgp->mac_addr[i]; i = i + 1; ldv_54087: ; if (i <= 5) { goto ldv_54086; } else { } { myri10ge_select_firmware(mgp); status = myri10ge_load_firmware(mgp, 1); } if (status != 0) { { dev_err((struct device const *)(& pdev->dev), "failed to load firmware\n"); } goto abort_with_ioremap; } else { } { myri10ge_probe_slices(mgp); status = myri10ge_alloc_slices(mgp); } if (status != 0) { { dev_err((struct device const *)(& pdev->dev), "failed to alloc slice state\n"); } goto abort_with_firmware; } else { } { netif_set_real_num_tx_queues(netdev, (unsigned int )mgp->num_slices); netif_set_real_num_rx_queues(netdev, (unsigned int )mgp->num_slices); status = myri10ge_reset(mgp); } if (status != 0) { { dev_err((struct device const *)(& pdev->dev), "failed reset\n"); } goto abort_with_slices; } else { } { myri10ge_setup_dca(mgp); pci_set_drvdata(pdev, (void *)mgp); } if (myri10ge_initial_mtu + 14 > 9014) { myri10ge_initial_mtu = 9000; } else { } if (myri10ge_initial_mtu + 14 <= 67) { myri10ge_initial_mtu = 68; } else { } netdev->netdev_ops = & myri10ge_netdev_ops; netdev->mtu = (unsigned int )myri10ge_initial_mtu; netdev->hw_features = (unsigned long long )mgp->features | 4294967296ULL; netdev->hw_features = netdev->hw_features | 256ULL; netdev->features = netdev->hw_features; if (dac_enabled != 0) { netdev->features = netdev->features | 32ULL; } else { } netdev->vlan_features = netdev->vlan_features | (netdev_features_t )mgp->features; if (mgp->fw_ver_tiny <= 36) { netdev->vlan_features = netdev->vlan_features & 0xffffffffffefffffULL; } else { } if (mgp->fw_ver_tiny <= 31) { netdev->vlan_features = netdev->vlan_features & 0xfffffffffffeffffULL; } else { } { status = myri10ge_request_irq(mgp); } if (status != 0) { goto abort_with_firmware; } else { } { myri10ge_free_irq(mgp); pci_save_state(pdev); init_timer_key(& mgp->watchdog_timer, 0U, "((&mgp->watchdog_timer))", & __key___0); mgp->watchdog_timer.function = & myri10ge_watchdog_timer; mgp->watchdog_timer.data = (unsigned long )mgp; netdev->ethtool_ops = & myri10ge_ethtool_ops; __init_work(& mgp->watchdog_work, 0); __constr_expr_0.counter = 137438953408L; mgp->watchdog_work.data = __constr_expr_0; lockdep_init_map(& mgp->watchdog_work.lockdep_map, "(&mgp->watchdog_work)", & __key___1, 0); INIT_LIST_HEAD(& mgp->watchdog_work.entry); mgp->watchdog_work.func = & myri10ge_watchdog; status = ldv_register_netdev_120(netdev); } if (status != 0) { { dev_err((struct device const *)(& pdev->dev), "register_netdev failed: %d\n", status); } goto abort_with_state; } else { } if (mgp->msix_enabled != 0) { { _dev_info((struct device const *)dev, "%d MSI-X IRQs, tx bndry %d, fw %s, WC %s\n", mgp->num_slices, mgp->tx_boundary, mgp->fw_name, mgp->wc_enabled != 0 ? (char *)"Enabled" : (char *)"Disabled"); } } else { { _dev_info((struct device const *)dev, "%s IRQ %d, tx bndry %d, fw %s, WC %s\n", mgp->msi_enabled != 0 ? (char *)"MSI" : (char *)"xPIC", pdev->irq, mgp->tx_boundary, mgp->fw_name, mgp->wc_enabled != 0 ? (char *)"Enabled" : (char *)"Disabled"); } } board_number = board_number + 1; return (0); abort_with_state: { pci_restore_state(pdev); } abort_with_slices: { myri10ge_free_slices(mgp); } abort_with_firmware: { myri10ge_dummy_rdma(mgp, 0); } abort_with_ioremap: ; if ((unsigned long )mgp->mac_addr_string != (unsigned long )((char *)0)) { { dev_err((struct device const *)(& pdev->dev), "myri10ge_probe() failed: MAC=%s, SN=%ld\n", mgp->mac_addr_string, mgp->serial_number); } } else { } { iounmap((void volatile *)mgp->sram); } abort_with_mtrr: ; if (mgp->mtrr >= 0) { { mtrr_del(mgp->mtrr, mgp->iomem_base, mgp->board_span); } } else { } { dma_free_attrs(& pdev->dev, 8UL, (void *)mgp->cmd, mgp->cmd_bus, (struct dma_attrs *)0); } abort_with_enabled: { pci_disable_device(pdev); } abort_with_netdev: { set_fw_name(mgp, (char *)0, 0); ldv_free_netdev_121(netdev); } return (status); } } static void myri10ge_remove(struct pci_dev *pdev ) { struct myri10ge_priv *mgp ; struct net_device *netdev ; void *tmp ; { { tmp = pci_get_drvdata(pdev); mgp = (struct myri10ge_priv *)tmp; } if ((unsigned long )mgp == (unsigned long )((struct myri10ge_priv *)0)) { return; } else { } { cancel_work_sync(& mgp->watchdog_work); netdev = mgp->dev; ldv_unregister_netdev_122(netdev); myri10ge_teardown_dca(mgp); myri10ge_dummy_rdma(mgp, 0); pci_restore_state(pdev); iounmap((void volatile *)mgp->sram); } if (mgp->mtrr >= 0) { { mtrr_del(mgp->mtrr, mgp->iomem_base, mgp->board_span); } } else { } { myri10ge_free_slices(mgp); } if ((unsigned long )mgp->msix_vectors != (unsigned long )((struct msix_entry *)0)) { { kfree((void const *)mgp->msix_vectors); } } else { } { dma_free_attrs(& pdev->dev, 8UL, (void *)mgp->cmd, mgp->cmd_bus, (struct dma_attrs *)0); set_fw_name(mgp, (char *)0, 0); ldv_free_netdev_123(netdev); pci_disable_device(pdev); } return; } } static struct pci_device_id const myri10ge_pci_tbl[3U] = { {5313U, 8U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5313U, 9U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {0U, 0U, 0U, 0U, 0U, 0U, 0UL}}; struct pci_device_id const __mod_pci_device_table ; static struct pci_driver myri10ge_driver = {{0, 0}, "myri10ge", (struct pci_device_id const *)(& myri10ge_pci_tbl), & myri10ge_probe, & myri10ge_remove, & myri10ge_suspend, 0, 0, & myri10ge_resume, 0, 0, 0, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int myri10ge_notify_dca(struct notifier_block *nb , unsigned long event , void *p ) { int err ; int tmp ; { { tmp = driver_for_each_device(& myri10ge_driver.driver, (struct device *)0, (void *)(& event), & myri10ge_notify_dca_device); err = tmp; } if (err != 0) { return (32770); } else { } return (0); } } static struct notifier_block myri10ge_dca_notifier = {& myri10ge_notify_dca, (struct notifier_block *)0, 0}; static int myri10ge_init_module(void) { int tmp ; { { printk("\016myri10ge: Version %s\n", (char *)"1.5.3-1.534"); } if (myri10ge_rss_hash > 5) { { printk("\vmyri10ge: Illegal rssh hash type %d, defaulting to source port\n", myri10ge_rss_hash); myri10ge_rss_hash = 4; } } else { } { ldv_dca_register_notify_124(& myri10ge_dca_notifier); } if (myri10ge_max_slices > 32) { myri10ge_max_slices = 32; } else { } { tmp = ldv___pci_register_driver_125(& myri10ge_driver, & __this_module, "myri10ge"); } return (tmp); } } static void myri10ge_cleanup_module(void) { { { ldv_dca_unregister_notify_126(& myri10ge_dca_notifier); ldv_pci_unregister_driver_127(& myri10ge_driver); } return; } } void ldv_EMGentry_exit_myri10ge_cleanup_module_17_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_myri10ge_init_module_17_7(int (*arg0)(void) ) ; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) ; struct net_device *ldv_alloc_etherdev_mqs(struct net_device *arg0 , int arg1 , unsigned int arg2 , unsigned int arg3 ) ; void ldv_dca_register_notify(void *arg0 , struct notifier_block *arg1 ) ; void ldv_dca_unregister_notify(void *arg0 , struct notifier_block *arg1 ) ; int ldv_del_timer_sync(int arg0 , struct timer_list *arg1 ) ; void ldv_dispatch_deregister_12_1(struct net_device *arg0 ) ; void ldv_dispatch_deregister_13_1(struct pci_driver *arg0 ) ; void ldv_dispatch_deregister_15_1(struct notifier_block *arg0 ) ; void ldv_dispatch_instance_deregister_6_1(struct timer_list *arg0 ) ; void ldv_dispatch_instance_register_9_2(struct timer_list *arg0 ) ; void ldv_dispatch_irq_deregister_7_1(int arg0 ) ; void ldv_dispatch_irq_register_11_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_register_10_4(struct net_device *arg0 ) ; void ldv_dispatch_register_14_2(struct pci_driver *arg0 ) ; void ldv_dispatch_register_16_1(struct notifier_block *arg0 ) ; void ldv_dummy_resourceless_instance_callback_1_11(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_12(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_13(void (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_14(void (*arg0)(struct net_device * , struct ethtool_ringparam * ) , struct net_device *arg1 , struct ethtool_ringparam *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_15(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_16(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_19(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_22(int (*arg0)(struct napi_struct * ) , struct napi_struct *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_23(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_26(struct rtnl_link_stats64 *(*arg0)(struct net_device * , struct rtnl_link_stats64 * ) , struct net_device *arg1 , struct rtnl_link_stats64 *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_27(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_28(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_29(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_3(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_30(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_31(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_32(void (*arg0)(struct net_device * , unsigned int ) , struct net_device *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_35(int (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_36(int (*arg0)(struct net_device * , enum ethtool_phys_id_state ) , struct net_device *arg1 , enum ethtool_phys_id_state arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_7(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_8(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) ; void ldv_dummy_resourceless_instance_callback_3_3(int (*arg0)(struct notifier_block * , unsigned long , void * ) , struct notifier_block *arg1 , unsigned long arg2 , void *arg3 ) ; void ldv_entry_EMGentry_17(void *arg0 ) ; int main(void) ; void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) ; void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) ; enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_interrupt_instance_0(void *arg0 ) ; int ldv_mod_timer(int arg0 , struct timer_list *arg1 , unsigned long arg2 ) ; void ldv_net_dummy_resourceless_instance_1(void *arg0 ) ; int ldv_pci_instance_probe_2_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_2_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_2_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_2_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_2_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_2_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_2_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_2(void *arg0 ) ; void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) ; int ldv_register_netdev(int arg0 , struct net_device *arg1 ) ; int ldv_register_netdev_open_10_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) ; void ldv_struct_notifier_block_dummy_resourceless_instance_3(void *arg0 ) ; void ldv_timer_instance_callback_4_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) ; void ldv_timer_timer_instance_4(void *arg0 ) ; void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) ; void ldv_unregister_netdev_stop_12_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; struct ldv_thread ldv_thread_0 ; struct ldv_thread ldv_thread_1 ; struct ldv_thread ldv_thread_17 ; struct ldv_thread ldv_thread_2 ; struct ldv_thread ldv_thread_3 ; struct ldv_thread ldv_thread_4 ; void ldv_EMGentry_exit_myri10ge_cleanup_module_17_2(void (*arg0)(void) ) { { { myri10ge_cleanup_module(); } return; } } int ldv_EMGentry_init_myri10ge_init_module_17_7(int (*arg0)(void) ) { int tmp ; { { tmp = myri10ge_init_module(); } return (tmp); } } int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) { struct pci_driver *ldv_14_pci_driver_pci_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_14_pci_driver_pci_driver = arg1; ldv_dispatch_register_14_2(ldv_14_pci_driver_pci_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } struct net_device *ldv_alloc_etherdev_mqs(struct net_device *arg0 , int arg1 , unsigned int arg2 , unsigned int arg3 ) { struct net_device *ldv_5_netdev_net_device ; void *tmp ; int tmp___0 ; { { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { tmp = ldv_xmalloc(3200UL); ldv_5_netdev_net_device = (struct net_device *)tmp; } return (ldv_5_netdev_net_device); return (arg0); } else { return ((struct net_device *)0); return (arg0); } return (arg0); } } void ldv_dca_register_notify(void *arg0 , struct notifier_block *arg1 ) { struct notifier_block *ldv_16_struct_notifier_block_struct_notifier_block ; { { ldv_16_struct_notifier_block_struct_notifier_block = arg1; ldv_dispatch_register_16_1(ldv_16_struct_notifier_block_struct_notifier_block); } return; return; } } void ldv_dca_unregister_notify(void *arg0 , struct notifier_block *arg1 ) { struct notifier_block *ldv_15_struct_notifier_block_struct_notifier_block ; { { ldv_15_struct_notifier_block_struct_notifier_block = arg1; ldv_dispatch_deregister_15_1(ldv_15_struct_notifier_block_struct_notifier_block); } return; return; } } int ldv_del_timer_sync(int arg0 , struct timer_list *arg1 ) { struct timer_list *ldv_6_timer_list_timer_list ; { { ldv_6_timer_list_timer_list = arg1; ldv_dispatch_instance_deregister_6_1(ldv_6_timer_list_timer_list); } return (arg0); return (arg0); } } void ldv_dispatch_deregister_12_1(struct net_device *arg0 ) { { return; } } void ldv_dispatch_deregister_13_1(struct pci_driver *arg0 ) { { return; } } void ldv_dispatch_deregister_15_1(struct notifier_block *arg0 ) { { return; } } void ldv_dispatch_instance_deregister_6_1(struct timer_list *arg0 ) { { return; } } void ldv_dispatch_instance_register_9_2(struct timer_list *arg0 ) { struct ldv_struct_timer_instance_4 *cf_arg_4 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_4 = (struct ldv_struct_timer_instance_4 *)tmp; cf_arg_4->arg0 = arg0; ldv_timer_timer_instance_4((void *)cf_arg_4); } return; } } void ldv_dispatch_irq_deregister_7_1(int arg0 ) { { return; } } void ldv_dispatch_irq_register_11_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { struct ldv_struct_interrupt_instance_0 *cf_arg_0 ; void *tmp ; { { tmp = ldv_xmalloc(40UL); cf_arg_0 = (struct ldv_struct_interrupt_instance_0 *)tmp; cf_arg_0->arg0 = arg0; cf_arg_0->arg1 = arg1; cf_arg_0->arg2 = arg2; cf_arg_0->arg3 = arg3; ldv_interrupt_interrupt_instance_0((void *)cf_arg_0); } return; } } void ldv_dispatch_register_10_4(struct net_device *arg0 ) { struct ldv_struct_dummy_resourceless_instance_1 *cf_arg_1 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_1 = (struct ldv_struct_dummy_resourceless_instance_1 *)tmp; cf_arg_1->arg0 = arg0; ldv_net_dummy_resourceless_instance_1((void *)cf_arg_1); } return; } } void ldv_dispatch_register_14_2(struct pci_driver *arg0 ) { struct ldv_struct_pci_instance_2 *cf_arg_2 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_2 = (struct ldv_struct_pci_instance_2 *)tmp; cf_arg_2->arg0 = arg0; ldv_pci_pci_instance_2((void *)cf_arg_2); } return; } } void ldv_dispatch_register_16_1(struct notifier_block *arg0 ) { struct ldv_struct_dummy_resourceless_instance_3 *cf_arg_3 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_3 = (struct ldv_struct_dummy_resourceless_instance_3 *)tmp; cf_arg_3->arg0 = arg0; ldv_struct_notifier_block_dummy_resourceless_instance_3((void *)cf_arg_3); } return; } } void ldv_dummy_resourceless_instance_callback_1_11(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { ethtool_op_get_link(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_12(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { myri10ge_get_msglevel(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_13(void (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) { { { myri10ge_get_pauseparam(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_14(void (*arg0)(struct net_device * , struct ethtool_ringparam * ) , struct net_device *arg1 , struct ethtool_ringparam *arg2 ) { { { myri10ge_get_ringparam(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_15(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) { { { myri10ge_get_settings(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_16(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { myri10ge_get_sset_count(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_19(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) { { { myri10ge_get_strings(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_22(int (*arg0)(struct napi_struct * ) , struct napi_struct *arg1 ) { { { myri10ge_busy_poll(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_23(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { myri10ge_change_mtu(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_26(struct rtnl_link_stats64 *(*arg0)(struct net_device * , struct rtnl_link_stats64 * ) , struct net_device *arg1 , struct rtnl_link_stats64 *arg2 ) { { { myri10ge_get_stats(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_27(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) { { { myri10ge_set_mac_address(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_28(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { myri10ge_set_multicast_list(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_29(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) { { { myri10ge_xmit(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_3(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) { { { myri10ge_get_coalesce(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_30(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { eth_validate_addr(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_31(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) { { { myri10ge_set_coalesce(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_32(void (*arg0)(struct net_device * , unsigned int ) , struct net_device *arg1 , unsigned int arg2 ) { { { myri10ge_set_msglevel(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_35(int (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) { { { myri10ge_set_pauseparam(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_36(int (*arg0)(struct net_device * , enum ethtool_phys_id_state ) , struct net_device *arg1 , enum ethtool_phys_id_state arg2 ) { { { myri10ge_phys_id(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_7(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) { { { myri10ge_get_drvinfo(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_8(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) { { { myri10ge_get_ethtool_stats(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_3_3(int (*arg0)(struct notifier_block * , unsigned long , void * ) , struct notifier_block *arg1 , unsigned long arg2 , void *arg3 ) { { { myri10ge_notify_dca(arg1, arg2, arg3); } return; } } void ldv_entry_EMGentry_17(void *arg0 ) { void (*ldv_17_exit_myri10ge_cleanup_module_default)(void) ; int (*ldv_17_init_myri10ge_init_module_default)(void) ; int ldv_17_ret_default ; int tmp ; { { ldv_17_ret_default = ldv_EMGentry_init_myri10ge_init_module_17_7(ldv_17_init_myri10ge_init_module_default); ldv_17_ret_default = ldv_post_init(ldv_17_ret_default); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_17_ret_default != 0); ldv_check_final_state(); ldv_stop(); } return; } else { { ldv_assume(ldv_17_ret_default == 0); ldv_EMGentry_exit_myri10ge_cleanup_module_17_2(ldv_17_exit_myri10ge_cleanup_module_default); ldv_check_final_state(); ldv_stop(); } return; } return; } } int main(void) { { { ldv_initialize(); ldv_entry_EMGentry_17((void *)0); } return 0; } } void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) { int ldv_7_line_line ; { { ldv_7_line_line = arg1; ldv_dispatch_irq_deregister_7_1(ldv_7_line_line); } return; return; } } void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_8_netdev_net_device ; { { ldv_8_netdev_net_device = arg1; ldv_free((void *)ldv_8_netdev_net_device); } return; return; } } enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = myri10ge_intr(arg1, arg2); } return (tmp); } } void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_interrupt_instance_0(void *arg0 ) { enum irqreturn (*ldv_0_callback_handler)(int , void * ) ; void *ldv_0_data_data ; int ldv_0_line_line ; enum irqreturn ldv_0_ret_val_default ; enum irqreturn (*ldv_0_thread_thread)(int , void * ) ; struct ldv_struct_interrupt_instance_0 *data ; int tmp ; { data = (struct ldv_struct_interrupt_instance_0 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_interrupt_instance_0 *)0)) { { ldv_0_line_line = data->arg0; ldv_0_callback_handler = data->arg1; ldv_0_thread_thread = data->arg2; ldv_0_data_data = data->arg3; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); ldv_0_ret_val_default = ldv_interrupt_instance_handler_0_5(ldv_0_callback_handler, ldv_0_line_line, ldv_0_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume((unsigned int )ldv_0_ret_val_default == 2U); } if ((unsigned long )ldv_0_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_0_3(ldv_0_thread_thread, ldv_0_line_line, ldv_0_data_data); } } else { } } else { { ldv_assume((unsigned int )ldv_0_ret_val_default != 2U); } } return; return; } } int ldv_mod_timer(int arg0 , struct timer_list *arg1 , unsigned long arg2 ) { struct timer_list *ldv_9_timer_list_timer_list ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_9_timer_list_timer_list = arg1; ldv_dispatch_instance_register_9_2(ldv_9_timer_list_timer_list); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_net_dummy_resourceless_instance_1(void *arg0 ) { int (*ldv_1_callback_get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*ldv_1_callback_get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; void (*ldv_1_callback_get_ethtool_stats)(struct net_device * , struct ethtool_stats * , unsigned long long * ) ; unsigned int (*ldv_1_callback_get_link)(struct net_device * ) ; unsigned int (*ldv_1_callback_get_msglevel)(struct net_device * ) ; void (*ldv_1_callback_get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*ldv_1_callback_get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*ldv_1_callback_get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*ldv_1_callback_get_sset_count)(struct net_device * , int ) ; void (*ldv_1_callback_get_strings)(struct net_device * , unsigned int , unsigned char * ) ; int (*ldv_1_callback_ndo_busy_poll)(struct napi_struct * ) ; int (*ldv_1_callback_ndo_change_mtu)(struct net_device * , int ) ; struct rtnl_link_stats64 *(*ldv_1_callback_ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; int (*ldv_1_callback_ndo_set_mac_address)(struct net_device * , void * ) ; void (*ldv_1_callback_ndo_set_rx_mode)(struct net_device * ) ; enum netdev_tx (*ldv_1_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; int (*ldv_1_callback_ndo_validate_addr)(struct net_device * ) ; int (*ldv_1_callback_set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*ldv_1_callback_set_msglevel)(struct net_device * , unsigned int ) ; int (*ldv_1_callback_set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*ldv_1_callback_set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; enum ethtool_phys_id_state ldv_1_container_enum_ethtool_phys_id_state ; struct net_device *ldv_1_container_net_device ; struct ethtool_cmd *ldv_1_container_struct_ethtool_cmd_ptr ; struct ethtool_coalesce *ldv_1_container_struct_ethtool_coalesce_ptr ; struct ethtool_drvinfo *ldv_1_container_struct_ethtool_drvinfo_ptr ; struct ethtool_pauseparam *ldv_1_container_struct_ethtool_pauseparam_ptr ; struct ethtool_ringparam *ldv_1_container_struct_ethtool_ringparam_ptr ; struct ethtool_stats *ldv_1_container_struct_ethtool_stats_ptr ; struct napi_struct *ldv_1_container_struct_napi_struct_ptr ; struct rtnl_link_stats64 *ldv_1_container_struct_rtnl_link_stats64_ptr ; struct sk_buff *ldv_1_container_struct_sk_buff_ptr ; int ldv_1_ldv_param_16_1_default ; unsigned int ldv_1_ldv_param_19_1_default ; unsigned char *ldv_1_ldv_param_19_2_default ; int ldv_1_ldv_param_23_1_default ; unsigned int ldv_1_ldv_param_32_1_default ; unsigned long long *ldv_1_ldv_param_8_2_default ; struct ldv_struct_dummy_resourceless_instance_1 *data ; int tmp ; void *tmp___0 ; void *tmp___1 ; { data = (struct ldv_struct_dummy_resourceless_instance_1 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_dummy_resourceless_instance_1 *)0)) { { ldv_1_container_net_device = data->arg0; ldv_free((void *)data); } } else { } goto ldv_call_1; return; ldv_call_1: { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } if (tmp == 9) { goto case_9; } else { } if (tmp == 10) { goto case_10; } else { } if (tmp == 11) { goto case_11; } else { } if (tmp == 12) { goto case_12; } else { } if (tmp == 13) { goto case_13; } else { } if (tmp == 14) { goto case_14; } else { } if (tmp == 15) { goto case_15; } else { } if (tmp == 16) { goto case_16; } else { } if (tmp == 17) { goto case_17; } else { } if (tmp == 18) { goto case_18; } else { } if (tmp == 19) { goto case_19; } else { } if (tmp == 20) { goto case_20; } else { } if (tmp == 21) { goto case_21; } else { } if (tmp == 22) { goto case_22; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_36(ldv_1_callback_set_phys_id, ldv_1_container_net_device, ldv_1_container_enum_ethtool_phys_id_state); } goto ldv_call_1; case_2: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_35(ldv_1_callback_set_pauseparam, ldv_1_container_net_device, ldv_1_container_struct_ethtool_pauseparam_ptr); } goto ldv_call_1; goto ldv_call_1; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_32(ldv_1_callback_set_msglevel, ldv_1_container_net_device, ldv_1_ldv_param_32_1_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_4: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_31(ldv_1_callback_set_coalesce, ldv_1_container_net_device, ldv_1_container_struct_ethtool_coalesce_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_5: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_30(ldv_1_callback_ndo_validate_addr, ldv_1_container_net_device); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_6: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_29(ldv_1_callback_ndo_start_xmit, ldv_1_container_struct_sk_buff_ptr, ldv_1_container_net_device); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_7: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_28(ldv_1_callback_ndo_set_rx_mode, ldv_1_container_net_device); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_8: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_27(ldv_1_callback_ndo_set_mac_address, ldv_1_container_net_device, (void *)ldv_1_container_struct_ethtool_cmd_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_9: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_26(ldv_1_callback_ndo_get_stats64, ldv_1_container_net_device, ldv_1_container_struct_rtnl_link_stats64_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_10: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_23(ldv_1_callback_ndo_change_mtu, ldv_1_container_net_device, ldv_1_ldv_param_23_1_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_11: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_22(ldv_1_callback_ndo_busy_poll, ldv_1_container_struct_napi_struct_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_12: /* CIL Label */ { tmp___0 = ldv_xmalloc(1UL); ldv_1_ldv_param_19_2_default = (unsigned char *)tmp___0; ldv_dummy_resourceless_instance_callback_1_19(ldv_1_callback_get_strings, ldv_1_container_net_device, ldv_1_ldv_param_19_1_default, ldv_1_ldv_param_19_2_default); ldv_free((void *)ldv_1_ldv_param_19_2_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_13: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_16(ldv_1_callback_get_sset_count, ldv_1_container_net_device, ldv_1_ldv_param_16_1_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_14: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_15(ldv_1_callback_get_settings, ldv_1_container_net_device, ldv_1_container_struct_ethtool_cmd_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_15: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_14(ldv_1_callback_get_ringparam, ldv_1_container_net_device, ldv_1_container_struct_ethtool_ringparam_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_16: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_13(ldv_1_callback_get_pauseparam, ldv_1_container_net_device, ldv_1_container_struct_ethtool_pauseparam_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_17: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_12(ldv_1_callback_get_msglevel, ldv_1_container_net_device); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_18: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_11(ldv_1_callback_get_link, ldv_1_container_net_device); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_19: /* CIL Label */ { tmp___1 = ldv_xmalloc(8UL); ldv_1_ldv_param_8_2_default = (unsigned long long *)tmp___1; ldv_dummy_resourceless_instance_callback_1_8(ldv_1_callback_get_ethtool_stats, ldv_1_container_net_device, ldv_1_container_struct_ethtool_stats_ptr, ldv_1_ldv_param_8_2_default); ldv_free((void *)ldv_1_ldv_param_8_2_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_20: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_7(ldv_1_callback_get_drvinfo, ldv_1_container_net_device, ldv_1_container_struct_ethtool_drvinfo_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_21: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_3(ldv_1_callback_get_coalesce, ldv_1_container_net_device, ldv_1_container_struct_ethtool_coalesce_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_22: /* CIL Label */ ; return; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } int ldv_pci_instance_probe_2_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = myri10ge_probe(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_2_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { myri10ge_remove(arg1); } return; } } void ldv_pci_instance_resume_2_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { myri10ge_resume(arg1); } return; } } void ldv_pci_instance_resume_early_2_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_2_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } int ldv_pci_instance_suspend_2_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = myri10ge_suspend(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_2_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_2(void *arg0 ) { struct pci_driver *ldv_2_container_pci_driver ; struct pci_dev *ldv_2_resource_dev ; struct pm_message ldv_2_resource_pm_message ; struct pci_device_id *ldv_2_resource_struct_pci_device_id_ptr ; int ldv_2_ret_default ; struct ldv_struct_pci_instance_2 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { data = (struct ldv_struct_pci_instance_2 *)arg0; ldv_2_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_pci_instance_2 *)0)) { { ldv_2_container_pci_driver = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(2936UL); ldv_2_resource_dev = (struct pci_dev *)tmp; tmp___0 = ldv_xmalloc(32UL); ldv_2_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___0; } goto ldv_main_2; return; ldv_main_2: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_pre_probe(); ldv_2_ret_default = ldv_pci_instance_probe_2_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_2_container_pci_driver->probe, ldv_2_resource_dev, ldv_2_resource_struct_pci_device_id_ptr); ldv_2_ret_default = ldv_post_probe(ldv_2_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { ldv_assume(ldv_2_ret_default == 0); } goto ldv_call_2; } else { { ldv_assume(ldv_2_ret_default != 0); } goto ldv_main_2; } } else { { ldv_free((void *)ldv_2_resource_dev); ldv_free((void *)ldv_2_resource_struct_pci_device_id_ptr); } return; } return; ldv_call_2: { tmp___3 = ldv_undef_int(); } { if (tmp___3 == 1) { goto case_1; } else { } if (tmp___3 == 2) { goto case_2; } else { } if (tmp___3 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_call_2; case_2: /* CIL Label */ { ldv_2_ret_default = ldv_pci_instance_suspend_2_8(ldv_2_container_pci_driver->suspend, ldv_2_resource_dev, ldv_2_resource_pm_message); ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); } if ((unsigned long )ldv_2_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_2_ret_default = ldv_pci_instance_suspend_late_2_7(ldv_2_container_pci_driver->suspend_late, ldv_2_resource_dev, ldv_2_resource_pm_message); } } else { } { ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); } if ((unsigned long )ldv_2_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_2_6(ldv_2_container_pci_driver->resume_early, ldv_2_resource_dev); } } else { } { ldv_pci_instance_resume_2_5(ldv_2_container_pci_driver->resume, ldv_2_resource_dev); } goto ldv_call_2; case_3: /* CIL Label */ ; if ((unsigned long )ldv_2_container_pci_driver->shutdown != (unsigned long )((void (*)(struct pci_dev * ))0)) { { ldv_pci_instance_shutdown_2_3(ldv_2_container_pci_driver->shutdown, ldv_2_resource_dev); } } else { } { ldv_pci_instance_release_2_2(ldv_2_container_pci_driver->remove, ldv_2_resource_dev); } goto ldv_main_2; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) { struct pci_driver *ldv_13_pci_driver_pci_driver ; { { ldv_13_pci_driver_pci_driver = arg1; ldv_dispatch_deregister_13_1(ldv_13_pci_driver_pci_driver); } return; return; } } int ldv_register_netdev(int arg0 , struct net_device *arg1 ) { struct net_device *ldv_10_netdev_net_device ; int ldv_10_ret_default ; int tmp ; int tmp___0 ; { { ldv_10_ret_default = 1; ldv_10_ret_default = ldv_pre_register_netdev(); ldv_10_netdev_net_device = arg1; tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_10_ret_default == 0); ldv_10_ret_default = ldv_register_netdev_open_10_6((ldv_10_netdev_net_device->netdev_ops)->ndo_open, ldv_10_netdev_net_device); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_10_ret_default == 0); ldv_dispatch_register_10_4(ldv_10_netdev_net_device); } } else { { ldv_assume(ldv_10_ret_default != 0); } } } else { { ldv_assume(ldv_10_ret_default != 0); } } return (ldv_10_ret_default); return (arg0); return (arg0); } } int ldv_register_netdev_open_10_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { int tmp ; { { tmp = myri10ge_open(arg1); } return (tmp); } } int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) { enum irqreturn (*ldv_11_callback_handler)(int , void * ) ; void *ldv_11_data_data ; int ldv_11_line_line ; enum irqreturn (*ldv_11_thread_thread)(int , void * ) ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_11_line_line = (int )arg1; ldv_11_callback_handler = arg2; ldv_11_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_11_data_data = arg5; ldv_dispatch_irq_register_11_2(ldv_11_line_line, ldv_11_callback_handler, ldv_11_thread_thread, ldv_11_data_data); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_struct_notifier_block_dummy_resourceless_instance_3(void *arg0 ) { int (*ldv_3_callback_notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *ldv_3_container_struct_notifier_block ; unsigned long ldv_3_ldv_param_3_1_default ; void *ldv_3_ldv_param_3_2_default ; struct ldv_struct_dummy_resourceless_instance_3 *data ; int tmp ; { data = (struct ldv_struct_dummy_resourceless_instance_3 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_dummy_resourceless_instance_3 *)0)) { { ldv_3_container_struct_notifier_block = data->arg0; ldv_free((void *)data); } } else { } goto ldv_call_3; return; ldv_call_3: { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_3_ldv_param_3_2_default = ldv_xmalloc(1UL); ldv_dummy_resourceless_instance_callback_3_3(ldv_3_callback_notifier_call, ldv_3_container_struct_notifier_block, ldv_3_ldv_param_3_1_default, ldv_3_ldv_param_3_2_default); ldv_free(ldv_3_ldv_param_3_2_default); } goto ldv_call_3; } else { return; } return; } } void ldv_timer_instance_callback_4_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_timer_timer_instance_4(void *arg0 ) { struct timer_list *ldv_4_container_timer_list ; struct ldv_struct_timer_instance_4 *data ; { data = (struct ldv_struct_timer_instance_4 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_timer_instance_4 *)0)) { { ldv_4_container_timer_list = data->arg0; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); } if ((unsigned long )ldv_4_container_timer_list->function != (unsigned long )((void (*)(unsigned long ))0)) { { ldv_timer_instance_callback_4_2(ldv_4_container_timer_list->function, ldv_4_container_timer_list->data); } } else { } { ldv_switch_to_process_context(); } return; return; } } void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_12_netdev_net_device ; { { ldv_12_netdev_net_device = arg1; ldv_unregister_netdev_stop_12_2((ldv_12_netdev_net_device->netdev_ops)->ndo_stop, ldv_12_netdev_net_device); ldv_dispatch_deregister_12_1(ldv_12_netdev_net_device); } return; return; } } void ldv_unregister_netdev_stop_12_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { myri10ge_close(arg1); } return; } } __inline static long IS_ERR(void const *ptr ) { long tmp ; { { tmp = ldv_is_err(ptr); } return (tmp); } } __inline static struct page *alloc_pages(gfp_t flags , unsigned int order ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return ((struct page *)tmp); } } __inline static void *kmalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_malloc_unknown_size(); ldv_after_alloc(res); } return (res); } } __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_malloc_unknown_size(); ldv_after_alloc(res); } return (res); } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = ldv_kzalloc(size, flags); } return (tmp); } } __inline static void *dma_zalloc_coherent(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } static struct sk_buff *ldv___netdev_alloc_skb_57(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return ((struct sk_buff *)tmp); } } __inline static void ldv_spin_lock_69(spinlock_t *lock ) { { { ldv_spin_lock__xmit_lock_of_netdev_queue(); spin_lock(lock); } return; } } __inline static int ldv_spin_trylock_71(spinlock_t *lock ) { ldv_func_ret_type ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = spin_trylock(lock); ldv_func_res = tmp; tmp___0 = ldv_spin_trylock__xmit_lock_of_netdev_queue(); } return (tmp___0); return (ldv_func_res); } } __inline static void ldv_spin_unlock_72(spinlock_t *lock ) { { { ldv_spin_unlock__xmit_lock_of_netdev_queue(); spin_unlock(lock); } return; } } static void *ldv_dev_get_drvdata_81(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static int ldv_dev_set_drvdata_82(struct device *dev , void *data ) { int tmp ; { { tmp = ldv_dev_set_drvdata(dev, data); } return (tmp); } } static void *ldv_vmalloc_102(unsigned long ldv_func_arg1 ) { void *tmp ; { { ldv_check_alloc_nonatomic(); tmp = ldv_malloc_unknown_size(); } return (tmp); } } __inline static void ldv_spin_lock_103(spinlock_t *lock ) { { { ldv_spin_lock_lock_of_myri10ge_slice_state(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_104(spinlock_t *lock ) { { { ldv_spin_unlock_lock_of_myri10ge_slice_state(); spin_unlock(lock); } return; } } __inline static void ldv_spin_lock_bh_107(spinlock_t *lock ) { { { ldv_spin_lock_lock_of_myri10ge_slice_state(); spin_lock_bh(lock); } return; } } __inline static void ldv_spin_unlock_bh_108(spinlock_t *lock ) { { { ldv_spin_unlock_lock_of_myri10ge_slice_state(); spin_unlock_bh(lock); } return; } } static void *ldv_dev_get_drvdata_111(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } __inline static int ldv_request_irq_112(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_irq_113(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } __inline static int ldv_request_irq_114(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_irq_115(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv_free_irq_116(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static int ldv_del_timer_sync_117(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static int ldv_mod_timer_118(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static struct net_device *ldv_alloc_etherdev_mqs_119(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) { ldv_func_ret_type___4 ldv_func_res ; struct net_device *tmp ; struct net_device *tmp___0 ; { { tmp = alloc_etherdev_mqs(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv_alloc_etherdev_mqs(ldv_func_res, ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static int ldv_register_netdev_120(struct net_device *ldv_func_arg1 ) { ldv_func_ret_type___5 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = register_netdev(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_register_netdev(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_netdev_121(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_unregister_netdev_122(struct net_device *ldv_func_arg1 ) { { { unregister_netdev(ldv_func_arg1); ldv_unregister_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_free_netdev_123(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_dca_register_notify_124(struct notifier_block *ldv_func_arg1 ) { { { dca_register_notify(ldv_func_arg1); ldv_dca_register_notify((void *)0, ldv_func_arg1); } return; } } static int ldv___pci_register_driver_125(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___6 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___pci_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_dca_unregister_notify_126(struct notifier_block *ldv_func_arg1 ) { { { dca_unregister_notify(ldv_func_arg1); ldv_dca_unregister_notify((void *)0, ldv_func_arg1); } return; } } static void ldv_pci_unregister_driver_127(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2200UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *external_allocated_data(void) ; void *ldv_calloc_unknown_size(void) ; void *ldv_zalloc_unknown_size(void) ; void *ldv_xmalloc_unknown_size(size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_malloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; memset(res, 0, 8UL); ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc_unknown_size(void) { void *tmp ; { { tmp = ldv_calloc_unknown_size(); } return (tmp); } } void *ldv_xmalloc_unknown_size(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_undef_ptr(void) ; unsigned long ldv_undef_ulong(void) ; int ldv_undef_int_negative(void) ; int ldv_undef_int_nonpositive(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { { tmp = __VERIFIER_nondet_pointer(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } static int ldv_spin__xmit_lock_of_netdev_queue = 1; void ldv_spin_lock__xmit_lock_of_netdev_queue(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_spin__xmit_lock_of_netdev_queue = 2; } return; } } void ldv_spin_unlock__xmit_lock_of_netdev_queue(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_spin__xmit_lock_of_netdev_queue = 1; } return; } } int ldv_spin_trylock__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } } } void ldv_spin_unlock_wait__xmit_lock_of_netdev_queue(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); } return; } } int ldv_spin_is_locked__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin__xmit_lock_of_netdev_queue == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock__xmit_lock_of_netdev_queue(void) { int tmp ; { { tmp = ldv_spin_is_locked__xmit_lock_of_netdev_queue(); } return (tmp == 0); } } int ldv_spin_is_contended__xmit_lock_of_netdev_queue(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock__xmit_lock_of_netdev_queue(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } else { } return (0); } } static int ldv_spin_addr_list_lock_of_net_device = 1; void ldv_spin_lock_addr_list_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); ldv_spin_addr_list_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_addr_list_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_addr_list_lock_of_net_device == 2); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 2); ldv_spin_addr_list_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_addr_list_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_addr_list_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_addr_list_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_addr_list_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_addr_list_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_addr_list_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } else { } return (0); } } static int ldv_spin_alloc_lock_of_task_struct = 1; void ldv_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); ldv_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 2); ldv_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_i_lock_of_inode = 1; void ldv_spin_lock_i_lock_of_inode(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); ldv_spin_i_lock_of_inode = 2; } return; } } void ldv_spin_unlock_i_lock_of_inode(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_i_lock_of_inode == 2); ldv_assume(ldv_spin_i_lock_of_inode == 2); ldv_spin_i_lock_of_inode = 1; } return; } } int ldv_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_i_lock_of_inode = 2; return (1); } } } void ldv_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); } return; } } int ldv_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_spin_lock = 1; void ldv_spin_lock_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); ldv_spin_lock = 2; } return; } } void ldv_spin_unlock_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lock == 2); ldv_assume(ldv_spin_lock == 2); ldv_spin_lock = 1; } return; } } int ldv_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock = 2; return (1); } } } void ldv_spin_unlock_wait_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); } return; } } int ldv_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_myri10ge_slice_state = 1; void ldv_spin_lock_lock_of_myri10ge_slice_state(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lock_of_myri10ge_slice_state == 1); ldv_assume(ldv_spin_lock_of_myri10ge_slice_state == 1); ldv_spin_lock_of_myri10ge_slice_state = 2; } return; } } void ldv_spin_unlock_lock_of_myri10ge_slice_state(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lock_of_myri10ge_slice_state == 2); ldv_assume(ldv_spin_lock_of_myri10ge_slice_state == 2); ldv_spin_lock_of_myri10ge_slice_state = 1; } return; } } int ldv_spin_trylock_lock_of_myri10ge_slice_state(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_myri10ge_slice_state == 1); ldv_assume(ldv_spin_lock_of_myri10ge_slice_state == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_myri10ge_slice_state = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_myri10ge_slice_state(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_myri10ge_slice_state == 1); ldv_assume(ldv_spin_lock_of_myri10ge_slice_state == 1); } return; } } int ldv_spin_is_locked_lock_of_myri10ge_slice_state(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_myri10ge_slice_state == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_myri10ge_slice_state(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_myri10ge_slice_state(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_myri10ge_slice_state(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_myri10ge_slice_state(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_myri10ge_slice_state == 1); ldv_assume(ldv_spin_lock_of_myri10ge_slice_state == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_myri10ge_slice_state = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_res_counter = 1; void ldv_spin_lock_lock_of_res_counter(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); ldv_spin_lock_of_res_counter = 2; } return; } } void ldv_spin_unlock_lock_of_res_counter(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lock_of_res_counter == 2); ldv_assume(ldv_spin_lock_of_res_counter == 2); ldv_spin_lock_of_res_counter = 1; } return; } } int ldv_spin_trylock_lock_of_res_counter(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_res_counter = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_res_counter(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); } return; } } int ldv_spin_is_locked_lock_of_res_counter(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_res_counter == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_res_counter(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_res_counter(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_res_counter(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_res_counter(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_res_counter = 2; return (1); } else { } return (0); } } static int ldv_spin_lru_lock_of_netns_frags = 1; void ldv_spin_lock_lru_lock_of_netns_frags(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); ldv_spin_lru_lock_of_netns_frags = 2; } return; } } void ldv_spin_unlock_lru_lock_of_netns_frags(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lru_lock_of_netns_frags == 2); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 2); ldv_spin_lru_lock_of_netns_frags = 1; } return; } } int ldv_spin_trylock_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } } } void ldv_spin_unlock_wait_lru_lock_of_netns_frags(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); } return; } } int ldv_spin_is_locked_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lru_lock_of_netns_frags == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lru_lock_of_netns_frags(void) { int tmp ; { { tmp = ldv_spin_is_locked_lru_lock_of_netns_frags(); } return (tmp == 0); } } int ldv_spin_is_contended_lru_lock_of_netns_frags(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lru_lock_of_netns_frags(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } else { } return (0); } } static int ldv_spin_node_size_lock_of_pglist_data = 1; void ldv_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 2); ldv_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_spin_ptl = 1; void ldv_spin_lock_ptl(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); ldv_spin_ptl = 2; } return; } } void ldv_spin_unlock_ptl(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_ptl == 2); ldv_assume(ldv_spin_ptl == 2); ldv_spin_ptl = 1; } return; } } int ldv_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_ptl = 2; return (1); } } } void ldv_spin_unlock_wait_ptl(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); } return; } } int ldv_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_spin_siglock_of_sighand_struct = 1; void ldv_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); ldv_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_spin_siglock_of_sighand_struct == 2); ldv_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_sk_dst_lock_of_sock = 1; void ldv_spin_lock_sk_dst_lock_of_sock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); ldv_spin_sk_dst_lock_of_sock = 2; } return; } } void ldv_spin_unlock_sk_dst_lock_of_sock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_sk_dst_lock_of_sock == 2); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 2); ldv_spin_sk_dst_lock_of_sock = 1; } return; } } int ldv_spin_trylock_sk_dst_lock_of_sock(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_sk_dst_lock_of_sock = 2; return (1); } } } void ldv_spin_unlock_wait_sk_dst_lock_of_sock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); } return; } } int ldv_spin_is_locked_sk_dst_lock_of_sock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_sk_dst_lock_of_sock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_sk_dst_lock_of_sock(void) { int tmp ; { { tmp = ldv_spin_is_locked_sk_dst_lock_of_sock(); } return (tmp == 0); } } int ldv_spin_is_contended_sk_dst_lock_of_sock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_sk_dst_lock_of_sock(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_sk_dst_lock_of_sock = 2; return (1); } else { } return (0); } } static int ldv_spin_slock_of_NOT_ARG_SIGN = 1; void ldv_spin_lock_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_spin_slock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_spin_unlock_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_slock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 2); ldv_spin_slock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_spin_trylock_slock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_slock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_spin_unlock_wait_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_spin_is_locked_slock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_slock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_slock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_spin_is_locked_slock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_spin_is_contended_slock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_slock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_slock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_spin_tx_global_lock_of_net_device = 1; void ldv_spin_lock_tx_global_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); ldv_spin_tx_global_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_tx_global_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_tx_global_lock_of_net_device == 2); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 2); ldv_spin_tx_global_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_tx_global_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_tx_global_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_tx_global_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_tx_global_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_tx_global_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_tx_global_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } else { } return (0); } } void ldv_check_final_state(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_i_lock_of_inode == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lock == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lock_of_myri10ge_slice_state == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lock_of_res_counter == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_ptl == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_siglock_of_sighand_struct == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_sk_dst_lock_of_sock == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_spin__xmit_lock_of_netdev_queue == 2) { return (1); } else { } if (ldv_spin_addr_list_lock_of_net_device == 2) { return (1); } else { } if (ldv_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_spin_lock == 2) { return (1); } else { } if (ldv_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_spin_lock_of_myri10ge_slice_state == 2) { return (1); } else { } if (ldv_spin_lock_of_res_counter == 2) { return (1); } else { } if (ldv_spin_lru_lock_of_netns_frags == 2) { return (1); } else { } if (ldv_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_spin_ptl == 2) { return (1); } else { } if (ldv_spin_siglock_of_sighand_struct == 2) { return (1); } else { } if (ldv_spin_sk_dst_lock_of_sock == 2) { return (1); } else { } if (ldv_spin_slock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_spin_tx_global_lock_of_net_device == 2) { return (1); } else { } return (0); } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } }