/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ struct device; typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef short s16; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __le16; typedef __u16 __be16; typedef __u32 __le32; typedef __u32 __be32; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef unsigned char u_char; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct __anonstruct____missing_field_name_10 { u32 read ; s32 write ; }; union __anonunion_arch_rwlock_t_9 { s64 lock ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; typedef union __anonunion_arch_rwlock_t_9 arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_12 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_13 { u16 limit0 ; u16 base0 ; unsigned int base1 : 8 ; unsigned int type : 4 ; unsigned int s : 1 ; unsigned int dpl : 2 ; unsigned int p : 1 ; unsigned int limit : 4 ; unsigned int avl : 1 ; unsigned int l : 1 ; unsigned int d : 1 ; unsigned int g : 1 ; unsigned int base2 : 8 ; }; union __anonunion____missing_field_name_11 { struct __anonstruct____missing_field_name_12 __annonCompField6 ; struct __anonstruct____missing_field_name_13 __annonCompField7 ; }; struct desc_struct { union __anonunion____missing_field_name_11 __annonCompField8 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_15 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_15 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; typedef void (*ctor_fn_t)(void); struct net_device; struct file_operations; struct completion; struct pid; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_18 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_18 __annonCompField9 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct static_key; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_23 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_24 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_22 { struct __anonstruct____missing_field_name_23 __annonCompField13 ; struct __anonstruct____missing_field_name_24 __annonCompField14 ; }; union __anonunion____missing_field_name_25 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_22 __annonCompField15 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_25 __annonCompField16 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndregs_struct { u64 bndregs[8U] ; }; struct bndcsr_struct { u64 cfg_reg_u ; u64 status_reg ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndregs_struct bndregs ; struct bndcsr_struct bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned int class_idx : 13 ; unsigned int irq_context : 2 ; unsigned int trylock : 1 ; unsigned int read : 2 ; unsigned int check : 2 ; unsigned int hardirqs_off : 1 ; unsigned int references : 11 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_29 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_28 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_29 __annonCompField18 ; }; struct spinlock { union __anonunion____missing_field_name_28 __annonCompField19 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_30 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_30 rwlock_t; struct ldv_thread; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct jump_entry; struct static_key_mod; struct static_key { atomic_t enabled ; struct jump_entry *entries ; struct static_key_mod *next ; }; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_35 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_35 seqlock_t; struct __wait_queue; typedef struct __wait_queue wait_queue_t; struct __wait_queue { unsigned int flags ; void *private ; int (*func)(wait_queue_t * , unsigned int , int , void * ) ; struct list_head task_list ; }; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct notifier_block; struct idr_layer { int prefix ; unsigned long bitmap[4U] ; struct idr_layer *ary[256U] ; int count ; int layer ; struct callback_head callback_head ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; struct idr_layer *id_free ; int layers ; int id_free_cnt ; int cur ; spinlock_t lock ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; }; union __anonunion_u_36 { struct completion *completion ; struct kernfs_node *removed_list ; }; union __anonunion____missing_field_name_37 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; union __anonunion_u_36 u ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_37 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_dir_ops { int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; struct ida ino_ida ; struct kernfs_dir_ops *dir_ops ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; struct mutex mutex ; int event ; struct list_head list ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct user_namespace; struct __anonstruct_kuid_t_38 { uid_t val ; }; typedef struct __anonstruct_kuid_t_38 kuid_t; struct __anonstruct_kgid_t_39 { gid_t val ; }; typedef struct __anonstruct_kgid_t_39 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep : 1 ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned int state_initialized : 1 ; unsigned int state_in_sysfs : 1 ; unsigned int state_add_uevent_sent : 1 ; unsigned int state_remove_uevent_sent : 1 ; unsigned int uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct inode; struct cdev { struct kobject kobj ; struct module *owner ; struct file_operations const *ops ; struct list_head list ; dev_t dev ; unsigned int count ; }; struct backing_dev_info; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct rw_semaphore; struct rw_semaphore { long count ; raw_spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_40 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_40 nodemask_t; struct path; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned int can_wakeup : 1 ; unsigned int async_suspend : 1 ; bool is_prepared : 1 ; bool is_suspended : 1 ; bool ignore_children : 1 ; bool early_init : 1 ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path : 1 ; bool syscore : 1 ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned int disable_depth : 3 ; unsigned int idle_notification : 1 ; unsigned int request_pending : 1 ; unsigned int deferred_resume : 1 ; unsigned int run_wake : 1 ; unsigned int runtime_auto : 1 ; unsigned int no_callbacks : 1 ; unsigned int irq_safe : 1 ; unsigned int use_autosuspend : 1 ; unsigned int timer_autosuspends : 1 ; unsigned int memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; }; struct ctl_table; struct pci_dev; struct pci_bus; struct __anonstruct_mm_context_t_105 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_105 mm_context_t; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled : 1 ; bool offline : 1 ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active : 1 ; bool autosleep_enabled : 1 ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct pm_qos_flags_request { struct list_head node ; s32 flags ; }; enum dev_pm_qos_req_type { DEV_PM_QOS_LATENCY = 1, DEV_PM_QOS_FLAGS = 2 } ; union __anonunion_data_133 { struct plist_node pnode ; struct pm_qos_flags_request flr ; }; struct dev_pm_qos_request { enum dev_pm_qos_req_type type ; union __anonunion_data_133 data ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct pm_qos_flags { struct list_head list ; s32 effective_flags ; }; struct dev_pm_qos { struct pm_qos_constraints latency ; struct pm_qos_flags flags ; struct dev_pm_qos_request *latency_req ; struct dev_pm_qos_request *flags_req ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_136 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_137 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_135 { struct __anonstruct____missing_field_name_136 __annonCompField34 ; struct __anonstruct____missing_field_name_137 __annonCompField35 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_135 __annonCompField36 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; union __anonunion____missing_field_name_138 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_140 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_144 { unsigned int inuse : 16 ; unsigned int objects : 15 ; unsigned int frozen : 1 ; }; union __anonunion____missing_field_name_143 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_144 __annonCompField39 ; int units ; }; struct __anonstruct____missing_field_name_142 { union __anonunion____missing_field_name_143 __annonCompField40 ; atomic_t _count ; }; union __anonunion____missing_field_name_141 { unsigned long counters ; struct __anonstruct____missing_field_name_142 __annonCompField41 ; unsigned int active ; }; struct __anonstruct____missing_field_name_139 { union __anonunion____missing_field_name_140 __annonCompField38 ; union __anonunion____missing_field_name_141 __annonCompField42 ; }; struct __anonstruct____missing_field_name_146 { struct page *next ; int pages ; int pobjects ; }; struct slab; union __anonunion____missing_field_name_145 { struct list_head lru ; struct __anonstruct____missing_field_name_146 __annonCompField44 ; struct list_head list ; struct slab *slab_page ; struct callback_head callback_head ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_147 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_138 __annonCompField37 ; struct __anonstruct____missing_field_name_139 __annonCompField43 ; union __anonunion____missing_field_name_145 __annonCompField45 ; union __anonunion____missing_field_name_147 __annonCompField46 ; unsigned long debug_flags ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_linear_149 { struct rb_node rb ; unsigned long rb_subtree_last ; }; union __anonunion_shared_148 { struct __anonstruct_linear_149 linear ; struct list_head nonlinear ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; union __anonunion_shared_148 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; nodemask_t nodes_to_scan ; int nid ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct user_struct; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; int (*migrate)(struct vm_area_struct * , nodemask_t const * , nodemask_t const * , unsigned long ) ; int (*remap_pages)(struct vm_area_struct * , unsigned long , unsigned long , unsigned long ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; typedef s32 dma_cookie_t; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; typedef unsigned short __kernel_sa_family_t; struct cred; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct __anonstruct_sync_serial_settings_151 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_151 sync_serial_settings; struct __anonstruct_te1_settings_152 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_152 te1_settings; struct __anonstruct_raw_hdlc_proto_153 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_153 raw_hdlc_proto; struct __anonstruct_fr_proto_154 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_154 fr_proto; struct __anonstruct_fr_proto_pvc_155 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_155 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_156 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_156 fr_proto_pvc_info; struct __anonstruct_cisco_proto_157 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_157 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_158 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_158 ifs_ifsu ; }; union __anonunion_ifr_ifrn_159 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_160 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_159 ifr_ifrn ; union __anonunion_ifr_ifru_160 ifr_ifru ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_163 { spinlock_t lock ; unsigned int count ; }; union __anonunion____missing_field_name_162 { struct __anonstruct____missing_field_name_163 __annonCompField47 ; }; struct lockref { union __anonunion____missing_field_name_162 __annonCompField48 ; }; struct nameidata; struct vfsmount; struct __anonstruct____missing_field_name_165 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_164 { struct __anonstruct____missing_field_name_165 __annonCompField49 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_164 __annonCompField50 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_166 { struct list_head d_child ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; union __anonunion_d_u_166 d_u ; struct list_head d_subdirs ; struct hlist_node d_alias ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_node { spinlock_t lock ; struct list_head list ; long nr_items ; }; struct list_lru { struct list_lru_node *node ; nodemask_t active_nodes ; }; struct radix_tree_node; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct semaphore { raw_spinlock_t lock ; unsigned int count ; struct list_head wait_list ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct io_context; struct cgroup_subsys_state; struct export_operations; struct kiocb; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_168 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_168 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_169 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_169 __annonCompField51 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_on_meta)(struct super_block * , int , int ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; union __anonunion_arg_171 { char *buf ; void *data ; }; struct __anonstruct_read_descriptor_t_170 { size_t written ; size_t count ; union __anonunion_arg_171 arg ; int error ; }; typedef struct __anonstruct_read_descriptor_t_170 read_descriptor_t; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iovec const * , loff_t , unsigned long ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct rb_root i_mmap ; struct list_head i_mmap_nonlinear ; struct mutex i_mmap_mutex ; unsigned long nrpages ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_172 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_173 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock; union __anonunion____missing_field_name_174 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_172 __annonCompField52 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_173 __annonCompField53 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; struct file_operations const *i_fop ; struct file_lock *i_flock ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion____missing_field_name_174 __annonCompField54 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; atomic_t i_readcount ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_175 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_175 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; unsigned long f_mnt_write_state ; }; struct files_struct; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , struct file_lock * , int ) ; void (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock ** , int ) ; }; struct net; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_177 { struct list_head link ; int state ; }; union __anonunion_fl_u_176 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_177 afs ; }; struct file_lock { struct file_lock *fl_next ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_176 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context { int (*actor)(void * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; int (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , int ) ; long (*free_cached_objects)(struct super_block * , long , int ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; typedef unsigned long cputime_t; struct __anonstruct_sigset_t_178 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_178 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_180 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_181 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_182 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_183 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_184 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_185 { long _band ; int _fd ; }; struct __anonstruct__sigsys_186 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_179 { int _pad[28U] ; struct __anonstruct__kill_180 _kill ; struct __anonstruct__timer_181 _timer ; struct __anonstruct__rt_182 _rt ; struct __anonstruct__sigchld_183 _sigchld ; struct __anonstruct__sigfault_184 _sigfault ; struct __anonstruct__sigpoll_185 _sigpoll ; struct __anonstruct__sigsys_186 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_179 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct____missing_field_name_190 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion____missing_field_name_189 { struct __anonstruct____missing_field_name_190 __annonCompField55 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion____missing_field_name_189 __annonCompField56 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_191 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_192 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_194 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_193 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_194 __annonCompField59 ; }; union __anonunion_type_data_195 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_197 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_196 { union __anonunion_payload_197 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_191 __annonCompField57 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_192 __annonCompField58 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_193 __annonCompField60 ; union __anonunion_type_data_195 type_data ; union __anonunion____missing_field_name_196 __annonCompField61 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned int is_child_subreaper : 1 ; unsigned int has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; struct hrtimer dl_timer ; }; struct mem_cgroup; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned int may_oom : 1 ; }; struct sched_class; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned int brk_randomized : 1 ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned int in_execve : 1 ; unsigned int in_iowait : 1 ; unsigned int no_new_privs : 1 ; unsigned int sched_reset_on_fork : 1 ; unsigned int sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct task_struct *pi_top_task ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; int numa_migrate_deferred ; unsigned long numa_migrate_retry ; u64 node_stamp ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long *numa_faults_buffer ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; unsigned int memcg_kmem_skip_account ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; }; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; struct page *partial ; unsigned int stat[26U] ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct memcg_cache_params; struct kmem_cache_node; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int object_size ; int offset ; int cpu_partial ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; struct memcg_cache_params *memcg_params ; int max_attr_size ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; struct __anonstruct____missing_field_name_214 { struct callback_head callback_head ; struct kmem_cache *memcg_caches[0U] ; }; struct __anonstruct____missing_field_name_215 { struct mem_cgroup *memcg ; struct list_head list ; struct kmem_cache *root_cache ; bool dead ; atomic_t nr_pages ; struct work_struct destroy ; }; union __anonunion____missing_field_name_213 { struct __anonstruct____missing_field_name_214 __annonCompField63 ; struct __anonstruct____missing_field_name_215 __annonCompField64 ; }; struct memcg_cache_params { bool is_root_cache ; union __anonunion____missing_field_name_213 __annonCompField65 ; }; struct exception_table_entry { int insn ; int fixup ; }; struct sk_buff; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; typedef u64 netdev_features_t; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; typedef unsigned int sk_buff_data_t; struct sec_path; struct __anonstruct____missing_field_name_219 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_218 { __wsum csum ; struct __anonstruct____missing_field_name_219 __annonCompField67 ; }; union __anonunion____missing_field_name_220 { unsigned int napi_id ; dma_cookie_t dma_cookie ; }; union __anonunion____missing_field_name_221 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; struct sk_buff { struct sk_buff *next ; struct sk_buff *prev ; ktime_t tstamp ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; struct sec_path *sp ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; union __anonunion____missing_field_name_218 __annonCompField68 ; __u32 priority ; __u8 local_df : 1 ; __u8 cloned : 1 ; __u8 ip_summed : 2 ; __u8 nohdr : 1 ; __u8 nfctinfo : 3 ; __u8 pkt_type : 3 ; __u8 fclone : 2 ; __u8 ipvs_property : 1 ; __u8 peeked : 1 ; __u8 nf_trace : 1 ; __be16 protocol ; void (*destructor)(struct sk_buff * ) ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; int skb_iif ; __u32 rxhash ; __be16 vlan_proto ; __u16 vlan_tci ; __u16 tc_index ; __u16 tc_verd ; __u16 queue_mapping ; __u8 ndisc_nodetype : 2 ; __u8 pfmemalloc : 1 ; __u8 ooo_okay : 1 ; __u8 l4_rxhash : 1 ; __u8 wifi_acked_valid : 1 ; __u8 wifi_acked : 1 ; __u8 no_fcs : 1 ; __u8 head_frag : 1 ; __u8 encapsulation : 1 ; union __anonunion____missing_field_name_220 __annonCompField69 ; __u32 secmark ; union __anonunion____missing_field_name_221 __annonCompField70 ; __be16 inner_protocol ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char reserved1[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh_indir)(struct net_device * , u32 * ) ; int (*set_rxfh_indir)(struct net_device * , u32 const * ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[8U] ; }; struct linux_mib { unsigned long mibs[97U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct proc_dir_entry; struct netns_mib { struct tcp_mib *tcp_statistics[1U] ; struct ipstats_mib *ip_statistics[1U] ; struct linux_mib *net_statistics[1U] ; struct udp_mib *udp_statistics[1U] ; struct udp_mib *udplite_statistics[1U] ; struct icmp_mib *icmp_statistics[1U] ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6[1U] ; struct udp_mib *udplite_stats_in6[1U] ; struct ipstats_mib *ipv6_statistics[1U] ; struct icmpv6_mib *icmpv6_statistics[1U] ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics[1U] ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { int nqueues ; struct list_head lru_list ; spinlock_t lru_lock ; struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct tcpm_hash_bucket; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct inet_peer_base *peers ; struct tcpm_hash_bucket *tcp_metrics_hash ; unsigned int tcp_metrics_hash_log ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports sysctl_local_ports ; int sysctl_tcp_ecn ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; kgid_t sysctl_ping_group_range[2U] ; atomic_t dev_addr_genid ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int icmpv6_time ; int anycast_src_echo_reply ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t rt_genid ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics[1U] ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; struct nlattr; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; bool ulog_warn_deprecated ; bool ebt_ulog_warn_deprecated ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; unsigned int sysctl_events_retry_timeout ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; u8 gencursor ; u8 genctr ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[6U] ; struct xfrm_policy_hash policy_bydst[6U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; spinlock_t xfrm_policy_sk_bundle_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; unsigned int proc_inum ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; struct dsa_chip_data { struct device *mii_bus ; int sw_addr ; char *port_names[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; __be16 tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct mii_bus; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct mii_bus *master_mii_bus ; u32 dsa_port_mask ; u32 phys_port_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; __be16 tag_protocol ; int priv_size ; char *(*probe)(struct mii_bus * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; u8 (*setapp)(struct net_device * , u8 , u16 , u8 ) ; u8 (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct xattr_handler { char const *prefix ; int flags ; size_t (*list)(struct dentry * , char * , size_t , char const * , size_t , int ) ; int (*get)(struct dentry * , char const * , void * , size_t , int ) ; int (*set)(struct dentry * , char const * , void const * , size_t , int , int ) ; }; struct simple_xattrs { struct list_head head ; spinlock_t lock ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_t count ; unsigned int *pcpu_count ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_kill ; struct callback_head rcu ; }; struct cgroupfs_root; struct cgroup_subsys; struct cgroup; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; unsigned long flags ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct cgroup_name { struct callback_head callback_head ; char name[] ; }; struct cgroup { unsigned long flags ; int id ; int nr_css ; struct list_head sibling ; struct list_head children ; struct list_head files ; struct cgroup *parent ; struct dentry *dentry ; u64 serial_nr ; struct cgroup_name *name ; struct cgroup_subsys_state *subsys[12U] ; struct cgroupfs_root *root ; struct list_head cset_links ; struct list_head release_list ; struct list_head pidlists ; struct mutex pidlist_mutex ; struct cgroup_subsys_state dummy_css ; struct callback_head callback_head ; struct work_struct destroy_work ; struct simple_xattrs xattrs ; }; struct cgroupfs_root { struct super_block *sb ; unsigned long subsys_mask ; int hierarchy_id ; struct cgroup top_cgroup ; int number_of_cgroups ; struct list_head root_list ; unsigned long flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head cgrp_links ; struct cgroup_subsys_state *subsys[12U] ; struct callback_head callback_head ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; int (*write_string)(struct cgroup_subsys_state * , struct cftype * , char const * ) ; int (*trigger)(struct cgroup_subsys_state * , unsigned int ) ; }; struct cftype_set { struct list_head node ; struct cftype *cfts ; }; struct cgroup_taskset; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int subsys_id ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; char const *name ; struct cgroupfs_root *root ; struct list_head cftsets ; struct cftype *base_cftypes ; struct cftype_set base_cftset ; struct module *module ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 tx_rate ; __u32 spoofchk ; __u32 linkstate ; }; struct netpoll_info; struct phy_device; struct wireless_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_port_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * , gfp_t ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_tx_rate)(struct net_device * , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_port_id * ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; }; enum ldv_28271 { NETREG_UNINITIALIZED = 0, NETREG_REGISTERED = 1, NETREG_UNREGISTERING = 2, NETREG_UNREGISTERED = 3, NETREG_RELEASED = 4, NETREG_DUMMY = 5 } ; enum ldv_28272 { RTNL_LINK_INITIALIZED = 0, RTNL_LINK_INITIALIZING = 1 } ; struct __anonstruct_adj_list_235 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_236 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct forwarding_accel_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion____missing_field_name_237 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct __anonstruct_adj_list_235 adj_list ; struct __anonstruct_all_adj_list_236 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct forwarding_accel_ops const *fwd_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; bool uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; unsigned char broadcast[32U] ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; struct cpu_rmap *rx_cpu_rmap ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; enum ldv_28271 reg_state : 8 ; bool dismantle ; enum ldv_28272 rtnl_link_state : 16 ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion____missing_field_name_237 __annonCompField74 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; int group ; struct pm_qos_request pm_qos_req ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; enum skb_free_reason { SKB_REASON_CONSUMED = 0, SKB_REASON_DROPPED = 1 } ; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct pci_driver; union __anonunion____missing_field_name_241 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; u8 pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned int pme_support : 5 ; unsigned int pme_interrupt : 1 ; unsigned int pme_poll : 1 ; unsigned int d1_support : 1 ; unsigned int d2_support : 1 ; unsigned int no_d1d2 : 1 ; unsigned int no_d3cold : 1 ; unsigned int d3cold_allowed : 1 ; unsigned int mmio_always_on : 1 ; unsigned int wakeup_prepared : 1 ; unsigned int runtime_d3cold : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned int transparent : 1 ; unsigned int multifunction : 1 ; unsigned int is_added : 1 ; unsigned int is_busmaster : 1 ; unsigned int no_msi : 1 ; unsigned int block_cfg_access : 1 ; unsigned int broken_parity_status : 1 ; unsigned int irq_reroute_variant : 2 ; unsigned int msi_enabled : 1 ; unsigned int msix_enabled : 1 ; unsigned int ari_enabled : 1 ; unsigned int is_managed : 1 ; unsigned int needs_freset : 1 ; unsigned int state_saved : 1 ; unsigned int is_physfn : 1 ; unsigned int is_virtfn : 1 ; unsigned int reset_fn : 1 ; unsigned int is_hotplug_bridge : 1 ; unsigned int __aer_firmware_first_valid : 1 ; unsigned int __aer_firmware_first : 1 ; unsigned int broken_intx_masking : 1 ; unsigned int io_window_1k : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_241 __annonCompField75 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; }; struct pci_ops; struct msi_chip; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_chip *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned int is_added : 1 ; }; struct pci_ops { int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_246 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s16 level ; union __anonunion____missing_field_name_246 __annonCompField76 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct tracepoint; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct static_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_ref { unsigned long incs ; unsigned long decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct crypto_ablkcipher; struct crypto_async_request; struct crypto_aead; struct crypto_blkcipher; struct crypto_hash; struct crypto_rng; struct crypto_tfm; struct crypto_type; struct aead_givcrypt_request; struct skcipher_givcrypt_request; struct crypto_async_request { struct list_head list ; void (*complete)(struct crypto_async_request * , int ) ; void *data ; struct crypto_tfm *tfm ; u32 flags ; }; struct ablkcipher_request { struct crypto_async_request base ; unsigned int nbytes ; void *info ; struct scatterlist *src ; struct scatterlist *dst ; void *__ctx[] ; }; struct aead_request { struct crypto_async_request base ; unsigned int assoclen ; unsigned int cryptlen ; u8 *iv ; struct scatterlist *assoc ; struct scatterlist *src ; struct scatterlist *dst ; void *__ctx[] ; }; struct blkcipher_desc { struct crypto_blkcipher *tfm ; void *info ; u32 flags ; }; struct hash_desc { struct crypto_hash *tfm ; u32 flags ; }; struct ablkcipher_alg { int (*setkey)(struct crypto_ablkcipher * , u8 const * , unsigned int ) ; int (*encrypt)(struct ablkcipher_request * ) ; int (*decrypt)(struct ablkcipher_request * ) ; int (*givencrypt)(struct skcipher_givcrypt_request * ) ; int (*givdecrypt)(struct skcipher_givcrypt_request * ) ; char const *geniv ; unsigned int min_keysize ; unsigned int max_keysize ; unsigned int ivsize ; }; struct aead_alg { int (*setkey)(struct crypto_aead * , u8 const * , unsigned int ) ; int (*setauthsize)(struct crypto_aead * , unsigned int ) ; int (*encrypt)(struct aead_request * ) ; int (*decrypt)(struct aead_request * ) ; int (*givencrypt)(struct aead_givcrypt_request * ) ; int (*givdecrypt)(struct aead_givcrypt_request * ) ; char const *geniv ; unsigned int ivsize ; unsigned int maxauthsize ; }; struct blkcipher_alg { int (*setkey)(struct crypto_tfm * , u8 const * , unsigned int ) ; int (*encrypt)(struct blkcipher_desc * , struct scatterlist * , struct scatterlist * , unsigned int ) ; int (*decrypt)(struct blkcipher_desc * , struct scatterlist * , struct scatterlist * , unsigned int ) ; char const *geniv ; unsigned int min_keysize ; unsigned int max_keysize ; unsigned int ivsize ; }; struct cipher_alg { unsigned int cia_min_keysize ; unsigned int cia_max_keysize ; int (*cia_setkey)(struct crypto_tfm * , u8 const * , unsigned int ) ; void (*cia_encrypt)(struct crypto_tfm * , u8 * , u8 const * ) ; void (*cia_decrypt)(struct crypto_tfm * , u8 * , u8 const * ) ; }; struct compress_alg { int (*coa_compress)(struct crypto_tfm * , u8 const * , unsigned int , u8 * , unsigned int * ) ; int (*coa_decompress)(struct crypto_tfm * , u8 const * , unsigned int , u8 * , unsigned int * ) ; }; struct rng_alg { int (*rng_make_random)(struct crypto_rng * , u8 * , unsigned int ) ; int (*rng_reset)(struct crypto_rng * , u8 * , unsigned int ) ; unsigned int seedsize ; }; union __anonunion_cra_u_247 { struct ablkcipher_alg ablkcipher ; struct aead_alg aead ; struct blkcipher_alg blkcipher ; struct cipher_alg cipher ; struct compress_alg compress ; struct rng_alg rng ; }; struct crypto_alg { struct list_head cra_list ; struct list_head cra_users ; u32 cra_flags ; unsigned int cra_blocksize ; unsigned int cra_ctxsize ; unsigned int cra_alignmask ; int cra_priority ; atomic_t cra_refcnt ; char cra_name[64U] ; char cra_driver_name[64U] ; struct crypto_type const *cra_type ; union __anonunion_cra_u_247 cra_u ; int (*cra_init)(struct crypto_tfm * ) ; void (*cra_exit)(struct crypto_tfm * ) ; void (*cra_destroy)(struct crypto_alg * ) ; struct module *cra_module ; }; struct ablkcipher_tfm { int (*setkey)(struct crypto_ablkcipher * , u8 const * , unsigned int ) ; int (*encrypt)(struct ablkcipher_request * ) ; int (*decrypt)(struct ablkcipher_request * ) ; int (*givencrypt)(struct skcipher_givcrypt_request * ) ; int (*givdecrypt)(struct skcipher_givcrypt_request * ) ; struct crypto_ablkcipher *base ; unsigned int ivsize ; unsigned int reqsize ; }; struct aead_tfm { int (*setkey)(struct crypto_aead * , u8 const * , unsigned int ) ; int (*encrypt)(struct aead_request * ) ; int (*decrypt)(struct aead_request * ) ; int (*givencrypt)(struct aead_givcrypt_request * ) ; int (*givdecrypt)(struct aead_givcrypt_request * ) ; struct crypto_aead *base ; unsigned int ivsize ; unsigned int authsize ; unsigned int reqsize ; }; struct blkcipher_tfm { void *iv ; int (*setkey)(struct crypto_tfm * , u8 const * , unsigned int ) ; int (*encrypt)(struct blkcipher_desc * , struct scatterlist * , struct scatterlist * , unsigned int ) ; int (*decrypt)(struct blkcipher_desc * , struct scatterlist * , struct scatterlist * , unsigned int ) ; }; struct cipher_tfm { int (*cit_setkey)(struct crypto_tfm * , u8 const * , unsigned int ) ; void (*cit_encrypt_one)(struct crypto_tfm * , u8 * , u8 const * ) ; void (*cit_decrypt_one)(struct crypto_tfm * , u8 * , u8 const * ) ; }; struct hash_tfm { int (*init)(struct hash_desc * ) ; int (*update)(struct hash_desc * , struct scatterlist * , unsigned int ) ; int (*final)(struct hash_desc * , u8 * ) ; int (*digest)(struct hash_desc * , struct scatterlist * , unsigned int , u8 * ) ; int (*setkey)(struct crypto_hash * , u8 const * , unsigned int ) ; unsigned int digestsize ; }; struct compress_tfm { int (*cot_compress)(struct crypto_tfm * , u8 const * , unsigned int , u8 * , unsigned int * ) ; int (*cot_decompress)(struct crypto_tfm * , u8 const * , unsigned int , u8 * , unsigned int * ) ; }; struct rng_tfm { int (*rng_gen_random)(struct crypto_rng * , u8 * , unsigned int ) ; int (*rng_reset)(struct crypto_rng * , u8 * , unsigned int ) ; }; union __anonunion_crt_u_248 { struct ablkcipher_tfm ablkcipher ; struct aead_tfm aead ; struct blkcipher_tfm blkcipher ; struct cipher_tfm cipher ; struct hash_tfm hash ; struct compress_tfm compress ; struct rng_tfm rng ; }; struct crypto_tfm { u32 crt_flags ; union __anonunion_crt_u_248 crt_u ; void (*exit)(struct crypto_tfm * ) ; struct crypto_alg *__crt_alg ; void *__crt_ctx[] ; }; struct crypto_ablkcipher { struct crypto_tfm base ; }; struct crypto_aead { struct crypto_tfm base ; }; struct crypto_blkcipher { struct crypto_tfm base ; }; struct crypto_cipher { struct crypto_tfm base ; }; struct crypto_hash { struct crypto_tfm base ; }; struct crypto_rng { struct crypto_tfm base ; }; struct iw_param { __s32 value ; __u8 fixed ; __u8 disabled ; __u16 flags ; }; struct iw_point { void *pointer ; __u16 length ; __u16 flags ; }; struct iw_freq { __s32 m ; __s16 e ; __u8 i ; __u8 flags ; }; struct iw_quality { __u8 qual ; __u8 level ; __u8 noise ; __u8 updated ; }; struct iw_discarded { __u32 nwid ; __u32 code ; __u32 fragment ; __u32 retries ; __u32 misc ; }; struct iw_missed { __u32 beacon ; }; struct iw_encode_ext { __u32 ext_flags ; __u8 tx_seq[8U] ; __u8 rx_seq[8U] ; struct sockaddr addr ; __u16 alg ; __u16 key_len ; __u8 key[0U] ; }; struct iw_statistics { __u16 status ; struct iw_quality qual ; struct iw_discarded discard ; struct iw_missed miss ; }; union iwreq_data { char name[16U] ; struct iw_point essid ; struct iw_param nwid ; struct iw_freq freq ; struct iw_param sens ; struct iw_param bitrate ; struct iw_param txpower ; struct iw_param rts ; struct iw_param frag ; __u32 mode ; struct iw_param retry ; struct iw_point encoding ; struct iw_param power ; struct iw_quality qual ; struct sockaddr ap_addr ; struct sockaddr addr ; struct iw_param param ; struct iw_point data ; }; struct iw_range { __u32 throughput ; __u32 min_nwid ; __u32 max_nwid ; __u16 old_num_channels ; __u8 old_num_frequency ; __u8 scan_capa ; __u32 event_capa[6U] ; __s32 sensitivity ; struct iw_quality max_qual ; struct iw_quality avg_qual ; __u8 num_bitrates ; __s32 bitrate[32U] ; __s32 min_rts ; __s32 max_rts ; __s32 min_frag ; __s32 max_frag ; __s32 min_pmp ; __s32 max_pmp ; __s32 min_pmt ; __s32 max_pmt ; __u16 pmp_flags ; __u16 pmt_flags ; __u16 pm_capa ; __u16 encoding_size[8U] ; __u8 num_encoding_sizes ; __u8 max_encoding_tokens ; __u8 encoding_login_index ; __u16 txpower_capa ; __u8 num_txpower ; __s32 txpower[8U] ; __u8 we_version_compiled ; __u8 we_version_source ; __u16 retry_capa ; __u16 retry_flags ; __u16 r_time_flags ; __s32 min_retry ; __s32 max_retry ; __s32 min_r_time ; __s32 max_r_time ; __u16 num_channels ; __u8 num_frequency ; struct iw_freq freq[32U] ; __u32 enc_capa ; }; struct iw_priv_args { __u32 cmd ; __u16 set_args ; __u16 get_args ; char name[16U] ; }; struct iw_event { __u16 len ; __u16 cmd ; union iwreq_data u ; }; struct iw_request_info { __u16 cmd ; __u16 flags ; }; typedef int (*iw_handler)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ); struct iw_handler_def { iw_handler (* const *standard)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ) ; __u16 num_standard ; __u16 num_private ; __u16 num_private_args ; iw_handler (* const *private)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ) ; struct iw_priv_args const *private_args ; struct iw_statistics *(*get_wireless_stats)(struct net_device * ) ; }; struct iw_spy_data { int spy_number ; u_char spy_address[8U][6U] ; struct iw_quality spy_stat[8U] ; struct iw_quality spy_thr_low ; struct iw_quality spy_thr_high ; u_char spy_thr_under[8U] ; }; struct libipw_device; struct iw_public_data { struct iw_spy_data *spy_data ; struct libipw_device *libipw ; }; struct __anonstruct_Cmd_286 { u16 cmd ; u16 parm0 ; u16 parm1 ; u16 parm2 ; }; typedef struct __anonstruct_Cmd_286 Cmd; struct __anonstruct_Resp_287 { u16 status ; u16 rsp0 ; u16 rsp1 ; u16 rsp2 ; }; typedef struct __anonstruct_Resp_287 Resp; struct WepKeyRid; typedef struct WepKeyRid WepKeyRid; struct WepKeyRid { __le16 len ; __le16 kindex ; u8 mac[6U] ; __le16 klen ; u8 key[16U] ; }; struct Ssid; typedef struct Ssid Ssid; struct Ssid { __le16 len ; u8 ssid[32U] ; }; struct SsidRid; typedef struct SsidRid SsidRid; struct SsidRid { __le16 len ; Ssid ssids[3U] ; }; struct ConfigRid; typedef struct ConfigRid ConfigRid; struct ConfigRid { __le16 len ; __le16 opmode ; __le16 rmode ; __le16 fragThresh ; __le16 rtsThres ; u8 macAddr[6U] ; u8 rates[8U] ; __le16 shortRetryLimit ; __le16 longRetryLimit ; __le16 txLifetime ; __le16 rxLifetime ; __le16 stationary ; __le16 ordering ; __le16 u16deviceType ; __le16 cfpRate ; __le16 cfpDuration ; __le16 _reserved1[3U] ; __le16 scanMode ; __le16 probeDelay ; __le16 probeEnergyTimeout ; __le16 probeResponseTimeout ; __le16 beaconListenTimeout ; __le16 joinNetTimeout ; __le16 authTimeout ; __le16 authType ; __le16 associationTimeout ; __le16 specifiedApTimeout ; __le16 offlineScanInterval ; __le16 offlineScanDuration ; __le16 linkLossDelay ; __le16 maxBeaconLostTime ; __le16 refreshInterval ; __le16 _reserved1a[1U] ; __le16 powerSaveMode ; __le16 sleepForDtims ; __le16 listenInterval ; __le16 fastListenInterval ; __le16 listenDecay ; __le16 fastListenDelay ; __le16 _reserved2[2U] ; __le16 beaconPeriod ; __le16 atimDuration ; __le16 hopPeriod ; __le16 channelSet ; __le16 channel ; __le16 dtimPeriod ; __le16 bridgeDistance ; __le16 radioID ; __le16 radioType ; u8 rxDiversity ; u8 txDiversity ; __le16 txPower ; __le16 rssiThreshold ; __le16 modulation ; __le16 preamble ; __le16 homeProduct ; __le16 radioSpecific ; u8 nodeName[16U] ; __le16 arlThreshold ; __le16 arlDecay ; __le16 arlDelay ; __le16 _reserved4[1U] ; u8 magicAction ; u8 magicControl ; __le16 autoWake ; }; struct StatusRid; typedef struct StatusRid StatusRid; struct StatusRid { __le16 len ; u8 mac[6U] ; __le16 mode ; __le16 errorCode ; __le16 sigQuality ; __le16 SSIDlen ; char SSID[32U] ; char apName[16U] ; u8 bssid[4U][6U] ; __le16 beaconPeriod ; __le16 dimPeriod ; __le16 atimDuration ; __le16 hopPeriod ; __le16 channelSet ; __le16 channel ; __le16 hopsToBackbone ; __le16 apTotalLoad ; __le16 generatedLoad ; __le16 accumulatedArl ; __le16 signalQuality ; __le16 currentXmitRate ; __le16 apDevExtensions ; __le16 normalizedSignalStrength ; __le16 shortPreamble ; u8 apIP[4U] ; u8 noisePercent ; u8 noisedBm ; u8 noiseAvePercent ; u8 noiseAvedBm ; u8 noiseMaxPercent ; u8 noiseMaxdBm ; __le16 load ; u8 carrier[4U] ; __le16 assocStatus ; }; struct StatsRid; typedef struct StatsRid StatsRid; struct StatsRid { __le16 len ; __le16 spacer ; __le32 vals[100U] ; }; struct APListRid; typedef struct APListRid APListRid; struct APListRid { __le16 len ; u8 ap[4U][6U] ; }; struct CapabilityRid; typedef struct CapabilityRid CapabilityRid; struct CapabilityRid { __le16 len ; char oui[3U] ; char zero ; __le16 prodNum ; char manName[32U] ; char prodName[16U] ; char prodVer[8U] ; char factoryAddr[6U] ; char aironetAddr[6U] ; __le16 radioType ; __le16 country ; char callid[6U] ; char supportedRates[8U] ; char rxDiversity ; char txDiversity ; __le16 txPowerLevels[8U] ; __le16 hardVer ; __le16 hardCap ; __le16 tempRange ; __le16 softVer ; __le16 softSubVer ; __le16 interfaceVer ; __le16 softCap ; __le16 bootBlockVer ; __le16 requiredHard ; __le16 extSoftCap ; }; struct BSSListRidExtra; typedef struct BSSListRidExtra BSSListRidExtra; struct BSSListRidExtra { __le16 unknown[4U] ; u8 fixed[12U] ; u8 iep[624U] ; }; struct BSSListRid; typedef struct BSSListRid BSSListRid; struct __anonstruct_fh_288 { __le16 dwell ; u8 hopSet ; u8 hopPattern ; u8 hopIndex ; u8 fill ; }; struct BSSListRid { __le16 len ; __le16 index ; __le16 radioType ; u8 bssid[6U] ; u8 zero ; u8 ssidLen ; u8 ssid[32U] ; __le16 dBm ; __le16 cap ; __le16 beaconInterval ; u8 rates[8U] ; struct __anonstruct_fh_288 fh ; __le16 dsChannel ; __le16 atimWindow ; BSSListRidExtra extra ; }; struct __anonstruct_BSSListElement_289 { BSSListRid bss ; struct list_head list ; }; typedef struct __anonstruct_BSSListElement_289 BSSListElement; struct tdsRssiEntry; typedef struct tdsRssiEntry tdsRssiEntry; struct tdsRssiEntry { u8 rssipct ; u8 rssidBm ; }; struct tdsRssiRid; typedef struct tdsRssiRid tdsRssiRid; struct tdsRssiRid { u16 len ; tdsRssiEntry x[256U] ; }; struct MICRid; typedef struct MICRid MICRid; struct MICRid { __le16 len ; __le16 state ; __le16 multicastValid ; u8 multicast[16U] ; __le16 unicastValid ; u8 unicast[16U] ; }; struct MICBuffer; typedef struct MICBuffer MICBuffer; struct __anonstruct_llc_291 { u8 dsap ; u8 ssap ; u8 control ; u8 orgcode[3U] ; u8 fieldtype[2U] ; }; union __anonunion_u_290 { u8 snap[8U] ; struct __anonstruct_llc_291 llc ; }; struct MICBuffer { __be16 typelen ; union __anonunion_u_290 u ; __be32 mic ; __be32 seq ; }; struct __anonstruct_etherHead_292 { u8 da[6U] ; u8 sa[6U] ; }; typedef struct __anonstruct_etherHead_292 etherHead; struct aironet_ioctl { unsigned short command ; unsigned short len ; unsigned short ridnum ; unsigned char *data ; }; typedef struct aironet_ioctl aironet_ioctl; struct __anonstruct_mic_statistics_293 { u32 size ; u8 enabled ; u32 rxSuccess ; u32 rxIncorrectMIC ; u32 rxNotMICed ; u32 rxMICPlummed ; u32 rxWrongSequence ; u32 reserve[32U] ; }; typedef struct __anonstruct_mic_statistics_293 mic_statistics; union __anonunion_part_295 { u8 d8[4U] ; __be32 d32 ; }; struct __anonstruct_emmh32_context_294 { u32 coeff[600U] ; u64 accum ; int position ; union __anonunion_part_295 part ; }; typedef struct __anonstruct_emmh32_context_294 emmh32_context; struct __anonstruct_miccntx_296 { emmh32_context seed ; u32 rx ; u32 tx ; u32 window ; u8 valid ; u8 key[16U] ; }; typedef struct __anonstruct_miccntx_296 miccntx; struct __anonstruct_mic_module_297 { miccntx mCtx ; miccntx uCtx ; }; typedef struct __anonstruct_mic_module_297 mic_module; struct __anonstruct_Rid_298 { unsigned int rid : 16 ; unsigned int len : 15 ; unsigned int valid : 1 ; dma_addr_t host_addr ; }; typedef struct __anonstruct_Rid_298 Rid; struct __anonstruct_TxFid_299 { unsigned int offset : 15 ; unsigned int eoc : 1 ; unsigned int len : 15 ; unsigned int valid : 1 ; dma_addr_t host_addr ; }; typedef struct __anonstruct_TxFid_299 TxFid; struct rx_hdr { __le16 status ; __le16 len ; u8 rssi[2U] ; u8 rate ; u8 freq ; __le16 tmp[4U] ; }; struct __anonstruct_RxFid_300 { unsigned int ctl : 15 ; unsigned int rdy : 1 ; unsigned int len : 15 ; unsigned int valid : 1 ; dma_addr_t host_addr ; }; typedef struct __anonstruct_RxFid_300 RxFid; struct __anonstruct_HostRxDesc_301 { unsigned char *card_ram_off ; RxFid rx_desc ; char *virtual_host_addr ; int pending ; }; typedef struct __anonstruct_HostRxDesc_301 HostRxDesc; struct __anonstruct_HostTxDesc_302 { unsigned char *card_ram_off ; TxFid tx_desc ; char *virtual_host_addr ; int pending ; }; typedef struct __anonstruct_HostTxDesc_302 HostTxDesc; struct __anonstruct_HostRidDesc_303 { unsigned char *card_ram_off ; Rid rid_desc ; char *virtual_host_addr ; }; typedef struct __anonstruct_HostRidDesc_303 HostRidDesc; struct __anonstruct_TxCtlHdr_304 { u16 sw0 ; u16 sw1 ; u16 status ; u16 len ; u16 ctl ; u16 aid ; u16 retries ; u16 fill ; }; typedef struct __anonstruct_TxCtlHdr_304 TxCtlHdr; struct __anonstruct_WifiHdr_305 { u16 ctl ; u16 duration ; char addr1[6U] ; char addr2[6U] ; char addr3[6U] ; u16 seq ; char addr4[6U] ; }; typedef struct __anonstruct_WifiHdr_305 WifiHdr; struct __anonstruct_WifiCtlHdr_306 { TxCtlHdr ctlhdr ; u16 fill1 ; u16 fill2 ; WifiHdr wifihdr ; u16 gaplen ; u16 status ; }; typedef struct __anonstruct_WifiCtlHdr_306 WifiCtlHdr; struct wep_key_t { u16 len ; u8 key[16U] ; }; typedef struct wep_key_t wep_key_t; struct airo_info; struct __anonstruct_xmit_307 { struct sk_buff *skb ; int fid ; }; struct __anonstruct_xmit11_308 { struct sk_buff *skb ; int fid ; }; struct airo_info { struct net_device *dev ; struct list_head dev_list ; u32 fids[6U] ; ConfigRid config ; char keyindex ; char defindex ; struct proc_dir_entry *proc_entry ; spinlock_t aux_lock ; unsigned long flags ; unsigned long jobs ; int (*bap_read)(struct airo_info * , __le16 * , int , int ) ; unsigned short *flash ; tdsRssiEntry *rssi ; struct task_struct *list_bss_task ; struct task_struct *airo_thread_task ; struct semaphore sem ; wait_queue_head_t thr_wait ; unsigned long expires ; struct __anonstruct_xmit_307 xmit ; struct __anonstruct_xmit11_308 xmit11 ; struct net_device *wifidev ; struct iw_statistics wstats ; unsigned long scan_timeout ; struct iw_spy_data spy_data ; struct iw_public_data wireless_data ; struct crypto_cipher *tfm ; mic_module mod[2U] ; mic_statistics micstats ; HostRxDesc rxfids[1U] ; HostTxDesc txfids[1U] ; HostRidDesc config_desc ; unsigned long ridbus ; struct sk_buff_head txq ; struct pci_dev *pci ; unsigned char *pcimem ; unsigned char *pciaux ; unsigned char *shared ; dma_addr_t shared_dma ; pm_message_t power ; SsidRid *SSID ; APListRid *APList ; char proc_name[16U] ; int wep_capable ; int max_wep_idx ; unsigned int bssListFirst ; unsigned int bssListNext ; unsigned int bssListRidLen ; struct list_head network_list ; struct list_head network_free_list ; BSSListElement *networks ; }; enum ldv_33956 { NONE = 0, NOMIC = 1, NOMICPLUMMED = 2, SEQUENCE = 3, INCORRECTMIC = 4 } ; typedef enum ldv_33956 mic_error; struct proc_data { int release_buffer ; int readlen ; char *rbuffer ; int writelen ; int maxwritelen ; char *wbuffer ; void (*on_close)(struct inode * , struct file * ) ; }; struct ldv_struct_EMGentry_23 { int signal_pending ; }; struct ldv_struct_dummy_resourceless_instance_9 { struct net_device *arg0 ; int signal_pending ; }; struct ldv_struct_free_irq_16 { int arg0 ; int signal_pending ; }; struct ldv_struct_interrupt_instance_8 { int arg0 ; enum irqreturn (*arg1)(int , void * ) ; enum irqreturn (*arg2)(int , void * ) ; void *arg3 ; int signal_pending ; }; struct ldv_struct_pci_instance_11 { struct pci_driver *arg0 ; int signal_pending ; }; typedef int ldv_func_ret_type___0; typedef struct net_device *ldv_func_ret_type___1; typedef int ldv_func_ret_type___2; typedef struct net_device *ldv_func_ret_type___3; typedef int ldv_func_ret_type___4; typedef int ldv_func_ret_type___5; struct device_private { void *driver_data ; }; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; wait_queue_head_t done ; struct kthread_worker *worker ; }; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; struct completion xfer_completion ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; unsigned int cs_change : 1 ; unsigned int tx_nbits : 3 ; unsigned int rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned int is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; long ldv__builtin_expect(long exp , long c ) ; void *ldv_dev_get_drvdata(struct device const *dev ) ; int ldv_dev_set_drvdata(struct device *dev , void *data ) ; long ldv_is_err(void const *ptr ) ; long ldv_ptr_err(void const *ptr ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) ; extern struct module __this_module ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void __list_add(struct list_head * , struct list_head * , struct list_head * ) ; __inline static void list_add_tail(struct list_head *new , struct list_head *head ) { { { __list_add(new, head->prev, head); } return; } } extern void __list_del_entry(struct list_head * ) ; extern void list_del(struct list_head * ) ; __inline static void list_move_tail(struct list_head *list , struct list_head *head ) { { { __list_del_entry(list); list_add_tail(list, head); } return; } } __inline static int list_empty(struct list_head const *head ) { { return ((unsigned long )((struct list_head const *)head->next) == (unsigned long )head); } } extern struct pv_irq_ops pv_irq_ops ; __inline static void set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static void change_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btc %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static int test_and_clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("":); return (0); return (1); } } __inline static int constant_test_bit(long nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr >> 6)) >> ((int )nr & 63)) & 1); } } __inline static __u16 __fswab16(__u16 val ) { { return ((__u16 )((int )((short )((int )val << 8)) | (int )((short )((int )val >> 8)))); } } __inline static __u32 __fswab32(__u32 val ) { int tmp ; { { tmp = __builtin_bswap32(val); } return ((__u32 )tmp); } } __inline static __u16 __le16_to_cpup(__le16 const *p ) { { return ((__u16 )*p); } } extern int printk(char const * , ...) ; extern void __might_sleep(char const * , int , int ) ; extern void might_fault(void) ; extern int sprintf(char * , char const * , ...) ; extern int hex_to_bin(char ) ; extern void __bad_percpu_size(void) ; extern struct task_struct *current_task ; __inline static struct task_struct *get_current(void) { struct task_struct *pfo_ret__ ; { { if (8UL == 1UL) { goto case_1; } else { } if (8UL == 2UL) { goto case_2; } else { } if (8UL == 4UL) { goto case_4; } else { } if (8UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "p" (& current_task)); goto ldv_2908; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_2908; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_2908; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_2908; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_2908: ; return (pfo_ret__); } } extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern int memcmp(void const * , void const * , size_t ) ; extern size_t strlen(char const * ) ; extern char *strcpy(char * , char const * ) ; extern char *strncpy(char * , char const * , __kernel_size_t ) ; extern int strncmp(char const * , char const * , __kernel_size_t ) ; extern void warn_slowpath_null(char const * , int const ) ; __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/7cdfae59d3ac602223400f61d8829e28/klever-core-work-dir/520b8de/linux-kernel-locking-spinlock/lkbce/arch/x86/include/asm/paravirt.h"), "i" (804), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static long PTR_ERR(void const *ptr ) ; __inline static long IS_ERR(void const *ptr ) ; __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } extern void __xchg_wrong_size(void) ; __inline static int atomic_read(atomic_t const *v ) { { return ((int )*((int volatile *)(& v->counter))); } } extern void debug_check_no_locks_held(void) ; extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern void __ldv_spin_lock(spinlock_t * ) ; static void ldv___ldv_spin_lock_61(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_77(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_80(spinlock_t *ldv_func_arg1 ) ; void ldv_spin_lock_aux_lock_of_airo_info(void) ; void ldv_spin_unlock_aux_lock_of_airo_info(void) ; extern void ldv_initialize(void) ; int ldv_post_init(int init_ret_val ) ; extern void ldv_pre_probe(void) ; int ldv_post_probe(int probe_ret_val ) ; int ldv_filter_err_code(int ret_val ) ; extern int ldv_pre_register_netdev(void) ; void ldv_check_final_state(void) ; extern void ldv_switch_to_interrupt_context(void) ; extern void ldv_switch_to_process_context(void) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; int ldv_undef_int(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; extern int __preempt_count ; __inline static int preempt_count(void) { int pfo_ret__ ; { { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "m" (__preempt_count)); goto ldv_6445; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6445; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6445; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6445; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_6445: ; return (pfo_ret__ & 2147483647); } } extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField19.rlock); } } __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField19.rlock, flags); } return; } } __inline static void ldv_spin_unlock_irqrestore_62(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_62(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_62(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_62(spinlock_t *lock , unsigned long flags ) ; extern int default_wake_function(wait_queue_t * , unsigned int , int , void * ) ; extern void __init_waitqueue_head(wait_queue_head_t * , char const * , struct lock_class_key * ) ; __inline static void init_waitqueue_entry(wait_queue_t *q , struct task_struct *p ) { { q->flags = 0U; q->private = (void *)p; q->func = & default_wake_function; return; } } extern void add_wait_queue(wait_queue_head_t * , wait_queue_t * ) ; extern void remove_wait_queue(wait_queue_head_t * , wait_queue_t * ) ; extern void __wake_up(wait_queue_head_t * , unsigned int , int , void * ) ; extern struct user_namespace init_user_ns ; __inline static uid_t __kuid_val(kuid_t uid ) { { return (uid.val); } } __inline static gid_t __kgid_val(kgid_t gid ) { { return (gid.val); } } __inline static bool uid_eq(kuid_t left , kuid_t right ) { uid_t tmp ; uid_t tmp___0 ; { { tmp = __kuid_val(left); tmp___0 = __kuid_val(right); } return (tmp == tmp___0); } } __inline static bool gid_eq(kgid_t left , kgid_t right ) { gid_t tmp ; gid_t tmp___0 ; { { tmp = __kgid_val(left); tmp___0 = __kgid_val(right); } return (tmp == tmp___0); } } __inline static bool uid_valid(kuid_t uid ) { kuid_t __constr_expr_0 ; bool tmp ; int tmp___0 ; { { __constr_expr_0.val = 4294967295U; tmp = uid_eq(uid, __constr_expr_0); } if ((int )tmp != 0) { tmp___0 = 0; } else { tmp___0 = 1; } return ((bool )tmp___0); } } __inline static bool gid_valid(kgid_t gid ) { kgid_t __constr_expr_0 ; bool tmp ; int tmp___0 ; { { __constr_expr_0.val = 4294967295U; tmp = gid_eq(gid, __constr_expr_0); } if ((int )tmp != 0) { tmp___0 = 0; } else { tmp___0 = 1; } return ((bool )tmp___0); } } extern kuid_t make_kuid(struct user_namespace * , uid_t ) ; extern kgid_t make_kgid(struct user_namespace * , gid_t ) ; extern unsigned long volatile jiffies ; extern struct resource ioport_resource ; extern struct resource iomem_resource ; extern struct resource *__request_region(struct resource * , resource_size_t , resource_size_t , char const * , int ) ; extern void __release_region(struct resource * , resource_size_t , resource_size_t ) ; extern void *ioremap_nocache(resource_size_t , unsigned long ) ; __inline static void *ioremap(resource_size_t offset , unsigned long size ) { void *tmp ; { { tmp = ioremap_nocache(offset, size); } return (tmp); } } extern void iounmap(void volatile * ) ; __inline static void memcpy_fromio(void *dst , void const volatile *src , size_t count ) { { { memcpy(dst, (void const *)src, count); } return; } } __inline static void memcpy_toio(void volatile *dst , void const *src , size_t count ) { { { memcpy((void *)dst, src, count); } return; } } __inline static void outb(unsigned char value , int port ) { { __asm__ volatile ("outb %b0, %w1": : "a" (value), "Nd" (port)); return; } } __inline static unsigned char inb(int port ) { unsigned char value ; { __asm__ volatile ("inb %w1, %b0": "=a" (value): "Nd" (port)); return (value); } } __inline static void outsb(int port , void const *addr , unsigned long count ) { { __asm__ volatile ("rep; outsb": "+S" (addr), "+c" (count): "d" (port)); return; } } __inline static void insb(int port , void *addr , unsigned long count ) { { __asm__ volatile ("rep; insb": "+D" (addr), "+c" (count): "d" (port)); return; } } __inline static void outw(unsigned short value , int port ) { { __asm__ volatile ("outw %w0, %w1": : "a" (value), "Nd" (port)); return; } } __inline static unsigned short inw(int port ) { unsigned short value ; { __asm__ volatile ("inw %w1, %w0": "=a" (value): "Nd" (port)); return (value); } } __inline static void outsw(int port , void const *addr , unsigned long count ) { { __asm__ volatile ("rep; outsw": "+S" (addr), "+c" (count): "d" (port)); return; } } __inline static void insw(int port , void *addr , unsigned long count ) { { __asm__ volatile ("rep; insw": "+D" (addr), "+c" (count): "d" (port)); return; } } static void *ldv_dev_get_drvdata_58(struct device const *dev ) ; static int ldv_dev_set_drvdata_59(struct device *dev , void *data ) ; extern void __const_udelay(unsigned long ) ; extern void msleep(unsigned int ) ; __inline static void ssleep(unsigned int seconds ) { { { msleep(seconds * 1000U); } return; } } extern bool capable(int ) ; __inline static void sema_init(struct semaphore *sem , int val ) { struct lock_class_key __key ; struct semaphore __constr_expr_0 ; { { __constr_expr_0.lock.raw_lock.__annonCompField4.head_tail = 0U; __constr_expr_0.lock.magic = 3735899821U; __constr_expr_0.lock.owner_cpu = 4294967295U; __constr_expr_0.lock.owner = (void *)-1; __constr_expr_0.lock.dep_map.key = 0; __constr_expr_0.lock.dep_map.class_cache[0] = 0; __constr_expr_0.lock.dep_map.class_cache[1] = 0; __constr_expr_0.lock.dep_map.name = "(*sem).lock"; __constr_expr_0.lock.dep_map.cpu = 0; __constr_expr_0.lock.dep_map.ip = 0UL; __constr_expr_0.count = (unsigned int )val; __constr_expr_0.wait_list.next = & sem->wait_list; __constr_expr_0.wait_list.prev = & sem->wait_list; *sem = __constr_expr_0; lockdep_init_map(& sem->lock.dep_map, "semaphore->lock", & __key, 0); } return; } } extern int down_interruptible(struct semaphore * ) ; extern int down_trylock(struct semaphore * ) ; extern void up(struct semaphore * ) ; extern loff_t default_llseek(struct file * , loff_t , int ) ; extern ssize_t simple_read_from_buffer(void * , size_t , loff_t * , void const * , size_t ) ; extern ssize_t simple_write_to_buffer(void * , size_t , loff_t * , void const * , size_t ) ; extern long schedule_timeout(long ) ; extern long schedule_timeout_uninterruptible(long ) ; extern void schedule(void) ; extern int wake_up_process(struct task_struct * ) ; extern void kfree(void const * ) ; extern void *__kmalloc(size_t , gfp_t ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) { void *tmp___2 ; { { tmp___2 = __kmalloc(size, flags); } return (tmp___2); } } __inline static void *kmalloc_array(size_t n , size_t size , gfp_t flags ) { void *tmp ; { if (size != 0UL && n > 0xffffffffffffffffUL / size) { return ((void *)0); } else { } { tmp = __kmalloc(n * size, flags); } return (tmp); } } __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) { void *tmp ; { { tmp = kmalloc_array(n, size, flags | 32768U); } return (tmp); } } __inline static void *kzalloc(size_t size , gfp_t flags ) ; extern unsigned long _copy_from_user(void * , void const * , unsigned int ) ; extern unsigned long _copy_to_user(void * , void const * , unsigned int ) ; extern void __copy_from_user_overflow(void) ; extern void __copy_to_user_overflow(void) ; __inline static unsigned long copy_from_user(void *to , void const *from , unsigned long n ) { int sz ; long tmp ; long tmp___0 ; { { sz = -1; might_fault(); tmp = ldv__builtin_expect(sz < 0, 1L); } if (tmp != 0L) { { n = _copy_from_user(to, from, (unsigned int )n); } } else { { tmp___0 = ldv__builtin_expect((unsigned long )sz >= n, 1L); } if (tmp___0 != 0L) { { n = _copy_from_user(to, from, (unsigned int )n); } } else { { __copy_from_user_overflow(); } } } return (n); } } __inline static unsigned long copy_to_user(void *to , void const *from , unsigned long n ) { int sz ; long tmp ; long tmp___0 ; { { sz = -1; might_fault(); tmp = ldv__builtin_expect(sz < 0, 1L); } if (tmp != 0L) { { n = _copy_to_user(to, from, (unsigned int )n); } } else { { tmp___0 = ldv__builtin_expect((unsigned long )sz >= n, 1L); } if (tmp___0 != 0L) { { n = _copy_to_user(to, from, (unsigned int )n); } } else { { __copy_to_user_overflow(); } } } return (n); } } __inline static int is_device_dma_capable(struct device *dev ) { { return ((unsigned long )dev->dma_mask != (unsigned long )((u64 *)0ULL) && *(dev->dma_mask) != 0ULL); } } extern void debug_dma_alloc_coherent(struct device * , size_t , dma_addr_t , void * ) ; extern void debug_dma_free_coherent(struct device * , size_t , void * , dma_addr_t ) ; extern struct device x86_dma_fallback_dev ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); } if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static unsigned long dma_alloc_coherent_mask(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; { dma_mask = 0UL; dma_mask = (unsigned long )dev->coherent_dma_mask; if (dma_mask == 0UL) { dma_mask = (int )gfp & 1 ? 16777215UL : 4294967295UL; } else { } return (dma_mask); } } __inline static gfp_t dma_alloc_coherent_gfp_flags(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; unsigned long tmp ; { { tmp = dma_alloc_coherent_mask(dev, gfp); dma_mask = tmp; } if ((unsigned long long )dma_mask <= 16777215ULL) { gfp = gfp | 1U; } else { } if ((unsigned long long )dma_mask <= 4294967295ULL && (gfp & 1U) == 0U) { gfp = gfp | 4U; } else { } return (gfp); } } __inline static void *dma_alloc_attrs(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t gfp , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; void *memory ; int tmp___0 ; gfp_t tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; gfp = gfp & 4294967288U; } if ((unsigned long )dev == (unsigned long )((struct device *)0)) { dev = & x86_dma_fallback_dev; } else { } { tmp___0 = is_device_dma_capable(dev); } if (tmp___0 == 0) { return ((void *)0); } else { } if ((unsigned long )ops->alloc == (unsigned long )((void *(*)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ))0)) { return ((void *)0); } else { } { tmp___1 = dma_alloc_coherent_gfp_flags(dev, gfp); memory = (*(ops->alloc))(dev, size, dma_handle, tmp___1, attrs); debug_dma_alloc_coherent(dev, size, *dma_handle, memory); } return (memory); } } __inline static void dma_free_attrs(struct device *dev , size_t size , void *vaddr , dma_addr_t bus , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int __ret_warn_on ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; _flags = arch_local_save_flags(); tmp___0 = arch_irqs_disabled_flags(_flags); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/7cdfae59d3ac602223400f61d8829e28/klever-core-work-dir/520b8de/linux-kernel-locking-spinlock/lkbce/arch/x86/include/asm/dma-mapping.h", 166); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); debug_dma_free_coherent(dev, size, vaddr, bus); } if ((unsigned long )ops->free != (unsigned long )((void (*)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ))0)) { { (*(ops->free))(dev, size, vaddr, bus, attrs); } } else { } return; } } extern void consume_skb(struct sk_buff * ) ; __inline static int skb_queue_empty(struct sk_buff_head const *list ) { { return ((unsigned long )((struct sk_buff const *)list->next) == (unsigned long )((struct sk_buff const *)list)); } } __inline static __u32 skb_queue_len(struct sk_buff_head const *list_ ) { { return ((__u32 )list_->qlen); } } __inline static void __skb_queue_head_init(struct sk_buff_head *list ) { struct sk_buff *tmp ; { tmp = (struct sk_buff *)list; list->next = tmp; list->prev = tmp; list->qlen = 0U; return; } } __inline static void skb_queue_head_init(struct sk_buff_head *list ) { struct lock_class_key __key ; { { spinlock_check(& list->lock); __raw_spin_lock_init(& list->lock.__annonCompField19.rlock, "&(&list->lock)->rlock", & __key); __skb_queue_head_init(list); } return; } } extern void skb_queue_tail(struct sk_buff_head * , struct sk_buff * ) ; extern struct sk_buff *skb_dequeue(struct sk_buff_head * ) ; extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; __inline static void skb_reserve(struct sk_buff *skb , int len ) { { skb->data = skb->data + (unsigned long )len; skb->tail = skb->tail + (sk_buff_data_t )len; return; } } __inline static unsigned char *skb_mac_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->mac_header); } } __inline static void skb_reset_mac_header(struct sk_buff *skb ) { { skb->mac_header = (int )((__u16 )((long )skb->data)) - (int )((__u16 )((long )skb->head)); return; } } extern void skb_trim(struct sk_buff * , unsigned int ) ; extern struct sk_buff *__netdev_alloc_skb(struct net_device * , unsigned int , gfp_t ) ; __inline static struct sk_buff *netdev_alloc_skb(struct net_device *dev , unsigned int length ) { struct sk_buff *tmp ; { { tmp = __netdev_alloc_skb(dev, length, 32U); } return (tmp); } } __inline static struct sk_buff *dev_alloc_skb(unsigned int length ) { struct sk_buff *tmp ; { { tmp = netdev_alloc_skb((struct net_device *)0, length); } return (tmp); } } extern struct proc_dir_entry *proc_mkdir_mode(char const * , umode_t , struct proc_dir_entry * ) ; extern struct proc_dir_entry *proc_create_data(char const * , umode_t , struct proc_dir_entry * , struct file_operations const * , void * ) ; extern void proc_set_user(struct proc_dir_entry * , kuid_t , kgid_t ) ; extern void *PDE_DATA(struct inode const * ) ; extern void remove_proc_entry(char const * , struct proc_dir_entry * ) ; extern int remove_proc_subtree(char const * , struct proc_dir_entry * ) ; __inline static struct netdev_queue *netdev_get_tx_queue(struct net_device const *dev , unsigned int index ) { { return ((struct netdev_queue *)dev->_tx + (unsigned long )index); } } __inline static void *netdev_priv(struct net_device const *dev ) { { return ((void *)dev + 3200U); } } extern void free_netdev(struct net_device * ) ; static void ldv_free_netdev_66(struct net_device *ldv_func_arg1 ) ; static void ldv_free_netdev_67(struct net_device *ldv_func_arg1 ) ; static void ldv_free_netdev_70(struct net_device *ldv_func_arg1 ) ; static void ldv_free_netdev_74(struct net_device *ldv_func_arg1 ) ; static void ldv_free_netdev_76(struct net_device *ldv_func_arg1 ) ; extern int netpoll_trap(void) ; extern void __netif_schedule(struct Qdisc * ) ; __inline static void netif_tx_start_queue(struct netdev_queue *dev_queue ) { { { clear_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_start_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_start_queue(tmp); } return; } } __inline static void netif_tx_wake_queue(struct netdev_queue *dev_queue ) { int tmp ; int tmp___0 ; { { tmp = netpoll_trap(); } if (tmp != 0) { { netif_tx_start_queue(dev_queue); } return; } else { } { tmp___0 = test_and_clear_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } if (tmp___0 != 0) { { __netif_schedule(dev_queue->qdisc); } } else { } return; } } __inline static void netif_wake_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_wake_queue(tmp); } return; } } __inline static void netif_tx_stop_queue(struct netdev_queue *dev_queue ) { int __ret_warn_on ; long tmp ; long tmp___0 ; { { __ret_warn_on = (unsigned long )dev_queue == (unsigned long )((struct netdev_queue *)0); tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("include/linux/netdevice.h", 2128); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { printk("\016netif_stop_queue() cannot be called before register_netdev()\n"); } return; } else { } { set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_stop_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_stop_queue(tmp); } return; } } extern void __dev_kfree_skb_irq(struct sk_buff * , enum skb_free_reason ) ; extern void __dev_kfree_skb_any(struct sk_buff * , enum skb_free_reason ) ; __inline static void dev_kfree_skb_irq(struct sk_buff *skb ) { { { __dev_kfree_skb_irq(skb, 1); } return; } } __inline static void dev_kfree_skb_any(struct sk_buff *skb ) { { { __dev_kfree_skb_any(skb, 1); } return; } } extern int netif_rx(struct sk_buff * ) ; __inline static bool netif_device_present(struct net_device *dev ) { int tmp ; { { tmp = constant_test_bit(1L, (unsigned long const volatile *)(& dev->state)); } return (tmp != 0); } } extern void netif_device_detach(struct net_device * ) ; extern void netif_device_attach(struct net_device * ) ; extern void ether_setup(struct net_device * ) ; extern struct net_device *alloc_netdev_mqs(int , char const * , void (*)(struct net_device * ) , unsigned int , unsigned int ) ; static struct net_device *ldv_alloc_netdev_mqs_68(int ldv_func_arg1 , char const *ldv_func_arg2 , void (*ldv_func_arg3)(struct net_device * ) , unsigned int ldv_func_arg4 , unsigned int ldv_func_arg5 ) ; static struct net_device *ldv_alloc_netdev_mqs_71(int ldv_func_arg1 , char const *ldv_func_arg2 , void (*ldv_func_arg3)(struct net_device * ) , unsigned int ldv_func_arg4 , unsigned int ldv_func_arg5 ) ; extern int register_netdev(struct net_device * ) ; static int ldv_register_netdev_69(struct net_device *ldv_func_arg1 ) ; static int ldv_register_netdev_72(struct net_device *ldv_func_arg1 ) ; extern void unregister_netdev(struct net_device * ) ; static void ldv_unregister_netdev_64(struct net_device *ldv_func_arg1 ) ; static void ldv_unregister_netdev_65(struct net_device *ldv_func_arg1 ) ; static void ldv_unregister_netdev_73(struct net_device *ldv_func_arg1 ) ; static void ldv_unregister_netdev_75(struct net_device *ldv_func_arg1 ) ; extern int pci_enable_device(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pci_save_state(struct pci_dev * ) ; extern void pci_restore_state(struct pci_dev * ) ; extern int pci_set_power_state(struct pci_dev * , pci_power_t ) ; extern pci_power_t pci_choose_state(struct pci_dev * , pm_message_t ) ; extern int __pci_enable_wake(struct pci_dev * , pci_power_t , bool , bool ) ; __inline static int pci_enable_wake(struct pci_dev *dev , pci_power_t state , bool enable ) { int tmp ; { { tmp = __pci_enable_wake(dev, state, 0, (int )enable); } return (tmp); } } extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; static int ldv___pci_register_driver_82(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; static void ldv_pci_unregister_driver_83(struct pci_driver *ldv_func_arg1 ) ; __inline static void *pci_alloc_consistent(struct pci_dev *hwdev , size_t size , dma_addr_t *dma_handle ) { void *tmp ; { { tmp = dma_alloc_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, dma_handle, 32U, (struct dma_attrs *)0); } return (tmp); } } __inline static void pci_free_consistent(struct pci_dev *hwdev , size_t size , void *vaddr , dma_addr_t dma_handle ) { { { dma_free_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, vaddr, dma_handle, (struct dma_attrs *)0); } return; } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata_58((struct device const *)(& pdev->dev)); } return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { { ldv_dev_set_drvdata_59(& pdev->dev, data); } return; } } extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq___0 , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { { tmp = request_threaded_irq(irq___0, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); } return (tmp); } } __inline static int ldv_request_irq_60(unsigned int irq___0 , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; static void ldv_free_irq_63(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; extern struct crypto_tfm *crypto_alloc_base(char const * , u32 , u32 ) ; __inline static void crypto_free_tfm(struct crypto_tfm *tfm ) { { return; } } __inline static struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm ) { { return ((struct crypto_cipher *)tfm); } } __inline static struct crypto_cipher *crypto_alloc_cipher(char const *alg_name , u32 type , u32 mask ) { struct crypto_tfm *tmp ; struct crypto_cipher *tmp___0 ; { { type = type & 4294967280U; type = type | 1U; mask = mask | 15U; tmp = crypto_alloc_base(alg_name, type, mask); tmp___0 = __crypto_cipher_cast(tmp); } return (tmp___0); } } __inline static struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm ) { { return (& tfm->base); } } __inline static void crypto_free_cipher(struct crypto_cipher *tfm ) { struct crypto_tfm *tmp ; { { tmp = crypto_cipher_tfm(tfm); crypto_free_tfm(tmp); } return; } } __inline static struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm ) { struct crypto_tfm *tmp ; { { tmp = crypto_cipher_tfm(tfm); } return (& tmp->crt_u.cipher); } } __inline static int crypto_cipher_setkey(struct crypto_cipher *tfm , u8 const *key , unsigned int keylen ) { struct cipher_tfm *tmp ; struct crypto_tfm *tmp___0 ; int tmp___1 ; { { tmp = crypto_cipher_crt(tfm); tmp___0 = crypto_cipher_tfm(tfm); tmp___1 = (*(tmp->cit_setkey))(tmp___0, key, keylen); } return (tmp___1); } } __inline static void crypto_cipher_encrypt_one(struct crypto_cipher *tfm , u8 *dst , u8 const *src ) { struct cipher_tfm *tmp ; struct crypto_tfm *tmp___0 ; { { tmp = crypto_cipher_crt(tfm); tmp___0 = crypto_cipher_tfm(tfm); (*(tmp->cit_encrypt_one))(tmp___0, dst, src); } return; } } __inline static u16 get_unaligned_le16(void const *p ) { __u16 tmp ; { { tmp = __le16_to_cpup((__le16 const *)p); } return (tmp); } } extern __be16 eth_type_trans(struct sk_buff * , struct net_device * ) ; extern int eth_validate_addr(struct net_device * ) ; __inline static bool is_zero_ether_addr(u8 const *addr ) { { return (((unsigned int )*((u32 const *)addr) | (unsigned int )*((u16 const *)addr + 4U)) == 0U); } } __inline static bool is_broadcast_ether_addr(u8 const *addr ) { { return ((unsigned int )(((int )((unsigned short )*((u16 const *)addr)) & (int )((unsigned short )*((u16 const *)addr + 2U))) & (int )((unsigned short )*((u16 const *)addr + 4U))) == 65535U); } } __inline static void ether_addr_copy(u8 *dst , u8 const *src ) { { *((u32 *)dst) = *((u32 const *)src); *((u16 *)dst + 4U) = *((u16 const *)src + 4U); return; } } __inline static void eth_hw_addr_inherit(struct net_device *dst , struct net_device *src ) { { { dst->addr_assign_type = src->addr_assign_type; ether_addr_copy(dst->dev_addr, (u8 const *)src->dev_addr); } return; } } extern struct task_struct *kthread_create_on_node(int (*)(void * ) , void * , int , char const * , ...) ; extern int kthread_stop(struct task_struct * ) ; extern bool kthread_should_stop(void) ; extern atomic_t system_freezing_cnt ; extern bool freezing_slow_path(struct task_struct * ) ; __inline static bool freezing(struct task_struct *p ) { int tmp ; long tmp___0 ; bool tmp___1 ; { { tmp = atomic_read((atomic_t const *)(& system_freezing_cnt)); tmp___0 = ldv__builtin_expect(tmp == 0, 1L); } if (tmp___0 != 0L) { return (0); } else { } { tmp___1 = freezing_slow_path(p); } return (tmp___1); } } extern bool __refrigerator(bool ) ; __inline static bool try_to_freeze_unsafe(void) { struct task_struct *tmp ; bool tmp___0 ; int tmp___1 ; long tmp___2 ; bool tmp___3 ; { { __might_sleep("include/linux/freezer.h", 56, 0); tmp = get_current(); tmp___0 = freezing(tmp); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } { tmp___2 = ldv__builtin_expect((long )tmp___1, 1L); } if (tmp___2 != 0L) { return (0); } else { } { tmp___3 = __refrigerator(0); } return (tmp___3); } } __inline static bool try_to_freeze(void) { struct task_struct *tmp ; bool tmp___0 ; { { tmp = get_current(); } if ((tmp->flags & 32768U) == 0U) { { debug_check_no_locks_held(); } } else { } { tmp___0 = try_to_freeze_unsafe(); } return (tmp___0); } } extern bool set_freezable(void) ; __inline static int ieee80211_dsss_chan_to_freq(int channel ) { { if ((unsigned int )channel - 1U <= 12U) { return (channel * 5 + 2407); } else if (channel == 14) { return (2484); } else { return (-1); } } } __inline static int ieee80211_freq_to_dsss_chan(int freq ) { { if ((unsigned int )freq - 2410U <= 64U) { return ((freq + -2405) / 5); } else if ((unsigned int )freq - 2482U <= 4U) { return (14); } else { return (-1); } } } extern void wireless_send_event(struct net_device * , unsigned int , union iwreq_data * , char const * ) ; extern int iw_handler_set_spy(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ) ; extern int iw_handler_get_spy(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ) ; extern int iw_handler_set_thrspy(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ) ; extern int iw_handler_get_thrspy(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ) ; extern void wireless_spy_update(struct net_device * , unsigned char * , struct iw_quality * ) ; __inline static int iwe_stream_lcp_len(struct iw_request_info *info ) { { if ((int )info->flags & 1) { return (4); } else { } return (8); } } __inline static int iwe_stream_point_len(struct iw_request_info *info ) { { if ((int )info->flags & 1) { return (8); } else { } return (16); } } __inline static int iwe_stream_event_len_adjust(struct iw_request_info *info , int event_len ) { { if ((int )info->flags & 1) { event_len = (int )((unsigned int )event_len - 8U); event_len = (int )((unsigned int )event_len + 4U); } else { } return (event_len); } } __inline static char *iwe_stream_add_event(struct iw_request_info *info , char *stream , char *ends , struct iw_event *iwe , int event_len ) { int lcp_len ; int tmp ; long tmp___0 ; { { tmp = iwe_stream_lcp_len(info); lcp_len = tmp; event_len = iwe_stream_event_len_adjust(info, event_len); tmp___0 = ldv__builtin_expect((unsigned long )(stream + (unsigned long )event_len) < (unsigned long )ends, 1L); } if (tmp___0 != 0L) { { iwe->len = (__u16 )event_len; memcpy((void *)stream, (void const *)iwe, 4UL); memcpy((void *)stream + (unsigned long )lcp_len, (void const *)(& iwe->u), (size_t )(event_len - lcp_len)); stream = stream + (unsigned long )event_len; } } else { } return (stream); } } __inline static char *iwe_stream_add_point(struct iw_request_info *info , char *stream , char *ends , struct iw_event *iwe , char *extra ) { int event_len ; int tmp ; int point_len ; int tmp___0 ; int lcp_len ; int tmp___1 ; long tmp___2 ; { { tmp = iwe_stream_point_len(info); event_len = tmp + (int )iwe->u.data.length; tmp___0 = iwe_stream_point_len(info); point_len = tmp___0; tmp___1 = iwe_stream_lcp_len(info); lcp_len = tmp___1; tmp___2 = ldv__builtin_expect((unsigned long )(stream + (unsigned long )event_len) < (unsigned long )ends, 1L); } if (tmp___2 != 0L) { { iwe->len = (__u16 )event_len; memcpy((void *)stream, (void const *)iwe, 4UL); memcpy((void *)stream + (unsigned long )lcp_len, (void const *)(& iwe->u) + 8U, 4UL); memcpy((void *)stream + (unsigned long )point_len, (void const *)extra, (size_t )iwe->u.data.length); stream = stream + (unsigned long )event_len; } } else { } return (stream); } } __inline static char *iwe_stream_add_value(struct iw_request_info *info , char *event , char *value , char *ends , struct iw_event *iwe , int event_len ) { int lcp_len ; int tmp ; long tmp___0 ; { { tmp = iwe_stream_lcp_len(info); lcp_len = tmp; event_len = (int )((unsigned int )event_len - 8U); tmp___0 = ldv__builtin_expect((unsigned long )(value + (unsigned long )event_len) < (unsigned long )ends, 1L); } if (tmp___0 != 0L) { { memcpy((void *)value, (void const *)(& iwe->u), (size_t )event_len); value = value + (unsigned long )event_len; iwe->len = (int )((__u16 )((long )value)) - (int )((__u16 )((long )event)); memcpy((void *)event, (void const *)iwe, (size_t )lcp_len); } } else { } return (value); } } struct net_device *init_airo_card(unsigned short irq___0 , int port , int is_pcmcia , struct device *dmdev ) ; int reset_airo_card(struct net_device *dev ) ; void stop_airo_card(struct net_device *dev , int freeres ) ; static struct pci_device_id const card_ids[8U] = { {5305U, 1U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5305U, 17664U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5305U, 18432U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5305U, 832U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5305U, 848U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5305U, 20480U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5305U, 42244U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {0U, 0U, 0U, 0U, 0U, 0U, 0UL}}; struct pci_device_id const __mod_pci_device_table ; static int airo_pci_probe(struct pci_dev *pdev , struct pci_device_id const *pent ) ; static void airo_pci_remove(struct pci_dev *pdev ) ; static int airo_pci_suspend(struct pci_dev *pdev , pm_message_t state ) ; static int airo_pci_resume(struct pci_dev *pdev ) ; static struct pci_driver airo_driver = {{0, 0}, "airo", (struct pci_device_id const *)(& card_ids), & airo_pci_probe, & airo_pci_remove, & airo_pci_suspend, 0, 0, & airo_pci_resume, 0, 0, 0, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static char const *statsLabels[101U] = { "RxOverrun", (char const *)0, (char const *)0, (char const *)0, "RxMacCrcErr", "RxMacCrcOk", "RxWepErr", "RxWepOk", "RetryLong", "RetryShort", "MaxRetries", "NoAck", "NoCts", "RxAck", "RxCts", "TxAck", "TxRts", "TxCts", "TxMc", "TxBc", "TxUcFrags", "TxUcPackets", "TxBeacon", "RxBeacon", "TxSinColl", "TxMulColl", "DefersNo", "DefersProt", "DefersEngy", "DupFram", "RxFragDisc", "TxAged", "RxAged", "LostSync-MaxRetry", "LostSync-MissedBeacons", "LostSync-ArlExceeded", "LostSync-Deauth", "LostSync-Disassoced", "LostSync-TsfTiming", "HostTxMc", "HostTxBc", "HostTxUc", "HostTxFail", "HostRxMc", "HostRxBc", "HostRxUc", "HostRxDiscard", (char const *)0, (char const *)0, (char const *)0, (char const *)0, (char const *)0, (char const *)0, (char const *)0, (char const *)0, (char const *)0, "SsidMismatch", "ApMismatch", "RatesMismatch", "AuthReject", "AuthTimeout", "AssocReject", "AssocTimeout", (char const *)0, (char const *)0, (char const *)0, (char const *)0, (char const *)0, (char const *)0, (char const *)0, (char const *)0, (char const *)0, (char const *)0, (char const *)0, (char const *)0, (char const *)0, (char const *)0, (char const *)0, (char const *)0, (char const *)0, (char const *)0, (char const *)0, (char const *)0, "RxMan", "TxMan", "RxRefresh", "TxRefresh", "RxPoll", "TxPoll", "HostRetries", "LostSync-HostReq", "HostTxBytes", "HostRxBytes", "ElapsedUsec", "ElapsedSec", "LostSyncBetterAP", "PrivacyMismatch", "Jammed", "DiscRxNotWepped", "PhyEleMismatch", (char const *)-1}; static int rates[8U] ; static char *ssids[3U] ; static int io[4U] ; static int irq[4U] ; static int maxencrypt ; static int auto_wep ; static int aux_bap ; static int adhoc ; static int probe = 1; static kuid_t proc_kuid ; static int proc_uid ; static kgid_t proc_kgid ; static int proc_gid ; static int airo_perm = 365; static int proc_perm = 420; static int do8bitIO ; static char const swversion[4U] = { '2', '.', '1', '\000'}; static WifiCtlHdr wifictlhdr8023 = {{(unsigned short)0, (unsigned short)0, (unsigned short)0, (unsigned short)0, 32U, (unsigned short)0, (unsigned short)0, (unsigned short)0}, (unsigned short)0, (unsigned short)0, {(unsigned short)0, (unsigned short)0, {(char)0, (char)0, (char)0, (char)0, (char)0, (char)0}, {(char)0, (char)0, (char)0, (char)0, (char)0, (char)0}, {(char)0, (char)0, (char)0, (char)0, (char)0, (char)0}, (unsigned short)0, {(char)0, (char)0, (char)0, (char)0, (char)0, (char)0}}, (unsigned short)0, (unsigned short)0}; static struct iw_handler_def const airo_handler_def ; static char const version[40U] = { 'a', 'i', 'r', 'o', '.', 'c', ' ', '0', '.', '6', ' ', '(', 'B', 'e', 'n', ' ', 'R', 'e', 'e', 'd', ' ', '&', ' ', 'J', 'a', 'v', 'i', 'e', 'r', ' ', 'A', 'c', 'h', 'i', 'r', 'i', 'c', 'a', ')', '\000'}; static int get_dec_u16(char *buffer , int *start , int limit ) ; static void OUT4500(struct airo_info *ai , u16 reg , u16 val ) ; static unsigned short IN4500(struct airo_info *ai , u16 reg ) ; static u16 setup_card(struct airo_info *ai , u8 *mac , int lock ) ; static int enable_MAC(struct airo_info *ai , int lock ) ; static void disable_MAC(struct airo_info *ai , int lock ) ; static void enable_interrupts(struct airo_info *ai ) ; static void disable_interrupts(struct airo_info *ai ) ; static u16 issuecommand(struct airo_info *ai , Cmd *pCmd , Resp *pRsp ) ; static int bap_setup(struct airo_info *ai , u16 rid , u16 offset , int whichbap ) ; static int aux_bap_read(struct airo_info *ai , __le16 *pu16Dst , int bytelen , int whichbap ) ; static int fast_bap_read(struct airo_info *ai , __le16 *pu16Dst , int bytelen , int whichbap ) ; static int bap_write(struct airo_info *ai , __le16 const *pu16Src , int bytelen , int whichbap ) ; static int PC4500_accessrid(struct airo_info *ai , u16 rid , u16 accmd ) ; static int PC4500_readrid(struct airo_info *ai , u16 rid , void *pBuf , int len , int lock ) ; static int PC4500_writerid(struct airo_info *ai , u16 rid , void const *pBuf , int len , int lock ) ; static int do_writerid(struct airo_info *ai , u16 rid , void const *rid_data , int len , int dummy ) ; static u16 transmit_allocate(struct airo_info *ai , int lenPayload , int raw ) ; static int transmit_802_3_packet(struct airo_info *ai , int len , char *pPacket ) ; static int transmit_802_11_packet(struct airo_info *ai , int len , char *pPacket ) ; static int mpi_send_packet(struct net_device *dev ) ; static void mpi_unmap_card(struct pci_dev *pci ) ; static void mpi_receive_802_3(struct airo_info *ai ) ; static void mpi_receive_802_11(struct airo_info *ai ) ; static int waitbusy(struct airo_info *ai ) ; static irqreturn_t airo_interrupt(int irq___0 , void *dev_id ) ; static int airo_thread(void *data ) ; static void timer_func(struct net_device *dev ) ; static int airo_ioctl(struct net_device *dev , struct ifreq *rq , int cmd ) ; static struct iw_statistics *airo_get_wireless_stats(struct net_device *dev ) ; static void airo_read_wireless_stats(struct airo_info *local ) ; static int readrids(struct net_device *dev , aironet_ioctl *comp ) ; static int writerids(struct net_device *dev , aironet_ioctl *comp ) ; static int flashcard(struct net_device *dev , aironet_ioctl *comp ) ; static void micinit(struct airo_info *ai ) ; static int micsetup(struct airo_info *ai ) ; static int encapsulate(struct airo_info *ai , etherHead *frame , MICBuffer *mic , int payLen ) ; static int decapsulate(struct airo_info *ai , MICBuffer *mic , etherHead *eth , u16 payLen ) ; static u8 airo_rssi_to_dbm(tdsRssiEntry *rssi_rid , u8 rssi ) ; static u8 airo_dbm_to_pct(tdsRssiEntry *rssi_rid , u8 dbm ) ; static void airo_networks_free(struct airo_info *ai ) ; __inline static int bap_read(struct airo_info *ai , __le16 *pu16Dst , int bytelen , int whichbap ) { int tmp ; { { tmp = (*(ai->bap_read))(ai, pu16Dst, bytelen, whichbap); } return (tmp); } } static int setup_proc_entry(struct net_device *dev , struct airo_info *apriv ) ; static int takedown_proc_entry(struct net_device *dev , struct airo_info *apriv ) ; static int cmdreset(struct airo_info *ai ) ; static int setflashmode(struct airo_info *ai ) ; static int flashgchar(struct airo_info *ai , int matchbyte , int dwelltime ) ; static int flashputbuf(struct airo_info *ai ) ; static int flashrestart(struct airo_info *ai , struct net_device *dev ) ; static int RxSeqValid(struct airo_info *ai , miccntx *context , int mcast , u32 micSeq ) ; static void MoveWindow(miccntx *context , u32 micSeq ) ; static void emmh32_setseed(emmh32_context *context , u8 *pkey , int keylen , struct crypto_cipher *tfm ) ; static void emmh32_init(emmh32_context *context ) ; static void emmh32_update(emmh32_context *context , u8 *pOctets , int len ) ; static void emmh32_final(emmh32_context *context , u8 *digest ) ; static int flashpchar(struct airo_info *ai , int byte , int dwelltime ) ; static void age_mic_context(miccntx *cur , miccntx *old , u8 *key , int key_len , struct crypto_cipher *tfm ) { int tmp ; { if ((unsigned int )cur->valid != 0U) { { tmp = memcmp((void const *)(& cur->key), (void const *)key, (size_t )key_len); } if (tmp == 0) { return; } else { } } else { } { memcpy((void *)old, (void const *)cur, 2448UL); memcpy((void *)(& cur->key), (void const *)key, (size_t )key_len); cur->window = 33U; cur->rx = 0U; cur->tx = 0U; cur->valid = 1U; emmh32_setseed(& cur->seed, key, key_len, tfm); } return; } } static void micinit(struct airo_info *ai ) { MICRid mic_rid ; { { clear_bit(5L, (unsigned long volatile *)(& ai->jobs)); PC4500_readrid(ai, 65367, (void *)(& mic_rid), 40, 0); up(& ai->sem); ai->micstats.enabled = ((int )mic_rid.state & 255) != 0; } if ((unsigned int )ai->micstats.enabled == 0U) { ai->mod[0].uCtx.valid = 0U; ai->mod[0].mCtx.valid = 0U; return; } else { } if ((unsigned int )mic_rid.multicastValid != 0U) { { age_mic_context(& ai->mod[0].mCtx, & ai->mod[1].mCtx, (u8 *)(& mic_rid.multicast), 16, ai->tfm); } } else { } if ((unsigned int )mic_rid.unicastValid != 0U) { { age_mic_context(& ai->mod[0].uCtx, & ai->mod[1].uCtx, (u8 *)(& mic_rid.unicast), 16, ai->tfm); } } else { } return; } } static int micsetup(struct airo_info *ai ) { int i ; long tmp ; { if ((unsigned long )ai->tfm == (unsigned long )((struct crypto_cipher *)0)) { { ai->tfm = crypto_alloc_cipher("aes", 0U, 128U); } } else { } { tmp = IS_ERR((void const *)ai->tfm); } if (tmp != 0L) { { printk("\vairo(%s): failed to load transform for AES\n", (char *)(& (ai->dev)->name)); ai->tfm = (struct crypto_cipher *)0; } return (-1); } else { } i = 0; goto ldv_46827; ldv_46826: { memset((void *)(& ai->mod[i].mCtx), 0, 2448UL); memset((void *)(& ai->mod[i].uCtx), 0, 2448UL); i = i + 1; } ldv_46827: ; if (i <= 1) { goto ldv_46826; } else { } return (0); } } static u8 const micsnap[8U] = { 170U, 170U, 3U, 0U, 64U, 150U, 0U, 2U}; static int encapsulate(struct airo_info *ai , etherHead *frame , MICBuffer *mic , int payLen ) { miccntx *context ; int tmp ; __u16 tmp___0 ; __u32 tmp___1 ; { { tmp = constant_test_bit(3L, (unsigned long const volatile *)(& ai->flags)); } if (tmp != 0 && (int )frame->da[0] & 1) { context = & ai->mod[0].mCtx; } else { context = & ai->mod[0].uCtx; } if ((unsigned int )context->valid == 0U) { return (-1); } else { } { tmp___0 = __fswab16((int )((unsigned int )((__u16 )payLen) + 16U)); mic->typelen = tmp___0; memcpy((void *)(& mic->u.snap), (void const *)(& micsnap), 8UL); tmp___1 = __fswab32(context->tx); mic->seq = tmp___1; context->tx = context->tx + 2U; emmh32_init(& context->seed); emmh32_update(& context->seed, (u8 *)(& frame->da), 12); emmh32_update(& context->seed, (u8 *)(& mic->typelen), 10); emmh32_update(& context->seed, (u8 *)(& mic->seq), 4); emmh32_update(& context->seed, (u8 *)frame + 1U, payLen); emmh32_final(& context->seed, (u8 *)(& mic->mic)); mic->typelen = 0U; } return (0); } } static int decapsulate(struct airo_info *ai , MICBuffer *mic , etherHead *eth , u16 payLen ) { int i ; u32 micSEQ ; miccntx *context ; u8 digest[4U] ; mic_error micError ; int tmp ; __u16 tmp___0 ; int tmp___1 ; __u32 tmp___2 ; int mcast ; __u16 tmp___3 ; int tmp___4 ; int tmp___5 ; { micError = 0; if ((unsigned int )ai->micstats.enabled == 0U) { { tmp = memcmp((void const *)eth + 14U, (void const *)(& micsnap), 8UL); } if (tmp == 0) { ai->micstats.rxMICPlummed = ai->micstats.rxMICPlummed + 1U; return (-1); } else { } return (0); } else { } { tmp___0 = __fswab16((int )mic->typelen); } if ((unsigned int )tmp___0 == 34958U) { return (0); } else { } { tmp___1 = memcmp((void const *)(& mic->u.snap), (void const *)(& micsnap), 8UL); } if (tmp___1 != 0) { ai->micstats.rxMICPlummed = ai->micstats.rxMICPlummed + 1U; return (-1); } else { } { tmp___2 = __fswab32(mic->seq); micSEQ = tmp___2; } if ((micSEQ & 1U) == 0U) { ai->micstats.rxWrongSequence = ai->micstats.rxWrongSequence + 1U; return (-1); } else { } i = 0; goto ldv_46858; ldv_46857: mcast = (int )eth->da[0] & 1; context = mcast != 0 ? & ai->mod[i].mCtx : & ai->mod[i].uCtx; if ((unsigned int )context->valid == 0U) { if (i == 0) { micError = 2; } else { } goto ldv_46856; } else { } if ((unsigned int )mic->typelen == 0U) { { tmp___3 = __fswab16((int )((unsigned int )payLen + 16U)); mic->typelen = tmp___3; } } else { } { emmh32_init(& context->seed); emmh32_update(& context->seed, (u8 *)(& eth->da), 12); emmh32_update(& context->seed, (u8 *)(& mic->typelen), 10); emmh32_update(& context->seed, (u8 *)(& mic->seq), 4); emmh32_update(& context->seed, (u8 *)eth + 1U, (int )payLen); emmh32_final(& context->seed, (u8 *)(& digest)); tmp___4 = memcmp((void const *)(& digest), (void const *)(& mic->mic), 4UL); } if (tmp___4 != 0) { if (i == 0) { micError = 4; } else { } goto ldv_46856; } else { } { tmp___5 = RxSeqValid(ai, context, mcast, micSEQ); } if (tmp___5 == 0) { ai->micstats.rxSuccess = ai->micstats.rxSuccess + 1U; return (0); } else { } if (i == 0) { micError = 3; } else { } ldv_46856: i = i + 1; ldv_46858: ; if (i <= 1) { goto ldv_46857; } else { } { if ((unsigned int )micError == 2U) { goto case_2; } else { } if ((unsigned int )micError == 3U) { goto case_3; } else { } if ((unsigned int )micError == 4U) { goto case_4; } else { } if ((unsigned int )micError == 0U) { goto case_0; } else { } if ((unsigned int )micError == 1U) { goto case_1; } else { } goto switch_break; case_2: /* CIL Label */ ai->micstats.rxMICPlummed = ai->micstats.rxMICPlummed + 1U; goto ldv_46861; case_3: /* CIL Label */ ai->micstats.rxWrongSequence = ai->micstats.rxWrongSequence + 1U; goto ldv_46861; case_4: /* CIL Label */ ai->micstats.rxIncorrectMIC = ai->micstats.rxIncorrectMIC + 1U; goto ldv_46861; case_0: /* CIL Label */ ; goto ldv_46861; case_1: /* CIL Label */ ; goto ldv_46861; switch_break: /* CIL Label */ ; } ldv_46861: ; return (-1); } } static int RxSeqValid(struct airo_info *ai , miccntx *context , int mcast , u32 micSeq ) { u32 seq ; u32 index ; int tmp ; int tmp___0 ; { if (mcast != 0) { { tmp = constant_test_bit(5L, (unsigned long const volatile *)(& ai->flags)); } if (tmp != 0) { { clear_bit(5L, (unsigned long volatile *)(& ai->flags)); context->window = 33U > micSeq ? 33U : micSeq; context->rx = 0U; } } else { } } else { { tmp___0 = constant_test_bit(6L, (unsigned long const volatile *)(& ai->flags)); } if (tmp___0 != 0) { { clear_bit(6L, (unsigned long volatile *)(& ai->flags)); context->window = 33U > micSeq ? 33U : micSeq; context->rx = 0U; } } else { } } seq = (micSeq - context->window) + 33U; if ((int )seq < 0) { return (-1); } else { } if (seq > 64U) { { MoveWindow(context, micSeq); } return (0); } else { } seq = seq >> 1; index = (u32 )(1 << (int )seq); if ((context->rx & index) == 0U) { { context->rx = context->rx | index; MoveWindow(context, micSeq); } return (0); } else { } return (-1); } } static void MoveWindow(miccntx *context , u32 micSeq ) { u32 shift ; { if (micSeq > context->window) { shift = (micSeq - context->window) >> 1; if (shift <= 31U) { context->rx = context->rx >> (int )shift; } else { context->rx = 0U; } context->window = micSeq; } else { } return; } } static unsigned char aes_counter[16U] ; static void emmh32_setseed(emmh32_context *context , u8 *pkey , int keylen , struct crypto_cipher *tfm ) { int i ; int j ; u32 counter ; u8 *cipher ; u8 plain[16U] ; int tmp ; __u32 tmp___0 ; { { crypto_cipher_setkey(tfm, (u8 const *)pkey, 16U); counter = 0U; i = 0; } goto ldv_46899; ldv_46898: { aes_counter[15] = (unsigned char )counter; aes_counter[14] = (unsigned char )(counter >> 8); aes_counter[13] = (unsigned char )(counter >> 16); aes_counter[12] = (unsigned char )(counter >> 24); counter = counter + 1U; memcpy((void *)(& plain), (void const *)(& aes_counter), 16UL); crypto_cipher_encrypt_one(tfm, (u8 *)(& plain), (u8 const *)(& plain)); cipher = (u8 *)(& plain); j = 0; } goto ldv_46896; ldv_46895: { tmp = i; i = i + 1; tmp___0 = __fswab32(*((__be32 *)cipher + (unsigned long )j)); context->coeff[tmp] = tmp___0; j = j + 4; } ldv_46896: ; if (j <= 15 && (unsigned int )i <= 599U) { goto ldv_46895; } else { } ldv_46899: ; if ((unsigned int )i <= 599U) { goto ldv_46898; } else { } return; } } static void emmh32_init(emmh32_context *context ) { { context->accum = 0ULL; context->position = 0; return; } } static void emmh32_update(emmh32_context *context , u8 *pOctets , int len ) { int coeff_position ; int byte_position ; int tmp ; u8 *tmp___0 ; __u32 tmp___1 ; int tmp___2 ; __u32 tmp___3 ; int tmp___4 ; int tmp___5 ; u8 *tmp___6 ; { if (len == 0) { return; } else { } coeff_position = context->position >> 2; byte_position = context->position & 3; if (byte_position != 0) { ldv_46911: ; if (len == 0) { return; } else { } tmp = byte_position; byte_position = byte_position + 1; tmp___0 = pOctets; pOctets = pOctets + 1; context->part.d8[tmp] = *tmp___0; context->position = context->position + 1; len = len - 1; if (byte_position <= 3) { goto ldv_46911; } else { } { tmp___1 = __fswab32(context->part.d32); tmp___2 = coeff_position; coeff_position = coeff_position + 1; context->accum = context->accum + (unsigned long long )tmp___1 * (unsigned long long )context->coeff[tmp___2]; } } else { } goto ldv_46914; ldv_46913: { tmp___3 = __fswab32(*((__be32 *)pOctets)); tmp___4 = coeff_position; coeff_position = coeff_position + 1; context->accum = context->accum + (unsigned long long )tmp___3 * (unsigned long long )context->coeff[tmp___4]; context->position = context->position + 4; pOctets = pOctets + 4UL; len = len + -4; } ldv_46914: ; if (len > 3) { goto ldv_46913; } else { } byte_position = 0; goto ldv_46917; ldv_46916: tmp___5 = byte_position; byte_position = byte_position + 1; tmp___6 = pOctets; pOctets = pOctets + 1; context->part.d8[tmp___5] = *tmp___6; context->position = context->position + 1; len = len - 1; ldv_46917: ; if (len > 0) { goto ldv_46916; } else { } return; } } static u32 mask32[4U] = { 0U, 4278190080U, 4294901760U, 4294967040U}; static void emmh32_final(emmh32_context *context , u8 *digest ) { int coeff_position ; int byte_position ; u32 val ; u64 sum ; u64 utmp ; s64 stmp ; __u32 tmp ; int tmp___0 ; { coeff_position = context->position >> 2; byte_position = context->position & 3; if (byte_position != 0) { { tmp = __fswab32(context->part.d32); val = tmp; tmp___0 = coeff_position; coeff_position = coeff_position + 1; context->accum = context->accum + (unsigned long long )(val & mask32[byte_position]) * (unsigned long long )context->coeff[tmp___0]; } } else { } sum = context->accum; stmp = (s64 )((sum & 4294967295ULL) - (sum >> 32) * 15ULL); utmp = (u64 )((stmp & 4294967295LL) + (stmp >> 32) * -15LL); sum = utmp & 4294967295ULL; if (utmp > 4294967311ULL) { sum = sum - 15ULL; } else { } val = (unsigned int )sum; *digest = (u8 )(val >> 24); *(digest + 1UL) = (u8 )(val >> 16); *(digest + 2UL) = (u8 )(val >> 8); *(digest + 3UL) = (u8 )val; return; } } static int readBSSListRid(struct airo_info *ai , int first , BSSListRid *list ) { Cmd cmd ; Resp rsp ; int tmp ; int tmp___0 ; { if (first == 1) { if ((ai->flags & 3UL) != 0UL) { return (-100); } else { } { memset((void *)(& cmd), 0, 8UL); cmd.cmd = 259U; tmp = down_interruptible(& ai->sem); } if (tmp != 0) { return (-512); } else { } { ai->list_bss_task = get_current(); issuecommand(ai, & cmd, & rsp); up(& ai->sem); schedule_timeout_uninterruptible(750L); ai->list_bss_task = (struct task_struct *)0; } } else { } { tmp___0 = PC4500_readrid(ai, first != 0 ? (u16 )ai->bssListFirst : (u16 )ai->bssListNext, (void *)list, (int )ai->bssListRidLen, 1); } return (tmp___0); } } static int readWepKeyRid(struct airo_info *ai , WepKeyRid *wkr , int temp , int lock ) { int tmp ; { { tmp = PC4500_readrid(ai, temp != 0 ? 65301 : 65302, (void *)wkr, 28, lock); } return (tmp); } } static int writeWepKeyRid(struct airo_info *ai , WepKeyRid *wkr , int perm , int lock ) { int rc ; { { rc = PC4500_writerid(ai, 65301, (void const *)wkr, 28, lock); } if (rc != 0) { { printk("\vairo(%s): WEP_TEMP set %x\n", (char *)(& (ai->dev)->name), rc); } } else { } if (perm != 0) { { rc = PC4500_writerid(ai, 65302, (void const *)wkr, 28, lock); } if (rc != 0) { { printk("\vairo(%s): WEP_PERM set %x\n", (char *)(& (ai->dev)->name), rc); } } else { } } else { } return (rc); } } static int readSsidRid(struct airo_info *ai , SsidRid *ssidr ) { int tmp ; { { tmp = PC4500_readrid(ai, 65297, (void *)ssidr, 104, 1); } return (tmp); } } static int writeSsidRid(struct airo_info *ai , SsidRid *pssidr , int lock ) { int tmp ; { { tmp = PC4500_writerid(ai, 65297, (void const *)pssidr, 104, lock); } return (tmp); } } static int readConfigRid(struct airo_info *ai , int lock ) { int rc ; ConfigRid cfg ; { if ((unsigned int )ai->config.len != 0U) { return (0); } else { } { rc = PC4500_readrid(ai, 65312, (void *)(& cfg), 156, lock); } if (rc != 0) { return (rc); } else { } ai->config = cfg; return (0); } } __inline static void checkThrottle(struct airo_info *ai ) { int i ; { if ((unsigned int )ai->config.authType != 1U && maxencrypt != 0) { i = 0; goto ldv_46970; ldv_46969: ; if ((int )ai->config.rates[i] > maxencrypt) { ai->config.rates[i] = 0U; } else { } i = i + 1; ldv_46970: ; if (i <= 7) { goto ldv_46969; } else { } } else { } return; } } static int writeConfigRid(struct airo_info *ai , int lock ) { ConfigRid cfgr ; int tmp ; int tmp___0 ; { { tmp = constant_test_bit(13L, (unsigned long const volatile *)(& ai->flags)); } if (tmp == 0) { return (0); } else { } { clear_bit(13L, (unsigned long volatile *)(& ai->flags)); clear_bit(14L, (unsigned long volatile *)(& ai->flags)); checkThrottle(ai); cfgr = ai->config; } if (((int )cfgr.opmode & 255) == 0) { { set_bit(3L, (unsigned long volatile *)(& ai->flags)); } } else { { clear_bit(3L, (unsigned long volatile *)(& ai->flags)); } } { tmp___0 = PC4500_writerid(ai, 65296, (void const *)(& cfgr), 156, lock); } return (tmp___0); } } static int readStatusRid(struct airo_info *ai , StatusRid *statr , int lock ) { int tmp ; { { tmp = PC4500_readrid(ai, 65360, (void *)statr, 136, lock); } return (tmp); } } static int readAPListRid(struct airo_info *ai , APListRid *aplr ) { int tmp ; { { tmp = PC4500_readrid(ai, 65298, (void *)aplr, 26, 1); } return (tmp); } } static int writeAPListRid(struct airo_info *ai , APListRid *aplr , int lock ) { int tmp ; { { tmp = PC4500_writerid(ai, 65298, (void const *)aplr, 26, lock); } return (tmp); } } static int readCapabilityRid(struct airo_info *ai , CapabilityRid *capr , int lock ) { int tmp ; { { tmp = PC4500_readrid(ai, 65280, (void *)capr, 132, lock); } return (tmp); } } static int readStatsRid(struct airo_info *ai , StatsRid *sr , int rid , int lock ) { int tmp ; { { tmp = PC4500_readrid(ai, (int )((u16 )rid), (void *)sr, 404, lock); } return (tmp); } } static void try_auto_wep(struct airo_info *ai ) { int tmp ; { if (auto_wep != 0) { { tmp = constant_test_bit(1L, (unsigned long const volatile *)(& ai->flags)); } if (tmp == 0) { { ai->expires = (unsigned long )jiffies + 750UL; __wake_up(& ai->thr_wait, 1U, 1, (void *)0); } } else { } } else { } return; } } static int airo_open(struct net_device *dev ) { struct airo_info *ai ; int rc ; int tmp ; int tmp___0 ; struct task_struct *__k ; struct task_struct *tmp___1 ; long tmp___2 ; long tmp___3 ; long tmp___4 ; { { ai = (struct airo_info *)dev->__annonCompField74.ml_priv; rc = 0; tmp = constant_test_bit(15L, (unsigned long const volatile *)(& ai->flags)); } if (tmp != 0) { return (-5); } else { } { tmp___0 = constant_test_bit(13L, (unsigned long const volatile *)(& ai->flags)); } if (tmp___0 != 0) { { disable_MAC(ai, 1); writeConfigRid(ai, 1); } } else { } if ((unsigned long )ai->wifidev != (unsigned long )dev) { { clear_bit(0L, (unsigned long volatile *)(& ai->jobs)); tmp___1 = kthread_create_on_node(& airo_thread, (void *)dev, -1, "%s", (char *)(& dev->name)); __k = tmp___1; tmp___2 = IS_ERR((void const *)__k); } if (tmp___2 == 0L) { { wake_up_process(__k); } } else { } { ai->airo_thread_task = __k; tmp___4 = IS_ERR((void const *)ai->airo_thread_task); } if (tmp___4 != 0L) { { tmp___3 = PTR_ERR((void const *)ai->airo_thread_task); } return ((int )tmp___3); } else { } { rc = ldv_request_irq_60((unsigned int )dev->irq, & airo_interrupt, 128UL, (char const *)(& dev->name), (void *)dev); } if (rc != 0) { { printk("\vairo(%s): register interrupt %d failed, rc %d\n", (char *)(& dev->name), dev->irq, rc); set_bit(0L, (unsigned long volatile *)(& ai->jobs)); kthread_stop(ai->airo_thread_task); } return (rc); } else { } { clear_bit(1L, (unsigned long volatile *)(& ai->flags)); enable_interrupts(ai); try_auto_wep(ai); } } else { } { enable_MAC(ai, 1); netif_start_queue(dev); } return (0); } } static netdev_tx_t mpi_start_xmit(struct sk_buff *skb , struct net_device *dev ) { int npacks ; int pending ; unsigned long flags ; struct airo_info *ai ; __u32 tmp ; { ai = (struct airo_info *)dev->__annonCompField74.ml_priv; if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { { printk("\vairo(%s): %s: skb == NULL!\n", (char *)(& dev->name), "mpi_start_xmit"); } return (0); } else { } { tmp = skb_queue_len((struct sk_buff_head const *)(& ai->txq)); npacks = (int )tmp; } if (npacks > 62) { { netif_stop_queue(dev); } if (npacks > 64) { dev->stats.tx_fifo_errors = dev->stats.tx_fifo_errors + 1UL; return (16); } else { } { skb_queue_tail(& ai->txq, skb); } return (0); } else { } { ldv___ldv_spin_lock_61(& ai->aux_lock); skb_queue_tail(& ai->txq, skb); pending = constant_test_bit(9L, (unsigned long const volatile *)(& ai->flags)); ldv_spin_unlock_irqrestore_62(& ai->aux_lock, flags); netif_wake_queue(dev); } if (pending == 0) { { set_bit(9L, (unsigned long volatile *)(& ai->flags)); mpi_send_packet(dev); } } else { } return (0); } } static int mpi_send_packet(struct net_device *dev ) { struct sk_buff *skb ; unsigned char *buffer ; s16 len ; __le16 *payloadLen ; struct airo_info *ai ; u8 *sendbuf ; MICBuffer pMic ; int tmp ; int tmp___0 ; __u16 tmp___1 ; { { ai = (struct airo_info *)dev->__annonCompField74.ml_priv; skb = skb_dequeue(& ai->txq); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { { printk("\vairo(%s): %s: Dequeue\'d zero in send_packet()\n", (char *)(& dev->name), "mpi_send_packet"); } return (0); } else { } { len = (s16 )(60U > skb->len ? 60U : skb->len); buffer = skb->data; ai->txfids[0].tx_desc.offset = 0U; ai->txfids[0].tx_desc.valid = 1U; ai->txfids[0].tx_desc.eoc = 1U; ai->txfids[0].tx_desc.len = (unsigned int )((unsigned short )len) + 30U; memcpy((void *)ai->txfids[0].virtual_host_addr, (void const *)(& wifictlhdr8023), 54UL); payloadLen = (__le16 *)ai->txfids[0].virtual_host_addr + 54U; sendbuf = (u8 *)ai->txfids[0].virtual_host_addr + 56U; tmp___0 = constant_test_bit(4L, (unsigned long const volatile *)(& ai->flags)); } if (tmp___0 != 0 && (unsigned int )ai->micstats.enabled != 0U) { { tmp___1 = __fswab16((int )*((__be16 *)buffer + 6UL)); } if ((unsigned int )tmp___1 != 34958U) { { tmp = encapsulate(ai, (etherHead *)buffer, & pMic, (int )((unsigned int )len - 12U)); } if (tmp != 0) { return (-1); } else { } { *payloadLen = (unsigned int )((unsigned short )len) + 6U; ai->txfids[0].tx_desc.len = (unsigned int )((unsigned short )ai->txfids[0].tx_desc.len) + 18U; memcpy((void *)sendbuf, (void const *)buffer, 12UL); buffer = buffer + 12UL; sendbuf = sendbuf + 12UL; memcpy((void *)sendbuf, (void const *)(& pMic), 18UL); sendbuf = sendbuf + 18UL; memcpy((void *)sendbuf, (void const *)buffer, (unsigned long )len - 12UL); } } else { { *payloadLen = (unsigned int )((unsigned short )len) - 12U; dev->trans_start = jiffies; memcpy((void *)sendbuf, (void const *)buffer, (size_t )len); } } } else { { *payloadLen = (unsigned int )((unsigned short )len) - 12U; dev->trans_start = jiffies; memcpy((void *)sendbuf, (void const *)buffer, (size_t )len); } } { memcpy_toio((void volatile *)ai->txfids[0].card_ram_off, (void const *)(& ai->txfids[0].tx_desc), 16UL); OUT4500(ai, 52, 8); dev_kfree_skb_any(skb); } return (1); } } static void get_tx_error(struct airo_info *ai , s32 fid ) { __le16 status ; int tmp ; union iwreq_data wrqu ; char junk[24U] ; { if (fid < 0) { status = ((WifiCtlHdr *)ai->txfids[0].virtual_host_addr)->ctlhdr.status; } else { { tmp = bap_setup(ai, (int )((u16 )ai->fids[fid]), 4, 0); } if (tmp != 0) { return; } else { } { bap_read(ai, & status, 2, 0); } } if (((int )status & 2) != 0) { (ai->dev)->stats.tx_aborted_errors = (ai->dev)->stats.tx_aborted_errors + 1UL; } else { } if (((int )status & 4) != 0) { (ai->dev)->stats.tx_heartbeat_errors = (ai->dev)->stats.tx_heartbeat_errors + 1UL; } else { } if (((int )status & 16) != 0) { (ai->dev)->stats.tx_carrier_errors = (ai->dev)->stats.tx_carrier_errors + 1UL; } else { } if (((unsigned int )status & 6U) != 0U) { { bap_read(ai, (__le16 *)(& junk), 24, 0); memcpy((void *)(& wrqu.addr.sa_data), (void const *)(& junk) + 18U, 6UL); wrqu.addr.sa_family = 1U; wireless_send_event(ai->dev, 35840U, & wrqu, (char const *)0); } } else { } return; } } static void airo_end_xmit(struct net_device *dev ) { u16 status ; int i ; struct airo_info *priv ; struct sk_buff *skb ; int fid ; u32 *fids ; int tmp ; { { priv = (struct airo_info *)dev->__annonCompField74.ml_priv; skb = priv->xmit.skb; fid = priv->xmit.fid; fids = (u32 *)(& priv->fids); clear_bit(1L, (unsigned long volatile *)(& priv->jobs)); clear_bit(9L, (unsigned long volatile *)(& priv->flags)); tmp = transmit_802_3_packet(priv, (int )*(fids + (unsigned long )fid), (char *)skb->data); status = (u16 )tmp; up(& priv->sem); i = 0; } if ((unsigned int )status == 0U) { dev->trans_start = jiffies; goto ldv_47049; ldv_47048: i = i + 1; ldv_47049: ; if (i <= 2 && (priv->fids[i] & 4294901760U) != 0U) { goto ldv_47048; } else { } } else { priv->fids[fid] = priv->fids[fid] & 65535U; dev->stats.tx_window_errors = dev->stats.tx_window_errors + 1UL; } if (i <= 2) { { netif_wake_queue(dev); } } else { } { consume_skb(skb); } return; } } static netdev_tx_t airo_start_xmit(struct sk_buff *skb , struct net_device *dev ) { s16 len ; int i ; int j ; struct airo_info *priv ; u32 *fids ; int tmp ; { priv = (struct airo_info *)dev->__annonCompField74.ml_priv; fids = (u32 *)(& priv->fids); if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { { printk("\vairo(%s): %s: skb == NULL!\n", (char *)(& dev->name), "airo_start_xmit"); } return (0); } else { } i = 0; goto ldv_47062; ldv_47061: i = i + 1; ldv_47062: ; if (i <= 2 && (*(fids + (unsigned long )i) & 4294901760U) != 0U) { goto ldv_47061; } else { } j = i + 1; goto ldv_47065; ldv_47064: j = j + 1; ldv_47065: ; if (j <= 2 && (*(fids + (unsigned long )j) & 4294901760U) != 0U) { goto ldv_47064; } else { } if (j > 2) { { netif_stop_queue(dev); } if (i == 3) { dev->stats.tx_fifo_errors = dev->stats.tx_fifo_errors + 1UL; return (16); } else { } } else { } { len = (s16 )(60U > skb->len ? 60U : skb->len); *(fids + (unsigned long )i) = *(fids + (unsigned long )i) | (u32 )((int )len << 16); priv->xmit.skb = skb; priv->xmit.fid = i; tmp = down_trylock(& priv->sem); } if (tmp != 0) { { set_bit(9L, (unsigned long volatile *)(& priv->flags)); netif_stop_queue(dev); set_bit(1L, (unsigned long volatile *)(& priv->jobs)); __wake_up(& priv->thr_wait, 1U, 1, (void *)0); } } else { { airo_end_xmit(dev); } } return (0); } } static void airo_end_xmit11(struct net_device *dev ) { u16 status ; int i ; struct airo_info *priv ; struct sk_buff *skb ; int fid ; u32 *fids ; int tmp ; { { priv = (struct airo_info *)dev->__annonCompField74.ml_priv; skb = priv->xmit11.skb; fid = priv->xmit11.fid; fids = (u32 *)(& priv->fids); clear_bit(2L, (unsigned long volatile *)(& priv->jobs)); clear_bit(10L, (unsigned long volatile *)(& priv->flags)); tmp = transmit_802_11_packet(priv, (int )*(fids + (unsigned long )fid), (char *)skb->data); status = (u16 )tmp; up(& priv->sem); i = 3; } if ((unsigned int )status == 0U) { dev->trans_start = jiffies; goto ldv_47077; ldv_47076: i = i + 1; ldv_47077: ; if (i <= 5 && (priv->fids[i] & 4294901760U) != 0U) { goto ldv_47076; } else { } } else { priv->fids[fid] = priv->fids[fid] & 65535U; dev->stats.tx_window_errors = dev->stats.tx_window_errors + 1UL; } if (i <= 5) { { netif_wake_queue(dev); } } else { } { consume_skb(skb); } return; } } static netdev_tx_t airo_start_xmit11(struct sk_buff *skb , struct net_device *dev ) { s16 len ; int i ; int j ; struct airo_info *priv ; u32 *fids ; int tmp ; int tmp___0 ; { { priv = (struct airo_info *)dev->__annonCompField74.ml_priv; fids = (u32 *)(& priv->fids); tmp = constant_test_bit(11L, (unsigned long const volatile *)(& priv->flags)); } if (tmp != 0) { { netif_stop_queue(dev); dev_kfree_skb_any(skb); } return (0); } else { } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { { printk("\vairo(%s): %s: skb == NULL!\n", (char *)(& dev->name), "airo_start_xmit11"); } return (0); } else { } i = 3; goto ldv_47090; ldv_47089: i = i + 1; ldv_47090: ; if (i <= 5 && (*(fids + (unsigned long )i) & 4294901760U) != 0U) { goto ldv_47089; } else { } j = i + 1; goto ldv_47093; ldv_47092: j = j + 1; ldv_47093: ; if (j <= 5 && (*(fids + (unsigned long )j) & 4294901760U) != 0U) { goto ldv_47092; } else { } if (j > 5) { { netif_stop_queue(dev); } if (i == 6) { dev->stats.tx_fifo_errors = dev->stats.tx_fifo_errors + 1UL; return (16); } else { } } else { } { len = (s16 )(60U > skb->len ? 60U : skb->len); *(fids + (unsigned long )i) = *(fids + (unsigned long )i) | (u32 )((int )len << 16); priv->xmit11.skb = skb; priv->xmit11.fid = i; tmp___0 = down_trylock(& priv->sem); } if (tmp___0 != 0) { { set_bit(10L, (unsigned long volatile *)(& priv->flags)); netif_stop_queue(dev); set_bit(2L, (unsigned long volatile *)(& priv->jobs)); __wake_up(& priv->thr_wait, 1U, 1, (void *)0); } } else { { airo_end_xmit11(dev); } } return (0); } } static void airo_read_stats(struct net_device *dev ) { struct airo_info *ai ; StatsRid stats_rid ; __le32 *vals ; { { ai = (struct airo_info *)dev->__annonCompField74.ml_priv; vals = (__le32 *)(& stats_rid.vals); clear_bit(3L, (unsigned long volatile *)(& ai->jobs)); } if (ai->power.event != 0) { { up(& ai->sem); } return; } else { } { readStatsRid(ai, & stats_rid, 65384, 0); up(& ai->sem); dev->stats.rx_packets = (unsigned long )((*(vals + 43UL) + *(vals + 44UL)) + *(vals + 45UL)); dev->stats.tx_packets = (unsigned long )((*(vals + 39UL) + *(vals + 40UL)) + *(vals + 41UL)); dev->stats.rx_bytes = (unsigned long )*(vals + 92UL); dev->stats.tx_bytes = (unsigned long )*(vals + 91UL); dev->stats.rx_errors = (unsigned long )(((*vals + *(vals + 2UL)) + *(vals + 3UL)) + *(vals + 4UL)); dev->stats.tx_errors = (unsigned long )*(vals + 42UL) + dev->stats.tx_fifo_errors; dev->stats.multicast = (unsigned long )*(vals + 43UL); dev->stats.collisions = (unsigned long )*(vals + 89UL); dev->stats.rx_length_errors = (unsigned long )*(vals + 3UL); dev->stats.rx_crc_errors = (unsigned long )*(vals + 4UL); dev->stats.rx_frame_errors = (unsigned long )*(vals + 2UL); dev->stats.rx_fifo_errors = (unsigned long )*vals; } return; } } static struct net_device_stats *airo_get_stats(struct net_device *dev ) { struct airo_info *local ; int tmp ; int tmp___0 ; { { local = (struct airo_info *)dev->__annonCompField74.ml_priv; tmp___0 = constant_test_bit(3L, (unsigned long const volatile *)(& local->jobs)); } if (tmp___0 == 0) { { tmp = down_trylock(& local->sem); } if (tmp != 0) { { set_bit(3L, (unsigned long volatile *)(& local->jobs)); __wake_up(& local->thr_wait, 1U, 1, (void *)0); } } else { { airo_read_stats(dev); } } } else { } return (& dev->stats); } } static void airo_set_promisc(struct airo_info *ai ) { Cmd cmd ; Resp rsp ; { { memset((void *)(& cmd), 0, 8UL); cmd.cmd = 9U; clear_bit(4L, (unsigned long volatile *)(& ai->jobs)); cmd.parm0 = (ai->flags & 256UL) != 0UL ? 65535U : 0U; issuecommand(ai, & cmd, & rsp); up(& ai->sem); } return; } } static void airo_set_multicast_list(struct net_device *dev ) { struct airo_info *ai ; int tmp ; { ai = (struct airo_info *)dev->__annonCompField74.ml_priv; if ((((unsigned long )dev->flags ^ ai->flags) & 256UL) != 0UL) { { change_bit(8L, (unsigned long volatile *)(& ai->flags)); tmp = down_trylock(& ai->sem); } if (tmp != 0) { { set_bit(4L, (unsigned long volatile *)(& ai->jobs)); __wake_up(& ai->thr_wait, 1U, 1, (void *)0); } } else { { airo_set_promisc(ai); } } } else { } return; } } static int airo_set_mac_address(struct net_device *dev , void *p ) { struct airo_info *ai ; struct sockaddr *addr ; { { ai = (struct airo_info *)dev->__annonCompField74.ml_priv; addr = (struct sockaddr *)p; readConfigRid(ai, 1); memcpy((void *)(& ai->config.macAddr), (void const *)(& addr->sa_data), (size_t )dev->addr_len); set_bit(13L, (unsigned long volatile *)(& ai->flags)); disable_MAC(ai, 1); writeConfigRid(ai, 1); enable_MAC(ai, 1); memcpy((void *)(ai->dev)->dev_addr, (void const *)(& addr->sa_data), (size_t )dev->addr_len); } if ((unsigned long )ai->wifidev != (unsigned long )((struct net_device *)0)) { { memcpy((void *)(ai->wifidev)->dev_addr, (void const *)(& addr->sa_data), (size_t )dev->addr_len); } } else { } return (0); } } static int airo_change_mtu(struct net_device *dev , int new_mtu ) { { if ((unsigned int )new_mtu - 68U > 2332U) { return (-22); } else { } dev->mtu = (unsigned int )new_mtu; return (0); } } static struct list_head airo_devices = {& airo_devices, & airo_devices}; static void add_airo_dev(struct airo_info *ai ) { { if ((unsigned long )ai->pci == (unsigned long )((struct pci_dev *)0)) { { list_add_tail(& ai->dev_list, & airo_devices); } } else { } return; } } static void del_airo_dev(struct airo_info *ai ) { { if ((unsigned long )ai->pci == (unsigned long )((struct pci_dev *)0)) { { list_del(& ai->dev_list); } } else { } return; } } static int airo_close(struct net_device *dev ) { struct airo_info *ai ; { { ai = (struct airo_info *)dev->__annonCompField74.ml_priv; netif_stop_queue(dev); } if ((unsigned long )ai->wifidev != (unsigned long )dev) { { set_bit(1L, (unsigned long volatile *)(& ai->flags)); disable_MAC(ai, 1); disable_interrupts(ai); ldv_free_irq_63((unsigned int )dev->irq, (void *)dev); set_bit(0L, (unsigned long volatile *)(& ai->jobs)); kthread_stop(ai->airo_thread_task); } } else { } return (0); } } void stop_airo_card(struct net_device *dev , int freeres ) { struct airo_info *ai ; int tmp ; struct sk_buff *skb ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { ai = (struct airo_info *)dev->__annonCompField74.ml_priv; set_bit(1L, (unsigned long volatile *)(& ai->flags)); disable_MAC(ai, 1); disable_interrupts(ai); takedown_proc_entry(dev, ai); tmp = constant_test_bit(12L, (unsigned long const volatile *)(& ai->flags)); } if (tmp != 0) { { ldv_unregister_netdev_64(dev); } if ((unsigned long )ai->wifidev != (unsigned long )((struct net_device *)0)) { { ldv_unregister_netdev_65(ai->wifidev); ldv_free_netdev_66(ai->wifidev); ai->wifidev = (struct net_device *)0; } } else { } { clear_bit(12L, (unsigned long volatile *)(& ai->flags)); } } else { } { tmp___0 = constant_test_bit(11L, (unsigned long const volatile *)(& ai->flags)); } if (tmp___0 != 0) { { tmp___1 = skb_queue_empty((struct sk_buff_head const *)(& ai->txq)); } if (tmp___1 == 0) { skb = (struct sk_buff *)0; goto ldv_47142; ldv_47141: { consume_skb(skb); } ldv_47142: { skb = skb_dequeue(& ai->txq); } if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { goto ldv_47141; } else { } } else { } } else { } { airo_networks_free(ai); kfree((void const *)ai->flash); kfree((void const *)ai->rssi); kfree((void const *)ai->APList); kfree((void const *)ai->SSID); } if (freeres != 0) { { __release_region(& ioport_resource, (resource_size_t )dev->base_addr, 64ULL); tmp___2 = constant_test_bit(11L, (unsigned long const volatile *)(& ai->flags)); } if (tmp___2 != 0) { if ((unsigned long )ai->pci != (unsigned long )((struct pci_dev *)0)) { { mpi_unmap_card(ai->pci); } } else { } if ((unsigned long )ai->pcimem != (unsigned long )((unsigned char *)0U)) { { iounmap((void volatile *)ai->pcimem); } } else { } if ((unsigned long )ai->pciaux != (unsigned long )((unsigned char *)0U)) { { iounmap((void volatile *)ai->pciaux); } } else { } { pci_free_consistent(ai->pci, 5728UL, (void *)ai->shared, ai->shared_dma); } } else { } } else { } { crypto_free_cipher(ai->tfm); del_airo_dev(ai); ldv_free_netdev_67(dev); } return; } } static char const __kstrtab_stop_airo_card[15U] = { 's', 't', 'o', 'p', '_', 'a', 'i', 'r', 'o', '_', 'c', 'a', 'r', 'd', '\000'}; struct kernel_symbol const __ksymtab_stop_airo_card ; struct kernel_symbol const __ksymtab_stop_airo_card = {(unsigned long )(& stop_airo_card), (char const *)(& __kstrtab_stop_airo_card)}; static int wll_header_parse(struct sk_buff const *skb , unsigned char *haddr ) { unsigned char *tmp ; { { tmp = skb_mac_header(skb); memcpy((void *)haddr, (void const *)tmp + 10U, 6UL); } return (6); } } static void mpi_unmap_card(struct pci_dev *pci ) { unsigned long mem_start ; unsigned long mem_len ; unsigned long aux_start ; unsigned long aux_len ; { { mem_start = (unsigned long )pci->resource[1].start; mem_len = pci->resource[1].start != 0ULL || pci->resource[1].end != pci->resource[1].start ? (unsigned long )((pci->resource[1].end - pci->resource[1].start) + 1ULL) : 0UL; aux_start = (unsigned long )pci->resource[2].start; aux_len = 262144UL; __release_region(& iomem_resource, (resource_size_t )aux_start, (resource_size_t )aux_len); __release_region(& iomem_resource, (resource_size_t )mem_start, (resource_size_t )mem_len); } return; } } static int mpi_init_descriptors(struct airo_info *ai ) { Cmd cmd ; Resp rsp ; int i ; int rc ; u16 tmp ; u16 tmp___0 ; u16 tmp___1 ; { { rc = 0; netif_stop_queue(ai->dev); memset((void *)(& rsp), 0, 8UL); memset((void *)(& cmd), 0, 8UL); cmd.cmd = 32U; cmd.parm0 = 2U; cmd.parm1 = (int )((u16 )((long )ai->rxfids[0].card_ram_off)) - (int )((u16 )((long )ai->pciaux)); cmd.parm2 = 1U; tmp = issuecommand(ai, & cmd, & rsp); rc = (int )tmp; } if (rc != 0) { { printk("\vairo(%s): Couldn\'t allocate RX FID\n", (char *)(& (ai->dev)->name)); } return (rc); } else { } i = 0; goto ldv_47171; ldv_47170: { memcpy_toio((void volatile *)ai->rxfids[i].card_ram_off, (void const *)(& ai->rxfids[i].rx_desc), 16UL); i = i + 1; } ldv_47171: ; if (i <= 0) { goto ldv_47170; } else { } { memset((void *)(& rsp), 0, 8UL); memset((void *)(& cmd), 0, 8UL); cmd.cmd = 32U; cmd.parm0 = 1U; cmd.parm1 = (int )((u16 )((long )ai->txfids[0].card_ram_off)) - (int )((u16 )((long )ai->pciaux)); cmd.parm2 = 1U; i = 0; } goto ldv_47174; ldv_47173: { ai->txfids[i].tx_desc.valid = 1U; memcpy_toio((void volatile *)ai->txfids[i].card_ram_off, (void const *)(& ai->txfids[i].tx_desc), 16UL); i = i + 1; } ldv_47174: ; if (i <= 0) { goto ldv_47173; } else { } { ai->txfids[i + -1].tx_desc.eoc = 1U; tmp___0 = issuecommand(ai, & cmd, & rsp); rc = (int )tmp___0; } if (rc != 0) { { printk("\vairo(%s): Couldn\'t allocate TX FID\n", (char *)(& (ai->dev)->name)); } return (rc); } else { } { memset((void *)(& rsp), 0, 8UL); memset((void *)(& cmd), 0, 8UL); cmd.cmd = 32U; cmd.parm0 = 32U; cmd.parm1 = (int )((u16 )((long )ai->config_desc.card_ram_off)) - (int )((u16 )((long )ai->pciaux)); cmd.parm2 = 1U; tmp___1 = issuecommand(ai, & cmd, & rsp); rc = (int )tmp___1; } if (rc != 0) { { printk("\vairo(%s): Couldn\'t allocate RID\n", (char *)(& (ai->dev)->name)); } return (rc); } else { } { memcpy_toio((void volatile *)ai->config_desc.card_ram_off, (void const *)(& ai->config_desc.rid_desc), 16UL); } return (rc); } } static int mpi_map_card(struct airo_info *ai , struct pci_dev *pci ) { unsigned long mem_start ; unsigned long mem_len ; unsigned long aux_start ; unsigned long aux_len ; int rc ; int i ; dma_addr_t busaddroff ; unsigned char *vpackoff ; unsigned char *pciaddroff ; struct resource *tmp ; struct resource *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; int tmp___4 ; { { rc = -1; mem_start = (unsigned long )pci->resource[1].start; mem_len = pci->resource[1].start != 0ULL || pci->resource[1].end != pci->resource[1].start ? (unsigned long )((pci->resource[1].end - pci->resource[1].start) + 1ULL) : 0UL; aux_start = (unsigned long )pci->resource[2].start; aux_len = 262144UL; tmp = __request_region(& iomem_resource, (resource_size_t )mem_start, (resource_size_t )mem_len, "airo", 0); } if ((unsigned long )tmp == (unsigned long )((struct resource *)0)) { { printk("\vairo(%s): Couldn\'t get region %x[%x]\n", (char *)"", (int )mem_start, (int )mem_len); } goto out; } else { } { tmp___0 = __request_region(& iomem_resource, (resource_size_t )aux_start, (resource_size_t )aux_len, "airo", 0); } if ((unsigned long )tmp___0 == (unsigned long )((struct resource *)0)) { { printk("\vairo(%s): Couldn\'t get region %x[%x]\n", (char *)"", (int )aux_start, (int )aux_len); } goto free_region1; } else { } { tmp___1 = ioremap((resource_size_t )mem_start, mem_len); ai->pcimem = (unsigned char *)tmp___1; } if ((unsigned long )ai->pcimem == (unsigned long )((unsigned char *)0U)) { { printk("\vairo(%s): Couldn\'t map region %x[%x]\n", (char *)"", (int )mem_start, (int )mem_len); } goto free_region2; } else { } { tmp___2 = ioremap((resource_size_t )aux_start, aux_len); ai->pciaux = (unsigned char *)tmp___2; } if ((unsigned long )ai->pciaux == (unsigned long )((unsigned char *)0U)) { { printk("\vairo(%s): Couldn\'t map region %x[%x]\n", (char *)"", (int )aux_start, (int )aux_len); } goto free_memmap; } else { } { tmp___3 = pci_alloc_consistent(pci, 5728UL, & ai->shared_dma); ai->shared = (unsigned char *)tmp___3; } if ((unsigned long )ai->shared == (unsigned long )((unsigned char *)0U)) { { printk("\vairo(%s): Couldn\'t alloc_consistent %d\n", (char *)"", 5728); } goto free_auxmap; } else { } busaddroff = ai->shared_dma; pciaddroff = ai->pciaux + 2048UL; vpackoff = ai->shared; i = 0; goto ldv_47195; ldv_47194: ai->rxfids[i].pending = 0; ai->rxfids[i].card_ram_off = pciaddroff; ai->rxfids[i].virtual_host_addr = (char *)vpackoff; ai->rxfids[i].rx_desc.host_addr = busaddroff; ai->rxfids[i].rx_desc.valid = 1U; ai->rxfids[i].rx_desc.len = 1840U; ai->rxfids[i].rx_desc.rdy = 0U; pciaddroff = pciaddroff + 16UL; busaddroff = busaddroff + 1840ULL; vpackoff = vpackoff + 1840UL; i = i + 1; ldv_47195: ; if (i <= 0) { goto ldv_47194; } else { } i = 0; goto ldv_47198; ldv_47197: { ai->txfids[i].card_ram_off = pciaddroff; ai->txfids[i].virtual_host_addr = (char *)vpackoff; ai->txfids[i].tx_desc.valid = 1U; ai->txfids[i].tx_desc.host_addr = busaddroff; memcpy((void *)ai->txfids[i].virtual_host_addr, (void const *)(& wifictlhdr8023), 54UL); pciaddroff = pciaddroff + 16UL; busaddroff = busaddroff + 1840ULL; vpackoff = vpackoff + 1840UL; i = i + 1; } ldv_47198: ; if (i <= 0) { goto ldv_47197; } else { } { ai->txfids[i + -1].tx_desc.eoc = 1U; ai->config_desc.card_ram_off = pciaddroff; ai->config_desc.virtual_host_addr = (char *)vpackoff; ai->config_desc.rid_desc.host_addr = busaddroff; ai->ridbus = (unsigned long )busaddroff; ai->config_desc.rid_desc.rid = 0U; ai->config_desc.rid_desc.len = 2048U; ai->config_desc.rid_desc.valid = 1U; pciaddroff = pciaddroff + 16UL; busaddroff = busaddroff + 2048ULL; vpackoff = vpackoff + 2048UL; tmp___4 = mpi_init_descriptors(ai); } if (tmp___4 != 0) { goto free_shared; } else { } return (0); free_shared: { pci_free_consistent(pci, 5728UL, (void *)ai->shared, ai->shared_dma); } free_auxmap: { iounmap((void volatile *)ai->pciaux); } free_memmap: { iounmap((void volatile *)ai->pcimem); } free_region2: { __release_region(& iomem_resource, (resource_size_t )aux_start, (resource_size_t )aux_len); } free_region1: { __release_region(& iomem_resource, (resource_size_t )mem_start, (resource_size_t )mem_len); } out: ; return (rc); } } static struct header_ops const airo_header_ops = {0, & wll_header_parse, 0, 0, 0}; static struct net_device_ops const airo11_netdev_ops = {0, 0, & airo_open, & airo_close, & airo_start_xmit11, 0, 0, 0, & airo_set_mac_address, 0, & airo_ioctl, 0, & airo_change_mtu, 0, 0, 0, & airo_get_stats, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static void wifi_setup(struct net_device *dev ) { { { dev->netdev_ops = & airo11_netdev_ops; dev->header_ops = & airo_header_ops; dev->wireless_handlers = & airo_handler_def; dev->type = 801U; dev->hard_header_len = 14U; dev->mtu = 2312U; dev->addr_len = 6U; dev->tx_queue_len = 100UL; memset((void *)(& dev->broadcast), 255, 6UL); dev->flags = 4098U; } return; } } static struct net_device *init_wifidev(struct airo_info *ai , struct net_device *ethdev ) { int err ; struct net_device *dev ; struct net_device *tmp ; { { tmp = ldv_alloc_netdev_mqs_68(0, "wifi%d", & wifi_setup, 1U, 1U); dev = tmp; } if ((unsigned long )dev == (unsigned long )((struct net_device *)0)) { return ((struct net_device *)0); } else { } { dev->__annonCompField74.ml_priv = ethdev->__annonCompField74.ml_priv; dev->irq = ethdev->irq; dev->base_addr = ethdev->base_addr; dev->wireless_data = ethdev->wireless_data; dev->dev.parent = ethdev->dev.parent; eth_hw_addr_inherit(dev, ethdev); err = ldv_register_netdev_69(dev); } if (err < 0) { { ldv_free_netdev_70(dev); } return ((struct net_device *)0); } else { } return (dev); } } static int reset_card(struct net_device *dev , int lock ) { struct airo_info *ai ; int tmp ; { ai = (struct airo_info *)dev->__annonCompField74.ml_priv; if (lock != 0) { { tmp = down_interruptible(& ai->sem); } if (tmp != 0) { return (-1); } else { } } else { } { waitbusy(ai); OUT4500(ai, 0, 4); msleep(200U); waitbusy(ai); msleep(200U); } if (lock != 0) { { up(& ai->sem); } } else { } return (0); } } static int airo_networks_allocate(struct airo_info *ai ) { void *tmp ; { if ((unsigned long )ai->networks != (unsigned long )((BSSListElement *)0)) { return (0); } else { } { tmp = kcalloc(64UL, 736UL, 208U); ai->networks = (BSSListElement *)tmp; } if ((unsigned long )ai->networks == (unsigned long )((BSSListElement *)0)) { { printk("\fairo(%s): Out of memory allocating beacons\n", (char *)""); } return (-12); } else { } return (0); } } static void airo_networks_free(struct airo_info *ai ) { { { kfree((void const *)ai->networks); ai->networks = (BSSListElement *)0; } return; } } static void airo_networks_initialize(struct airo_info *ai ) { int i ; { { INIT_LIST_HEAD(& ai->network_free_list); INIT_LIST_HEAD(& ai->network_list); i = 0; } goto ldv_47228; ldv_47227: { list_add_tail(& (ai->networks + (unsigned long )i)->list, & ai->network_free_list); i = i + 1; } ldv_47228: ; if (i <= 63) { goto ldv_47227; } else { } return; } } static struct net_device_ops const airo_netdev_ops = {0, 0, & airo_open, & airo_close, & airo_start_xmit, 0, 0, & airo_set_multicast_list, & airo_set_mac_address, & eth_validate_addr, & airo_ioctl, 0, & airo_change_mtu, 0, 0, 0, & airo_get_stats, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct net_device_ops const mpi_netdev_ops = {0, 0, & airo_open, & airo_close, & mpi_start_xmit, 0, 0, & airo_set_multicast_list, & airo_set_mac_address, & eth_validate_addr, & airo_ioctl, 0, & airo_change_mtu, 0, 0, 0, & airo_get_stats, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct net_device *_init_airo_card(unsigned short irq___0 , int port , int is_pcmcia , struct pci_dev *pci , struct device *dmdev ) { struct net_device *dev ; struct airo_info *ai ; int i ; int rc ; CapabilityRid cap_rid ; void *tmp ; struct lock_class_key __key ; struct lock_class_key __key___0 ; int tmp___0 ; int tmp___1 ; struct resource *tmp___2 ; int tmp___3 ; int tmp___4 ; u16 tmp___5 ; int tmp___6 ; u16 tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; { { dev = ldv_alloc_netdev_mqs_71(11056, "", & ether_setup, 1U, 1U); } if ((unsigned long )dev == (unsigned long )((struct net_device *)0)) { { printk("\vairo(%s): Couldn\'t alloc_etherdev\n", (char *)""); } return ((struct net_device *)0); } else { } { tmp = netdev_priv((struct net_device const *)dev); dev->__annonCompField74.ml_priv = tmp; ai = (struct airo_info *)tmp; ai->wifidev = (struct net_device *)0; ai->flags = 2UL; ai->jobs = 0UL; ai->dev = dev; } if ((unsigned long )pci != (unsigned long )((struct pci_dev *)0) && ((unsigned int )pci->device == 20480U || (unsigned int )pci->device == 42244U)) { { printk("\017airo(%s): Found an MPI350 card\n", (char *)""); set_bit(11L, (unsigned long volatile *)(& ai->flags)); } } else { } { spinlock_check(& ai->aux_lock); __raw_spin_lock_init(& ai->aux_lock.__annonCompField19.rlock, "&(&ai->aux_lock)->rlock", & __key); sema_init(& ai->sem, 1); ai->config.len = 0U; ai->pci = pci; __init_waitqueue_head(& ai->thr_wait, "&ai->thr_wait", & __key___0); ai->tfm = (struct crypto_cipher *)0; add_airo_dev(ai); tmp___0 = airo_networks_allocate(ai); } if (tmp___0 != 0) { goto err_out_free; } else { } { airo_networks_initialize(ai); skb_queue_head_init(& ai->txq); tmp___1 = constant_test_bit(11L, (unsigned long const volatile *)(& ai->flags)); } if (tmp___1 != 0) { dev->netdev_ops = & mpi_netdev_ops; } else { dev->netdev_ops = & airo_netdev_ops; } { dev->wireless_handlers = & airo_handler_def; ai->wireless_data.spy_data = & ai->spy_data; dev->wireless_data = & ai->wireless_data; dev->irq = (int )irq___0; dev->base_addr = (unsigned long )port; dev->priv_flags = dev->priv_flags & 4294901759U; dev->dev.parent = dmdev; reset_card(dev, 1); msleep(400U); } if (is_pcmcia == 0) { { tmp___2 = __request_region(& ioport_resource, (resource_size_t )dev->base_addr, 64ULL, "airo", 0); } if ((unsigned long )tmp___2 == (unsigned long )((struct resource *)0)) { { rc = -16; printk("\vairo(%s): Couldn\'t request region\n", (char *)(& dev->name)); } goto err_out_nets; } else { } } else { } { tmp___4 = constant_test_bit(11L, (unsigned long const volatile *)(& ai->flags)); } if (tmp___4 != 0) { { tmp___3 = mpi_map_card(ai, pci); } if (tmp___3 != 0) { { printk("\vairo(%s): Could not map memory\n", (char *)""); } goto err_out_res; } else { } } else { } if (probe != 0) { { tmp___5 = setup_card(ai, dev->dev_addr, 1); } if ((unsigned int )tmp___5 != 0U) { { printk("\vairo(%s): MAC could not be enabled\n", (char *)(& dev->name)); rc = -5; } goto err_out_map; } else { } } else { { tmp___6 = constant_test_bit(11L, (unsigned long const volatile *)(& ai->flags)); } if (tmp___6 == 0) { { ai->bap_read = & fast_bap_read; set_bit(15L, (unsigned long volatile *)(& ai->flags)); } } else { } } { strcpy((char *)(& dev->name), "eth%d"); rc = ldv_register_netdev_72(dev); } if (rc != 0) { { printk("\vairo(%s): Couldn\'t register_netdev\n", (char *)(& dev->name)); } goto err_out_map; } else { } { ai->wifidev = init_wifidev(ai, dev); } if ((unsigned long )ai->wifidev == (unsigned long )((struct net_device *)0)) { goto err_out_reg; } else { } { rc = readCapabilityRid(ai, & cap_rid, 1); } if (rc != 0) { rc = -5; goto err_out_wifi; } else { } { ai->wep_capable = ((int )cap_rid.softCap & 2) != 0; ai->max_wep_idx = ((int )cap_rid.softCap & 128) != 0 ? 3 : 0; printk("\016airo(%s): Firmware version %x.%x.%02d\n", (char *)(& dev->name), ((int )cap_rid.softVer >> 8) & 15, (int )cap_rid.softVer & 255, (int )cap_rid.softSubVer); } if ((unsigned int )cap_rid.softVer > 1328U || ((unsigned int )cap_rid.softVer == 1328U && (unsigned int )cap_rid.softSubVer > 16U)) { { printk("\016airo(%s): WPA supported.\n", (char *)(& (ai->dev)->name)); set_bit(16L, (unsigned long volatile *)(& ai->flags)); ai->bssListFirst = 65396U; ai->bssListNext = 65397U; ai->bssListRidLen = 714U; } } else { { printk("\016airo(%s): WPA unsupported with firmware versions older than 5.30.17.\n", (char *)(& (ai->dev)->name)); ai->bssListFirst = 65394U; ai->bssListNext = 65395U; ai->bssListRidLen = 70U; } } { set_bit(12L, (unsigned long volatile *)(& ai->flags)); printk("\016airo(%s): MAC enabled %pM\n", (char *)(& dev->name), dev->dev_addr); } if (probe != 0) { { tmp___8 = constant_test_bit(11L, (unsigned long const volatile *)(& ai->flags)); } if (tmp___8 == 0) { i = 0; goto ldv_47253; ldv_47252: { tmp___7 = transmit_allocate(ai, 2312, i > 2); ai->fids[i] = (u32 )tmp___7; i = i + 1; } ldv_47253: ; if (i <= 5) { goto ldv_47252; } else { } } else { } } else { } { tmp___9 = setup_proc_entry(dev, (struct airo_info *)dev->__annonCompField74.ml_priv); } if (tmp___9 < 0) { goto err_out_wifi; } else { } return (dev); err_out_wifi: { ldv_unregister_netdev_73(ai->wifidev); ldv_free_netdev_74(ai->wifidev); } err_out_reg: { ldv_unregister_netdev_75(dev); } err_out_map: { tmp___10 = constant_test_bit(11L, (unsigned long const volatile *)(& ai->flags)); } if (tmp___10 != 0 && (unsigned long )pci != (unsigned long )((struct pci_dev *)0)) { { pci_free_consistent(pci, 5728UL, (void *)ai->shared, ai->shared_dma); iounmap((void volatile *)ai->pciaux); iounmap((void volatile *)ai->pcimem); mpi_unmap_card(ai->pci); } } else { } err_out_res: ; if (is_pcmcia == 0) { { __release_region(& ioport_resource, (resource_size_t )dev->base_addr, 64ULL); } } else { } err_out_nets: { airo_networks_free(ai); } err_out_free: { del_airo_dev(ai); ldv_free_netdev_76(dev); } return ((struct net_device *)0); } } struct net_device *init_airo_card(unsigned short irq___0 , int port , int is_pcmcia , struct device *dmdev ) { struct net_device *tmp ; { { tmp = _init_airo_card((int )irq___0, port, is_pcmcia, (struct pci_dev *)0, dmdev); } return (tmp); } } static char const __kstrtab_init_airo_card[15U] = { 'i', 'n', 'i', 't', '_', 'a', 'i', 'r', 'o', '_', 'c', 'a', 'r', 'd', '\000'}; struct kernel_symbol const __ksymtab_init_airo_card ; struct kernel_symbol const __ksymtab_init_airo_card = {(unsigned long )(& init_airo_card), (char const *)(& __kstrtab_init_airo_card)}; static int waitbusy(struct airo_info *ai ) { int delay ; unsigned short tmp ; { delay = 0; goto ldv_47276; ldv_47275: { __const_udelay(42950UL); delay = delay + 1; } if (delay % 20 == 0) { { OUT4500(ai, 52, 16384); } } else { } ldv_47276: { tmp = IN4500(ai, 0); } if ((int )((short )tmp) < 0 && delay <= 9999) { goto ldv_47275; } else { } return (delay <= 9999); } } int reset_airo_card(struct net_device *dev ) { int i ; struct airo_info *ai ; int tmp ; u16 tmp___0 ; u16 tmp___1 ; int tmp___2 ; { { ai = (struct airo_info *)dev->__annonCompField74.ml_priv; tmp = reset_card(dev, 1); } if (tmp != 0) { return (-1); } else { } { tmp___0 = setup_card(ai, dev->dev_addr, 1); } if ((unsigned int )tmp___0 != 0U) { { printk("\vairo(%s): MAC could not be enabled\n", (char *)(& dev->name)); } return (-1); } else { } { printk("\016airo(%s): MAC enabled %pM\n", (char *)(& dev->name), dev->dev_addr); tmp___2 = constant_test_bit(11L, (unsigned long const volatile *)(& ai->flags)); } if (tmp___2 == 0) { i = 0; goto ldv_47284; ldv_47283: { tmp___1 = transmit_allocate(ai, 2312, i > 2); ai->fids[i] = (u32 )tmp___1; i = i + 1; } ldv_47284: ; if (i <= 5) { goto ldv_47283; } else { } } else { } { enable_interrupts(ai); netif_wake_queue(dev); } return (0); } } static char const __kstrtab_reset_airo_card[16U] = { 'r', 'e', 's', 'e', 't', '_', 'a', 'i', 'r', 'o', '_', 'c', 'a', 'r', 'd', '\000'}; struct kernel_symbol const __ksymtab_reset_airo_card ; struct kernel_symbol const __ksymtab_reset_airo_card = {(unsigned long )(& reset_airo_card), (char const *)(& __kstrtab_reset_airo_card)}; static void airo_send_event(struct net_device *dev ) { struct airo_info *ai ; union iwreq_data wrqu ; StatusRid status_rid ; { { ai = (struct airo_info *)dev->__annonCompField74.ml_priv; clear_bit(6L, (unsigned long volatile *)(& ai->jobs)); PC4500_readrid(ai, 65360, (void *)(& status_rid), 136, 0); up(& ai->sem); wrqu.data.length = 0U; wrqu.data.flags = 0U; memcpy((void *)(& wrqu.ap_addr.sa_data), (void const *)(& status_rid.bssid), 6UL); wrqu.ap_addr.sa_family = 1U; wireless_send_event(dev, 35605U, & wrqu, (char const *)0); } return; } } static void airo_process_scan_results(struct airo_info *ai ) { union iwreq_data wrqu ; BSSListRid bss ; int rc ; BSSListElement *loop_net ; BSSListElement *tmp_net ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; struct list_head const *__mptr___2 ; int tmp ; { __mptr = (struct list_head const *)ai->network_list.next; loop_net = (BSSListElement *)__mptr + 0xfffffffffffffd30UL; __mptr___0 = (struct list_head const *)loop_net->list.next; tmp_net = (BSSListElement *)__mptr___0 + 0xfffffffffffffd30UL; goto ldv_47314; ldv_47313: { list_move_tail(& loop_net->list, & ai->network_free_list); memset((void *)loop_net, 0, 714UL); loop_net = tmp_net; __mptr___1 = (struct list_head const *)tmp_net->list.next; tmp_net = (BSSListElement *)__mptr___1 + 0xfffffffffffffd30UL; } ldv_47314: ; if ((unsigned long )(& loop_net->list) != (unsigned long )(& ai->network_list)) { goto ldv_47313; } else { } { rc = PC4500_readrid(ai, (int )((u16 )ai->bssListFirst), (void *)(& bss), (int )ai->bssListRidLen, 0); } if (rc != 0 || (unsigned int )bss.index == 65535U) { goto out; } else { } tmp_net = (BSSListElement *)0; goto ldv_47320; ldv_47319: { tmp = list_empty((struct list_head const *)(& ai->network_free_list)); } if (tmp == 0) { { __mptr___2 = (struct list_head const *)ai->network_free_list.next; tmp_net = (BSSListElement *)__mptr___2 + 0xfffffffffffffd30UL; list_del(ai->network_free_list.next); } } else { } if ((unsigned long )tmp_net != (unsigned long )((BSSListElement *)0)) { { memcpy((void *)tmp_net, (void const *)(& bss), 714UL); list_add_tail(& tmp_net->list, & ai->network_list); tmp_net = (BSSListElement *)0; } } else { } { rc = PC4500_readrid(ai, (int )((u16 )ai->bssListNext), (void *)(& bss), (int )ai->bssListRidLen, 0); } ldv_47320: ; if (rc == 0 && (unsigned int )bss.index != 65535U) { goto ldv_47319; } else { } out: { ai->scan_timeout = 0UL; clear_bit(9L, (unsigned long volatile *)(& ai->jobs)); up(& ai->sem); wrqu.data.length = 0U; wrqu.data.flags = 0U; wireless_send_event(ai->dev, 35609U, & wrqu, (char const *)0); } return; } } static int airo_thread(void *data ) { struct net_device *dev ; struct airo_info *ai ; int locked ; int tmp ; wait_queue_t wait ; struct task_struct *tmp___0 ; long volatile __ret ; struct task_struct *tmp___1 ; struct task_struct *tmp___2 ; struct task_struct *tmp___3 ; struct task_struct *tmp___4 ; unsigned long wake_at ; unsigned long _max1 ; unsigned long _max2 ; unsigned long _min1 ; unsigned long _min2 ; bool tmp___5 ; int tmp___6 ; struct task_struct *tmp___7 ; bool tmp___8 ; int tmp___9 ; bool tmp___10 ; int tmp___11 ; struct task_struct *tmp___12 ; bool tmp___13 ; int tmp___14 ; struct task_struct *tmp___15 ; int tmp___16 ; int tmp___17 ; int tmp___18 ; int tmp___19 ; int tmp___20 ; int tmp___21 ; int tmp___22 ; int tmp___23 ; int tmp___24 ; int tmp___25 ; int tmp___26 ; { { dev = (struct net_device *)data; ai = (struct airo_info *)dev->__annonCompField74.ml_priv; set_freezable(); } ldv_47361: { try_to_freeze(); tmp = constant_test_bit(0L, (unsigned long const volatile *)(& ai->jobs)); } if (tmp != 0) { goto ldv_47328; } else { } if (ai->jobs != 0UL) { { locked = down_interruptible(& ai->sem); } } else { { tmp___0 = get_current(); init_waitqueue_entry(& wait, tmp___0); add_wait_queue(& ai->thr_wait, & wait); } ldv_47359: __ret = 1L; { if (8UL == 1UL) { goto case_1; } else { } if (8UL == 2UL) { goto case_2; } else { } if (8UL == 4UL) { goto case_4; } else { } if (8UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___1 = get_current(); __asm__ volatile ("xchgb %b0, %1\n": "+q" (__ret), "+m" (tmp___1->state): : "memory", "cc"); } goto ldv_47332; case_2: /* CIL Label */ { tmp___2 = get_current(); __asm__ volatile ("xchgw %w0, %1\n": "+r" (__ret), "+m" (tmp___2->state): : "memory", "cc"); } goto ldv_47332; case_4: /* CIL Label */ { tmp___3 = get_current(); __asm__ volatile ("xchgl %0, %1\n": "+r" (__ret), "+m" (tmp___3->state): : "memory", "cc"); } goto ldv_47332; case_8: /* CIL Label */ { tmp___4 = get_current(); __asm__ volatile ("xchgq %q0, %1\n": "+r" (__ret), "+m" (tmp___4->state): : "memory", "cc"); } goto ldv_47332; switch_default: /* CIL Label */ { __xchg_wrong_size(); } switch_break: /* CIL Label */ ; } ldv_47332: ; if (ai->jobs != 0UL) { goto ldv_47338; } else { } if (ai->expires != 0UL || ai->scan_timeout != 0UL) { if (ai->scan_timeout != 0UL && (long )((unsigned long )jiffies - ai->scan_timeout) >= 0L) { { set_bit(9L, (unsigned long volatile *)(& ai->jobs)); } goto ldv_47338; } else if (ai->expires != 0UL && (long )((unsigned long )jiffies - ai->expires) >= 0L) { { set_bit(7L, (unsigned long volatile *)(& ai->jobs)); } goto ldv_47338; } else { } { tmp___5 = kthread_should_stop(); } if (tmp___5) { tmp___6 = 0; } else { tmp___6 = 1; } if (tmp___6) { { tmp___7 = get_current(); tmp___8 = freezing(tmp___7); } if (tmp___8) { tmp___9 = 0; } else { tmp___9 = 1; } if (tmp___9) { if (ai->expires == 0UL || ai->scan_timeout == 0UL) { _max1 = ai->expires; _max2 = ai->scan_timeout; wake_at = _max1 > _max2 ? _max1 : _max2; } else { _min1 = ai->expires; _min2 = ai->scan_timeout; wake_at = _min1 < _min2 ? _min1 : _min2; } { schedule_timeout((long )(wake_at - (unsigned long )jiffies)); } goto ldv_47358; } else { } } else { } } else { { tmp___10 = kthread_should_stop(); } if (tmp___10) { tmp___11 = 0; } else { tmp___11 = 1; } if (tmp___11) { { tmp___12 = get_current(); tmp___13 = freezing(tmp___12); } if (tmp___13) { tmp___14 = 0; } else { tmp___14 = 1; } if (tmp___14) { { schedule(); } goto ldv_47358; } else { } } else { } } goto ldv_47338; ldv_47358: ; goto ldv_47359; ldv_47338: { tmp___15 = get_current(); tmp___15->state = 0L; remove_wait_queue(& ai->thr_wait, & wait); locked = 1; } } if (locked != 0) { goto ldv_47360; } else { } { tmp___16 = constant_test_bit(0L, (unsigned long const volatile *)(& ai->jobs)); } if (tmp___16 != 0) { { up(& ai->sem); } goto ldv_47328; } else { } if (ai->power.event != 0) { { up(& ai->sem); } goto ldv_47360; } else { { tmp___17 = constant_test_bit(15L, (unsigned long const volatile *)(& ai->flags)); } if (tmp___17 != 0) { { up(& ai->sem); } goto ldv_47360; } else { } } { tmp___26 = constant_test_bit(1L, (unsigned long const volatile *)(& ai->jobs)); } if (tmp___26 != 0) { { airo_end_xmit(dev); } } else { { tmp___25 = constant_test_bit(2L, (unsigned long const volatile *)(& ai->jobs)); } if (tmp___25 != 0) { { airo_end_xmit11(dev); } } else { { tmp___24 = constant_test_bit(3L, (unsigned long const volatile *)(& ai->jobs)); } if (tmp___24 != 0) { { airo_read_stats(dev); } } else { { tmp___23 = constant_test_bit(8L, (unsigned long const volatile *)(& ai->jobs)); } if (tmp___23 != 0) { { airo_read_wireless_stats(ai); } } else { { tmp___22 = constant_test_bit(4L, (unsigned long const volatile *)(& ai->jobs)); } if (tmp___22 != 0) { { airo_set_promisc(ai); } } else { { tmp___21 = constant_test_bit(5L, (unsigned long const volatile *)(& ai->jobs)); } if (tmp___21 != 0) { { micinit(ai); } } else { { tmp___20 = constant_test_bit(6L, (unsigned long const volatile *)(& ai->jobs)); } if (tmp___20 != 0) { { airo_send_event(dev); } } else { { tmp___19 = constant_test_bit(7L, (unsigned long const volatile *)(& ai->jobs)); } if (tmp___19 != 0) { { timer_func(dev); } } else { { tmp___18 = constant_test_bit(9L, (unsigned long const volatile *)(& ai->jobs)); } if (tmp___18 != 0) { { airo_process_scan_results(ai); } } else { { up(& ai->sem); } } } } } } } } } } ldv_47360: ; goto ldv_47361; ldv_47328: ; return (0); } } static int header_len(__le16 ctl ) { u16 fc ; { fc = ctl; { if (((int )fc & 12) == 4) { goto case_4; } else { } if (((int )fc & 12) == 8) { goto case_8; } else { } goto switch_break; case_4: /* CIL Label */ ; if (((int )fc & 224) == 192) { return (10); } else { } return (16); case_8: /* CIL Label */ ; if (((int )fc & 768) == 768) { return (30); } else { } switch_break: /* CIL Label */ ; } return (24); } } static void airo_handle_cisco_mic(struct airo_info *ai ) { int tmp ; { { tmp = constant_test_bit(4L, (unsigned long const volatile *)(& ai->flags)); } if (tmp != 0) { { set_bit(5L, (unsigned long volatile *)(& ai->jobs)); __wake_up(& ai->thr_wait, 1U, 1, (void *)0); } } else { } return; } } static void airo_print_status(char const *devname , u16 status ) { u8 reason ; { reason = (u8 )status; { if (((int )status & 65280) == 32768) { goto case_32768; } else { } if (((int )status & 65280) == 33024) { goto case_33024; } else { } if (((int )status & 65280) == 33280) { goto case_33280; } else { } if (((int )status & 65280) == 33792) { goto case_33792; } else { } if (((int )status & 65280) == 768) { goto case_768; } else { } if (((int )status & 65280) == 1024) { goto case_1024; } else { } if (((int )status & 65280) == 1536) { goto case_1536; } else { } goto switch_default___0; case_32768: /* CIL Label */ ; { if ((int )status == 32768) { goto case_32768___0; } else { } if ((int )status == 32769) { goto case_32769; } else { } if ((int )status == 32770) { goto case_32770; } else { } if ((int )status == 32771) { goto case_32771; } else { } if ((int )status == 32772) { goto case_32772; } else { } goto switch_default; case_32768___0: /* CIL Label */ { printk("\017airo(%s): link lost (missed beacons)\n", devname); } goto ldv_47378; case_32769: /* CIL Label */ ; case_32770: /* CIL Label */ { printk("\017airo(%s): link lost (max retries)\n", devname); } goto ldv_47378; case_32771: /* CIL Label */ { printk("\017airo(%s): link lost (local choice)\n", devname); } goto ldv_47378; case_32772: /* CIL Label */ { printk("\017airo(%s): link lost (TSF sync lost)\n", devname); } goto ldv_47378; switch_default: /* CIL Label */ { printk("\017airo(%s): unknow status %x\n\n", devname, (int )status); } goto ldv_47378; switch_break___0: /* CIL Label */ ; } ldv_47378: ; goto ldv_47384; case_33024: /* CIL Label */ { printk("\017airo(%s): deauthenticated (reason: %d)\n", devname, (int )reason); } goto ldv_47384; case_33280: /* CIL Label */ { printk("\017airo(%s): disassociated (reason: %d)\n", devname, (int )reason); } goto ldv_47384; case_33792: /* CIL Label */ { printk("\017airo(%s): association failed (reason: %d)\n", devname, (int )reason); } goto ldv_47384; case_768: /* CIL Label */ { printk("\017airo(%s): authentication failed (reason: %d)\n", devname, (int )reason); } goto ldv_47384; case_1024: /* CIL Label */ ; case_1536: /* CIL Label */ ; goto ldv_47384; switch_default___0: /* CIL Label */ { printk("\017airo(%s): unknow status %x\n\n", devname, (int )status); } goto ldv_47384; switch_break: /* CIL Label */ ; } ldv_47384: ; return; } } static void airo_handle_link(struct airo_info *ai ) { union iwreq_data wrqu ; int scan_forceloss ; u16 status ; int tmp ; { { scan_forceloss = 0; status = IN4500(ai, 16); OUT4500(ai, 52, 128); } if ((unsigned int )status == 32771U && ai->scan_timeout != 0UL) { scan_forceloss = 1; } else { } { airo_print_status((char const *)(& (ai->dev)->name), (int )status); } if ((unsigned int )status == 1024U || (unsigned int )status == 1536U) { if (auto_wep != 0) { ai->expires = 0UL; } else { } if ((unsigned long )ai->list_bss_task != (unsigned long )((struct task_struct *)0)) { { wake_up_process(ai->list_bss_task); } } else { } { set_bit(6L, (unsigned long volatile *)(& ai->flags)); set_bit(5L, (unsigned long volatile *)(& ai->flags)); tmp = down_trylock(& ai->sem); } if (tmp != 0) { { set_bit(6L, (unsigned long volatile *)(& ai->jobs)); __wake_up(& ai->thr_wait, 1U, 1, (void *)0); } } else { { airo_send_event(ai->dev); } } } else if (scan_forceloss == 0) { if (auto_wep != 0 && ai->expires == 0UL) { { ai->expires = (unsigned long )jiffies + 750UL; __wake_up(& ai->thr_wait, 1U, 1, (void *)0); } } else { } { memset((void *)(& wrqu.ap_addr.sa_data), 0, 6UL); wrqu.ap_addr.sa_family = 1U; wireless_send_event(ai->dev, 35605U, & wrqu, (char const *)0); } } else { } return; } } static void airo_handle_rx(struct airo_info *ai ) { struct sk_buff *skb ; __le16 fc ; __le16 v ; __le16 *buffer ; __le16 tmpbuf[4U] ; u16 len ; u16 hdrlen ; u16 gap ; u16 fid ; struct rx_hdr hdr ; int success ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; unsigned char *tmp___4 ; MICBuffer micbuf ; __u16 tmp___5 ; int tmp___6 ; int tmp___7 ; char *sa ; struct iw_quality wstats ; int tmp___8 ; int tmp___9 ; { { skb = (struct sk_buff *)0; hdrlen = 0U; success = 0; tmp___0 = constant_test_bit(11L, (unsigned long const volatile *)(& ai->flags)); } if (tmp___0 != 0) { { tmp = constant_test_bit(7L, (unsigned long const volatile *)(& ai->flags)); } if (tmp != 0) { { mpi_receive_802_11(ai); } } else { { mpi_receive_802_3(ai); } } { OUT4500(ai, 52, 1); } return; } else { } { fid = IN4500(ai, 32); tmp___1 = constant_test_bit(7L, (unsigned long const volatile *)(& ai->flags)); } if (tmp___1 != 0) { { bap_setup(ai, (int )fid, 4, 0); bap_read(ai, (__le16 *)(& hdr), 16, 0); } if (((int )hdr.status & 2) != 0) { hdr.len = 0U; } else { } if ((unsigned long )ai->wifidev == (unsigned long )((struct net_device *)0)) { hdr.len = 0U; } else { } } else { { bap_setup(ai, (int )fid, 54, 0); bap_read(ai, & hdr.len, 2, 0); } } len = hdr.len; if ((unsigned int )len > 2312U) { { printk("\vairo(%s): Bad size %d\n", (char *)(& (ai->dev)->name), (int )len); } goto done; } else { } if ((unsigned int )len == 0U) { goto done; } else { } { tmp___3 = constant_test_bit(7L, (unsigned long const volatile *)(& ai->flags)); } if (tmp___3 != 0) { { bap_read(ai, & fc, 2, 0); tmp___2 = header_len((int )fc); hdrlen = (u16 )tmp___2; } } else { hdrlen = 12U; } { skb = dev_alloc_skb((unsigned int )(((int )len + (int )hdrlen) + 4)); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { (ai->dev)->stats.rx_dropped = (ai->dev)->stats.rx_dropped + 1UL; goto done; } else { } { skb_reserve(skb, 2); tmp___4 = skb_put(skb, (unsigned int )((int )len + (int )hdrlen)); buffer = (__le16 *)tmp___4; tmp___7 = constant_test_bit(7L, (unsigned long const volatile *)(& ai->flags)); } if (tmp___7 != 0) { { *buffer = fc; bap_read(ai, buffer + 1UL, (int )hdrlen + -2, 0); } if ((unsigned int )hdrlen == 24U) { { bap_read(ai, (__le16 *)(& tmpbuf), 6, 0); } } else { } { bap_read(ai, & v, 2, 0); gap = v; } if ((unsigned int )gap != 0U) { if ((unsigned int )gap <= 8U) { { bap_read(ai, (__le16 *)(& tmpbuf), (int )gap, 0); } } else { { printk("\vairo(%s): gaplen too big. Problems will follow...\n", (char *)(& (ai->dev)->name)); } } } else { } { bap_read(ai, buffer + (unsigned long )((unsigned int )hdrlen / 2U), (int )len, 0); } } else { { bap_read(ai, buffer, 12, 0); } if ((unsigned int )ai->micstats.enabled != 0U) { { bap_read(ai, (__le16 *)(& micbuf), 18, 0); tmp___5 = __fswab16((int )micbuf.typelen); } if ((int )tmp___5 > 1500) { { bap_setup(ai, (int )fid, 68, 0); } } else { if ((unsigned int )len <= 18U) { { dev_kfree_skb_irq(skb); } goto done; } else { } { len = (unsigned int )len - 18U; skb_trim(skb, (unsigned int )((int )len + (int )hdrlen)); } } } else { } { bap_read(ai, buffer + 6UL, (int )len, 0); tmp___6 = decapsulate(ai, & micbuf, (etherHead *)buffer, (int )len); } if (tmp___6 != 0) { { dev_kfree_skb_irq(skb); } } else { success = 1; } } if (success != 0 && ai->spy_data.spy_number > 0) { { tmp___8 = constant_test_bit(7L, (unsigned long const volatile *)(& ai->flags)); } if (tmp___8 == 0) { { sa = (char *)buffer + 6UL; bap_setup(ai, (int )fid, 8, 0); bap_read(ai, (__le16 *)(& hdr.rssi), 2, 0); } } else { sa = (char *)buffer + 10UL; } wstats.qual = hdr.rssi[0]; if ((unsigned long )ai->rssi != (unsigned long )((tdsRssiEntry *)0)) { wstats.level = (__u8 )(- ((int )(ai->rssi + (unsigned long )hdr.rssi[1])->rssidBm)); } else { wstats.level = (__u8 )(((int )hdr.rssi[1] + 321) / 2); } { wstats.noise = ai->wstats.qual.noise; wstats.updated = 11U; wireless_spy_update(ai->dev, (unsigned char *)sa, & wstats); } } else { } done: { OUT4500(ai, 52, 1); } if (success != 0) { { tmp___9 = constant_test_bit(7L, (unsigned long const volatile *)(& ai->flags)); } if (tmp___9 != 0) { { skb_reset_mac_header(skb); skb->pkt_type = 3U; skb->dev = ai->wifidev; skb->protocol = 1024U; } } else { { skb->protocol = eth_type_trans(skb, ai->dev); } } { skb->ip_summed = 0U; netif_rx(skb); } } else { } return; } } static void airo_handle_tx(struct airo_info *ai , u16 status ) { int i ; int len ; int index ; u16 fid ; unsigned long flags ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { len = 0; index = -1; tmp___0 = constant_test_bit(11L, (unsigned long const volatile *)(& ai->flags)); } if (tmp___0 != 0) { if (((int )status & 4) != 0) { { get_tx_error(ai, -1); } } else { } { ldv___ldv_spin_lock_77(& ai->aux_lock); tmp = skb_queue_empty((struct sk_buff_head const *)(& ai->txq)); } if (tmp == 0) { { ldv_spin_unlock_irqrestore_62(& ai->aux_lock, flags); mpi_send_packet(ai->dev); } } else { { clear_bit(9L, (unsigned long volatile *)(& ai->flags)); ldv_spin_unlock_irqrestore_62(& ai->aux_lock, flags); netif_wake_queue(ai->dev); } } { OUT4500(ai, 52, (int )status & 1030); } return; } else { } { fid = IN4500(ai, 36); i = 0; } goto ldv_47426; ldv_47425: ; if ((ai->fids[i] & 65535U) == (u32 )fid) { len = (int )(ai->fids[i] >> 16); index = i; } else { } i = i + 1; ldv_47426: ; if (i <= 5) { goto ldv_47425; } else { } if (index != -1) { if (((int )status & 4) != 0) { { get_tx_error(ai, index); } } else { } { OUT4500(ai, 52, (int )status & 6); ai->fids[index] = ai->fids[index] & 65535U; } if (index <= 2) { { tmp___1 = constant_test_bit(9L, (unsigned long const volatile *)(& ai->flags)); } if (tmp___1 == 0) { { netif_wake_queue(ai->dev); } } else { } } else { { tmp___2 = constant_test_bit(10L, (unsigned long const volatile *)(& ai->flags)); } if (tmp___2 == 0) { { netif_wake_queue(ai->wifidev); } } else { } } } else { { OUT4500(ai, 52, (int )status & 1030); printk("\vairo(%s): Unallocated FID was used to xmit\n", (char *)(& (ai->dev)->name)); } } return; } } static irqreturn_t airo_interrupt(int irq___0 , void *dev_id ) { struct net_device *dev ; u16 status ; u16 savedInterrupts ; struct airo_info *ai ; int handled ; bool tmp ; int tmp___0 ; { { dev = (struct net_device *)dev_id; savedInterrupts = 0U; ai = (struct airo_info *)dev->__annonCompField74.ml_priv; handled = 0; tmp = netif_device_present(dev); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (0); } else { } ldv_47438: { status = IN4500(ai, 48); } if (((int )status & 5511) == 0 || (unsigned int )status == 65535U) { goto ldv_47437; } else { } handled = 1; if (((int )status & 256) != 0) { { OUT4500(ai, 52, 256); OUT4500(ai, 52, 256); } } else { } if ((unsigned int )savedInterrupts == 0U) { { savedInterrupts = IN4500(ai, 50); OUT4500(ai, 50, 0); } } else { } if (((int )status & 4096) != 0) { { OUT4500(ai, 52, 4096); airo_handle_cisco_mic(ai); } } else { } if (((int )status & 128) != 0) { { airo_handle_link(ai); } } else { } if ((int )status & 1) { { airo_handle_rx(ai); } } else { } if (((int )status & 1030) != 0) { { airo_handle_tx(ai, (int )status); } } else { } goto ldv_47438; ldv_47437: ; if ((unsigned int )savedInterrupts != 0U) { { OUT4500(ai, 50, (int )savedInterrupts); } } else { } return (handled != 0); } } static void OUT4500(struct airo_info *ai , u16 reg , u16 val ) { int tmp ; { { tmp = constant_test_bit(11L, (unsigned long const volatile *)(& ai->flags)); } if (tmp != 0) { reg = (int )reg << 1U; } else { } if (do8bitIO == 0) { { outw((int )val, (int )((unsigned int )(ai->dev)->base_addr + (unsigned int )reg)); } } else { { outb((int )((unsigned char )val), (int )((unsigned int )(ai->dev)->base_addr + (unsigned int )reg)); outb((int )((unsigned char )((int )val >> 8)), (int )(((unsigned int )(ai->dev)->base_addr + (unsigned int )reg) + 1U)); } } return; } } static unsigned short IN4500(struct airo_info *ai , u16 reg ) { unsigned short rc ; int tmp ; unsigned char tmp___0 ; unsigned char tmp___1 ; { { tmp = constant_test_bit(11L, (unsigned long const volatile *)(& ai->flags)); } if (tmp != 0) { reg = (int )reg << 1U; } else { } if (do8bitIO == 0) { { rc = inw((int )((unsigned int )(ai->dev)->base_addr + (unsigned int )reg)); } } else { { tmp___0 = inb((int )((unsigned int )(ai->dev)->base_addr + (unsigned int )reg)); rc = (unsigned short )tmp___0; tmp___1 = inb((int )(((unsigned int )(ai->dev)->base_addr + (unsigned int )reg) + 1U)); rc = (int )rc + ((int )((unsigned short )tmp___1) << 8U); } } return (rc); } } static int enable_MAC(struct airo_info *ai , int lock ) { int rc ; Cmd cmd ; Resp rsp ; int tmp ; u16 tmp___0 ; int tmp___1 ; { if ((ai->flags & 3UL) != 0UL) { return (0); } else { } if (lock != 0) { { tmp = down_interruptible(& ai->sem); } if (tmp != 0) { return (-512); } else { } } else { } { tmp___1 = constant_test_bit(2L, (unsigned long const volatile *)(& ai->flags)); } if (tmp___1 == 0) { { memset((void *)(& cmd), 0, 8UL); cmd.cmd = 1U; tmp___0 = issuecommand(ai, & cmd, & rsp); rc = (int )tmp___0; } if (rc == 0) { { set_bit(2L, (unsigned long volatile *)(& ai->flags)); } } else { } } else { rc = 0; } if (lock != 0) { { up(& ai->sem); } } else { } if (rc != 0) { { printk("\vairo(%s): Cannot enable MAC\n", (char *)(& (ai->dev)->name)); } } else if (((int )rsp.status & 65280) != 0) { { printk("\vairo(%s): Bad MAC enable reason=%x, rid=%x, offset=%d\n", (char *)(& (ai->dev)->name), (int )rsp.rsp0, (int )rsp.rsp1, (int )rsp.rsp2); rc = -1; } } else { } return (rc); } } static void disable_MAC(struct airo_info *ai , int lock ) { Cmd cmd ; Resp rsp ; int tmp ; int tmp___0 ; { if (lock != 0) { { tmp = down_interruptible(& ai->sem); } if (tmp != 0) { return; } else { } } else { } { tmp___0 = constant_test_bit(2L, (unsigned long const volatile *)(& ai->flags)); } if (tmp___0 != 0) { { memset((void *)(& cmd), 0, 8UL); cmd.cmd = 2U; issuecommand(ai, & cmd, & rsp); clear_bit(2L, (unsigned long volatile *)(& ai->flags)); } } else { } if (lock != 0) { { up(& ai->sem); } } else { } return; } } static void enable_interrupts(struct airo_info *ai ) { { { OUT4500(ai, 50, 5511); } return; } } static void disable_interrupts(struct airo_info *ai ) { { { OUT4500(ai, 50, 0); } return; } } static void mpi_receive_802_3(struct airo_info *ai ) { RxFid rxd ; int len ; struct sk_buff *skb ; char *buffer ; int off ; MICBuffer micbuf ; unsigned char *tmp ; __u16 tmp___0 ; int tmp___1 ; char *sa ; struct iw_quality wstats ; { { len = 0; off = 0; memcpy_fromio((void *)(& rxd), (void const volatile *)ai->rxfids[0].card_ram_off, 16UL); } if (*((unsigned int *)(& rxd) + 0UL) == 32768U) { len = (int )rxd.len + 12; if ((unsigned int )len - 12U > 2036U) { goto badrx; } else { } { skb = dev_alloc_skb((unsigned int )len); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { (ai->dev)->stats.rx_dropped = (ai->dev)->stats.rx_dropped + 1UL; goto badrx; } else { } { tmp = skb_put(skb, (unsigned int )len); buffer = (char *)tmp; memcpy((void *)buffer, (void const *)ai->rxfids[0].virtual_host_addr, 12UL); } if ((unsigned int )ai->micstats.enabled != 0U) { { memcpy((void *)(& micbuf), (void const *)ai->rxfids[0].virtual_host_addr + 12U, 18UL); tmp___0 = __fswab16((int )micbuf.typelen); } if ((int )tmp___0 <= 1500) { if ((unsigned int )len <= 30U) { goto badmic; } else { } { off = 18; skb_trim(skb, (unsigned int )(len - off)); } } else { } } else { } { memcpy((void *)buffer + 12U, (void const *)(ai->rxfids[0].virtual_host_addr + ((unsigned long )off + 12UL)), (size_t )((len + -12) - off)); tmp___1 = decapsulate(ai, & micbuf, (etherHead *)buffer, (int )((unsigned int )((int )((u16 )len) - (int )((u16 )off)) + 65524U)); } if (tmp___1 != 0) { badmic: { dev_kfree_skb_irq(skb); } goto badrx; } else { } if (ai->spy_data.spy_number > 0) { { sa = buffer + 6UL; wstats.qual = 0U; wstats.level = 0U; wstats.updated = 0U; wireless_spy_update(ai->dev, (unsigned char *)sa, & wstats); } } else { } { skb->ip_summed = 0U; skb->protocol = eth_type_trans(skb, ai->dev); netif_rx(skb); } } else { } badrx: ; if ((unsigned int )*((unsigned char *)(& rxd) + 3UL) == 0U) { { rxd.valid = 1U; rxd.rdy = 0U; rxd.len = 1840U; memcpy_toio((void volatile *)ai->rxfids[0].card_ram_off, (void const *)(& rxd), 16UL); } } else { } return; } } static void mpi_receive_802_11(struct airo_info *ai ) { RxFid rxd ; struct sk_buff *skb ; u16 len ; u16 hdrlen ; __le16 fc ; struct rx_hdr hdr ; u16 gap ; u16 *buffer ; char *ptr ; int tmp ; unsigned char *tmp___0 ; char *sa ; struct iw_quality wstats ; { { skb = (struct sk_buff *)0; hdrlen = 0U; ptr = ai->rxfids[0].virtual_host_addr + 4UL; memcpy_fromio((void *)(& rxd), (void const volatile *)ai->rxfids[0].card_ram_off, 16UL); memcpy((void *)(& hdr), (void const *)ptr, 16UL); ptr = ptr + 16UL; } if (((int )hdr.status & 2) != 0) { hdr.len = 0U; } else { } if ((unsigned long )ai->wifidev == (unsigned long )((struct net_device *)0)) { hdr.len = 0U; } else { } len = hdr.len; if ((unsigned int )len > 2312U) { { printk("\vairo(%s): Bad size %d\n", (char *)(& (ai->dev)->name), (int )len); } goto badrx; } else { } if ((unsigned int )len == 0U) { goto badrx; } else { } { fc = get_unaligned_le16((void const *)ptr); tmp = header_len((int )fc); hdrlen = (u16 )tmp; skb = dev_alloc_skb((unsigned int )(((int )len + (int )hdrlen) + 2)); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { (ai->dev)->stats.rx_dropped = (ai->dev)->stats.rx_dropped + 1UL; goto badrx; } else { } { tmp___0 = skb_put(skb, (unsigned int )((int )len + (int )hdrlen)); buffer = (u16 *)tmp___0; memcpy((void *)buffer, (void const *)ptr, (size_t )hdrlen); ptr = ptr + (unsigned long )hdrlen; } if ((unsigned int )hdrlen == 24U) { ptr = ptr + 6UL; } else { } { gap = get_unaligned_le16((void const *)ptr); ptr = ptr + 2UL; } if ((unsigned int )gap != 0U) { if ((unsigned int )gap <= 8U) { ptr = ptr + (unsigned long )gap; } else { { printk("\vairo(%s): gaplen too big. Problems will follow...\n", (char *)(& (ai->dev)->name)); } } } else { } { memcpy((void *)buffer + (unsigned long )hdrlen, (void const *)ptr, (size_t )len); ptr = ptr + (unsigned long )len; } if (ai->spy_data.spy_number > 0) { sa = (char *)buffer + 10UL; wstats.qual = hdr.rssi[0]; if ((unsigned long )ai->rssi != (unsigned long )((tdsRssiEntry *)0)) { wstats.level = (__u8 )(- ((int )(ai->rssi + (unsigned long )hdr.rssi[1])->rssidBm)); } else { wstats.level = (__u8 )(((int )hdr.rssi[1] + 321) / 2); } { wstats.noise = ai->wstats.qual.noise; wstats.updated = 11U; wireless_spy_update(ai->dev, (unsigned char *)sa, & wstats); } } else { } { skb_reset_mac_header(skb); skb->pkt_type = 3U; skb->dev = ai->wifidev; skb->protocol = 1024U; skb->ip_summed = 0U; netif_rx(skb); } badrx: ; if ((unsigned int )*((unsigned char *)(& rxd) + 3UL) == 0U) { { rxd.valid = 1U; rxd.rdy = 0U; rxd.len = 1840U; memcpy_toio((void volatile *)ai->rxfids[0].card_ram_off, (void const *)(& rxd), 16UL); } } else { } return; } } static u16 setup_card(struct airo_info *ai , u8 *mac , int lock ) { Cmd cmd ; Resp rsp ; int status ; SsidRid mySsid ; __le16 lastindex ; WepKeyRid wkr ; int rc ; int tmp ; u16 tmp___0 ; u16 tmp___1 ; int tmp___2 ; int i ; tdsRssiRid rssi_rid ; CapabilityRid cap_rid ; tdsRssiEntry *tmp___3 ; void *tmp___4 ; int tmp___5 ; int i___0 ; size_t len ; size_t tmp___6 ; { { memset((void *)(& mySsid), 0, 104UL); kfree((void const *)ai->flash); ai->flash = (unsigned short *)0U; cmd.cmd = 16U; cmd.parm2 = 0U; cmd.parm1 = cmd.parm2; cmd.parm0 = cmd.parm1; } if (lock != 0) { { tmp = down_interruptible(& ai->sem); } if (tmp != 0) { return (65535U); } else { } } else { } { tmp___0 = issuecommand(ai, & cmd, & rsp); } if ((unsigned int )tmp___0 != 0U) { if (lock != 0) { { up(& ai->sem); } } else { } return (65535U); } else { } { disable_MAC(ai, 0); tmp___2 = constant_test_bit(11L, (unsigned long const volatile *)(& ai->flags)); } if (tmp___2 == 0) { { cmd.cmd = 273U; tmp___1 = issuecommand(ai, & cmd, & rsp); } if ((unsigned int )tmp___1 != 0U) { if (lock != 0) { { up(& ai->sem); } } else { } { printk("\vairo(%s): Error checking for AUX port\n", (char *)(& (ai->dev)->name)); } return (65535U); } else { } if (aux_bap == 0 || ((int )rsp.status & 65280) != 0) { { ai->bap_read = & fast_bap_read; printk("\017airo(%s): Doing fast bap_reads\n", (char *)(& (ai->dev)->name)); } } else { { ai->bap_read = & aux_bap_read; printk("\017airo(%s): Doing AUX bap_reads\n", (char *)(& (ai->dev)->name)); } } } else { } if (lock != 0) { { up(& ai->sem); } } else { } if ((unsigned int )ai->config.len == 0U) { { kfree((void const *)ai->APList); ai->APList = (APListRid *)0; kfree((void const *)ai->SSID); ai->SSID = (SsidRid *)0; status = readConfigRid(ai, lock); } if (status != 0) { return (65535U); } else { } { status = readCapabilityRid(ai, & cap_rid, lock); } if (status != 0) { return (65535U); } else { } { status = PC4500_readrid(ai, 65284, (void *)(& rssi_rid), 514, lock); } if (status == 0) { if ((unsigned long )ai->rssi != (unsigned long )((tdsRssiEntry *)0)) { { memcpy((void *)ai->rssi, (void const *)(& rssi_rid) + 2U, 512UL); } } else { { tmp___4 = kmalloc(512UL, 208U); tmp___3 = (tdsRssiEntry *)tmp___4; ai->rssi = tmp___3; } if ((unsigned long )tmp___3 != (unsigned long )((tdsRssiEntry *)0)) { { memcpy((void *)ai->rssi, (void const *)(& rssi_rid) + 2U, 512UL); } } else { } } } else { { kfree((void const *)ai->rssi); ai->rssi = (tdsRssiEntry *)0; } if (((int )cap_rid.softCap & 8) != 0) { ai->config.rmode = (__le16 )((unsigned int )ai->config.rmode | 512U); } else { { printk("\fairo(%s): unknown received signal level scale\n", (char *)(& (ai->dev)->name)); } } } ai->config.opmode = adhoc == 0; ai->config.authType = 1U; ai->config.modulation = 1U; if ((unsigned int )cap_rid.len > 131U && (int )cap_rid.extSoftCap & 1) { { tmp___5 = micsetup(ai); } if (tmp___5 == 0) { { ai->config.opmode = (__le16 )((unsigned int )ai->config.opmode | 32768U); set_bit(4L, (unsigned long volatile *)(& ai->flags)); } } else { } } else { } i = 0; goto ldv_47512; ldv_47511: *(mac + (unsigned long )i) = ai->config.macAddr[i]; i = i + 1; ldv_47512: ; if (i <= 5) { goto ldv_47511; } else { } if (rates[0] != 0) { { memset((void *)(& ai->config.rates), 0, 8UL); i = 0; } goto ldv_47515; ldv_47514: ai->config.rates[i] = (u8 )rates[i]; i = i + 1; ldv_47515: ; if (i <= 7 && rates[i] != 0) { goto ldv_47514; } else { } } else { } { set_bit(13L, (unsigned long volatile *)(& ai->flags)); } } else { } if ((unsigned long )ssids[0] != (unsigned long )((char *)0)) { i___0 = 0; goto ldv_47520; ldv_47519: { tmp___6 = strlen((char const *)ssids[i___0]); len = tmp___6; } if (len > 32UL) { len = 32UL; } else { } { mySsid.ssids[i___0].len = (unsigned short )len; memcpy((void *)(& mySsid.ssids[i___0].ssid), (void const *)ssids[i___0], len); i___0 = i___0 + 1; } ldv_47520: ; if (i___0 <= 2 && (unsigned long )ssids[i___0] != (unsigned long )((char *)0)) { goto ldv_47519; } else { } mySsid.len = 104U; } else { } { status = writeConfigRid(ai, lock); } if (status != 0) { return (65535U); } else { } if ((unsigned long )ssids[0] != (unsigned long )((char *)0)) { { status = writeSsidRid(ai, & mySsid, lock); } if (status != 0) { return (65535U); } else { } } else { } { status = enable_MAC(ai, lock); } if (status != 0) { return (65535U); } else { } { rc = readWepKeyRid(ai, & wkr, 1, lock); } if (rc == 0) { ldv_47522: lastindex = wkr.kindex; if ((unsigned int )wkr.kindex == 65535U) { ai->defindex = (char )wkr.mac[0]; } else { } { rc = readWepKeyRid(ai, & wkr, 0, lock); } if ((int )lastindex != (int )wkr.kindex) { goto ldv_47522; } else { } } else { } { try_auto_wep(ai); } return (0U); } } static u16 issuecommand(struct airo_info *ai , Cmd *pCmd , Resp *pRsp ) { int max_tries ; unsigned short tmp ; unsigned short tmp___0 ; int tmp___1 ; int tmp___2 ; unsigned short tmp___3 ; unsigned short tmp___4 ; unsigned short tmp___5 ; { { max_tries = 600000; tmp = IN4500(ai, 48); } if (((int )tmp & 16) != 0) { { OUT4500(ai, 52, 16); } } else { } { OUT4500(ai, 2, (int )pCmd->parm0); OUT4500(ai, 4, (int )pCmd->parm1); OUT4500(ai, 6, (int )pCmd->parm2); OUT4500(ai, 0, (int )pCmd->cmd); } goto ldv_47531; ldv_47530: { tmp___0 = IN4500(ai, 0); } if ((int )tmp___0 == (int )pCmd->cmd) { { OUT4500(ai, 0, (int )pCmd->cmd); } } else { } { tmp___1 = preempt_count(); } if (((unsigned long )tmp___1 & 0xffffffffffdfffffUL) == 0UL && (max_tries & 255) == 0) { { schedule(); } } else { } ldv_47531: tmp___2 = max_tries; max_tries = max_tries - 1; if (tmp___2 != 0) { { tmp___3 = IN4500(ai, 48); } if (((int )tmp___3 & 16) == 0) { goto ldv_47530; } else { goto ldv_47532; } } else { } ldv_47532: ; if (max_tries == -1) { { printk("\vairo(%s): Max tries exceeded when issuing command\n", (char *)(& (ai->dev)->name)); tmp___4 = IN4500(ai, 0); } if ((int )((short )tmp___4) < 0) { { OUT4500(ai, 52, 16384); } } else { } return (65535U); } else { } { pRsp->status = IN4500(ai, 8); pRsp->rsp0 = IN4500(ai, 10); pRsp->rsp1 = IN4500(ai, 12); pRsp->rsp2 = IN4500(ai, 14); } if (((int )pRsp->status & 65280) != 0 && (unsigned int )pCmd->cmd != 4U) { { printk("\vairo(%s): cmd:%x status:%x rsp0:%x rsp1:%x rsp2:%x\n", (char *)(& (ai->dev)->name), (int )pCmd->cmd, (int )pRsp->status, (int )pRsp->rsp0, (int )pRsp->rsp1, (int )pRsp->rsp2); } } else { } { tmp___5 = IN4500(ai, 0); } if ((int )((short )tmp___5) < 0) { { OUT4500(ai, 52, 16384); } } else { } { OUT4500(ai, 52, 16); } return (0U); } } static int bap_setup(struct airo_info *ai , u16 rid , u16 offset , int whichbap ) { int timeout ; int max_tries ; int status ; unsigned short tmp ; int tmp___0 ; int tmp___1 ; { { timeout = 50; max_tries = 3; OUT4500(ai, (int )((unsigned int )((u16 )whichbap) + 24U), (int )rid); OUT4500(ai, (int )((unsigned int )((u16 )whichbap) + 28U), (int )offset); } ldv_47543: { tmp = IN4500(ai, (int )((unsigned int )((u16 )whichbap) + 28U)); status = (int )tmp; } if ((status & 32768) != 0) { tmp___0 = timeout; timeout = timeout - 1; if (tmp___0 != 0) { goto ldv_47542; } else { } } else if ((status & 16384) != 0) { { printk("\vairo(%s): BAP error %x %d\n", (char *)(& (ai->dev)->name), status, whichbap); } return (-1); } else if ((status & 8192) != 0) { return (0); } else { } tmp___1 = max_tries; max_tries = max_tries - 1; if (tmp___1 == 0) { { printk("\vairo(%s): BAP setup error too many retries\n\n", (char *)(& (ai->dev)->name)); } return (-1); } else { } { OUT4500(ai, (int )((unsigned int )((u16 )whichbap) + 24U), (int )rid); OUT4500(ai, (int )((unsigned int )((u16 )whichbap) + 28U), (int )offset); timeout = 50; } ldv_47542: ; goto ldv_47543; } } static u16 aux_setup(struct airo_info *ai , u16 page , u16 offset , u16 *len ) { u16 next ; unsigned short tmp ; { { OUT4500(ai, 58, (int )page); OUT4500(ai, 60, 0); next = IN4500(ai, 62); tmp = IN4500(ai, 62); *len = (unsigned int )tmp & 255U; } if ((unsigned int )offset != 4U) { { OUT4500(ai, 60, (int )offset); } } else { } return (next); } } static int aux_bap_read(struct airo_info *ai , __le16 *pu16Dst , int bytelen , int whichbap ) { u16 len ; u16 page ; u16 offset ; u16 next ; int words ; int i ; unsigned long flags ; int count ; { { ldv___ldv_spin_lock_80(& ai->aux_lock); page = IN4500(ai, (int )((unsigned int )((u16 )whichbap) + 40U)); offset = IN4500(ai, (int )((unsigned int )((u16 )whichbap) + 44U)); next = aux_setup(ai, (int )page, (int )offset, & len); words = (bytelen + 1) >> 1; i = 0; } goto ldv_47566; ldv_47565: count = (int )len >> 1 < words - i ? (int )len >> 1 : words - i; if (do8bitIO == 0) { { insw((int )(((unsigned int )(ai->dev)->base_addr + (unsigned int )whichbap) + 54U), (void *)pu16Dst + (unsigned long )i, (unsigned long )count); } } else { { insb((int )(((unsigned int )(ai->dev)->base_addr + (unsigned int )whichbap) + 54U), (void *)pu16Dst + (unsigned long )i, (unsigned long )(count << 1)); } } i = i + count; if (i < words) { { next = aux_setup(ai, (int )next, 4, & len); } } else { } ldv_47566: ; if (i < words) { goto ldv_47565; } else { } { ldv_spin_unlock_irqrestore_62(& ai->aux_lock, flags); } return (0); } } static int fast_bap_read(struct airo_info *ai , __le16 *pu16Dst , int bytelen , int whichbap ) { { bytelen = (bytelen + 1) & -2; if (do8bitIO == 0) { { insw((int )(((unsigned int )(ai->dev)->base_addr + (unsigned int )whichbap) + 54U), (void *)pu16Dst, (unsigned long )(bytelen >> 1)); } } else { { insb((int )(((unsigned int )(ai->dev)->base_addr + (unsigned int )whichbap) + 54U), (void *)pu16Dst, (unsigned long )bytelen); } } return (0); } } static int bap_write(struct airo_info *ai , __le16 const *pu16Src , int bytelen , int whichbap ) { { bytelen = (bytelen + 1) & -2; if (do8bitIO == 0) { { outsw((int )(((unsigned int )(ai->dev)->base_addr + (unsigned int )whichbap) + 54U), (void const *)pu16Src, (unsigned long )(bytelen >> 1)); } } else { { outsb((int )(((unsigned int )(ai->dev)->base_addr + (unsigned int )whichbap) + 54U), (void const *)pu16Src, (unsigned long )bytelen); } } return (0); } } static int PC4500_accessrid(struct airo_info *ai , u16 rid , u16 accmd ) { Cmd cmd ; Resp rsp ; u16 status ; { { memset((void *)(& cmd), 0, 8UL); cmd.cmd = accmd; cmd.parm0 = rid; status = issuecommand(ai, & cmd, & rsp); } if ((unsigned int )status != 0U) { return ((int )status); } else { } if (((int )rsp.status & 32512) != 0) { return (((int )accmd << 8) + ((int )rsp.rsp0 & 255)); } else { } return (0); } } static int PC4500_readrid(struct airo_info *ai , u16 rid , void *pBuf , int len , int lock ) { u16 status ; int rc ; int tmp ; Cmd cmd ; Resp rsp ; u16 tmp___0 ; int tmp___1 ; int tmp___2 ; int _min1 ; int _min2 ; int tmp___3 ; { rc = 0; if (lock != 0) { { tmp = down_interruptible(& ai->sem); } if (tmp != 0) { return (-1); } else { } } else { } { tmp___3 = constant_test_bit(11L, (unsigned long const volatile *)(& ai->flags)); } if (tmp___3 != 0) { { memset((void *)(& cmd), 0, 8UL); memset((void *)(& rsp), 0, 8UL); ai->config_desc.rid_desc.valid = 1U; ai->config_desc.rid_desc.len = 2048U; ai->config_desc.rid_desc.rid = 0U; ai->config_desc.rid_desc.host_addr = (dma_addr_t )ai->ridbus; cmd.cmd = 33U; cmd.parm0 = rid; memcpy_toio((void volatile *)ai->config_desc.card_ram_off, (void const *)(& ai->config_desc.rid_desc), 16UL); tmp___0 = issuecommand(ai, & cmd, & rsp); rc = (int )tmp___0; } if (((int )rsp.status & 32512) != 0) { rc = (int )rsp.rsp0; } else { } if (rc == 0) { { memcpy(pBuf, (void const *)ai->config_desc.virtual_host_addr, (size_t )len); } } else { } goto done; } else { { tmp___1 = PC4500_accessrid(ai, (int )rid, 33); status = (u16 )tmp___1; } if ((unsigned int )status != 0U) { rc = (int )status; goto done; } else { } { tmp___2 = bap_setup(ai, (int )rid, 0, 2); } if (tmp___2 != 0) { rc = -1; goto done; } else { } { bap_read(ai, (__le16 *)pBuf, 2, 2); _min1 = len; _min2 = (int )*((__le16 *)pBuf); len = (_min1 < _min2 ? _min1 : _min2) + -2; } if (len <= 2) { { printk("\vairo(%s): Rid %x has a length of %d which is too short\n", (char *)(& (ai->dev)->name), (int )rid, len); rc = -1; } goto done; } else { } { rc = bap_read(ai, (__le16 *)pBuf + 1UL, len, 2); } } done: ; if (lock != 0) { { up(& ai->sem); } } else { } return (rc); } } static int PC4500_writerid(struct airo_info *ai , u16 rid , void const *pBuf , int len , int lock ) { u16 status ; int rc ; int tmp ; Cmd cmd ; Resp rsp ; int tmp___0 ; u16 tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; { rc = 0; *((__le16 *)pBuf) = (unsigned short )len; if (lock != 0) { { tmp = down_interruptible(& ai->sem); } if (tmp != 0) { return (-1); } else { } } else { } { tmp___4 = constant_test_bit(11L, (unsigned long const volatile *)(& ai->flags)); } if (tmp___4 != 0) { { tmp___0 = constant_test_bit(2L, (unsigned long const volatile *)(& ai->flags)); } if (tmp___0 != 0 && (unsigned int )rid != 65301U) { { printk("\vairo(%s): %s: MAC should be disabled (rid=%04x)\n", (char *)(& (ai->dev)->name), "PC4500_writerid", (int )rid); } } else { } { memset((void *)(& cmd), 0, 8UL); memset((void *)(& rsp), 0, 8UL); ai->config_desc.rid_desc.valid = 1U; ai->config_desc.rid_desc.len = *((u16 *)pBuf); ai->config_desc.rid_desc.rid = 0U; cmd.cmd = 289U; cmd.parm0 = rid; memcpy_toio((void volatile *)ai->config_desc.card_ram_off, (void const *)(& ai->config_desc.rid_desc), 16UL); } if ((unsigned int )len - 4U > 2043U) { { printk("\vairo(%s): %s: len=%d\n", (char *)(& (ai->dev)->name), "PC4500_writerid", len); rc = -1; } } else { { memcpy((void *)ai->config_desc.virtual_host_addr, pBuf, (size_t )len); tmp___1 = issuecommand(ai, & cmd, & rsp); rc = (int )tmp___1; } if ((rc & 65280) != 0) { { printk("\vairo(%s): %s: Write rid Error %d\n", (char *)(& (ai->dev)->name), "PC4500_writerid", rc); printk("\vairo(%s): %s: Cmd=%04x\n", (char *)(& (ai->dev)->name), "PC4500_writerid", (int )cmd.cmd); } } else { } if (((int )rsp.status & 32512) != 0) { rc = (int )rsp.rsp0; } else { } } } else { { tmp___2 = PC4500_accessrid(ai, (int )rid, 33); status = (u16 )tmp___2; } if ((unsigned int )status != 0U) { rc = (int )status; goto done; } else { } { tmp___3 = bap_setup(ai, (int )rid, 0, 2); } if (tmp___3 != 0) { rc = -1; goto done; } else { } { bap_write(ai, (__le16 const *)pBuf, len, 2); rc = PC4500_accessrid(ai, (int )rid, 289); } } done: ; if (lock != 0) { { up(& ai->sem); } } else { } return (rc); } } static u16 transmit_allocate(struct airo_info *ai , int lenPayload , int raw ) { unsigned int loop ; Cmd cmd ; Resp rsp ; u16 txFid ; __le16 txControl ; int tmp ; u16 tmp___0 ; unsigned short tmp___1 ; int tmp___2 ; { { loop = 3000U; cmd.cmd = 10U; cmd.parm0 = (u16 )lenPayload; tmp = down_interruptible(& ai->sem); } if (tmp != 0) { return (65535U); } else { } { tmp___0 = issuecommand(ai, & cmd, & rsp); } if ((unsigned int )tmp___0 != 0U) { txFid = 65535U; goto done; } else { } if (((int )rsp.status & 65280) != 0) { txFid = 65535U; goto done; } else { } goto ldv_47628; ldv_47627: ; ldv_47628: { tmp___1 = IN4500(ai, 48); } if (((int )tmp___1 & 8) == 0) { loop = loop - 1U; if (loop != 0U) { goto ldv_47627; } else { goto ldv_47629; } } else { } ldv_47629: ; if (loop == 0U) { txFid = 65535U; goto done; } else { } { txFid = IN4500(ai, 34); OUT4500(ai, 52, 8); } if (raw != 0) { txControl = 46U; } else { txControl = 38U; } { tmp___2 = bap_setup(ai, (int )txFid, 8, 2); } if (tmp___2 != 0) { txFid = 65535U; } else { { bap_write(ai, (__le16 const *)(& txControl), 2, 2); } } done: { up(& ai->sem); } return (txFid); } } static int transmit_802_3_packet(struct airo_info *ai , int len , char *pPacket ) { __le16 payloadLen ; Cmd cmd ; Resp rsp ; int miclen ; u16 txFid ; MICBuffer pMic ; int tmp ; int tmp___0 ; __u16 tmp___1 ; int tmp___2 ; u16 tmp___3 ; { miclen = 0; txFid = (u16 )len; len = len >> 16; if (len <= 12) { { printk("\fairo(%s): Short packet %d\n", (char *)(& (ai->dev)->name), len); } return (-1); } else { } { len = len + -12; tmp___0 = constant_test_bit(4L, (unsigned long const volatile *)(& ai->flags)); } if (tmp___0 != 0 && (unsigned int )ai->micstats.enabled != 0U) { { tmp___1 = __fswab16((int )*((__be16 *)pPacket + 6UL)); } if ((unsigned int )tmp___1 != 34958U) { { tmp = encapsulate(ai, (etherHead *)pPacket, & pMic, len); } if (tmp != 0) { return (-1); } else { } miclen = 18; } else { } } else { } { tmp___2 = bap_setup(ai, (int )txFid, 54, 2); } if (tmp___2 != 0) { return (-1); } else { } { payloadLen = (int )((unsigned short )len) + (int )((unsigned short )miclen); bap_write(ai, (__le16 const *)(& payloadLen), 2, 2); bap_write(ai, (__le16 const *)pPacket, 12, 2); } if (miclen != 0) { { bap_write(ai, (__le16 const *)(& pMic), miclen, 2); } } else { } { bap_write(ai, (__le16 const *)pPacket + 12U, len, 2); memset((void *)(& cmd), 0, 8UL); cmd.cmd = 11U; cmd.parm0 = txFid; tmp___3 = issuecommand(ai, & cmd, & rsp); } if ((unsigned int )tmp___3 != 0U) { return (-1); } else { } if (((int )rsp.status & 65280) != 0) { return (-1); } else { } return (0); } } static int transmit_802_11_packet(struct airo_info *ai , int len , char *pPacket ) { __le16 fc ; __le16 payloadLen ; Cmd cmd ; Resp rsp ; int hdrlen ; u8 tail[28U] ; unsigned int tmp ; u16 txFid ; int tmp___0 ; int tmp___1 ; u16 tmp___2 ; { tail[0] = (unsigned char)0; tail[1] = (unsigned char)0; tail[2] = (unsigned char)0; tail[3] = (unsigned char)0; tail[4] = (unsigned char)0; tail[5] = (unsigned char)0; tail[6] = (unsigned char)0; tail[7] = (unsigned char)0; tail[8] = (unsigned char)0; tail[9] = (unsigned char)0; tail[10] = (unsigned char)0; tail[11] = (unsigned char)0; tail[12] = (unsigned char)0; tail[13] = (unsigned char)0; tail[14] = (unsigned char)0; tail[15] = (unsigned char)0; tail[16] = (unsigned char)0; tail[17] = (unsigned char)0; tail[18] = (unsigned char)0; tail[19] = (unsigned char)0; tail[20] = 6U; tmp = 21U; { while (1) { while_continue: /* CIL Label */ ; if (tmp >= 28U) { goto while_break; } else { } tail[tmp] = (unsigned char)0; tmp = tmp + 1U; } while_break: /* CIL Label */ ; } { txFid = (u16 )len; len = len >> 16; fc = *((__le16 *)pPacket); hdrlen = header_len((int )fc); } if (len < hdrlen) { { printk("\fairo(%s): Short packet %d\n", (char *)(& (ai->dev)->name), len); } return (-1); } else { } { tmp___0 = bap_setup(ai, (int )txFid, 6, 2); } if (tmp___0 != 0) { return (-1); } else { } { payloadLen = (int )((unsigned short )len) - (int )((unsigned short )hdrlen); bap_write(ai, (__le16 const *)(& payloadLen), 2, 2); tmp___1 = bap_setup(ai, (int )txFid, 20, 2); } if (tmp___1 != 0) { return (-1); } else { } { bap_write(ai, (__le16 const *)pPacket, hdrlen, 2); bap_write(ai, (__le16 const *)(& tail) + ((unsigned long )hdrlen + 0xfffffffffffffff6UL), 38 - hdrlen, 2); bap_write(ai, (__le16 const *)pPacket + (unsigned long )hdrlen, len - hdrlen, 2); memset((void *)(& cmd), 0, 8UL); cmd.cmd = 11U; cmd.parm0 = txFid; tmp___2 = issuecommand(ai, & cmd, & rsp); } if ((unsigned int )tmp___2 != 0U) { return (-1); } else { } if (((int )rsp.status & 65280) != 0) { return (-1); } else { } return (0); } } static ssize_t proc_read(struct file *file , char *buffer , size_t len , loff_t *offset ) ; static ssize_t proc_write(struct file *file , char const *buffer , size_t len , loff_t *offset ) ; static int proc_close(struct inode *inode , struct file *file ) ; static int proc_stats_open(struct inode *inode , struct file *file ) ; static int proc_statsdelta_open(struct inode *inode , struct file *file ) ; static int proc_status_open(struct inode *inode , struct file *file ) ; static int proc_SSID_open(struct inode *inode , struct file *file ) ; static int proc_APList_open(struct inode *inode , struct file *file ) ; static int proc_BSSList_open(struct inode *inode , struct file *file ) ; static int proc_config_open(struct inode *inode , struct file *file ) ; static int proc_wepkey_open(struct inode *inode , struct file *file ) ; static struct file_operations const proc_statsdelta_ops = {& __this_module, & default_llseek, & proc_read, 0, 0, 0, 0, 0, 0, 0, 0, & proc_statsdelta_open, 0, & proc_close, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct file_operations const proc_stats_ops = {& __this_module, & default_llseek, & proc_read, 0, 0, 0, 0, 0, 0, 0, 0, & proc_stats_open, 0, & proc_close, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct file_operations const proc_status_ops = {& __this_module, & default_llseek, & proc_read, 0, 0, 0, 0, 0, 0, 0, 0, & proc_status_open, 0, & proc_close, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct file_operations const proc_SSID_ops = {& __this_module, & default_llseek, & proc_read, & proc_write, 0, 0, 0, 0, 0, 0, 0, & proc_SSID_open, 0, & proc_close, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct file_operations const proc_BSSList_ops = {& __this_module, & default_llseek, & proc_read, & proc_write, 0, 0, 0, 0, 0, 0, 0, & proc_BSSList_open, 0, & proc_close, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct file_operations const proc_APList_ops = {& __this_module, & default_llseek, & proc_read, & proc_write, 0, 0, 0, 0, 0, 0, 0, & proc_APList_open, 0, & proc_close, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct file_operations const proc_config_ops = {& __this_module, & default_llseek, & proc_read, & proc_write, 0, 0, 0, 0, 0, 0, 0, & proc_config_open, 0, & proc_close, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct file_operations const proc_wepkey_ops = {& __this_module, & default_llseek, & proc_read, & proc_write, 0, 0, 0, 0, 0, 0, 0, & proc_wepkey_open, 0, & proc_close, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct proc_dir_entry *airo_entry ; static int setup_proc_entry(struct net_device *dev , struct airo_info *apriv ) { struct proc_dir_entry *entry ; { { strcpy((char *)(& apriv->proc_name), (char const *)(& dev->name)); apriv->proc_entry = proc_mkdir_mode((char const *)(& apriv->proc_name), (int )((umode_t )airo_perm), airo_entry); } if ((unsigned long )apriv->proc_entry == (unsigned long )((struct proc_dir_entry *)0)) { return (-12); } else { } { proc_set_user(apriv->proc_entry, proc_kuid, proc_kgid); entry = proc_create_data("StatsDelta", (int )((umode_t )proc_perm) & 292, apriv->proc_entry, & proc_statsdelta_ops, (void *)dev); } if ((unsigned long )entry == (unsigned long )((struct proc_dir_entry *)0)) { goto fail; } else { } { proc_set_user(entry, proc_kuid, proc_kgid); entry = proc_create_data("Stats", (int )((umode_t )proc_perm) & 292, apriv->proc_entry, & proc_stats_ops, (void *)dev); } if ((unsigned long )entry == (unsigned long )((struct proc_dir_entry *)0)) { goto fail; } else { } { proc_set_user(entry, proc_kuid, proc_kgid); entry = proc_create_data("Status", (int )((umode_t )proc_perm) & 292, apriv->proc_entry, & proc_status_ops, (void *)dev); } if ((unsigned long )entry == (unsigned long )((struct proc_dir_entry *)0)) { goto fail; } else { } { proc_set_user(entry, proc_kuid, proc_kgid); entry = proc_create_data("Config", (int )((umode_t )proc_perm), apriv->proc_entry, & proc_config_ops, (void *)dev); } if ((unsigned long )entry == (unsigned long )((struct proc_dir_entry *)0)) { goto fail; } else { } { proc_set_user(entry, proc_kuid, proc_kgid); entry = proc_create_data("SSID", (int )((umode_t )proc_perm), apriv->proc_entry, & proc_SSID_ops, (void *)dev); } if ((unsigned long )entry == (unsigned long )((struct proc_dir_entry *)0)) { goto fail; } else { } { proc_set_user(entry, proc_kuid, proc_kgid); entry = proc_create_data("APList", (int )((umode_t )proc_perm), apriv->proc_entry, & proc_APList_ops, (void *)dev); } if ((unsigned long )entry == (unsigned long )((struct proc_dir_entry *)0)) { goto fail; } else { } { proc_set_user(entry, proc_kuid, proc_kgid); entry = proc_create_data("BSSList", (int )((umode_t )proc_perm), apriv->proc_entry, & proc_BSSList_ops, (void *)dev); } if ((unsigned long )entry == (unsigned long )((struct proc_dir_entry *)0)) { goto fail; } else { } { proc_set_user(entry, proc_kuid, proc_kgid); entry = proc_create_data("WepKey", (int )((umode_t )proc_perm), apriv->proc_entry, & proc_wepkey_ops, (void *)dev); } if ((unsigned long )entry == (unsigned long )((struct proc_dir_entry *)0)) { goto fail; } else { } { proc_set_user(entry, proc_kuid, proc_kgid); } return (0); fail: { remove_proc_subtree((char const *)(& apriv->proc_name), airo_entry); } return (-12); } } static int takedown_proc_entry(struct net_device *dev , struct airo_info *apriv ) { { { remove_proc_subtree((char const *)(& apriv->proc_name), airo_entry); } return (0); } } static ssize_t proc_read(struct file *file , char *buffer , size_t len , loff_t *offset ) { struct proc_data *priv ; ssize_t tmp ; { priv = (struct proc_data *)file->private_data; if ((unsigned long )priv->rbuffer == (unsigned long )((char *)0)) { return (-22L); } else { } { tmp = simple_read_from_buffer((void *)buffer, len, offset, (void const *)priv->rbuffer, (size_t )priv->readlen); } return (tmp); } } static ssize_t proc_write(struct file *file , char const *buffer , size_t len , loff_t *offset ) { ssize_t ret ; struct proc_data *priv ; int __max1 ; int __max2 ; { priv = (struct proc_data *)file->private_data; if ((unsigned long )priv->wbuffer == (unsigned long )((char *)0)) { return (-22L); } else { } { ret = simple_write_to_buffer((void *)priv->wbuffer, (size_t )priv->maxwritelen, offset, (void const *)buffer, len); } if (ret > 0L) { __max1 = priv->writelen; __max2 = (int )*offset; priv->writelen = __max1 > __max2 ? __max1 : __max2; } else { } return (ret); } } static int proc_status_open(struct inode *inode , struct file *file ) { struct proc_data *data ; struct net_device *dev ; void *tmp ; struct airo_info *apriv ; CapabilityRid cap_rid ; StatusRid status_rid ; u16 mode ; int i ; void *tmp___0 ; char *tmp___1 ; void *tmp___2 ; size_t tmp___3 ; { { tmp = PDE_DATA((struct inode const *)inode); dev = (struct net_device *)tmp; apriv = (struct airo_info *)dev->__annonCompField74.ml_priv; tmp___0 = kzalloc(40UL, 208U); file->private_data = tmp___0; } if ((unsigned long )tmp___0 == (unsigned long )((void *)0)) { return (-12); } else { } { data = (struct proc_data *)file->private_data; tmp___2 = kmalloc(2048UL, 208U); tmp___1 = (char *)tmp___2; data->rbuffer = tmp___1; } if ((unsigned long )tmp___1 == (unsigned long )((char *)0)) { { kfree((void const *)file->private_data); } return (-12); } else { } { readStatusRid(apriv, & status_rid, 1); readCapabilityRid(apriv, & cap_rid, 1); mode = status_rid.mode; i = sprintf(data->rbuffer, "Status: %s%s%s%s%s%s%s%s%s\n", (int )mode & 1 ? (char *)"CFG " : (char *)"", ((int )mode & 2) != 0 ? (char *)"ACT " : (char *)"", ((int )mode & 16) != 0 ? (char *)"SYN " : (char *)"", ((int )mode & 32) != 0 ? (char *)"LNK " : (char *)"", ((int )mode & 64) != 0 ? (char *)"LEAP " : (char *)"", ((int )mode & 128) != 0 ? (char *)"PRIV " : (char *)"", ((int )mode & 256) != 0 ? (char *)"KEY " : (char *)"", ((int )mode & 512) != 0 ? (char *)"WEP " : (char *)"", (int )((short )mode) < 0 ? (char *)"ERR " : (char *)""); sprintf(data->rbuffer + (unsigned long )i, "Mode: %x\nSignal Strength: %d\nSignal Quality: %d\nSSID: %-.*s\nAP: %-.16s\nFreq: %d\nBitRate: %dmbs\nDriver Version: %s\nDevice: %s\nManufacturer: %s\nFirmware Version: %s\nRadio type: %x\nCountry: %x\nHardware Version: %x\nSoftware Version: %x\nSoftware Subversion: %x\nBoot block version: %x\n", (int )status_rid.mode, (int )status_rid.normalizedSignalStrength, (int )status_rid.signalQuality, (int )status_rid.SSIDlen, (char *)(& status_rid.SSID), (char *)(& status_rid.apName), (int )status_rid.channel, (int )((unsigned int )status_rid.currentXmitRate / 2U), (char const *)(& version), (char *)(& cap_rid.prodName), (char *)(& cap_rid.manName), (char *)(& cap_rid.prodVer), (int )cap_rid.radioType, (int )cap_rid.country, (int )cap_rid.hardVer, (int )cap_rid.softVer, (int )cap_rid.softSubVer, (int )cap_rid.bootBlockVer); tmp___3 = strlen((char const *)data->rbuffer); data->readlen = (int )tmp___3; } return (0); } } static int proc_stats_rid_open(struct inode *inode , struct file *file , u16 rid ) ; static int proc_statsdelta_open(struct inode *inode , struct file *file ) { int tmp ; int tmp___0 ; { if ((file->f_mode & 2U) != 0U) { { tmp = proc_stats_rid_open(inode, file, 65386); } return (tmp); } else { } { tmp___0 = proc_stats_rid_open(inode, file, 65385); } return (tmp___0); } } static int proc_stats_open(struct inode *inode , struct file *file ) { int tmp ; { { tmp = proc_stats_rid_open(inode, file, 65384); } return (tmp); } } static int proc_stats_rid_open(struct inode *inode , struct file *file , u16 rid ) { struct proc_data *data ; struct net_device *dev ; void *tmp ; struct airo_info *apriv ; StatsRid stats ; int i ; int j ; __le32 *vals ; int len ; void *tmp___0 ; char *tmp___1 ; void *tmp___2 ; size_t tmp___3 ; int tmp___4 ; { { tmp = PDE_DATA((struct inode const *)inode); dev = (struct net_device *)tmp; apriv = (struct airo_info *)dev->__annonCompField74.ml_priv; vals = (__le32 *)(& stats.vals); tmp___0 = kzalloc(40UL, 208U); file->private_data = tmp___0; } if ((unsigned long )tmp___0 == (unsigned long )((void *)0)) { return (-12); } else { } { data = (struct proc_data *)file->private_data; tmp___2 = kmalloc(4096UL, 208U); tmp___1 = (char *)tmp___2; data->rbuffer = tmp___1; } if ((unsigned long )tmp___1 == (unsigned long )((char *)0)) { { kfree((void const *)file->private_data); } return (-12); } else { } { readStatsRid(apriv, & stats, (int )rid, 1); len = (int )stats.len; j = 0; i = 0; } goto ldv_47776; ldv_47775: ; if ((unsigned long )statsLabels[i] == (unsigned long )((char const *)0)) { goto ldv_47773; } else { } { tmp___3 = strlen(statsLabels[i]); } if (((size_t )j + tmp___3) + 16UL > 4096UL) { { printk("\fairo(%s): Potentially disastrous buffer overflow averted!\n", (char *)(& (apriv->dev)->name)); } goto ldv_47774; } else { } { tmp___4 = sprintf(data->rbuffer + (unsigned long )j, "%s: %u\n", statsLabels[i], *(vals + (unsigned long )i)); j = j + tmp___4; } ldv_47773: i = i + 1; ldv_47776: ; if ((unsigned long )statsLabels[i] != (unsigned long )((char const *)-1) && i * 4 < len) { goto ldv_47775; } else { } ldv_47774: ; if (i * 4 >= len) { { printk("\fairo(%s): Got a short rid\n", (char *)(& (apriv->dev)->name)); } } else { } data->readlen = j; return (0); } } static int get_dec_u16(char *buffer , int *start , int limit ) { u16 value ; int valid ; { valid = 0; value = 0U; goto ldv_47785; ldv_47784: valid = 1; value = (unsigned int )value * 10U; value = (unsigned int )((int )value + (int )((u16 )*(buffer + (unsigned long )*start))) + 65488U; *start = *start + 1; ldv_47785: ; if ((*start < limit && (int )((signed char )*(buffer + (unsigned long )*start)) > 47) && (int )((signed char )*(buffer + (unsigned long )*start)) <= 57) { goto ldv_47784; } else { } if (valid == 0) { return (-1); } else { } return ((int )value); } } static int airo_config_commit(struct net_device *dev , struct iw_request_info *info , void *zwrq , char *extra ) ; __inline static int sniffing_mode(struct airo_info *ai ) { { return (((int )ai->config.rmode & 255) > 2); } } static void proc_config_on_close(struct inode *inode , struct file *file ) { struct proc_data *data ; struct net_device *dev ; void *tmp ; struct airo_info *ai ; char *line ; int tmp___0 ; int tmp___1 ; int j ; int tmp___2 ; int tmp___3 ; int v ; int i ; int k ; int tmp___4 ; int v___0 ; int i___0 ; int v___1 ; int i___1 ; int v___2 ; int i___2 ; int v___3 ; int i___3 ; int v___4 ; int i___4 ; int v___5 ; int i___5 ; int v___6 ; int i___6 ; int v___7 ; int i___7 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; int tmp___12 ; int tmp___13 ; int tmp___14 ; int tmp___15 ; int tmp___16 ; int tmp___17 ; int tmp___18 ; int tmp___19 ; int tmp___20 ; int tmp___21 ; int tmp___22 ; { { data = (struct proc_data *)file->private_data; tmp = PDE_DATA((struct inode const *)inode); dev = (struct net_device *)tmp; ai = (struct airo_info *)dev->__annonCompField74.ml_priv; } if (data->writelen == 0) { return; } else { } { readConfigRid(ai, 1); set_bit(13L, (unsigned long volatile *)(& ai->flags)); line = data->wbuffer; } goto ldv_47847; ldv_47846: { tmp___22 = strncmp((char const *)line, "Mode: ", 6UL); } if (tmp___22 == 0) { { line = line + 6UL; tmp___0 = sniffing_mode(ai); } if (tmp___0 != 0) { { set_bit(14L, (unsigned long volatile *)(& ai->flags)); } } else { } { ai->config.rmode = (unsigned int )ai->config.rmode & 65024U; clear_bit(7L, (unsigned long volatile *)(& ai->flags)); ai->config.opmode = (unsigned int )ai->config.opmode & 65280U; ai->config.scanMode = 0U; } if ((int )((signed char )*line) == 97) { ai->config.opmode = ai->config.opmode; } else { ai->config.opmode = (__le16 )((unsigned int )ai->config.opmode | 1U); if ((int )((signed char )*line) == 114) { { ai->config.rmode = (__le16 )((unsigned int )ai->config.rmode | 259U); ai->config.scanMode = 1U; set_bit(7L, (unsigned long volatile *)(& ai->flags)); } } else if ((int )((signed char )*line) == 121) { { ai->config.rmode = (__le16 )((unsigned int )ai->config.rmode | 260U); ai->config.scanMode = 1U; set_bit(7L, (unsigned long volatile *)(& ai->flags)); } } else if ((int )((signed char )*line) == 108) { ai->config.rmode = (__le16 )((unsigned int )ai->config.rmode | 5U); } else { } } { set_bit(13L, (unsigned long volatile *)(& ai->flags)); } } else { { tmp___21 = strncmp((char const *)line, "Radio: ", 7UL); } if (tmp___21 == 0) { { line = line + 7UL; tmp___1 = strncmp((char const *)line, "off", 3UL); } if (tmp___1 == 0) { { set_bit(0L, (unsigned long volatile *)(& ai->flags)); } } else { { clear_bit(0L, (unsigned long volatile *)(& ai->flags)); } } } else { { tmp___20 = strncmp((char const *)line, "NodeName: ", 10UL); } if (tmp___20 == 0) { { line = line + 10UL; memset((void *)(& ai->config.nodeName), 0, 16UL); j = 0; } goto ldv_47805; ldv_47804: ai->config.nodeName[j] = (u8 )*(line + (unsigned long )j); j = j + 1; ldv_47805: ; if (j <= 15 && (int )((signed char )*(line + (unsigned long )j)) != 10) { goto ldv_47804; } else { } { set_bit(13L, (unsigned long volatile *)(& ai->flags)); } } else { { tmp___19 = strncmp((char const *)line, "PowerMode: ", 11UL); } if (tmp___19 == 0) { { line = line + 11UL; tmp___3 = strncmp((char const *)line, "PSPCAM", 6UL); } if (tmp___3 == 0) { { ai->config.powerSaveMode = 2U; set_bit(13L, (unsigned long volatile *)(& ai->flags)); } } else { { tmp___2 = strncmp((char const *)line, "PSP", 3UL); } if (tmp___2 == 0) { { ai->config.powerSaveMode = 1U; set_bit(13L, (unsigned long volatile *)(& ai->flags)); } } else { { ai->config.powerSaveMode = 0U; set_bit(13L, (unsigned long volatile *)(& ai->flags)); } } } } else { { tmp___18 = strncmp((char const *)line, "DataRates: ", 11UL); } if (tmp___18 == 0) { i = 0; k = 0; line = line + 11UL; goto ldv_47811; ldv_47810: tmp___4 = k; k = k + 1; ai->config.rates[tmp___4] = (unsigned char )v; line = line + ((unsigned long )i + 1UL); i = 0; ldv_47811: { v = get_dec_u16(line, & i, 3); } if (v != -1) { goto ldv_47810; } else { } { set_bit(13L, (unsigned long volatile *)(& ai->flags)); } } else { { tmp___17 = strncmp((char const *)line, "Channel: ", 9UL); } if (tmp___17 == 0) { { i___0 = 0; line = line + 9UL; v___0 = get_dec_u16(line, & i___0, i___0 + 3); } if (v___0 != -1) { { ai->config.channelSet = (unsigned short )v___0; set_bit(13L, (unsigned long volatile *)(& ai->flags)); } } else { } } else { { tmp___16 = strncmp((char const *)line, "XmitPower: ", 11UL); } if (tmp___16 == 0) { { i___1 = 0; line = line + 11UL; v___1 = get_dec_u16(line, & i___1, i___1 + 3); } if (v___1 != -1) { { ai->config.txPower = (unsigned short )v___1; set_bit(13L, (unsigned long volatile *)(& ai->flags)); } } else { } } else { { tmp___15 = strncmp((char const *)line, "WEP: ", 5UL); } if (tmp___15 == 0) { line = line + 5UL; { if ((int )*line == 115) { goto case_115; } else { } if ((int )*line == 101) { goto case_101; } else { } goto switch_default; case_115: /* CIL Label */ ai->config.authType = 258U; goto ldv_47818; case_101: /* CIL Label */ ai->config.authType = 257U; goto ldv_47818; switch_default: /* CIL Label */ ai->config.authType = 1U; goto ldv_47818; switch_break: /* CIL Label */ ; } ldv_47818: { set_bit(13L, (unsigned long volatile *)(& ai->flags)); } } else { { tmp___14 = strncmp((char const *)line, "LongRetryLimit: ", 16UL); } if (tmp___14 == 0) { { i___2 = 0; line = line + 16UL; v___2 = get_dec_u16(line, & i___2, 3); v___2 = v___2 >= 0 ? (255 < v___2 ? 255 : v___2) : 0; ai->config.longRetryLimit = (unsigned short )v___2; set_bit(13L, (unsigned long volatile *)(& ai->flags)); } } else { { tmp___13 = strncmp((char const *)line, "ShortRetryLimit: ", 17UL); } if (tmp___13 == 0) { { i___3 = 0; line = line + 17UL; v___3 = get_dec_u16(line, & i___3, 3); v___3 = v___3 >= 0 ? (255 < v___3 ? 255 : v___3) : 0; ai->config.shortRetryLimit = (unsigned short )v___3; set_bit(13L, (unsigned long volatile *)(& ai->flags)); } } else { { tmp___12 = strncmp((char const *)line, "RTSThreshold: ", 14UL); } if (tmp___12 == 0) { { i___4 = 0; line = line + 14UL; v___4 = get_dec_u16(line, & i___4, 4); v___4 = v___4 >= 0 ? (2312 < v___4 ? 2312 : v___4) : 0; ai->config.rtsThres = (unsigned short )v___4; set_bit(13L, (unsigned long volatile *)(& ai->flags)); } } else { { tmp___11 = strncmp((char const *)line, "TXMSDULifetime: ", 16UL); } if (tmp___11 == 0) { { i___5 = 0; line = line + 16UL; v___5 = get_dec_u16(line, & i___5, 5); v___5 = 0 > v___5 ? 0 : v___5; ai->config.txLifetime = (unsigned short )v___5; set_bit(13L, (unsigned long volatile *)(& ai->flags)); } } else { { tmp___10 = strncmp((char const *)line, "RXMSDULifetime: ", 16UL); } if (tmp___10 == 0) { { i___6 = 0; line = line + 16UL; v___6 = get_dec_u16(line, & i___6, 5); v___6 = 0 > v___6 ? 0 : v___6; ai->config.rxLifetime = (unsigned short )v___6; set_bit(13L, (unsigned long volatile *)(& ai->flags)); } } else { { tmp___9 = strncmp((char const *)line, "TXDiversity: ", 13UL); } if (tmp___9 == 0) { { ai->config.txDiversity = (int )((signed char )*(line + 13UL)) != 108 ? ((int )((signed char )*(line + 13UL)) == 114 ? 2U : 3U) : 1U; set_bit(13L, (unsigned long volatile *)(& ai->flags)); } } else { { tmp___8 = strncmp((char const *)line, "RXDiversity: ", 13UL); } if (tmp___8 == 0) { { ai->config.rxDiversity = (int )((signed char )*(line + 13UL)) != 108 ? ((int )((signed char )*(line + 13UL)) == 114 ? 2U : 3U) : 1U; set_bit(13L, (unsigned long volatile *)(& ai->flags)); } } else { { tmp___7 = strncmp((char const *)line, "FragThreshold: ", 15UL); } if (tmp___7 == 0) { { i___7 = 0; line = line + 15UL; v___7 = get_dec_u16(line, & i___7, 4); v___7 = v___7 > 255 ? (2312 < v___7 ? 2312 : v___7) : 256; v___7 = v___7 & 65534; ai->config.fragThresh = (unsigned short )v___7; set_bit(13L, (unsigned long volatile *)(& ai->flags)); } } else { { tmp___6 = strncmp((char const *)line, "Modulation: ", 12UL); } if (tmp___6 == 0) { line = line + 12UL; { if ((int )*line == 100) { goto case_100; } else { } if ((int )*line == 99) { goto case_99; } else { } if ((int )*line == 109) { goto case_109; } else { } goto switch_default___0; case_100: /* CIL Label */ { ai->config.modulation = 0U; set_bit(13L, (unsigned long volatile *)(& ai->flags)); } goto ldv_47834; case_99: /* CIL Label */ { ai->config.modulation = 1U; set_bit(13L, (unsigned long volatile *)(& ai->flags)); } goto ldv_47834; case_109: /* CIL Label */ { ai->config.modulation = 2U; set_bit(13L, (unsigned long volatile *)(& ai->flags)); } goto ldv_47834; switch_default___0: /* CIL Label */ { printk("\fairo(%s): Unknown modulation\n", (char *)(& (ai->dev)->name)); } switch_break___0: /* CIL Label */ ; } ldv_47834: ; } else { { tmp___5 = strncmp((char const *)line, "Preamble: ", 10UL); } if (tmp___5 == 0) { line = line + 10UL; { if ((int )*line == 97) { goto case_97; } else { } if ((int )*line == 108) { goto case_108; } else { } if ((int )*line == 115) { goto case_115___0; } else { } goto switch_default___1; case_97: /* CIL Label */ { ai->config.preamble = 0U; set_bit(13L, (unsigned long volatile *)(& ai->flags)); } goto ldv_47839; case_108: /* CIL Label */ { ai->config.preamble = 1U; set_bit(13L, (unsigned long volatile *)(& ai->flags)); } goto ldv_47839; case_115___0: /* CIL Label */ { ai->config.preamble = 2U; set_bit(13L, (unsigned long volatile *)(& ai->flags)); } goto ldv_47839; switch_default___1: /* CIL Label */ { printk("\fairo(%s): Unknown preamble\n", (char *)(& (ai->dev)->name)); } switch_break___1: /* CIL Label */ ; } ldv_47839: ; } else { { printk("\fairo(%s): Couldn\'t figure out %s\n", (char *)(& (ai->dev)->name), line); } } } } } } } } } } } } } } } } } } } goto ldv_47844; ldv_47843: line = line + 1; ldv_47844: ; if ((int )*line != 0 && (int )*line != 10) { goto ldv_47843; } else { } if ((int )((signed char )*line) != 0) { line = line + 1; } else { } ldv_47847: ; if ((int )((signed char )*line) != 0) { goto ldv_47846; } else { } { airo_config_commit(dev, (struct iw_request_info *)0, (void *)0, (char *)0); } return; } } static char const *get_rmode(__le16 mode ) { { { if (((int )mode & 255) == 3) { goto case_3; } else { } if (((int )mode & 255) == 4) { goto case_4; } else { } if (((int )mode & 255) == 5) { goto case_5; } else { } goto switch_break; case_3: /* CIL Label */ ; return ("rfmon"); case_4: /* CIL Label */ ; return ("yna (any) bss rfmon"); case_5: /* CIL Label */ ; return ("lanmon"); switch_break: /* CIL Label */ ; } return ("ESS"); } } static int proc_config_open(struct inode *inode , struct file *file ) { struct proc_data *data ; struct net_device *dev ; void *tmp ; struct airo_info *ai ; int i ; __le16 mode ; void *tmp___0 ; char *tmp___1 ; void *tmp___2 ; char *tmp___3 ; void *tmp___4 ; int tmp___5 ; char const *tmp___6 ; char const *tmp___7 ; char const *tmp___8 ; size_t tmp___9 ; { { tmp = PDE_DATA((struct inode const *)inode); dev = (struct net_device *)tmp; ai = (struct airo_info *)dev->__annonCompField74.ml_priv; tmp___0 = kzalloc(40UL, 208U); file->private_data = tmp___0; } if ((unsigned long )tmp___0 == (unsigned long )((void *)0)) { return (-12); } else { } { data = (struct proc_data *)file->private_data; tmp___2 = kmalloc(2048UL, 208U); tmp___1 = (char *)tmp___2; data->rbuffer = tmp___1; } if ((unsigned long )tmp___1 == (unsigned long )((char *)0)) { { kfree((void const *)file->private_data); } return (-12); } else { } { tmp___4 = kzalloc(2048UL, 208U); tmp___3 = (char *)tmp___4; data->wbuffer = tmp___3; } if ((unsigned long )tmp___3 == (unsigned long )((char *)0)) { { kfree((void const *)data->rbuffer); kfree((void const *)file->private_data); } return (-12); } else { } { data->maxwritelen = 2048; data->on_close = & proc_config_on_close; readConfigRid(ai, 1); mode = (unsigned int )ai->config.opmode & 255U; tmp___5 = constant_test_bit(0L, (unsigned long const volatile *)(& ai->flags)); } if ((unsigned int )mode != 0U) { if ((unsigned int )mode == 1U) { { tmp___6 = get_rmode((int )ai->config.rmode); tmp___7 = tmp___6; } } else { tmp___7 = (unsigned int )mode != 2U ? ((unsigned int )mode == 3U ? "AP RPTR" : "Error") : "AP"; } tmp___8 = tmp___7; } else { tmp___8 = "adhoc"; } { i = sprintf(data->rbuffer, "Mode: %s\nRadio: %s\nNodeName: %-16s\nPowerMode: %s\nDataRates: %d %d %d %d %d %d %d %d\nChannel: %d\nXmitPower: %d\n", tmp___8, tmp___5 != 0 ? (char *)"off" : (char *)"on", (u8 *)(& ai->config.nodeName), (unsigned int )ai->config.powerSaveMode != 0U ? ((unsigned int )ai->config.powerSaveMode != 1U ? ((unsigned int )ai->config.powerSaveMode == 2U ? (char *)"PSPCAM" : (char *)"Error") : (char *)"PSP") : (char *)"CAM", (int )ai->config.rates[0], (int )ai->config.rates[1], (int )ai->config.rates[2], (int )ai->config.rates[3], (int )ai->config.rates[4], (int )ai->config.rates[5], (int )ai->config.rates[6], (int )ai->config.rates[7], (int )ai->config.channelSet, (int )ai->config.txPower); sprintf(data->rbuffer + (unsigned long )i, "LongRetryLimit: %d\nShortRetryLimit: %d\nRTSThreshold: %d\nTXMSDULifetime: %d\nRXMSDULifetime: %d\nTXDiversity: %s\nRXDiversity: %s\nFragThreshold: %d\nWEP: %s\nModulation: %s\nPreamble: %s\n", (int )ai->config.longRetryLimit, (int )ai->config.shortRetryLimit, (int )ai->config.rtsThres, (int )ai->config.txLifetime, (int )ai->config.rxLifetime, (unsigned int )ai->config.txDiversity != 1U ? ((unsigned int )ai->config.txDiversity == 2U ? (char *)"right" : (char *)"both") : (char *)"left", (unsigned int )ai->config.rxDiversity != 1U ? ((unsigned int )ai->config.rxDiversity == 2U ? (char *)"right" : (char *)"both") : (char *)"left", (int )ai->config.fragThresh, (unsigned int )ai->config.authType != 257U ? ((unsigned int )ai->config.authType == 258U ? (char *)"shared" : (char *)"open") : (char *)"encrypt", (unsigned int )ai->config.modulation != 0U ? ((unsigned int )ai->config.modulation != 1U ? ((unsigned int )ai->config.modulation == 2U ? (char *)"mok" : (char *)"error") : (char *)"cck") : (char *)"default", (unsigned int )ai->config.preamble != 0U ? ((unsigned int )ai->config.preamble != 1U ? ((unsigned int )ai->config.preamble == 2U ? (char *)"short" : (char *)"error") : (char *)"long") : (char *)"auto"); tmp___9 = strlen((char const *)data->rbuffer); data->readlen = (int )tmp___9; } return (0); } } static void proc_SSID_on_close(struct inode *inode , struct file *file ) { struct proc_data *data ; struct net_device *dev ; void *tmp ; struct airo_info *ai ; SsidRid SSID_rid ; int i ; char *p ; char *end ; int j ; int tmp___0 ; char *tmp___1 ; char *tmp___2 ; { { data = (struct proc_data *)file->private_data; tmp = PDE_DATA((struct inode const *)inode); dev = (struct net_device *)tmp; ai = (struct airo_info *)dev->__annonCompField74.ml_priv; p = data->wbuffer; end = p + (unsigned long )data->writelen; } if (data->writelen == 0) { return; } else { } { *end = 10; memset((void *)(& SSID_rid), 0, 104UL); i = 0; } goto ldv_47884; ldv_47883: j = 0; goto ldv_47877; ldv_47876: tmp___0 = j; j = j + 1; tmp___1 = p; p = p + 1; SSID_rid.ssids[i].ssid[tmp___0] = (u8 )*tmp___1; ldv_47877: ; if ((int )((signed char )*p) != 10 && j <= 31) { goto ldv_47876; } else { } if (j == 0) { goto ldv_47879; } else { } SSID_rid.ssids[i].len = (unsigned short )j; goto ldv_47881; ldv_47880: ; ldv_47881: tmp___2 = p; p = p + 1; if ((int )((signed char )*tmp___2) != 10) { goto ldv_47880; } else { } i = i + 1; ldv_47884: ; if (i <= 2 && (unsigned long )p < (unsigned long )end) { goto ldv_47883; } else { } ldv_47879: ; if (i != 0) { SSID_rid.len = 104U; } else { } { disable_MAC(ai, 1); writeSsidRid(ai, & SSID_rid, 1); enable_MAC(ai, 1); } return; } } static void proc_APList_on_close(struct inode *inode , struct file *file ) { struct proc_data *data ; struct net_device *dev ; void *tmp ; struct airo_info *ai ; APListRid APList_rid ; int i ; int j ; int tmp___0 ; int tmp___1 ; { { data = (struct proc_data *)file->private_data; tmp = PDE_DATA((struct inode const *)inode); dev = (struct net_device *)tmp; ai = (struct airo_info *)dev->__annonCompField74.ml_priv; } if (data->writelen == 0) { return; } else { } { memset((void *)(& APList_rid), 0, 26UL); APList_rid.len = 26U; i = 0; } goto ldv_47902; ldv_47901: j = 0; goto ldv_47899; ldv_47898: ; { if (j % 3 == 0) { goto case_0; } else { } if (j % 3 == 1) { goto case_1; } else { } goto switch_break; case_0: /* CIL Label */ { tmp___0 = hex_to_bin((int )*(data->wbuffer + (unsigned long )(j + i * 18))); APList_rid.ap[i][j / 3] = (int )((u8 )tmp___0) << 4U; } goto ldv_47896; case_1: /* CIL Label */ { tmp___1 = hex_to_bin((int )*(data->wbuffer + (unsigned long )(j + i * 18))); APList_rid.ap[i][j / 3] = (u8 )((int )((signed char )APList_rid.ap[i][j / 3]) | (int )((signed char )tmp___1)); } goto ldv_47896; switch_break: /* CIL Label */ ; } ldv_47896: j = j + 1; ldv_47899: ; if (j <= 17 && (int )((signed char )*(data->wbuffer + (unsigned long )(j + i * 18))) != 0) { goto ldv_47898; } else { } i = i + 1; ldv_47902: ; if (i <= 3 && data->writelen >= (i + 1) * 18) { goto ldv_47901; } else { } { disable_MAC(ai, 1); writeAPListRid(ai, & APList_rid, 1); enable_MAC(ai, 1); } return; } } static int do_writerid(struct airo_info *ai , u16 rid , void const *rid_data , int len , int dummy ) { int rc ; { { disable_MAC(ai, 1); rc = PC4500_writerid(ai, (int )rid, rid_data, len, 1); enable_MAC(ai, 1); } return (rc); } } static int get_wep_key(struct airo_info *ai , u16 index , char *buf , u16 buflen ) { WepKeyRid wkr ; int rc ; __le16 lastindex ; int klen ; int __min1 ; int __min2 ; { { rc = readWepKeyRid(ai, & wkr, 1, 1); } if (rc != 0) { return (-1); } else { } ldv_47925: lastindex = wkr.kindex; if ((int )wkr.kindex == (int )index) { { __min1 = (int )buflen; __min2 = (int )wkr.klen; klen = __min1 < __min2 ? __min1 : __min2; memcpy((void *)buf, (void const *)(& wkr.key), (size_t )klen); } return (klen); } else { } { rc = readWepKeyRid(ai, & wkr, 0, 1); } if (rc != 0) { return (-1); } else { } if ((int )lastindex != (int )wkr.kindex) { goto ldv_47925; } else { } return (-1); } } static int get_wep_tx_idx(struct airo_info *ai ) { WepKeyRid wkr ; int rc ; __le16 lastindex ; { { rc = readWepKeyRid(ai, & wkr, 1, 1); } if (rc != 0) { return (-1); } else { } ldv_47933: lastindex = wkr.kindex; if ((unsigned int )wkr.kindex == 65535U) { return ((int )wkr.mac[0]); } else { } { rc = readWepKeyRid(ai, & wkr, 0, 1); } if (rc != 0) { return (-1); } else { } if ((int )lastindex != (int )wkr.kindex) { goto ldv_47933; } else { } return (-1); } } static int set_wep_key(struct airo_info *ai , u16 index , char const *key , u16 keylen , int perm , int lock ) { unsigned char macaddr[6U] ; WepKeyRid wkr ; int rc ; int __ret_warn_on ; long tmp ; long tmp___0 ; { { macaddr[0] = 1U; macaddr[1] = 0U; macaddr[2] = 0U; macaddr[3] = 0U; macaddr[4] = 0U; macaddr[5] = 0U; __ret_warn_on = (unsigned int )keylen == 0U; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/airo.c", 5208); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { return (-1); } else { } { memset((void *)(& wkr), 0, 28UL); wkr.len = 28U; wkr.kindex = index; wkr.klen = keylen; memcpy((void *)(& wkr.key), (void const *)key, (size_t )keylen); memcpy((void *)(& wkr.mac), (void const *)(& macaddr), 6UL); } if (perm != 0) { { disable_MAC(ai, lock); } } else { } { rc = writeWepKeyRid(ai, & wkr, perm, lock); } if (perm != 0) { { enable_MAC(ai, lock); } } else { } return (rc); } } static int set_wep_tx_idx(struct airo_info *ai , u16 index , int perm , int lock ) { WepKeyRid wkr ; int rc ; { { memset((void *)(& wkr), 0, 28UL); wkr.len = 28U; wkr.kindex = 65535U; wkr.mac[0] = (u8 )index; } if (perm != 0) { { ai->defindex = (char )index; disable_MAC(ai, lock); } } else { } { rc = writeWepKeyRid(ai, & wkr, perm, lock); } if (perm != 0) { { enable_MAC(ai, lock); } } else { } return (rc); } } static void proc_wepkey_on_close(struct inode *inode , struct file *file ) { struct proc_data *data ; struct net_device *dev ; void *tmp ; struct airo_info *ai ; int i ; int rc ; char key[16U] ; u16 index ; int j ; int tmp___0 ; int tmp___1 ; { { tmp = PDE_DATA((struct inode const *)inode); dev = (struct net_device *)tmp; ai = (struct airo_info *)dev->__annonCompField74.ml_priv; index = 0U; j = 0; memset((void *)(& key), 0, 16UL); data = (struct proc_data *)file->private_data; } if (data->writelen == 0) { return; } else { } if ((unsigned int )((unsigned char )*(data->wbuffer)) - 48U <= 3U && ((int )*(data->wbuffer + 1UL) == 32 || (int )*(data->wbuffer + 1UL) == 10)) { index = (unsigned int )((u16 )*(data->wbuffer)) + 65488U; if ((int )((signed char )*(data->wbuffer + 1UL)) == 10) { { rc = set_wep_tx_idx(ai, (int )index, 1, 1); } if (rc < 0) { { printk("\vairo(%s): failed to set WEP transmit index to %d: %d.\n", (char *)(& (ai->dev)->name), (int )index, rc); } } else { } return; } else { } j = 2; } else { { printk("\vairo(%s): WepKey passed invalid key index\n", (char *)(& (ai->dev)->name)); } return; } i = 0; goto ldv_47972; ldv_47971: ; { if (i % 3 == 0) { goto case_0; } else { } if (i % 3 == 1) { goto case_1; } else { } goto switch_break; case_0: /* CIL Label */ { tmp___0 = hex_to_bin((int )*(data->wbuffer + (unsigned long )(i + j))); key[i / 3] = (char )(tmp___0 << 4); } goto ldv_47969; case_1: /* CIL Label */ { tmp___1 = hex_to_bin((int )*(data->wbuffer + (unsigned long )(i + j))); key[i / 3] = (int )key[i / 3] | (int )((char )tmp___1); } goto ldv_47969; switch_break: /* CIL Label */ ; } ldv_47969: i = i + 1; ldv_47972: ; if (i <= 47 && (int )((signed char )*(data->wbuffer + (unsigned long )(i + j))) != 0) { goto ldv_47971; } else { } { rc = set_wep_key(ai, (int )index, (char const *)(& key), (int )((u16 )(i / 3)), 1, 1); } if (rc < 0) { { printk("\vairo(%s): failed to set WEP key at index %d: %d.\n", (char *)(& (ai->dev)->name), (int )index, rc); } } else { } return; } } static int proc_wepkey_open(struct inode *inode , struct file *file ) { struct proc_data *data ; struct net_device *dev ; void *tmp ; struct airo_info *ai ; char *ptr ; WepKeyRid wkr ; __le16 lastindex ; int j ; int rc ; void *tmp___0 ; char *tmp___1 ; void *tmp___2 ; char *tmp___3 ; void *tmp___4 ; int tmp___5 ; int tmp___6 ; size_t tmp___7 ; { { tmp = PDE_DATA((struct inode const *)inode); dev = (struct net_device *)tmp; ai = (struct airo_info *)dev->__annonCompField74.ml_priv; j = 0; tmp___0 = kzalloc(40UL, 208U); file->private_data = tmp___0; } if ((unsigned long )tmp___0 == (unsigned long )((void *)0)) { return (-12); } else { } { memset((void *)(& wkr), 0, 28UL); data = (struct proc_data *)file->private_data; tmp___2 = kzalloc(180UL, 208U); tmp___1 = (char *)tmp___2; data->rbuffer = tmp___1; } if ((unsigned long )tmp___1 == (unsigned long )((char *)0)) { { kfree((void const *)file->private_data); } return (-12); } else { } { data->writelen = 0; data->maxwritelen = 80; tmp___4 = kzalloc(80UL, 208U); tmp___3 = (char *)tmp___4; data->wbuffer = tmp___3; } if ((unsigned long )tmp___3 == (unsigned long )((char *)0)) { { kfree((void const *)data->rbuffer); kfree((void const *)file->private_data); } return (-12); } else { } { data->on_close = & proc_wepkey_on_close; ptr = data->rbuffer; strcpy(ptr, "No wep keys\n"); rc = readWepKeyRid(ai, & wkr, 1, 1); } if (rc == 0) { ldv_47986: lastindex = wkr.kindex; if ((unsigned int )wkr.kindex == 65535U) { { tmp___5 = sprintf(ptr + (unsigned long )j, "Tx key = %d\n", (int )wkr.mac[0]); j = j + tmp___5; } } else { { tmp___6 = sprintf(ptr + (unsigned long )j, "Key %d set with length = %d\n", (int )wkr.kindex, (int )wkr.klen); j = j + tmp___6; } } { readWepKeyRid(ai, & wkr, 0, 1); } if ((int )lastindex != (int )wkr.kindex && j <= 149) { goto ldv_47986; } else { } } else { } { tmp___7 = strlen((char const *)data->rbuffer); data->readlen = (int )tmp___7; } return (0); } } static int proc_SSID_open(struct inode *inode , struct file *file ) { struct proc_data *data ; struct net_device *dev ; void *tmp ; struct airo_info *ai ; int i ; char *ptr ; SsidRid SSID_rid ; void *tmp___0 ; char *tmp___1 ; void *tmp___2 ; char *tmp___3 ; void *tmp___4 ; int j ; size_t len ; char *tmp___5 ; char *tmp___6 ; size_t tmp___7 ; { { tmp = PDE_DATA((struct inode const *)inode); dev = (struct net_device *)tmp; ai = (struct airo_info *)dev->__annonCompField74.ml_priv; tmp___0 = kzalloc(40UL, 208U); file->private_data = tmp___0; } if ((unsigned long )tmp___0 == (unsigned long )((void *)0)) { return (-12); } else { } { data = (struct proc_data *)file->private_data; tmp___2 = kmalloc(104UL, 208U); tmp___1 = (char *)tmp___2; data->rbuffer = tmp___1; } if ((unsigned long )tmp___1 == (unsigned long )((char *)0)) { { kfree((void const *)file->private_data); } return (-12); } else { } { data->writelen = 0; data->maxwritelen = 99; tmp___4 = kzalloc(100UL, 208U); tmp___3 = (char *)tmp___4; data->wbuffer = tmp___3; } if ((unsigned long )tmp___3 == (unsigned long )((char *)0)) { { kfree((void const *)data->rbuffer); kfree((void const *)file->private_data); } return (-12); } else { } { data->on_close = & proc_SSID_on_close; readSsidRid(ai, & SSID_rid); ptr = data->rbuffer; i = 0; } goto ldv_48005; ldv_48004: len = (size_t )SSID_rid.ssids[i].len; if (len == 0UL) { goto ldv_48000; } else { } if (len > 32UL) { len = 32UL; } else { } j = 0; goto ldv_48002; ldv_48001: tmp___5 = ptr; ptr = ptr + 1; *tmp___5 = (char )SSID_rid.ssids[i].ssid[j]; j = j + 1; ldv_48002: ; if ((size_t )j < len && (unsigned int )SSID_rid.ssids[i].ssid[j] != 0U) { goto ldv_48001; } else { } tmp___6 = ptr; ptr = ptr + 1; *tmp___6 = 10; i = i + 1; ldv_48005: ; if (i <= 2) { goto ldv_48004; } else { } ldv_48000: { *ptr = 0; tmp___7 = strlen((char const *)data->rbuffer); data->readlen = (int )tmp___7; } return (0); } } static int proc_APList_open(struct inode *inode , struct file *file ) { struct proc_data *data ; struct net_device *dev ; void *tmp ; struct airo_info *ai ; int i ; char *ptr ; APListRid APList_rid ; void *tmp___0 ; char *tmp___1 ; void *tmp___2 ; char *tmp___3 ; void *tmp___4 ; int tmp___5 ; int tmp___6 ; size_t tmp___7 ; { { tmp = PDE_DATA((struct inode const *)inode); dev = (struct net_device *)tmp; ai = (struct airo_info *)dev->__annonCompField74.ml_priv; tmp___0 = kzalloc(40UL, 208U); file->private_data = tmp___0; } if ((unsigned long )tmp___0 == (unsigned long )((void *)0)) { return (-12); } else { } { data = (struct proc_data *)file->private_data; tmp___2 = kmalloc(104UL, 208U); tmp___1 = (char *)tmp___2; data->rbuffer = tmp___1; } if ((unsigned long )tmp___1 == (unsigned long )((char *)0)) { { kfree((void const *)file->private_data); } return (-12); } else { } { data->writelen = 0; data->maxwritelen = 72; tmp___4 = kzalloc((size_t )data->maxwritelen, 208U); tmp___3 = (char *)tmp___4; data->wbuffer = tmp___3; } if ((unsigned long )tmp___3 == (unsigned long )((char *)0)) { { kfree((void const *)data->rbuffer); kfree((void const *)file->private_data); } return (-12); } else { } { data->on_close = & proc_APList_on_close; readAPListRid(ai, & APList_rid); ptr = data->rbuffer; i = 0; } goto ldv_48018; ldv_48017: ; if (*((int *)(& APList_rid.ap) + (unsigned long )i) == 0 && *((int *)(& APList_rid.ap) + ((unsigned long )i + 2UL)) == 0) { goto ldv_48016; } else { } { tmp___5 = sprintf(ptr, "%pM\n", (u8 *)(& APList_rid.ap) + (unsigned long )i); ptr = ptr + (unsigned long )tmp___5; i = i + 1; } ldv_48018: ; if (i <= 3) { goto ldv_48017; } else { } ldv_48016: ; if (i == 0) { { tmp___6 = sprintf(ptr, "Not using specific APs\n"); ptr = ptr + (unsigned long )tmp___6; } } else { } { *ptr = 0; tmp___7 = strlen((char const *)data->rbuffer); data->readlen = (int )tmp___7; } return (0); } } static int proc_BSSList_open(struct inode *inode , struct file *file ) { struct proc_data *data ; struct net_device *dev ; void *tmp ; struct airo_info *ai ; char *ptr ; BSSListRid BSSList_rid ; int rc ; int doLoseSync ; void *tmp___0 ; char *tmp___1 ; void *tmp___2 ; Cmd cmd ; Resp rsp ; int tmp___3 ; int tmp___4 ; int tmp___5 ; size_t tmp___6 ; { { tmp = PDE_DATA((struct inode const *)inode); dev = (struct net_device *)tmp; ai = (struct airo_info *)dev->__annonCompField74.ml_priv; doLoseSync = -1; tmp___0 = kzalloc(40UL, 208U); file->private_data = tmp___0; } if ((unsigned long )tmp___0 == (unsigned long )((void *)0)) { return (-12); } else { } { data = (struct proc_data *)file->private_data; tmp___2 = kmalloc(1024UL, 208U); tmp___1 = (char *)tmp___2; data->rbuffer = tmp___1; } if ((unsigned long )tmp___1 == (unsigned long )((char *)0)) { { kfree((void const *)file->private_data); } return (-12); } else { } data->writelen = 0; data->maxwritelen = 0; data->wbuffer = (char *)0; data->on_close = (void (*)(struct inode * , struct file * ))0; if ((file->f_mode & 2U) != 0U) { if ((file->f_mode & 1U) == 0U) { if ((ai->flags & 3UL) != 0UL) { return (-100); } else { } { memset((void *)(& cmd), 0, 8UL); cmd.cmd = 259U; tmp___3 = down_interruptible(& ai->sem); } if (tmp___3 != 0) { return (-512); } else { } { issuecommand(ai, & cmd, & rsp); up(& ai->sem); data->readlen = 0; } return (0); } else { } doLoseSync = 1; } else { } { ptr = data->rbuffer; rc = readBSSListRid(ai, doLoseSync, & BSSList_rid); } goto ldv_48033; ldv_48032: { tmp___4 = sprintf(ptr, "%pM %*s rssi = %d", (u8 *)(& BSSList_rid.bssid), (int )BSSList_rid.ssidLen, (u8 *)(& BSSList_rid.ssid), (int )BSSList_rid.dBm); ptr = ptr + (unsigned long )tmp___4; tmp___5 = sprintf(ptr, " channel = %d %s %s %s %s\n", (int )BSSList_rid.dsChannel, (int )BSSList_rid.cap & 1 ? (char *)"ESS" : (char *)"", ((int )BSSList_rid.cap & 2) != 0 ? (char *)"adhoc" : (char *)"", ((int )BSSList_rid.cap & 16) != 0 ? (char *)"wep" : (char *)"", ((int )BSSList_rid.cap & 32) != 0 ? (char *)"shorthdr" : (char *)""); ptr = ptr + (unsigned long )tmp___5; rc = readBSSListRid(ai, 0, & BSSList_rid); } ldv_48033: ; if (rc == 0 && (unsigned int )BSSList_rid.index != 65535U) { goto ldv_48032; } else { } { *ptr = 0; tmp___6 = strlen((char const *)data->rbuffer); data->readlen = (int )tmp___6; } return (0); } } static int proc_close(struct inode *inode , struct file *file ) { struct proc_data *data ; { data = (struct proc_data *)file->private_data; if ((unsigned long )data->on_close != (unsigned long )((void (*)(struct inode * , struct file * ))0)) { { (*(data->on_close))(inode, file); } } else { } { kfree((void const *)data->rbuffer); kfree((void const *)data->wbuffer); kfree((void const *)data); } return (0); } } static void timer_func(struct net_device *dev ) { struct airo_info *apriv ; { { apriv = (struct airo_info *)dev->__annonCompField74.ml_priv; readConfigRid(apriv, 0); disable_MAC(apriv, 0); } { if ((int )apriv->config.authType == 257) { goto case_257; } else { } if ((int )apriv->config.authType == 258) { goto case_258; } else { } goto switch_default; case_257: /* CIL Label */ apriv->config.authType = 1U; goto ldv_48045; case_258: /* CIL Label */ ; if ((int )apriv->keyindex < auto_wep) { { set_wep_tx_idx(apriv, (int )((u16 )apriv->keyindex), 0, 0); apriv->config.authType = 258U; apriv->keyindex = (char )((int )apriv->keyindex + 1); } } else { { apriv->keyindex = 0; set_wep_tx_idx(apriv, (int )((u16 )apriv->defindex), 0, 0); apriv->config.authType = 257U; } } goto ldv_48045; switch_default: /* CIL Label */ apriv->config.authType = 258U; switch_break: /* CIL Label */ ; } ldv_48045: { set_bit(13L, (unsigned long volatile *)(& apriv->flags)); writeConfigRid(apriv, 0); enable_MAC(apriv, 0); up(& apriv->sem); clear_bit(7L, (unsigned long volatile *)(& apriv->jobs)); apriv->expires = (unsigned long )jiffies + 750UL; } return; } } static int airo_pci_probe(struct pci_dev *pdev , struct pci_device_id const *pent ) { struct net_device *dev ; int tmp ; { { tmp = pci_enable_device(pdev); } if (tmp != 0) { return (-19); } else { } { pci_set_master(pdev); } if ((unsigned int )pdev->device == 20480U || (unsigned int )pdev->device == 42244U) { { dev = _init_airo_card((int )((unsigned short )pdev->irq), (int )pdev->resource[0].start, 0, pdev, & pdev->dev); } } else { { dev = _init_airo_card((int )((unsigned short )pdev->irq), (int )pdev->resource[2].start, 0, pdev, & pdev->dev); } } if ((unsigned long )dev == (unsigned long )((struct net_device *)0)) { { pci_disable_device(pdev); } return (-19); } else { } { pci_set_drvdata(pdev, (void *)dev); } return (0); } } static void airo_pci_remove(struct pci_dev *pdev ) { struct net_device *dev ; void *tmp ; { { tmp = pci_get_drvdata(pdev); dev = (struct net_device *)tmp; printk("\016airo(%s): Unregistering...\n", (char *)(& dev->name)); stop_airo_card(dev, 1); pci_disable_device(pdev); } return; } } static int airo_pci_suspend(struct pci_dev *pdev , pm_message_t state ) { struct net_device *dev ; void *tmp ; struct airo_info *ai ; Cmd cmd ; Resp rsp ; void *tmp___0 ; void *tmp___1 ; int tmp___2 ; pci_power_t tmp___3 ; pci_power_t tmp___4 ; { { tmp = pci_get_drvdata(pdev); dev = (struct net_device *)tmp; ai = (struct airo_info *)dev->__annonCompField74.ml_priv; } if ((unsigned long )ai->APList == (unsigned long )((APListRid *)0)) { { tmp___0 = kmalloc(26UL, 208U); ai->APList = (APListRid *)tmp___0; } } else { } if ((unsigned long )ai->APList == (unsigned long )((APListRid *)0)) { return (-12); } else { } if ((unsigned long )ai->SSID == (unsigned long )((SsidRid *)0)) { { tmp___1 = kmalloc(104UL, 208U); ai->SSID = (SsidRid *)tmp___1; } } else { } if ((unsigned long )ai->SSID == (unsigned long )((SsidRid *)0)) { return (-12); } else { } { readAPListRid(ai, ai->APList); readSsidRid(ai, ai->SSID); memset((void *)(& cmd), 0, 8UL); tmp___2 = down_interruptible(& ai->sem); } if (tmp___2 != 0) { return (-11); } else { } { disable_MAC(ai, 0); netif_device_detach(dev); ai->power = state; cmd.cmd = 5U; issuecommand(ai, & cmd, & rsp); tmp___3 = pci_choose_state(pdev, state); pci_enable_wake(pdev, tmp___3, 1); pci_save_state(pdev); tmp___4 = pci_choose_state(pdev, state); pci_set_power_state(pdev, tmp___4); } return (0); } } static int airo_pci_resume(struct pci_dev *pdev ) { struct net_device *dev ; void *tmp ; struct airo_info *ai ; pci_power_t prev_state ; struct pm_message __constr_expr_0 ; { { tmp = pci_get_drvdata(pdev); dev = (struct net_device *)tmp; ai = (struct airo_info *)dev->__annonCompField74.ml_priv; prev_state = pdev->current_state; pci_set_power_state(pdev, 0); pci_restore_state(pdev); pci_enable_wake(pdev, 0, 0); } if (prev_state != 1) { { reset_card(dev, 0); mpi_init_descriptors(ai); setup_card(ai, dev->dev_addr, 0); clear_bit(0L, (unsigned long volatile *)(& ai->flags)); clear_bit(9L, (unsigned long volatile *)(& ai->flags)); } } else { { OUT4500(ai, 52, 8192); OUT4500(ai, 52, 8192); msleep(100U); } } { set_bit(13L, (unsigned long volatile *)(& ai->flags)); disable_MAC(ai, 0); msleep(200U); } if ((unsigned long )ai->SSID != (unsigned long )((SsidRid *)0)) { { writeSsidRid(ai, ai->SSID, 0); kfree((void const *)ai->SSID); ai->SSID = (SsidRid *)0; } } else { } if ((unsigned long )ai->APList != (unsigned long )((APListRid *)0)) { { writeAPListRid(ai, ai->APList, 0); kfree((void const *)ai->APList); ai->APList = (APListRid *)0; } } else { } { writeConfigRid(ai, 0); enable_MAC(ai, 0); __constr_expr_0.event = 0; ai->power = __constr_expr_0; netif_device_attach(dev); netif_wake_queue(dev); enable_interrupts(ai); up(& ai->sem); } return (0); } } static int airo_init_module(void) { int i ; bool tmp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; struct net_device *tmp___3 ; { { proc_kuid = make_kuid(& init_user_ns, (uid_t )proc_uid); proc_kgid = make_kgid(& init_user_ns, (gid_t )proc_gid); tmp = uid_valid(proc_kuid); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (-22); } else { { tmp___1 = gid_valid(proc_kgid); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { return (-22); } else { } } { airo_entry = proc_mkdir_mode("driver/aironet", (int )((umode_t )airo_perm), (struct proc_dir_entry *)0); } if ((unsigned long )airo_entry != (unsigned long )((struct proc_dir_entry *)0)) { { proc_set_user(airo_entry, proc_kuid, proc_kgid); } } else { } i = 0; goto ldv_48077; ldv_48076: { printk("\016airo(%s): Trying to configure ISA adapter at irq=%d io=0x%x\n", (char *)"", irq[i], io[i]); tmp___3 = init_airo_card((int )((unsigned short )irq[i]), io[i], 0, (struct device *)0); i = i + 1; } ldv_48077: ; if ((i <= 3 && io[i] != 0) && irq[i] != 0) { goto ldv_48076; } else { } { printk("\016airo(%s): Probing for PCI adapters\n", (char *)""); i = ldv___pci_register_driver_82(& airo_driver, & __this_module, "airo"); printk("\016airo(%s): Finished probing for PCI adapters\n", (char *)""); } if (i != 0) { { remove_proc_entry("driver/aironet", (struct proc_dir_entry *)0); } return (i); } else { } return (0); } } static void airo_cleanup_module(void) { struct airo_info *ai ; struct list_head const *__mptr ; int tmp ; { goto ldv_48086; ldv_48085: { __mptr = (struct list_head const *)airo_devices.next; ai = (struct airo_info *)__mptr + 0xfffffffffffffff8UL; printk("\016airo(%s): Unregistering...\n", (char *)(& (ai->dev)->name)); stop_airo_card(ai->dev, 1); } ldv_48086: { tmp = list_empty((struct list_head const *)(& airo_devices)); } if (tmp == 0) { goto ldv_48085; } else { } { ldv_pci_unregister_driver_83(& airo_driver); remove_proc_entry("driver/aironet", (struct proc_dir_entry *)0); } return; } } static u8 airo_rssi_to_dbm(tdsRssiEntry *rssi_rid , u8 rssi ) { { if ((unsigned long )rssi_rid == (unsigned long )((tdsRssiEntry *)0)) { return (0U); } else { } return (- ((int )(rssi_rid + (unsigned long )rssi)->rssidBm)); } } static u8 airo_dbm_to_pct(tdsRssiEntry *rssi_rid , u8 dbm ) { int i ; { if ((unsigned long )rssi_rid == (unsigned long )((tdsRssiEntry *)0)) { return (0U); } else { } i = 0; goto ldv_48098; ldv_48097: ; if ((int )(rssi_rid + (unsigned long )i)->rssidBm == (int )dbm) { return ((rssi_rid + (unsigned long )i)->rssipct); } else { } i = i + 1; ldv_48098: ; if (i <= 255) { goto ldv_48097; } else { } return (0U); } } static int airo_get_quality(StatusRid *status_rid , CapabilityRid *cap_rid ) { int quality ; u16 sq ; int tmp ; { quality = 0; if (((int )status_rid->mode & 63) != 63) { return (0); } else { } if (((int )cap_rid->hardCap & 8) == 0) { return (0); } else { } { sq = status_rid->signalQuality; tmp = memcmp((void const *)(& cap_rid->prodName), (void const *)"350", 3UL); } if (tmp != 0) { if ((unsigned int )sq > 32U) { quality = 0; } else { quality = 32 - (int )sq; } } else if ((unsigned int )sq > 176U) { quality = 0; } else if ((unsigned int )sq <= 15U) { quality = 160; } else { quality = 176 - (int )sq; } return (quality); } } static int airo_get_name(struct net_device *dev , struct iw_request_info *info , char *cwrq , char *extra ) { { { strcpy(cwrq, "IEEE 802.11-DS"); } return (0); } } static int airo_set_freq(struct net_device *dev , struct iw_request_info *info , struct iw_freq *fwrq , char *extra ) { struct airo_info *local ; int rc ; int f ; int channel ; { local = (struct airo_info *)dev->__annonCompField74.ml_priv; rc = -115; if ((int )fwrq->e == 1) { { f = fwrq->m / 100000; fwrq->e = 0; fwrq->m = ieee80211_freq_to_dsss_chan(f); } } else { } if (fwrq->m > 1000 || (int )fwrq->e > 0) { rc = -95; } else { channel = fwrq->m; if ((unsigned int )channel - 1U > 13U) { { printk("\017airo(%s): New channel value of %d is invalid!\n", (char *)(& dev->name), fwrq->m); rc = -22; } } else { { readConfigRid(local, 1); local->config.channelSet = (unsigned short )channel; set_bit(13L, (unsigned long volatile *)(& local->flags)); } } } return (rc); } } static int airo_get_freq(struct net_device *dev , struct iw_request_info *info , struct iw_freq *fwrq , char *extra ) { struct airo_info *local ; StatusRid status_rid ; int ch ; int tmp ; { { local = (struct airo_info *)dev->__annonCompField74.ml_priv; readConfigRid(local, 1); } if (((int )local->config.opmode & 255) == 1) { status_rid.channel = local->config.channelSet; } else { { readStatusRid(local, & status_rid, 1); } } ch = (int )status_rid.channel; if ((unsigned int )ch - 1U <= 13U) { { tmp = ieee80211_dsss_chan_to_freq(ch); fwrq->m = tmp * 100000; fwrq->e = 1; } } else { fwrq->m = ch; fwrq->e = 0; } return (0); } } static int airo_set_essid(struct net_device *dev , struct iw_request_info *info , struct iw_point *dwrq , char *extra ) { struct airo_info *local ; SsidRid SSID_rid ; unsigned int index ; { { local = (struct airo_info *)dev->__annonCompField74.ml_priv; readSsidRid(local, & SSID_rid); } if ((unsigned int )dwrq->flags == 0U) { { memset((void *)(& SSID_rid), 0, 104UL); } } else { index = (unsigned int )(((int )dwrq->flags & 255) + -1); if ((unsigned int )dwrq->length > 32U) { return (-7); } else { } if (index > 2U) { return (-22); } else { } { memset((void *)(& SSID_rid.ssids[index].ssid), 0, 32UL); memcpy((void *)(& SSID_rid.ssids[index].ssid), (void const *)extra, (size_t )dwrq->length); SSID_rid.ssids[index].len = dwrq->length; } } { SSID_rid.len = 104U; disable_MAC(local, 1); writeSsidRid(local, & SSID_rid, 1); enable_MAC(local, 1); } return (0); } } static int airo_get_essid(struct net_device *dev , struct iw_request_info *info , struct iw_point *dwrq , char *extra ) { struct airo_info *local ; StatusRid status_rid ; { { local = (struct airo_info *)dev->__annonCompField74.ml_priv; readStatusRid(local, & status_rid, 1); memcpy((void *)extra, (void const *)(& status_rid.SSID), (size_t )status_rid.SSIDlen); dwrq->length = status_rid.SSIDlen; dwrq->flags = 1U; } return (0); } } static int airo_set_wap(struct net_device *dev , struct iw_request_info *info , struct sockaddr *awrq , char *extra ) { struct airo_info *local ; Cmd cmd ; Resp rsp ; APListRid APList_rid ; int tmp ; bool tmp___0 ; bool tmp___1 ; { local = (struct airo_info *)dev->__annonCompField74.ml_priv; if ((unsigned int )awrq->sa_family != 1U) { return (-22); } else { { tmp___0 = is_broadcast_ether_addr((u8 const *)(& awrq->sa_data)); } if ((int )tmp___0) { goto _L; } else { { tmp___1 = is_zero_ether_addr((u8 const *)(& awrq->sa_data)); } if ((int )tmp___1) { _L: /* CIL Label */ { memset((void *)(& cmd), 0, 8UL); cmd.cmd = 3U; tmp = down_interruptible(& local->sem); } if (tmp != 0) { return (-512); } else { } { issuecommand(local, & cmd, & rsp); up(& local->sem); } } else { { memset((void *)(& APList_rid), 0, 26UL); APList_rid.len = 26U; memcpy((void *)(& APList_rid.ap), (void const *)(& awrq->sa_data), 6UL); disable_MAC(local, 1); writeAPListRid(local, & APList_rid, 1); enable_MAC(local, 1); } } } } return (0); } } static int airo_get_wap(struct net_device *dev , struct iw_request_info *info , struct sockaddr *awrq , char *extra ) { struct airo_info *local ; StatusRid status_rid ; { { local = (struct airo_info *)dev->__annonCompField74.ml_priv; readStatusRid(local, & status_rid, 1); memcpy((void *)(& awrq->sa_data), (void const *)(& status_rid.bssid), 6UL); awrq->sa_family = 1U; } return (0); } } static int airo_set_nick(struct net_device *dev , struct iw_request_info *info , struct iw_point *dwrq , char *extra ) { struct airo_info *local ; { local = (struct airo_info *)dev->__annonCompField74.ml_priv; if ((unsigned int )dwrq->length > 16U) { return (-7); } else { } { readConfigRid(local, 1); memset((void *)(& local->config.nodeName), 0, 16UL); memcpy((void *)(& local->config.nodeName), (void const *)extra, (size_t )dwrq->length); set_bit(13L, (unsigned long volatile *)(& local->flags)); } return (-115); } } static int airo_get_nick(struct net_device *dev , struct iw_request_info *info , struct iw_point *dwrq , char *extra ) { struct airo_info *local ; size_t tmp ; { { local = (struct airo_info *)dev->__annonCompField74.ml_priv; readConfigRid(local, 1); strncpy(extra, (char const *)(& local->config.nodeName), 16UL); *(extra + 16UL) = 0; tmp = strlen((char const *)extra); dwrq->length = (__u16 )tmp; } return (0); } } static int airo_set_rate(struct net_device *dev , struct iw_request_info *info , struct iw_param *vwrq , char *extra ) { struct airo_info *local ; CapabilityRid cap_rid ; u8 brate ; int i ; u8 normvalue ; { { local = (struct airo_info *)dev->__annonCompField74.ml_priv; brate = 0U; readCapabilityRid(local, & cap_rid, 1); } if ((unsigned int )vwrq->value <= 7U) { brate = (u8 )cap_rid.supportedRates[vwrq->value]; } else { normvalue = (unsigned char )(vwrq->value / 500000); i = 0; goto ldv_48195; ldv_48194: ; if ((int )normvalue == (int )cap_rid.supportedRates[i]) { brate = normvalue; goto ldv_48193; } else { } i = i + 1; ldv_48195: ; if (i <= 7) { goto ldv_48194; } else { } ldv_48193: ; } if (vwrq->value == -1) { i = 0; goto ldv_48198; ldv_48197: ; if ((int )((signed char )cap_rid.supportedRates[i]) == 0) { goto ldv_48196; } else { } i = i + 1; ldv_48198: ; if (i <= 7) { goto ldv_48197; } else { } ldv_48196: ; if (i != 0) { brate = (u8 )cap_rid.supportedRates[i + -1]; } else { } } else { } if ((unsigned int )brate == 0U) { return (-22); } else { } { readConfigRid(local, 1); } if ((unsigned int )vwrq->fixed == 0U) { { memset((void *)(& local->config.rates), 0, 8UL); i = 0; } goto ldv_48201; ldv_48200: local->config.rates[i] = (u8 )cap_rid.supportedRates[i]; if ((int )local->config.rates[i] == (int )brate) { goto ldv_48199; } else { } i = i + 1; ldv_48201: ; if (i <= 7) { goto ldv_48200; } else { } ldv_48199: ; } else { { memset((void *)(& local->config.rates), 0, 8UL); local->config.rates[0] = brate; } } { set_bit(13L, (unsigned long volatile *)(& local->flags)); } return (-115); } } static int airo_get_rate(struct net_device *dev , struct iw_request_info *info , struct iw_param *vwrq , char *extra ) { struct airo_info *local ; StatusRid status_rid ; { { local = (struct airo_info *)dev->__annonCompField74.ml_priv; readStatusRid(local, & status_rid, 1); vwrq->value = (int )status_rid.currentXmitRate * 500000; readConfigRid(local, 1); vwrq->fixed = (unsigned int )local->config.rates[1] == 0U; } return (0); } } static int airo_set_rts(struct net_device *dev , struct iw_request_info *info , struct iw_param *vwrq , char *extra ) { struct airo_info *local ; int rthr ; { local = (struct airo_info *)dev->__annonCompField74.ml_priv; rthr = vwrq->value; if ((unsigned int )vwrq->disabled != 0U) { rthr = 2312; } else { } if ((unsigned int )rthr > 2312U) { return (-22); } else { } { readConfigRid(local, 1); local->config.rtsThres = (unsigned short )rthr; set_bit(13L, (unsigned long volatile *)(& local->flags)); } return (-115); } } static int airo_get_rts(struct net_device *dev , struct iw_request_info *info , struct iw_param *vwrq , char *extra ) { struct airo_info *local ; { { local = (struct airo_info *)dev->__annonCompField74.ml_priv; readConfigRid(local, 1); vwrq->value = (__s32 )local->config.rtsThres; vwrq->disabled = vwrq->value > 2311; vwrq->fixed = 1U; } return (0); } } static int airo_set_frag(struct net_device *dev , struct iw_request_info *info , struct iw_param *vwrq , char *extra ) { struct airo_info *local ; int fthr ; { local = (struct airo_info *)dev->__annonCompField74.ml_priv; fthr = vwrq->value; if ((unsigned int )vwrq->disabled != 0U) { fthr = 2312; } else { } if ((unsigned int )fthr - 256U > 2056U) { return (-22); } else { } { fthr = fthr & -2; readConfigRid(local, 1); local->config.fragThresh = (unsigned short )fthr; set_bit(13L, (unsigned long volatile *)(& local->flags)); } return (-115); } } static int airo_get_frag(struct net_device *dev , struct iw_request_info *info , struct iw_param *vwrq , char *extra ) { struct airo_info *local ; { { local = (struct airo_info *)dev->__annonCompField74.ml_priv; readConfigRid(local, 1); vwrq->value = (__s32 )local->config.fragThresh; vwrq->disabled = vwrq->value > 2311; vwrq->fixed = 1U; } return (0); } } static int airo_set_mode(struct net_device *dev , struct iw_request_info *info , __u32 *uwrq , char *extra ) { struct airo_info *local ; int reset ; int tmp ; { { local = (struct airo_info *)dev->__annonCompField74.ml_priv; reset = 0; readConfigRid(local, 1); tmp = sniffing_mode(local); } if (tmp != 0) { reset = 1; } else { } { if (*uwrq == 1U) { goto case_1; } else { } if (*uwrq == 2U) { goto case_2; } else { } if (*uwrq == 3U) { goto case_3; } else { } if (*uwrq == 4U) { goto case_4; } else { } if (*uwrq == 6U) { goto case_6; } else { } goto switch_default; case_1: /* CIL Label */ { local->config.opmode = (unsigned int )local->config.opmode & 65280U; local->config.opmode = local->config.opmode; local->config.rmode = (unsigned int )local->config.rmode & 65024U; local->config.scanMode = 0U; clear_bit(7L, (unsigned long volatile *)(& local->flags)); } goto ldv_48249; case_2: /* CIL Label */ { local->config.opmode = (unsigned int )local->config.opmode & 65280U; local->config.opmode = (__le16 )((unsigned int )local->config.opmode | 1U); local->config.rmode = (unsigned int )local->config.rmode & 65024U; local->config.scanMode = 0U; clear_bit(7L, (unsigned long volatile *)(& local->flags)); } goto ldv_48249; case_3: /* CIL Label */ { local->config.opmode = (unsigned int )local->config.opmode & 65280U; local->config.opmode = (__le16 )((unsigned int )local->config.opmode | 2U); local->config.rmode = (unsigned int )local->config.rmode & 65024U; local->config.scanMode = 0U; clear_bit(7L, (unsigned long volatile *)(& local->flags)); } goto ldv_48249; case_4: /* CIL Label */ { local->config.opmode = (unsigned int )local->config.opmode & 65280U; local->config.opmode = (__le16 )((unsigned int )local->config.opmode | 3U); local->config.rmode = (unsigned int )local->config.rmode & 65024U; local->config.scanMode = 0U; clear_bit(7L, (unsigned long volatile *)(& local->flags)); } goto ldv_48249; case_6: /* CIL Label */ { local->config.opmode = (unsigned int )local->config.opmode & 65280U; local->config.opmode = (__le16 )((unsigned int )local->config.opmode | 1U); local->config.rmode = (unsigned int )local->config.rmode & 65024U; local->config.rmode = (__le16 )((unsigned int )local->config.rmode | 259U); local->config.scanMode = 1U; set_bit(7L, (unsigned long volatile *)(& local->flags)); } goto ldv_48249; switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } ldv_48249: ; if (reset != 0) { { set_bit(14L, (unsigned long volatile *)(& local->flags)); } } else { } { set_bit(13L, (unsigned long volatile *)(& local->flags)); } return (-115); } } static int airo_get_mode(struct net_device *dev , struct iw_request_info *info , __u32 *uwrq , char *extra ) { struct airo_info *local ; { { local = (struct airo_info *)dev->__annonCompField74.ml_priv; readConfigRid(local, 1); } { if (((int )local->config.opmode & 255) == 1) { goto case_1; } else { } if (((int )local->config.opmode & 255) == 2) { goto case_2; } else { } if (((int )local->config.opmode & 255) == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ *uwrq = 2U; goto ldv_48263; case_2: /* CIL Label */ *uwrq = 3U; goto ldv_48263; case_3: /* CIL Label */ *uwrq = 4U; goto ldv_48263; switch_default: /* CIL Label */ *uwrq = 1U; switch_break: /* CIL Label */ ; } ldv_48263: ; return (0); } } __inline static int valid_index(struct airo_info *ai , int index ) { { return (index >= 0 && index <= ai->max_wep_idx); } } static int airo_set_encode(struct net_device *dev , struct iw_request_info *info , struct iw_point *dwrq , char *extra ) { struct airo_info *local ; int perm ; __le16 currentAuthType ; int rc ; wep_key_t key ; int index ; int current_index ; int tmp ; int index___0 ; int tmp___0 ; { local = (struct airo_info *)dev->__annonCompField74.ml_priv; perm = ((int )dwrq->flags & 1024) == 0; currentAuthType = local->config.authType; rc = 0; if (local->wep_capable == 0) { return (-95); } else { } { readConfigRid(local, 1); } if ((unsigned int )dwrq->length != 0U) { index = ((int )dwrq->flags & 255) + -1; if ((unsigned int )dwrq->length > 13U) { return (-22); } else { } { current_index = get_wep_tx_idx(local); } if (current_index < 0) { current_index = 0; } else { } { tmp = valid_index(local, index); } if (tmp == 0) { index = current_index; } else { } if ((unsigned int )dwrq->length > 5U) { key.len = 13U; } else { key.len = 5U; } if (((int )dwrq->flags & 2048) == 0) { { memset((void *)(& key.key), 0, 13UL); memcpy((void *)(& key.key), (void const *)extra, (size_t )dwrq->length); rc = set_wep_key(local, (int )((u16 )index), (char const *)(& key.key), (int )key.len, perm, 1); } if (rc < 0) { { printk("\vairo(%s): failed to set WEP key at index %d: %d.\n", (char *)(& (local->dev)->name), index, rc); } return (rc); } else { } } else { } if ((index == current_index && (unsigned int )key.len != 0U) && (unsigned int )local->config.authType == 1U) { local->config.authType = 257U; } else { } } else { { index___0 = ((int )dwrq->flags & 255) + -1; tmp___0 = valid_index(local, index___0); } if (tmp___0 != 0) { { rc = set_wep_tx_idx(local, (int )((u16 )index___0), perm, 1); } if (rc < 0) { { printk("\vairo(%s): failed to set WEP transmit index to %d: %d.\n", (char *)(& (local->dev)->name), index___0, rc); } return (rc); } else { } } else if (((int )dwrq->flags & 61440) == 0) { return (-22); } else { } } if ((int )((short )dwrq->flags) < 0) { local->config.authType = 1U; } else { } if (((int )dwrq->flags & 16384) != 0) { local->config.authType = 258U; } else { } if (((int )dwrq->flags & 8192) != 0) { local->config.authType = 257U; } else { } if ((int )local->config.authType != (int )currentAuthType) { { set_bit(13L, (unsigned long volatile *)(& local->flags)); } } else { } return (-115); } } static int airo_get_encode(struct net_device *dev , struct iw_request_info *info , struct iw_point *dwrq , char *extra ) { struct airo_info *local ; int index ; int wep_key_len ; u8 buf[16U] ; int tmp ; { local = (struct airo_info *)dev->__annonCompField74.ml_priv; index = ((int )dwrq->flags & 255) + -1; if (local->wep_capable == 0) { return (-95); } else { } { readConfigRid(local, 1); } { if ((int )local->config.authType == 257) { goto case_257; } else { } if ((int )local->config.authType == 258) { goto case_258; } else { } if ((int )local->config.authType == 1) { goto case_1; } else { } goto switch_default; case_257: /* CIL Label */ dwrq->flags = 8192U; goto ldv_48296; case_258: /* CIL Label */ dwrq->flags = 16384U; goto ldv_48296; switch_default: /* CIL Label */ ; case_1: /* CIL Label */ dwrq->flags = 32768U; goto ldv_48296; switch_break: /* CIL Label */ ; } ldv_48296: { dwrq->flags = (__u16 )((unsigned int )dwrq->flags | 2048U); memset((void *)extra, 0, 16UL); tmp = valid_index(local, index); } if (tmp == 0) { { index = get_wep_tx_idx(local); } if (index < 0) { index = 0; } else { } } else { } { dwrq->flags = (__u16 )((int )((short )dwrq->flags) | (int )((short )((unsigned int )((unsigned short )index) + 1U))); wep_key_len = get_wep_key(local, (int )((u16 )index), (char *)(& buf), 16); } if (wep_key_len < 0) { dwrq->length = 0U; } else { { dwrq->length = (__u16 )wep_key_len; memcpy((void *)extra, (void const *)(& buf), (size_t )dwrq->length); } } return (0); } } static int airo_set_encodeext(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct airo_info *local ; struct iw_point *encoding ; struct iw_encode_ext *ext ; int perm ; __le16 currentAuthType ; int idx ; int key_len ; int alg ; int set_key ; int rc ; wep_key_t key ; int tmp ; __u16 _min1 ; u16 _min2 ; { local = (struct airo_info *)dev->__annonCompField74.ml_priv; encoding = & wrqu->encoding; ext = (struct iw_encode_ext *)extra; perm = ((int )encoding->flags & 1024) == 0; currentAuthType = local->config.authType; alg = (int )ext->alg; set_key = 1; if (local->wep_capable == 0) { return (-95); } else { } { readConfigRid(local, 1); idx = (int )encoding->flags & 255; } if (idx != 0) { { tmp = valid_index(local, idx + -1); } if (tmp == 0) { return (-22); } else { } idx = idx - 1; } else { { idx = get_wep_tx_idx(local); } if (idx < 0) { idx = 0; } else { } } if ((int )((short )encoding->flags) < 0) { alg = 0; } else { } if ((ext->ext_flags & 8U) != 0U) { { rc = set_wep_tx_idx(local, (int )((u16 )idx), perm, 1); } if (rc < 0) { { printk("\vairo(%s): failed to set WEP transmit index to %d: %d.\n", (char *)(& (local->dev)->name), idx, rc); } return (rc); } else { } set_key = (unsigned int )ext->key_len != 0U; } else { } if (set_key != 0) { { memset((void *)(& key.key), 0, 13UL); } { if (alg == 0) { goto case_0; } else { } if (alg == 1) { goto case_1; } else { } goto switch_default; case_0: /* CIL Label */ key.len = 0U; goto ldv_48318; case_1: /* CIL Label */ ; if ((unsigned int )ext->key_len > 5U) { key.len = 13U; } else if ((unsigned int )ext->key_len != 0U) { key.len = 5U; } else { return (-22); } { _min1 = ext->key_len; _min2 = key.len; key_len = (int )_min1 < (int )_min2 ? _min1 : _min2; memcpy((void *)(& key.key), (void const *)(& ext->key), (size_t )key_len); } goto ldv_48318; switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } ldv_48318: ; if ((unsigned int )key.len == 0U) { { rc = set_wep_tx_idx(local, (int )((u16 )idx), perm, 1); } if (rc < 0) { { printk("\vairo(%s): failed to set WEP transmit index to %d: %d.\n", (char *)(& (local->dev)->name), idx, rc); } return (rc); } else { } } else { { rc = set_wep_key(local, (int )((u16 )idx), (char const *)(& key.key), (int )key.len, perm, 1); } if (rc < 0) { { printk("\vairo(%s): failed to set WEP key at index %d: %d.\n", (char *)(& (local->dev)->name), idx, rc); } return (rc); } else { } } } else { } if ((int )((short )encoding->flags) < 0) { local->config.authType = 1U; } else { } if (((int )encoding->flags & 16384) != 0) { local->config.authType = 258U; } else { } if (((int )encoding->flags & 8192) != 0) { local->config.authType = 257U; } else { } if ((int )local->config.authType != (int )currentAuthType) { { set_bit(13L, (unsigned long volatile *)(& local->flags)); } } else { } return (-115); } } static int airo_get_encodeext(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct airo_info *local ; struct iw_point *encoding ; struct iw_encode_ext *ext ; int idx ; int max_key_len ; int wep_key_len ; u8 buf[16U] ; int tmp ; { local = (struct airo_info *)dev->__annonCompField74.ml_priv; encoding = & wrqu->encoding; ext = (struct iw_encode_ext *)extra; if (local->wep_capable == 0) { return (-95); } else { } { readConfigRid(local, 1); max_key_len = (int )((unsigned int )encoding->length - 40U); } if (max_key_len < 0) { return (-22); } else { } idx = (int )encoding->flags & 255; if (idx != 0) { { tmp = valid_index(local, idx + -1); } if (tmp == 0) { return (-22); } else { } idx = idx - 1; } else { { idx = get_wep_tx_idx(local); } if (idx < 0) { idx = 0; } else { } } { encoding->flags = (unsigned int )((__u16 )idx) + 1U; memset((void *)ext, 0, 40UL); } { if ((int )local->config.authType == 257) { goto case_257; } else { } if ((int )local->config.authType == 258) { goto case_258; } else { } if ((int )local->config.authType == 1) { goto case_1; } else { } goto switch_default; case_257: /* CIL Label */ encoding->flags = 1U; goto ldv_48338; case_258: /* CIL Label */ encoding->flags = 1U; goto ldv_48338; switch_default: /* CIL Label */ ; case_1: /* CIL Label */ encoding->flags = 32768U; goto ldv_48338; switch_break: /* CIL Label */ ; } ldv_48338: { encoding->flags = (__u16 )((unsigned int )encoding->flags | 2048U); memset((void *)extra, 0, 16UL); wep_key_len = get_wep_key(local, (int )((u16 )idx), (char *)(& buf), 16); } if (wep_key_len < 0) { ext->key_len = 0U; } else { { ext->key_len = (__u16 )wep_key_len; memcpy((void *)extra, (void const *)(& buf), (size_t )ext->key_len); } } return (0); } } static int airo_set_auth(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct airo_info *local ; struct iw_param *param ; __le16 currentAuthType ; { local = (struct airo_info *)dev->__annonCompField74.ml_priv; param = & wrqu->param; currentAuthType = local->config.authType; { if (((int )param->flags & 4095) == 0) { goto case_0; } else { } if (((int )param->flags & 4095) == 1) { goto case_1; } else { } if (((int )param->flags & 4095) == 2) { goto case_2; } else { } if (((int )param->flags & 4095) == 3) { goto case_3; } else { } if (((int )param->flags & 4095) == 8) { goto case_8; } else { } if (((int )param->flags & 4095) == 10) { goto case_10; } else { } if (((int )param->flags & 4095) == 5) { goto case_5; } else { } if (((int )param->flags & 4095) == 6) { goto case_6; } else { } if (((int )param->flags & 4095) == 7) { goto case_7; } else { } goto switch_default; case_0: /* CIL Label */ ; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; case_3: /* CIL Label */ ; case_8: /* CIL Label */ ; case_10: /* CIL Label */ ; goto ldv_48357; case_5: /* CIL Label */ ; if (param->value != 0) { if ((unsigned int )currentAuthType == 1U) { local->config.authType = 257U; } else { } } else { local->config.authType = 1U; } if ((int )local->config.authType != (int )currentAuthType) { { set_bit(13L, (unsigned long volatile *)(& local->flags)); } } else { } goto ldv_48357; case_6: /* CIL Label */ ; if ((param->value & 2) != 0) { local->config.authType = 258U; } else if (param->value & 1) { local->config.authType = 257U; } else { return (-22); } if ((int )local->config.authType != (int )currentAuthType) { { set_bit(13L, (unsigned long volatile *)(& local->flags)); } } else { } goto ldv_48357; case_7: /* CIL Label */ ; if (param->value > 0) { return (-95); } else { } goto ldv_48357; switch_default: /* CIL Label */ ; return (-95); switch_break: /* CIL Label */ ; } ldv_48357: ; return (-115); } } static int airo_get_auth(struct net_device *dev , struct iw_request_info *info , union iwreq_data *wrqu , char *extra ) { struct airo_info *local ; struct iw_param *param ; __le16 currentAuthType ; { local = (struct airo_info *)dev->__annonCompField74.ml_priv; param = & wrqu->param; currentAuthType = local->config.authType; { if (((int )param->flags & 4095) == 5) { goto case_5; } else { } if (((int )param->flags & 4095) == 6) { goto case_6; } else { } if (((int )param->flags & 4095) == 7) { goto case_7; } else { } goto switch_default___1; case_5: /* CIL Label */ ; { if ((int )currentAuthType == 258) { goto case_258; } else { } if ((int )currentAuthType == 257) { goto case_257; } else { } goto switch_default; case_258: /* CIL Label */ ; case_257: /* CIL Label */ param->value = 1; goto ldv_48374; switch_default: /* CIL Label */ param->value = 0; goto ldv_48374; switch_break___0: /* CIL Label */ ; } ldv_48374: ; goto ldv_48376; case_6: /* CIL Label */ ; { if ((int )currentAuthType == 258) { goto case_258___0; } else { } if ((int )currentAuthType == 257) { goto case_257___0; } else { } goto switch_default___0; case_258___0: /* CIL Label */ param->value = 2; goto ldv_48379; case_257___0: /* CIL Label */ ; switch_default___0: /* CIL Label */ param->value = 1; goto ldv_48379; switch_break___1: /* CIL Label */ ; } ldv_48379: ; goto ldv_48376; case_7: /* CIL Label */ param->value = 0; goto ldv_48376; switch_default___1: /* CIL Label */ ; return (-95); switch_break: /* CIL Label */ ; } ldv_48376: ; return (0); } } static int airo_set_txpow(struct net_device *dev , struct iw_request_info *info , struct iw_param *vwrq , char *extra ) { struct airo_info *local ; CapabilityRid cap_rid ; int i ; int rc ; __le16 v ; { { local = (struct airo_info *)dev->__annonCompField74.ml_priv; rc = -22; v = (unsigned short )vwrq->value; readCapabilityRid(local, & cap_rid, 1); } if ((unsigned int )vwrq->disabled != 0U) { { set_bit(0L, (unsigned long volatile *)(& local->flags)); set_bit(13L, (unsigned long volatile *)(& local->flags)); } return (-115); } else { } if ((unsigned int )vwrq->flags != 1U) { return (-22); } else { } { clear_bit(0L, (unsigned long volatile *)(& local->flags)); i = 0; } goto ldv_48397; ldv_48396: ; if ((int )v == (int )cap_rid.txPowerLevels[i]) { { readConfigRid(local, 1); local->config.txPower = v; set_bit(13L, (unsigned long volatile *)(& local->flags)); rc = -115; } goto ldv_48395; } else { } i = i + 1; ldv_48397: ; if (i <= 7 && (unsigned int )cap_rid.txPowerLevels[i] != 0U) { goto ldv_48396; } else { } ldv_48395: ; return (rc); } } static int airo_get_txpow(struct net_device *dev , struct iw_request_info *info , struct iw_param *vwrq , char *extra ) { struct airo_info *local ; int tmp ; { { local = (struct airo_info *)dev->__annonCompField74.ml_priv; readConfigRid(local, 1); vwrq->value = (__s32 )local->config.txPower; vwrq->fixed = 1U; tmp = constant_test_bit(0L, (unsigned long const volatile *)(& local->flags)); vwrq->disabled = (__u8 )tmp; vwrq->flags = 1U; } return (0); } } static int airo_set_retry(struct net_device *dev , struct iw_request_info *info , struct iw_param *vwrq , char *extra ) { struct airo_info *local ; int rc ; __le16 v ; { local = (struct airo_info *)dev->__annonCompField74.ml_priv; rc = -22; if ((unsigned int )vwrq->disabled != 0U) { return (-22); } else { } { readConfigRid(local, 1); } if (((int )vwrq->flags & 4096) != 0) { v = (unsigned short )vwrq->value; if (((int )vwrq->flags & 32) != 0) { local->config.longRetryLimit = v; } else if (((int )vwrq->flags & 16) != 0) { local->config.shortRetryLimit = v; } else { local->config.longRetryLimit = v; local->config.shortRetryLimit = v; } { set_bit(13L, (unsigned long volatile *)(& local->flags)); rc = -115; } } else { } if (((int )vwrq->flags & 8192) != 0) { { local->config.txLifetime = (unsigned short )(vwrq->value / 1024); set_bit(13L, (unsigned long volatile *)(& local->flags)); rc = -115; } } else { } return (rc); } } static int airo_get_retry(struct net_device *dev , struct iw_request_info *info , struct iw_param *vwrq , char *extra ) { struct airo_info *local ; { { local = (struct airo_info *)dev->__annonCompField74.ml_priv; vwrq->disabled = 0U; readConfigRid(local, 1); } if (((int )vwrq->flags & 61440) == 8192) { vwrq->flags = 8192U; vwrq->value = (int )local->config.txLifetime * 1024; } else if (((int )vwrq->flags & 32) != 0) { vwrq->flags = 4128U; vwrq->value = (__s32 )local->config.longRetryLimit; } else { vwrq->flags = 4096U; vwrq->value = (__s32 )local->config.shortRetryLimit; if ((int )local->config.shortRetryLimit != (int )local->config.longRetryLimit) { vwrq->flags = (__u16 )((unsigned int )vwrq->flags | 16U); } else { } } return (0); } } static int airo_get_range(struct net_device *dev , struct iw_request_info *info , struct iw_point *dwrq , char *extra ) { struct airo_info *local ; struct iw_range *range ; CapabilityRid cap_rid ; int i ; int k ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { local = (struct airo_info *)dev->__annonCompField74.ml_priv; range = (struct iw_range *)extra; readCapabilityRid(local, & cap_rid, 1); dwrq->length = 568U; memset((void *)range, 0, 568UL); range->min_nwid = 0U; range->max_nwid = 0U; range->num_channels = 14U; k = 0; i = 0; } goto ldv_48433; ldv_48432: { range->freq[k].i = (unsigned int )((__u8 )i) + 1U; tmp = ieee80211_dsss_chan_to_freq(i + 1); range->freq[k].m = tmp * 100000; tmp___0 = k; k = k + 1; range->freq[tmp___0].e = 1; i = i + 1; } ldv_48433: ; if (i <= 13) { goto ldv_48432; } else { } range->num_frequency = (__u8 )k; range->sensitivity = 65535; if ((unsigned long )local->rssi != (unsigned long )((tdsRssiEntry *)0)) { range->max_qual.qual = 100U; } else { { tmp___1 = memcmp((void const *)(& cap_rid.prodName), (void const *)"350", 3UL); range->max_qual.qual = tmp___1 != 0 ? 32U : 160U; } } range->max_qual.level = 136U; range->max_qual.noise = 136U; if ((unsigned long )local->rssi != (unsigned long )((tdsRssiEntry *)0)) { range->avg_qual.qual = 50U; range->avg_qual.level = 186U; } else { { tmp___2 = memcmp((void const *)(& cap_rid.prodName), (void const *)"350", 3UL); range->avg_qual.qual = tmp___2 != 0 ? 16U : 80U; range->avg_qual.level = 176U; } } range->avg_qual.noise = 171U; i = 0; goto ldv_48437; ldv_48436: range->bitrate[i] = (int )cap_rid.supportedRates[i] * 500000; if (range->bitrate[i] == 0) { goto ldv_48435; } else { } i = i + 1; ldv_48437: ; if (i <= 7) { goto ldv_48436; } else { } ldv_48435: range->num_bitrates = (__u8 )i; if (i > 2) { range->throughput = 5000000U; } else { range->throughput = 1500000U; } range->min_rts = 0; range->max_rts = 2312; range->min_frag = 256; range->max_frag = 2312; if (((int )cap_rid.softCap & 2) != 0) { range->encoding_size[0] = 5U; if (((int )cap_rid.softCap & 256) != 0) { range->encoding_size[1] = 13U; range->num_encoding_sizes = 2U; } else { range->num_encoding_sizes = 1U; } range->max_encoding_tokens = ((int )cap_rid.softCap & 128) != 0 ? 4U : 1U; } else { range->num_encoding_sizes = 0U; range->max_encoding_tokens = 0U; } range->min_pmp = 0; range->max_pmp = 5000000; range->min_pmt = 0; range->max_pmt = 67107840; range->pmp_flags = 4096U; range->pmt_flags = 8192U; range->pm_capa = 13056U; i = 0; goto ldv_48440; ldv_48439: range->txpower[i] = (__s32 )cap_rid.txPowerLevels[i]; if (range->txpower[i] == 0) { goto ldv_48438; } else { } i = i + 1; ldv_48440: ; if (i <= 7) { goto ldv_48439; } else { } ldv_48438: range->num_txpower = (__u8 )i; range->txpower_capa = 1U; range->we_version_source = 19U; range->we_version_compiled = 22U; range->retry_capa = 12288U; range->retry_flags = 4096U; range->r_time_flags = 8192U; range->min_retry = 1; range->max_retry = 65535; range->min_r_time = 1024; range->max_r_time = 67107840; range->event_capa[0] = 103284816U; range->event_capa[1] = 1024U; range->event_capa[4] = 1U; return (0); } } static int airo_set_power(struct net_device *dev , struct iw_request_info *info , struct iw_param *vwrq , char *extra ) { struct airo_info *local ; int tmp ; __le16 tmp___0 ; int tmp___1 ; int tmp___2 ; { { local = (struct airo_info *)dev->__annonCompField74.ml_priv; readConfigRid(local, 1); } if ((unsigned int )vwrq->disabled != 0U) { { tmp = sniffing_mode(local); } if (tmp != 0) { return (-22); } else { } { local->config.powerSaveMode = 0U; local->config.rmode = (unsigned int )local->config.rmode & 65280U; local->config.rmode = local->config.rmode; set_bit(13L, (unsigned long volatile *)(& local->flags)); } return (-115); } else { } if (((int )vwrq->flags & 61440) == 8192) { { local->config.fastListenDelay = (unsigned short )((vwrq->value + 500) / 1024); local->config.powerSaveMode = 2U; set_bit(13L, (unsigned long volatile *)(& local->flags)); } } else if (((int )vwrq->flags & 61440) == 4096) { { tmp___0 = (unsigned short )((vwrq->value + 500) / 1024); local->config.listenInterval = tmp___0; local->config.fastListenInterval = tmp___0; local->config.powerSaveMode = 2U; set_bit(13L, (unsigned long volatile *)(& local->flags)); } } else { } { if (((int )vwrq->flags & 3840) == 256) { goto case_256; } else { } if (((int )vwrq->flags & 3840) == 768) { goto case_768; } else { } if (((int )vwrq->flags & 3840) == 0) { goto case_0; } else { } goto switch_default; case_256: /* CIL Label */ { tmp___1 = sniffing_mode(local); } if (tmp___1 != 0) { return (-22); } else { } { local->config.rmode = (unsigned int )local->config.rmode & 65280U; local->config.rmode = (__le16 )((unsigned int )local->config.rmode | 2U); set_bit(13L, (unsigned long volatile *)(& local->flags)); } goto ldv_48449; case_768: /* CIL Label */ { tmp___2 = sniffing_mode(local); } if (tmp___2 != 0) { return (-22); } else { } { local->config.rmode = (unsigned int )local->config.rmode & 65280U; local->config.rmode = local->config.rmode; set_bit(13L, (unsigned long volatile *)(& local->flags)); } case_0: /* CIL Label */ ; goto ldv_48449; switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } ldv_48449: ; return (-115); } } static int airo_get_power(struct net_device *dev , struct iw_request_info *info , struct iw_param *vwrq , char *extra ) { struct airo_info *local ; __le16 mode ; __u8 tmp ; { { local = (struct airo_info *)dev->__annonCompField74.ml_priv; readConfigRid(local, 1); mode = local->config.powerSaveMode; tmp = (unsigned int )mode == 0U; vwrq->disabled = tmp; } if ((unsigned int )tmp != 0U) { return (0); } else { } if (((int )vwrq->flags & 61440) == 8192) { vwrq->value = (int )local->config.fastListenDelay * 1024; vwrq->flags = 8192U; } else { vwrq->value = (int )local->config.fastListenInterval * 1024; vwrq->flags = 4096U; } if (((int )local->config.rmode & 255) == 2) { vwrq->flags = (__u16 )((unsigned int )vwrq->flags | 256U); } else { vwrq->flags = (__u16 )((unsigned int )vwrq->flags | 768U); } return (0); } } static int airo_set_sens(struct net_device *dev , struct iw_request_info *info , struct iw_param *vwrq , char *extra ) { struct airo_info *local ; { { local = (struct airo_info *)dev->__annonCompField74.ml_priv; readConfigRid(local, 1); local->config.rssiThreshold = (unsigned int )vwrq->disabled == 0U ? (unsigned short )vwrq->value : 0U; set_bit(13L, (unsigned long volatile *)(& local->flags)); } return (-115); } } static int airo_get_sens(struct net_device *dev , struct iw_request_info *info , struct iw_param *vwrq , char *extra ) { struct airo_info *local ; { { local = (struct airo_info *)dev->__annonCompField74.ml_priv; readConfigRid(local, 1); vwrq->value = (__s32 )local->config.rssiThreshold; vwrq->disabled = vwrq->value == 0; vwrq->fixed = 1U; } return (0); } } static int airo_get_aplist(struct net_device *dev , struct iw_request_info *info , struct iw_point *dwrq , char *extra ) { struct airo_info *local ; struct sockaddr *address ; struct iw_quality *qual ; BSSListRid BSSList ; int i ; int loseSync ; bool tmp ; void *tmp___0 ; u16 dBm ; int tmp___1 ; StatusRid status_rid ; int _min1 ; int _min2 ; { { local = (struct airo_info *)dev->__annonCompField74.ml_priv; address = (struct sockaddr *)extra; tmp = capable(12); loseSync = (int )tmp ? 1 : -1; tmp___0 = kmalloc(256UL, 208U); qual = (struct iw_quality *)tmp___0; } if ((unsigned long )qual == (unsigned long )((struct iw_quality *)0)) { return (-12); } else { } i = 0; goto ldv_48490; ldv_48489: { tmp___1 = readBSSListRid(local, loseSync, & BSSList); } if (tmp___1 != 0) { goto ldv_48488; } else { } { loseSync = 0; memcpy((void *)(& (address + (unsigned long )i)->sa_data), (void const *)(& BSSList.bssid), 6UL); (address + (unsigned long )i)->sa_family = 1U; dBm = BSSList.dBm; } if ((unsigned long )local->rssi != (unsigned long )((tdsRssiEntry *)0)) { { (qual + (unsigned long )i)->level = - ((int )((__u8 )dBm)); (qual + (unsigned long )i)->qual = airo_dbm_to_pct(local->rssi, (int )((u8 )dBm)); (qual + (unsigned long )i)->updated = 11U; } } else { (qual + (unsigned long )i)->level = (__u8 )(((int )dBm + 321) / 2); (qual + (unsigned long )i)->qual = 0U; (qual + (unsigned long )i)->updated = 26U; } (qual + (unsigned long )i)->noise = local->wstats.qual.noise; if ((unsigned int )BSSList.index == 65535U) { goto ldv_48488; } else { } i = i + 1; ldv_48490: ; if (i <= 63) { goto ldv_48489; } else { } ldv_48488: ; if (i == 0) { { readStatusRid(local, & status_rid, 1); i = 0; } goto ldv_48496; ldv_48495: { memcpy((void *)(& (address + (unsigned long )i)->sa_data), (void const *)(& status_rid.bssid) + (unsigned long )i, 6UL); (address + (unsigned long )i)->sa_family = 1U; i = i + 1; } ldv_48496: _min1 = 64; _min2 = 4; if ((i < (_min1 < _min2 ? _min1 : _min2) && (unsigned int )((((((int )status_rid.bssid[i][0] & (int )status_rid.bssid[i][1]) & (int )status_rid.bssid[i][2]) & (int )status_rid.bssid[i][3]) & (int )status_rid.bssid[i][4]) & (int )status_rid.bssid[i][5]) != 255U) && (unsigned int )((((((int )status_rid.bssid[i][0] | (int )status_rid.bssid[i][1]) | (int )status_rid.bssid[i][2]) | (int )status_rid.bssid[i][3]) | (int )status_rid.bssid[i][4]) | (int )status_rid.bssid[i][5]) != 0U) { goto ldv_48495; } else { } } else { { dwrq->flags = 1U; memcpy((void *)(extra + (unsigned long )i * 16UL), (void const *)qual, (unsigned long )i * 4UL); } } { dwrq->length = (__u16 )i; kfree((void const *)qual); } return (0); } } static int airo_set_scan(struct net_device *dev , struct iw_request_info *info , struct iw_point *dwrq , char *extra ) { struct airo_info *ai ; Cmd cmd ; Resp rsp ; int wake ; int tmp ; { ai = (struct airo_info *)dev->__annonCompField74.ml_priv; wake = 0; if ((ai->flags & 3UL) != 0UL) { return (-100); } else { } { tmp = down_interruptible(& ai->sem); } if (tmp != 0) { return (-512); } else { } if (ai->scan_timeout != 0UL) { goto out; } else { } { ai->scan_timeout = (unsigned long )jiffies + 750UL; memset((void *)(& cmd), 0, 8UL); cmd.cmd = 259U; issuecommand(ai, & cmd, & rsp); wake = 1; } out: { up(& ai->sem); } if (wake != 0) { { __wake_up(& ai->thr_wait, 1U, 1, (void *)0); } } else { } return (0); } } __inline static char *airo_translate_scan(struct net_device *dev , struct iw_request_info *info , char *current_ev , char *end_buf , BSSListRid *bss ) { struct airo_info *ai ; struct iw_event iwe ; __le16 capabilities ; char *current_val ; int i ; char *buf ; u16 dBm ; int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; size_t tmp___3 ; unsigned int num_null_ies ; u16 length ; u8 *ie ; int _min1 ; int _min2 ; int _min1___0 ; int _min2___0 ; int tmp___4 ; { { ai = (struct airo_info *)dev->__annonCompField74.ml_priv; iwe.cmd = 35605U; iwe.u.ap_addr.sa_family = 1U; memcpy((void *)(& iwe.u.ap_addr.sa_data), (void const *)(& bss->bssid), 6UL); current_ev = iwe_stream_add_event(info, current_ev, end_buf, & iwe, 24); iwe.u.data.length = (__u16 )bss->ssidLen; } if ((unsigned int )iwe.u.data.length > 32U) { iwe.u.data.length = 32U; } else { } { iwe.cmd = 35611U; iwe.u.data.flags = 1U; current_ev = iwe_stream_add_point(info, current_ev, end_buf, & iwe, (char *)(& bss->ssid)); iwe.cmd = 35591U; capabilities = bss->cap; } if (((int )capabilities & 3) != 0) { if ((int )capabilities & 1) { iwe.u.mode = 3U; } else { iwe.u.mode = 1U; } { current_ev = iwe_stream_add_event(info, current_ev, end_buf, & iwe, 12); } } else { } { iwe.cmd = 35589U; iwe.u.freq.m = (__s32 )bss->dsChannel; tmp = ieee80211_dsss_chan_to_freq(iwe.u.freq.m); iwe.u.freq.m = tmp * 100000; iwe.u.freq.e = 1; current_ev = iwe_stream_add_event(info, current_ev, end_buf, & iwe, 16); dBm = bss->dBm; iwe.cmd = 35841U; } if ((unsigned long )ai->rssi != (unsigned long )((tdsRssiEntry *)0)) { { iwe.u.qual.level = - ((int )((__u8 )dBm)); iwe.u.qual.qual = airo_dbm_to_pct(ai->rssi, (int )((u8 )dBm)); iwe.u.qual.updated = 11U; } } else { iwe.u.qual.level = (__u8 )(((int )dBm + 321) / 2); iwe.u.qual.qual = 0U; iwe.u.qual.updated = 26U; } { iwe.u.qual.noise = ai->wstats.qual.noise; current_ev = iwe_stream_add_event(info, current_ev, end_buf, & iwe, 12); iwe.cmd = 35627U; } if (((int )capabilities & 16) != 0) { iwe.u.data.flags = 2048U; } else { iwe.u.data.flags = 32768U; } { iwe.u.data.length = 0U; current_ev = iwe_stream_add_point(info, current_ev, end_buf, & iwe, (char *)(& bss->ssid)); tmp___0 = iwe_stream_lcp_len(info); current_val = current_ev + (unsigned long )tmp___0; iwe.cmd = 35617U; iwe.u.bitrate.disabled = 0U; iwe.u.bitrate.fixed = iwe.u.bitrate.disabled; i = 0; } goto ldv_48525; ldv_48524: ; if ((unsigned int )bss->rates[i] == 0U) { goto ldv_48523; } else { } { iwe.u.bitrate.value = ((int )bss->rates[i] & 127) * 500000; current_val = iwe_stream_add_value(info, current_ev, current_val, end_buf, & iwe, 16); i = i + 1; } ldv_48525: ; if (i <= 7) { goto ldv_48524; } else { } ldv_48523: { tmp___1 = iwe_stream_lcp_len(info); } if ((long )current_val - (long )current_ev > (long )tmp___1) { current_ev = current_val; } else { } { tmp___2 = kmalloc(30UL, 208U); buf = (char *)tmp___2; } if ((unsigned long )buf != (unsigned long )((char *)0)) { { iwe.cmd = 35842U; sprintf(buf, "bcn_int=%d", (int )bss->beaconInterval); tmp___3 = strlen((char const *)buf); iwe.u.data.length = (__u16 )tmp___3; current_ev = iwe_stream_add_point(info, current_ev, end_buf, & iwe, buf); kfree((void const *)buf); } } else { } { tmp___4 = constant_test_bit(16L, (unsigned long const volatile *)(& ai->flags)); } if (tmp___4 != 0) { num_null_ies = 0U; length = 624U; ie = (u8 *)(& bss->extra.iep); goto ldv_48542; ldv_48541: ; if ((int )*(ie + 1UL) + 2 > (int )length) { goto ldv_48529; } else { } { if ((int )*ie == 0) { goto case_0; } else { } if ((int )*ie == 221) { goto case_221; } else { } if ((int )*ie == 48) { goto case_48; } else { } goto switch_default; case_0: /* CIL Label */ ; if ((unsigned int )*(ie + 1UL) == 0U) { num_null_ies = num_null_ies + 1U; } else { } goto ldv_48531; case_221: /* CIL Label */ ; if (((((unsigned int )*(ie + 1UL) > 3U && (unsigned int )*(ie + 2UL) == 0U) && (unsigned int )*(ie + 3UL) == 80U) && (unsigned int )*(ie + 4UL) == 242U) && (unsigned int )*(ie + 5UL) == 1U) { { iwe.cmd = 35845U; _min1 = (int )*(ie + 1UL) + 2; _min2 = 64; iwe.u.data.length = (__u16 )(_min1 < _min2 ? _min1 : _min2); current_ev = iwe_stream_add_point(info, current_ev, end_buf, & iwe, (char *)ie); } } else { } goto ldv_48531; case_48: /* CIL Label */ { iwe.cmd = 35845U; _min1___0 = (int )*(ie + 1UL) + 2; _min2___0 = 64; iwe.u.data.length = (__u16 )(_min1___0 < _min2___0 ? _min1___0 : _min2___0); current_ev = iwe_stream_add_point(info, current_ev, end_buf, & iwe, (char *)ie); } goto ldv_48531; switch_default: /* CIL Label */ ; goto ldv_48531; switch_break: /* CIL Label */ ; } ldv_48531: length = (unsigned int )((int )length - (int )((u16 )*(ie + 1UL))) + 65534U; ie = ie + (unsigned long )((int )*(ie + 1UL) + 2); ldv_48542: ; if ((unsigned int )length > 1U && num_null_ies <= 1U) { goto ldv_48541; } else { } ldv_48529: ; } else { } return (current_ev); } } static int airo_get_scan(struct net_device *dev , struct iw_request_info *info , struct iw_point *dwrq , char *extra ) { struct airo_info *ai ; BSSListElement *net ; int err ; char *current_ev ; int tmp ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { ai = (struct airo_info *)dev->__annonCompField74.ml_priv; err = 0; current_ev = extra; if (ai->scan_timeout != 0UL) { return (-11); } else { } { tmp = down_interruptible(& ai->sem); } if (tmp != 0) { return (-11); } else { } __mptr = (struct list_head const *)ai->network_list.next; net = (BSSListElement *)__mptr + 0xfffffffffffffd30UL; goto ldv_48559; ldv_48558: { current_ev = airo_translate_scan(dev, info, current_ev, extra + (unsigned long )dwrq->length, & net->bss); } if ((unsigned long )((long )(extra + (unsigned long )dwrq->length) - (long )current_ev) <= 24UL) { err = -7; goto out; } else { } __mptr___0 = (struct list_head const *)net->list.next; net = (BSSListElement *)__mptr___0 + 0xfffffffffffffd30UL; ldv_48559: ; if ((unsigned long )(& net->list) != (unsigned long )(& ai->network_list)) { goto ldv_48558; } else { } dwrq->length = (int )((__u16 )((long )current_ev)) - (int )((__u16 )((long )extra)); dwrq->flags = 0U; out: { up(& ai->sem); } return (err); } } static int airo_config_commit(struct net_device *dev , struct iw_request_info *info , void *zwrq , char *extra ) { struct airo_info *local ; int tmp ; APListRid APList_rid ; SsidRid SSID_rid ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { { local = (struct airo_info *)dev->__annonCompField74.ml_priv; tmp = constant_test_bit(13L, (unsigned long const volatile *)(& local->flags)); } if (tmp == 0) { return (0); } else { } { disable_MAC(local, 1); tmp___1 = constant_test_bit(14L, (unsigned long const volatile *)(& local->flags)); } if (tmp___1 != 0) { { readAPListRid(local, & APList_rid); readSsidRid(local, & SSID_rid); tmp___0 = constant_test_bit(11L, (unsigned long const volatile *)(& local->flags)); } if (tmp___0 != 0) { { setup_card(local, dev->dev_addr, 1); } } else { { reset_airo_card(dev); } } { disable_MAC(local, 1); writeSsidRid(local, & SSID_rid, 1); writeAPListRid(local, & APList_rid, 1); } } else { } { tmp___2 = down_interruptible(& local->sem); } if (tmp___2 != 0) { return (-512); } else { } { writeConfigRid(local, 0); enable_MAC(local, 0); tmp___3 = constant_test_bit(14L, (unsigned long const volatile *)(& local->flags)); } if (tmp___3 != 0) { { airo_set_promisc(local); } } else { { up(& local->sem); } } return (0); } } static struct iw_priv_args const airo_private_args[2U] = { {35808U, 6160U, 6143U, {'a', 'i', 'r', 'o', 'i', 'o', 'c', 't', 'l', '\000'}}, {35809U, 6160U, 18433U, {'a', 'i', 'r', 'o', 'i', 'd', 'i', 'f', 'c', '\000'}}}; static iw_handler airo_handler[55U] = { (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))(& airo_config_commit), (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))(& airo_get_name), (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))0, (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))0, (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))(& airo_set_freq), (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))(& airo_get_freq), (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))(& airo_set_mode), (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))(& airo_get_mode), (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))(& airo_set_sens), (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))(& airo_get_sens), (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))0, (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))(& airo_get_range), (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))0, (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))0, (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))0, (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))0, & iw_handler_set_spy, & iw_handler_get_spy, & iw_handler_set_thrspy, & iw_handler_get_thrspy, (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))(& airo_set_wap), (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))(& airo_get_wap), (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))0, (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))(& airo_get_aplist), (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))(& airo_set_scan), (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))(& airo_get_scan), (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))(& airo_set_essid), (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))(& airo_get_essid), (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))(& airo_set_nick), (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))(& airo_get_nick), (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))0, (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))0, (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))(& airo_set_rate), (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))(& airo_get_rate), (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))(& airo_set_rts), (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))(& airo_get_rts), (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))(& airo_set_frag), (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))(& airo_get_frag), (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))(& airo_set_txpow), (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))(& airo_get_txpow), (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))(& airo_set_retry), (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))(& airo_get_retry), (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))(& airo_set_encode), (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))(& airo_get_encode), (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))(& airo_set_power), (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))(& airo_get_power), (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))0, (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))0, (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))0, (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))0, & airo_set_auth, & airo_get_auth, & airo_set_encodeext, & airo_get_encodeext, (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))0}; static iw_handler airo_private_handler[1U] = { (int (*)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))0}; static struct iw_handler_def const airo_handler_def = {(iw_handler (* const *)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))(& airo_handler), 55U, 1U, 2U, (iw_handler (* const *)(struct net_device * , struct iw_request_info * , union iwreq_data * , char * ))(& airo_private_handler), (struct iw_priv_args const *)(& airo_private_args), & airo_get_wireless_stats}; static int airo_ioctl(struct net_device *dev , struct ifreq *rq , int cmd ) { int rc ; struct airo_info *ai ; int val ; aironet_ioctl com ; unsigned long tmp ; unsigned long tmp___0 ; aironet_ioctl com___0 ; unsigned long tmp___1 ; unsigned long tmp___2 ; { rc = 0; ai = (struct airo_info *)dev->__annonCompField74.ml_priv; if (ai->power.event != 0) { return (0); } else { } { if (cmd == 35809) { goto case_35809; } else { } if (cmd == 35313) { goto case_35313; } else { } if (cmd == 35808) { goto case_35808; } else { } if (cmd == 35312) { goto case_35312; } else { } goto switch_default; case_35809: /* CIL Label */ ; case_35313: /* CIL Label */ { val = 42330; tmp___0 = copy_from_user((void *)(& com), (void const *)rq->ifr_ifru.ifru_data, 16UL); } if (tmp___0 != 0UL) { rc = -14; } else { { tmp = copy_to_user((void *)com.data, (void const *)(& val), 4UL); } if (tmp != 0UL) { rc = -14; } else { } } goto ldv_48591; case_35808: /* CIL Label */ ; case_35312: /* CIL Label */ { tmp___1 = copy_from_user((void *)(& com___0), (void const *)rq->ifr_ifru.ifru_data, 16UL); } if (tmp___1 != 0UL) { rc = -14; goto ldv_48591; } else { } if ((unsigned int )com___0.command == 17U) { { tmp___2 = copy_to_user((void *)com___0.data, (void const *)(& swversion), 4UL); } if (tmp___2 != 0UL) { rc = -14; } else { rc = 0; } } else if ((unsigned int )com___0.command <= 15U) { { rc = readrids(dev, & com___0); } } else if ((unsigned int )com___0.command - 50U <= 14U) { { rc = writerids(dev, & com___0); } } else if ((unsigned int )com___0.command - 100U <= 5U) { { rc = flashcard(dev, & com___0); } } else { rc = -22; } goto ldv_48591; switch_default: /* CIL Label */ rc = -95; switch_break: /* CIL Label */ ; } ldv_48591: ; return (rc); } } static void airo_read_wireless_stats(struct airo_info *local ) { StatusRid status_rid ; StatsRid stats_rid ; CapabilityRid cap_rid ; __le32 *vals ; int tmp ; { { vals = (__le32 *)(& stats_rid.vals); clear_bit(8L, (unsigned long volatile *)(& local->jobs)); } if (local->power.event != 0) { { up(& local->sem); } return; } else { } { readCapabilityRid(local, & cap_rid, 0); readStatusRid(local, & status_rid, 0); readStatsRid(local, & stats_rid, 65384, 0); up(& local->sem); local->wstats.status = status_rid.mode; } if ((unsigned long )local->rssi != (unsigned long )((tdsRssiEntry *)0)) { { local->wstats.qual.level = airo_rssi_to_dbm(local->rssi, (int )((u8 )status_rid.sigQuality)); local->wstats.qual.qual = (__u8 )status_rid.normalizedSignalStrength; } } else { { local->wstats.qual.level = (__u8 )(((int )status_rid.normalizedSignalStrength + 321) / 2); tmp = airo_get_quality(& status_rid, & cap_rid); local->wstats.qual.qual = (__u8 )tmp; } } if ((unsigned int )status_rid.len > 123U) { local->wstats.qual.noise = (__u8 )(- ((int )status_rid.noisedBm)); local->wstats.qual.updated = 15U; } else { local->wstats.qual.noise = 0U; local->wstats.qual.updated = 75U; } local->wstats.discard.nwid = (*(vals + 56UL) + *(vals + 57UL)) + *(vals + 58UL); local->wstats.discard.code = *(vals + 6UL); local->wstats.discard.fragment = *(vals + 30UL); local->wstats.discard.retries = *(vals + 10UL); local->wstats.discard.misc = *(vals + 1UL) + *(vals + 32UL); local->wstats.miss.beacon = *(vals + 34UL); return; } } static struct iw_statistics *airo_get_wireless_stats(struct net_device *dev ) { struct airo_info *local ; int tmp ; int tmp___0 ; { { local = (struct airo_info *)dev->__annonCompField74.ml_priv; tmp___0 = constant_test_bit(8L, (unsigned long const volatile *)(& local->jobs)); } if (tmp___0 == 0) { { tmp = down_trylock(& local->sem); } if (tmp != 0) { { set_bit(8L, (unsigned long volatile *)(& local->jobs)); __wake_up(& local->thr_wait, 1U, 1, (void *)0); } } else { { airo_read_wireless_stats(local); } } } else { } return (& local->wstats); } } static int readrids(struct net_device *dev , aironet_ioctl *comp ) { unsigned short ridcode ; unsigned char *iobuf ; int len ; struct airo_info *ai ; int tmp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; bool tmp___3 ; int tmp___4 ; int _min1 ; int _min2 ; unsigned long tmp___5 ; void *tmp___6 ; int _min1___0 ; int _min2___0 ; unsigned long tmp___7 ; { { ai = (struct airo_info *)dev->__annonCompField74.ml_priv; tmp = constant_test_bit(15L, (unsigned long const volatile *)(& ai->flags)); } if (tmp != 0) { return (-5); } else { } { if ((int )comp->command == 0) { goto case_0; } else { } if ((int )comp->command == 1) { goto case_1; } else { } if ((int )comp->command == 2) { goto case_2; } else { } if ((int )comp->command == 3) { goto case_3; } else { } if ((int )comp->command == 4) { goto case_4; } else { } if ((int )comp->command == 5) { goto case_5; } else { } if ((int )comp->command == 6) { goto case_6; } else { } if ((int )comp->command == 7) { goto case_7; } else { } if ((int )comp->command == 8) { goto case_8; } else { } if ((int )comp->command == 10) { goto case_10; } else { } if ((int )comp->command == 9) { goto case_9; } else { } if ((int )comp->command == 12) { goto case_12; } else { } if ((int )comp->command == 15) { goto case_15; } else { } goto switch_default; case_0: /* CIL Label */ ridcode = 65280U; goto ldv_48616; case_1: /* CIL Label */ { ridcode = 65296U; tmp___0 = constant_test_bit(13L, (unsigned long const volatile *)(& ai->flags)); } if (tmp___0 != 0) { { disable_MAC(ai, 1); writeConfigRid(ai, 1); enable_MAC(ai, 1); } } else { } goto ldv_48616; case_2: /* CIL Label */ ridcode = 65297U; goto ldv_48616; case_3: /* CIL Label */ ridcode = 65298U; goto ldv_48616; case_4: /* CIL Label */ ridcode = 65299U; goto ldv_48616; case_5: /* CIL Label */ ridcode = 65300U; goto ldv_48616; case_6: /* CIL Label */ { ridcode = 65301U; tmp___1 = capable(12); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { return (-1); } else { } goto ldv_48616; case_7: /* CIL Label */ { ridcode = 65302U; tmp___3 = capable(12); } if (tmp___3) { tmp___4 = 0; } else { tmp___4 = 1; } if (tmp___4) { return (-1); } else { } goto ldv_48616; case_8: /* CIL Label */ ridcode = 65360U; goto ldv_48616; case_10: /* CIL Label */ ridcode = 65385U; goto ldv_48616; case_9: /* CIL Label */ ridcode = 65384U; goto ldv_48616; case_12: /* CIL Label */ { _min1 = (int )comp->len; _min2 = 156; tmp___5 = copy_to_user((void *)comp->data, (void const *)(& ai->micstats), (unsigned long )(_min1 < _min2 ? _min1 : _min2)); } if (tmp___5 != 0UL) { return (-14); } else { } return (0); case_15: /* CIL Label */ ridcode = comp->ridnum; goto ldv_48616; switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } ldv_48616: { tmp___6 = kmalloc(2048UL, 208U); iobuf = (unsigned char *)tmp___6; } if ((unsigned long )iobuf == (unsigned long )((unsigned char *)0U)) { return (-12); } else { } { PC4500_readrid(ai, (int )ridcode, (void *)iobuf, 2048, 1); len = (int )comp->len; _min1___0 = len; _min2___0 = 2048; tmp___7 = copy_to_user((void *)comp->data, (void const *)iobuf, (unsigned long )(_min1___0 < _min2___0 ? _min1___0 : _min2___0)); } if (tmp___7 != 0UL) { { kfree((void const *)iobuf); } return (-14); } else { } { kfree((void const *)iobuf); } return (0); } } static int writerids(struct net_device *dev , aironet_ioctl *comp ) { struct airo_info *ai ; int ridcode ; int enabled ; int (*writer)(struct airo_info * , u16 , void const * , int , int ) ; unsigned char *iobuf ; bool tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; void *tmp___3 ; int _min1 ; int _min2 ; unsigned long tmp___4 ; void *tmp___5 ; unsigned long tmp___6 ; ConfigRid *cfg ; int tmp___7 ; int tmp___8 ; { { ai = (struct airo_info *)dev->__annonCompField74.ml_priv; tmp = capable(12); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (-1); } else { } { tmp___1 = constant_test_bit(15L, (unsigned long const volatile *)(& ai->flags)); } if (tmp___1 != 0) { return (-5); } else { } ridcode = 0; writer = & do_writerid; { if ((int )comp->command == 54) { goto case_54; } else { } if ((int )comp->command == 50) { goto case_50; } else { } if ((int )comp->command == 55) { goto case_55; } else { } if ((int )comp->command == 53) { goto case_53; } else { } if ((int )comp->command == 60) { goto case_60; } else { } if ((int )comp->command == 62) { goto case_62; } else { } if ((int )comp->command == 61) { goto case_61; } else { } if ((int )comp->command == 59) { goto case_59; } else { } if ((int )comp->command == 63) { goto case_63; } else { } if ((int )comp->command == 64) { goto case_64; } else { } if ((int )comp->command == 56) { goto case_56; } else { } if ((int )comp->command == 57) { goto case_57; } else { } if ((int )comp->command == 58) { goto case_58; } else { } goto switch_default; case_54: /* CIL Label */ ridcode = 65297; goto ldv_48651; case_50: /* CIL Label */ ridcode = 65280; goto ldv_48651; case_55: /* CIL Label */ ridcode = 65298; goto ldv_48651; case_53: /* CIL Label */ { ai->config.len = 0U; clear_bit(13L, (unsigned long volatile *)(& ai->flags)); ridcode = 65296; } goto ldv_48651; case_60: /* CIL Label */ ridcode = 65302; goto ldv_48651; case_62: /* CIL Label */ ridcode = 65315; goto ldv_48651; case_61: /* CIL Label */ ridcode = 65316; goto ldv_48651; case_59: /* CIL Label */ ridcode = 65301; writer = & PC4500_writerid; goto ldv_48651; case_63: /* CIL Label */ ridcode = 65322; goto ldv_48651; case_64: /* CIL Label */ ridcode = 65323; goto ldv_48651; case_56: /* CIL Label */ { tmp___2 = enable_MAC(ai, 1); } if (tmp___2 != 0) { return (-5); } else { } return (0); case_57: /* CIL Label */ { disable_MAC(ai, 1); } return (0); case_58: /* CIL Label */ { tmp___3 = kmalloc(2048UL, 208U); iobuf = (unsigned char *)tmp___3; } if ((unsigned long )iobuf == (unsigned long )((unsigned char *)0U)) { return (-12); } else { } { PC4500_readrid(ai, 65386, (void *)iobuf, 2048, 1); enabled = (int )ai->micstats.enabled; memset((void *)(& ai->micstats), 0, 156UL); ai->micstats.enabled = (u8 )enabled; _min1 = (int )comp->len; _min2 = 2048; tmp___4 = copy_to_user((void *)comp->data, (void const *)iobuf, (unsigned long )(_min1 < _min2 ? _min1 : _min2)); } if (tmp___4 != 0UL) { { kfree((void const *)iobuf); } return (-14); } else { } { kfree((void const *)iobuf); } return (0); switch_default: /* CIL Label */ ; return (-95); switch_break: /* CIL Label */ ; } ldv_48651: ; if ((unsigned int )comp->len > 2048U) { return (-22); } else { } { tmp___5 = kmalloc(2048UL, 208U); iobuf = (unsigned char *)tmp___5; } if ((unsigned long )iobuf == (unsigned long )((unsigned char *)0U)) { return (-12); } else { } { tmp___6 = copy_from_user((void *)iobuf, (void const *)comp->data, (unsigned long )comp->len); } if (tmp___6 != 0UL) { { kfree((void const *)iobuf); } return (-14); } else { } if ((unsigned int )comp->command == 53U) { { cfg = (ConfigRid *)iobuf; tmp___7 = constant_test_bit(4L, (unsigned long const volatile *)(& ai->flags)); } if (tmp___7 != 0) { cfg->opmode = (__le16 )((unsigned int )cfg->opmode | 32768U); } else { } if (((int )cfg->opmode & 255) == 0) { { set_bit(3L, (unsigned long volatile *)(& ai->flags)); } } else { { clear_bit(3L, (unsigned long volatile *)(& ai->flags)); } } } else { } { tmp___8 = (*writer)(ai, (int )((u16 )ridcode), (void const *)iobuf, (int )comp->len, 1); } if (tmp___8 != 0) { { kfree((void const *)iobuf); } return (-5); } else { } { kfree((void const *)iobuf); } return (0); } } static int flashcard(struct net_device *dev , aironet_ioctl *comp ) { int z ; bool tmp ; int tmp___0 ; int tmp___1 ; unsigned short *tmp___2 ; void *tmp___3 ; int tmp___4 ; unsigned long tmp___5 ; int tmp___6 ; unsigned long tmp___7 ; int tmp___8 ; unsigned long tmp___9 ; int tmp___10 ; { { tmp = capable(12); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (-1); } else { } { if ((int )comp->command == 100) { goto case_100; } else { } if ((int )comp->command == 102) { goto case_102; } else { } if ((int )comp->command == 101) { goto case_101; } else { } if ((int )comp->command == 103) { goto case_103; } else { } if ((int )comp->command == 104) { goto case_104; } else { } if ((int )comp->command == 105) { goto case_105; } else { } goto switch_break; case_100: /* CIL Label */ { tmp___1 = cmdreset((struct airo_info *)dev->__annonCompField74.ml_priv); } return (tmp___1); case_102: /* CIL Label */ ; if ((unsigned long )((struct airo_info *)dev->__annonCompField74.ml_priv)->flash == (unsigned long )((unsigned short *)0U)) { { tmp___3 = kmalloc(32768UL, 208U); tmp___2 = (unsigned short *)tmp___3; ((struct airo_info *)dev->__annonCompField74.ml_priv)->flash = tmp___2; } if ((unsigned long )tmp___2 == (unsigned long )((unsigned short *)0U)) { return (-12); } else { } } else { } { tmp___4 = setflashmode((struct airo_info *)dev->__annonCompField74.ml_priv); } return (tmp___4); case_101: /* CIL Label */ ; if ((unsigned int )comp->len != 4U) { return (-22); } else { } { tmp___5 = copy_from_user((void *)(& z), (void const *)comp->data, (unsigned long )comp->len); } if (tmp___5 != 0UL) { return (-14); } else { } { tmp___6 = flashgchar((struct airo_info *)dev->__annonCompField74.ml_priv, z, 8000); } return (tmp___6); case_103: /* CIL Label */ ; if ((unsigned int )comp->len != 4U) { return (-22); } else { } { tmp___7 = copy_from_user((void *)(& z), (void const *)comp->data, (unsigned long )comp->len); } if (tmp___7 != 0UL) { return (-14); } else { } { tmp___8 = flashpchar((struct airo_info *)dev->__annonCompField74.ml_priv, z, 8000); } return (tmp___8); case_104: /* CIL Label */ ; if ((unsigned long )((struct airo_info *)dev->__annonCompField74.ml_priv)->flash == (unsigned long )((unsigned short *)0U)) { return (-12); } else { } if ((unsigned int )comp->len > 32768U) { return (-22); } else { } { tmp___9 = copy_from_user((void *)((struct airo_info *)dev->__annonCompField74.ml_priv)->flash, (void const *)comp->data, (unsigned long )comp->len); } if (tmp___9 != 0UL) { return (-14); } else { } { flashputbuf((struct airo_info *)dev->__annonCompField74.ml_priv); } return (0); case_105: /* CIL Label */ { tmp___10 = flashrestart((struct airo_info *)dev->__annonCompField74.ml_priv, dev); } if (tmp___10 != 0) { return (-5); } else { } return (0); switch_break: /* CIL Label */ ; } return (-22); } } static int cmdreset(struct airo_info *ai ) { int tmp ; int tmp___0 ; { { disable_MAC(ai, 1); tmp = waitbusy(ai); } if (tmp == 0) { { printk("\016airo(%s): Waitbusy hang before RESET\n", (char *)(& (ai->dev)->name)); } return (-16); } else { } { OUT4500(ai, 0, 4); ssleep(1U); tmp___0 = waitbusy(ai); } if (tmp___0 == 0) { { printk("\016airo(%s): Waitbusy hang AFTER RESET\n", (char *)(& (ai->dev)->name)); } return (-16); } else { } return (0); } } static int setflashmode(struct airo_info *ai ) { int tmp ; { { set_bit(15L, (unsigned long volatile *)(& ai->flags)); OUT4500(ai, 40, 32382); OUT4500(ai, 42, 32382); } if (probe != 0) { { OUT4500(ai, 40, 32382); OUT4500(ai, 0, 16); } } else { { OUT4500(ai, 44, 32382); OUT4500(ai, 46, 32382); OUT4500(ai, 0, 0); } } { msleep(500U); tmp = waitbusy(ai); } if (tmp == 0) { { clear_bit(15L, (unsigned long volatile *)(& ai->flags)); printk("\016airo(%s): Waitbusy hang after setflash mode\n", (char *)(& (ai->dev)->name)); } return (-5); } else { } return (0); } } static int flashpchar(struct airo_info *ai , int byte , int dwelltime ) { int echo ; int waittime ; unsigned short tmp ; unsigned short tmp___0 ; { byte = byte | 32768; if (dwelltime == 0) { dwelltime = 200; } else { } waittime = dwelltime; goto ldv_48694; ldv_48693: { __const_udelay(214750UL); waittime = waittime + -50; } ldv_48694: { tmp = IN4500(ai, 40); } if ((int )((short )tmp) < 0 && waittime > 0) { goto ldv_48693; } else { } if (waittime <= 0) { { printk("\016airo(%s): flash putchar busywait timeout!\n", (char *)(& (ai->dev)->name)); } return (-16); } else { } ldv_48696: { OUT4500(ai, 40, (int )((u16 )byte)); __const_udelay(214750UL); dwelltime = dwelltime + -50; tmp___0 = IN4500(ai, 42); echo = (int )tmp___0; } if (dwelltime >= 0 && echo != byte) { goto ldv_48696; } else { } { OUT4500(ai, 42, 0); } return (echo == byte ? 0 : -5); } } static int flashgchar(struct airo_info *ai , int matchbyte , int dwelltime ) { int rchar ; unsigned char rbyte ; unsigned short tmp ; unsigned long __ms ; unsigned long tmp___0 ; { rbyte = 0U; ldv_48711: { tmp = IN4500(ai, 42); rchar = (int )tmp; } if (dwelltime != 0 && (rchar & 32768) == 0) { dwelltime = dwelltime + -10; __ms = 10UL; goto ldv_48707; ldv_48706: { __const_udelay(4295000UL); } ldv_48707: tmp___0 = __ms; __ms = __ms - 1UL; if (tmp___0 != 0UL) { goto ldv_48706; } else { } goto ldv_48709; } else { } rbyte = (unsigned char )rchar; if ((int )rbyte == matchbyte && (rchar & 32768) != 0) { { OUT4500(ai, 42, 0); } return (0); } else { } if (((unsigned int )rbyte - 129U <= 2U || (unsigned int )rbyte == 26U) || rchar == 65535) { goto ldv_48710; } else { } { OUT4500(ai, 42, 0); } ldv_48709: ; if (dwelltime > 0) { goto ldv_48711; } else { } ldv_48710: ; return (-5); } } static int flashputbuf(struct airo_info *ai ) { int nwords ; int tmp ; { { tmp = constant_test_bit(11L, (unsigned long const volatile *)(& ai->flags)); } if (tmp != 0) { { memcpy_toio((void volatile *)ai->pciaux + 32768U, (void const *)ai->flash, 32768UL); } } else { { OUT4500(ai, 58, 256); OUT4500(ai, 60, 0); nwords = 0; } goto ldv_48717; ldv_48716: { OUT4500(ai, 62, (int )*(ai->flash + (unsigned long )nwords)); nwords = nwords + 1; } ldv_48717: ; if (nwords != 16384) { goto ldv_48716; } else { } } { OUT4500(ai, 40, 32768); } return (0); } } static int flashrestart(struct airo_info *ai , struct net_device *dev ) { int i ; int status ; int tmp ; u16 tmp___0 ; u16 tmp___1 ; int tmp___2 ; { { ssleep(1U); clear_bit(15L, (unsigned long volatile *)(& ai->flags)); tmp = constant_test_bit(11L, (unsigned long const volatile *)(& ai->flags)); } if (tmp != 0) { { status = mpi_init_descriptors(ai); } if (status != 0) { return (status); } else { } } else { } { tmp___0 = setup_card(ai, dev->dev_addr, 1); status = (int )tmp___0; tmp___2 = constant_test_bit(11L, (unsigned long const volatile *)(& ai->flags)); } if (tmp___2 == 0) { i = 0; goto ldv_48726; ldv_48725: { tmp___1 = transmit_allocate(ai, 2312, i > 2); ai->fids[i] = (u32 )tmp___1; i = i + 1; } ldv_48726: ; if (i <= 5) { goto ldv_48725; } else { } } else { } { ssleep(1U); } return (status); } } void ldv_EMGentry_exit_airo_cleanup_module_23_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_airo_init_module_23_13(int (*arg0)(void) ) ; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) ; struct net_device *ldv_alloc_netdev_mqs(struct net_device *arg0 , int arg1 , char *arg2 , void (*arg3)(struct net_device * ) , unsigned int arg4 , unsigned int arg5 ) ; void ldv_alloc_netdev_mqs_setup_14_3(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_alloc_netdev_mqs_setup_15_3(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dispatch_deregister_20_1(struct net_device *arg0 ) ; void ldv_dispatch_deregister_21_1(struct pci_driver *arg0 ) ; void ldv_dispatch_deregister_dummy_resourceless_instance_13_23_4(void) ; void ldv_dispatch_deregister_dummy_resourceless_instance_14_23_5(void) ; void ldv_dispatch_deregister_file_operations_instance_7_23_6(void) ; void ldv_dispatch_irq_deregister_16_1(int arg0 ) ; void ldv_dispatch_irq_register_19_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_register_18_4(struct net_device *arg0 ) ; void ldv_dispatch_register_22_2(struct pci_driver *arg0 ) ; void ldv_dispatch_register_dummy_resourceless_instance_13_23_7(void) ; void ldv_dispatch_register_dummy_resourceless_instance_14_23_8(void) ; void ldv_dispatch_register_file_operations_instance_7_23_9(void) ; void ldv_dummy_resourceless_instance_callback_10_12(struct net_device_stats *(*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_10_13(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) ; void ldv_dummy_resourceless_instance_callback_10_14(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_10_15(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) ; void ldv_dummy_resourceless_instance_callback_10_16(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_10_3(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_10_9(int (*arg0)(struct net_device * , struct ifreq * , int ) , struct net_device *arg1 , struct ifreq *arg2 , int arg3 ) ; void ldv_dummy_resourceless_instance_callback_12_3(int (*arg0)(struct sk_buff * , unsigned char * ) , struct sk_buff *arg1 , unsigned char *arg2 ) ; void ldv_dummy_resourceless_instance_callback_13_3(struct iw_statistics *(*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_9_12(struct net_device_stats *(*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_9_13(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) ; void ldv_dummy_resourceless_instance_callback_9_14(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_9_15(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) ; void ldv_dummy_resourceless_instance_callback_9_16(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_9_3(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_9_9(int (*arg0)(struct net_device * , struct ifreq * , int ) , struct net_device *arg1 , struct ifreq *arg2 , int arg3 ) ; void ldv_entry_EMGentry_23(void *arg0 ) ; int main(void) ; void ldv_file_operations_file_operations_instance_0(void *arg0 ) ; void ldv_file_operations_file_operations_instance_1(void *arg0 ) ; void ldv_file_operations_file_operations_instance_2(void *arg0 ) ; void ldv_file_operations_file_operations_instance_3(void *arg0 ) ; void ldv_file_operations_file_operations_instance_4(void *arg0 ) ; void ldv_file_operations_file_operations_instance_5(void *arg0 ) ; void ldv_file_operations_file_operations_instance_6(void *arg0 ) ; void ldv_file_operations_file_operations_instance_7(void *arg0 ) ; void ldv_file_operations_instance_callback_0_22(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_callback_0_5(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) ; void ldv_file_operations_instance_callback_1_22(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_callback_1_5(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) ; void ldv_file_operations_instance_callback_2_22(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_callback_2_5(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) ; void ldv_file_operations_instance_callback_3_22(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_callback_3_5(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) ; void ldv_file_operations_instance_callback_4_22(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_callback_4_5(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) ; void ldv_file_operations_instance_callback_5_22(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_callback_5_5(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) ; void ldv_file_operations_instance_callback_6_22(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_callback_6_5(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) ; void ldv_file_operations_instance_callback_7_22(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_callback_7_5(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) ; int ldv_file_operations_instance_probe_0_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; int ldv_file_operations_instance_probe_1_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; int ldv_file_operations_instance_probe_2_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; int ldv_file_operations_instance_probe_3_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; int ldv_file_operations_instance_probe_4_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; int ldv_file_operations_instance_probe_5_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; int ldv_file_operations_instance_probe_6_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; int ldv_file_operations_instance_probe_7_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_release_0_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_release_1_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_release_2_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_release_3_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_release_4_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_release_5_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_release_6_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_release_7_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_write_0_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_write_1_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_write_2_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_write_3_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_write_4_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_write_5_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_write_6_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_write_7_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) ; void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) ; enum irqreturn ldv_interrupt_instance_handler_8_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_8_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_interrupt_instance_8(void *arg0 ) ; void ldv_net_dummy_resourceless_instance_10(void *arg0 ) ; void ldv_net_dummy_resourceless_instance_9(void *arg0 ) ; int ldv_pci_instance_probe_11_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_11_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_11_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_11_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_11_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_11_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_11_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_11(void *arg0 ) ; void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) ; int ldv_register_netdev(int arg0 , struct net_device *arg1 ) ; int ldv_register_netdev_open_18_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) ; void ldv_struct_header_ops_dummy_resourceless_instance_12(void *arg0 ) ; void ldv_struct_iw_priv_args_dummy_resourceless_instance_13(void *arg0 ) ; void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) ; void ldv_unregister_netdev_stop_20_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; struct ldv_thread ldv_thread_0 ; struct ldv_thread ldv_thread_1 ; struct ldv_thread ldv_thread_10 ; struct ldv_thread ldv_thread_11 ; struct ldv_thread ldv_thread_12 ; struct ldv_thread ldv_thread_13 ; struct ldv_thread ldv_thread_2 ; struct ldv_thread ldv_thread_23 ; struct ldv_thread ldv_thread_3 ; struct ldv_thread ldv_thread_4 ; struct ldv_thread ldv_thread_5 ; struct ldv_thread ldv_thread_6 ; struct ldv_thread ldv_thread_7 ; struct ldv_thread ldv_thread_8 ; struct ldv_thread ldv_thread_9 ; void ldv_EMGentry_exit_airo_cleanup_module_23_2(void (*arg0)(void) ) { { { airo_cleanup_module(); } return; } } int ldv_EMGentry_init_airo_init_module_23_13(int (*arg0)(void) ) { int tmp ; { { tmp = airo_init_module(); } return (tmp); } } int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) { struct pci_driver *ldv_22_pci_driver_pci_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_22_pci_driver_pci_driver = arg1; ldv_dispatch_register_22_2(ldv_22_pci_driver_pci_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } struct net_device *ldv_alloc_netdev_mqs(struct net_device *arg0 , int arg1 , char *arg2 , void (*arg3)(struct net_device * ) , unsigned int arg4 , unsigned int arg5 ) { struct net_device *ldv_15_netdev_net_device ; void (*ldv_15_setup_setup)(struct net_device * ) ; void *tmp ; int tmp___0 ; { { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { tmp = ldv_xmalloc(3200UL); ldv_15_netdev_net_device = (struct net_device *)tmp; ldv_15_setup_setup = arg3; ldv_alloc_netdev_mqs_setup_15_3(ldv_15_setup_setup, ldv_15_netdev_net_device); } return (ldv_15_netdev_net_device); return (arg0); } else { return ((struct net_device *)0); return (arg0); } return (arg0); } } void ldv_alloc_netdev_mqs_setup_14_3(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { ether_setup(arg1); } return; } } void ldv_alloc_netdev_mqs_setup_15_3(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { wifi_setup(arg1); } return; } } void ldv_dispatch_deregister_20_1(struct net_device *arg0 ) { int tmp ; { { tmp = ldv_undef_int(); } return; } } void ldv_dispatch_deregister_21_1(struct pci_driver *arg0 ) { { return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_13_23_4(void) { { return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_14_23_5(void) { { return; } } void ldv_dispatch_deregister_file_operations_instance_7_23_6(void) { { return; } } void ldv_dispatch_irq_deregister_16_1(int arg0 ) { { return; } } void ldv_dispatch_irq_register_19_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { struct ldv_struct_interrupt_instance_8 *cf_arg_8 ; void *tmp ; { { tmp = ldv_xmalloc(40UL); cf_arg_8 = (struct ldv_struct_interrupt_instance_8 *)tmp; cf_arg_8->arg0 = arg0; cf_arg_8->arg1 = arg1; cf_arg_8->arg2 = arg2; cf_arg_8->arg3 = arg3; ldv_interrupt_interrupt_instance_8((void *)cf_arg_8); } return; } } void ldv_dispatch_register_18_4(struct net_device *arg0 ) { struct ldv_struct_dummy_resourceless_instance_9 *cf_arg_9 ; struct ldv_struct_dummy_resourceless_instance_9 *cf_arg_10 ; void *tmp ; void *tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = ldv_xmalloc(16UL); cf_arg_9 = (struct ldv_struct_dummy_resourceless_instance_9 *)tmp; cf_arg_9->arg0 = arg0; ldv_net_dummy_resourceless_instance_9((void *)cf_arg_9); } } else { { tmp___0 = ldv_xmalloc(16UL); cf_arg_10 = (struct ldv_struct_dummy_resourceless_instance_9 *)tmp___0; cf_arg_10->arg0 = arg0; ldv_net_dummy_resourceless_instance_10((void *)cf_arg_10); } } return; } } void ldv_dispatch_register_22_2(struct pci_driver *arg0 ) { struct ldv_struct_pci_instance_11 *cf_arg_11 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_11 = (struct ldv_struct_pci_instance_11 *)tmp; cf_arg_11->arg0 = arg0; ldv_pci_pci_instance_11((void *)cf_arg_11); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_13_23_7(void) { struct ldv_struct_EMGentry_23 *cf_arg_12 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_12 = (struct ldv_struct_EMGentry_23 *)tmp; ldv_struct_header_ops_dummy_resourceless_instance_12((void *)cf_arg_12); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_14_23_8(void) { struct ldv_struct_EMGentry_23 *cf_arg_13 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_13 = (struct ldv_struct_EMGentry_23 *)tmp; ldv_struct_iw_priv_args_dummy_resourceless_instance_13((void *)cf_arg_13); } return; } } void ldv_dispatch_register_file_operations_instance_7_23_9(void) { struct ldv_struct_EMGentry_23 *cf_arg_0 ; struct ldv_struct_EMGentry_23 *cf_arg_1 ; struct ldv_struct_EMGentry_23 *cf_arg_2 ; struct ldv_struct_EMGentry_23 *cf_arg_3 ; struct ldv_struct_EMGentry_23 *cf_arg_4 ; struct ldv_struct_EMGentry_23 *cf_arg_5 ; struct ldv_struct_EMGentry_23 *cf_arg_6 ; struct ldv_struct_EMGentry_23 *cf_arg_7 ; void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; void *tmp___5 ; void *tmp___6 ; { { tmp = ldv_xmalloc(4UL); cf_arg_0 = (struct ldv_struct_EMGentry_23 *)tmp; ldv_file_operations_file_operations_instance_0((void *)cf_arg_0); tmp___0 = ldv_xmalloc(4UL); cf_arg_1 = (struct ldv_struct_EMGentry_23 *)tmp___0; ldv_file_operations_file_operations_instance_1((void *)cf_arg_1); tmp___1 = ldv_xmalloc(4UL); cf_arg_2 = (struct ldv_struct_EMGentry_23 *)tmp___1; ldv_file_operations_file_operations_instance_2((void *)cf_arg_2); tmp___2 = ldv_xmalloc(4UL); cf_arg_3 = (struct ldv_struct_EMGentry_23 *)tmp___2; ldv_file_operations_file_operations_instance_3((void *)cf_arg_3); tmp___3 = ldv_xmalloc(4UL); cf_arg_4 = (struct ldv_struct_EMGentry_23 *)tmp___3; ldv_file_operations_file_operations_instance_4((void *)cf_arg_4); tmp___4 = ldv_xmalloc(4UL); cf_arg_5 = (struct ldv_struct_EMGentry_23 *)tmp___4; ldv_file_operations_file_operations_instance_5((void *)cf_arg_5); tmp___5 = ldv_xmalloc(4UL); cf_arg_6 = (struct ldv_struct_EMGentry_23 *)tmp___5; ldv_file_operations_file_operations_instance_6((void *)cf_arg_6); tmp___6 = ldv_xmalloc(4UL); cf_arg_7 = (struct ldv_struct_EMGentry_23 *)tmp___6; ldv_file_operations_file_operations_instance_7((void *)cf_arg_7); } return; } } void ldv_dummy_resourceless_instance_callback_10_12(struct net_device_stats *(*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { airo_get_stats(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_10_13(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) { { { airo_set_mac_address(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_10_14(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { airo_set_multicast_list(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_10_15(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) { { { airo_start_xmit11(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_10_16(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { eth_validate_addr(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_10_3(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { airo_change_mtu(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_10_9(int (*arg0)(struct net_device * , struct ifreq * , int ) , struct net_device *arg1 , struct ifreq *arg2 , int arg3 ) { { { airo_ioctl(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_12_3(int (*arg0)(struct sk_buff * , unsigned char * ) , struct sk_buff *arg1 , unsigned char *arg2 ) { { { wll_header_parse((struct sk_buff const *)arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_13_3(struct iw_statistics *(*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { airo_get_wireless_stats(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_9_12(struct net_device_stats *(*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { airo_get_stats(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_9_13(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) { { { airo_set_mac_address(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_9_14(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { airo_set_multicast_list(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_9_15(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) { { { mpi_start_xmit(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_9_16(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { eth_validate_addr(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_9_3(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { airo_change_mtu(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_9_9(int (*arg0)(struct net_device * , struct ifreq * , int ) , struct net_device *arg1 , struct ifreq *arg2 , int arg3 ) { { { airo_ioctl(arg1, arg2, arg3); } return; } } void ldv_entry_EMGentry_23(void *arg0 ) { void (*ldv_23_exit_airo_cleanup_module_default)(void) ; int (*ldv_23_init_airo_init_module_default)(void) ; int ldv_23_ret_default ; int tmp ; int tmp___0 ; { { ldv_23_ret_default = ldv_EMGentry_init_airo_init_module_23_13(ldv_23_init_airo_init_module_default); ldv_23_ret_default = ldv_post_init(ldv_23_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_23_ret_default != 0); ldv_check_final_state(); ldv_stop(); } return; } else { { ldv_assume(ldv_23_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dispatch_register_file_operations_instance_7_23_9(); ldv_dispatch_register_dummy_resourceless_instance_14_23_8(); ldv_dispatch_register_dummy_resourceless_instance_13_23_7(); ldv_dispatch_deregister_file_operations_instance_7_23_6(); ldv_dispatch_deregister_dummy_resourceless_instance_14_23_5(); ldv_dispatch_deregister_dummy_resourceless_instance_13_23_4(); } } else { } { ldv_EMGentry_exit_airo_cleanup_module_23_2(ldv_23_exit_airo_cleanup_module_default); ldv_check_final_state(); ldv_stop(); } return; } return; } } int main(void) { { { ldv_initialize(); ldv_entry_EMGentry_23((void *)0); } return 0; } } void ldv_file_operations_file_operations_instance_0(void *arg0 ) { long long (*ldv_0_callback_llseek)(struct file * , long long , int ) ; long (*ldv_0_callback_read)(struct file * , char * , unsigned long , long long * ) ; struct file_operations *ldv_0_container_file_operations ; char *ldv_0_ldv_param_22_1_default ; long long *ldv_0_ldv_param_22_3_default ; char *ldv_0_ldv_param_4_1_default ; long long *ldv_0_ldv_param_4_3_default ; long long ldv_0_ldv_param_5_1_default ; int ldv_0_ldv_param_5_2_default ; struct file *ldv_0_resource_file ; struct inode *ldv_0_resource_inode ; int ldv_0_ret_default ; unsigned long ldv_0_size_cnt_write_size ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; void *tmp___8 ; int tmp___9 ; { { ldv_0_ret_default = 1; tmp = ldv_xmalloc(520UL); ldv_0_resource_file = (struct file *)tmp; tmp___0 = ldv_xmalloc(1032UL); ldv_0_resource_inode = (struct inode *)tmp___0; tmp___1 = ldv_undef_int(); ldv_0_size_cnt_write_size = (unsigned long )tmp___1; } goto ldv_main_0; return; ldv_main_0: { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { ldv_0_ret_default = ldv_file_operations_instance_probe_0_12(ldv_0_container_file_operations->open, ldv_0_resource_inode, ldv_0_resource_file); ldv_0_ret_default = ldv_filter_err_code(ldv_0_ret_default); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_assume(ldv_0_ret_default == 0); } goto ldv_call_0; } else { { ldv_assume(ldv_0_ret_default != 0); } goto ldv_main_0; } } else { { ldv_free((void *)ldv_0_resource_file); ldv_free((void *)ldv_0_resource_inode); } return; } return; ldv_call_0: { tmp___4 = ldv_undef_int(); } { if (tmp___4 == 1) { goto case_1; } else { } if (tmp___4 == 2) { goto case_2; } else { } if (tmp___4 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___5 = ldv_xmalloc(1UL); ldv_0_ldv_param_4_1_default = (char *)tmp___5; tmp___6 = ldv_xmalloc(8UL); ldv_0_ldv_param_4_3_default = (long long *)tmp___6; ldv_assume(ldv_0_size_cnt_write_size <= 2147479552UL); ldv_file_operations_instance_write_0_4((long (*)(struct file * , char * , unsigned long , long long * ))ldv_0_container_file_operations->write, ldv_0_resource_file, ldv_0_ldv_param_4_1_default, ldv_0_size_cnt_write_size, ldv_0_ldv_param_4_3_default); ldv_free((void *)ldv_0_ldv_param_4_1_default); ldv_free((void *)ldv_0_ldv_param_4_3_default); } goto ldv_call_0; case_2: /* CIL Label */ { ldv_file_operations_instance_release_0_2(ldv_0_container_file_operations->release, ldv_0_resource_inode, ldv_0_resource_file); } goto ldv_main_0; case_3: /* CIL Label */ { tmp___9 = ldv_undef_int(); } if (tmp___9 != 0) { { tmp___7 = ldv_xmalloc(1UL); ldv_0_ldv_param_22_1_default = (char *)tmp___7; tmp___8 = ldv_xmalloc(8UL); ldv_0_ldv_param_22_3_default = (long long *)tmp___8; ldv_file_operations_instance_callback_0_22(ldv_0_callback_read, ldv_0_resource_file, ldv_0_ldv_param_22_1_default, ldv_0_size_cnt_write_size, ldv_0_ldv_param_22_3_default); ldv_free((void *)ldv_0_ldv_param_22_1_default); ldv_free((void *)ldv_0_ldv_param_22_3_default); } } else { { ldv_file_operations_instance_callback_0_5(ldv_0_callback_llseek, ldv_0_resource_file, ldv_0_ldv_param_5_1_default, ldv_0_ldv_param_5_2_default); } } goto ldv_49603; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_49603: ; goto ldv_call_0; goto ldv_call_0; return; } } void ldv_file_operations_file_operations_instance_1(void *arg0 ) { long long (*ldv_1_callback_llseek)(struct file * , long long , int ) ; long (*ldv_1_callback_read)(struct file * , char * , unsigned long , long long * ) ; struct file_operations *ldv_1_container_file_operations ; char *ldv_1_ldv_param_22_1_default ; long long *ldv_1_ldv_param_22_3_default ; char *ldv_1_ldv_param_4_1_default ; long long *ldv_1_ldv_param_4_3_default ; long long ldv_1_ldv_param_5_1_default ; int ldv_1_ldv_param_5_2_default ; struct file *ldv_1_resource_file ; struct inode *ldv_1_resource_inode ; int ldv_1_ret_default ; unsigned long ldv_1_size_cnt_write_size ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; void *tmp___8 ; int tmp___9 ; { { ldv_1_ret_default = 1; tmp = ldv_xmalloc(520UL); ldv_1_resource_file = (struct file *)tmp; tmp___0 = ldv_xmalloc(1032UL); ldv_1_resource_inode = (struct inode *)tmp___0; tmp___1 = ldv_undef_int(); ldv_1_size_cnt_write_size = (unsigned long )tmp___1; } goto ldv_main_1; return; ldv_main_1: { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { ldv_1_ret_default = ldv_file_operations_instance_probe_1_12(ldv_1_container_file_operations->open, ldv_1_resource_inode, ldv_1_resource_file); ldv_1_ret_default = ldv_filter_err_code(ldv_1_ret_default); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_assume(ldv_1_ret_default == 0); } goto ldv_call_1; } else { { ldv_assume(ldv_1_ret_default != 0); } goto ldv_main_1; } } else { { ldv_free((void *)ldv_1_resource_file); ldv_free((void *)ldv_1_resource_inode); } return; } return; ldv_call_1: { tmp___4 = ldv_undef_int(); } { if (tmp___4 == 1) { goto case_1; } else { } if (tmp___4 == 2) { goto case_2; } else { } if (tmp___4 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___5 = ldv_xmalloc(1UL); ldv_1_ldv_param_4_1_default = (char *)tmp___5; tmp___6 = ldv_xmalloc(8UL); ldv_1_ldv_param_4_3_default = (long long *)tmp___6; ldv_assume(ldv_1_size_cnt_write_size <= 2147479552UL); ldv_file_operations_instance_write_1_4((long (*)(struct file * , char * , unsigned long , long long * ))ldv_1_container_file_operations->write, ldv_1_resource_file, ldv_1_ldv_param_4_1_default, ldv_1_size_cnt_write_size, ldv_1_ldv_param_4_3_default); ldv_free((void *)ldv_1_ldv_param_4_1_default); ldv_free((void *)ldv_1_ldv_param_4_3_default); } goto ldv_call_1; case_2: /* CIL Label */ { ldv_file_operations_instance_release_1_2(ldv_1_container_file_operations->release, ldv_1_resource_inode, ldv_1_resource_file); } goto ldv_main_1; case_3: /* CIL Label */ { tmp___9 = ldv_undef_int(); } if (tmp___9 != 0) { { tmp___7 = ldv_xmalloc(1UL); ldv_1_ldv_param_22_1_default = (char *)tmp___7; tmp___8 = ldv_xmalloc(8UL); ldv_1_ldv_param_22_3_default = (long long *)tmp___8; ldv_file_operations_instance_callback_1_22(ldv_1_callback_read, ldv_1_resource_file, ldv_1_ldv_param_22_1_default, ldv_1_size_cnt_write_size, ldv_1_ldv_param_22_3_default); ldv_free((void *)ldv_1_ldv_param_22_1_default); ldv_free((void *)ldv_1_ldv_param_22_3_default); } } else { { ldv_file_operations_instance_callback_1_5(ldv_1_callback_llseek, ldv_1_resource_file, ldv_1_ldv_param_5_1_default, ldv_1_ldv_param_5_2_default); } } goto ldv_49633; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_49633: ; goto ldv_call_1; goto ldv_call_1; return; } } void ldv_file_operations_file_operations_instance_2(void *arg0 ) { long long (*ldv_2_callback_llseek)(struct file * , long long , int ) ; long (*ldv_2_callback_read)(struct file * , char * , unsigned long , long long * ) ; struct file_operations *ldv_2_container_file_operations ; char *ldv_2_ldv_param_22_1_default ; long long *ldv_2_ldv_param_22_3_default ; char *ldv_2_ldv_param_4_1_default ; long long *ldv_2_ldv_param_4_3_default ; long long ldv_2_ldv_param_5_1_default ; int ldv_2_ldv_param_5_2_default ; struct file *ldv_2_resource_file ; struct inode *ldv_2_resource_inode ; int ldv_2_ret_default ; unsigned long ldv_2_size_cnt_write_size ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; void *tmp___8 ; int tmp___9 ; { { ldv_2_ret_default = 1; tmp = ldv_xmalloc(520UL); ldv_2_resource_file = (struct file *)tmp; tmp___0 = ldv_xmalloc(1032UL); ldv_2_resource_inode = (struct inode *)tmp___0; tmp___1 = ldv_undef_int(); ldv_2_size_cnt_write_size = (unsigned long )tmp___1; } goto ldv_main_2; return; ldv_main_2: { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { ldv_2_ret_default = ldv_file_operations_instance_probe_2_12(ldv_2_container_file_operations->open, ldv_2_resource_inode, ldv_2_resource_file); ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_assume(ldv_2_ret_default == 0); } goto ldv_call_2; } else { { ldv_assume(ldv_2_ret_default != 0); } goto ldv_main_2; } } else { { ldv_free((void *)ldv_2_resource_file); ldv_free((void *)ldv_2_resource_inode); } return; } return; ldv_call_2: { tmp___4 = ldv_undef_int(); } { if (tmp___4 == 1) { goto case_1; } else { } if (tmp___4 == 2) { goto case_2; } else { } if (tmp___4 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___5 = ldv_xmalloc(1UL); ldv_2_ldv_param_4_1_default = (char *)tmp___5; tmp___6 = ldv_xmalloc(8UL); ldv_2_ldv_param_4_3_default = (long long *)tmp___6; ldv_assume(ldv_2_size_cnt_write_size <= 2147479552UL); ldv_file_operations_instance_write_2_4((long (*)(struct file * , char * , unsigned long , long long * ))ldv_2_container_file_operations->write, ldv_2_resource_file, ldv_2_ldv_param_4_1_default, ldv_2_size_cnt_write_size, ldv_2_ldv_param_4_3_default); ldv_free((void *)ldv_2_ldv_param_4_1_default); ldv_free((void *)ldv_2_ldv_param_4_3_default); } goto ldv_call_2; case_2: /* CIL Label */ { ldv_file_operations_instance_release_2_2(ldv_2_container_file_operations->release, ldv_2_resource_inode, ldv_2_resource_file); } goto ldv_main_2; case_3: /* CIL Label */ { tmp___9 = ldv_undef_int(); } if (tmp___9 != 0) { { tmp___7 = ldv_xmalloc(1UL); ldv_2_ldv_param_22_1_default = (char *)tmp___7; tmp___8 = ldv_xmalloc(8UL); ldv_2_ldv_param_22_3_default = (long long *)tmp___8; ldv_file_operations_instance_callback_2_22(ldv_2_callback_read, ldv_2_resource_file, ldv_2_ldv_param_22_1_default, ldv_2_size_cnt_write_size, ldv_2_ldv_param_22_3_default); ldv_free((void *)ldv_2_ldv_param_22_1_default); ldv_free((void *)ldv_2_ldv_param_22_3_default); } } else { { ldv_file_operations_instance_callback_2_5(ldv_2_callback_llseek, ldv_2_resource_file, ldv_2_ldv_param_5_1_default, ldv_2_ldv_param_5_2_default); } } goto ldv_49663; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_49663: ; goto ldv_call_2; goto ldv_call_2; return; } } void ldv_file_operations_file_operations_instance_3(void *arg0 ) { long long (*ldv_3_callback_llseek)(struct file * , long long , int ) ; long (*ldv_3_callback_read)(struct file * , char * , unsigned long , long long * ) ; struct file_operations *ldv_3_container_file_operations ; char *ldv_3_ldv_param_22_1_default ; long long *ldv_3_ldv_param_22_3_default ; char *ldv_3_ldv_param_4_1_default ; long long *ldv_3_ldv_param_4_3_default ; long long ldv_3_ldv_param_5_1_default ; int ldv_3_ldv_param_5_2_default ; struct file *ldv_3_resource_file ; struct inode *ldv_3_resource_inode ; int ldv_3_ret_default ; unsigned long ldv_3_size_cnt_write_size ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; void *tmp___8 ; int tmp___9 ; { { ldv_3_ret_default = 1; tmp = ldv_xmalloc(520UL); ldv_3_resource_file = (struct file *)tmp; tmp___0 = ldv_xmalloc(1032UL); ldv_3_resource_inode = (struct inode *)tmp___0; tmp___1 = ldv_undef_int(); ldv_3_size_cnt_write_size = (unsigned long )tmp___1; } goto ldv_main_3; return; ldv_main_3: { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { ldv_3_ret_default = ldv_file_operations_instance_probe_3_12(ldv_3_container_file_operations->open, ldv_3_resource_inode, ldv_3_resource_file); ldv_3_ret_default = ldv_filter_err_code(ldv_3_ret_default); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_assume(ldv_3_ret_default == 0); } goto ldv_call_3; } else { { ldv_assume(ldv_3_ret_default != 0); } goto ldv_main_3; } } else { { ldv_free((void *)ldv_3_resource_file); ldv_free((void *)ldv_3_resource_inode); } return; } return; ldv_call_3: { tmp___4 = ldv_undef_int(); } { if (tmp___4 == 1) { goto case_1; } else { } if (tmp___4 == 2) { goto case_2; } else { } if (tmp___4 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___5 = ldv_xmalloc(1UL); ldv_3_ldv_param_4_1_default = (char *)tmp___5; tmp___6 = ldv_xmalloc(8UL); ldv_3_ldv_param_4_3_default = (long long *)tmp___6; ldv_assume(ldv_3_size_cnt_write_size <= 2147479552UL); ldv_file_operations_instance_write_3_4((long (*)(struct file * , char * , unsigned long , long long * ))ldv_3_container_file_operations->write, ldv_3_resource_file, ldv_3_ldv_param_4_1_default, ldv_3_size_cnt_write_size, ldv_3_ldv_param_4_3_default); ldv_free((void *)ldv_3_ldv_param_4_1_default); ldv_free((void *)ldv_3_ldv_param_4_3_default); } goto ldv_call_3; case_2: /* CIL Label */ { ldv_file_operations_instance_release_3_2(ldv_3_container_file_operations->release, ldv_3_resource_inode, ldv_3_resource_file); } goto ldv_main_3; case_3: /* CIL Label */ { tmp___9 = ldv_undef_int(); } if (tmp___9 != 0) { { tmp___7 = ldv_xmalloc(1UL); ldv_3_ldv_param_22_1_default = (char *)tmp___7; tmp___8 = ldv_xmalloc(8UL); ldv_3_ldv_param_22_3_default = (long long *)tmp___8; ldv_file_operations_instance_callback_3_22(ldv_3_callback_read, ldv_3_resource_file, ldv_3_ldv_param_22_1_default, ldv_3_size_cnt_write_size, ldv_3_ldv_param_22_3_default); ldv_free((void *)ldv_3_ldv_param_22_1_default); ldv_free((void *)ldv_3_ldv_param_22_3_default); } } else { { ldv_file_operations_instance_callback_3_5(ldv_3_callback_llseek, ldv_3_resource_file, ldv_3_ldv_param_5_1_default, ldv_3_ldv_param_5_2_default); } } goto ldv_49693; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_49693: ; goto ldv_call_3; goto ldv_call_3; return; } } void ldv_file_operations_file_operations_instance_4(void *arg0 ) { long long (*ldv_4_callback_llseek)(struct file * , long long , int ) ; long (*ldv_4_callback_read)(struct file * , char * , unsigned long , long long * ) ; struct file_operations *ldv_4_container_file_operations ; char *ldv_4_ldv_param_22_1_default ; long long *ldv_4_ldv_param_22_3_default ; char *ldv_4_ldv_param_4_1_default ; long long *ldv_4_ldv_param_4_3_default ; long long ldv_4_ldv_param_5_1_default ; int ldv_4_ldv_param_5_2_default ; struct file *ldv_4_resource_file ; struct inode *ldv_4_resource_inode ; int ldv_4_ret_default ; unsigned long ldv_4_size_cnt_write_size ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; void *tmp___8 ; int tmp___9 ; { { ldv_4_ret_default = 1; tmp = ldv_xmalloc(520UL); ldv_4_resource_file = (struct file *)tmp; tmp___0 = ldv_xmalloc(1032UL); ldv_4_resource_inode = (struct inode *)tmp___0; tmp___1 = ldv_undef_int(); ldv_4_size_cnt_write_size = (unsigned long )tmp___1; } goto ldv_main_4; return; ldv_main_4: { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { ldv_4_ret_default = ldv_file_operations_instance_probe_4_12(ldv_4_container_file_operations->open, ldv_4_resource_inode, ldv_4_resource_file); ldv_4_ret_default = ldv_filter_err_code(ldv_4_ret_default); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_assume(ldv_4_ret_default == 0); } goto ldv_call_4; } else { { ldv_assume(ldv_4_ret_default != 0); } goto ldv_main_4; } } else { { ldv_free((void *)ldv_4_resource_file); ldv_free((void *)ldv_4_resource_inode); } return; } return; ldv_call_4: { tmp___4 = ldv_undef_int(); } { if (tmp___4 == 1) { goto case_1; } else { } if (tmp___4 == 2) { goto case_2; } else { } if (tmp___4 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___5 = ldv_xmalloc(1UL); ldv_4_ldv_param_4_1_default = (char *)tmp___5; tmp___6 = ldv_xmalloc(8UL); ldv_4_ldv_param_4_3_default = (long long *)tmp___6; ldv_assume(ldv_4_size_cnt_write_size <= 2147479552UL); } if ((unsigned long )ldv_4_container_file_operations->write != (unsigned long )((ssize_t (*)(struct file * , char const * , size_t , loff_t * ))0)) { { ldv_file_operations_instance_write_4_4((long (*)(struct file * , char * , unsigned long , long long * ))ldv_4_container_file_operations->write, ldv_4_resource_file, ldv_4_ldv_param_4_1_default, ldv_4_size_cnt_write_size, ldv_4_ldv_param_4_3_default); } } else { } { ldv_free((void *)ldv_4_ldv_param_4_1_default); ldv_free((void *)ldv_4_ldv_param_4_3_default); } goto ldv_call_4; case_2: /* CIL Label */ { ldv_file_operations_instance_release_4_2(ldv_4_container_file_operations->release, ldv_4_resource_inode, ldv_4_resource_file); } goto ldv_main_4; case_3: /* CIL Label */ { tmp___9 = ldv_undef_int(); } if (tmp___9 != 0) { { tmp___7 = ldv_xmalloc(1UL); ldv_4_ldv_param_22_1_default = (char *)tmp___7; tmp___8 = ldv_xmalloc(8UL); ldv_4_ldv_param_22_3_default = (long long *)tmp___8; ldv_file_operations_instance_callback_4_22(ldv_4_callback_read, ldv_4_resource_file, ldv_4_ldv_param_22_1_default, ldv_4_size_cnt_write_size, ldv_4_ldv_param_22_3_default); ldv_free((void *)ldv_4_ldv_param_22_1_default); ldv_free((void *)ldv_4_ldv_param_22_3_default); } } else { { ldv_file_operations_instance_callback_4_5(ldv_4_callback_llseek, ldv_4_resource_file, ldv_4_ldv_param_5_1_default, ldv_4_ldv_param_5_2_default); } } goto ldv_49723; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_49723: ; goto ldv_call_4; goto ldv_call_4; return; } } void ldv_file_operations_file_operations_instance_5(void *arg0 ) { long long (*ldv_5_callback_llseek)(struct file * , long long , int ) ; long (*ldv_5_callback_read)(struct file * , char * , unsigned long , long long * ) ; struct file_operations *ldv_5_container_file_operations ; char *ldv_5_ldv_param_22_1_default ; long long *ldv_5_ldv_param_22_3_default ; char *ldv_5_ldv_param_4_1_default ; long long *ldv_5_ldv_param_4_3_default ; long long ldv_5_ldv_param_5_1_default ; int ldv_5_ldv_param_5_2_default ; struct file *ldv_5_resource_file ; struct inode *ldv_5_resource_inode ; int ldv_5_ret_default ; unsigned long ldv_5_size_cnt_write_size ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; void *tmp___8 ; int tmp___9 ; { { ldv_5_ret_default = 1; tmp = ldv_xmalloc(520UL); ldv_5_resource_file = (struct file *)tmp; tmp___0 = ldv_xmalloc(1032UL); ldv_5_resource_inode = (struct inode *)tmp___0; tmp___1 = ldv_undef_int(); ldv_5_size_cnt_write_size = (unsigned long )tmp___1; } goto ldv_main_5; return; ldv_main_5: { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { ldv_5_ret_default = ldv_file_operations_instance_probe_5_12(ldv_5_container_file_operations->open, ldv_5_resource_inode, ldv_5_resource_file); ldv_5_ret_default = ldv_filter_err_code(ldv_5_ret_default); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_assume(ldv_5_ret_default == 0); } goto ldv_call_5; } else { { ldv_assume(ldv_5_ret_default != 0); } goto ldv_main_5; } } else { { ldv_free((void *)ldv_5_resource_file); ldv_free((void *)ldv_5_resource_inode); } return; } return; ldv_call_5: { tmp___4 = ldv_undef_int(); } { if (tmp___4 == 1) { goto case_1; } else { } if (tmp___4 == 2) { goto case_2; } else { } if (tmp___4 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___5 = ldv_xmalloc(1UL); ldv_5_ldv_param_4_1_default = (char *)tmp___5; tmp___6 = ldv_xmalloc(8UL); ldv_5_ldv_param_4_3_default = (long long *)tmp___6; ldv_assume(ldv_5_size_cnt_write_size <= 2147479552UL); } if ((unsigned long )ldv_5_container_file_operations->write != (unsigned long )((ssize_t (*)(struct file * , char const * , size_t , loff_t * ))0)) { { ldv_file_operations_instance_write_5_4((long (*)(struct file * , char * , unsigned long , long long * ))ldv_5_container_file_operations->write, ldv_5_resource_file, ldv_5_ldv_param_4_1_default, ldv_5_size_cnt_write_size, ldv_5_ldv_param_4_3_default); } } else { } { ldv_free((void *)ldv_5_ldv_param_4_1_default); ldv_free((void *)ldv_5_ldv_param_4_3_default); } goto ldv_call_5; case_2: /* CIL Label */ { ldv_file_operations_instance_release_5_2(ldv_5_container_file_operations->release, ldv_5_resource_inode, ldv_5_resource_file); } goto ldv_main_5; case_3: /* CIL Label */ { tmp___9 = ldv_undef_int(); } if (tmp___9 != 0) { { tmp___7 = ldv_xmalloc(1UL); ldv_5_ldv_param_22_1_default = (char *)tmp___7; tmp___8 = ldv_xmalloc(8UL); ldv_5_ldv_param_22_3_default = (long long *)tmp___8; ldv_file_operations_instance_callback_5_22(ldv_5_callback_read, ldv_5_resource_file, ldv_5_ldv_param_22_1_default, ldv_5_size_cnt_write_size, ldv_5_ldv_param_22_3_default); ldv_free((void *)ldv_5_ldv_param_22_1_default); ldv_free((void *)ldv_5_ldv_param_22_3_default); } } else { { ldv_file_operations_instance_callback_5_5(ldv_5_callback_llseek, ldv_5_resource_file, ldv_5_ldv_param_5_1_default, ldv_5_ldv_param_5_2_default); } } goto ldv_49753; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_49753: ; goto ldv_call_5; goto ldv_call_5; return; } } void ldv_file_operations_file_operations_instance_6(void *arg0 ) { long long (*ldv_6_callback_llseek)(struct file * , long long , int ) ; long (*ldv_6_callback_read)(struct file * , char * , unsigned long , long long * ) ; struct file_operations *ldv_6_container_file_operations ; char *ldv_6_ldv_param_22_1_default ; long long *ldv_6_ldv_param_22_3_default ; char *ldv_6_ldv_param_4_1_default ; long long *ldv_6_ldv_param_4_3_default ; long long ldv_6_ldv_param_5_1_default ; int ldv_6_ldv_param_5_2_default ; struct file *ldv_6_resource_file ; struct inode *ldv_6_resource_inode ; int ldv_6_ret_default ; unsigned long ldv_6_size_cnt_write_size ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; void *tmp___8 ; int tmp___9 ; { { ldv_6_ret_default = 1; tmp = ldv_xmalloc(520UL); ldv_6_resource_file = (struct file *)tmp; tmp___0 = ldv_xmalloc(1032UL); ldv_6_resource_inode = (struct inode *)tmp___0; tmp___1 = ldv_undef_int(); ldv_6_size_cnt_write_size = (unsigned long )tmp___1; } goto ldv_main_6; return; ldv_main_6: { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { ldv_6_ret_default = ldv_file_operations_instance_probe_6_12(ldv_6_container_file_operations->open, ldv_6_resource_inode, ldv_6_resource_file); ldv_6_ret_default = ldv_filter_err_code(ldv_6_ret_default); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_assume(ldv_6_ret_default == 0); } goto ldv_call_6; } else { { ldv_assume(ldv_6_ret_default != 0); } goto ldv_main_6; } } else { { ldv_free((void *)ldv_6_resource_file); ldv_free((void *)ldv_6_resource_inode); } return; } return; ldv_call_6: { tmp___4 = ldv_undef_int(); } { if (tmp___4 == 1) { goto case_1; } else { } if (tmp___4 == 2) { goto case_2; } else { } if (tmp___4 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___5 = ldv_xmalloc(1UL); ldv_6_ldv_param_4_1_default = (char *)tmp___5; tmp___6 = ldv_xmalloc(8UL); ldv_6_ldv_param_4_3_default = (long long *)tmp___6; ldv_assume(ldv_6_size_cnt_write_size <= 2147479552UL); } if ((unsigned long )ldv_6_container_file_operations->write != (unsigned long )((ssize_t (*)(struct file * , char const * , size_t , loff_t * ))0)) { { ldv_file_operations_instance_write_6_4((long (*)(struct file * , char * , unsigned long , long long * ))ldv_6_container_file_operations->write, ldv_6_resource_file, ldv_6_ldv_param_4_1_default, ldv_6_size_cnt_write_size, ldv_6_ldv_param_4_3_default); } } else { } { ldv_free((void *)ldv_6_ldv_param_4_1_default); ldv_free((void *)ldv_6_ldv_param_4_3_default); } goto ldv_call_6; case_2: /* CIL Label */ { ldv_file_operations_instance_release_6_2(ldv_6_container_file_operations->release, ldv_6_resource_inode, ldv_6_resource_file); } goto ldv_main_6; case_3: /* CIL Label */ { tmp___9 = ldv_undef_int(); } if (tmp___9 != 0) { { tmp___7 = ldv_xmalloc(1UL); ldv_6_ldv_param_22_1_default = (char *)tmp___7; tmp___8 = ldv_xmalloc(8UL); ldv_6_ldv_param_22_3_default = (long long *)tmp___8; ldv_file_operations_instance_callback_6_22(ldv_6_callback_read, ldv_6_resource_file, ldv_6_ldv_param_22_1_default, ldv_6_size_cnt_write_size, ldv_6_ldv_param_22_3_default); ldv_free((void *)ldv_6_ldv_param_22_1_default); ldv_free((void *)ldv_6_ldv_param_22_3_default); } } else { { ldv_file_operations_instance_callback_6_5(ldv_6_callback_llseek, ldv_6_resource_file, ldv_6_ldv_param_5_1_default, ldv_6_ldv_param_5_2_default); } } goto ldv_49783; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_49783: ; goto ldv_call_6; goto ldv_call_6; return; } } void ldv_file_operations_file_operations_instance_7(void *arg0 ) { long long (*ldv_7_callback_llseek)(struct file * , long long , int ) ; long (*ldv_7_callback_read)(struct file * , char * , unsigned long , long long * ) ; struct file_operations *ldv_7_container_file_operations ; char *ldv_7_ldv_param_22_1_default ; long long *ldv_7_ldv_param_22_3_default ; char *ldv_7_ldv_param_4_1_default ; long long *ldv_7_ldv_param_4_3_default ; long long ldv_7_ldv_param_5_1_default ; int ldv_7_ldv_param_5_2_default ; struct file *ldv_7_resource_file ; struct inode *ldv_7_resource_inode ; int ldv_7_ret_default ; unsigned long ldv_7_size_cnt_write_size ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; void *tmp___8 ; int tmp___9 ; { { ldv_7_ret_default = 1; tmp = ldv_xmalloc(520UL); ldv_7_resource_file = (struct file *)tmp; tmp___0 = ldv_xmalloc(1032UL); ldv_7_resource_inode = (struct inode *)tmp___0; tmp___1 = ldv_undef_int(); ldv_7_size_cnt_write_size = (unsigned long )tmp___1; } goto ldv_main_7; return; ldv_main_7: { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { ldv_7_ret_default = ldv_file_operations_instance_probe_7_12(ldv_7_container_file_operations->open, ldv_7_resource_inode, ldv_7_resource_file); ldv_7_ret_default = ldv_filter_err_code(ldv_7_ret_default); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_assume(ldv_7_ret_default == 0); } goto ldv_call_7; } else { { ldv_assume(ldv_7_ret_default != 0); } goto ldv_main_7; } } else { { ldv_free((void *)ldv_7_resource_file); ldv_free((void *)ldv_7_resource_inode); } return; } return; ldv_call_7: { tmp___4 = ldv_undef_int(); } { if (tmp___4 == 1) { goto case_1; } else { } if (tmp___4 == 2) { goto case_2; } else { } if (tmp___4 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___5 = ldv_xmalloc(1UL); ldv_7_ldv_param_4_1_default = (char *)tmp___5; tmp___6 = ldv_xmalloc(8UL); ldv_7_ldv_param_4_3_default = (long long *)tmp___6; ldv_assume(ldv_7_size_cnt_write_size <= 2147479552UL); ldv_file_operations_instance_write_7_4((long (*)(struct file * , char * , unsigned long , long long * ))ldv_7_container_file_operations->write, ldv_7_resource_file, ldv_7_ldv_param_4_1_default, ldv_7_size_cnt_write_size, ldv_7_ldv_param_4_3_default); ldv_free((void *)ldv_7_ldv_param_4_1_default); ldv_free((void *)ldv_7_ldv_param_4_3_default); } goto ldv_call_7; case_2: /* CIL Label */ { ldv_file_operations_instance_release_7_2(ldv_7_container_file_operations->release, ldv_7_resource_inode, ldv_7_resource_file); } goto ldv_main_7; case_3: /* CIL Label */ { tmp___9 = ldv_undef_int(); } if (tmp___9 != 0) { { tmp___7 = ldv_xmalloc(1UL); ldv_7_ldv_param_22_1_default = (char *)tmp___7; tmp___8 = ldv_xmalloc(8UL); ldv_7_ldv_param_22_3_default = (long long *)tmp___8; ldv_file_operations_instance_callback_7_22(ldv_7_callback_read, ldv_7_resource_file, ldv_7_ldv_param_22_1_default, ldv_7_size_cnt_write_size, ldv_7_ldv_param_22_3_default); ldv_free((void *)ldv_7_ldv_param_22_1_default); ldv_free((void *)ldv_7_ldv_param_22_3_default); } } else { { ldv_file_operations_instance_callback_7_5(ldv_7_callback_llseek, ldv_7_resource_file, ldv_7_ldv_param_5_1_default, ldv_7_ldv_param_5_2_default); } } goto ldv_49813; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_49813: ; goto ldv_call_7; goto ldv_call_7; return; } } void ldv_file_operations_instance_callback_0_22(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { proc_read(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_0_5(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) { { { default_llseek(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_1_22(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { proc_read(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_1_5(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) { { { default_llseek(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_2_22(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { proc_read(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_2_5(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) { { { default_llseek(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_3_22(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { proc_read(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_3_5(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) { { { default_llseek(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_4_22(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { proc_read(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_4_5(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) { { { default_llseek(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_5_22(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { proc_read(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_5_5(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) { { { default_llseek(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_6_22(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { proc_read(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_6_5(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) { { { default_llseek(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_7_22(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { proc_read(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_7_5(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) { { { default_llseek(arg1, arg2, arg3); } return; } } int ldv_file_operations_instance_probe_0_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { int tmp ; { { tmp = proc_APList_open(arg1, arg2); } return (tmp); } } int ldv_file_operations_instance_probe_1_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { int tmp ; { { tmp = proc_BSSList_open(arg1, arg2); } return (tmp); } } int ldv_file_operations_instance_probe_2_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { int tmp ; { { tmp = proc_SSID_open(arg1, arg2); } return (tmp); } } int ldv_file_operations_instance_probe_3_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { int tmp ; { { tmp = proc_config_open(arg1, arg2); } return (tmp); } } int ldv_file_operations_instance_probe_4_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { int tmp ; { { tmp = proc_stats_open(arg1, arg2); } return (tmp); } } int ldv_file_operations_instance_probe_5_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { int tmp ; { { tmp = proc_statsdelta_open(arg1, arg2); } return (tmp); } } int ldv_file_operations_instance_probe_6_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { int tmp ; { { tmp = proc_status_open(arg1, arg2); } return (tmp); } } int ldv_file_operations_instance_probe_7_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { int tmp ; { { tmp = proc_wepkey_open(arg1, arg2); } return (tmp); } } void ldv_file_operations_instance_release_0_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { { { proc_close(arg1, arg2); } return; } } void ldv_file_operations_instance_release_1_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { { { proc_close(arg1, arg2); } return; } } void ldv_file_operations_instance_release_2_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { { { proc_close(arg1, arg2); } return; } } void ldv_file_operations_instance_release_3_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { { { proc_close(arg1, arg2); } return; } } void ldv_file_operations_instance_release_4_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { { { proc_close(arg1, arg2); } return; } } void ldv_file_operations_instance_release_5_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { { { proc_close(arg1, arg2); } return; } } void ldv_file_operations_instance_release_6_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { { { proc_close(arg1, arg2); } return; } } void ldv_file_operations_instance_release_7_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { { { proc_close(arg1, arg2); } return; } } void ldv_file_operations_instance_write_0_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { proc_write(arg1, (char const *)arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_write_1_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { proc_write(arg1, (char const *)arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_write_2_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { proc_write(arg1, (char const *)arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_write_3_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { proc_write(arg1, (char const *)arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_write_4_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { (*arg0)(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_write_5_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { (*arg0)(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_write_6_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { (*arg0)(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_write_7_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { proc_write(arg1, (char const *)arg2, arg3, arg4); } return; } } void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) { int ldv_16_line_line ; { { ldv_16_line_line = arg1; ldv_dispatch_irq_deregister_16_1(ldv_16_line_line); } return; return; } } void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_17_netdev_net_device ; { { ldv_17_netdev_net_device = arg1; ldv_free((void *)ldv_17_netdev_net_device); } return; return; } } enum irqreturn ldv_interrupt_instance_handler_8_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = airo_interrupt(arg1, arg2); } return (tmp); } } void ldv_interrupt_instance_thread_8_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_interrupt_instance_8(void *arg0 ) { enum irqreturn (*ldv_8_callback_handler)(int , void * ) ; void *ldv_8_data_data ; int ldv_8_line_line ; enum irqreturn ldv_8_ret_val_default ; enum irqreturn (*ldv_8_thread_thread)(int , void * ) ; struct ldv_struct_interrupt_instance_8 *data ; int tmp ; { data = (struct ldv_struct_interrupt_instance_8 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_interrupt_instance_8 *)0)) { { ldv_8_line_line = data->arg0; ldv_8_callback_handler = data->arg1; ldv_8_thread_thread = data->arg2; ldv_8_data_data = data->arg3; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); ldv_8_ret_val_default = ldv_interrupt_instance_handler_8_5(ldv_8_callback_handler, ldv_8_line_line, ldv_8_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume((unsigned int )ldv_8_ret_val_default == 2U); } if ((unsigned long )ldv_8_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_8_3(ldv_8_thread_thread, ldv_8_line_line, ldv_8_data_data); } } else { } } else { { ldv_assume((unsigned int )ldv_8_ret_val_default != 2U); } } return; return; } } void ldv_net_dummy_resourceless_instance_10(void *arg0 ) { int (*ldv_10_callback_ndo_change_mtu)(struct net_device * , int ) ; int (*ldv_10_callback_ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; struct net_device_stats *(*ldv_10_callback_ndo_get_stats)(struct net_device * ) ; int (*ldv_10_callback_ndo_set_mac_address)(struct net_device * , void * ) ; void (*ldv_10_callback_ndo_set_rx_mode)(struct net_device * ) ; enum netdev_tx (*ldv_10_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; int (*ldv_10_callback_ndo_validate_addr)(struct net_device * ) ; struct net_device *ldv_10_container_net_device ; struct ifreq *ldv_10_container_struct_ifreq_ptr ; struct sk_buff *ldv_10_container_struct_sk_buff_ptr ; int ldv_10_ldv_param_3_1_default ; int ldv_10_ldv_param_9_2_default ; struct ldv_struct_dummy_resourceless_instance_9 *data ; int tmp ; int tmp___0 ; { data = (struct ldv_struct_dummy_resourceless_instance_9 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_dummy_resourceless_instance_9 *)0)) { { ldv_10_container_net_device = data->arg0; ldv_free((void *)data); } } else { } goto ldv_call_10; return; ldv_call_10: { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_10_16(ldv_10_callback_ndo_validate_addr, ldv_10_container_net_device); } goto ldv_50243; case_2: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_10_15(ldv_10_callback_ndo_start_xmit, ldv_10_container_struct_sk_buff_ptr, ldv_10_container_net_device); } goto ldv_50243; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_10_14(ldv_10_callback_ndo_set_rx_mode, ldv_10_container_net_device); } goto ldv_50243; case_4: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_10_13(ldv_10_callback_ndo_set_mac_address, ldv_10_container_net_device, (void *)ldv_10_container_struct_ifreq_ptr); } goto ldv_50243; case_5: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_10_12(ldv_10_callback_ndo_get_stats, ldv_10_container_net_device); } goto ldv_50243; case_6: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_10_9(ldv_10_callback_ndo_do_ioctl, ldv_10_container_net_device, ldv_10_container_struct_ifreq_ptr, ldv_10_ldv_param_9_2_default); } goto ldv_50243; case_7: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_10_3(ldv_10_callback_ndo_change_mtu, ldv_10_container_net_device, ldv_10_ldv_param_3_1_default); } goto ldv_50243; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_50243: ; goto ldv_call_10; } else { return; } return; } } void ldv_net_dummy_resourceless_instance_9(void *arg0 ) { int (*ldv_9_callback_ndo_change_mtu)(struct net_device * , int ) ; int (*ldv_9_callback_ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; struct net_device_stats *(*ldv_9_callback_ndo_get_stats)(struct net_device * ) ; int (*ldv_9_callback_ndo_set_mac_address)(struct net_device * , void * ) ; void (*ldv_9_callback_ndo_set_rx_mode)(struct net_device * ) ; enum netdev_tx (*ldv_9_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; int (*ldv_9_callback_ndo_validate_addr)(struct net_device * ) ; struct net_device *ldv_9_container_net_device ; struct ifreq *ldv_9_container_struct_ifreq_ptr ; struct sk_buff *ldv_9_container_struct_sk_buff_ptr ; int ldv_9_ldv_param_3_1_default ; int ldv_9_ldv_param_9_2_default ; struct ldv_struct_dummy_resourceless_instance_9 *data ; int tmp ; int tmp___0 ; { data = (struct ldv_struct_dummy_resourceless_instance_9 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_dummy_resourceless_instance_9 *)0)) { { ldv_9_container_net_device = data->arg0; ldv_free((void *)data); } } else { } goto ldv_call_9; return; ldv_call_9: { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_9_16(ldv_9_callback_ndo_validate_addr, ldv_9_container_net_device); } goto ldv_50281; case_2: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_9_15(ldv_9_callback_ndo_start_xmit, ldv_9_container_struct_sk_buff_ptr, ldv_9_container_net_device); } goto ldv_50281; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_9_14(ldv_9_callback_ndo_set_rx_mode, ldv_9_container_net_device); } goto ldv_50281; case_4: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_9_13(ldv_9_callback_ndo_set_mac_address, ldv_9_container_net_device, (void *)ldv_9_container_struct_ifreq_ptr); } goto ldv_50281; case_5: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_9_12(ldv_9_callback_ndo_get_stats, ldv_9_container_net_device); } goto ldv_50281; case_6: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_9_9(ldv_9_callback_ndo_do_ioctl, ldv_9_container_net_device, ldv_9_container_struct_ifreq_ptr, ldv_9_ldv_param_9_2_default); } goto ldv_50281; case_7: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_9_3(ldv_9_callback_ndo_change_mtu, ldv_9_container_net_device, ldv_9_ldv_param_3_1_default); } goto ldv_50281; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_50281: ; goto ldv_call_9; } else { return; } return; } } int ldv_pci_instance_probe_11_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = airo_pci_probe(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_11_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { airo_pci_remove(arg1); } return; } } void ldv_pci_instance_resume_11_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { airo_pci_resume(arg1); } return; } } void ldv_pci_instance_resume_early_11_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_11_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } int ldv_pci_instance_suspend_11_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = airo_pci_suspend(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_11_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_11(void *arg0 ) { struct pci_driver *ldv_11_container_pci_driver ; struct pci_dev *ldv_11_resource_dev ; struct pm_message ldv_11_resource_pm_message ; struct pci_device_id *ldv_11_resource_struct_pci_device_id_ptr ; int ldv_11_ret_default ; struct ldv_struct_pci_instance_11 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { data = (struct ldv_struct_pci_instance_11 *)arg0; ldv_11_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_pci_instance_11 *)0)) { { ldv_11_container_pci_driver = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(2936UL); ldv_11_resource_dev = (struct pci_dev *)tmp; tmp___0 = ldv_xmalloc(32UL); ldv_11_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___0; } goto ldv_main_11; return; ldv_main_11: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_pre_probe(); ldv_11_ret_default = ldv_pci_instance_probe_11_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_11_container_pci_driver->probe, ldv_11_resource_dev, ldv_11_resource_struct_pci_device_id_ptr); ldv_11_ret_default = ldv_post_probe(ldv_11_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { ldv_assume(ldv_11_ret_default == 0); } goto ldv_call_11; } else { { ldv_assume(ldv_11_ret_default != 0); } goto ldv_main_11; } } else { { ldv_free((void *)ldv_11_resource_dev); ldv_free((void *)ldv_11_resource_struct_pci_device_id_ptr); } return; } return; ldv_call_11: { tmp___3 = ldv_undef_int(); } { if (tmp___3 == 1) { goto case_1; } else { } if (tmp___3 == 2) { goto case_2; } else { } if (tmp___3 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_call_11; case_2: /* CIL Label */ { ldv_11_ret_default = ldv_pci_instance_suspend_11_8(ldv_11_container_pci_driver->suspend, ldv_11_resource_dev, ldv_11_resource_pm_message); ldv_11_ret_default = ldv_filter_err_code(ldv_11_ret_default); } if ((unsigned long )ldv_11_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_11_ret_default = ldv_pci_instance_suspend_late_11_7(ldv_11_container_pci_driver->suspend_late, ldv_11_resource_dev, ldv_11_resource_pm_message); } } else { } { ldv_11_ret_default = ldv_filter_err_code(ldv_11_ret_default); } if ((unsigned long )ldv_11_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_11_6(ldv_11_container_pci_driver->resume_early, ldv_11_resource_dev); } } else { } { ldv_pci_instance_resume_11_5(ldv_11_container_pci_driver->resume, ldv_11_resource_dev); } goto ldv_call_11; case_3: /* CIL Label */ ; if ((unsigned long )ldv_11_container_pci_driver->shutdown != (unsigned long )((void (*)(struct pci_dev * ))0)) { { ldv_pci_instance_shutdown_11_3(ldv_11_container_pci_driver->shutdown, ldv_11_resource_dev); } } else { } { ldv_pci_instance_release_11_2(ldv_11_container_pci_driver->remove, ldv_11_resource_dev); } goto ldv_main_11; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) { struct pci_driver *ldv_21_pci_driver_pci_driver ; { { ldv_21_pci_driver_pci_driver = arg1; ldv_dispatch_deregister_21_1(ldv_21_pci_driver_pci_driver); } return; return; } } int ldv_register_netdev(int arg0 , struct net_device *arg1 ) { struct net_device *ldv_18_netdev_net_device ; int ldv_18_ret_default ; int tmp ; int tmp___0 ; { { ldv_18_ret_default = 1; ldv_18_ret_default = ldv_pre_register_netdev(); ldv_18_netdev_net_device = arg1; tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_18_ret_default == 0); ldv_18_ret_default = ldv_register_netdev_open_18_6((ldv_18_netdev_net_device->netdev_ops)->ndo_open, ldv_18_netdev_net_device); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_18_ret_default == 0); ldv_dispatch_register_18_4(ldv_18_netdev_net_device); } } else { { ldv_assume(ldv_18_ret_default != 0); } } } else { { ldv_assume(ldv_18_ret_default != 0); } } return (ldv_18_ret_default); return (arg0); return (arg0); } } int ldv_register_netdev_open_18_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { int tmp ; { { tmp = airo_open(arg1); } return (tmp); } } int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) { enum irqreturn (*ldv_19_callback_handler)(int , void * ) ; void *ldv_19_data_data ; int ldv_19_line_line ; enum irqreturn (*ldv_19_thread_thread)(int , void * ) ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_19_line_line = (int )arg1; ldv_19_callback_handler = arg2; ldv_19_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_19_data_data = arg5; ldv_dispatch_irq_register_19_2(ldv_19_line_line, ldv_19_callback_handler, ldv_19_thread_thread, ldv_19_data_data); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_struct_header_ops_dummy_resourceless_instance_12(void *arg0 ) { int (*ldv_12_callback_parse)(struct sk_buff * , unsigned char * ) ; struct sk_buff *ldv_12_container_struct_sk_buff_ptr ; unsigned char *ldv_12_ldv_param_3_1_default ; void *tmp ; int tmp___0 ; { goto ldv_call_12; return; ldv_call_12: { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { tmp = ldv_xmalloc(1UL); ldv_12_ldv_param_3_1_default = (unsigned char *)tmp; ldv_dummy_resourceless_instance_callback_12_3(ldv_12_callback_parse, ldv_12_container_struct_sk_buff_ptr, ldv_12_ldv_param_3_1_default); ldv_free((void *)ldv_12_ldv_param_3_1_default); } goto ldv_call_12; } else { return; } return; } } void ldv_struct_iw_priv_args_dummy_resourceless_instance_13(void *arg0 ) { struct iw_statistics *(*ldv_13_callback_get_wireless_stats)(struct net_device * ) ; struct net_device *ldv_13_container_struct_net_device_ptr ; int tmp ; { goto ldv_call_13; return; ldv_call_13: { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dummy_resourceless_instance_callback_13_3(ldv_13_callback_get_wireless_stats, ldv_13_container_struct_net_device_ptr); } goto ldv_call_13; } else { return; } return; } } void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_20_netdev_net_device ; { { ldv_20_netdev_net_device = arg1; ldv_unregister_netdev_stop_20_2((ldv_20_netdev_net_device->netdev_ops)->ndo_stop, ldv_20_netdev_net_device); ldv_dispatch_deregister_20_1(ldv_20_netdev_net_device); } return; return; } } void ldv_unregister_netdev_stop_20_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { airo_close(arg1); } return; } } __inline static long PTR_ERR(void const *ptr ) { long tmp ; { { tmp = ldv_ptr_err(ptr); } return (tmp); } } __inline static long IS_ERR(void const *ptr ) { long tmp ; { { tmp = ldv_is_err(ptr); } return (tmp); } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = ldv_kzalloc(size, flags); } return (tmp); } } static void *ldv_dev_get_drvdata_58(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static int ldv_dev_set_drvdata_59(struct device *dev , void *data ) { int tmp ; { { tmp = ldv_dev_set_drvdata(dev, data); } return (tmp); } } __inline static int ldv_request_irq_60(unsigned int irq___0 , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq___0, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq___0, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static void ldv___ldv_spin_lock_61(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_aux_lock_of_airo_info(); __ldv_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_62(spinlock_t *lock , unsigned long flags ) { { { ldv_spin_unlock_aux_lock_of_airo_info(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv_free_irq_63(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv_unregister_netdev_64(struct net_device *ldv_func_arg1 ) { { { unregister_netdev(ldv_func_arg1); ldv_unregister_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_unregister_netdev_65(struct net_device *ldv_func_arg1 ) { { { unregister_netdev(ldv_func_arg1); ldv_unregister_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_free_netdev_66(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_free_netdev_67(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static struct net_device *ldv_alloc_netdev_mqs_68(int ldv_func_arg1 , char const *ldv_func_arg2 , void (*ldv_func_arg3)(struct net_device * ) , unsigned int ldv_func_arg4 , unsigned int ldv_func_arg5 ) { ldv_func_ret_type___1 ldv_func_res ; struct net_device *tmp ; struct net_device *tmp___0 ; { { tmp = alloc_netdev_mqs(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4, ldv_func_arg5); ldv_func_res = tmp; tmp___0 = ldv_alloc_netdev_mqs(ldv_func_res, ldv_func_arg1, (char *)ldv_func_arg2, ldv_func_arg3, ldv_func_arg4, ldv_func_arg5); } return (tmp___0); return (ldv_func_res); } } static int ldv_register_netdev_69(struct net_device *ldv_func_arg1 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = register_netdev(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_register_netdev(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_netdev_70(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static struct net_device *ldv_alloc_netdev_mqs_71(int ldv_func_arg1 , char const *ldv_func_arg2 , void (*ldv_func_arg3)(struct net_device * ) , unsigned int ldv_func_arg4 , unsigned int ldv_func_arg5 ) { ldv_func_ret_type___3 ldv_func_res ; struct net_device *tmp ; struct net_device *tmp___0 ; { { tmp = alloc_netdev_mqs(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4, ldv_func_arg5); ldv_func_res = tmp; tmp___0 = ldv_alloc_netdev_mqs(ldv_func_res, ldv_func_arg1, (char *)ldv_func_arg2, ldv_func_arg3, ldv_func_arg4, ldv_func_arg5); } return (tmp___0); return (ldv_func_res); } } static int ldv_register_netdev_72(struct net_device *ldv_func_arg1 ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = register_netdev(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_register_netdev(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv_unregister_netdev_73(struct net_device *ldv_func_arg1 ) { { { unregister_netdev(ldv_func_arg1); ldv_unregister_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_free_netdev_74(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_unregister_netdev_75(struct net_device *ldv_func_arg1 ) { { { unregister_netdev(ldv_func_arg1); ldv_unregister_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_free_netdev_76(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_77(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_aux_lock_of_airo_info(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_80(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_aux_lock_of_airo_info(); __ldv_spin_lock(ldv_func_arg1); } return; } } static int ldv___pci_register_driver_82(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___5 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___pci_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_pci_unregister_driver_83(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2200UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } extern void ldv_check_alloc_flags(gfp_t ) ; extern void ldv_after_alloc(void * ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *external_allocated_data(void) ; void *ldv_malloc_unknown_size(void) ; void *ldv_calloc_unknown_size(void) ; void *ldv_zalloc_unknown_size(void) ; void *ldv_xmalloc_unknown_size(size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_malloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; memset(res, 0, 8UL); ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc_unknown_size(void) { void *tmp ; { { tmp = ldv_calloc_unknown_size(); } return (tmp); } } void *ldv_xmalloc_unknown_size(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_undef_ptr(void) ; unsigned long ldv_undef_ulong(void) ; int ldv_undef_int_negative(void) ; int ldv_undef_int_nonpositive(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { { tmp = __VERIFIER_nondet_pointer(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_spin__xmit_lock_of_netdev_queue = 1; void ldv_spin_lock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_spin__xmit_lock_of_netdev_queue = 2; } return; } } void ldv_spin_unlock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_spin__xmit_lock_of_netdev_queue = 1; } return; } } int ldv_spin_trylock__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } } } void ldv_spin_unlock_wait__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); } return; } } int ldv_spin_is_locked__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin__xmit_lock_of_netdev_queue == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock__xmit_lock_of_netdev_queue(void) { int tmp ; { { tmp = ldv_spin_is_locked__xmit_lock_of_netdev_queue(); } return (tmp == 0); } } int ldv_spin_is_contended__xmit_lock_of_netdev_queue(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock__xmit_lock_of_netdev_queue(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } else { } return (0); } } static int ldv_spin_addr_list_lock_of_net_device = 1; void ldv_spin_lock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); ldv_spin_addr_list_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_addr_list_lock_of_net_device == 2); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 2); ldv_spin_addr_list_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_addr_list_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_addr_list_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_addr_list_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_addr_list_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_addr_list_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } else { } return (0); } } static int ldv_spin_alloc_lock_of_task_struct = 1; void ldv_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); ldv_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 2); ldv_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_aux_lock_of_airo_info = 1; void ldv_spin_lock_aux_lock_of_airo_info(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_aux_lock_of_airo_info == 1); ldv_assume(ldv_spin_aux_lock_of_airo_info == 1); ldv_spin_aux_lock_of_airo_info = 2; } return; } } void ldv_spin_unlock_aux_lock_of_airo_info(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_aux_lock_of_airo_info == 2); ldv_assume(ldv_spin_aux_lock_of_airo_info == 2); ldv_spin_aux_lock_of_airo_info = 1; } return; } } int ldv_spin_trylock_aux_lock_of_airo_info(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_aux_lock_of_airo_info == 1); ldv_assume(ldv_spin_aux_lock_of_airo_info == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_aux_lock_of_airo_info = 2; return (1); } } } void ldv_spin_unlock_wait_aux_lock_of_airo_info(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_aux_lock_of_airo_info == 1); ldv_assume(ldv_spin_aux_lock_of_airo_info == 1); } return; } } int ldv_spin_is_locked_aux_lock_of_airo_info(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_aux_lock_of_airo_info == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_aux_lock_of_airo_info(void) { int tmp ; { { tmp = ldv_spin_is_locked_aux_lock_of_airo_info(); } return (tmp == 0); } } int ldv_spin_is_contended_aux_lock_of_airo_info(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_aux_lock_of_airo_info(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_aux_lock_of_airo_info == 1); ldv_assume(ldv_spin_aux_lock_of_airo_info == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_aux_lock_of_airo_info = 2; return (1); } else { } return (0); } } static int ldv_spin_i_lock_of_inode = 1; void ldv_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); ldv_spin_i_lock_of_inode = 2; } return; } } void ldv_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_i_lock_of_inode == 2); ldv_assume(ldv_spin_i_lock_of_inode == 2); ldv_spin_i_lock_of_inode = 1; } return; } } int ldv_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_i_lock_of_inode = 2; return (1); } } } void ldv_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); } return; } } int ldv_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_spin_lock = 1; void ldv_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); ldv_spin_lock = 2; } return; } } void ldv_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lock == 2); ldv_assume(ldv_spin_lock == 2); ldv_spin_lock = 1; } return; } } int ldv_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock = 2; return (1); } } } void ldv_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); } return; } } int ldv_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_spin_lru_lock_of_netns_frags = 1; void ldv_spin_lock_lru_lock_of_netns_frags(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); ldv_spin_lru_lock_of_netns_frags = 2; } return; } } void ldv_spin_unlock_lru_lock_of_netns_frags(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lru_lock_of_netns_frags == 2); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 2); ldv_spin_lru_lock_of_netns_frags = 1; } return; } } int ldv_spin_trylock_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } } } void ldv_spin_unlock_wait_lru_lock_of_netns_frags(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); } return; } } int ldv_spin_is_locked_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lru_lock_of_netns_frags == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lru_lock_of_netns_frags(void) { int tmp ; { { tmp = ldv_spin_is_locked_lru_lock_of_netns_frags(); } return (tmp == 0); } } int ldv_spin_is_contended_lru_lock_of_netns_frags(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lru_lock_of_netns_frags(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } else { } return (0); } } static int ldv_spin_node_size_lock_of_pglist_data = 1; void ldv_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 2); ldv_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_spin_ptl = 1; void ldv_spin_lock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); ldv_spin_ptl = 2; } return; } } void ldv_spin_unlock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_ptl == 2); ldv_assume(ldv_spin_ptl == 2); ldv_spin_ptl = 1; } return; } } int ldv_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_ptl = 2; return (1); } } } void ldv_spin_unlock_wait_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); } return; } } int ldv_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_spin_siglock_of_sighand_struct = 1; void ldv_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); ldv_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_spin_siglock_of_sighand_struct == 2); ldv_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_tx_global_lock_of_net_device = 1; void ldv_spin_lock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); ldv_spin_tx_global_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_tx_global_lock_of_net_device == 2); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 2); ldv_spin_tx_global_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_tx_global_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_tx_global_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_tx_global_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_tx_global_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_tx_global_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } else { } return (0); } } void ldv_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_aux_lock_of_airo_info == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_ptl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_siglock_of_sighand_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_spin__xmit_lock_of_netdev_queue == 2) { return (1); } else { } if (ldv_spin_addr_list_lock_of_net_device == 2) { return (1); } else { } if (ldv_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_spin_aux_lock_of_airo_info == 2) { return (1); } else { } if (ldv_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_spin_lock == 2) { return (1); } else { } if (ldv_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_spin_lru_lock_of_netns_frags == 2) { return (1); } else { } if (ldv_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_spin_ptl == 2) { return (1); } else { } if (ldv_spin_siglock_of_sighand_struct == 2) { return (1); } else { } if (ldv_spin_tx_global_lock_of_net_device == 2) { return (1); } else { } return (0); } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } }