/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ struct device; typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __le16; typedef __u16 __be16; typedef __u32 __le32; typedef __u32 __be32; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s16 int16_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct __anonstruct____missing_field_name_10 { u32 read ; s32 write ; }; union __anonunion_arch_rwlock_t_9 { s64 lock ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; typedef union __anonunion_arch_rwlock_t_9 arch_rwlock_t; struct task_struct; struct lockdep_map; struct module; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_12 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_13 { u16 limit0 ; u16 base0 ; unsigned int base1 : 8 ; unsigned int type : 4 ; unsigned int s : 1 ; unsigned int dpl : 2 ; unsigned int p : 1 ; unsigned int limit : 4 ; unsigned int avl : 1 ; unsigned int l : 1 ; unsigned int d : 1 ; unsigned int g : 1 ; unsigned int base2 : 8 ; }; union __anonunion____missing_field_name_11 { struct __anonstruct____missing_field_name_12 __annonCompField6 ; struct __anonstruct____missing_field_name_13 __annonCompField7 ; }; struct desc_struct { union __anonunion____missing_field_name_11 __annonCompField8 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_15 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_15 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; struct net_device; struct file_operations; struct completion; struct pid; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_18 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_18 __annonCompField9 ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_23 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_24 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_22 { struct __anonstruct____missing_field_name_23 __annonCompField13 ; struct __anonstruct____missing_field_name_24 __annonCompField14 ; }; union __anonunion____missing_field_name_25 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_22 __annonCompField15 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_25 __annonCompField16 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndregs_struct { u64 bndregs[8U] ; }; struct bndcsr_struct { u64 cfg_reg_u ; u64 status_reg ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndregs_struct bndregs ; struct bndcsr_struct bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned int class_idx : 13 ; unsigned int irq_context : 2 ; unsigned int trylock : 1 ; unsigned int read : 2 ; unsigned int check : 2 ; unsigned int hardirqs_off : 1 ; unsigned int references : 11 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_29 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_28 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_29 __annonCompField18 ; }; struct spinlock { union __anonunion____missing_field_name_28 __annonCompField19 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_30 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_30 rwlock_t; struct timespec; typedef int pao_T__; typedef int pao_T_____0; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct rw_semaphore; struct rw_semaphore { long count ; raw_spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct vm_area_struct; struct inode; struct notifier_block; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_35 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_35 seqlock_t; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_38 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_39 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_37 { struct __anonstruct____missing_field_name_38 __annonCompField22 ; struct __anonstruct____missing_field_name_39 __annonCompField23 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_37 __annonCompField24 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct __anonstruct_mm_context_t_40 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_40 mm_context_t; struct address_space; union __anonunion____missing_field_name_41 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_43 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_47 { unsigned int inuse : 16 ; unsigned int objects : 15 ; unsigned int frozen : 1 ; }; union __anonunion____missing_field_name_46 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_47 __annonCompField27 ; int units ; }; struct __anonstruct____missing_field_name_45 { union __anonunion____missing_field_name_46 __annonCompField28 ; atomic_t _count ; }; union __anonunion____missing_field_name_44 { unsigned long counters ; struct __anonstruct____missing_field_name_45 __annonCompField29 ; unsigned int active ; }; struct __anonstruct____missing_field_name_42 { union __anonunion____missing_field_name_43 __annonCompField26 ; union __anonunion____missing_field_name_44 __annonCompField30 ; }; struct __anonstruct____missing_field_name_49 { struct page *next ; int pages ; int pobjects ; }; struct slab; union __anonunion____missing_field_name_48 { struct list_head lru ; struct __anonstruct____missing_field_name_49 __annonCompField32 ; struct list_head list ; struct slab *slab_page ; struct callback_head callback_head ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_50 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_41 __annonCompField25 ; struct __anonstruct____missing_field_name_42 __annonCompField31 ; union __anonunion____missing_field_name_48 __annonCompField33 ; union __anonunion____missing_field_name_50 __annonCompField34 ; unsigned long debug_flags ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_linear_52 { struct rb_node rb ; unsigned long rb_subtree_last ; }; union __anonunion_shared_51 { struct __anonstruct_linear_52 linear ; struct list_head nonlinear ; }; struct anon_vma; struct vm_operations_struct; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; union __anonunion_shared_51 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; typedef unsigned short __kernel_sa_family_t; struct cred; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct msghdr { void *msg_name ; int msg_namelen ; struct iovec *msg_iov ; __kernel_size_t msg_iovlen ; void *msg_control ; __kernel_size_t msg_controllen ; unsigned int msg_flags ; }; enum ldv_11489 { SS_FREE = 0, SS_UNCONNECTED = 1, SS_CONNECTING = 2, SS_CONNECTED = 3, SS_DISCONNECTING = 4 } ; typedef enum ldv_11489 socket_state; struct poll_table_struct; struct pipe_inode_info; struct net; struct fasync_struct; struct socket_wq { wait_queue_head_t wait ; struct fasync_struct *fasync_list ; struct callback_head rcu ; }; struct sock; struct proto_ops; struct socket { socket_state state ; short type ; unsigned long flags ; struct socket_wq *wq ; struct file *file ; struct sock *sk ; struct proto_ops const *ops ; }; struct kiocb; struct proto_ops { int family ; struct module *owner ; int (*release)(struct socket * ) ; int (*bind)(struct socket * , struct sockaddr * , int ) ; int (*connect)(struct socket * , struct sockaddr * , int , int ) ; int (*socketpair)(struct socket * , struct socket * ) ; int (*accept)(struct socket * , struct socket * , int ) ; int (*getname)(struct socket * , struct sockaddr * , int * , int ) ; unsigned int (*poll)(struct file * , struct socket * , struct poll_table_struct * ) ; int (*ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*listen)(struct socket * , int ) ; int (*shutdown)(struct socket * , int ) ; int (*setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct socket * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct socket * , int , int , char * , int * ) ; int (*sendmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t , int ) ; int (*mmap)(struct file * , struct socket * , struct vm_area_struct * ) ; ssize_t (*sendpage)(struct socket * , struct page * , int , size_t , int ) ; ssize_t (*splice_read)(struct socket * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*set_peek_off)(struct sock * , int ) ; }; struct __anonstruct_nodemask_t_53 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_53 nodemask_t; struct ctl_table; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct pci_dev; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned int can_wakeup : 1 ; unsigned int async_suspend : 1 ; bool is_prepared : 1 ; bool is_suspended : 1 ; bool ignore_children : 1 ; bool early_init : 1 ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path : 1 ; bool syscore : 1 ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned int disable_depth : 3 ; unsigned int idle_notification : 1 ; unsigned int request_pending : 1 ; unsigned int deferred_resume : 1 ; unsigned int run_wake : 1 ; unsigned int runtime_auto : 1 ; unsigned int no_callbacks : 1 ; unsigned int irq_safe : 1 ; unsigned int use_autosuspend : 1 ; unsigned int timer_autosuspends : 1 ; unsigned int memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; }; struct pci_bus; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct mem_cgroup; struct idr_layer { int prefix ; unsigned long bitmap[4U] ; struct idr_layer *ary[256U] ; int count ; int layer ; struct callback_head callback_head ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; struct idr_layer *id_free ; int layers ; int id_free_cnt ; int cur ; spinlock_t lock ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct dentry; struct iattr; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; }; union __anonunion_u_145 { struct completion *completion ; struct kernfs_node *removed_list ; }; union __anonunion____missing_field_name_146 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; union __anonunion_u_145 u ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_146 __annonCompField46 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_dir_ops { int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; struct ida ino_ida ; struct kernfs_dir_ops *dir_ops ; }; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; struct mutex mutex ; int event ; struct list_head list ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct user_namespace; struct __anonstruct_kuid_t_147 { uid_t val ; }; typedef struct __anonstruct_kuid_t_147 kuid_t; struct __anonstruct_kgid_t_148 { gid_t val ; }; typedef struct __anonstruct_kgid_t_148 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep : 1 ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned int state_initialized : 1 ; unsigned int state_in_sysfs : 1 ; unsigned int state_add_uevent_sent : 1 ; unsigned int state_remove_uevent_sent : 1 ; unsigned int uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; struct page *partial ; unsigned int stat[26U] ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct memcg_cache_params; struct kmem_cache_node; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int object_size ; int offset ; int cpu_partial ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; struct memcg_cache_params *memcg_params ; int max_attr_size ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; struct __anonstruct____missing_field_name_150 { struct callback_head callback_head ; struct kmem_cache *memcg_caches[0U] ; }; struct __anonstruct____missing_field_name_151 { struct mem_cgroup *memcg ; struct list_head list ; struct kmem_cache *root_cache ; bool dead ; atomic_t nr_pages ; struct work_struct destroy ; }; union __anonunion____missing_field_name_149 { struct __anonstruct____missing_field_name_150 __annonCompField47 ; struct __anonstruct____missing_field_name_151 __annonCompField48 ; }; struct memcg_cache_params { bool is_root_cache ; union __anonunion____missing_field_name_149 __annonCompField49 ; }; struct sk_buff; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct path; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled : 1 ; bool offline : 1 ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active : 1 ; bool autosleep_enabled : 1 ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; nodemask_t nodes_to_scan ; int nid ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct user_struct; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; int (*migrate)(struct vm_area_struct * , nodemask_t const * , nodemask_t const * , unsigned long ) ; int (*remap_pages)(struct vm_area_struct * , unsigned long , unsigned long , unsigned long ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; typedef s32 dma_cookie_t; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; typedef u64 netdev_features_t; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; typedef unsigned int sk_buff_data_t; struct sec_path; struct __anonstruct____missing_field_name_156 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_155 { __wsum csum ; struct __anonstruct____missing_field_name_156 __annonCompField51 ; }; union __anonunion____missing_field_name_157 { unsigned int napi_id ; dma_cookie_t dma_cookie ; }; union __anonunion____missing_field_name_158 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; struct sk_buff { struct sk_buff *next ; struct sk_buff *prev ; ktime_t tstamp ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; struct sec_path *sp ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; union __anonunion____missing_field_name_155 __annonCompField52 ; __u32 priority ; __u8 local_df : 1 ; __u8 cloned : 1 ; __u8 ip_summed : 2 ; __u8 nohdr : 1 ; __u8 nfctinfo : 3 ; __u8 pkt_type : 3 ; __u8 fclone : 2 ; __u8 ipvs_property : 1 ; __u8 peeked : 1 ; __u8 nf_trace : 1 ; __be16 protocol ; void (*destructor)(struct sk_buff * ) ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; int skb_iif ; __u32 rxhash ; __be16 vlan_proto ; __u16 vlan_tci ; __u16 tc_index ; __u16 tc_verd ; __u16 queue_mapping ; __u8 ndisc_nodetype : 2 ; __u8 pfmemalloc : 1 ; __u8 ooo_okay : 1 ; __u8 l4_rxhash : 1 ; __u8 wifi_acked_valid : 1 ; __u8 wifi_acked : 1 ; __u8 no_fcs : 1 ; __u8 head_frag : 1 ; __u8 encapsulation : 1 ; union __anonunion____missing_field_name_157 __annonCompField53 ; __u32 secmark ; union __anonunion____missing_field_name_158 __annonCompField54 ; __be16 inner_protocol ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct ieee80211_hdr { __le16 frame_control ; __le16 duration_id ; u8 addr1[6U] ; u8 addr2[6U] ; u8 addr3[6U] ; __le16 seq_ctrl ; u8 addr4[6U] ; }; struct ieee80211_p2p_noa_desc { u8 count ; __le32 duration ; __le32 interval ; __le32 start_time ; }; struct ieee80211_p2p_noa_attr { u8 index ; u8 oppps_ctwindow ; struct ieee80211_p2p_noa_desc desc[4U] ; }; struct ieee80211_mcs_info { u8 rx_mask[10U] ; __le16 rx_highest ; u8 tx_params ; u8 reserved[3U] ; }; struct ieee80211_ht_cap { __le16 cap_info ; u8 ampdu_params_info ; struct ieee80211_mcs_info mcs ; __le16 extended_ht_cap_info ; __le32 tx_BF_cap_info ; u8 antenna_selection_info ; }; struct ieee80211_vht_mcs_info { __le16 rx_mcs_map ; __le16 rx_highest ; __le16 tx_mcs_map ; __le16 tx_highest ; }; struct ieee80211_vht_cap { __le32 vht_cap_info ; struct ieee80211_vht_mcs_info supp_mcs ; }; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct pm_qos_flags_request { struct list_head node ; s32 flags ; }; enum dev_pm_qos_req_type { DEV_PM_QOS_LATENCY = 1, DEV_PM_QOS_FLAGS = 2 } ; union __anonunion_data_195 { struct plist_node pnode ; struct pm_qos_flags_request flr ; }; struct dev_pm_qos_request { enum dev_pm_qos_req_type type ; union __anonunion_data_195 data ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct pm_qos_flags { struct list_head list ; s32 effective_flags ; }; struct dev_pm_qos { struct pm_qos_constraints latency ; struct pm_qos_flags flags ; struct dev_pm_qos_request *latency_req ; struct dev_pm_qos_request *flags_req ; }; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct __anonstruct_sync_serial_settings_196 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_196 sync_serial_settings; struct __anonstruct_te1_settings_197 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_197 te1_settings; struct __anonstruct_raw_hdlc_proto_198 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_198 raw_hdlc_proto; struct __anonstruct_fr_proto_199 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_199 fr_proto; struct __anonstruct_fr_proto_pvc_200 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_200 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_201 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_201 fr_proto_pvc_info; struct __anonstruct_cisco_proto_202 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_202 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_203 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_203 ifs_ifsu ; }; union __anonunion_ifr_ifrn_204 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_205 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_204 ifr_ifrn ; union __anonunion_ifr_ifru_205 ifr_ifru ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_208 { spinlock_t lock ; unsigned int count ; }; union __anonunion____missing_field_name_207 { struct __anonstruct____missing_field_name_208 __annonCompField56 ; }; struct lockref { union __anonunion____missing_field_name_207 __annonCompField57 ; }; struct nameidata; struct vfsmount; struct __anonstruct____missing_field_name_210 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_209 { struct __anonstruct____missing_field_name_210 __annonCompField58 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_209 __annonCompField59 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_211 { struct list_head d_child ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; union __anonunion_d_u_211 d_u ; struct list_head d_subdirs ; struct hlist_node d_alias ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_node { spinlock_t lock ; struct list_head list ; long nr_items ; }; struct list_lru { struct list_lru_node *node ; nodemask_t active_nodes ; }; struct radix_tree_node; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct io_context; struct cgroup_subsys_state; struct export_operations; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_213 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_213 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_214 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_214 __annonCompField60 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_on_meta)(struct super_block * , int , int ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; union __anonunion_arg_216 { char *buf ; void *data ; }; struct __anonstruct_read_descriptor_t_215 { size_t written ; size_t count ; union __anonunion_arg_216 arg ; int error ; }; typedef struct __anonstruct_read_descriptor_t_215 read_descriptor_t; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iovec const * , loff_t , unsigned long ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct backing_dev_info; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct rb_root i_mmap ; struct list_head i_mmap_nonlinear ; struct mutex i_mmap_mutex ; unsigned long nrpages ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_217 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_218 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock; struct cdev; union __anonunion____missing_field_name_219 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_217 __annonCompField61 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_218 __annonCompField62 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; struct file_operations const *i_fop ; struct file_lock *i_flock ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion____missing_field_name_219 __annonCompField63 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; atomic_t i_readcount ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_220 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_220 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; unsigned long f_mnt_write_state ; }; struct files_struct; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , struct file_lock * , int ) ; void (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock ** , int ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct __anonstruct_afs_222 { struct list_head link ; int state ; }; union __anonunion_fl_u_221 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_222 afs ; }; struct file_lock { struct file_lock *fl_next ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_221 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context { int (*actor)(void * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; int (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , int ) ; long (*free_cached_objects)(struct super_block * , long , int ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; typedef unsigned long cputime_t; struct __anonstruct_sigset_t_223 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_223 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_225 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_226 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_227 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_228 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_229 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_230 { long _band ; int _fd ; }; struct __anonstruct__sigsys_231 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_224 { int _pad[28U] ; struct __anonstruct__kill_225 _kill ; struct __anonstruct__timer_226 _timer ; struct __anonstruct__rt_227 _rt ; struct __anonstruct__sigchld_228 _sigchld ; struct __anonstruct__sigfault_229 _sigfault ; struct __anonstruct__sigpoll_230 _sigpoll ; struct __anonstruct__sigsys_231 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_224 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct____missing_field_name_235 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion____missing_field_name_234 { struct __anonstruct____missing_field_name_235 __annonCompField64 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion____missing_field_name_234 __annonCompField65 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_236 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_237 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_239 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_238 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_239 __annonCompField68 ; }; union __anonunion_type_data_240 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_242 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_241 { union __anonunion_payload_242 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_236 __annonCompField66 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_237 __annonCompField67 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_238 __annonCompField69 ; union __anonunion_type_data_240 type_data ; union __anonunion____missing_field_name_241 __annonCompField70 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned int is_child_subreaper : 1 ; unsigned int has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; struct hrtimer dl_timer ; }; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned int may_oom : 1 ; }; struct sched_class; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned int brk_randomized : 1 ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned int in_execve : 1 ; unsigned int in_iowait : 1 ; unsigned int no_new_privs : 1 ; unsigned int sched_reset_on_fork : 1 ; unsigned int sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct task_struct *pi_top_task ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; int numa_migrate_deferred ; unsigned long numa_migrate_retry ; u64 node_stamp ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long *numa_faults_buffer ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; unsigned int memcg_kmem_skip_account ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; }; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char reserved1[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh_indir)(struct net_device * , u32 * ) ; int (*set_rxfh_indir)(struct net_device * , u32 const * ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[8U] ; }; struct linux_mib { unsigned long mibs[97U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct proc_dir_entry; struct netns_mib { struct tcp_mib *tcp_statistics[1U] ; struct ipstats_mib *ip_statistics[1U] ; struct linux_mib *net_statistics[1U] ; struct udp_mib *udp_statistics[1U] ; struct udp_mib *udplite_statistics[1U] ; struct icmp_mib *icmp_statistics[1U] ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6[1U] ; struct udp_mib *udplite_stats_in6[1U] ; struct ipstats_mib *ipv6_statistics[1U] ; struct icmpv6_mib *icmpv6_statistics[1U] ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics[1U] ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { int nqueues ; struct list_head lru_list ; spinlock_t lru_lock ; struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct tcpm_hash_bucket; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct inet_peer_base *peers ; struct tcpm_hash_bucket *tcp_metrics_hash ; unsigned int tcp_metrics_hash_log ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports sysctl_local_ports ; int sysctl_tcp_ecn ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; kgid_t sysctl_ping_group_range[2U] ; atomic_t dev_addr_genid ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int icmpv6_time ; int anycast_src_echo_reply ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t rt_genid ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics[1U] ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; struct nlattr; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; bool ulog_warn_deprecated ; bool ebt_ulog_warn_deprecated ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; unsigned int sysctl_events_retry_timeout ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; u8 gencursor ; u8 genctr ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[6U] ; struct xfrm_policy_hash policy_bydst[6U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; spinlock_t xfrm_policy_sk_bundle_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; unsigned int proc_inum ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; struct dsa_chip_data { struct device *mii_bus ; int sw_addr ; char *port_names[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; __be16 tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct mii_bus; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct mii_bus *master_mii_bus ; u32 dsa_port_mask ; u32 phys_port_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; __be16 tag_protocol ; int priv_size ; char *(*probe)(struct mii_bus * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; u8 (*setapp)(struct net_device * , u8 , u16 , u8 ) ; u8 (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct xattr_handler { char const *prefix ; int flags ; size_t (*list)(struct dentry * , char * , size_t , char const * , size_t , int ) ; int (*get)(struct dentry * , char const * , void * , size_t , int ) ; int (*set)(struct dentry * , char const * , void const * , size_t , int , int ) ; }; struct simple_xattrs { struct list_head head ; spinlock_t lock ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_t count ; unsigned int *pcpu_count ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_kill ; struct callback_head rcu ; }; struct cgroupfs_root; struct cgroup_subsys; struct cgroup; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; unsigned long flags ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct cgroup_name { struct callback_head callback_head ; char name[] ; }; struct cgroup { unsigned long flags ; int id ; int nr_css ; struct list_head sibling ; struct list_head children ; struct list_head files ; struct cgroup *parent ; struct dentry *dentry ; u64 serial_nr ; struct cgroup_name *name ; struct cgroup_subsys_state *subsys[12U] ; struct cgroupfs_root *root ; struct list_head cset_links ; struct list_head release_list ; struct list_head pidlists ; struct mutex pidlist_mutex ; struct cgroup_subsys_state dummy_css ; struct callback_head callback_head ; struct work_struct destroy_work ; struct simple_xattrs xattrs ; }; struct cgroupfs_root { struct super_block *sb ; unsigned long subsys_mask ; int hierarchy_id ; struct cgroup top_cgroup ; int number_of_cgroups ; struct list_head root_list ; unsigned long flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head cgrp_links ; struct cgroup_subsys_state *subsys[12U] ; struct callback_head callback_head ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; int (*write_string)(struct cgroup_subsys_state * , struct cftype * , char const * ) ; int (*trigger)(struct cgroup_subsys_state * , unsigned int ) ; }; struct cftype_set { struct list_head node ; struct cftype *cfts ; }; struct cgroup_taskset; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int subsys_id ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; char const *name ; struct cgroupfs_root *root ; struct list_head cftsets ; struct cftype *base_cftypes ; struct cftype_set base_cftset ; struct module *module ; }; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 tx_rate ; __u32 spoofchk ; __u32 linkstate ; }; struct netpoll_info; struct phy_device; struct wireless_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_port_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * , gfp_t ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_tx_rate)(struct net_device * , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_port_id * ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; }; enum ldv_28663 { NETREG_UNINITIALIZED = 0, NETREG_REGISTERED = 1, NETREG_UNREGISTERING = 2, NETREG_UNREGISTERED = 3, NETREG_RELEASED = 4, NETREG_DUMMY = 5 } ; enum ldv_28664 { RTNL_LINK_INITIALIZED = 0, RTNL_LINK_INITIALIZING = 1 } ; struct __anonstruct_adj_list_271 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_272 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct forwarding_accel_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion____missing_field_name_273 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct __anonstruct_adj_list_271 adj_list ; struct __anonstruct_all_adj_list_272 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct forwarding_accel_ops const *fwd_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; bool uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; unsigned char broadcast[32U] ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; struct cpu_rmap *rx_cpu_rmap ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; enum ldv_28663 reg_state : 8 ; bool dismantle ; enum ldv_28664 rtnl_link_state : 16 ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion____missing_field_name_273 __annonCompField75 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; int group ; struct pm_qos_request pm_qos_req ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; enum nl80211_iftype { NL80211_IFTYPE_UNSPECIFIED = 0, NL80211_IFTYPE_ADHOC = 1, NL80211_IFTYPE_STATION = 2, NL80211_IFTYPE_AP = 3, NL80211_IFTYPE_AP_VLAN = 4, NL80211_IFTYPE_WDS = 5, NL80211_IFTYPE_MONITOR = 6, NL80211_IFTYPE_MESH_POINT = 7, NL80211_IFTYPE_P2P_CLIENT = 8, NL80211_IFTYPE_P2P_GO = 9, NL80211_IFTYPE_P2P_DEVICE = 10, NUM_NL80211_IFTYPES = 11, NL80211_IFTYPE_MAX = 10 } ; enum nl80211_reg_initiator { NL80211_REGDOM_SET_BY_CORE = 0, NL80211_REGDOM_SET_BY_USER = 1, NL80211_REGDOM_SET_BY_DRIVER = 2, NL80211_REGDOM_SET_BY_COUNTRY_IE = 3 } ; enum nl80211_dfs_regions { NL80211_DFS_UNSET = 0, NL80211_DFS_FCC = 1, NL80211_DFS_ETSI = 2, NL80211_DFS_JP = 3 } ; enum nl80211_user_reg_hint_type { NL80211_USER_REG_HINT_USER = 0, NL80211_USER_REG_HINT_CELL_BASE = 1 } ; enum nl80211_channel_type { NL80211_CHAN_NO_HT = 0, NL80211_CHAN_HT20 = 1, NL80211_CHAN_HT40MINUS = 2, NL80211_CHAN_HT40PLUS = 3 } ; enum nl80211_chan_width { NL80211_CHAN_WIDTH_20_NOHT = 0, NL80211_CHAN_WIDTH_20 = 1, NL80211_CHAN_WIDTH_40 = 2, NL80211_CHAN_WIDTH_80 = 3, NL80211_CHAN_WIDTH_80P80 = 4, NL80211_CHAN_WIDTH_160 = 5, NL80211_CHAN_WIDTH_5 = 6, NL80211_CHAN_WIDTH_10 = 7 } ; enum nl80211_auth_type { NL80211_AUTHTYPE_OPEN_SYSTEM = 0, NL80211_AUTHTYPE_SHARED_KEY = 1, NL80211_AUTHTYPE_FT = 2, NL80211_AUTHTYPE_NETWORK_EAP = 3, NL80211_AUTHTYPE_SAE = 4, __NL80211_AUTHTYPE_NUM = 5, NL80211_AUTHTYPE_MAX = 4, NL80211_AUTHTYPE_AUTOMATIC = 5 } ; enum nl80211_mfp { NL80211_MFP_NO = 0, NL80211_MFP_REQUIRED = 1 } ; struct nl80211_wowlan_tcp_data_seq { __u32 start ; __u32 offset ; __u32 len ; }; struct nl80211_wowlan_tcp_data_token { __u32 offset ; __u32 len ; __u8 token_stream[] ; }; struct nl80211_wowlan_tcp_data_token_feature { __u32 min_len ; __u32 max_len ; __u32 bufsize ; }; enum nl80211_dfs_state { NL80211_DFS_USABLE = 0, NL80211_DFS_UNAVAILABLE = 1, NL80211_DFS_AVAILABLE = 2 } ; struct nl80211_vendor_cmd_info { __u32 vendor_id ; __u32 subcmd ; }; enum environment_cap { ENVIRON_ANY = 0, ENVIRON_INDOOR = 1, ENVIRON_OUTDOOR = 2 } ; struct regulatory_request { struct callback_head callback_head ; int wiphy_idx ; enum nl80211_reg_initiator initiator ; enum nl80211_user_reg_hint_type user_reg_hint_type ; char alpha2[2U] ; enum nl80211_dfs_regions dfs_region ; bool intersect ; bool processed ; enum environment_cap country_ie_env ; struct list_head list ; }; struct ieee80211_freq_range { u32 start_freq_khz ; u32 end_freq_khz ; u32 max_bandwidth_khz ; }; struct ieee80211_power_rule { u32 max_antenna_gain ; u32 max_eirp ; }; struct ieee80211_reg_rule { struct ieee80211_freq_range freq_range ; struct ieee80211_power_rule power_rule ; u32 flags ; }; struct ieee80211_regdomain { struct callback_head callback_head ; u32 n_reg_rules ; char alpha2[2U] ; enum nl80211_dfs_regions dfs_region ; struct ieee80211_reg_rule reg_rules[] ; }; struct wiphy; enum ieee80211_band { IEEE80211_BAND_2GHZ = 0, IEEE80211_BAND_5GHZ = 1, IEEE80211_BAND_60GHZ = 2, IEEE80211_NUM_BANDS = 3 } ; struct ieee80211_channel { enum ieee80211_band band ; u16 center_freq ; u16 hw_value ; u32 flags ; int max_antenna_gain ; int max_power ; int max_reg_power ; bool beacon_found ; u32 orig_flags ; int orig_mag ; int orig_mpwr ; enum nl80211_dfs_state dfs_state ; unsigned long dfs_state_entered ; }; struct ieee80211_rate { u32 flags ; u16 bitrate ; u16 hw_value ; u16 hw_value_short ; }; struct ieee80211_sta_ht_cap { u16 cap ; bool ht_supported ; u8 ampdu_factor ; u8 ampdu_density ; struct ieee80211_mcs_info mcs ; }; struct ieee80211_sta_vht_cap { bool vht_supported ; u32 cap ; struct ieee80211_vht_mcs_info vht_mcs ; }; struct ieee80211_supported_band { struct ieee80211_channel *channels ; struct ieee80211_rate *bitrates ; enum ieee80211_band band ; int n_channels ; int n_bitrates ; struct ieee80211_sta_ht_cap ht_cap ; struct ieee80211_sta_vht_cap vht_cap ; }; struct cfg80211_chan_def { struct ieee80211_channel *chan ; enum nl80211_chan_width width ; u32 center_freq1 ; u32 center_freq2 ; }; struct cfg80211_crypto_settings { u32 wpa_versions ; u32 cipher_group ; int n_ciphers_pairwise ; u32 ciphers_pairwise[5U] ; int n_akm_suites ; u32 akm_suites[2U] ; bool control_port ; __be16 control_port_ethertype ; bool control_port_no_encrypt ; }; struct mac_address { u8 addr[6U] ; }; enum cfg80211_signal_type { CFG80211_SIGNAL_TYPE_NONE = 0, CFG80211_SIGNAL_TYPE_MBM = 1, CFG80211_SIGNAL_TYPE_UNSPEC = 2 } ; struct cfg80211_ibss_params { u8 *ssid ; u8 *bssid ; struct cfg80211_chan_def chandef ; u8 *ie ; u8 ssid_len ; u8 ie_len ; u16 beacon_interval ; u32 basic_rates ; bool channel_fixed ; bool privacy ; bool control_port ; bool userspace_handles_dfs ; int mcast_rate[3U] ; struct ieee80211_ht_cap ht_capa ; struct ieee80211_ht_cap ht_capa_mask ; }; struct cfg80211_connect_params { struct ieee80211_channel *channel ; u8 *bssid ; u8 *ssid ; size_t ssid_len ; enum nl80211_auth_type auth_type ; u8 *ie ; size_t ie_len ; bool privacy ; enum nl80211_mfp mfp ; struct cfg80211_crypto_settings crypto ; u8 const *key ; u8 key_len ; u8 key_idx ; u32 flags ; int bg_scan_period ; struct ieee80211_ht_cap ht_capa ; struct ieee80211_ht_cap ht_capa_mask ; struct ieee80211_vht_cap vht_capa ; struct ieee80211_vht_cap vht_capa_mask ; }; struct cfg80211_pkt_pattern { u8 *mask ; u8 *pattern ; int pattern_len ; int pkt_offset ; }; struct cfg80211_wowlan_tcp { struct socket *sock ; __be32 src ; __be32 dst ; u16 src_port ; u16 dst_port ; u8 dst_mac[6U] ; int payload_len ; u8 const *payload ; struct nl80211_wowlan_tcp_data_seq payload_seq ; u32 data_interval ; u32 wake_len ; u8 const *wake_data ; u8 const *wake_mask ; u32 tokens_size ; struct nl80211_wowlan_tcp_data_token payload_tok ; }; struct cfg80211_wowlan { bool any ; bool disconnect ; bool magic_pkt ; bool gtk_rekey_failure ; bool eap_identity_req ; bool four_way_handshake ; bool rfkill_release ; struct cfg80211_pkt_pattern *patterns ; struct cfg80211_wowlan_tcp *tcp ; int n_patterns ; }; struct ieee80211_iface_limit { u16 max ; u16 types ; }; struct ieee80211_iface_combination { struct ieee80211_iface_limit const *limits ; u32 num_different_channels ; u16 max_interfaces ; u8 n_limits ; bool beacon_int_infra_match ; u8 radar_detect_widths ; }; struct ieee80211_txrx_stypes { u16 tx ; u16 rx ; }; struct wiphy_wowlan_tcp_support { struct nl80211_wowlan_tcp_data_token_feature const *tok ; u32 data_payload_max ; u32 data_interval_max ; u32 wake_payload_max ; bool seq ; }; struct wiphy_wowlan_support { u32 flags ; int n_patterns ; int pattern_max_len ; int pattern_min_len ; int max_pkt_offset ; struct wiphy_wowlan_tcp_support const *tcp ; }; struct wiphy_coalesce_support { int n_rules ; int max_delay ; int n_patterns ; int pattern_max_len ; int pattern_min_len ; int max_pkt_offset ; }; struct wiphy_vendor_command { struct nl80211_vendor_cmd_info info ; u32 flags ; int (*doit)(struct wiphy * , struct wireless_dev * , void const * , int ) ; }; struct wiphy { u8 perm_addr[6U] ; u8 addr_mask[6U] ; struct mac_address *addresses ; struct ieee80211_txrx_stypes const *mgmt_stypes ; struct ieee80211_iface_combination const *iface_combinations ; int n_iface_combinations ; u16 software_iftypes ; u16 n_addresses ; u16 interface_modes ; u16 max_acl_mac_addrs ; u32 flags ; u32 regulatory_flags ; u32 features ; u32 ap_sme_capa ; enum cfg80211_signal_type signal_type ; int bss_priv_size ; u8 max_scan_ssids ; u8 max_sched_scan_ssids ; u8 max_match_sets ; u16 max_scan_ie_len ; u16 max_sched_scan_ie_len ; int n_cipher_suites ; u32 const *cipher_suites ; u8 retry_short ; u8 retry_long ; u32 frag_threshold ; u32 rts_threshold ; u8 coverage_class ; char fw_version[32U] ; u32 hw_version ; struct wiphy_wowlan_support const *wowlan ; struct cfg80211_wowlan *wowlan_config ; u16 max_remain_on_channel_duration ; u8 max_num_pmkids ; u32 available_antennas_tx ; u32 available_antennas_rx ; u32 probe_resp_offload ; u8 const *extended_capabilities ; u8 const *extended_capabilities_mask ; u8 extended_capabilities_len ; void const *privid ; struct ieee80211_supported_band *bands[3U] ; void (*reg_notifier)(struct wiphy * , struct regulatory_request * ) ; struct ieee80211_regdomain const *regd ; struct device dev ; bool registered ; struct dentry *debugfsdir ; struct ieee80211_ht_cap const *ht_capa_mod_mask ; struct ieee80211_vht_cap const *vht_capa_mod_mask ; struct net *_net ; struct iw_handler_def const *wext ; struct wiphy_coalesce_support const *coalesce ; struct wiphy_vendor_command const *vendor_commands ; struct nl80211_vendor_cmd_info const *vendor_events ; int n_vendor_commands ; int n_vendor_events ; char priv[0U] ; }; struct cfg80211_conn; struct cfg80211_internal_bss; struct cfg80211_cached_keys; struct __anonstruct_wext_275 { struct cfg80211_ibss_params ibss ; struct cfg80211_connect_params connect ; struct cfg80211_cached_keys *keys ; u8 *ie ; size_t ie_len ; u8 bssid[6U] ; u8 prev_bssid[6U] ; u8 ssid[32U] ; s8 default_key ; s8 default_mgmt_key ; bool prev_bssid_valid ; }; struct wireless_dev { struct wiphy *wiphy ; enum nl80211_iftype iftype ; struct list_head list ; struct net_device *netdev ; u32 identifier ; struct list_head mgmt_registrations ; spinlock_t mgmt_registrations_lock ; struct mutex mtx ; bool use_4addr ; bool p2p_started ; u8 address[6U] ; u8 ssid[32U] ; u8 ssid_len ; u8 mesh_id_len ; u8 mesh_id_up_len ; struct cfg80211_conn *conn ; struct cfg80211_cached_keys *connect_keys ; struct list_head event_list ; spinlock_t event_lock ; struct cfg80211_internal_bss *current_bss ; struct cfg80211_chan_def preset_chandef ; struct ieee80211_channel *channel ; bool ibss_fixed ; bool ibss_dfs_possible ; bool ps ; int ps_timeout ; int beacon_interval ; u32 ap_unexpected_nlportid ; bool cac_started ; unsigned long cac_start_time ; struct __anonstruct_wext_275 wext ; }; struct ieee80211_tx_queue_params { u16 txop ; u16 cw_min ; u16 cw_max ; u8 aifs ; bool acm ; bool uapsd ; }; struct ieee80211_chanctx_conf { struct cfg80211_chan_def def ; struct cfg80211_chan_def min_def ; u8 rx_chains_static ; u8 rx_chains_dynamic ; bool radar_enabled ; u8 drv_priv[0U] ; }; struct ieee80211_bss_conf { u8 const *bssid ; bool assoc ; bool ibss_joined ; bool ibss_creator ; u16 aid ; bool use_cts_prot ; bool use_short_preamble ; bool use_short_slot ; bool enable_beacon ; u8 dtim_period ; u16 beacon_int ; u16 assoc_capability ; u64 sync_tsf ; u32 sync_device_ts ; u8 sync_dtim_count ; u32 basic_rates ; struct ieee80211_rate *beacon_rate ; int mcast_rate[3U] ; u16 ht_operation_mode ; s32 cqm_rssi_thold ; u32 cqm_rssi_hyst ; struct cfg80211_chan_def chandef ; __be32 arp_addr_list[4U] ; int arp_addr_cnt ; bool qos ; bool idle ; bool ps ; u8 ssid[32U] ; size_t ssid_len ; bool hidden_ssid ; int txpower ; struct ieee80211_p2p_noa_attr p2p_noa_attr ; }; struct ieee80211_tx_rate { s8 idx ; u16 count : 5 ; u16 flags : 11 ; }; struct __anonstruct____missing_field_name_279 { struct ieee80211_tx_rate rates[4U] ; s8 rts_cts_rate_idx ; u8 use_rts : 1 ; u8 use_cts_prot : 1 ; u8 short_preamble : 1 ; u8 skip_table : 1 ; }; union __anonunion____missing_field_name_278 { struct __anonstruct____missing_field_name_279 __annonCompField76 ; unsigned long jiffies ; }; struct ieee80211_vif; struct ieee80211_key_conf; struct __anonstruct_control_277 { union __anonunion____missing_field_name_278 __annonCompField77 ; struct ieee80211_vif *vif ; struct ieee80211_key_conf *hw_key ; u32 flags ; }; struct __anonstruct_status_280 { struct ieee80211_tx_rate rates[4U] ; int ack_signal ; u8 ampdu_ack_len ; u8 ampdu_len ; u8 antenna ; }; struct __anonstruct____missing_field_name_281 { struct ieee80211_tx_rate driver_rates[4U] ; u8 pad[4U] ; void *rate_driver_data[3U] ; }; union __anonunion____missing_field_name_276 { struct __anonstruct_control_277 control ; struct __anonstruct_status_280 status ; struct __anonstruct____missing_field_name_281 __annonCompField78 ; void *driver_data[5U] ; }; struct ieee80211_tx_info { u32 flags ; u8 band ; u8 hw_queue ; u16 ack_frame_id ; union __anonunion____missing_field_name_276 __annonCompField79 ; }; struct ieee80211_rx_status; struct ieee80211_rx_status { u64 mactime ; u32 device_timestamp ; u32 ampdu_reference ; u32 flag ; u32 vendor_radiotap_bitmap ; u16 vendor_radiotap_len ; u16 freq ; u8 rate_idx ; u8 vht_nss ; u8 rx_flags ; u8 band ; u8 antenna ; s8 signal ; u8 chains ; s8 chain_signal[4U] ; u8 ampdu_delimiter_crc ; u8 vendor_radiotap_align ; u8 vendor_radiotap_oui[3U] ; u8 vendor_radiotap_subns ; }; enum ieee80211_smps_mode { IEEE80211_SMPS_AUTOMATIC = 0, IEEE80211_SMPS_OFF = 1, IEEE80211_SMPS_STATIC = 2, IEEE80211_SMPS_DYNAMIC = 3, IEEE80211_SMPS_NUM_MODES = 4 } ; struct ieee80211_conf { u32 flags ; int power_level ; int dynamic_ps_timeout ; int max_sleep_period ; u16 listen_interval ; u8 ps_dtim_period ; u8 long_frame_max_tx_count ; u8 short_frame_max_tx_count ; struct cfg80211_chan_def chandef ; bool radar_enabled ; enum ieee80211_smps_mode smps_mode ; }; struct ieee80211_vif { enum nl80211_iftype type ; struct ieee80211_bss_conf bss_conf ; u8 addr[6U] ; bool p2p ; bool csa_active ; u8 cab_queue ; u8 hw_queue[4U] ; struct ieee80211_chanctx_conf *chanctx_conf ; u32 driver_flags ; struct dentry *debugfs_dir ; u8 drv_priv[0U] ; }; struct ieee80211_key_conf { u32 cipher ; u8 icv_len ; u8 iv_len ; u8 hw_key_idx ; u8 flags ; s8 keyidx ; u8 keylen ; u8 key[0U] ; }; struct ieee80211_cipher_scheme { u32 cipher ; u16 iftype ; u8 hdr_len ; u8 pn_len ; u8 pn_off ; u8 key_idx_off ; u8 key_idx_mask ; u8 key_idx_shift ; u8 mic_len ; }; enum ieee80211_sta_rx_bandwidth { IEEE80211_STA_RX_BW_20 = 0, IEEE80211_STA_RX_BW_40 = 1, IEEE80211_STA_RX_BW_80 = 2, IEEE80211_STA_RX_BW_160 = 3 } ; struct __anonstruct_rate_282 { s8 idx ; u8 count ; u8 count_cts ; u8 count_rts ; u16 flags ; }; struct ieee80211_sta_rates { struct callback_head callback_head ; struct __anonstruct_rate_282 rate[4U] ; }; struct ieee80211_sta { u32 supp_rates[3U] ; u8 addr[6U] ; u16 aid ; struct ieee80211_sta_ht_cap ht_cap ; struct ieee80211_sta_vht_cap vht_cap ; bool wme ; u8 uapsd_queues ; u8 max_sp ; u8 rx_nss ; enum ieee80211_sta_rx_bandwidth bandwidth ; enum ieee80211_smps_mode smps_mode ; struct ieee80211_sta_rates *rates ; u8 drv_priv[0U] ; }; struct ieee80211_hw { struct ieee80211_conf conf ; struct wiphy *wiphy ; char const *rate_control_algorithm ; void *priv ; u32 flags ; unsigned int extra_tx_headroom ; unsigned int extra_beacon_tailroom ; int vif_data_size ; int sta_data_size ; int chanctx_data_size ; int napi_weight ; u16 queues ; u16 max_listen_interval ; s8 max_signal ; u8 max_rates ; u8 max_report_rates ; u8 max_rate_tries ; u8 max_rx_aggregation_subframes ; u8 max_tx_aggregation_subframes ; u8 offchannel_tx_hw_queue ; u8 radiotap_mcs_details ; u16 radiotap_vht_details ; netdev_features_t netdev_features ; u8 uapsd_queues ; u8 uapsd_max_sp_len ; u8 n_cipher_schemes ; struct ieee80211_cipher_scheme const *cipher_schemes ; }; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct pci_driver; union __anonunion____missing_field_name_291 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; u8 pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned int pme_support : 5 ; unsigned int pme_interrupt : 1 ; unsigned int pme_poll : 1 ; unsigned int d1_support : 1 ; unsigned int d2_support : 1 ; unsigned int no_d1d2 : 1 ; unsigned int no_d3cold : 1 ; unsigned int d3cold_allowed : 1 ; unsigned int mmio_always_on : 1 ; unsigned int wakeup_prepared : 1 ; unsigned int runtime_d3cold : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned int transparent : 1 ; unsigned int multifunction : 1 ; unsigned int is_added : 1 ; unsigned int is_busmaster : 1 ; unsigned int no_msi : 1 ; unsigned int block_cfg_access : 1 ; unsigned int broken_parity_status : 1 ; unsigned int irq_reroute_variant : 2 ; unsigned int msi_enabled : 1 ; unsigned int msix_enabled : 1 ; unsigned int ari_enabled : 1 ; unsigned int is_managed : 1 ; unsigned int needs_freset : 1 ; unsigned int state_saved : 1 ; unsigned int is_physfn : 1 ; unsigned int is_virtfn : 1 ; unsigned int reset_fn : 1 ; unsigned int is_hotplug_bridge : 1 ; unsigned int __aer_firmware_first_valid : 1 ; unsigned int __aer_firmware_first : 1 ; unsigned int broken_intx_masking : 1 ; unsigned int io_window_1k : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_291 __annonCompField81 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; }; struct pci_ops; struct msi_chip; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_chip *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned int is_added : 1 ; }; struct pci_ops { int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct usb_device_descriptor { __u8 bLength ; __u8 bDescriptorType ; __le16 bcdUSB ; __u8 bDeviceClass ; __u8 bDeviceSubClass ; __u8 bDeviceProtocol ; __u8 bMaxPacketSize0 ; __le16 idVendor ; __le16 idProduct ; __le16 bcdDevice ; __u8 iManufacturer ; __u8 iProduct ; __u8 iSerialNumber ; __u8 bNumConfigurations ; }; struct usb_config_descriptor { __u8 bLength ; __u8 bDescriptorType ; __le16 wTotalLength ; __u8 bNumInterfaces ; __u8 bConfigurationValue ; __u8 iConfiguration ; __u8 bmAttributes ; __u8 bMaxPower ; }; struct usb_interface_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bInterfaceNumber ; __u8 bAlternateSetting ; __u8 bNumEndpoints ; __u8 bInterfaceClass ; __u8 bInterfaceSubClass ; __u8 bInterfaceProtocol ; __u8 iInterface ; }; struct usb_endpoint_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bEndpointAddress ; __u8 bmAttributes ; __le16 wMaxPacketSize ; __u8 bInterval ; __u8 bRefresh ; __u8 bSynchAddress ; }; struct usb_ss_ep_comp_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bMaxBurst ; __u8 bmAttributes ; __le16 wBytesPerInterval ; }; struct usb_interface_assoc_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bFirstInterface ; __u8 bInterfaceCount ; __u8 bFunctionClass ; __u8 bFunctionSubClass ; __u8 bFunctionProtocol ; __u8 iFunction ; }; struct usb_bos_descriptor { __u8 bLength ; __u8 bDescriptorType ; __le16 wTotalLength ; __u8 bNumDeviceCaps ; }; struct usb_ext_cap_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bDevCapabilityType ; __le32 bmAttributes ; }; struct usb_ss_cap_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bDevCapabilityType ; __u8 bmAttributes ; __le16 wSpeedSupported ; __u8 bFunctionalitySupport ; __u8 bU1devExitLat ; __le16 bU2DevExitLat ; }; struct usb_ss_container_id_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bDevCapabilityType ; __u8 bReserved ; __u8 ContainerID[16U] ; }; enum usb_device_speed { USB_SPEED_UNKNOWN = 0, USB_SPEED_LOW = 1, USB_SPEED_FULL = 2, USB_SPEED_HIGH = 3, USB_SPEED_WIRELESS = 4, USB_SPEED_SUPER = 5 } ; enum usb_device_state { USB_STATE_NOTATTACHED = 0, USB_STATE_ATTACHED = 1, USB_STATE_POWERED = 2, USB_STATE_RECONNECTING = 3, USB_STATE_UNAUTHENTICATED = 4, USB_STATE_DEFAULT = 5, USB_STATE_ADDRESS = 6, USB_STATE_CONFIGURED = 7, USB_STATE_SUSPENDED = 8 } ; struct tasklet_struct { struct tasklet_struct *next ; unsigned long state ; atomic_t count ; void (*func)(unsigned long ) ; unsigned long data ; }; struct usb_device; struct wusb_dev; struct ep_device; struct usb_host_endpoint { struct usb_endpoint_descriptor desc ; struct usb_ss_ep_comp_descriptor ss_ep_comp ; struct list_head urb_list ; void *hcpriv ; struct ep_device *ep_dev ; unsigned char *extra ; int extralen ; int enabled ; }; struct usb_host_interface { struct usb_interface_descriptor desc ; int extralen ; unsigned char *extra ; struct usb_host_endpoint *endpoint ; char *string ; }; enum usb_interface_condition { USB_INTERFACE_UNBOUND = 0, USB_INTERFACE_BINDING = 1, USB_INTERFACE_BOUND = 2, USB_INTERFACE_UNBINDING = 3 } ; struct usb_interface { struct usb_host_interface *altsetting ; struct usb_host_interface *cur_altsetting ; unsigned int num_altsetting ; struct usb_interface_assoc_descriptor *intf_assoc ; int minor ; enum usb_interface_condition condition ; unsigned int sysfs_files_created : 1 ; unsigned int ep_devs_created : 1 ; unsigned int unregistering : 1 ; unsigned int needs_remote_wakeup : 1 ; unsigned int needs_altsetting0 : 1 ; unsigned int needs_binding : 1 ; unsigned int reset_running : 1 ; unsigned int resetting_device : 1 ; struct device dev ; struct device *usb_dev ; atomic_t pm_usage_cnt ; struct work_struct reset_ws ; }; struct usb_interface_cache { unsigned int num_altsetting ; struct kref ref ; struct usb_host_interface altsetting[0U] ; }; struct usb_host_config { struct usb_config_descriptor desc ; char *string ; struct usb_interface_assoc_descriptor *intf_assoc[16U] ; struct usb_interface *interface[32U] ; struct usb_interface_cache *intf_cache[32U] ; unsigned char *extra ; int extralen ; }; struct usb_host_bos { struct usb_bos_descriptor *desc ; struct usb_ext_cap_descriptor *ext_cap ; struct usb_ss_cap_descriptor *ss_cap ; struct usb_ss_container_id_descriptor *ss_id ; }; struct usb_devmap { unsigned long devicemap[2U] ; }; struct mon_bus; struct usb_bus { struct device *controller ; int busnum ; char const *bus_name ; u8 uses_dma ; u8 uses_pio_for_control ; u8 otg_port ; unsigned int is_b_host : 1 ; unsigned int b_hnp_enable : 1 ; unsigned int no_stop_on_short : 1 ; unsigned int no_sg_constraint : 1 ; unsigned int sg_tablesize ; int devnum_next ; struct usb_devmap devmap ; struct usb_device *root_hub ; struct usb_bus *hs_companion ; struct list_head bus_list ; int bandwidth_allocated ; int bandwidth_int_reqs ; int bandwidth_isoc_reqs ; unsigned int resuming_ports ; struct mon_bus *mon_bus ; int monitored ; }; struct usb_tt; enum usb_device_removable { USB_DEVICE_REMOVABLE_UNKNOWN = 0, USB_DEVICE_REMOVABLE = 1, USB_DEVICE_FIXED = 2 } ; struct usb2_lpm_parameters { unsigned int besl ; int timeout ; }; struct usb3_lpm_parameters { unsigned int mel ; unsigned int pel ; unsigned int sel ; int timeout ; }; struct usb_device { int devnum ; char devpath[16U] ; u32 route ; enum usb_device_state state ; enum usb_device_speed speed ; struct usb_tt *tt ; int ttport ; unsigned int toggle[2U] ; struct usb_device *parent ; struct usb_bus *bus ; struct usb_host_endpoint ep0 ; struct device dev ; struct usb_device_descriptor descriptor ; struct usb_host_bos *bos ; struct usb_host_config *config ; struct usb_host_config *actconfig ; struct usb_host_endpoint *ep_in[16U] ; struct usb_host_endpoint *ep_out[16U] ; char **rawdescriptors ; unsigned short bus_mA ; u8 portnum ; u8 level ; unsigned int can_submit : 1 ; unsigned int persist_enabled : 1 ; unsigned int have_langid : 1 ; unsigned int authorized : 1 ; unsigned int authenticated : 1 ; unsigned int wusb : 1 ; unsigned int lpm_capable : 1 ; unsigned int usb2_hw_lpm_capable : 1 ; unsigned int usb2_hw_lpm_besl_capable : 1 ; unsigned int usb2_hw_lpm_enabled : 1 ; unsigned int usb2_hw_lpm_allowed : 1 ; unsigned int usb3_lpm_enabled : 1 ; int string_langid ; char *product ; char *manufacturer ; char *serial ; struct list_head filelist ; int maxchild ; u32 quirks ; atomic_t urbnum ; unsigned long active_duration ; unsigned long connect_time ; unsigned int do_remote_wakeup : 1 ; unsigned int reset_resume : 1 ; unsigned int port_is_suspended : 1 ; struct wusb_dev *wusb_dev ; int slot_id ; enum usb_device_removable removable ; struct usb2_lpm_parameters l1_params ; struct usb3_lpm_parameters u1_params ; struct usb3_lpm_parameters u2_params ; unsigned int lpm_disable_count ; }; struct usb_iso_packet_descriptor { unsigned int offset ; unsigned int length ; unsigned int actual_length ; int status ; }; struct urb; struct usb_anchor { struct list_head urb_list ; wait_queue_head_t wait ; spinlock_t lock ; atomic_t suspend_wakeups ; unsigned int poisoned : 1 ; }; struct urb { struct kref kref ; void *hcpriv ; atomic_t use_count ; atomic_t reject ; int unlinked ; struct list_head urb_list ; struct list_head anchor_list ; struct usb_anchor *anchor ; struct usb_device *dev ; struct usb_host_endpoint *ep ; unsigned int pipe ; unsigned int stream_id ; int status ; unsigned int transfer_flags ; void *transfer_buffer ; dma_addr_t transfer_dma ; struct scatterlist *sg ; int num_mapped_sgs ; int num_sgs ; u32 transfer_buffer_length ; u32 actual_length ; unsigned char *setup_packet ; dma_addr_t setup_dma ; int start_frame ; int number_of_packets ; int interval ; int error_count ; void *context ; void (*complete)(struct urb * ) ; struct usb_iso_packet_descriptor iso_frame_desc[0U] ; }; enum intf_type { INTF_PCI = 0, INTF_USB = 1 } ; enum radio_path { RF90_PATH_A = 0, RF90_PATH_B = 1, RF90_PATH_C = 2, RF90_PATH_D = 3 } ; enum rf_pwrstate { ERFON = 0, ERFSLEEP = 1, ERFOFF = 2 } ; struct bb_reg_def { u32 rfintfs ; u32 rfintfi ; u32 rfintfo ; u32 rfintfe ; u32 rf3wire_offset ; u32 rflssi_select ; u32 rftxgain_stage ; u32 rfhssi_para1 ; u32 rfhssi_para2 ; u32 rfsw_ctrl ; u32 rfagc_control1 ; u32 rfagc_control2 ; u32 rfrxiq_imbal ; u32 rfrx_afe ; u32 rftxiq_imbal ; u32 rftx_afe ; u32 rf_rb ; u32 rf_rbpi ; }; enum io_type { IO_CMD_PAUSE_DM_BY_SCAN = 0, IO_CMD_RESUME_DM_BY_SCAN = 1 } ; enum rt_enc_alg { NO_ENCRYPTION = 0, WEP40_ENCRYPTION = 1, TKIP_ENCRYPTION = 2, RSERVED_ENCRYPTION = 3, AESCCMP_ENCRYPTION = 4, WEP104_ENCRYPTION = 5, AESCMAC_ENCRYPTION = 6 } ; enum rt_psmode { EACTIVE = 0, EMAXPS = 1, EFASTPS = 2, EAUTOPS = 3 } ; enum led_ctl_mode { LED_CTL_POWER_ON = 1, LED_CTL_LINK = 2, LED_CTL_NO_LINK = 3, LED_CTL_TX = 4, LED_CTL_RX = 5, LED_CTL_SITE_SURVEY = 6, LED_CTL_POWER_OFF = 7, LED_CTL_START_TO_LINK = 8, LED_CTL_START_WPS = 9, LED_CTL_STOP_WPS = 10 } ; enum rtl_led_pin { LED_PIN_GPIO0 = 0, LED_PIN_LED0 = 1, LED_PIN_LED1 = 2, LED_PIN_LED2 = 3 } ; enum acm_method { eAcmWay0_SwAndHw = 0, eAcmWay1_HW = 1, eAcmWay2_SW = 2 } ; enum macphy_mode { SINGLEMAC_SINGLEPHY = 0, DUALMAC_DUALPHY = 1, DUALMAC_SINGLEPHY = 2 } ; enum band_type { BAND_ON_2_4G = 0, BAND_ON_5G = 1, BAND_ON_BOTH = 2, BANDMAX = 3 } ; enum rtl_link_state { MAC80211_NOLINK = 0, MAC80211_LINKING = 1, MAC80211_LINKED = 2, MAC80211_LINKED_SCANNING = 3 } ; enum rt_polarity_ctl { RT_POLARITY_LOW_ACT = 0, RT_POLARITY_HIGH_ACT = 1 } ; struct rtl_led { void *hw ; enum rtl_led_pin ledpin ; bool ledon ; }; struct rtl_led_ctl { bool led_opendrain ; struct rtl_led sw_led0 ; struct rtl_led sw_led1 ; }; struct rtl_qos_parameters { __le16 cw_min ; __le16 cw_max ; u8 aifs ; u8 flag ; __le16 tx_op ; }; struct rt_smooth_data { u32 elements[100U] ; u32 index ; u32 total_num ; u32 total_val ; }; struct false_alarm_statistics { u32 cnt_parity_fail ; u32 cnt_rate_illegal ; u32 cnt_crc8_fail ; u32 cnt_mcs_fail ; u32 cnt_fast_fsync_fail ; u32 cnt_sb_search_fail ; u32 cnt_ofdm_fail ; u32 cnt_cck_fail ; u32 cnt_all ; u32 cnt_ofdm_cca ; u32 cnt_cck_cca ; u32 cnt_cca_all ; u32 cnt_bw_usc ; u32 cnt_bw_lsc ; }; struct init_gain { u8 xaagccore1 ; u8 xbagccore1 ; u8 xcagccore1 ; u8 xdagccore1 ; u8 cca ; }; struct wireless_stats { unsigned long txbytesunicast ; unsigned long txbytesmulticast ; unsigned long txbytesbroadcast ; unsigned long rxbytesunicast ; long rx_snr_db[4U] ; long recv_signal_power ; long signal_quality ; long last_sigstrength_inpercent ; u32 rssi_calculate_cnt ; long signal_strength ; u8 rx_rssi_percentage[4U] ; u8 rx_evm_percentage[2U] ; struct rt_smooth_data ui_rssi ; struct rt_smooth_data ui_link_quality ; }; struct rate_adaptive { u8 rate_adaptive_disabled ; u8 ratr_state ; u16 reserve ; u32 high_rssi_thresh_for_ra ; u32 high2low_rssi_thresh_for_ra ; u8 low2high_rssi_thresh_for_ra40m ; u32 low_rssi_thresh_for_ra40M ; u8 low2high_rssi_thresh_for_ra20m ; u32 low_rssi_thresh_for_ra20M ; u32 upper_rssi_threshold_ratr ; u32 middleupper_rssi_threshold_ratr ; u32 middle_rssi_threshold_ratr ; u32 middlelow_rssi_threshold_ratr ; u32 low_rssi_threshold_ratr ; u32 ultralow_rssi_threshold_ratr ; u32 low_rssi_threshold_ratr_40m ; u32 low_rssi_threshold_ratr_20m ; u8 ping_rssi_enable ; u32 ping_rssi_ratr ; u32 ping_rssi_thresh_for_ra ; u32 last_ratr ; u8 pre_ratr_state ; }; struct regd_pair_mapping { u16 reg_dmnenum ; u16 reg_5ghz_ctl ; u16 reg_2ghz_ctl ; }; struct rtl_regulatory { char alpha2[2U] ; u16 country_code ; u16 max_power_level ; u32 tp_scale ; u16 current_rd ; u16 current_rd_ext ; int16_t power_limit ; struct regd_pair_mapping *regpair ; }; struct rtl_rfkill { bool rfkill_state ; }; enum p2p_ps_state { P2P_PS_DISABLE = 0, P2P_PS_ENABLE = 1, P2P_PS_SCAN = 2, P2P_PS_SCAN_DONE = 3, P2P_PS_ALLSTASLEEP = 4 } ; enum p2p_ps_mode { P2P_PS_NONE = 0, P2P_PS_CTWINDOW = 1, P2P_PS_NOA = 2, P2P_PS_MIX = 3 } ; struct rtl_p2p_ps_info { enum p2p_ps_mode p2p_ps_mode ; enum p2p_ps_state p2p_ps_state ; u8 noa_index ; u8 ctwindow ; u8 opp_ps ; u8 noa_num ; u8 noa_count_type[2U] ; u32 noa_duration[2U] ; u32 noa_interval[2U] ; u32 noa_start_time[2U] ; }; struct p2p_ps_offload_t { u8 offload_en : 1 ; u8 role : 1 ; u8 ctwindow_en : 1 ; u8 noa0_en : 1 ; u8 noa1_en : 1 ; u8 allstasleep : 1 ; u8 discovery : 1 ; u8 reserved : 1 ; }; struct iqk_matrix_regs { bool iqk_done ; long value[1U][8U] ; }; struct phy_parameters { u16 length ; u32 *pdata ; }; struct rtl_phy { struct bb_reg_def phyreg_def[4U] ; struct init_gain initgain_backup ; enum io_type current_io_type ; u8 rf_mode ; u8 rf_type ; u8 current_chan_bw ; u8 set_bwmode_inprogress ; u8 sw_chnl_inprogress ; u8 sw_chnl_stage ; u8 sw_chnl_step ; u8 current_channel ; u8 h2c_box_num ; u8 set_io_inprogress ; u8 lck_inprogress ; s32 reg_e94 ; s32 reg_e9c ; s32 reg_ea4 ; s32 reg_eac ; s32 reg_eb4 ; s32 reg_ebc ; s32 reg_ec4 ; s32 reg_ecc ; u8 rfpienable ; u8 reserve_0 ; u16 reserve_1 ; u32 reg_c04 ; u32 reg_c08 ; u32 reg_874 ; u32 adda_backup[16U] ; u32 iqk_mac_backup[4U] ; u32 iqk_bb_backup[10U] ; bool iqk_initialized ; bool need_iqk ; struct iqk_matrix_regs iqk_matrix[46U] ; bool rfpi_enable ; u8 pwrgroup_cnt ; u8 cck_high_power ; u32 mcs_offset[13U][16U] ; u8 default_initialgain[4U] ; u8 cur_cck_txpwridx ; u8 cur_ofdm24g_txpwridx ; u8 cur_bw20_txpwridx ; u8 cur_bw40_txpwridx ; u32 rfreg_chnlval[2U] ; bool apk_done ; u32 reg_rf3c[2U] ; u8 framesync ; u32 framesync_c34 ; u8 num_total_rfpath ; struct phy_parameters hwparam_tables[10U] ; u16 rf_pathmap ; enum rt_polarity_ctl polarity_ctl ; }; struct rtl_ht_agg { u16 txq_id ; u16 wait_for_ba ; u16 start_idx ; u64 bitmap ; u32 rate_n_flags ; u8 agg_state ; u8 rx_agg_state ; }; struct rssi_sta { long undec_sm_pwdb ; long undec_sm_cck ; }; struct rtl_tid_data { u16 seq_number ; struct rtl_ht_agg agg ; }; struct rtl_sta_info { struct list_head list ; u8 ratr_index ; u8 wireless_mode ; u8 mimo_ps ; u8 mac_addr[6U] ; struct rtl_tid_data tids[9U] ; struct rssi_sta rssi_stat ; }; struct rtl_priv; struct rtl_io { struct device *dev ; struct mutex bb_mutex ; unsigned long pci_mem_end ; unsigned long pci_mem_start ; unsigned long pci_base_addr ; void (*write8_async)(struct rtl_priv * , u32 , u8 ) ; void (*write16_async)(struct rtl_priv * , u32 , u16 ) ; void (*write32_async)(struct rtl_priv * , u32 , u32 ) ; void (*writeN_sync)(struct rtl_priv * , u32 , void * , u16 ) ; u8 (*read8_sync)(struct rtl_priv * , u32 ) ; u16 (*read16_sync)(struct rtl_priv * , u32 ) ; u32 (*read32_sync)(struct rtl_priv * , u32 ) ; }; struct rtl_mac { u8 mac_addr[6U] ; u8 mac80211_registered ; u8 beacon_enabled ; u32 tx_ss_num ; u32 rx_ss_num ; struct ieee80211_supported_band bands[3U] ; struct ieee80211_hw *hw ; struct ieee80211_vif *vif ; enum nl80211_iftype opmode ; struct rtl_tid_data tids[9U] ; enum rtl_link_state link_state ; int n_channels ; int n_bitrates ; bool offchan_delay ; u8 p2p ; bool p2p_in_use ; u32 rx_conf ; u16 rx_mgt_filter ; u16 rx_ctrl_filter ; u16 rx_data_filter ; bool act_scanning ; u8 cnt_after_linked ; bool skip_scan ; struct sk_buff_head skb_waitq[9U] ; bool rdg_en ; u8 bssid[6U] ; u32 vendor ; u8 mcs[16U] ; u32 basic_rates ; u8 ht_enable ; u8 sgi_40 ; u8 sgi_20 ; u8 bw_40 ; u8 mode ; u8 slot_time ; u8 short_preamble ; u8 use_cts_protect ; u8 cur_40_prime_sc ; u8 cur_40_prime_sc_bk ; u64 tsf ; u8 retry_short ; u8 retry_long ; u16 assoc_id ; bool hiddenssid ; int beacon_interval ; u8 min_space_cfg ; u8 max_mss_density ; u8 current_ampdu_factor ; u8 current_ampdu_density ; struct ieee80211_tx_queue_params edca_param[5U] ; struct rtl_qos_parameters ac[4U] ; u64 last_txok_cnt ; u64 last_rxok_cnt ; u32 last_bt_edca_ul ; u32 last_bt_edca_dl ; }; struct btdm_8723 { bool all_off ; bool agc_table_en ; bool adc_back_off_on ; bool b2_ant_hid_en ; bool low_penalty_rate_adaptive ; bool rf_rx_lpf_shrink ; bool reject_aggre_pkt ; bool tra_tdma_on ; u8 tra_tdma_nav ; u8 tra_tdma_ant ; bool tdma_on ; u8 tdma_ant ; u8 tdma_nav ; u8 tdma_dac_swing ; u8 fw_dac_swing_lvl ; bool ps_tdma_on ; u8 ps_tdma_byte[5U] ; bool pta_on ; u32 val_0x6c0 ; u32 val_0x6c8 ; u32 val_0x6cc ; bool sw_dac_swing_on ; u32 sw_dac_swing_lvl ; u32 wlan_act_hi ; u32 wlan_act_lo ; u32 bt_retry_index ; bool dec_bt_pwr ; bool ignore_wlan_act ; }; struct bt_coexist_8723 { u32 high_priority_tx ; u32 high_priority_rx ; u32 low_priority_tx ; u32 low_priority_rx ; u8 c2h_bt_info ; bool c2h_bt_info_req_sent ; bool c2h_bt_inquiry_page ; u32 bt_inq_page_start_time ; u8 bt_retry_cnt ; u8 c2h_bt_info_original ; u8 bt_inquiry_page_cnt ; struct btdm_8723 btdm ; }; struct rtl_hal { struct ieee80211_hw *hw ; bool driver_is_goingto_unload ; bool up_first_time ; bool first_init ; bool being_init_adapter ; bool bbrf_ready ; bool mac_func_enable ; struct bt_coexist_8723 hal_coex_8723 ; enum intf_type interface ; u16 hw_type ; u8 ic_class ; u8 oem_id ; u32 version ; u8 state ; u8 board_type ; u32 fwsize ; u8 *pfirmware ; u16 fw_version ; u16 fw_subversion ; bool h2c_setinprogress ; u8 last_hmeboxnum ; bool fw_ready ; u8 fw_rsvdpage_startoffset ; u8 h2c_txcmd_seq ; u16 fwcmd_iomap ; u32 fwcmd_ioparam ; bool set_fwcmd_inprogress ; u8 current_fwcmd_io ; struct p2p_ps_offload_t p2p_ps_offload ; bool fw_clk_change_in_progress ; bool allow_sw_to_change_hwclc ; u8 fw_ps_state ; bool driver_going2unload ; u8 minspace_cfg ; enum macphy_mode macphymode ; enum band_type current_bandtype ; enum band_type current_bandtypebackup ; enum band_type bandset ; u32 interfaceindex ; u8 macphyctl_reg ; bool earlymode_enable ; u8 max_earlymode_num ; bool during_mac0init_radiob ; bool during_mac1init_radioa ; bool reloadtxpowerindex ; bool load_imrandiqk_setting_for2g ; bool disable_amsdu_8k ; bool master_of_dmsp ; bool slave_of_dmsp ; }; struct rtl_security { bool use_sw_sec ; bool being_setkey ; bool use_defaultkey ; enum rt_enc_alg pairwise_enc_algorithm ; enum rt_enc_alg group_enc_algorithm ; u32 hwsec_cam_bitmap ; u8 hwsec_cam_sta_addr[32U][6U] ; u8 key_buf[5U][61U] ; u8 key_len[5U] ; u8 *pairwise_key ; }; struct fast_ant_training { u8 bssid[6U] ; u8 antsel_rx_keep_0 ; u8 antsel_rx_keep_1 ; u8 antsel_rx_keep_2 ; u32 ant_sum[7U] ; u32 ant_cnt[7U] ; u32 ant_ave[7U] ; u8 fat_state ; u32 train_idx ; u8 antsel_a[33U] ; u8 antsel_b[33U] ; u8 antsel_c[33U] ; u32 main_ant_sum[33U] ; u32 aux_ant_sum[33U] ; u32 main_ant_cnt[33U] ; u32 aux_ant_cnt[33U] ; u8 rx_idle_ant ; bool becomelinked ; }; struct rtl_dm { long entry_min_undec_sm_pwdb ; long undec_sm_cck ; long undec_sm_pwdb ; long entry_max_undec_sm_pwdb ; s32 ofdm_pkt_cnt ; bool dm_initialgain_enable ; bool dynamic_txpower_enable ; bool current_turbo_edca ; bool is_any_nonbepkts ; bool is_cur_rdlstate ; bool txpower_trackinginit ; bool disable_framebursting ; bool cck_inch14 ; bool txpower_tracking ; bool useramask ; bool rfpath_rxenable[4U] ; bool inform_fw_driverctrldm ; bool current_mrc_switch ; u8 txpowercount ; u8 powerindex_backup[6U] ; u8 thermalvalue_rxgain ; u8 thermalvalue_iqk ; u8 thermalvalue_lck ; u8 thermalvalue ; u8 last_dtp_lvl ; u8 thermalvalue_avg[8U] ; u8 thermalvalue_avg_index ; bool done_txpower ; u8 dynamic_txhighpower_lvl ; u8 dm_flag ; u8 dm_flag_tmp ; u8 dm_type ; u8 dm_rssi_sel ; u8 txpower_track_control ; bool interrupt_migration ; bool disable_tx_int ; char ofdm_index[2U] ; char cck_index ; char delta_power_index ; char delta_power_index_last ; char power_index_offset ; u8 swing_idx_ofdm[2U] ; u8 swing_idx_ofdm_cur ; u8 swing_idx_ofdm_base ; bool swing_flag_ofdm ; u8 swing_idx_cck ; u8 swing_idx_cck_cur ; u8 swing_idx_cck_base ; bool swing_flag_cck ; bool supp_phymode_switch ; struct fast_ant_training fat_table ; }; struct rtl_efuse { bool autoLoad_ok ; bool bootfromefuse ; u16 max_physical_size ; u8 efuse_map[2U][256U] ; u16 efuse_usedbytes ; u8 efuse_usedpercentage ; u8 autoload_failflag ; u8 autoload_status ; short epromtype ; u16 eeprom_vid ; u16 eeprom_did ; u16 eeprom_svid ; u16 eeprom_smid ; u8 eeprom_oemid ; u16 eeprom_channelplan ; u8 eeprom_version ; u8 board_type ; u8 external_pa ; u8 dev_addr[6U] ; u8 wowlan_enable ; u8 antenna_div_cfg ; u8 antenna_div_type ; bool txpwr_fromeprom ; u8 eeprom_crystalcap ; u8 eeprom_tssi[2U] ; u8 eeprom_tssi_5g[3U][2U] ; u8 eeprom_pwrlimit_ht20[12U] ; u8 eeprom_pwrlimit_ht40[12U] ; u8 eeprom_chnlarea_txpwr_cck[2U][3U] ; u8 eeprom_chnlarea_txpwr_ht40_1s[2U][12U] ; u8 eprom_chnl_txpwr_ht40_2sdf[2U][12U] ; u8 txpwrlevel_cck[2U][14U] ; u8 txpwrlevel_ht40_1s[2U][59U] ; u8 txpwrlevel_ht40_2s[2U][59U] ; u8 internal_pa_5g[2U] ; u8 eeprom_c9 ; u8 eeprom_cc ; u8 eeprom_pwrgroup[2U][3U] ; u8 pwrgroup_ht20[2U][59U] ; u8 pwrgroup_ht40[2U][59U] ; char txpwr_ht20diff[2U][59U] ; u8 txpwr_legacyhtdiff[2U][59U] ; u8 txpwr_safetyflag ; u16 eeprom_txpowerdiff ; u8 legacy_httxpowerdiff ; u8 antenna_txpwdiff[3U] ; u8 eeprom_regulatory ; u8 eeprom_thermalmeter ; u8 thermalmeter[2U] ; u16 tssi_13dbm ; u8 crystalcap ; u8 delta_iqk ; u8 delta_lck ; u8 legacy_ht_txpowerdiff ; bool apk_thermalmeterignore ; bool b1x1_recvcombine ; bool b1ss_support ; u8 channel_plan ; }; struct rtl_ps_ctl { bool pwrdomain_protect ; bool in_powersavemode ; bool rfchange_inprogress ; bool swrf_processing ; bool hwradiooff ; bool support_aspm ; bool support_backdoor ; enum rt_psmode dot11_psmode ; bool swctrl_lps ; bool leisure_ps ; bool fwctrl_lps ; u8 fwctrl_psmode ; u8 reg_fwctrl_lps ; bool fw_current_inpsmode ; u8 reg_max_lps_awakeintvl ; bool report_linked ; bool low_power_enable ; bool inactiveps ; u32 rfoff_reason ; u32 cur_ps_level ; u32 reg_rfps_level ; u8 const_amdpci_aspm ; bool pwrdown_mode ; enum rf_pwrstate inactive_pwrstate ; enum rf_pwrstate rfpwr_state ; bool sw_ps_enabled ; bool state ; bool state_inap ; bool multi_buffered ; u16 nullfunc_seq ; unsigned int dtim_counter ; unsigned int sleep_ms ; unsigned long last_sleep_jiffies ; unsigned long last_awake_jiffies ; unsigned long last_delaylps_stamp_jiffies ; unsigned long last_dtim ; unsigned long last_beacon ; unsigned long last_action ; unsigned long last_slept ; struct rtl_p2p_ps_info p2p_ps_info ; u8 pwr_mode ; u8 smart_ps ; }; struct rtl_stats { u8 psaddr[6U] ; u32 mac_time[2U] ; s8 rssi ; u8 signal ; u8 noise ; u8 rate ; u8 received_channel ; u8 control ; u8 mask ; u8 freq ; u16 len ; u64 tsf ; u32 beacon_time ; u8 nic_type ; u16 length ; u8 signalquality ; s32 recvsignalpower ; s8 rxpower ; u8 signalstrength ; u16 hwerror : 1 ; u16 crc : 1 ; u16 icv : 1 ; u16 shortpreamble : 1 ; u16 antenna : 1 ; u16 decrypted : 1 ; u16 wakeup : 1 ; u32 timestamp_low ; u32 timestamp_high ; u8 rx_drvinfo_size ; u8 rx_bufshift ; bool isampdu ; bool isfirst_ampdu ; bool rx_is40Mhzpacket ; u32 rx_pwdb_all ; u8 rx_mimo_signalstrength[4U] ; s8 rx_mimo_sig_qual[2U] ; bool packet_matchbssid ; bool is_cck ; bool is_ht ; bool packet_toself ; bool packet_beacon ; char cck_adc_pwdb[4U] ; u8 packet_report_type ; u32 macid ; u8 wake_match ; u32 bt_rx_rssi_percentage ; u32 macid_valid_entry[2U] ; }; struct rt_link_detect { u32 bcn_rx_inperiod ; u32 roam_times ; u32 num_tx_in4period[4U] ; u32 num_rx_in4period[4U] ; u32 num_tx_inperiod ; u32 num_rx_inperiod ; bool busytraffic ; bool tx_busy_traffic ; bool rx_busy_traffic ; bool higher_busytraffic ; bool higher_busyrxtraffic ; u32 tidtx_in4period[9U][4U] ; u32 tidtx_inperiod[9U] ; bool higher_busytxtraffic[9U] ; }; struct rtl_tcb_desc { u8 packet_bw : 1 ; u8 multicast : 1 ; u8 broadcast : 1 ; u8 rts_stbc : 1 ; u8 rts_enable : 1 ; u8 cts_enable : 1 ; u8 rts_use_shortpreamble : 1 ; u8 rts_use_shortgi : 1 ; u8 rts_sc : 1 ; u8 rts_bw : 1 ; u8 rts_rate ; u8 use_shortgi : 1 ; u8 use_shortpreamble : 1 ; u8 use_driver_rate : 1 ; u8 disable_ratefallback : 1 ; u8 ratr_index ; u8 mac_id ; u8 hw_rate ; u8 last_inipkt : 1 ; u8 cmd_or_init : 1 ; u8 queue_index ; u8 empkt_num ; u32 empkt_len[10U] ; bool btx_enable_sw_calc_duration ; }; struct rtl_hal_ops { int (*init_sw_vars)(struct ieee80211_hw * ) ; void (*deinit_sw_vars)(struct ieee80211_hw * ) ; void (*read_chip_version)(struct ieee80211_hw * ) ; void (*read_eeprom_info)(struct ieee80211_hw * ) ; void (*interrupt_recognized)(struct ieee80211_hw * , u32 * , u32 * ) ; int (*hw_init)(struct ieee80211_hw * ) ; void (*hw_disable)(struct ieee80211_hw * ) ; void (*hw_suspend)(struct ieee80211_hw * ) ; void (*hw_resume)(struct ieee80211_hw * ) ; void (*enable_interrupt)(struct ieee80211_hw * ) ; void (*disable_interrupt)(struct ieee80211_hw * ) ; int (*set_network_type)(struct ieee80211_hw * , enum nl80211_iftype ) ; void (*set_chk_bssid)(struct ieee80211_hw * , bool ) ; void (*set_bw_mode)(struct ieee80211_hw * , enum nl80211_channel_type ) ; u8 (*switch_channel)(struct ieee80211_hw * ) ; void (*set_qos)(struct ieee80211_hw * , int ) ; void (*set_bcn_reg)(struct ieee80211_hw * ) ; void (*set_bcn_intv)(struct ieee80211_hw * ) ; void (*update_interrupt_mask)(struct ieee80211_hw * , u32 , u32 ) ; void (*get_hw_reg)(struct ieee80211_hw * , u8 , u8 * ) ; void (*set_hw_reg)(struct ieee80211_hw * , u8 , u8 * ) ; void (*update_rate_tbl)(struct ieee80211_hw * , struct ieee80211_sta * , u8 ) ; void (*update_rate_mask)(struct ieee80211_hw * , u8 ) ; void (*fill_tx_desc)(struct ieee80211_hw * , struct ieee80211_hdr * , u8 * , struct ieee80211_tx_info * , struct ieee80211_sta * , struct sk_buff * , u8 , struct rtl_tcb_desc * ) ; void (*fill_fake_txdesc)(struct ieee80211_hw * , u8 * , u32 , bool ) ; void (*fill_tx_cmddesc)(struct ieee80211_hw * , u8 * , bool , bool , struct sk_buff * ) ; bool (*cmd_send_packet)(struct ieee80211_hw * , struct sk_buff * ) ; bool (*query_rx_desc)(struct ieee80211_hw * , struct rtl_stats * , struct ieee80211_rx_status * , u8 * , struct sk_buff * ) ; void (*set_channel_access)(struct ieee80211_hw * ) ; bool (*radio_onoff_checking)(struct ieee80211_hw * , u8 * ) ; void (*dm_watchdog)(struct ieee80211_hw * ) ; void (*scan_operation_backup)(struct ieee80211_hw * , u8 ) ; bool (*set_rf_power_state)(struct ieee80211_hw * , enum rf_pwrstate ) ; void (*led_control)(struct ieee80211_hw * , enum led_ctl_mode ) ; void (*set_desc)(u8 * , bool , u8 , u8 * ) ; u32 (*get_desc)(u8 * , bool , u8 ) ; void (*tx_polling)(struct ieee80211_hw * , u8 ) ; void (*enable_hw_sec)(struct ieee80211_hw * ) ; void (*set_key)(struct ieee80211_hw * , u32 , u8 * , bool , u8 , bool , bool ) ; void (*init_sw_leds)(struct ieee80211_hw * ) ; void (*deinit_sw_leds)(struct ieee80211_hw * ) ; u32 (*get_bbreg)(struct ieee80211_hw * , u32 , u32 ) ; void (*set_bbreg)(struct ieee80211_hw * , u32 , u32 , u32 ) ; u32 (*get_rfreg)(struct ieee80211_hw * , enum radio_path , u32 , u32 ) ; void (*set_rfreg)(struct ieee80211_hw * , enum radio_path , u32 , u32 , u32 ) ; void (*allow_all_destaddr)(struct ieee80211_hw * , bool , bool ) ; void (*linked_set_reg)(struct ieee80211_hw * ) ; void (*chk_switch_dmdp)(struct ieee80211_hw * ) ; void (*dualmac_easy_concurrent)(struct ieee80211_hw * ) ; void (*dualmac_switch_to_dmdp)(struct ieee80211_hw * ) ; bool (*phy_rf6052_config)(struct ieee80211_hw * ) ; void (*phy_rf6052_set_cck_txpower)(struct ieee80211_hw * , u8 * ) ; void (*phy_rf6052_set_ofdm_txpower)(struct ieee80211_hw * , u8 * , u8 ) ; bool (*config_bb_with_headerfile)(struct ieee80211_hw * , u8 ) ; bool (*config_bb_with_pgheaderfile)(struct ieee80211_hw * , u8 ) ; void (*phy_lc_calibrate)(struct ieee80211_hw * , bool ) ; void (*phy_set_bw_mode_callback)(struct ieee80211_hw * ) ; void (*dm_dynamic_txpower)(struct ieee80211_hw * ) ; void (*c2h_command_handle)(struct ieee80211_hw * ) ; void (*bt_wifi_media_status_notify)(struct ieee80211_hw * , bool ) ; void (*bt_coex_off_before_lps)(struct ieee80211_hw * ) ; void (*fill_h2c_cmd)(struct ieee80211_hw * , u8 , u32 , u8 * ) ; }; struct rtl_intf_ops { void (*read_efuse_byte)(struct ieee80211_hw * , u16 , u8 * ) ; int (*adapter_start)(struct ieee80211_hw * ) ; void (*adapter_stop)(struct ieee80211_hw * ) ; bool (*check_buddy_priv)(struct ieee80211_hw * , struct rtl_priv ** ) ; int (*adapter_tx)(struct ieee80211_hw * , struct ieee80211_sta * , struct sk_buff * , struct rtl_tcb_desc * ) ; void (*flush)(struct ieee80211_hw * , bool ) ; int (*reset_trx_ring)(struct ieee80211_hw * ) ; bool (*waitq_insert)(struct ieee80211_hw * , struct ieee80211_sta * , struct sk_buff * ) ; void (*disable_aspm)(struct ieee80211_hw * ) ; void (*enable_aspm)(struct ieee80211_hw * ) ; }; struct rtl_mod_params { bool sw_crypto ; int debug ; bool inactiveps ; bool swctrl_lps ; bool fwctrl_lps ; }; struct rtl_hal_usbint_cfg { u32 in_ep_num ; u32 rx_urb_num ; u32 rx_max_size ; void (*usb_rx_hdl)(struct ieee80211_hw * , struct sk_buff * ) ; void (*usb_rx_segregate_hdl)(struct ieee80211_hw * , struct sk_buff * , struct sk_buff_head * ) ; void (*usb_tx_cleanup)(struct ieee80211_hw * , struct sk_buff * ) ; int (*usb_tx_post_hdl)(struct ieee80211_hw * , struct urb * , struct sk_buff * ) ; struct sk_buff *(*usb_tx_aggregate_hdl)(struct ieee80211_hw * , struct sk_buff_head * ) ; int (*usb_endpoint_mapping)(struct ieee80211_hw * ) ; u16 (*usb_mq_to_hwq)(__le16 , u16 ) ; }; struct rtl_hal_cfg { u8 bar_id ; bool write_readback ; char *name ; char *fw_name ; char *alt_fw_name ; struct rtl_hal_ops *ops ; struct rtl_mod_params *mod_params ; struct rtl_hal_usbint_cfg *usb_interface_cfg ; u32 maps[80U] ; }; struct rtl_locks { struct mutex conf_mutex ; struct mutex ps_mutex ; spinlock_t ips_lock ; spinlock_t irq_th_lock ; spinlock_t irq_pci_lock ; spinlock_t tx_lock ; spinlock_t h2c_lock ; spinlock_t rf_ps_lock ; spinlock_t rf_lock ; spinlock_t lps_lock ; spinlock_t waitq_lock ; spinlock_t entry_list_lock ; spinlock_t usb_lock ; spinlock_t fw_ps_lock ; spinlock_t cck_and_rw_pagea_lock ; spinlock_t check_sendpkt_lock ; }; struct rtl_works { struct ieee80211_hw *hw ; struct timer_list watchdog_timer ; struct timer_list dualmac_easyconcurrent_retrytimer ; struct timer_list fw_clockoff_timer ; struct timer_list fast_antenna_training_timer ; struct tasklet_struct irq_tasklet ; struct tasklet_struct irq_prepare_bcn_tasklet ; struct workqueue_struct *rtl_wq ; struct delayed_work watchdog_wq ; struct delayed_work ips_nic_off_wq ; struct delayed_work ps_work ; struct delayed_work ps_rfon_wq ; struct delayed_work fwevt_wq ; struct work_struct lps_change_work ; struct work_struct fill_h2c_cmd ; }; struct rtl_debug { u32 dbgp_type[19U] ; int global_debuglevel ; u64 global_debugcomponents ; struct proc_dir_entry *proc_dir ; char proc_name[20U] ; }; struct rtl_dualmac_easy_concurrent_ctl { enum band_type currentbandtype_backfordmdp ; bool close_bbandrf_for_dmsp ; bool change_to_dmdp ; bool change_to_dmsp ; bool switch_in_process ; }; struct rtl_dmsp_ctl { bool activescan_for_slaveofdmsp ; bool scan_for_anothermac_fordmsp ; bool scan_for_itself_fordmsp ; bool writedig_for_anothermacofdmsp ; u32 curdigvalue_for_anothermacofdmsp ; bool changecckpdstate_for_anothermacofdmsp ; u8 curcckpdstate_for_anothermacofdmsp ; bool changetxhighpowerlvl_for_anothermacofdmsp ; u8 curtxhighlvl_for_anothermacofdmsp ; long rssivalmin_for_anothermacofdmsp ; }; struct ps_t { u8 pre_ccastate ; u8 cur_ccasate ; u8 pre_rfstate ; u8 cur_rfstate ; long rssi_val_min ; }; struct dig_t { u32 rssi_lowthresh ; u32 rssi_highthresh ; u32 fa_lowthresh ; u32 fa_highthresh ; long last_min_undec_pwdb_for_dm ; long rssi_highpower_lowthresh ; long rssi_highpower_highthresh ; u32 recover_cnt ; u32 pre_igvalue ; u32 cur_igvalue ; long rssi_val ; u8 dig_enable_flag ; u8 dig_ext_port_stage ; u8 dig_algorithm ; u8 dig_twoport_algorithm ; u8 dig_dbgmode ; u8 dig_slgorithm_switch ; u8 cursta_cstate ; u8 presta_cstate ; u8 curmultista_cstate ; char back_val ; char back_range_max ; char back_range_min ; u8 rx_gain_max ; u8 rx_gain_min ; u8 min_undec_pwdb_for_dm ; u8 rssi_val_min ; u8 pre_cck_cca_thres ; u8 cur_cck_cca_thres ; u8 pre_cck_pd_state ; u8 cur_cck_pd_state ; u8 pre_cck_fa_state ; u8 cur_cck_fa_state ; u8 pre_ccastate ; u8 cur_ccasate ; u8 large_fa_hit ; u8 dig_dynamic_min ; u8 forbidden_igi ; u8 dig_state ; u8 dig_highpwrstate ; u8 cur_sta_cstate ; u8 pre_sta_cstate ; u8 cur_ap_cstate ; u8 pre_ap_cstate ; u8 cur_pd_thstate ; u8 pre_pd_thstate ; u8 cur_cs_ratiostate ; u8 pre_cs_ratiostate ; u8 backoff_enable_flag ; char backoffval_range_max ; char backoffval_range_min ; u8 dig_min_0 ; u8 dig_min_1 ; bool media_connect_0 ; bool media_connect_1 ; u32 antdiv_rssi_max ; u32 rssi_max ; }; struct rtl_global_var { struct list_head glb_priv_list ; spinlock_t glb_list_lock ; }; struct rtl_rate_priv; struct rtl_priv { struct ieee80211_hw *hw ; struct completion firmware_loading_complete ; struct list_head list ; struct rtl_priv *buddy_priv ; struct rtl_global_var *glb_var ; struct rtl_dualmac_easy_concurrent_ctl easy_concurrent_ctl ; struct rtl_dmsp_ctl dmsp_ctl ; struct rtl_locks locks ; struct rtl_works works ; struct rtl_mac mac80211 ; struct rtl_hal rtlhal ; struct rtl_regulatory regd ; struct rtl_rfkill rfkill ; struct rtl_io io ; struct rtl_phy phy ; struct rtl_dm dm ; struct rtl_security sec ; struct rtl_efuse efuse ; struct rtl_ps_ctl psc ; struct rate_adaptive ra ; struct wireless_stats stats ; struct rt_link_detect link_info ; struct false_alarm_statistics falsealm_cnt ; struct rtl_rate_priv *rate_priv ; struct list_head entry_list ; struct rtl_debug dbg ; int max_fw_size ; struct rtl_hal_cfg *cfg ; struct rtl_intf_ops *intf_ops ; unsigned long status ; struct dig_t dm_digtable ; struct ps_t dm_pstable ; u32 reg_874 ; u32 reg_c70 ; u32 reg_85c ; u32 reg_a74 ; bool reg_init ; bool bt_operation_on ; __le32 *usb_data ; int usb_data_index ; bool initialized ; bool enter_ps ; u8 rate_mask[5U] ; u8 priv[0U] ; }; struct bt_coexist_info { u8 eeprom_bt_coexist ; u8 eeprom_bt_type ; u8 eeprom_bt_ant_num ; u8 eeprom_bt_ant_isol ; u8 eeprom_bt_radio_shared ; u8 bt_coexistence ; u8 bt_ant_num ; u8 bt_coexist_type ; u8 bt_state ; u8 bt_cur_state ; u8 bt_ant_isolation ; u8 bt_pape_ctrl ; u8 bt_service ; u8 bt_radio_shared_type ; u8 bt_rfreg_origin_1e ; u8 bt_rfreg_origin_1f ; u8 bt_rssi_state ; u32 ratio_tx ; u32 ratio_pri ; u32 bt_edca_ul ; u32 bt_edca_dl ; bool init_set ; bool bt_busy_traffic ; bool bt_traffic_mode_set ; bool bt_non_traffic_mode_set ; bool fw_coexist_all_off ; bool sw_coexist_all_off ; bool hw_coexist_all_off ; u32 cstate ; u32 previous_state ; u32 cstate_h ; u32 previous_state_h ; u8 bt_pre_rssi_state ; u8 bt_pre_rssi_state1 ; u8 reg_bt_iso ; u8 reg_bt_sco ; bool balance_on ; u8 bt_active_zero_cnt ; bool cur_bt_disabled ; bool pre_bt_disabled ; u8 bt_profile_case ; u8 bt_profile_action ; bool bt_busy ; bool hold_for_bt_operation ; u8 lps_counter ; }; struct rtl_rx_desc { u32 dword[8U] ; }; struct rtl_tx_desc { u32 dword[16U] ; }; struct rtl8192_tx_ring { struct rtl_tx_desc *desc ; dma_addr_t dma ; unsigned int idx ; unsigned int entries ; struct sk_buff_head queue ; }; struct rtl8192_rx_ring { struct rtl_rx_desc *desc ; dma_addr_t dma ; unsigned int idx ; struct sk_buff *rx_buf[64U] ; }; struct rtl_pci { struct pci_dev *pdev ; bool irq_enabled ; bool driver_is_goingto_unload ; bool up_first_time ; bool first_init ; bool being_init_adapter ; bool init_ready ; struct rtl8192_tx_ring tx_ring[9U] ; int txringcount[9U] ; u32 transmit_config ; struct rtl8192_rx_ring rx_ring[2U] ; int rxringcount ; u16 rxbuffersize ; u32 receive_config ; u8 irq_alloc ; u32 irq_mask[2U] ; u32 sys_irq_mask ; u32 reg_bcn_ctrl_val ; u8 const_pci_aspm ; u8 const_amdpci_aspm ; u8 const_hwsw_rfoff_d3 ; u8 const_support_pciaspm ; u8 const_hostpci_aspm_setting ; u8 const_devicepci_aspm_setting ; bool support_aspm ; bool support_backdoor ; enum acm_method acm_method ; u16 shortretry_limit ; u16 longretry_limit ; }; struct mp_adapter { u8 linkctrl_reg ; u8 busnumber ; u8 devnumber ; u8 funcnumber ; u8 pcibridge_busnum ; u8 pcibridge_devnum ; u8 pcibridge_funcnum ; u8 pcibridge_vendor ; u16 pcibridge_vendorid ; u16 pcibridge_deviceid ; u8 num4bytes ; u8 pcibridge_pciehdr_offset ; u8 pcibridge_linkctrlreg ; bool amd_l1_patch ; }; struct rtl_pci_priv { struct rtl_pci dev ; struct mp_adapter ndis_adapter ; struct rtl_led_ctl ledctl ; struct bt_coexist_info bt_coexist ; }; enum pwr_track_control_method { BBSWING = 0, TXAGC = 1 } ; struct ldv_struct_timer_instance_4 { struct timer_list *arg0 ; int signal_pending ; }; typedef int ldv_func_ret_type___0; struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned int flags : 8 ; }; enum hrtimer_restart; enum version_8188e { VERSION_TEST_CHIP_88E = 0, VERSION_NORMAL_CHIP_88E = 1, VERSION_UNKNOWN = 255 } ; struct rtl92c_firmware_header { u16 signature ; u8 category ; u8 function ; u16 version ; u8 subversion ; u8 rsvd1 ; u8 month ; u8 date ; u8 hour ; u8 minute ; u16 ramcodesize ; u16 rsvd2 ; u32 svnindex ; u32 rsvd3 ; u32 rsvd4 ; u32 rsvd5 ; }; enum hrtimer_restart; struct txpower_info_2g { u8 index_cck_base[4U][6U] ; u8 index_bw40_base[4U][6U] ; u8 cck_diff[4U][4U] ; u8 ofdm_diff[4U][4U] ; u8 bw20_diff[4U][4U] ; u8 bw40_diff[4U][4U] ; }; struct txpower_info_5g { u8 index_bw40_base[4U][14U] ; u8 ofdm_diff[4U][4U] ; u8 bw20_diff[4U][4U] ; u8 bw40_diff[4U][4U] ; }; struct __anonstruct_f_295 { u8 aifsn : 4 ; u8 acm : 1 ; u8 aci : 2 ; u8 reserved : 1 ; }; union aci_aifsn { u8 char_data ; struct __anonstruct_f_295 f ; }; enum wireless_mode { WIRELESS_MODE_UNKNOWN = 0, WIRELESS_MODE_A = 1, WIRELESS_MODE_B = 2, WIRELESS_MODE_G = 4, WIRELESS_MODE_AUTO = 8, WIRELESS_MODE_N_24G = 16, WIRELESS_MODE_N_5G = 32 } ; struct wlan_pwr_cfg { u16 offset ; u8 cut_msk ; u8 fab_msk : 4 ; u8 interface_msk : 4 ; u8 base : 4 ; u8 cmd : 4 ; u8 msk ; u8 value ; }; typedef int ldv_func_ret_type___1; typedef int ldv_func_ret_type___2; enum hrtimer_restart; enum hrtimer_restart; enum swchnlcmd_id { CMDID_END = 0, CMDID_SET_TXPOWEROWER_LEVEL = 1, CMDID_BBREGWRITE10 = 2, CMDID_WRITEPORT_ULONG = 3, CMDID_WRITEPORT_USHORT = 4, CMDID_WRITEPORT_UCHAR = 5, CMDID_RF_WRITEREG = 6 } ; struct swchnlcmd { enum swchnlcmd_id cmdid ; u32 para1 ; u32 para2 ; u32 msdelay ; }; enum hrtimer_restart; enum hrtimer_restart; typedef short s16; struct kernel_symbol { unsigned long value ; char const *name ; }; typedef void (*ctor_fn_t)(void); struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct static_key; struct ldv_thread; struct jump_entry; struct static_key_mod; struct static_key { atomic_t enabled ; struct jump_entry *entries ; struct static_key_mod *next ; }; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; enum hrtimer_restart; struct exception_table_entry { int insn ; int fixup ; }; struct pdev_archdata { }; enum nl80211_bss_scan_width { NL80211_BSS_CHAN_WIDTH_20 = 0, NL80211_BSS_CHAN_WIDTH_10 = 1, NL80211_BSS_CHAN_WIDTH_5 = 2 } ; struct survey_info { struct ieee80211_channel *channel ; u64 channel_time ; u64 channel_time_busy ; u64 channel_time_ext_busy ; u64 channel_time_rx ; u64 channel_time_tx ; u32 filled ; s8 noise ; }; struct cfg80211_ssid { u8 ssid[32U] ; u8 ssid_len ; }; struct cfg80211_scan_request { struct cfg80211_ssid *ssids ; int n_ssids ; u32 n_channels ; enum nl80211_bss_scan_width scan_width ; u8 const *ie ; size_t ie_len ; u32 flags ; u32 rates[3U] ; struct wireless_dev *wdev ; struct wiphy *wiphy ; unsigned long scan_start ; bool aborted ; bool notified ; bool no_cck ; struct ieee80211_channel *channels[0U] ; }; struct cfg80211_match_set { struct cfg80211_ssid ssid ; }; struct cfg80211_sched_scan_request { struct cfg80211_ssid *ssids ; int n_ssids ; u32 n_channels ; enum nl80211_bss_scan_width scan_width ; u32 interval ; u8 const *ie ; size_t ie_len ; u32 flags ; struct cfg80211_match_set *match_sets ; int n_match_sets ; s32 rssi_thold ; struct wiphy *wiphy ; struct net_device *dev ; unsigned long scan_start ; struct ieee80211_channel *channels[0U] ; }; struct __anonstruct_control_274 { u32 legacy ; u8 ht_mcs[10U] ; u16 vht_mcs[8U] ; }; struct cfg80211_bitrate_mask { struct __anonstruct_control_274 control[3U] ; }; struct cfg80211_gtk_rekey_data { u8 kek[16U] ; u8 kck[16U] ; u8 replay_ctr[8U] ; }; struct ieee80211_low_level_stats { unsigned int dot11ACKFailureCount ; unsigned int dot11RTSFailureCount ; unsigned int dot11FCSErrorCount ; unsigned int dot11RTSSuccessCount ; }; enum ieee80211_rssi_event { RSSI_EVENT_HIGH = 0, RSSI_EVENT_LOW = 1 } ; struct ieee80211_sched_scan_ies { u8 *ie[3U] ; size_t len[3U] ; }; struct ieee80211_channel_switch { u64 timestamp ; bool block_tx ; struct cfg80211_chan_def chandef ; u8 count ; }; enum set_key_cmd { SET_KEY = 0, DISABLE_KEY = 1 } ; enum ieee80211_sta_state { IEEE80211_STA_NOTEXIST = 0, IEEE80211_STA_NONE = 1, IEEE80211_STA_AUTH = 2, IEEE80211_STA_ASSOC = 3, IEEE80211_STA_AUTHORIZED = 4 } ; enum sta_notify_cmd { STA_NOTIFY_SLEEP = 0, STA_NOTIFY_AWAKE = 1 } ; struct ieee80211_tx_control { struct ieee80211_sta *sta ; }; enum ieee80211_ampdu_mlme_action { IEEE80211_AMPDU_RX_START = 0, IEEE80211_AMPDU_RX_STOP = 1, IEEE80211_AMPDU_TX_START = 2, IEEE80211_AMPDU_TX_STOP_CONT = 3, IEEE80211_AMPDU_TX_STOP_FLUSH = 4, IEEE80211_AMPDU_TX_STOP_FLUSH_CONT = 5, IEEE80211_AMPDU_TX_OPERATIONAL = 6 } ; enum ieee80211_frame_release_type { IEEE80211_FRAME_RELEASE_PSPOLL = 0, IEEE80211_FRAME_RELEASE_UAPSD = 1 } ; enum ieee80211_roc_type { IEEE80211_ROC_TYPE_NORMAL = 0, IEEE80211_ROC_TYPE_MGMT_TX = 1 } ; struct ieee80211_ops { void (*tx)(struct ieee80211_hw * , struct ieee80211_tx_control * , struct sk_buff * ) ; int (*start)(struct ieee80211_hw * ) ; void (*stop)(struct ieee80211_hw * ) ; int (*suspend)(struct ieee80211_hw * , struct cfg80211_wowlan * ) ; int (*resume)(struct ieee80211_hw * ) ; void (*set_wakeup)(struct ieee80211_hw * , bool ) ; int (*add_interface)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*change_interface)(struct ieee80211_hw * , struct ieee80211_vif * , enum nl80211_iftype , bool ) ; void (*remove_interface)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*config)(struct ieee80211_hw * , u32 ) ; void (*bss_info_changed)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_bss_conf * , u32 ) ; int (*start_ap)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*stop_ap)(struct ieee80211_hw * , struct ieee80211_vif * ) ; u64 (*prepare_multicast)(struct ieee80211_hw * , struct netdev_hw_addr_list * ) ; void (*configure_filter)(struct ieee80211_hw * , unsigned int , unsigned int * , u64 ) ; int (*set_tim)(struct ieee80211_hw * , struct ieee80211_sta * , bool ) ; int (*set_key)(struct ieee80211_hw * , enum set_key_cmd , struct ieee80211_vif * , struct ieee80211_sta * , struct ieee80211_key_conf * ) ; void (*update_tkip_key)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_key_conf * , struct ieee80211_sta * , u32 , u16 * ) ; void (*set_rekey_data)(struct ieee80211_hw * , struct ieee80211_vif * , struct cfg80211_gtk_rekey_data * ) ; void (*set_default_unicast_key)(struct ieee80211_hw * , struct ieee80211_vif * , int ) ; int (*hw_scan)(struct ieee80211_hw * , struct ieee80211_vif * , struct cfg80211_scan_request * ) ; void (*cancel_hw_scan)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*sched_scan_start)(struct ieee80211_hw * , struct ieee80211_vif * , struct cfg80211_sched_scan_request * , struct ieee80211_sched_scan_ies * ) ; void (*sched_scan_stop)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*sw_scan_start)(struct ieee80211_hw * ) ; void (*sw_scan_complete)(struct ieee80211_hw * ) ; int (*get_stats)(struct ieee80211_hw * , struct ieee80211_low_level_stats * ) ; void (*get_tkip_seq)(struct ieee80211_hw * , u8 , u32 * , u16 * ) ; int (*set_frag_threshold)(struct ieee80211_hw * , u32 ) ; int (*set_rts_threshold)(struct ieee80211_hw * , u32 ) ; int (*sta_add)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * ) ; int (*sta_remove)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * ) ; void (*sta_add_debugfs)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , struct dentry * ) ; void (*sta_remove_debugfs)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , struct dentry * ) ; void (*sta_notify)(struct ieee80211_hw * , struct ieee80211_vif * , enum sta_notify_cmd , struct ieee80211_sta * ) ; int (*sta_state)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , enum ieee80211_sta_state , enum ieee80211_sta_state ) ; void (*sta_pre_rcu_remove)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * ) ; void (*sta_rc_update)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , u32 ) ; int (*conf_tx)(struct ieee80211_hw * , struct ieee80211_vif * , u16 , struct ieee80211_tx_queue_params const * ) ; u64 (*get_tsf)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*set_tsf)(struct ieee80211_hw * , struct ieee80211_vif * , u64 ) ; void (*reset_tsf)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*tx_last_beacon)(struct ieee80211_hw * ) ; int (*ampdu_action)(struct ieee80211_hw * , struct ieee80211_vif * , enum ieee80211_ampdu_mlme_action , struct ieee80211_sta * , u16 , u16 * , u8 ) ; int (*get_survey)(struct ieee80211_hw * , int , struct survey_info * ) ; void (*rfkill_poll)(struct ieee80211_hw * ) ; void (*set_coverage_class)(struct ieee80211_hw * , u8 ) ; int (*testmode_cmd)(struct ieee80211_hw * , struct ieee80211_vif * , void * , int ) ; int (*testmode_dump)(struct ieee80211_hw * , struct sk_buff * , struct netlink_callback * , void * , int ) ; void (*flush)(struct ieee80211_hw * , u32 , bool ) ; void (*channel_switch)(struct ieee80211_hw * , struct ieee80211_channel_switch * ) ; int (*napi_poll)(struct ieee80211_hw * , int ) ; int (*set_antenna)(struct ieee80211_hw * , u32 , u32 ) ; int (*get_antenna)(struct ieee80211_hw * , u32 * , u32 * ) ; int (*remain_on_channel)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_channel * , int , enum ieee80211_roc_type ) ; int (*cancel_remain_on_channel)(struct ieee80211_hw * ) ; int (*set_ringparam)(struct ieee80211_hw * , u32 , u32 ) ; void (*get_ringparam)(struct ieee80211_hw * , u32 * , u32 * , u32 * , u32 * ) ; bool (*tx_frames_pending)(struct ieee80211_hw * ) ; int (*set_bitrate_mask)(struct ieee80211_hw * , struct ieee80211_vif * , struct cfg80211_bitrate_mask const * ) ; void (*rssi_callback)(struct ieee80211_hw * , struct ieee80211_vif * , enum ieee80211_rssi_event ) ; void (*allow_buffered_frames)(struct ieee80211_hw * , struct ieee80211_sta * , u16 , int , enum ieee80211_frame_release_type , bool ) ; void (*release_buffered_frames)(struct ieee80211_hw * , struct ieee80211_sta * , u16 , int , enum ieee80211_frame_release_type , bool ) ; int (*get_et_sset_count)(struct ieee80211_hw * , struct ieee80211_vif * , int ) ; void (*get_et_stats)(struct ieee80211_hw * , struct ieee80211_vif * , struct ethtool_stats * , u64 * ) ; void (*get_et_strings)(struct ieee80211_hw * , struct ieee80211_vif * , u32 , u8 * ) ; int (*get_rssi)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , s8 * ) ; void (*mgd_prepare_tx)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*add_chanctx)(struct ieee80211_hw * , struct ieee80211_chanctx_conf * ) ; void (*remove_chanctx)(struct ieee80211_hw * , struct ieee80211_chanctx_conf * ) ; void (*change_chanctx)(struct ieee80211_hw * , struct ieee80211_chanctx_conf * , u32 ) ; int (*assign_vif_chanctx)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_chanctx_conf * ) ; void (*unassign_vif_chanctx)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_chanctx_conf * ) ; void (*restart_complete)(struct ieee80211_hw * ) ; void (*ipv6_addr_change)(struct ieee80211_hw * , struct ieee80211_vif * , struct inet6_dev * ) ; void (*channel_switch_beacon)(struct ieee80211_hw * , struct ieee80211_vif * , struct cfg80211_chan_def * ) ; int (*join_ibss)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*leave_ibss)(struct ieee80211_hw * , struct ieee80211_vif * ) ; }; struct platform_device_id { char name[20U] ; kernel_ulong_t driver_data ; }; struct mfd_cell; struct platform_device { char const *name ; int id ; bool id_auto ; struct device dev ; u32 num_resources ; struct resource *resource ; struct platform_device_id const *id_entry ; struct mfd_cell *mfd_cell ; struct pdev_archdata archdata ; }; struct platform_driver { int (*probe)(struct platform_device * ) ; int (*remove)(struct platform_device * ) ; void (*shutdown)(struct platform_device * ) ; int (*suspend)(struct platform_device * , pm_message_t ) ; int (*resume)(struct platform_device * ) ; struct device_driver driver ; struct platform_device_id const *id_table ; bool prevent_deferred_probe ; }; struct firmware { size_t size ; u8 const *data ; struct page **pages ; void *priv ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_300 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s16 level ; union __anonunion____missing_field_name_300 __annonCompField82 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct tracepoint; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct static_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_ref { unsigned long incs ; unsigned long decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct ldv_struct_pci_instance_1 { struct pci_driver *arg0 ; int signal_pending ; }; struct ldv_struct_platform_instance_3 { int signal_pending ; }; enum hrtimer_restart; struct phy_sts_cck_8192s_t { u8 adc_pwdb_X[4U] ; u8 sq_rpt ; u8 cck_agc_rpt ; }; struct phy_rx_agc_info_t { u8 gain : 7 ; u8 trsw : 1 ; }; struct phy_status_rpt { struct phy_rx_agc_info_t path_agc[2U] ; u8 ch_corr[2U] ; u8 cck_sig_qual_ofdm_pwdb_all ; u8 cck_agc_rpt_ofdm_cfosho_a ; u8 cck_rpt_b_ofdm_cfosho_b ; u8 rsvd_1 ; u8 noise_power_db_msb ; u8 path_cfotail[2U] ; u8 pcts_mask[2U] ; u8 stream_rxevm[2U] ; u8 path_rxsnr[2U] ; u8 noise_power_db_lsb ; u8 rsvd_2[3U] ; u8 stream_csi[2U] ; u8 stream_target_csi[2U] ; u8 sig_evm ; u8 rsvd_3 ; u8 antsel_rx_keep_2 : 1 ; u8 sgi_en : 1 ; u8 rxsc : 2 ; u8 idle_long : 1 ; u8 r_ant_train_en : 1 ; u8 ant_sel_b : 1 ; u8 ant_sel : 1 ; }; struct rx_fwinfo_88e { u8 gain_trsw[4U] ; u8 pwdb_all ; u8 cfosho[4U] ; u8 cfotail[4U] ; char rxevm[2U] ; char rxsnr[4U] ; u8 pdsnr[2U] ; u8 csi_current[2U] ; u8 csi_target[2U] ; u8 sigevm ; u8 max_ex_pwr ; u8 ex_intf_flag : 1 ; u8 sgi_en : 1 ; u8 rxsc : 2 ; u8 reserve : 4 ; }; struct device_private { void *driver_data ; }; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; wait_queue_head_t done ; struct kthread_worker *worker ; }; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; struct completion xfer_completion ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; unsigned int cs_change : 1 ; unsigned int tx_nbits : 3 ; unsigned int rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned int is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; long ldv__builtin_expect(long exp , long c ) ; extern int printk(char const * , ...) ; extern void __bad_percpu_size(void) ; extern int memcmp(void const * , void const * , size_t ) ; extern void lock_acquire(struct lockdep_map * , unsigned int , int , int , int , struct lockdep_map * , unsigned long ) ; extern void lock_release(struct lockdep_map * , int , unsigned long ) ; extern void lockdep_rcu_suspicious(char const * , int const , char const * ) ; void ldv_spin_lock_entry_list_lock_of_rtl_locks(void) ; void ldv_spin_unlock_entry_list_lock_of_rtl_locks(void) ; void ldv_assume(int expression ) ; int ldv_undef_int(void) ; void *ldv_xmalloc(size_t size ) ; extern int __preempt_count ; __inline static int preempt_count(void) { int pfo_ret__ ; { { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "m" (__preempt_count)); goto ldv_6473; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6473; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6473; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6473; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_6473: ; return (pfo_ret__ & 2147483647); } } __inline static void __preempt_count_add(int val ) { int pao_ID__ ; { pao_ID__ = 0; { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incb %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decb %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addb %1, %%gs:%P0": "+m" (__preempt_count): "qi" (val)); } goto ldv_6530; case_2: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incw %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decw %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addw %1, %%gs:%P0": "+m" (__preempt_count): "ri" (val)); } goto ldv_6530; case_4: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incl %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decl %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addl %1, %%gs:%P0": "+m" (__preempt_count): "ri" (val)); } goto ldv_6530; case_8: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incq %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decq %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addq %1, %%gs:%P0": "+m" (__preempt_count): "re" (val)); } goto ldv_6530; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_6530: ; return; } } __inline static void __preempt_count_sub(int val ) { int pao_ID__ ; { pao_ID__ = 0; { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incb %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decb %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addb %1, %%gs:%P0": "+m" (__preempt_count): "qi" (- val)); } goto ldv_6542; case_2: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incw %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decw %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addw %1, %%gs:%P0": "+m" (__preempt_count): "ri" (- val)); } goto ldv_6542; case_4: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incl %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decl %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addl %1, %%gs:%P0": "+m" (__preempt_count): "ri" (- val)); } goto ldv_6542; case_8: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incq %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decq %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addq %1, %%gs:%P0": "+m" (__preempt_count): "re" (- val)); } goto ldv_6542; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_6542: ; return; } } extern void _raw_spin_lock_bh(raw_spinlock_t * ) ; extern void _raw_spin_unlock_bh(raw_spinlock_t * ) ; __inline static void spin_lock_bh(spinlock_t *lock ) { { { _raw_spin_lock_bh(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_lock_bh_64(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_64(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_64(spinlock_t *lock ) ; __inline static void spin_unlock_bh(spinlock_t *lock ) { { { _raw_spin_unlock_bh(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_unlock_bh_65(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_65(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_65(spinlock_t *lock ) ; __inline static void __rcu_read_lock(void) { { { __preempt_count_add(1); __asm__ volatile ("": : : "memory"); } return; } } __inline static void __rcu_read_unlock(void) { { { __asm__ volatile ("": : : "memory"); __preempt_count_sub(1); } return; } } extern bool rcu_is_watching(void) ; __inline static void rcu_lock_acquire(struct lockdep_map *map ) { { { lock_acquire(map, 0U, 0, 2, 1, (struct lockdep_map *)0, (unsigned long )((void *)0)); } return; } } __inline static void rcu_lock_release(struct lockdep_map *map ) { { { lock_release(map, 1, (unsigned long )((void *)0)); } return; } } extern struct lockdep_map rcu_lock_map ; extern int debug_lockdep_rcu_enabled(void) ; __inline static void rcu_read_lock(void) { bool __warned ; int tmp ; bool tmp___0 ; int tmp___1 ; { { __rcu_read_lock(); rcu_lock_acquire(& rcu_lock_map); tmp = debug_lockdep_rcu_enabled(); } if (tmp != 0 && ! __warned) { { tmp___0 = rcu_is_watching(); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { { __warned = 1; lockdep_rcu_suspicious("include/linux/rcupdate.h", 812, "rcu_read_lock() used illegally while idle"); } } else { } } else { } return; } } __inline static void rcu_read_unlock(void) { bool __warned ; int tmp ; bool tmp___0 ; int tmp___1 ; { { tmp = debug_lockdep_rcu_enabled(); } if (tmp != 0 && ! __warned) { { tmp___0 = rcu_is_watching(); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { { __warned = 1; lockdep_rcu_suspicious("include/linux/rcupdate.h", 833, "rcu_read_unlock() used illegally while idle"); } } else { } } else { } { rcu_lock_release(& rcu_lock_map); __rcu_read_unlock(); } return; } } extern unsigned long volatile jiffies ; extern unsigned long msecs_to_jiffies(unsigned int const ) ; extern int mod_timer(struct timer_list * , unsigned long ) ; static int ldv_mod_timer_70(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; extern struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif * , u8 const * ) ; __inline static void rtl_write_byte(struct rtl_priv *rtlpriv , u32 addr , u8 val8 ) { { { (*(rtlpriv->io.write8_async))(rtlpriv, addr, (int )val8); } if ((int )(rtlpriv->cfg)->write_readback) { { (*(rtlpriv->io.read8_sync))(rtlpriv, addr); } } else { } return; } } __inline static void rtl_write_dword(struct rtl_priv *rtlpriv , u32 addr , u32 val32 ) { { { (*(rtlpriv->io.write32_async))(rtlpriv, addr, val32); } if ((int )(rtlpriv->cfg)->write_readback) { { (*(rtlpriv->io.read32_sync))(rtlpriv, addr); } } else { } return; } } __inline static u32 rtl_get_bbreg(struct ieee80211_hw *hw , u32 regaddr , u32 bitmask ) { struct rtl_priv *rtlpriv ; u32 tmp ; { { rtlpriv = (struct rtl_priv *)hw->priv; tmp = (*(((rtlpriv->cfg)->ops)->get_bbreg))(hw, regaddr, bitmask); } return (tmp); } } __inline static void rtl_set_bbreg(struct ieee80211_hw *hw , u32 regaddr , u32 bitmask , u32 data ) { struct rtl_priv *rtlpriv ; { { rtlpriv = (struct rtl_priv *)hw->priv; (*(((rtlpriv->cfg)->ops)->set_bbreg))(hw, regaddr, bitmask, data); } return; } } __inline static u32 rtl_get_rfreg(struct ieee80211_hw *hw , enum radio_path rfpath , u32 regaddr , u32 bitmask ) { struct rtl_priv *rtlpriv ; u32 tmp ; { { rtlpriv = (struct rtl_priv *)hw->priv; tmp = (*(((rtlpriv->cfg)->ops)->get_rfreg))(hw, rfpath, regaddr, bitmask); } return (tmp); } } __inline static void rtl_set_rfreg(struct ieee80211_hw *hw , enum radio_path rfpath , u32 regaddr , u32 bitmask , u32 data ) { struct rtl_priv *rtlpriv ; { { rtlpriv = (struct rtl_priv *)hw->priv; (*(((rtlpriv->cfg)->ops)->set_rfreg))(hw, rfpath, regaddr, bitmask, data); } return; } } __inline static bool is_hal_stop(struct rtl_hal *rtlhal ) { { return ((unsigned int )rtlhal->state == 0U); } } __inline static struct ieee80211_sta *rtl_find_sta(struct ieee80211_hw *hw , u8 *mac_addr ) { struct rtl_mac *mac ; struct ieee80211_sta *tmp ; { { mac = & ((struct rtl_priv *)hw->priv)->mac80211; tmp = ieee80211_find_sta(mac->vif, (u8 const *)mac_addr); } return (tmp); } } void rtl88e_phy_set_txpower_level(struct ieee80211_hw *hw , u8 channel ) ; void rtl88e_phy_iq_calibrate(struct ieee80211_hw *hw , bool recovery ) ; void rtl88e_phy_lc_calibrate(struct ieee80211_hw *hw ) ; void rtl88e_dm_set_tx_ant_by_tx_info(struct ieee80211_hw *hw , u8 *pdesc , u32 mac_id ) ; void rtl88e_dm_ant_sel_statistics(struct ieee80211_hw *hw , u8 antsel_tr_mux , u32 mac_id , u32 rx_pwdb_all ) ; void rtl88e_dm_fast_antenna_training_callback(unsigned long data ) ; void rtl88e_dm_init(struct ieee80211_hw *hw ) ; void rtl88e_dm_watchdog(struct ieee80211_hw *hw ) ; void rtl88e_dm_write_dig(struct ieee80211_hw *hw ) ; void rtl88e_dm_init_edca_turbo(struct ieee80211_hw *hw ) ; void rtl88e_dm_check_txpower_tracking(struct ieee80211_hw *hw ) ; void rtl88e_dm_init_rate_adaptive_mask(struct ieee80211_hw *hw ) ; void rtl88e_dm_txpower_track_adjust(struct ieee80211_hw *hw , u8 type , u8 *pdirection , u32 *poutwrite_val ) ; static u32 const ofdmswing_table[43U] = { 2139095550U, 2021655010U, 1908408775U, 1803551150U, 1698693525U, 1606418815U, 1514144105U, 1430258005U, 1350566210U, 1275068720U, 1203765535U, 1136656655U, 1073742080U, 1015021810U, 956301540U, 901775575U, 851443915U, 805306560U, 759169205U, 717226155U, 679477410U, 637534360U, 603979920U, 570425480U, 536871040U, 507510905U, 478150770U, 452984940U, 427819110U, 402653280U, 381681755U, 360710230U, 339738705U, 318767180U, 301989960U, 285212740U, 268435520U, 251658300U, 239075385U, 226492470U, 213909555U, 201326640U, 188743725U}; static u8 const cck_tbl_ch1_13[33U][8U] = { { 54U, 53U, 46U, 37U, 28U, 18U, 9U, 4U}, { 51U, 50U, 43U, 35U, 26U, 17U, 8U, 4U}, { 48U, 47U, 41U, 33U, 25U, 16U, 8U, 3U}, { 45U, 45U, 39U, 31U, 24U, 15U, 8U, 3U}, { 43U, 42U, 37U, 30U, 22U, 14U, 7U, 3U}, { 40U, 40U, 34U, 28U, 21U, 13U, 7U, 3U}, { 38U, 37U, 33U, 27U, 20U, 13U, 6U, 3U}, { 36U, 35U, 31U, 25U, 19U, 12U, 6U, 3U}, { 34U, 33U, 29U, 24U, 17U, 11U, 6U, 2U}, { 32U, 32U, 27U, 22U, 17U, 8U, 5U, 2U}, { 31U, 30U, 26U, 21U, 16U, 10U, 5U, 2U}, { 29U, 28U, 24U, 20U, 15U, 10U, 5U, 2U}, { 27U, 26U, 23U, 19U, 14U, 9U, 4U, 2U}, { 26U, 25U, 22U, 18U, 13U, 9U, 4U, 2U}, { 24U, 23U, 21U, 17U, 12U, 8U, 4U, 2U}, { 23U, 22U, 19U, 16U, 12U, 8U, 4U, 2U}, { 22U, 21U, 18U, 15U, 11U, 7U, 4U, 1U}, { 20U, 20U, 17U, 14U, 11U, 7U, 3U, 2U}, { 19U, 19U, 16U, 13U, 10U, 6U, 3U, 1U}, { 18U, 18U, 15U, 12U, 9U, 6U, 3U, 1U}, { 17U, 17U, 15U, 12U, 9U, 6U, 3U, 1U}, { 16U, 16U, 14U, 11U, 8U, 5U, 3U, 1U}, { 15U, 15U, 13U, 11U, 8U, 5U, 3U, 1U}, { 14U, 14U, 12U, 10U, 8U, 5U, 2U, 1U}, { 13U, 13U, 12U, 10U, 7U, 5U, 2U, 1U}, { 13U, 12U, 11U, 9U, 7U, 4U, 2U, 1U}, { 12U, 12U, 10U, 9U, 6U, 4U, 2U, 1U}, { 11U, 11U, 10U, 8U, 6U, 4U, 2U, 1U}, { 11U, 10U, 9U, 8U, 6U, 4U, 2U, 1U}, { 10U, 10U, 9U, 7U, 5U, 3U, 2U, 1U}, { 10U, 9U, 8U, 7U, 5U, 3U, 2U, 1U}, { 9U, 9U, 8U, 6U, 5U, 3U, 1U, 1U}, { 9U, 8U, 7U, 6U, 4U, 3U, 1U, 1U}}; static u8 const cck_tbl_ch14[33U][8U] = { { 54U, 53U, 46U, 27U, 0U, 0U, 0U, 0U}, { 51U, 50U, 43U, 25U, 0U, 0U, 0U, 0U}, { 48U, 47U, 41U, 24U, 0U, 0U, 0U, 0U}, { 45U, 45U, 23U, 23U, 0U, 0U, 0U, 0U}, { 43U, 42U, 37U, 21U, 0U, 0U, 0U, 0U}, { 40U, 40U, 36U, 20U, 0U, 0U, 0U, 0U}, { 38U, 37U, 33U, 19U, 0U, 0U, 0U, 0U}, { 36U, 35U, 31U, 18U, 0U, 0U, 0U, 0U}, { 34U, 33U, 29U, 17U, 0U, 0U, 0U, 0U}, { 32U, 32U, 27U, 16U, 0U, 0U, 0U, 0U}, { 31U, 30U, 26U, 15U, 0U, 0U, 0U, 0U}, { 29U, 28U, 24U, 14U, 0U, 0U, 0U, 0U}, { 27U, 26U, 23U, 14U, 0U, 0U, 0U, 0U}, { 26U, 25U, 22U, 13U, 0U, 0U, 0U, 0U}, { 24U, 23U, 21U, 12U, 0U, 0U, 0U, 0U}, { 23U, 22U, 19U, 11U, 0U, 0U, 0U, 0U}, { 22U, 21U, 18U, 11U, 0U, 0U, 0U, 0U}, { 20U, 20U, 17U, 10U, 0U, 0U, 0U, 0U}, { 19U, 19U, 16U, 10U, 0U, 0U, 0U, 0U}, { 18U, 18U, 15U, 9U, 0U, 0U, 0U, 0U}, { 17U, 17U, 15U, 9U, 0U, 0U, 0U, 0U}, { 16U, 16U, 14U, 8U, 0U, 0U, 0U, 0U}, { 15U, 15U, 13U, 8U, 0U, 0U, 0U, 0U}, { 14U, 14U, 12U, 7U, 0U, 0U, 0U, 0U}, { 13U, 13U, 12U, 7U, 0U, 0U, 0U, 0U}, { 13U, 12U, 11U, 6U, 0U, 0U, 0U, 0U}, { 12U, 12U, 10U, 6U, 0U, 0U, 0U, 0U}, { 11U, 11U, 10U, 6U, 0U, 0U, 0U, 0U}, { 11U, 10U, 9U, 5U, 0U, 0U, 0U, 0U}, { 10U, 10U, 9U, 5U, 0U, 0U, 0U, 0U}, { 10U, 9U, 8U, 5U, 0U, 0U, 0U, 0U}, { 9U, 9U, 8U, 5U, 0U, 0U, 0U, 0U}, { 9U, 8U, 7U, 4U, 0U, 0U, 0U, 0U}}; static void rtl88e_set_iqk_matrix(struct ieee80211_hw *hw , u8 ofdm_index , u8 rfpath , long iqk_result_x , long iqk_result_y ) { long ele_a ; long ele_d ; long ele_c ; long value32 ; { ele_a = 0L; ele_c = 0L; ele_d = (long )((unsigned int )ofdmswing_table[(int )ofdm_index] >> 22); if (iqk_result_x != 0L) { if ((iqk_result_x & 512L) != 0L) { iqk_result_x = iqk_result_x | 4294966272L; } else { } ele_a = (iqk_result_x * ele_d >> 8) & 1023L; if ((iqk_result_y & 512L) != 0L) { iqk_result_y = iqk_result_y | 4294966272L; } else { } ele_c = (iqk_result_y * ele_d >> 8) & 1023L; { if ((int )rfpath == 0) { goto case_0; } else { } if ((int )rfpath == 1) { goto case_1; } else { } goto switch_default; case_0: /* CIL Label */ { value32 = ((ele_d << 22) | ((ele_c & 63L) << 16)) | ele_a; rtl_set_bbreg(hw, 3200U, 4294967295U, (u32 )value32); value32 = (ele_c & 960L) >> 6; rtl_set_bbreg(hw, 3220U, 4026531840U, (u32 )value32); value32 = (iqk_result_x * ele_d >> 7) & 1L; rtl_set_bbreg(hw, 3148U, 16777216U, (u32 )value32); } goto ldv_51504; case_1: /* CIL Label */ { value32 = ((ele_d << 22) | ((ele_c & 63L) << 16)) | ele_a; rtl_set_bbreg(hw, 3208U, 4294967295U, (u32 )value32); value32 = (ele_c & 960L) >> 6; rtl_set_bbreg(hw, 3228U, 4026531840U, (u32 )value32); value32 = (iqk_result_x * ele_d >> 7) & 1L; rtl_set_bbreg(hw, 3148U, 268435456U, (u32 )value32); } goto ldv_51504; switch_default: /* CIL Label */ ; goto ldv_51504; switch_break: /* CIL Label */ ; } ldv_51504: ; } else { { if ((int )rfpath == 0) { goto case_0___0; } else { } if ((int )rfpath == 1) { goto case_1___0; } else { } goto switch_default___0; case_0___0: /* CIL Label */ { rtl_set_bbreg(hw, 3200U, 4294967295U, ofdmswing_table[(int )ofdm_index]); rtl_set_bbreg(hw, 3220U, 4026531840U, 0U); rtl_set_bbreg(hw, 3148U, 16777216U, 0U); } goto ldv_51508; case_1___0: /* CIL Label */ { rtl_set_bbreg(hw, 3208U, 4294967295U, ofdmswing_table[(int )ofdm_index]); rtl_set_bbreg(hw, 3228U, 4026531840U, 0U); rtl_set_bbreg(hw, 3148U, 268435456U, 0U); } goto ldv_51508; switch_default___0: /* CIL Label */ ; goto ldv_51508; switch_break___0: /* CIL Label */ ; } ldv_51508: ; } return; } } void rtl88e_dm_txpower_track_adjust(struct ieee80211_hw *hw , u8 type , u8 *pdirection , u32 *poutwrite_val ) { struct rtl_priv *rtlpriv ; struct rtl_dm *rtldm ; u8 pwr_val ; u8 cck_base ; u8 cck_val ; u8 ofdm_base ; u8 ofdm_val ; { rtlpriv = (struct rtl_priv *)hw->priv; rtldm = & ((struct rtl_priv *)hw->priv)->dm; pwr_val = 0U; cck_base = rtldm->swing_idx_cck_base; cck_val = rtldm->swing_idx_cck; ofdm_base = rtldm->swing_idx_ofdm_base; ofdm_val = rtlpriv->dm.swing_idx_ofdm[0]; if ((unsigned int )type == 0U) { if ((int )ofdm_val <= (int )ofdm_base) { *pdirection = 1U; pwr_val = (int )ofdm_base - (int )ofdm_val; } else { *pdirection = 2U; pwr_val = (int )ofdm_val - (int )ofdm_base; } } else if ((unsigned int )type == 1U) { if ((int )cck_val <= (int )cck_base) { *pdirection = 1U; pwr_val = (int )cck_base - (int )cck_val; } else { *pdirection = 2U; pwr_val = (int )cck_val - (int )cck_base; } } else { } if ((unsigned int )pwr_val > 5U && (unsigned int )*pdirection == 1U) { pwr_val = 6U; } else { } *poutwrite_val = (u32 )((((int )pwr_val | ((int )pwr_val << 8)) | ((int )pwr_val << 16)) | ((int )pwr_val << 24)); return; } } static void rtl88e_chk_tx_track(struct ieee80211_hw *hw , enum pwr_track_control_method method , u8 rfpath , u8 index ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct rtl_dm *rtldm ; int jj ; int i ; u8 chan ; long x ; long y ; u8 indx ; u8 indx___0 ; long x___0 ; long y___0 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; rtldm = & ((struct rtl_priv *)hw->priv)->dm; jj = (int )rtldm->swing_idx_cck; if ((unsigned int )method == 1U) { if ((int )rtldm->swing_flag_ofdm || (int )rtldm->swing_flag_cck) { { chan = rtlphy->current_channel; rtl88e_phy_set_txpower_level(hw, (int )chan); rtldm->swing_flag_ofdm = 0; rtldm->swing_flag_cck = 0; } } else { } } else if ((unsigned int )method == 0U) { if (! rtldm->cck_inch14) { i = 0; goto ldv_51537; ldv_51536: { rtl_write_byte(rtlpriv, (u32 )(i + 2594), (int )cck_tbl_ch1_13[jj][i]); i = i + 1; } ldv_51537: ; if (i <= 7) { goto ldv_51536; } else { } } else { i = 0; goto ldv_51540; ldv_51539: { rtl_write_byte(rtlpriv, (u32 )(i + 2594), (int )cck_tbl_ch14[jj][i]); i = i + 1; } ldv_51540: ; if (i <= 7) { goto ldv_51539; } else { } } if ((unsigned int )rfpath == 0U) { { x = rtlphy->iqk_matrix[(int )index].value[0][0]; y = rtlphy->iqk_matrix[(int )index].value[0][1]; indx = rtldm->swing_idx_ofdm[(int )rfpath]; rtl88e_set_iqk_matrix(hw, (int )indx, (int )rfpath, x, y); } } else if ((unsigned int )rfpath == 1U) { { indx___0 = rtldm->swing_idx_ofdm[(int )rfpath]; x___0 = rtlphy->iqk_matrix[(int )indx___0].value[0][4]; y___0 = rtlphy->iqk_matrix[(int )indx___0].value[0][5]; rtl88e_set_iqk_matrix(hw, (int )indx___0, (int )rfpath, x___0, y___0); } } else { } } else { return; } return; } } static void rtl88e_dm_diginit(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct dig_t *dm_dig ; { { rtlpriv = (struct rtl_priv *)hw->priv; dm_dig = & rtlpriv->dm_digtable; dm_dig->dig_enable_flag = 1U; dm_dig->cur_igvalue = rtl_get_bbreg(hw, 3152U, 127U); dm_dig->pre_igvalue = 0U; dm_dig->cursta_cstate = 0U; dm_dig->presta_cstate = 0U; dm_dig->curmultista_cstate = 3U; dm_dig->rssi_lowthresh = 35U; dm_dig->rssi_highthresh = 40U; dm_dig->fa_lowthresh = 400U; dm_dig->fa_highthresh = 1000U; dm_dig->rx_gain_max = 62U; dm_dig->rx_gain_min = 30U; dm_dig->back_val = 10; dm_dig->back_range_max = 12; dm_dig->back_range_min = -4; dm_dig->pre_cck_cca_thres = 255U; dm_dig->cur_cck_cca_thres = 131U; dm_dig->forbidden_igi = 30U; dm_dig->large_fa_hit = 0U; dm_dig->recover_cnt = 0U; dm_dig->dig_min_0 = 37U; dm_dig->dig_min_1 = 37U; dm_dig->media_connect_0 = 0; dm_dig->media_connect_1 = 0; rtlpriv->dm.dm_initialgain_enable = 1; } return; } } static u8 rtl88e_dm_initial_gain_min_pwdb(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct dig_t *dm_dig ; long rssi_val_min ; { rtlpriv = (struct rtl_priv *)hw->priv; dm_dig = & rtlpriv->dm_digtable; rssi_val_min = 0L; if ((unsigned int )dm_dig->curmultista_cstate == 4U && (unsigned int )dm_dig->cursta_cstate == 1U) { if (rtlpriv->dm.entry_min_undec_sm_pwdb != 0L) { rssi_val_min = rtlpriv->dm.undec_sm_pwdb < rtlpriv->dm.entry_min_undec_sm_pwdb ? rtlpriv->dm.undec_sm_pwdb : rtlpriv->dm.entry_min_undec_sm_pwdb; } else { rssi_val_min = rtlpriv->dm.undec_sm_pwdb; } } else if ((unsigned int )dm_dig->cursta_cstate - 1U <= 1U) { rssi_val_min = rtlpriv->dm.undec_sm_pwdb; } else if ((unsigned int )dm_dig->curmultista_cstate == 4U) { rssi_val_min = rtlpriv->dm.entry_min_undec_sm_pwdb; } else { } return ((u8 )rssi_val_min); } } static void rtl88e_dm_false_alarm_counter_statistics(struct ieee80211_hw *hw ) { u32 ret_value ; struct rtl_priv *rtlpriv ; struct false_alarm_statistics *alm_cnt ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { { rtlpriv = (struct rtl_priv *)hw->priv; alm_cnt = & rtlpriv->falsealm_cnt; rtl_set_bbreg(hw, 3072U, 2147483648U, 1U); rtl_set_bbreg(hw, 3328U, 2147483648U, 1U); ret_value = rtl_get_bbreg(hw, 3312U, 4294967295U); alm_cnt->cnt_fast_fsync_fail = ret_value & 65535U; alm_cnt->cnt_sb_search_fail = ret_value >> 16; ret_value = rtl_get_bbreg(hw, 3488U, 4294967295U); alm_cnt->cnt_ofdm_cca = ret_value & 65535U; alm_cnt->cnt_parity_fail = ret_value >> 16; ret_value = rtl_get_bbreg(hw, 3492U, 4294967295U); alm_cnt->cnt_rate_illegal = ret_value & 65535U; alm_cnt->cnt_crc8_fail = ret_value >> 16; ret_value = rtl_get_bbreg(hw, 3496U, 4294967295U); alm_cnt->cnt_mcs_fail = ret_value & 65535U; alm_cnt->cnt_ofdm_fail = ((((alm_cnt->cnt_parity_fail + alm_cnt->cnt_rate_illegal) + alm_cnt->cnt_crc8_fail) + alm_cnt->cnt_mcs_fail) + alm_cnt->cnt_fast_fsync_fail) + alm_cnt->cnt_sb_search_fail; ret_value = rtl_get_bbreg(hw, 2244U, 4294967295U); alm_cnt->cnt_bw_lsc = ret_value & 65535U; alm_cnt->cnt_bw_usc = ret_value >> 16; rtl_set_bbreg(hw, 2604U, 4096U, 1U); rtl_set_bbreg(hw, 2604U, 16384U, 1U); ret_value = rtl_get_bbreg(hw, 2652U, 255U); alm_cnt->cnt_cck_fail = ret_value; ret_value = rtl_get_bbreg(hw, 2648U, 4278190080U); alm_cnt->cnt_cck_fail = alm_cnt->cnt_cck_fail + ((ret_value << 8) & 65535U); ret_value = rtl_get_bbreg(hw, 2656U, 4294967295U); alm_cnt->cnt_cck_cca = ((ret_value << 8) & 65535U) | ((ret_value & 65280U) >> 8); alm_cnt->cnt_all = (((((alm_cnt->cnt_fast_fsync_fail + alm_cnt->cnt_sb_search_fail) + alm_cnt->cnt_parity_fail) + alm_cnt->cnt_rate_illegal) + alm_cnt->cnt_crc8_fail) + alm_cnt->cnt_mcs_fail) + alm_cnt->cnt_cck_fail; alm_cnt->cnt_cca_all = alm_cnt->cnt_ofdm_cca + alm_cnt->cnt_cck_cca; rtl_set_bbreg(hw, 3084U, 2147483648U, 1U); rtl_set_bbreg(hw, 3084U, 2147483648U, 0U); rtl_set_bbreg(hw, 3328U, 134217728U, 1U); rtl_set_bbreg(hw, 3328U, 134217728U, 0U); rtl_set_bbreg(hw, 3072U, 2147483648U, 0U); rtl_set_bbreg(hw, 3328U, 2147483648U, 0U); rtl_set_bbreg(hw, 2604U, 12288U, 0U); rtl_set_bbreg(hw, 2604U, 12288U, 2U); rtl_set_bbreg(hw, 2604U, 49152U, 0U); rtl_set_bbreg(hw, 2604U, 49152U, 2U); tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8192ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> cnt_parity_fail = %d, cnt_rate_illegal = %d, cnt_crc8_fail = %d, cnt_mcs_fail = %d\n", "rtl88e_dm_false_alarm_counter_statistics", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, alm_cnt->cnt_parity_fail, alm_cnt->cnt_rate_illegal, alm_cnt->cnt_crc8_fail, alm_cnt->cnt_mcs_fail); } } else { } } else { } { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8192ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> cnt_ofdm_fail = %x, cnt_cck_fail = %x, cnt_all = %x\n", "rtl88e_dm_false_alarm_counter_statistics", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, alm_cnt->cnt_ofdm_fail, alm_cnt->cnt_cck_fail, alm_cnt->cnt_all); } } else { } } else { } return; } } static void rtl88e_dm_cck_packet_detection_thresh(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct dig_t *dm_dig ; u8 cur_cck_cca_thresh ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { rtlpriv = (struct rtl_priv *)hw->priv; dm_dig = & rtlpriv->dm_digtable; if ((unsigned int )dm_dig->cursta_cstate == 1U) { { dm_dig->rssi_val_min = rtl88e_dm_initial_gain_min_pwdb(hw); } if ((unsigned int )dm_dig->rssi_val_min > 25U) { cur_cck_cca_thresh = 205U; } else if ((unsigned int )dm_dig->rssi_val_min - 11U <= 14U) { cur_cck_cca_thresh = 131U; } else if (rtlpriv->falsealm_cnt.cnt_cck_fail > 1000U) { cur_cck_cca_thresh = 131U; } else { cur_cck_cca_thresh = 64U; } } else if (rtlpriv->falsealm_cnt.cnt_cck_fail > 1000U) { cur_cck_cca_thresh = 131U; } else { cur_cck_cca_thresh = 64U; } if ((int )dm_dig->cur_cck_cca_thres != (int )cur_cck_cca_thresh) { { rtl_set_bbreg(hw, 2568U, 16711680U, (u32 )cur_cck_cca_thresh); } } else { } { dm_dig->cur_cck_cca_thres = cur_cck_cca_thresh; dm_dig->pre_cck_cca_thres = dm_dig->cur_cck_cca_thres; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8192ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> CCK cca thresh hold =%x\n", "rtl88e_dm_cck_packet_detection_thresh", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )dm_dig->cur_cck_cca_thres); } } else { } } else { } return; } } static void rtl88e_dm_dig(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct dig_t *dm_dig ; struct rtl_mac *mac ; struct rtl_efuse *rtlefuse ; u8 dig_min ; u8 dig_maxofmin ; bool bfirstconnect ; u8 dm_dig_max ; u8 dm_dig_min ; u8 current_igi ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { rtlpriv = (struct rtl_priv *)hw->priv; dm_dig = & rtlpriv->dm_digtable; mac = & ((struct rtl_priv *)hw->priv)->mac80211; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; current_igi = (u8 )dm_dig->cur_igvalue; if (! rtlpriv->dm.dm_initialgain_enable) { return; } else { } if ((unsigned int )dm_dig->dig_enable_flag == 0U) { return; } else { } if ((int )mac->act_scanning) { return; } else { } if ((unsigned int )mac->link_state > 1U) { dm_dig->cursta_cstate = 1U; } else { dm_dig->cursta_cstate = 0U; } if ((unsigned int )rtlpriv->mac80211.opmode == 3U || (unsigned int )rtlpriv->mac80211.opmode == 1U) { dm_dig->cursta_cstate = 0U; } else { } { dm_dig_max = 62U; dm_dig_min = 30U; dig_maxofmin = 50U; dig_min = dm_dig->dig_min_0; bfirstconnect = (bool )((unsigned int )mac->link_state > 1U && ! dm_dig->media_connect_0); dm_dig->rssi_val_min = rtl88e_dm_initial_gain_min_pwdb(hw); } if ((unsigned int )mac->link_state > 1U) { if ((int )dm_dig->rssi_val_min + 20 > (int )dm_dig_max) { dm_dig->rx_gain_max = dm_dig_max; } else if ((int )dm_dig->rssi_val_min + 20 < (int )dm_dig_min) { dm_dig->rx_gain_max = dm_dig_min; } else { dm_dig->rx_gain_max = (unsigned int )dm_dig->rssi_val_min + 20U; } if ((unsigned int )rtlefuse->antenna_div_type == 1U) { dig_min = (u8 )dm_dig->antdiv_rssi_max; } else if ((int )dm_dig->rssi_val_min < (int )dm_dig_min) { dig_min = dm_dig_min; } else if ((int )dm_dig->rssi_val_min < (int )dig_maxofmin) { dig_min = dig_maxofmin; } else { dig_min = dm_dig->rssi_val_min; } } else { { dm_dig->rx_gain_max = dm_dig_max; dig_min = dm_dig_min; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8192ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> no link\n", "rtl88e_dm_dig", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } if (rtlpriv->falsealm_cnt.cnt_all > 10000U) { dm_dig->large_fa_hit = (u8 )((int )dm_dig->large_fa_hit + 1); if ((int )dm_dig->forbidden_igi < (int )current_igi) { dm_dig->forbidden_igi = current_igi; dm_dig->large_fa_hit = 1U; } else { } if ((unsigned int )dm_dig->large_fa_hit > 2U) { if ((int )dm_dig->forbidden_igi + 1 > (int )dm_dig->rx_gain_max) { dm_dig->rx_gain_min = dm_dig->rx_gain_max; } else { dm_dig->rx_gain_min = (unsigned int )dm_dig->forbidden_igi + 1U; } dm_dig->recover_cnt = 3600U; } else { } } else if (dm_dig->recover_cnt != 0U) { dm_dig->recover_cnt = dm_dig->recover_cnt - 1U; } else if ((unsigned int )dm_dig->large_fa_hit == 0U) { if ((int )dm_dig->forbidden_igi + -1 < (int )dig_min) { dm_dig->forbidden_igi = dig_min; dm_dig->rx_gain_min = dig_min; } else { dm_dig->forbidden_igi = (u8 )((int )dm_dig->forbidden_igi - 1); dm_dig->rx_gain_min = (unsigned int )dm_dig->forbidden_igi + 1U; } } else if ((unsigned int )dm_dig->large_fa_hit == 3U) { dm_dig->large_fa_hit = 0U; } else { } if ((unsigned int )dm_dig->cursta_cstate == 1U) { if ((int )bfirstconnect) { current_igi = dm_dig->rssi_val_min; } else if (rtlpriv->falsealm_cnt.cnt_all > 1024U) { current_igi = (unsigned int )current_igi + 2U; } else if (rtlpriv->falsealm_cnt.cnt_all > 768U) { current_igi = (u8 )((int )current_igi + 1); } else if (rtlpriv->falsealm_cnt.cnt_all <= 511U) { current_igi = (u8 )((int )current_igi - 1); } else { } } else if (rtlpriv->falsealm_cnt.cnt_all > 10000U) { current_igi = (unsigned int )current_igi + 2U; } else if (rtlpriv->falsealm_cnt.cnt_all > 8000U) { current_igi = (u8 )((int )current_igi + 1); } else if (rtlpriv->falsealm_cnt.cnt_all <= 499U) { current_igi = (u8 )((int )current_igi - 1); } else { } if ((unsigned int )current_igi > 62U) { current_igi = 62U; } else if ((unsigned int )current_igi <= 29U) { current_igi = 30U; } else { } if (rtlpriv->falsealm_cnt.cnt_all > 10000U) { current_igi = 62U; } else { } { dm_dig->cur_igvalue = (u32 )current_igi; rtl88e_dm_write_dig(hw); dm_dig->media_connect_0 = (unsigned int )mac->link_state > 1U; dm_dig->dig_min_0 = dig_min; rtl88e_dm_cck_packet_detection_thresh(hw); } return; } } static void rtl88e_dm_init_dynamic_txpower(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlpriv->dm.dynamic_txpower_enable = 0; rtlpriv->dm.last_dtp_lvl = 0U; rtlpriv->dm.dynamic_txhighpower_lvl = 0U; return; } } static void rtl92c_dm_dynamic_txpower(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct rtl_mac *mac ; long undec_sm_pwdb ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; int tmp___11 ; int tmp___12 ; long tmp___13 ; long tmp___14 ; int tmp___15 ; int tmp___16 ; long tmp___17 ; long tmp___18 ; int tmp___19 ; int tmp___20 ; long tmp___21 ; long tmp___22 ; int tmp___23 ; int tmp___24 ; long tmp___25 ; long tmp___26 ; int tmp___27 ; int tmp___28 ; long tmp___29 ; long tmp___30 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; mac = & ((struct rtl_priv *)hw->priv)->mac80211; if (! rtlpriv->dm.dynamic_txpower_enable) { return; } else { } if (((unsigned long )rtlpriv->dm.dm_flag & 2UL) != 0UL) { rtlpriv->dm.dynamic_txhighpower_lvl = 0U; return; } else { } if ((unsigned int )mac->link_state <= 1U && rtlpriv->dm.entry_min_undec_sm_pwdb == 0L) { { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> Not connected\n", "rtl92c_dm_dynamic_txpower", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } rtlpriv->dm.dynamic_txhighpower_lvl = 0U; rtlpriv->dm.last_dtp_lvl = 0U; return; } else { } if ((unsigned int )mac->link_state > 1U) { if ((unsigned int )mac->opmode == 1U) { { undec_sm_pwdb = rtlpriv->dm.entry_min_undec_sm_pwdb; tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> AP Client PWDB = 0x%lx\n", "rtl92c_dm_dynamic_txpower", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, undec_sm_pwdb); } } else { } } else { } } else { { undec_sm_pwdb = rtlpriv->dm.undec_sm_pwdb; tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count(); tmp___8 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> STA Default Port PWDB = 0x%lx\n", "rtl92c_dm_dynamic_txpower", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL, undec_sm_pwdb); } } else { } } else { } } } else { { undec_sm_pwdb = rtlpriv->dm.entry_min_undec_sm_pwdb; tmp___13 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___13 != 0L) { { tmp___14 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___14 != 0L) { { tmp___11 = preempt_count(); tmp___12 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> AP Ext Port PWDB = 0x%lx\n", "rtl92c_dm_dynamic_txpower", (unsigned long )tmp___12 & 2096896UL, ((unsigned long )tmp___11 & 0xffffffffffdfffffUL) != 0UL, undec_sm_pwdb); } } else { } } else { } } if (undec_sm_pwdb > 73L) { { rtlpriv->dm.dynamic_txhighpower_lvl = 1U; tmp___17 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___17 != 0L) { { tmp___18 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___18 != 0L) { { tmp___15 = preempt_count(); tmp___16 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> TXHIGHPWRLEVEL_LEVEL1 (TxPwr = 0x0)\n", "rtl92c_dm_dynamic_txpower", (unsigned long )tmp___16 & 2096896UL, ((unsigned long )tmp___15 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } else if ((unsigned long )undec_sm_pwdb - 67UL <= 3UL) { { rtlpriv->dm.dynamic_txhighpower_lvl = 1U; tmp___21 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___21 != 0L) { { tmp___22 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___22 != 0L) { { tmp___19 = preempt_count(); tmp___20 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> TXHIGHPWRLEVEL_LEVEL1 (TxPwr = 0x10)\n", "rtl92c_dm_dynamic_txpower", (unsigned long )tmp___20 & 2096896UL, ((unsigned long )tmp___19 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } else if (undec_sm_pwdb <= 61L) { { rtlpriv->dm.dynamic_txhighpower_lvl = 0U; tmp___25 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___25 != 0L) { { tmp___26 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___26 != 0L) { { tmp___23 = preempt_count(); tmp___24 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> TXHIGHPWRLEVEL_NORMAL\n", "rtl92c_dm_dynamic_txpower", (unsigned long )tmp___24 & 2096896UL, ((unsigned long )tmp___23 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } else { } if ((int )rtlpriv->dm.dynamic_txhighpower_lvl != (int )rtlpriv->dm.last_dtp_lvl) { { tmp___29 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___29 != 0L) { { tmp___30 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___30 != 0L) { { tmp___27 = preempt_count(); tmp___28 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> PHY_SetTxPowerLevel8192S() Channel = %d\n", "rtl92c_dm_dynamic_txpower", (unsigned long )tmp___28 & 2096896UL, ((unsigned long )tmp___27 & 0xffffffffffdfffffUL) != 0UL, (int )rtlphy->current_channel); } } else { } } else { } { rtl88e_phy_set_txpower_level(hw, (int )rtlphy->current_channel); } } else { } rtlpriv->dm.last_dtp_lvl = rtlpriv->dm.dynamic_txhighpower_lvl; return; } } void rtl88e_dm_write_dig(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct dig_t *dm_dig ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { { rtlpriv = (struct rtl_priv *)hw->priv; dm_dig = & rtlpriv->dm_digtable; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8192ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> cur_igvalue = 0x%x, pre_igvalue = 0x%x, back_val = %d\n", "rtl88e_dm_write_dig", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, dm_dig->cur_igvalue, dm_dig->pre_igvalue, (int )dm_dig->back_val); } } else { } } else { } if (dm_dig->cur_igvalue > 63U) { dm_dig->cur_igvalue = 63U; } else { } if (dm_dig->pre_igvalue != dm_dig->cur_igvalue) { { rtl_set_bbreg(hw, 3152U, 127U, dm_dig->cur_igvalue); dm_dig->pre_igvalue = dm_dig->cur_igvalue; } } else { } return; } } static void rtl88e_dm_pwdb_monitor(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; struct rtl_sta_info *drv_priv ; u64 last_txok ; u64 last_rx ; long tmp_entry_max_pwdb ; long tmp_entry_min_pwdb ; u64 cur_txok_cnt ; u64 cur_rxok_cnt ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; long tmp ; long tmp___0 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; tmp_entry_max_pwdb = 0L; tmp_entry_min_pwdb = 255L; if ((unsigned int )rtlhal->oem_id == 27U) { cur_txok_cnt = 0ULL; cur_rxok_cnt = 0ULL; cur_txok_cnt = (unsigned long long )rtlpriv->stats.txbytesunicast - last_txok; cur_rxok_cnt = (unsigned long long )rtlpriv->stats.rxbytesunicast - last_rx; last_txok = cur_txok_cnt; last_rx = cur_rxok_cnt; if (cur_rxok_cnt > cur_txok_cnt * 6ULL) { { rtl_write_dword(rtlpriv, 1092U, 585749U); } } else { { rtl_write_dword(rtlpriv, 1092U, 1044501U); } } } else { } { ldv_spin_lock_bh_64(& rtlpriv->locks.entry_list_lock); __mptr = (struct list_head const *)rtlpriv->entry_list.next; drv_priv = (struct rtl_sta_info *)__mptr; } goto ldv_51622; ldv_51621: ; if (drv_priv->rssi_stat.undec_sm_pwdb < tmp_entry_min_pwdb) { tmp_entry_min_pwdb = drv_priv->rssi_stat.undec_sm_pwdb; } else { } if (drv_priv->rssi_stat.undec_sm_pwdb > tmp_entry_max_pwdb) { tmp_entry_max_pwdb = drv_priv->rssi_stat.undec_sm_pwdb; } else { } __mptr___0 = (struct list_head const *)drv_priv->list.next; drv_priv = (struct rtl_sta_info *)__mptr___0; ldv_51622: ; if ((unsigned long )(& drv_priv->list) != (unsigned long )(& rtlpriv->entry_list)) { goto ldv_51621; } else { } { ldv_spin_unlock_bh_65(& rtlpriv->locks.entry_list_lock); } if (tmp_entry_max_pwdb != 0L) { { rtlpriv->dm.entry_max_undec_sm_pwdb = tmp_entry_max_pwdb; tmp = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[13] & 2UL) != 0UL, 0L); } if (tmp != 0L) { { printk("\017rtl8188ee: EntryMaxPWDB = 0x%lx(%ld)\n", tmp_entry_max_pwdb, tmp_entry_max_pwdb); } } else { } } else { rtlpriv->dm.entry_max_undec_sm_pwdb = 0L; } if (tmp_entry_min_pwdb != 255L) { { rtlpriv->dm.entry_min_undec_sm_pwdb = tmp_entry_min_pwdb; tmp___0 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[13] & 2UL) != 0UL, 0L); } if (tmp___0 != 0L) { { printk("\017rtl8188ee: EntryMinPWDB = 0x%lx(%ld)\n", tmp_entry_min_pwdb, tmp_entry_min_pwdb); } } else { } } else { rtlpriv->dm.entry_min_undec_sm_pwdb = 0L; } if (! rtlpriv->dm.useramask) { { rtl_write_byte(rtlpriv, 1278U, (int )((u8 )rtlpriv->dm.undec_sm_pwdb)); } } else { } return; } } void rtl88e_dm_init_edca_turbo(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlpriv->dm.current_turbo_edca = 0; rtlpriv->dm.is_any_nonbepkts = 0; rtlpriv->dm.is_cur_rdlstate = 0; return; } } static void rtl88e_dm_check_edca_turbo(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_pci_priv *rtlpcipriv ; struct rtl_mac *mac ; u64 last_txok_cnt ; u64 last_rxok_cnt ; u32 last_bt_edca_ul ; u32 last_bt_edca_dl ; u64 cur_txok_cnt ; u64 cur_rxok_cnt ; u32 edca_be_ul ; u32 edca_be_dl ; bool change_edca ; u8 tmp ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlpcipriv = (struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv); mac = & ((struct rtl_priv *)hw->priv)->mac80211; cur_txok_cnt = 0ULL; cur_rxok_cnt = 0ULL; edca_be_ul = 6202411U; edca_be_dl = 6202411U; change_edca = 0; if (last_bt_edca_ul != rtlpcipriv->bt_coexist.bt_edca_ul || last_bt_edca_dl != rtlpcipriv->bt_coexist.bt_edca_dl) { rtlpriv->dm.current_turbo_edca = 0; last_bt_edca_ul = rtlpcipriv->bt_coexist.bt_edca_ul; last_bt_edca_dl = rtlpcipriv->bt_coexist.bt_edca_dl; } else { } if (rtlpcipriv->bt_coexist.bt_edca_ul != 0U) { edca_be_ul = rtlpcipriv->bt_coexist.bt_edca_ul; change_edca = 1; } else { } if (rtlpcipriv->bt_coexist.bt_edca_dl != 0U) { edca_be_ul = rtlpcipriv->bt_coexist.bt_edca_dl; change_edca = 1; } else { } if ((unsigned int )mac->link_state != 2U) { rtlpriv->dm.current_turbo_edca = 0; return; } else { } if ((unsigned int )mac->ht_enable == 0U && (unsigned int )rtlpcipriv->bt_coexist.bt_coexistence == 0U) { if ((edca_be_ul & 4294901760U) == 0U) { edca_be_ul = edca_be_ul | 6160384U; } else { } if ((edca_be_dl & 4294901760U) == 0U) { edca_be_dl = edca_be_dl | 6160384U; } else { } } else { } if ((int )change_edca || (! rtlpriv->dm.is_any_nonbepkts && ! rtlpriv->dm.disable_framebursting)) { cur_txok_cnt = (unsigned long long )rtlpriv->stats.txbytesunicast - last_txok_cnt; cur_rxok_cnt = (unsigned long long )rtlpriv->stats.rxbytesunicast - last_rxok_cnt; if (cur_rxok_cnt > cur_txok_cnt * 4ULL) { if (! rtlpriv->dm.is_cur_rdlstate || ! rtlpriv->dm.current_turbo_edca) { { rtl_write_dword(rtlpriv, 1288U, edca_be_dl); rtlpriv->dm.is_cur_rdlstate = 1; } } else { } } else if ((int )rtlpriv->dm.is_cur_rdlstate || ! rtlpriv->dm.current_turbo_edca) { { rtl_write_dword(rtlpriv, 1288U, edca_be_ul); rtlpriv->dm.is_cur_rdlstate = 0; } } else { } rtlpriv->dm.current_turbo_edca = 1; } else if ((int )rtlpriv->dm.current_turbo_edca) { { tmp = 0U; (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 31, & tmp); rtlpriv->dm.current_turbo_edca = 0; } } else { } rtlpriv->dm.is_any_nonbepkts = 0; last_txok_cnt = (u64 )rtlpriv->stats.txbytesunicast; last_rxok_cnt = (u64 )rtlpriv->stats.rxbytesunicast; return; } } static void rtl88e_dm_txpower_tracking_callback_thermalmeter(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_efuse *rtlefuse ; struct rtl_dm *rtldm ; struct rtl_hal *rtlhal ; u8 thermalvalue ; u8 delta ; u8 delta_lck ; u8 delta_iqk ; u8 off ; u8 th_avg_cnt ; u32 thermalvalue_avg ; long ele_d ; long temp_cck ; char ofdm_index[2U] ; char cck_index ; char ofdm_old[2U] ; char cck_old ; int i ; bool is2t ; u8 ofdm_min_index ; u8 rf ; u8 index_for_channel ; char del_tbl_idx[2U][15U] ; u8 thermal_threshold[2U][15U] ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; u32 tmp___3 ; int tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; u32 tmp___8 ; int tmp___9 ; int tmp___10 ; long tmp___11 ; long tmp___12 ; u32 tmp___13 ; int tmp___14 ; int tmp___15 ; long tmp___16 ; long tmp___17 ; u32 tmp___18 ; int tmp___19 ; int tmp___20 ; long tmp___21 ; long tmp___22 ; int tmp___23 ; int tmp___24 ; int tmp___25 ; long tmp___26 ; long tmp___27 ; int tmp___28 ; int tmp___29 ; int tmp___30 ; long tmp___31 ; long tmp___32 ; int tmp___33 ; int tmp___34 ; long tmp___35 ; long tmp___36 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; rtldm = & ((struct rtl_priv *)hw->priv)->dm; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; thermalvalue = 0U; th_avg_cnt = 0U; thermalvalue_avg = 0U; cck_index = 0; ofdm_old[0] = 0; ofdm_old[1] = 0; cck_old = 0; i = 0; is2t = 0; ofdm_min_index = 6U; rf = (int )is2t ? 2U : 1U; del_tbl_idx[0][0] = 0; del_tbl_idx[0][1] = 0; del_tbl_idx[0][2] = 2; del_tbl_idx[0][3] = 3; del_tbl_idx[0][4] = 4; del_tbl_idx[0][5] = 4; del_tbl_idx[0][6] = 5; del_tbl_idx[0][7] = 6; del_tbl_idx[0][8] = 7; del_tbl_idx[0][9] = 7; del_tbl_idx[0][10] = 8; del_tbl_idx[0][11] = 9; del_tbl_idx[0][12] = 10; del_tbl_idx[0][13] = 10; del_tbl_idx[0][14] = 11; del_tbl_idx[1][0] = 0; del_tbl_idx[1][1] = 0; del_tbl_idx[1][2] = -1; del_tbl_idx[1][3] = -2; del_tbl_idx[1][4] = -3; del_tbl_idx[1][5] = -4; del_tbl_idx[1][6] = -4; del_tbl_idx[1][7] = -4; del_tbl_idx[1][8] = -4; del_tbl_idx[1][9] = -5; del_tbl_idx[1][10] = -7; del_tbl_idx[1][11] = -8; del_tbl_idx[1][12] = -9; del_tbl_idx[1][13] = -9; del_tbl_idx[1][14] = -10; thermal_threshold[0][0] = 0U; thermal_threshold[0][1] = 2U; thermal_threshold[0][2] = 4U; thermal_threshold[0][3] = 6U; thermal_threshold[0][4] = 8U; thermal_threshold[0][5] = 10U; thermal_threshold[0][6] = 12U; thermal_threshold[0][7] = 14U; thermal_threshold[0][8] = 16U; thermal_threshold[0][9] = 18U; thermal_threshold[0][10] = 20U; thermal_threshold[0][11] = 22U; thermal_threshold[0][12] = 24U; thermal_threshold[0][13] = 26U; thermal_threshold[0][14] = 27U; thermal_threshold[1][0] = 0U; thermal_threshold[1][1] = 2U; thermal_threshold[1][2] = 4U; thermal_threshold[1][3] = 6U; thermal_threshold[1][4] = 8U; thermal_threshold[1][5] = 10U; thermal_threshold[1][6] = 12U; thermal_threshold[1][7] = 14U; thermal_threshold[1][8] = 16U; thermal_threshold[1][9] = 18U; thermal_threshold[1][10] = 20U; thermal_threshold[1][11] = 22U; thermal_threshold[1][12] = 25U; thermal_threshold[1][13] = 25U; thermal_threshold[1][14] = 25U; rtlpriv->dm.txpower_trackinginit = 1; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> rtl88e_dm_txpower_tracking_callback_thermalmeter\n", "rtl88e_dm_txpower_tracking_callback_thermalmeter", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { tmp___3 = rtl_get_rfreg(hw, 0, 66U, 64512U); thermalvalue = (unsigned char )tmp___3; } if ((unsigned int )thermalvalue == 0U) { return; } else { } { tmp___6 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); } if (tmp___6 != 0L) { { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___7 != 0L) { { tmp___4 = preempt_count(); tmp___5 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> Readback Thermal Meter = 0x%x pre thermal meter 0x%x eeprom_thermalmeter 0x%x\n", "rtl88e_dm_txpower_tracking_callback_thermalmeter", (unsigned long )tmp___5 & 2096896UL, ((unsigned long )tmp___4 & 0xffffffffffdfffffUL) != 0UL, (int )thermalvalue, (int )rtlpriv->dm.thermalvalue, (int )rtlefuse->eeprom_thermalmeter); } } else { } } else { } { tmp___8 = rtl_get_bbreg(hw, 3200U, 4294967295U); ele_d = (long )tmp___8 & 4290772992L; i = 0; } goto ldv_51677; ldv_51676: ; if (ele_d == ((long )ofdmswing_table[i] & 4290772992L)) { { ofdm_old[0] = (char )i; rtldm->swing_idx_ofdm_base = (unsigned char )i; tmp___11 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); } if (tmp___11 != 0L) { { tmp___12 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___12 != 0L) { { tmp___9 = preempt_count(); tmp___10 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> Initial pathA ele_d reg0x%x = 0x%lx, ofdm_index = 0x%x\n", "rtl88e_dm_txpower_tracking_callback_thermalmeter", (unsigned long )tmp___10 & 2096896UL, ((unsigned long )tmp___9 & 0xffffffffffdfffffUL) != 0UL, 3200, ele_d, (int )ofdm_old[0]); } } else { } } else { } goto ldv_51675; } else { } i = i + 1; ldv_51677: ; if (i <= 42) { goto ldv_51676; } else { } ldv_51675: ; if ((int )is2t) { { tmp___13 = rtl_get_bbreg(hw, 3208U, 4294967295U); ele_d = (long )tmp___13 & 4290772992L; i = 0; } goto ldv_51680; ldv_51679: ; if (ele_d == ((long )ofdmswing_table[i] & 4290772992L)) { { ofdm_old[1] = (char )i; tmp___16 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); } if (tmp___16 != 0L) { { tmp___17 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___17 != 0L) { { tmp___14 = preempt_count(); tmp___15 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> Initial pathB ele_d reg0x%x = 0x%lx, ofdm_index = 0x%x\n", "rtl88e_dm_txpower_tracking_callback_thermalmeter", (unsigned long )tmp___15 & 2096896UL, ((unsigned long )tmp___14 & 0xffffffffffdfffffUL) != 0UL, 3208, ele_d, (int )ofdm_old[1]); } } else { } } else { } goto ldv_51678; } else { } i = i + 1; ldv_51680: ; if (i <= 42) { goto ldv_51679; } else { } ldv_51678: ; } else { } { tmp___18 = rtl_get_bbreg(hw, 2596U, 4294967295U); temp_cck = (long )tmp___18 & 1061109567L; i = 0; } goto ldv_51683; ldv_51682: ; if ((int )rtlpriv->dm.cck_inch14) { { tmp___23 = memcmp((void const *)(& temp_cck), (void const *)(& cck_tbl_ch14) + ((unsigned long )i + 2UL), 4UL); } if (tmp___23 == 0) { { cck_old = (char )i; rtldm->swing_idx_cck_base = (unsigned char )i; tmp___21 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); } if (tmp___21 != 0L) { { tmp___22 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___22 != 0L) { { tmp___19 = preempt_count(); tmp___20 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> Initial reg0x%x = 0x%lx, cck_index = 0x%x, ch 14 %d\n", "rtl88e_dm_txpower_tracking_callback_thermalmeter", (unsigned long )tmp___20 & 2096896UL, ((unsigned long )tmp___19 & 0xffffffffffdfffffUL) != 0UL, 2596, temp_cck, (int )cck_old, (int )rtlpriv->dm.cck_inch14); } } else { } } else { } goto ldv_51681; } else { } } else { { tmp___28 = memcmp((void const *)(& temp_cck), (void const *)(& cck_tbl_ch1_13) + ((unsigned long )i + 2UL), 4UL); } if (tmp___28 == 0) { { cck_old = (char )i; rtldm->swing_idx_cck_base = (unsigned char )i; tmp___26 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); } if (tmp___26 != 0L) { { tmp___27 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___27 != 0L) { { tmp___24 = preempt_count(); tmp___25 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> Initial reg0x%x = 0x%lx, cck_index = 0x%x, ch14 %d\n", "rtl88e_dm_txpower_tracking_callback_thermalmeter", (unsigned long )tmp___25 & 2096896UL, ((unsigned long )tmp___24 & 0xffffffffffdfffffUL) != 0UL, 2596, temp_cck, (int )cck_old, (int )rtlpriv->dm.cck_inch14); } } else { } } else { } goto ldv_51681; } else { } } i = i + 1; ldv_51683: ; if (i <= 32) { goto ldv_51682; } else { } ldv_51681: ; if ((unsigned int )rtldm->thermalvalue == 0U) { rtlpriv->dm.thermalvalue = rtlefuse->eeprom_thermalmeter; rtlpriv->dm.thermalvalue_lck = thermalvalue; rtlpriv->dm.thermalvalue_iqk = thermalvalue; i = 0; goto ldv_51685; ldv_51684: rtlpriv->dm.ofdm_index[i] = ofdm_old[i]; i = i + 1; ldv_51685: ; if (i < (int )rf) { goto ldv_51684; } else { } rtlpriv->dm.cck_index = cck_old; } else { } rtldm->thermalvalue_avg[(int )rtldm->thermalvalue_avg_index] = thermalvalue; rtldm->thermalvalue_avg_index = (u8 )((int )rtldm->thermalvalue_avg_index + 1); if ((unsigned int )rtldm->thermalvalue_avg_index == 4U) { rtldm->thermalvalue_avg_index = 0U; } else { } i = 0; goto ldv_51688; ldv_51687: ; if ((unsigned int )rtldm->thermalvalue_avg[i] != 0U) { thermalvalue_avg = thermalvalue_avg + (u32 )rtldm->thermalvalue_avg[i]; th_avg_cnt = (u8 )((int )th_avg_cnt + 1); } else { } i = i + 1; ldv_51688: ; if (i <= 3) { goto ldv_51687; } else { } if ((unsigned int )th_avg_cnt != 0U) { thermalvalue = (unsigned char )(thermalvalue_avg / (u32 )th_avg_cnt); } else { } if ((int )rtlhal->reloadtxpowerindex) { delta = (int )thermalvalue > (int )rtlefuse->eeprom_thermalmeter ? (int )thermalvalue - (int )rtlefuse->eeprom_thermalmeter : (int )rtlefuse->eeprom_thermalmeter - (int )thermalvalue; rtlhal->reloadtxpowerindex = 0; rtlpriv->dm.done_txpower = 0; } else if ((int )rtlpriv->dm.done_txpower) { delta = (int )thermalvalue > (int )rtlpriv->dm.thermalvalue ? (int )thermalvalue - (int )rtlpriv->dm.thermalvalue : (int )rtlpriv->dm.thermalvalue - (int )thermalvalue; } else { delta = (int )thermalvalue > (int )rtlefuse->eeprom_thermalmeter ? (int )thermalvalue - (int )rtlefuse->eeprom_thermalmeter : (int )rtlefuse->eeprom_thermalmeter - (int )thermalvalue; } { delta_lck = (int )thermalvalue > (int )rtlpriv->dm.thermalvalue_lck ? (int )thermalvalue - (int )rtlpriv->dm.thermalvalue_lck : (int )rtlpriv->dm.thermalvalue_lck - (int )thermalvalue; delta_iqk = (int )thermalvalue > (int )rtlpriv->dm.thermalvalue_iqk ? (int )thermalvalue - (int )rtlpriv->dm.thermalvalue_iqk : (int )rtlpriv->dm.thermalvalue_iqk - (int )thermalvalue; tmp___31 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); } if (tmp___31 != 0L) { { tmp___32 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___32 != 0L) { { tmp___29 = preempt_count(); tmp___30 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> Readback Thermal Meter = 0x%x pre thermal meter 0x%x eeprom_thermalmeter 0x%x delta 0x%x delta_lck 0x%x delta_iqk 0x%x\n", "rtl88e_dm_txpower_tracking_callback_thermalmeter", (unsigned long )tmp___30 & 2096896UL, ((unsigned long )tmp___29 & 0xffffffffffdfffffUL) != 0UL, (int )thermalvalue, (int )rtlpriv->dm.thermalvalue, (int )rtlefuse->eeprom_thermalmeter, (int )delta, (int )delta_lck, (int )delta_iqk); } } else { } } else { } if ((unsigned int )delta_lck > 7U) { { rtlpriv->dm.thermalvalue_lck = thermalvalue; rtl88e_phy_lc_calibrate(hw); } } else { } if ((unsigned int )delta != 0U && (unsigned int )rtlpriv->dm.txpower_track_control != 0U) { delta = (int )thermalvalue > (int )rtlefuse->eeprom_thermalmeter ? (int )thermalvalue - (int )rtlefuse->eeprom_thermalmeter : (int )rtlefuse->eeprom_thermalmeter - (int )thermalvalue; if ((int )thermalvalue > (int )rtlefuse->eeprom_thermalmeter) { off = 0U; goto ldv_51692; ldv_51691: ; if ((int )delta < (int )thermal_threshold[1][(int )off]) { if ((unsigned int )off != 0U) { off = (u8 )((int )off - 1); } else { } goto ldv_51690; } else { } off = (u8 )((int )off + 1); ldv_51692: ; if ((unsigned int )off <= 14U) { goto ldv_51691; } else { } ldv_51690: ; if ((unsigned int )off > 14U) { off = 14U; } else { } i = 0; goto ldv_51694; ldv_51693: ofdm_index[i] = (char )((int )((unsigned char )rtldm->ofdm_index[i]) + (int )((unsigned char )del_tbl_idx[1][(int )off])); i = i + 1; ldv_51694: ; if (i < (int )rf) { goto ldv_51693; } else { } cck_index = (char )((int )((unsigned char )rtldm->cck_index) + (int )((unsigned char )del_tbl_idx[1][(int )off])); } else { off = 0U; goto ldv_51698; ldv_51697: ; if ((int )delta < (int )thermal_threshold[0][(int )off]) { if ((unsigned int )off != 0U) { off = (u8 )((int )off - 1); } else { } goto ldv_51696; } else { } off = (u8 )((int )off + 1); ldv_51698: ; if ((unsigned int )off <= 14U) { goto ldv_51697; } else { } ldv_51696: ; if ((unsigned int )off > 14U) { off = 14U; } else { } i = 0; goto ldv_51700; ldv_51699: ofdm_index[i] = (char )((int )((unsigned char )rtldm->ofdm_index[i]) + (int )((unsigned char )del_tbl_idx[0][(int )off])); i = i + 1; ldv_51700: ; if (i < (int )rf) { goto ldv_51699; } else { } cck_index = (char )((int )((unsigned char )rtldm->cck_index) + (int )((unsigned char )del_tbl_idx[0][(int )off])); } i = 0; goto ldv_51703; ldv_51702: ; if ((int )((signed char )ofdm_index[i]) > 42) { ofdm_index[i] = 42; } else if ((int )rtldm->ofdm_index[i] < (int )ofdm_min_index) { ofdm_index[i] = (char )ofdm_min_index; } else { } i = i + 1; ldv_51703: ; if (i < (int )rf) { goto ldv_51702; } else { } if ((int )((signed char )cck_index) > 32) { cck_index = 32; } else if ((int )((signed char )cck_index) < 0) { cck_index = 0; } else { } if ((unsigned int )rtlpriv->dm.txpower_track_control != 0U) { rtldm->done_txpower = 1; rtldm->swing_idx_ofdm[0] = (unsigned char )ofdm_index[0]; if ((int )is2t) { rtldm->swing_idx_ofdm[1] = (unsigned char )ofdm_index[1]; } else { } rtldm->swing_idx_cck = (u8 )cck_index; if ((int )rtldm->swing_idx_ofdm_cur != (int )rtldm->swing_idx_ofdm[0]) { rtldm->swing_idx_ofdm_cur = rtldm->swing_idx_ofdm[0]; rtldm->swing_flag_ofdm = 1; } else { } if ((int )rtldm->swing_idx_cck_cur != (int )rtldm->swing_idx_cck) { rtldm->swing_idx_cck_cur = rtldm->swing_idx_cck; rtldm->swing_flag_cck = 1; } else { } { rtl88e_chk_tx_track(hw, 1, 0, 0); } if ((int )is2t) { { rtl88e_chk_tx_track(hw, 0, 1, (int )index_for_channel); } } else { } } else { } } else { } if ((unsigned int )delta_iqk > 7U) { { rtlpriv->dm.thermalvalue_iqk = thermalvalue; rtl88e_phy_iq_calibrate(hw, 0); } } else { } if ((unsigned int )rtldm->txpower_track_control != 0U) { rtldm->thermalvalue = thermalvalue; } else { } { rtldm->txpowercount = 0U; tmp___35 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); } if (tmp___35 != 0L) { { tmp___36 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___36 != 0L) { { tmp___33 = preempt_count(); tmp___34 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> end\n", "rtl88e_dm_txpower_tracking_callback_thermalmeter", (unsigned long )tmp___34 & 2096896UL, ((unsigned long )tmp___33 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } } static void rtl88e_dm_init_txpower_tracking(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlpriv->dm.txpower_tracking = 1; rtlpriv->dm.txpower_trackinginit = 0; rtlpriv->dm.txpowercount = 0U; rtlpriv->dm.txpower_track_control = 1U; rtlpriv->dm.swing_idx_ofdm[0] = 12U; rtlpriv->dm.swing_idx_ofdm_cur = 12U; rtlpriv->dm.swing_flag_ofdm = 0; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> rtlpriv->dm.txpower_tracking = %d\n", "rtl88e_dm_init_txpower_tracking", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )rtlpriv->dm.txpower_tracking); } } else { } } else { } return; } } void rtl88e_dm_check_txpower_tracking(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; u8 tm_trigger ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { rtlpriv = (struct rtl_priv *)hw->priv; if (! rtlpriv->dm.txpower_tracking) { return; } else { } if ((unsigned int )tm_trigger == 0U) { { rtl_set_rfreg(hw, 0, 66U, 196608U, 3U); tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> Trigger 88E Thermal Meter!!\n", "rtl88e_dm_check_txpower_tracking", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } tm_trigger = 1U; return; } else { { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> Schedule TxPowerTracking !!\n", "rtl88e_dm_check_txpower_tracking", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { rtl88e_dm_txpower_tracking_callback_thermalmeter(hw); tm_trigger = 0U; } } return; } } void rtl88e_dm_init_rate_adaptive_mask(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rate_adaptive *p_ra ; { rtlpriv = (struct rtl_priv *)hw->priv; p_ra = & rtlpriv->ra; p_ra->ratr_state = 0U; p_ra->pre_ratr_state = 0U; if ((unsigned int )rtlpriv->dm.dm_type == 1U) { rtlpriv->dm.useramask = 1; } else { rtlpriv->dm.useramask = 0; } return; } } static void rtl88e_dm_refresh_rate_adaptive_mask(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; struct rtl_mac *mac ; struct rate_adaptive *p_ra ; struct ieee80211_sta *sta ; u32 low_rssi ; u32 hi_rssi ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; bool tmp___3 ; int tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; int tmp___8 ; int tmp___9 ; long tmp___10 ; long tmp___11 ; int tmp___12 ; int tmp___13 ; long tmp___14 ; long tmp___15 ; int tmp___16 ; int tmp___17 ; long tmp___18 ; long tmp___19 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; mac = & ((struct rtl_priv *)hw->priv)->mac80211; p_ra = & rtlpriv->ra; sta = (struct ieee80211_sta *)0; tmp___3 = is_hal_stop(rtlhal); } if ((int )tmp___3) { { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 2048ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> driver is going to unload\n", "rtl88e_dm_refresh_rate_adaptive_mask", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } else { } if (! rtlpriv->dm.useramask) { { tmp___6 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 2048ULL) != 0ULL, 0L); } if (tmp___6 != 0L) { { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___7 != 0L) { { tmp___4 = preempt_count(); tmp___5 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> driver does not control rate adaptive mask\n", "rtl88e_dm_refresh_rate_adaptive_mask", (unsigned long )tmp___5 & 2096896UL, ((unsigned long )tmp___4 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } else { } if ((unsigned int )mac->link_state == 2U && (unsigned int )mac->opmode == 2U) { { if ((int )p_ra->pre_ratr_state == 1) { goto case_1; } else { } if ((int )p_ra->pre_ratr_state == 2) { goto case_2; } else { } if ((int )p_ra->pre_ratr_state == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ hi_rssi = 50U; low_rssi = 20U; goto ldv_51733; case_2: /* CIL Label */ hi_rssi = 55U; low_rssi = 20U; goto ldv_51733; case_3: /* CIL Label */ hi_rssi = 50U; low_rssi = 25U; goto ldv_51733; switch_default: /* CIL Label */ hi_rssi = 50U; low_rssi = 20U; goto ldv_51733; switch_break: /* CIL Label */ ; } ldv_51733: ; if (rtlpriv->dm.undec_sm_pwdb > (long )hi_rssi) { p_ra->ratr_state = 1U; } else if (rtlpriv->dm.undec_sm_pwdb > (long )low_rssi) { p_ra->ratr_state = 2U; } else { p_ra->ratr_state = 3U; } if ((int )p_ra->pre_ratr_state != (int )p_ra->ratr_state) { { tmp___10 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 2048ULL) != 0ULL, 0L); } if (tmp___10 != 0L) { { tmp___11 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___11 != 0L) { { tmp___8 = preempt_count(); tmp___9 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> RSSI = %ld\n", "rtl88e_dm_refresh_rate_adaptive_mask", (unsigned long )tmp___9 & 2096896UL, ((unsigned long )tmp___8 & 0xffffffffffdfffffUL) != 0UL, rtlpriv->dm.undec_sm_pwdb); } } else { } } else { } { tmp___14 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 2048ULL) != 0ULL, 0L); } if (tmp___14 != 0L) { { tmp___15 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___15 != 0L) { { tmp___12 = preempt_count(); tmp___13 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> RSSI_LEVEL = %d\n", "rtl88e_dm_refresh_rate_adaptive_mask", (unsigned long )tmp___13 & 2096896UL, ((unsigned long )tmp___12 & 0xffffffffffdfffffUL) != 0UL, (int )p_ra->ratr_state); } } else { } } else { } { tmp___18 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 2048ULL) != 0ULL, 0L); } if (tmp___18 != 0L) { { tmp___19 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___19 != 0L) { { tmp___16 = preempt_count(); tmp___17 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> PreState = %d, CurState = %d\n", "rtl88e_dm_refresh_rate_adaptive_mask", (unsigned long )tmp___17 & 2096896UL, ((unsigned long )tmp___16 & 0xffffffffffdfffffUL) != 0UL, (int )p_ra->pre_ratr_state, (int )p_ra->ratr_state); } } else { } } else { } { rcu_read_lock(); sta = rtl_find_sta(hw, (u8 *)(& mac->bssid)); } if ((unsigned long )sta != (unsigned long )((struct ieee80211_sta *)0)) { { (*(((rtlpriv->cfg)->ops)->update_rate_tbl))(hw, sta, (int )p_ra->ratr_state); } } else { } { rcu_read_unlock(); p_ra->pre_ratr_state = p_ra->ratr_state; } } else { } } else { } return; } } static void rtl92c_dm_init_dynamic_bb_powersaving(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct ps_t *dm_pstable ; { rtlpriv = (struct rtl_priv *)hw->priv; dm_pstable = & rtlpriv->dm_pstable; dm_pstable->pre_ccastate = 2U; dm_pstable->cur_ccasate = 2U; dm_pstable->pre_rfstate = 2U; dm_pstable->cur_rfstate = 2U; dm_pstable->rssi_val_min = 0L; return; } } static void rtl88e_dm_update_rx_idle_ant(struct ieee80211_hw *hw , u8 ant ) { struct rtl_priv *rtlpriv ; struct rtl_efuse *rtlefuse ; struct rtl_dm *rtldm ; struct fast_ant_training *fat_tbl ; u32 def_ant ; u32 opt_ant ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; rtldm = & ((struct rtl_priv *)hw->priv)->dm; fat_tbl = & rtldm->fat_table; if ((int )fat_tbl->rx_idle_ant != (int )ant) { { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> need to update rx idle ant\n", "rtl88e_dm_update_rx_idle_ant", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } if ((unsigned int )ant == 0U) { def_ant = (unsigned int )fat_tbl->rx_idle_ant == 1U; opt_ant = (unsigned int )fat_tbl->rx_idle_ant != 1U; } else { def_ant = (unsigned int )fat_tbl->rx_idle_ant != 1U; opt_ant = (unsigned int )fat_tbl->rx_idle_ant == 1U; } if ((unsigned int )rtlefuse->antenna_div_type == 1U) { { rtl_set_bbreg(hw, 2148U, 56U, def_ant); rtl_set_bbreg(hw, 2148U, 448U, opt_ant); rtl_set_bbreg(hw, 2144U, 28672U, def_ant); rtl_set_bbreg(hw, 1752U, 192U, def_ant); } } else if ((unsigned int )rtlefuse->antenna_div_type == 2U) { { rtl_set_bbreg(hw, 2148U, 56U, def_ant); rtl_set_bbreg(hw, 2148U, 448U, opt_ant); } } else { } } else { } { fat_tbl->rx_idle_ant = ant; tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> RxIdleAnt %s\n", "rtl88e_dm_update_rx_idle_ant", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, (unsigned int )ant == 0U ? (char *)"MAIN_ANT" : (char *)"AUX_ANT"); } } else { } } else { } return; } } static void rtl88e_dm_update_tx_ant(struct ieee80211_hw *hw , u8 ant , u32 mac_id ) { struct rtl_priv *rtlpriv ; struct rtl_dm *rtldm ; struct fast_ant_training *fat_tbl ; u8 target_ant ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtldm = & ((struct rtl_priv *)hw->priv)->dm; fat_tbl = & rtldm->fat_table; if ((unsigned int )ant == 0U) { target_ant = 1U; } else { target_ant = 0U; } { fat_tbl->antsel_a[mac_id] = (unsigned int )target_ant & 1U; fat_tbl->antsel_b[mac_id] = (u8 )(((unsigned long )target_ant & 2UL) >> 1); fat_tbl->antsel_c[mac_id] = (u8 )(((unsigned long )target_ant & 4UL) >> 2); tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> txfrominfo target ant %s\n", "rtl88e_dm_update_tx_ant", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (unsigned int )ant == 0U ? (char *)"MAIN_ANT" : (char *)"AUX_ANT"); } } else { } } else { } { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> antsel_tr_mux = 3\'b%d%d%d\n", "rtl88e_dm_update_tx_ant", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, (int )fat_tbl->antsel_c[mac_id], (int )fat_tbl->antsel_b[mac_id], (int )fat_tbl->antsel_a[mac_id]); } } else { } } else { } return; } } static void rtl88e_dm_rx_hw_antena_div_init(struct ieee80211_hw *hw ) { u32 value32 ; { { value32 = rtl_get_bbreg(hw, 76U, 4294967295U); rtl_set_bbreg(hw, 76U, 4294967295U, value32 | 41943040U); rtl_set_bbreg(hw, 2160U, 768U, 0U); rtl_set_bbreg(hw, 2148U, 1024U, 0U); rtl_set_bbreg(hw, 2860U, 4194304U, 1U); rtl_set_bbreg(hw, 2860U, 2147483648U, 1U); rtl_set_bbreg(hw, 3236U, 4294967295U, 160U); rtl_set_bbreg(hw, 2676U, 128U, 1U); rtl_set_bbreg(hw, 2572U, 16U, 1U); rtl88e_dm_update_rx_idle_ant(hw, 0); rtl_set_bbreg(hw, 2324U, 65535U, 513U); } return; } } static void rtl88e_dm_trx_hw_antenna_div_init(struct ieee80211_hw *hw ) { u32 value32 ; { { value32 = rtl_get_bbreg(hw, 76U, 4294967295U); rtl_set_bbreg(hw, 76U, 4294967295U, value32 | 41943040U); rtl_set_bbreg(hw, 2160U, 768U, 0U); rtl_set_bbreg(hw, 2148U, 1024U, 0U); rtl_set_bbreg(hw, 2860U, 4194304U, 0U); rtl_set_bbreg(hw, 2860U, 2147483648U, 1U); rtl_set_bbreg(hw, 3236U, 4294967295U, 160U); rtl_set_bbreg(hw, 2676U, 128U, 1U); rtl_set_bbreg(hw, 2572U, 16U, 1U); rtl_set_bbreg(hw, 2060U, 2097152U, 0U); rtl88e_dm_update_rx_idle_ant(hw, 0); rtl_set_bbreg(hw, 2324U, 65535U, 513U); } return; } } static void rtl88e_dm_fast_training_init(struct ieee80211_hw *hw ) { struct rtl_dm *rtldm ; struct fast_ant_training *fat_tbl ; u32 ant_combo ; u32 value32 ; u32 i ; { rtldm = & ((struct rtl_priv *)hw->priv)->dm; fat_tbl = & rtldm->fat_table; ant_combo = 2U; i = 0U; goto ldv_51780; ldv_51779: fat_tbl->bssid[i] = 0U; fat_tbl->ant_sum[i] = 0U; fat_tbl->ant_cnt[i] = 0U; fat_tbl->ant_ave[i] = 0U; i = i + 1U; ldv_51780: ; if (i <= 5U) { goto ldv_51779; } else { } { fat_tbl->train_idx = 0U; fat_tbl->fat_state = 0U; value32 = rtl_get_bbreg(hw, 76U, 4294967295U); rtl_set_bbreg(hw, 76U, 4294967295U, value32 | 41943040U); value32 = rtl_get_bbreg(hw, 1972U, 4294967295U); rtl_set_bbreg(hw, 1972U, 4294967295U, value32 | 196608U); rtl_set_bbreg(hw, 1972U, 65535U, 0U); rtl_set_bbreg(hw, 1968U, 4294967295U, 0U); rtl_set_bbreg(hw, 2160U, 768U, 0U); rtl_set_bbreg(hw, 2148U, 1024U, 0U); rtl_set_bbreg(hw, 2860U, 4194304U, 0U); rtl_set_bbreg(hw, 2860U, 2147483648U, 1U); rtl_set_bbreg(hw, 3236U, 4294967295U, 160U); } if (ant_combo == 2U) { { rtl_set_bbreg(hw, 2324U, 255U, 1U); rtl_set_bbreg(hw, 2324U, 65280U, 2U); } } else if (ant_combo == 7U) { { rtl_set_bbreg(hw, 2324U, 255U, 1U); rtl_set_bbreg(hw, 2324U, 65280U, 2U); rtl_set_bbreg(hw, 2324U, 16711680U, 2U); rtl_set_bbreg(hw, 2324U, 4278190080U, 3U); rtl_set_bbreg(hw, 2328U, 255U, 4U); rtl_set_bbreg(hw, 2328U, 65280U, 5U); rtl_set_bbreg(hw, 2328U, 16711680U, 6U); rtl_set_bbreg(hw, 2328U, 4278190080U, 7U); } } else { } { rtl_set_bbreg(hw, 2060U, 2097152U, 1U); rtl_set_bbreg(hw, 2148U, 56U, 0U); rtl_set_bbreg(hw, 2148U, 448U, 1U); rtl_set_bbreg(hw, 2148U, 7U, ant_combo - 1U); rtl_set_bbreg(hw, 3152U, 128U, 1U); } return; } } static void rtl88e_dm_antenna_div_init(struct ieee80211_hw *hw ) { struct rtl_efuse *rtlefuse ; { rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; if ((unsigned int )rtlefuse->antenna_div_type == 2U) { { rtl88e_dm_rx_hw_antena_div_init(hw); } } else if ((unsigned int )rtlefuse->antenna_div_type == 1U) { { rtl88e_dm_trx_hw_antenna_div_init(hw); } } else if ((unsigned int )rtlefuse->antenna_div_type == 4U) { { rtl88e_dm_fast_training_init(hw); } } else { } return; } } void rtl88e_dm_set_tx_ant_by_tx_info(struct ieee80211_hw *hw , u8 *pdesc , u32 mac_id ) { struct rtl_efuse *rtlefuse ; struct rtl_dm *rtldm ; struct fast_ant_training *fat_tbl ; { rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; rtldm = & ((struct rtl_priv *)hw->priv)->dm; fat_tbl = & rtldm->fat_table; if ((unsigned int )rtlefuse->antenna_div_type == 1U) { *((u32 *)pdesc + 8U) = (*((__le32 *)pdesc + 8U) & 4278190079U) | (((unsigned int )fat_tbl->antsel_a[mac_id] & 1U) << 24); *((u32 *)pdesc + 8U) = (*((__le32 *)pdesc + 8U) & 4261412863U) | (((unsigned int )fat_tbl->antsel_b[mac_id] & 1U) << 25); *((u32 *)pdesc + 28U) = (*((__le32 *)pdesc + 28U) & 3758096383U) | (((unsigned int )fat_tbl->antsel_c[mac_id] & 1U) << 29); } else { } return; } } void rtl88e_dm_ant_sel_statistics(struct ieee80211_hw *hw , u8 antsel_tr_mux , u32 mac_id , u32 rx_pwdb_all ) { struct rtl_efuse *rtlefuse ; struct rtl_dm *rtldm ; struct fast_ant_training *fat_tbl ; { rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; rtldm = & ((struct rtl_priv *)hw->priv)->dm; fat_tbl = & rtldm->fat_table; if ((unsigned int )rtlefuse->antenna_div_type == 1U) { if ((unsigned int )antsel_tr_mux == 1U) { fat_tbl->main_ant_sum[mac_id] = fat_tbl->main_ant_sum[mac_id] + rx_pwdb_all; fat_tbl->main_ant_cnt[mac_id] = fat_tbl->main_ant_cnt[mac_id] + 1U; } else { fat_tbl->aux_ant_sum[mac_id] = fat_tbl->aux_ant_sum[mac_id] + rx_pwdb_all; fat_tbl->aux_ant_cnt[mac_id] = fat_tbl->aux_ant_cnt[mac_id] + 1U; } } else if ((unsigned int )rtlefuse->antenna_div_type == 2U) { if ((unsigned int )antsel_tr_mux == 0U) { fat_tbl->main_ant_sum[mac_id] = fat_tbl->main_ant_sum[mac_id] + rx_pwdb_all; fat_tbl->main_ant_cnt[mac_id] = fat_tbl->main_ant_cnt[mac_id] + 1U; } else { fat_tbl->aux_ant_sum[mac_id] = fat_tbl->aux_ant_sum[mac_id] + rx_pwdb_all; fat_tbl->aux_ant_cnt[mac_id] = fat_tbl->aux_ant_cnt[mac_id] + 1U; } } else { } return; } } static void rtl88e_dm_hw_ant_div(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct dig_t *dm_dig ; struct rtl_efuse *rtlefuse ; struct rtl_dm *rtldm ; struct rtl_sta_info *drv_priv ; struct fast_ant_training *fat_tbl ; u32 i ; u32 min_rssi ; u32 ant_div_max_rssi ; u32 max_rssi ; u32 local_min_rssi ; u32 local_max_rssi ; u32 main_rssi ; u32 aux_rssi ; u8 rx_idle_ant ; u8 target_ant ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; struct list_head const *__mptr ; u32 __max1 ; u32 __max2 ; struct list_head const *__mptr___0 ; { { rtlpriv = (struct rtl_priv *)hw->priv; dm_dig = & rtlpriv->dm_digtable; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; rtldm = & ((struct rtl_priv *)hw->priv)->dm; fat_tbl = & rtldm->fat_table; min_rssi = 255U; ant_div_max_rssi = 0U; max_rssi = 0U; rx_idle_ant = 0U; target_ant = 7U; i = 0U; main_rssi = fat_tbl->main_ant_cnt[i] != 0U ? fat_tbl->main_ant_sum[i] / fat_tbl->main_ant_cnt[i] : 0U; aux_rssi = fat_tbl->aux_ant_cnt[i] != 0U ? fat_tbl->aux_ant_sum[i] / fat_tbl->aux_ant_cnt[i] : 0U; target_ant = main_rssi == aux_rssi ? fat_tbl->rx_idle_ant : main_rssi < aux_rssi; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> main_ant_sum %d main_ant_cnt %d\n", "rtl88e_dm_hw_ant_div", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, fat_tbl->main_ant_sum[i], fat_tbl->main_ant_cnt[i]); } } else { } } else { } { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> aux_ant_sum %d aux_ant_cnt %d\n", "rtl88e_dm_hw_ant_div", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, fat_tbl->aux_ant_sum[i], fat_tbl->aux_ant_cnt[i]); } } else { } } else { } { tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count(); tmp___8 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> main_rssi %d aux_rssi%d\n", "rtl88e_dm_hw_ant_div", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL, main_rssi, aux_rssi); } } else { } } else { } local_max_rssi = main_rssi > aux_rssi ? main_rssi : aux_rssi; if (local_max_rssi > ant_div_max_rssi && local_max_rssi <= 39U) { ant_div_max_rssi = local_max_rssi; } else { } if (local_max_rssi > max_rssi) { max_rssi = local_max_rssi; } else { } if ((unsigned int )fat_tbl->rx_idle_ant == 0U && main_rssi == 0U) { main_rssi = aux_rssi; } else if ((unsigned int )fat_tbl->rx_idle_ant == 1U && aux_rssi == 0U) { aux_rssi = main_rssi; } else { } local_min_rssi = aux_rssi < main_rssi ? aux_rssi : main_rssi; if (local_min_rssi < min_rssi) { min_rssi = local_min_rssi; rx_idle_ant = target_ant; } else { } if ((unsigned int )rtlefuse->antenna_div_type == 1U) { { rtl88e_dm_update_tx_ant(hw, (int )target_ant, i); } } else { } if ((unsigned int )rtlpriv->mac80211.opmode == 3U || (unsigned int )rtlpriv->mac80211.opmode == 1U) { { ldv_spin_lock_bh_64(& rtlpriv->locks.entry_list_lock); __mptr = (struct list_head const *)rtlpriv->entry_list.next; drv_priv = (struct rtl_sta_info *)__mptr; } goto ldv_51831; ldv_51830: i = i + 1U; main_rssi = fat_tbl->main_ant_cnt[i] != 0U ? fat_tbl->main_ant_sum[i] / fat_tbl->main_ant_cnt[i] : 0U; aux_rssi = fat_tbl->aux_ant_cnt[i] != 0U ? fat_tbl->aux_ant_sum[i] / fat_tbl->aux_ant_cnt[i] : 0U; target_ant = main_rssi == aux_rssi ? fat_tbl->rx_idle_ant : main_rssi < aux_rssi; __max1 = main_rssi; __max2 = aux_rssi; local_max_rssi = __max1 > __max2 ? __max1 : __max2; if (local_max_rssi > ant_div_max_rssi && local_max_rssi <= 39U) { ant_div_max_rssi = local_max_rssi; } else { } if (local_max_rssi > max_rssi) { max_rssi = local_max_rssi; } else { } if ((unsigned int )fat_tbl->rx_idle_ant == 0U && main_rssi == 0U) { main_rssi = aux_rssi; } else if ((unsigned int )fat_tbl->rx_idle_ant == 1U && aux_rssi == 0U) { aux_rssi = main_rssi; } else { } local_min_rssi = aux_rssi < main_rssi ? aux_rssi : main_rssi; if (local_min_rssi < min_rssi) { min_rssi = local_min_rssi; rx_idle_ant = target_ant; } else { } if ((unsigned int )rtlefuse->antenna_div_type == 1U) { { rtl88e_dm_update_tx_ant(hw, (int )target_ant, i); } } else { } __mptr___0 = (struct list_head const *)drv_priv->list.next; drv_priv = (struct rtl_sta_info *)__mptr___0; ldv_51831: ; if ((unsigned long )(& drv_priv->list) != (unsigned long )(& rtlpriv->entry_list)) { goto ldv_51830; } else { } { ldv_spin_unlock_bh_65(& rtlpriv->locks.entry_list_lock); } } else { } i = 0U; goto ldv_51834; ldv_51833: fat_tbl->main_ant_sum[i] = 0U; fat_tbl->aux_ant_sum[i] = 0U; fat_tbl->main_ant_cnt[i] = 0U; fat_tbl->aux_ant_cnt[i] = 0U; i = i + 1U; ldv_51834: ; if (i <= 32U) { goto ldv_51833; } else { } { rtl88e_dm_update_rx_idle_ant(hw, (int )rx_idle_ant); dm_dig->antdiv_rssi_max = ant_div_max_rssi; dm_dig->rssi_max = max_rssi; } return; } } static void rtl88e_set_next_mac_address_target(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_mac *mac ; struct rtl_dm *rtldm ; struct rtl_sta_info *drv_priv ; struct fast_ant_training *fat_tbl ; u32 value32 ; u32 i ; u32 j ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { rtlpriv = (struct rtl_priv *)hw->priv; mac = & ((struct rtl_priv *)hw->priv)->mac80211; rtldm = & ((struct rtl_priv *)hw->priv)->dm; fat_tbl = & rtldm->fat_table; j = 0U; if ((unsigned int )mac->link_state > 1U) { i = 0U; goto ldv_51857; ldv_51856: ; if (fat_tbl->train_idx == 32U) { fat_tbl->train_idx = 0U; } else { fat_tbl->train_idx = fat_tbl->train_idx + 1U; } if (fat_tbl->train_idx == 0U) { { value32 = (u32 )(((int )mac->mac_addr[5] << 8) | (int )mac->mac_addr[4]); rtl_set_bbreg(hw, 1972U, 65535U, value32); value32 = (u32 )(((((int )mac->mac_addr[3] << 24) | ((int )mac->mac_addr[2] << 16)) | ((int )mac->mac_addr[1] << 8)) | (int )mac->mac_addr[0]); rtl_set_bbreg(hw, 1968U, 4294967295U, value32); } goto ldv_51847; } else { } if ((unsigned int )rtlpriv->mac80211.opmode != 2U) { { ldv_spin_lock_bh_64(& rtlpriv->locks.entry_list_lock); __mptr = (struct list_head const *)rtlpriv->entry_list.next; drv_priv = (struct rtl_sta_info *)__mptr; } goto ldv_51855; ldv_51854: j = j + 1U; if (j != fat_tbl->train_idx) { goto ldv_51852; } else { } { value32 = (u32 )(((int )drv_priv->mac_addr[5] << 8) | (int )drv_priv->mac_addr[4]); rtl_set_bbreg(hw, 1972U, 65535U, value32); value32 = (u32 )(((((int )drv_priv->mac_addr[3] << 24) | ((int )drv_priv->mac_addr[2] << 16)) | ((int )drv_priv->mac_addr[1] << 8)) | (int )drv_priv->mac_addr[0]); rtl_set_bbreg(hw, 1968U, 4294967295U, value32); } goto ldv_51853; ldv_51852: __mptr___0 = (struct list_head const *)drv_priv->list.next; drv_priv = (struct rtl_sta_info *)__mptr___0; ldv_51855: ; if ((unsigned long )(& drv_priv->list) != (unsigned long )(& rtlpriv->entry_list)) { goto ldv_51854; } else { } ldv_51853: { ldv_spin_unlock_bh_65(& rtlpriv->locks.entry_list_lock); } if (j == fat_tbl->train_idx) { goto ldv_51847; } else { } } else { } i = i + 1U; ldv_51857: ; if (i <= 32U) { goto ldv_51856; } else { } ldv_51847: ; } else { } return; } } static void rtl88e_dm_fast_ant_training(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_dm *rtldm ; struct fast_ant_training *fat_tbl ; u32 i ; u32 max_rssi ; u8 target_ant ; bool bpkt_filter_match ; unsigned long tmp ; { rtlpriv = (struct rtl_priv *)hw->priv; rtldm = & ((struct rtl_priv *)hw->priv)->dm; fat_tbl = & rtldm->fat_table; max_rssi = 0U; target_ant = 2U; bpkt_filter_match = 0; if ((unsigned int )fat_tbl->fat_state == 1U) { i = 0U; goto ldv_51869; ldv_51868: ; if (fat_tbl->ant_cnt[i] == 0U) { fat_tbl->ant_ave[i] = 0U; } else { fat_tbl->ant_ave[i] = fat_tbl->ant_sum[i] / fat_tbl->ant_cnt[i]; bpkt_filter_match = 1; } if (fat_tbl->ant_ave[i] > max_rssi) { max_rssi = fat_tbl->ant_ave[i]; target_ant = (unsigned char )i; } else { } i = i + 1U; ldv_51869: ; if (i <= 6U) { goto ldv_51868; } else { } if (! bpkt_filter_match) { { rtl_set_bbreg(hw, 3592U, 65536U, 0U); rtl_set_bbreg(hw, 3152U, 128U, 0U); } } else { { rtl_set_bbreg(hw, 3592U, 65536U, 0U); rtl_set_bbreg(hw, 2148U, 448U, (u32 )target_ant); rtl_set_bbreg(hw, 2060U, 2097152U, 1U); fat_tbl->antsel_a[fat_tbl->train_idx] = (unsigned int )target_ant & 1U; fat_tbl->antsel_b[fat_tbl->train_idx] = (u8 )(((unsigned long )target_ant & 2UL) >> 1); fat_tbl->antsel_c[fat_tbl->train_idx] = (u8 )(((unsigned long )target_ant & 4UL) >> 2); } if ((unsigned int )target_ant == 0U) { { rtl_set_bbreg(hw, 3152U, 128U, 0U); } } else { } } i = 0U; goto ldv_51872; ldv_51871: fat_tbl->ant_sum[i] = 0U; fat_tbl->ant_cnt[i] = 0U; i = i + 1U; ldv_51872: ; if (i <= 6U) { goto ldv_51871; } else { } fat_tbl->fat_state = 0U; return; } else { } if ((unsigned int )fat_tbl->fat_state == 0U) { { rtl88e_set_next_mac_address_target(hw); fat_tbl->fat_state = 1U; rtl_set_bbreg(hw, 3592U, 65536U, 1U); rtl_set_bbreg(hw, 3152U, 128U, 1U); tmp = msecs_to_jiffies(2000U); ldv_mod_timer_70(& rtlpriv->works.fast_antenna_training_timer, (unsigned long )jiffies + tmp); } } else { } return; } } void rtl88e_dm_fast_antenna_training_callback(unsigned long data ) { struct ieee80211_hw *hw ; { { hw = (struct ieee80211_hw *)data; rtl88e_dm_fast_ant_training(hw); } return; } } static void rtl88e_dm_antenna_diversity(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_mac *mac ; struct rtl_efuse *rtlefuse ; struct rtl_dm *rtldm ; struct fast_ant_training *fat_tbl ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; { rtlpriv = (struct rtl_priv *)hw->priv; mac = & ((struct rtl_priv *)hw->priv)->mac80211; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; rtldm = & ((struct rtl_priv *)hw->priv)->dm; fat_tbl = & rtldm->fat_table; if ((unsigned int )mac->link_state <= 1U) { { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8192ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> No Link\n", "rtl88e_dm_antenna_diversity", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } if ((int )fat_tbl->becomelinked) { { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8192ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> need to turn off HW AntDiv\n", "rtl88e_dm_antenna_diversity", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { rtl_set_bbreg(hw, 3152U, 128U, 0U); rtl_set_bbreg(hw, 2560U, 32768U, 0U); } if ((unsigned int )rtlefuse->antenna_div_type == 1U) { { rtl_set_bbreg(hw, 2060U, 2097152U, 0U); } } else { } fat_tbl->becomelinked = (unsigned int )mac->link_state == 2U; } else { } return; } else if (! fat_tbl->becomelinked) { { tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8192ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count(); tmp___8 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> Need to turn on HW AntDiv\n", "rtl88e_dm_antenna_diversity", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { rtl_set_bbreg(hw, 3152U, 128U, 1U); rtl_set_bbreg(hw, 2560U, 32768U, 1U); } if ((unsigned int )rtlefuse->antenna_div_type == 1U) { { rtl_set_bbreg(hw, 2060U, 2097152U, 1U); } } else { } fat_tbl->becomelinked = (unsigned int )mac->link_state > 1U; } else { } if ((unsigned int )rtlefuse->antenna_div_type - 1U <= 1U) { { rtl88e_dm_hw_ant_div(hw); } } else if ((unsigned int )rtlefuse->antenna_div_type == 4U) { { rtl88e_dm_fast_ant_training(hw); } } else { } return; } } void rtl88e_dm_init(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlpriv->dm.dm_type = 1U; rtl88e_dm_diginit(hw); rtl88e_dm_init_dynamic_txpower(hw); rtl88e_dm_init_edca_turbo(hw); rtl88e_dm_init_rate_adaptive_mask(hw); rtl88e_dm_init_txpower_tracking(hw); rtl92c_dm_init_dynamic_bb_powersaving(hw); rtl88e_dm_antenna_div_init(hw); } return; } } void rtl88e_dm_watchdog(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_ps_ctl *ppsc ; bool fw_current_inpsmode ; bool fw_ps_awake ; { { rtlpriv = (struct rtl_priv *)hw->priv; ppsc = & ((struct rtl_priv *)hw->priv)->psc; fw_current_inpsmode = 0; fw_ps_awake = 1; (*(((rtlpriv->cfg)->ops)->get_hw_reg))(hw, 63, (u8 *)(& fw_current_inpsmode)); (*(((rtlpriv->cfg)->ops)->get_hw_reg))(hw, 83, (u8 *)(& fw_ps_awake)); } if ((unsigned int )ppsc->p2p_ps_info.p2p_ps_mode != 0U) { fw_ps_awake = 0; } else { } if (((unsigned int )ppsc->rfpwr_state == 0U && (! fw_current_inpsmode && (int )fw_ps_awake)) && ! ppsc->rfchange_inprogress) { { rtl88e_dm_pwdb_monitor(hw); rtl88e_dm_dig(hw); rtl88e_dm_false_alarm_counter_statistics(hw); rtl92c_dm_dynamic_txpower(hw); rtl88e_dm_check_txpower_tracking(hw); rtl88e_dm_refresh_rate_adaptive_mask(hw); rtl88e_dm_check_edca_turbo(hw); rtl88e_dm_antenna_diversity(hw); } } else { } return; } } void ldv_dispatch_instance_register_6_2(struct timer_list *arg0 ) ; int ldv_mod_timer(int arg0 , struct timer_list *arg1 , unsigned long arg2 ) ; void ldv_timer_timer_instance_4(void *arg0 ) ; void ldv_dispatch_instance_register_6_2(struct timer_list *arg0 ) { struct ldv_struct_timer_instance_4 *cf_arg_4 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_4 = (struct ldv_struct_timer_instance_4 *)tmp; cf_arg_4->arg0 = arg0; ldv_timer_timer_instance_4((void *)cf_arg_4); } return; } } int ldv_mod_timer(int arg0 , struct timer_list *arg1 , unsigned long arg2 ) { struct timer_list *ldv_6_timer_list_timer_list ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_6_timer_list_timer_list = arg1; ldv_dispatch_instance_register_6_2(ldv_6_timer_list_timer_list); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } __inline static void ldv_spin_lock_bh_64(spinlock_t *lock ) { { { ldv_spin_lock_entry_list_lock_of_rtl_locks(); spin_lock_bh(lock); } return; } } __inline static void ldv_spin_unlock_bh_65(spinlock_t *lock ) { { { ldv_spin_unlock_entry_list_lock_of_rtl_locks(); spin_unlock_bh(lock); } return; } } static int ldv_mod_timer_70(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } extern void print_hex_dump(char const * , char const * , int , int , int , void const * , size_t , bool ) ; extern struct task_struct *current_task ; __inline static struct task_struct *get_current(void) { struct task_struct *pfo_ret__ ; { { if (8UL == 1UL) { goto case_1; } else { } if (8UL == 2UL) { goto case_2; } else { } if (8UL == 4UL) { goto case_4; } else { } if (8UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "p" (& current_task)); goto ldv_2908; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_2908; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_2908; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_2908; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_2908: ; return (pfo_ret__); } } extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern void __ldv_spin_lock(spinlock_t * ) ; static void ldv___ldv_spin_lock_64(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_66(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_69(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_71(spinlock_t *ldv_func_arg1 ) ; void ldv_spin_lock_h2c_lock_of_rtl_locks(void) ; void ldv_spin_unlock_h2c_lock_of_rtl_locks(void) ; void ldv_spin_lock_irq_th_lock_of_rtl_locks(void) ; void ldv_spin_unlock_irq_th_lock_of_rtl_locks(void) ; __inline static int preempt_count___0(void) { int pfo_ret__ ; { { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "m" (__preempt_count)); goto ldv_6489; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6489; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6489; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6489; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_6489: ; return (pfo_ret__ & 2147483647); } } extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField19.rlock, flags); } return; } } __inline static void ldv_spin_unlock_irqrestore_65(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_65(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_65(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_65(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_72(spinlock_t *lock , unsigned long flags ) ; extern void kmemleak_not_leak(void const * ) ; extern void kfree_skb(struct sk_buff * ) ; __inline static struct sk_buff *skb_peek(struct sk_buff_head const *list_ ) { struct sk_buff *skb ; { skb = list_->next; if ((unsigned long )skb == (unsigned long )((struct sk_buff *)list_)) { skb = (struct sk_buff *)0; } else { } return (skb); } } __inline static void __skb_insert(struct sk_buff *newsk , struct sk_buff *prev , struct sk_buff *next , struct sk_buff_head *list ) { struct sk_buff *tmp ; { newsk->next = next; newsk->prev = prev; tmp = newsk; prev->next = tmp; next->prev = tmp; list->qlen = list->qlen + 1U; return; } } __inline static void __skb_queue_before(struct sk_buff_head *list , struct sk_buff *next , struct sk_buff *newsk ) { { { __skb_insert(newsk, next->prev, next, list); } return; } } __inline static void __skb_queue_tail(struct sk_buff_head *list , struct sk_buff *newsk ) { { { __skb_queue_before(list, (struct sk_buff *)list, newsk); } return; } } __inline static void __skb_unlink(struct sk_buff *skb , struct sk_buff_head *list ) { struct sk_buff *next ; struct sk_buff *prev ; struct sk_buff *tmp ; { list->qlen = list->qlen - 1U; next = skb->next; prev = skb->prev; tmp = (struct sk_buff *)0; skb->prev = tmp; skb->next = tmp; next->prev = prev; prev->next = next; return; } } __inline static struct sk_buff *__skb_dequeue(struct sk_buff_head *list ) { struct sk_buff *skb ; struct sk_buff *tmp ; { { tmp = skb_peek((struct sk_buff_head const *)list); skb = tmp; } if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { { __skb_unlink(skb, list); } } else { } return (skb); } } extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; extern struct sk_buff *__netdev_alloc_skb(struct net_device * , unsigned int , gfp_t ) ; __inline static struct sk_buff *netdev_alloc_skb(struct net_device *dev , unsigned int length ) { struct sk_buff *tmp ; { { tmp = __netdev_alloc_skb(dev, length, 32U); } return (tmp); } } __inline static struct sk_buff *dev_alloc_skb(unsigned int length ) { struct sk_buff *tmp ; { { tmp = netdev_alloc_skb((struct net_device *)0, length); } return (tmp); } } extern void __const_udelay(unsigned long ) ; __inline static u8 rtl_read_byte(struct rtl_priv *rtlpriv , u32 addr ) { u8 tmp ; { { tmp = (*(rtlpriv->io.read8_sync))(rtlpriv, addr); } return (tmp); } } __inline static u32 rtl_read_dword(struct rtl_priv *rtlpriv , u32 addr ) { u32 tmp ; { { tmp = (*(rtlpriv->io.read32_sync))(rtlpriv, addr); } return (tmp); } } int rtl88e_download_fw(struct ieee80211_hw *hw , bool buse_wake_on_wlan_fw ) ; void rtl88e_fill_h2c_cmd(struct ieee80211_hw *hw , u8 element_id , u32 cmd_len , u8 *cmd_b ) ; void rtl88e_firmware_selfreset(struct ieee80211_hw *hw ) ; void rtl88e_set_fw_pwrmode_cmd(struct ieee80211_hw *hw , u8 mode ) ; void rtl88e_set_fw_joinbss_report_cmd(struct ieee80211_hw *hw , u8 mstatus ) ; void rtl88e_set_fw_ap_off_load_cmd(struct ieee80211_hw *hw , u8 ap_offload_enable ) ; void rtl88e_set_fw_rsvdpagepkt(struct ieee80211_hw *hw , bool b_dl_finished ) ; void rtl88e_set_p2p_ps_offload_cmd(struct ieee80211_hw *hw , u8 p2p_ps_state ) ; static void _rtl88e_enable_fw_download(struct ieee80211_hw *hw , bool enable ) { struct rtl_priv *rtlpriv ; u8 tmp ; { rtlpriv = (struct rtl_priv *)hw->priv; if ((int )enable) { { tmp = rtl_read_byte(rtlpriv, 3U); rtl_write_byte(rtlpriv, 3U, (int )((unsigned int )tmp | 4U)); tmp = rtl_read_byte(rtlpriv, 128U); rtl_write_byte(rtlpriv, 128U, (int )((unsigned int )tmp | 1U)); tmp = rtl_read_byte(rtlpriv, 130U); rtl_write_byte(rtlpriv, 130U, (int )tmp & 247); } } else { { tmp = rtl_read_byte(rtlpriv, 128U); rtl_write_byte(rtlpriv, 128U, (int )tmp & 254); rtl_write_byte(rtlpriv, 129U, 0); } } return; } } static void _rtl88e_fw_block_write(struct ieee80211_hw *hw , u8 const *buffer , u32 size ) { struct rtl_priv *rtlpriv ; u32 blk_sz ; u8 *buf_ptr ; u32 *pu4BytePtr ; u32 i ; u32 offset ; u32 blk_cnt ; u32 remain ; { rtlpriv = (struct rtl_priv *)hw->priv; blk_sz = 4U; buf_ptr = (u8 *)buffer; pu4BytePtr = (u32 *)buffer; blk_cnt = size / blk_sz; remain = size % blk_sz; i = 0U; goto ldv_51072; ldv_51071: { offset = i * blk_sz; rtl_write_dword(rtlpriv, offset + 4096U, *(pu4BytePtr + (unsigned long )i)); i = i + 1U; } ldv_51072: ; if (i < blk_cnt) { goto ldv_51071; } else { } if (remain != 0U) { offset = blk_cnt * blk_sz; buf_ptr = buf_ptr + (unsigned long )offset; i = 0U; goto ldv_51075; ldv_51074: { rtl_write_byte(rtlpriv, (offset + i) + 4096U, (int )*(buf_ptr + (unsigned long )i)); i = i + 1U; } ldv_51075: ; if (i < remain) { goto ldv_51074; } else { } } else { } return; } } static void _rtl88e_fw_page_write(struct ieee80211_hw *hw , u32 page , u8 const *buffer , u32 size ) { struct rtl_priv *rtlpriv ; u8 value8 ; u8 u8page ; u8 tmp ; { { rtlpriv = (struct rtl_priv *)hw->priv; u8page = (unsigned int )((unsigned char )page) & 7U; tmp = rtl_read_byte(rtlpriv, 130U); value8 = (u8 )(((int )((signed char )tmp) & -8) | (int )((signed char )u8page)); rtl_write_byte(rtlpriv, 130U, (int )value8); _rtl88e_fw_block_write(hw, buffer, size); } return; } } static void _rtl88e_fill_dummy(u8 *pfwbuf , u32 *pfwlen ) { u32 fwlen ; u8 remain ; { fwlen = *pfwlen; remain = (unsigned int )((unsigned char )fwlen) & 3U; remain = (unsigned int )remain != 0U ? 4U - (unsigned int )remain : 0U; goto ldv_51093; ldv_51092: *(pfwbuf + (unsigned long )fwlen) = 0U; fwlen = fwlen + 1U; remain = (u8 )((int )remain - 1); ldv_51093: ; if ((unsigned int )remain != 0U) { goto ldv_51092; } else { } *pfwlen = fwlen; return; } } static void _rtl88e_write_fw(struct ieee80211_hw *hw , enum version_8188e version , u8 *buffer , u32 size ) { struct rtl_priv *rtlpriv ; u8 *buf_ptr ; u32 page_no ; u32 remain ; u32 page ; u32 offset ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { { rtlpriv = (struct rtl_priv *)hw->priv; buf_ptr = buffer; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 2ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___0(); tmp___0 = preempt_count___0(); printk("\017rtl8188ee:%s():<%lx-%x> FW size is %d bytes,\n", "_rtl88e_write_fw", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, size); } } else { } } else { } { _rtl88e_fill_dummy(buf_ptr, & size); page_no = size / 4096U; remain = size & 4095U; } if (page_no > 8U) { { tmp___5 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___0(); tmp___4 = preempt_count___0(); printk("\017rtl8188ee:%s():<%lx-%x> Page numbers should not greater then 8\n", "_rtl88e_write_fw", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } else { } page = 0U; goto ldv_51109; ldv_51108: { offset = page * 4096U; _rtl88e_fw_page_write(hw, page, (u8 const *)buf_ptr + (unsigned long )offset, 4096U); page = page + 1U; } ldv_51109: ; if (page < page_no) { goto ldv_51108; } else { } if (remain != 0U) { { offset = page_no * 4096U; page = page_no; _rtl88e_fw_page_write(hw, page, (u8 const *)buf_ptr + (unsigned long )offset, remain); } } else { } return; } } static int _rtl88e_fw_free_to_go(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; int err ; u32 counter ; u32 value32 ; u32 tmp ; int tmp___0 ; int tmp___1 ; long tmp___2 ; long tmp___3 ; int tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; int tmp___8 ; int tmp___9 ; long tmp___10 ; long tmp___11 ; u32 tmp___12 ; int tmp___13 ; int tmp___14 ; long tmp___15 ; long tmp___16 ; { rtlpriv = (struct rtl_priv *)hw->priv; err = -5; counter = 0U; ldv_51118: { value32 = rtl_read_dword(rtlpriv, 128U); tmp = counter; counter = counter + 1U; } if (tmp <= 2999U && ((unsigned long )value32 & 4UL) == 0UL) { goto ldv_51118; } else { } if (counter > 2999U) { { tmp___2 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___2 != 0L) { { tmp___3 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___3 != 0L) { { tmp___0 = preempt_count___0(); tmp___1 = preempt_count___0(); printk("\017rtl8188ee:%s():<%lx-%x> chksum report faill ! REG_MCUFWDL:0x%08x .\n", "_rtl88e_fw_free_to_go", (unsigned long )tmp___1 & 2096896UL, ((unsigned long )tmp___0 & 0xffffffffffdfffffUL) != 0UL, value32); } } else { } } else { } goto exit; } else { } { tmp___6 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 2ULL) != 0ULL, 0L); } if (tmp___6 != 0L) { { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___7 != 0L) { { tmp___4 = preempt_count___0(); tmp___5 = preempt_count___0(); printk("\017rtl8188ee:%s():<%lx-%x> Checksum report OK ! REG_MCUFWDL:0x%08x .\n", "_rtl88e_fw_free_to_go", (unsigned long )tmp___5 & 2096896UL, ((unsigned long )tmp___4 & 0xffffffffffdfffffUL) != 0UL, value32); } } else { } } else { } { value32 = rtl_read_dword(rtlpriv, 128U); value32 = value32 | 2U; value32 = value32 & 4294967231U; rtl_write_dword(rtlpriv, 128U, value32); rtl88e_firmware_selfreset(hw); counter = 0U; } ldv_51122: { value32 = rtl_read_dword(rtlpriv, 128U); } if (((unsigned long )value32 & 64UL) != 0UL) { { tmp___10 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 2ULL) != 0ULL, 0L); } if (tmp___10 != 0L) { { tmp___11 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___11 != 0L) { { tmp___8 = preempt_count___0(); tmp___9 = preempt_count___0(); printk("\017rtl8188ee:%s():<%lx-%x> Polling FW ready success!! REG_MCUFWDL:0x%08x.\n", "_rtl88e_fw_free_to_go", (unsigned long )tmp___9 & 2096896UL, ((unsigned long )tmp___8 & 0xffffffffffdfffffUL) != 0UL, value32); } } else { } } else { } err = 0; goto exit; } else { } { __const_udelay(21475UL); tmp___12 = counter; counter = counter + 1U; } if (tmp___12 <= 2999U) { goto ldv_51122; } else { } { tmp___15 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___15 != 0L) { { tmp___16 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___16 != 0L) { { tmp___13 = preempt_count___0(); tmp___14 = preempt_count___0(); printk("\017rtl8188ee:%s():<%lx-%x> Polling FW ready fail!! REG_MCUFWDL:0x%08x .\n", "_rtl88e_fw_free_to_go", (unsigned long )tmp___14 & 2096896UL, ((unsigned long )tmp___13 & 0xffffffffffdfffffUL) != 0UL, value32); } } else { } } else { } exit: ; return (err); } } int rtl88e_download_fw(struct ieee80211_hw *hw , bool buse_wake_on_wlan_fw ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; struct rtl92c_firmware_header *pfwheader ; u8 *pfwdata ; u32 fwsize ; int err ; enum version_8188e version ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; u8 tmp___7 ; int tmp___8 ; int tmp___9 ; long tmp___10 ; long tmp___11 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; version = rtlhal->version; if ((unsigned long )rtlhal->pfirmware == (unsigned long )((u8 *)0U)) { return (1); } else { } { pfwheader = (struct rtl92c_firmware_header *)rtlhal->pfirmware; pfwdata = rtlhal->pfirmware; fwsize = rtlhal->fwsize; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 2ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___0(); tmp___0 = preempt_count___0(); printk("\017rtl8188ee:%s():<%lx-%x> normal Firmware SIZE %d\n", "rtl88e_download_fw", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, fwsize); } } else { } } else { } if ((unsigned int )pfwheader->signature == 35041U) { { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 2ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___0(); tmp___4 = preempt_count___0(); printk("\017rtl8188ee:%s():<%lx-%x> Firmware Version(%d), Signature(%#x), Size(%d)\n", "rtl88e_download_fw", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, (int )pfwheader->version, (int )pfwheader->signature, 32); } } else { } } else { } pfwdata = pfwdata + 32UL; fwsize = fwsize - 32U; } else { } { tmp___7 = rtl_read_byte(rtlpriv, 128U); } if ((int )((signed char )tmp___7) < 0) { { rtl_write_byte(rtlpriv, 128U, 0); rtl88e_firmware_selfreset(hw); } } else { } { _rtl88e_enable_fw_download(hw, 1); _rtl88e_write_fw(hw, version, pfwdata, fwsize); _rtl88e_enable_fw_download(hw, 0); err = _rtl88e_fw_free_to_go(hw); tmp___10 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 2ULL) != 0ULL, 0L); } if (tmp___10 != 0L) { { tmp___11 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___11 != 0L) { { tmp___8 = preempt_count___0(); tmp___9 = preempt_count___0(); printk("\017rtl8188ee:%s():<%lx-%x> Firmware is%s ready to run!\n", "rtl88e_download_fw", (unsigned long )tmp___9 & 2096896UL, ((unsigned long )tmp___8 & 0xffffffffffdfffffUL) != 0UL, err != 0 ? (char *)" not" : (char *)""); } } else { } } else { } return (0); } } static bool _rtl88e_check_fw_read_last_h2c(struct ieee80211_hw *hw , u8 boxnum ) { struct rtl_priv *rtlpriv ; u8 val_hmetfr ; { { rtlpriv = (struct rtl_priv *)hw->priv; val_hmetfr = rtl_read_byte(rtlpriv, 460U); } if (((unsigned long )((int )val_hmetfr >> (int )boxnum) & 1UL) == 0UL) { return (1); } else { } return (0); } } static void _rtl88e_fill_h2c_command(struct ieee80211_hw *hw , u8 element_id , u32 cmd_len , u8 *cmd_b ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; u8 boxnum ; u16 box_reg ; u16 box_extreg ; u8 u1b_tmp ; bool isfw_read ; u8 buf_index ; bool write_sucess ; u8 wait_h2c_limit ; u8 wait_writeh2c_limit ; u8 boxc[4U] ; u8 boxext[2U] ; u32 h2c_waitcounter ; unsigned long flag ; u8 idx ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; int tmp___11 ; int tmp___12 ; long tmp___13 ; long tmp___14 ; int tmp___15 ; int tmp___16 ; long tmp___17 ; long tmp___18 ; int tmp___19 ; int tmp___20 ; long tmp___21 ; long tmp___22 ; int tmp___23 ; int tmp___24 ; long tmp___25 ; long tmp___26 ; int tmp___27 ; int tmp___28 ; long tmp___29 ; long tmp___30 ; int tmp___31 ; int tmp___32 ; long tmp___33 ; long tmp___34 ; int tmp___35 ; int tmp___36 ; long tmp___37 ; long tmp___38 ; int tmp___39 ; int tmp___40 ; long tmp___41 ; long tmp___42 ; int tmp___43 ; int tmp___44 ; long tmp___45 ; long tmp___46 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; box_reg = 0U; box_extreg = 0U; isfw_read = 0; buf_index = 0U; write_sucess = 0; wait_h2c_limit = 100U; wait_writeh2c_limit = 100U; h2c_waitcounter = 0U; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___0(); tmp___0 = preempt_count___0(); printk("\017rtl8188ee:%s():<%lx-%x> come in\n", "_rtl88e_fill_h2c_command", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } ldv_51169: { ldv___ldv_spin_lock_64(& rtlpriv->locks.h2c_lock); } if ((int )rtlhal->h2c_setinprogress) { { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___0(); tmp___4 = preempt_count___0(); printk("\017rtl8188ee:%s():<%lx-%x> H2C set in progress! Wait to set..element_id(%d).\n", "_rtl88e_fill_h2c_command", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, (int )element_id); } } else { } } else { } goto ldv_51166; ldv_51165: { ldv_spin_unlock_irqrestore_65(& rtlpriv->locks.h2c_lock, flag); h2c_waitcounter = h2c_waitcounter + 1U; tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count___0(); tmp___8 = preempt_count___0(); printk("\017rtl8188ee:%s():<%lx-%x> Wait 100 us (%d times)...\n", "_rtl88e_fill_h2c_command", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL, h2c_waitcounter); } } else { } } else { } { __const_udelay(429500UL); } if (h2c_waitcounter > 1000U) { return; } else { } { ldv___ldv_spin_lock_66(& rtlpriv->locks.h2c_lock); } ldv_51166: ; if ((int )rtlhal->h2c_setinprogress) { goto ldv_51165; } else { } { ldv_spin_unlock_irqrestore_65(& rtlpriv->locks.h2c_lock, flag); } } else { { rtlhal->h2c_setinprogress = 1; ldv_spin_unlock_irqrestore_65(& rtlpriv->locks.h2c_lock, flag); } goto ldv_51168; } goto ldv_51169; ldv_51168: ; goto ldv_51199; ldv_51198: wait_writeh2c_limit = (u8 )((int )wait_writeh2c_limit - 1); if ((unsigned int )wait_writeh2c_limit == 0U) { { tmp___13 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___13 != 0L) { { tmp___14 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___14 != 0L) { { tmp___11 = preempt_count___0(); tmp___12 = preempt_count___0(); printk("\017rtl8188ee:%s():<%lx-%x> Write H2C fail because no trigger for FW INT!\n", "_rtl88e_fill_h2c_command", (unsigned long )tmp___12 & 2096896UL, ((unsigned long )tmp___11 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_51170; } else { } boxnum = rtlhal->last_hmeboxnum; { if ((int )boxnum == 0) { goto case_0; } else { } if ((int )boxnum == 1) { goto case_1; } else { } if ((int )boxnum == 2) { goto case_2; } else { } if ((int )boxnum == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ box_reg = 464U; box_extreg = 496U; goto ldv_51172; case_1: /* CIL Label */ box_reg = 468U; box_extreg = 500U; goto ldv_51172; case_2: /* CIL Label */ box_reg = 472U; box_extreg = 504U; goto ldv_51172; case_3: /* CIL Label */ box_reg = 476U; box_extreg = 508U; goto ldv_51172; switch_default: /* CIL Label */ { tmp___17 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___17 != 0L) { { tmp___18 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___18 != 0L) { { tmp___15 = preempt_count___0(); tmp___16 = preempt_count___0(); printk("\017rtl8188ee:%s():<%lx-%x> switch case not processed\n", "_rtl88e_fill_h2c_command", (unsigned long )tmp___16 & 2096896UL, ((unsigned long )tmp___15 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_51172; switch_break: /* CIL Label */ ; } ldv_51172: { isfw_read = _rtl88e_check_fw_read_last_h2c(hw, (int )boxnum); } goto ldv_51179; ldv_51178: wait_h2c_limit = (u8 )((int )wait_h2c_limit - 1); if ((unsigned int )wait_h2c_limit == 0U) { { tmp___21 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___21 != 0L) { { tmp___22 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___22 != 0L) { { tmp___19 = preempt_count___0(); tmp___20 = preempt_count___0(); printk("\017rtl8188ee:%s():<%lx-%x> Waiting too long for FW read clear HMEBox(%d)!\n", "_rtl88e_fill_h2c_command", (unsigned long )tmp___20 & 2096896UL, ((unsigned long )tmp___19 & 0xffffffffffdfffffUL) != 0UL, (int )boxnum); } } else { } } else { } goto ldv_51177; } else { } { __const_udelay(42950UL); isfw_read = _rtl88e_check_fw_read_last_h2c(hw, (int )boxnum); u1b_tmp = rtl_read_byte(rtlpriv, 304U); tmp___25 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___25 != 0L) { { tmp___26 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___26 != 0L) { { tmp___23 = preempt_count___0(); tmp___24 = preempt_count___0(); printk("\017rtl8188ee:%s():<%lx-%x> Waiting for FW read clear HMEBox(%d)!!! 0x130 = %2x\n", "_rtl88e_fill_h2c_command", (unsigned long )tmp___24 & 2096896UL, ((unsigned long )tmp___23 & 0xffffffffffdfffffUL) != 0UL, (int )boxnum, (int )u1b_tmp); } } else { } } else { } ldv_51179: ; if (! isfw_read) { goto ldv_51178; } else { } ldv_51177: ; if (! isfw_read) { { tmp___29 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___29 != 0L) { { tmp___30 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___30 != 0L) { { tmp___27 = preempt_count___0(); tmp___28 = preempt_count___0(); printk("\017rtl8188ee:%s():<%lx-%x> Write H2C register BOX[%d] fail!!!!! Fw do not read.\n", "_rtl88e_fill_h2c_command", (unsigned long )tmp___28 & 2096896UL, ((unsigned long )tmp___27 & 0xffffffffffdfffffUL) != 0UL, (int )boxnum); } } else { } } else { } goto ldv_51170; } else { } { memset((void *)(& boxc), 0, 4UL); memset((void *)(& boxext), 0, 2UL); boxc[0] = element_id; tmp___33 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___33 != 0L) { { tmp___34 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___34 != 0L) { { tmp___31 = preempt_count___0(); tmp___32 = preempt_count___0(); printk("\017rtl8188ee:%s():<%lx-%x> Write element_id box_reg(%4x) = %2x\n", "_rtl88e_fill_h2c_command", (unsigned long )tmp___32 & 2096896UL, ((unsigned long )tmp___31 & 0xffffffffffdfffffUL) != 0UL, (int )box_reg, (int )element_id); } } else { } } else { } { if (cmd_len == 1U) { goto case_1___0; } else { } if (cmd_len == 2U) { goto case_2___0; } else { } if (cmd_len == 3U) { goto case_3___0; } else { } if (cmd_len == 4U) { goto case_4; } else { } if (cmd_len == 5U) { goto case_5; } else { } if (cmd_len == 6U) { goto case_6; } else { } if (cmd_len == 7U) { goto case_7; } else { } goto switch_default___0; case_1___0: /* CIL Label */ ; case_2___0: /* CIL Label */ ; case_3___0: /* CIL Label */ { memcpy((void *)(& boxc) + 1U, (void const *)cmd_b + (unsigned long )buf_index, (size_t )cmd_len); idx = 0U; } goto ldv_51184; ldv_51183: { rtl_write_byte(rtlpriv, (u32 )((int )box_reg + (int )idx), (int )boxc[(int )idx]); idx = (u8 )((int )idx + 1); } ldv_51184: ; if ((unsigned int )idx <= 3U) { goto ldv_51183; } else { } goto ldv_51186; case_4: /* CIL Label */ ; case_5: /* CIL Label */ ; case_6: /* CIL Label */ ; case_7: /* CIL Label */ { memcpy((void *)(& boxext), (void const *)(cmd_b + ((unsigned long )buf_index + 3UL)), (size_t )(cmd_len - 3U)); memcpy((void *)(& boxc) + 1U, (void const *)cmd_b + (unsigned long )buf_index, 3UL); idx = 0U; } goto ldv_51192; ldv_51191: { rtl_write_byte(rtlpriv, (u32 )((int )box_extreg + (int )idx), (int )boxext[(int )idx]); idx = (u8 )((int )idx + 1); } ldv_51192: ; if ((unsigned int )idx <= 1U) { goto ldv_51191; } else { } idx = 0U; goto ldv_51195; ldv_51194: { rtl_write_byte(rtlpriv, (u32 )((int )box_reg + (int )idx), (int )boxc[(int )idx]); idx = (u8 )((int )idx + 1); } ldv_51195: ; if ((unsigned int )idx <= 3U) { goto ldv_51194; } else { } goto ldv_51186; switch_default___0: /* CIL Label */ { tmp___37 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___37 != 0L) { { tmp___38 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___38 != 0L) { { tmp___35 = preempt_count___0(); tmp___36 = preempt_count___0(); printk("\017rtl8188ee:%s():<%lx-%x> switch case not processed\n", "_rtl88e_fill_h2c_command", (unsigned long )tmp___36 & 2096896UL, ((unsigned long )tmp___35 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_51186; switch_break___0: /* CIL Label */ ; } ldv_51186: write_sucess = 1; rtlhal->last_hmeboxnum = (unsigned int )boxnum + 1U; if ((unsigned int )rtlhal->last_hmeboxnum == 4U) { rtlhal->last_hmeboxnum = 0U; } else { } { tmp___41 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___41 != 0L) { { tmp___42 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___42 != 0L) { { tmp___39 = preempt_count___0(); tmp___40 = preempt_count___0(); printk("\017rtl8188ee:%s():<%lx-%x> pHalData->last_hmeboxnum = %d\n", "_rtl88e_fill_h2c_command", (unsigned long )tmp___40 & 2096896UL, ((unsigned long )tmp___39 & 0xffffffffffdfffffUL) != 0UL, (int )rtlhal->last_hmeboxnum); } } else { } } else { } ldv_51199: ; if (! write_sucess) { goto ldv_51198; } else { } ldv_51170: { ldv___ldv_spin_lock_69(& rtlpriv->locks.h2c_lock); rtlhal->h2c_setinprogress = 0; ldv_spin_unlock_irqrestore_65(& rtlpriv->locks.h2c_lock, flag); tmp___45 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___45 != 0L) { { tmp___46 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___46 != 0L) { { tmp___43 = preempt_count___0(); tmp___44 = preempt_count___0(); printk("\017rtl8188ee:%s():<%lx-%x> go out\n", "_rtl88e_fill_h2c_command", (unsigned long )tmp___44 & 2096896UL, ((unsigned long )tmp___43 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } } void rtl88e_fill_h2c_cmd(struct ieee80211_hw *hw , u8 element_id , u32 cmd_len , u8 *cmd_b ) { struct rtl_hal *rtlhal ; u32 tmp_cmdbuf[2U] ; { rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; if (! rtlhal->fw_ready) { { printk("\017rtl8188ee:%s(): fail H2C cmd - Fw download fail!!!\n", "rtl88e_fill_h2c_cmd"); } return; } else { } { memset((void *)(& tmp_cmdbuf), 0, 8UL); memcpy((void *)(& tmp_cmdbuf), (void const *)cmd_b, (size_t )cmd_len); _rtl88e_fill_h2c_command(hw, (int )element_id, cmd_len, (u8 *)(& tmp_cmdbuf)); } return; } } void rtl88e_firmware_selfreset(struct ieee80211_hw *hw ) { u8 u1b_tmp ; struct rtl_priv *rtlpriv ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { { rtlpriv = (struct rtl_priv *)hw->priv; u1b_tmp = rtl_read_byte(rtlpriv, 3U); rtl_write_byte(rtlpriv, 3U, (int )u1b_tmp & 251); rtl_write_byte(rtlpriv, 3U, (int )((unsigned int )u1b_tmp | 4U)); tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___0(); tmp___0 = preempt_count___0(); printk("\017rtl8188ee:%s():<%lx-%x> 8051Reset88E(): 8051 reset success.\n", "rtl88e_firmware_selfreset", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } } void rtl88e_set_fw_pwrmode_cmd(struct ieee80211_hw *hw , u8 mode ) { struct rtl_priv *rtlpriv ; u8 u1_h2c_set_pwrmode[5U] ; unsigned int tmp ; struct rtl_ps_ctl *ppsc ; u8 power_state ; int tmp___0 ; int tmp___1 ; long tmp___2 ; long tmp___3 ; struct task_struct *tmp___4 ; struct task_struct *tmp___5 ; struct _ddebug descriptor ; long tmp___6 ; long tmp___7 ; long tmp___8 ; { rtlpriv = (struct rtl_priv *)hw->priv; u1_h2c_set_pwrmode[0] = 0U; tmp = 1U; { while (1) { while_continue: /* CIL Label */ ; if (tmp >= 5U) { goto while_break; } else { } u1_h2c_set_pwrmode[tmp] = (unsigned char)0; tmp = tmp + 1U; } while_break: /* CIL Label */ ; } { ppsc = & ((struct rtl_priv *)hw->priv)->psc; power_state = 0U; tmp___2 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___2 != 0L) { { tmp___3 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___3 != 0L) { { tmp___0 = preempt_count___0(); tmp___1 = preempt_count___0(); printk("\017rtl8188ee:%s():<%lx-%x> FW LPS mode = %d\n", "rtl88e_set_fw_pwrmode_cmd", (unsigned long )tmp___1 & 2096896UL, ((unsigned long )tmp___0 & 0xffffffffffdfffffUL) != 0UL, (int )mode); } } else { } } else { } *((u8 *)(& u1_h2c_set_pwrmode)) = (unsigned int )mode != 0U; *((u8 *)(& u1_h2c_set_pwrmode) + 1UL) = (unsigned int )*((u8 *)(& u1_h2c_set_pwrmode) + 1UL) & 240U; *((u8 *)(& u1_h2c_set_pwrmode) + 1UL) = (unsigned char )(((int )((signed char )*((u8 *)(& u1_h2c_set_pwrmode) + 1UL)) & 15) | ((unsigned int )rtlpriv->mac80211.p2p != 0U ? (signed char )((int )ppsc->smart_ps << 4) : 16)); *((u8 *)(& u1_h2c_set_pwrmode) + 2UL) = ppsc->reg_max_lps_awakeintvl; *((u8 *)(& u1_h2c_set_pwrmode) + 3UL) = 0U; if ((unsigned int )mode == 0U) { power_state = (u8 )((unsigned int )power_state | 12U); } else { power_state = power_state; } { *((u8 *)(& u1_h2c_set_pwrmode) + 4UL) = power_state; tmp___7 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___7 != 0L) { { tmp___8 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___8 != 0L) { { tmp___4 = get_current(); tmp___5 = get_current(); printk("\017%s: In process \"%s\" (pid %i): %s\n", (char *)"rtl8188ee", (char *)(& tmp___5->comm), tmp___4->pid, (char *)"rtl92c_set_fw_pwrmode(): u1_h2c_set_pwrmode\n"); descriptor.modname = "rtl8188ee"; descriptor.function = "rtl88e_set_fw_pwrmode_cmd"; descriptor.filename = "drivers/net/wireless/rtlwifi/rtl8188ee/fw.c"; descriptor.format = ""; descriptor.lineno = 478U; descriptor.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___6 != 0L) { { print_hex_dump("\017", "", 0, 16, 1, (void const *)(& u1_h2c_set_pwrmode), 5UL, 1); } } else { } } else { } } else { } { rtl88e_fill_h2c_cmd(hw, 32, 5U, (u8 *)(& u1_h2c_set_pwrmode)); } return; } } void rtl88e_set_fw_joinbss_report_cmd(struct ieee80211_hw *hw , u8 mstatus ) { u8 u1_joinbssrpt_parm[1U] ; { { u1_joinbssrpt_parm[0] = 0U; *((u8 *)(& u1_joinbssrpt_parm)) = mstatus; rtl88e_fill_h2c_cmd(hw, 1, 1U, (u8 *)(& u1_joinbssrpt_parm)); } return; } } void rtl88e_set_fw_ap_off_load_cmd(struct ieee80211_hw *hw , u8 ap_offload_enable ) { struct rtl_mac *mac ; u8 u1_apoffload_parm[3U] ; unsigned int tmp ; { mac = & ((struct rtl_priv *)hw->priv)->mac80211; u1_apoffload_parm[0] = 0U; tmp = 1U; { while (1) { while_continue: /* CIL Label */ ; if (tmp >= 3U) { goto while_break; } else { } u1_apoffload_parm[tmp] = (unsigned char)0; tmp = tmp + 1U; } while_break: /* CIL Label */ ; } { *((u8 *)(& u1_apoffload_parm)) = ap_offload_enable; *((u8 *)(& u1_apoffload_parm) + 1UL) = (unsigned char )mac->hiddenssid; *((u8 *)(& u1_apoffload_parm) + 2UL) = 0U; rtl88e_fill_h2c_cmd(hw, 8, 3U, (u8 *)(& u1_apoffload_parm)); } return; } } static bool _rtl88e_cmd_send_packet(struct ieee80211_hw *hw , struct sk_buff *skb ) { struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; struct rtl8192_tx_ring *ring ; struct rtl_tx_desc *pdesc ; struct sk_buff *pskb ; unsigned long flags ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; pskb = (struct sk_buff *)0; ring = (struct rtl8192_tx_ring *)(& rtlpci->tx_ring) + 4UL; pskb = __skb_dequeue(& ring->queue); } if ((unsigned long )pskb != (unsigned long )((struct sk_buff *)0)) { { kfree_skb(pskb); } } else { } { ldv___ldv_spin_lock_71(& rtlpriv->locks.irq_th_lock); pdesc = ring->desc; (*(((rtlpriv->cfg)->ops)->fill_tx_cmddesc))(hw, (u8 *)pdesc, 1, 1, skb); __skb_queue_tail(& ring->queue, skb); ldv_spin_unlock_irqrestore_72(& rtlpriv->locks.irq_th_lock, flags); (*(((rtlpriv->cfg)->ops)->tx_polling))(hw, 4); } return (1); } } static u8 reserved_page_packet[768U] = { 128U, 0U, 0U, 0U, 255U, 255U, 255U, 255U, 255U, 255U, 0U, 224U, 76U, 118U, 0U, 66U, 0U, 64U, 16U, 16U, 0U, 3U, 80U, 8U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 100U, 0U, 0U, 4U, 0U, 12U, 108U, 105U, 110U, 107U, 115U, 121U, 115U, 95U, 119U, 108U, 97U, 110U, 1U, 4U, 130U, 132U, 139U, 150U, 3U, 1U, 1U, 6U, 2U, 0U, 0U, 42U, 1U, 0U, 50U, 8U, 36U, 48U, 72U, 108U, 12U, 18U, 24U, 96U, 45U, 26U, 108U, 24U, 3U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 61U, 0U, 221U, 6U, 0U, 224U, 76U, 2U, 1U, 112U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 16U, 0U, 32U, 140U, 0U, 18U, 16U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 1U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 164U, 16U, 1U, 192U, 0U, 64U, 16U, 16U, 0U, 3U, 0U, 224U, 76U, 118U, 0U, 66U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 24U, 0U, 32U, 140U, 0U, 18U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 128U, 128U, 1U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 72U, 1U, 0U, 0U, 0U, 64U, 16U, 16U, 0U, 3U, 0U, 224U, 76U, 118U, 0U, 66U, 0U, 64U, 16U, 16U, 0U, 3U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 114U, 0U, 32U, 140U, 0U, 18U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 128U, 128U, 1U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 80U, 0U, 0U, 0U, 0U, 64U, 16U, 16U, 0U, 3U, 0U, 224U, 76U, 118U, 0U, 66U, 0U, 64U, 16U, 16U, 0U, 3U, 0U, 0U, 158U, 70U, 21U, 50U, 39U, 242U, 45U, 0U, 100U, 0U, 0U, 4U, 0U, 12U, 108U, 105U, 110U, 107U, 115U, 121U, 115U, 95U, 119U, 108U, 97U, 110U, 1U, 4U, 130U, 132U, 139U, 150U, 3U, 1U, 1U, 6U, 2U, 0U, 0U, 42U, 1U, 0U, 50U, 8U, 36U, 48U, 72U, 108U, 12U, 18U, 24U, 96U, 45U, 26U, 108U, 24U, 3U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 61U, 0U, 221U, 6U, 0U, 224U, 76U, 2U, 1U, 112U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}; void rtl88e_set_fw_rsvdpagepkt(struct ieee80211_hw *hw , bool b_dl_finished ) { struct rtl_priv *rtlpriv ; struct rtl_mac *mac ; struct sk_buff *skb ; u32 totalpacketlen ; u8 u1RsvdPageLoc[5U] ; unsigned int tmp ; u8 *beacon ; u8 *pspoll ; u8 *nullfunc ; u8 *probersp ; struct task_struct *tmp___0 ; struct task_struct *tmp___1 ; struct _ddebug descriptor ; long tmp___2 ; long tmp___3 ; long tmp___4 ; struct task_struct *tmp___5 ; struct task_struct *tmp___6 ; struct _ddebug descriptor___0 ; long tmp___7 ; long tmp___8 ; long tmp___9 ; unsigned char *tmp___10 ; int tmp___11 ; int tmp___12 ; long tmp___13 ; long tmp___14 ; struct task_struct *tmp___15 ; struct task_struct *tmp___16 ; struct _ddebug descriptor___1 ; long tmp___17 ; long tmp___18 ; long tmp___19 ; int tmp___20 ; int tmp___21 ; long tmp___22 ; long tmp___23 ; bool tmp___24 ; { rtlpriv = (struct rtl_priv *)hw->priv; mac = & ((struct rtl_priv *)hw->priv)->mac80211; skb = (struct sk_buff *)0; u1RsvdPageLoc[0] = 0U; tmp = 1U; { while (1) { while_continue: /* CIL Label */ ; if (tmp >= 5U) { goto while_break; } else { } u1RsvdPageLoc[tmp] = (unsigned char)0; tmp = tmp + 1U; } while_break: /* CIL Label */ ; } { beacon = (u8 *)(& reserved_page_packet); *(beacon + 10UL) = *((u8 *)(& mac->mac_addr)); *(beacon + 11U) = *((u8 *)(& mac->mac_addr) + 1UL); *(beacon + 12U) = *((u8 *)(& mac->mac_addr) + 2UL); *(beacon + 13U) = *((u8 *)(& mac->mac_addr) + 3UL); *(beacon + 14U) = *((u8 *)(& mac->mac_addr) + 4UL); *(beacon + 15U) = *((u8 *)(& mac->mac_addr) + 5UL); *(beacon + 16UL) = *((u8 *)(& mac->bssid)); *(beacon + 17U) = *((u8 *)(& mac->bssid) + 1UL); *(beacon + 18U) = *((u8 *)(& mac->bssid) + 2UL); *(beacon + 19U) = *((u8 *)(& mac->bssid) + 3UL); *(beacon + 20U) = *((u8 *)(& mac->bssid) + 4UL); *(beacon + 21U) = *((u8 *)(& mac->bssid) + 5UL); pspoll = (u8 *)(& reserved_page_packet) + 256UL; *((u16 *)pspoll + 2U) = (u16 )((unsigned int )mac->assoc_id | 49152U); memcpy((void *)pspoll + 4U, (void const *)(& mac->bssid), 6UL); memcpy((void *)pspoll + 10U, (void const *)(& mac->mac_addr), 6UL); *((u8 *)(& u1RsvdPageLoc) + 1UL) = 2U; nullfunc = (u8 *)(& reserved_page_packet) + 384UL; *(nullfunc + 4UL) = *((u8 *)(& mac->bssid)); *(nullfunc + 5U) = *((u8 *)(& mac->bssid) + 1UL); *(nullfunc + 6U) = *((u8 *)(& mac->bssid) + 2UL); *(nullfunc + 7U) = *((u8 *)(& mac->bssid) + 3UL); *(nullfunc + 8U) = *((u8 *)(& mac->bssid) + 4UL); *(nullfunc + 9U) = *((u8 *)(& mac->bssid) + 5UL); *(nullfunc + 10UL) = *((u8 *)(& mac->mac_addr)); *(nullfunc + 11U) = *((u8 *)(& mac->mac_addr) + 1UL); *(nullfunc + 12U) = *((u8 *)(& mac->mac_addr) + 2UL); *(nullfunc + 13U) = *((u8 *)(& mac->mac_addr) + 3UL); *(nullfunc + 14U) = *((u8 *)(& mac->mac_addr) + 4UL); *(nullfunc + 15U) = *((u8 *)(& mac->mac_addr) + 5UL); *(nullfunc + 16UL) = *((u8 *)(& mac->bssid)); *(nullfunc + 17U) = *((u8 *)(& mac->bssid) + 1UL); *(nullfunc + 18U) = *((u8 *)(& mac->bssid) + 2UL); *(nullfunc + 19U) = *((u8 *)(& mac->bssid) + 3UL); *(nullfunc + 20U) = *((u8 *)(& mac->bssid) + 4UL); *(nullfunc + 21U) = *((u8 *)(& mac->bssid) + 5UL); *((u8 *)(& u1RsvdPageLoc) + 2UL) = 3U; probersp = (u8 *)(& reserved_page_packet) + 512UL; *(probersp + 4UL) = *((u8 *)(& mac->bssid)); *(probersp + 5U) = *((u8 *)(& mac->bssid) + 1UL); *(probersp + 6U) = *((u8 *)(& mac->bssid) + 2UL); *(probersp + 7U) = *((u8 *)(& mac->bssid) + 3UL); *(probersp + 8U) = *((u8 *)(& mac->bssid) + 4UL); *(probersp + 9U) = *((u8 *)(& mac->bssid) + 5UL); *(probersp + 10UL) = *((u8 *)(& mac->mac_addr)); *(probersp + 11U) = *((u8 *)(& mac->mac_addr) + 1UL); *(probersp + 12U) = *((u8 *)(& mac->mac_addr) + 2UL); *(probersp + 13U) = *((u8 *)(& mac->mac_addr) + 3UL); *(probersp + 14U) = *((u8 *)(& mac->mac_addr) + 4UL); *(probersp + 15U) = *((u8 *)(& mac->mac_addr) + 5UL); *(probersp + 16UL) = *((u8 *)(& mac->bssid)); *(probersp + 17U) = *((u8 *)(& mac->bssid) + 1UL); *(probersp + 18U) = *((u8 *)(& mac->bssid) + 2UL); *(probersp + 19U) = *((u8 *)(& mac->bssid) + 3UL); *(probersp + 20U) = *((u8 *)(& mac->bssid) + 4UL); *(probersp + 21U) = *((u8 *)(& mac->bssid) + 5UL); *((u8 *)(& u1RsvdPageLoc)) = 4U; totalpacketlen = 768U; tmp___3 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___3 != 0L) { { tmp___4 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___4 != 0L) { { tmp___0 = get_current(); tmp___1 = get_current(); printk("\017%s: In process \"%s\" (pid %i): %s\n", (char *)"rtl8188ee", (char *)(& tmp___1->comm), tmp___0->pid, (char *)"rtl88e_set_fw_rsvdpagepkt(): HW_VAR_SET_TX_CMD: ALL\n"); descriptor.modname = "rtl8188ee"; descriptor.function = "rtl88e_set_fw_rsvdpagepkt"; descriptor.filename = "drivers/net/wireless/rtlwifi/rtl8188ee/fw.c"; descriptor.format = ""; descriptor.lineno = 712U; descriptor.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___2 != 0L) { { print_hex_dump("\017", "", 0, 16, 1, (void const *)(& reserved_page_packet), (size_t )totalpacketlen, 1); } } else { } } else { } } else { } { tmp___8 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___8 != 0L) { { tmp___9 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___9 != 0L) { { tmp___5 = get_current(); tmp___6 = get_current(); printk("\017%s: In process \"%s\" (pid %i): %s\n", (char *)"rtl8188ee", (char *)(& tmp___6->comm), tmp___5->pid, (char *)"rtl88e_set_fw_rsvdpagepkt(): HW_VAR_SET_TX_CMD: ALL\n"); descriptor___0.modname = "rtl8188ee"; descriptor___0.function = "rtl88e_set_fw_rsvdpagepkt"; descriptor___0.filename = "drivers/net/wireless/rtlwifi/rtl8188ee/fw.c"; descriptor___0.format = ""; descriptor___0.lineno = 715U; descriptor___0.flags = 0U; tmp___7 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___7 != 0L) { { print_hex_dump("\017", "", 0, 16, 1, (void const *)(& u1RsvdPageLoc), 3UL, 1); } } else { } } else { } } else { } { skb = dev_alloc_skb(totalpacketlen); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { return; } else { } { kmemleak_not_leak((void const *)skb); tmp___10 = skb_put(skb, totalpacketlen); memcpy((void *)tmp___10, (void const *)(& reserved_page_packet), (size_t )totalpacketlen); tmp___24 = _rtl88e_cmd_send_packet(hw, skb); } if ((int )tmp___24) { { tmp___13 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___13 != 0L) { { tmp___14 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___14 != 0L) { { tmp___11 = preempt_count___0(); tmp___12 = preempt_count___0(); printk("\017rtl8188ee:%s():<%lx-%x> Set RSVD page location to Fw.\n", "rtl88e_set_fw_rsvdpagepkt", (unsigned long )tmp___12 & 2096896UL, ((unsigned long )tmp___11 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { tmp___18 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___18 != 0L) { { tmp___19 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___19 != 0L) { { tmp___15 = get_current(); tmp___16 = get_current(); printk("\017%s: In process \"%s\" (pid %i): %s\n", (char *)"rtl8188ee", (char *)(& tmp___16->comm), tmp___15->pid, (char *)"H2C_RSVDPAGE:\n"); descriptor___1.modname = "rtl8188ee"; descriptor___1.function = "rtl88e_set_fw_rsvdpagepkt"; descriptor___1.filename = "drivers/net/wireless/rtlwifi/rtl8188ee/fw.c"; descriptor___1.format = ""; descriptor___1.lineno = 728U; descriptor___1.flags = 0U; tmp___17 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___17 != 0L) { { print_hex_dump("\017", "", 0, 16, 1, (void const *)(& u1RsvdPageLoc), 3UL, 1); } } else { } } else { } } else { } { rtl88e_fill_h2c_cmd(hw, 0, 5U, (u8 *)(& u1RsvdPageLoc)); } } else { { tmp___22 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___22 != 0L) { { tmp___23 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 1, 0L); } if (tmp___23 != 0L) { { tmp___20 = preempt_count___0(); tmp___21 = preempt_count___0(); printk("\017rtl8188ee:%s():<%lx-%x> Set RSVD page location to Fw FAIL!!!!!!.\n", "rtl88e_set_fw_rsvdpagepkt", (unsigned long )tmp___21 & 2096896UL, ((unsigned long )tmp___20 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } return; } } static void rtl88e_set_p2p_ctw_period_cmd(struct ieee80211_hw *hw , u8 ctwindow ) { u8 u1_ctwindow_period[1U] ; { { u1_ctwindow_period[0] = ctwindow; rtl88e_fill_h2c_cmd(hw, 136, 1U, (u8 *)(& u1_ctwindow_period)); } return; } } void rtl88e_set_p2p_ps_offload_cmd(struct ieee80211_hw *hw , u8 p2p_ps_state ) { struct rtl_priv *rtlpriv ; struct rtl_ps_ctl *rtlps ; struct rtl_hal *rtlhal ; struct rtl_p2p_ps_info *p2pinfo ; struct p2p_ps_offload_t *p2p_ps_offload ; u8 i ; u16 ctwindow ; u32 start_time ; u32 tsf_low ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; int tmp___11 ; int tmp___12 ; long tmp___13 ; long tmp___14 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlps = & ((struct rtl_priv *)hw->priv)->psc; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; p2pinfo = & rtlps->p2p_ps_info; p2p_ps_offload = & rtlhal->p2p_ps_offload; { if ((int )p2p_ps_state == 0) { goto case_0; } else { } if ((int )p2p_ps_state == 1) { goto case_1; } else { } if ((int )p2p_ps_state == 2) { goto case_2; } else { } if ((int )p2p_ps_state == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 2ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___0(); tmp___0 = preempt_count___0(); printk("\017rtl8188ee:%s():<%lx-%x> P2P_PS_DISABLE\n", "rtl88e_set_p2p_ps_offload_cmd", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { memset((void *)p2p_ps_offload, 0, 1UL); } goto ldv_51284; case_1: /* CIL Label */ { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 2ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___0(); tmp___4 = preempt_count___0(); printk("\017rtl8188ee:%s():<%lx-%x> P2P_PS_ENABLE\n", "rtl88e_set_p2p_ps_offload_cmd", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } if ((unsigned int )p2pinfo->ctwindow != 0U) { { p2p_ps_offload->ctwindow_en = 1U; ctwindow = (u16 )p2pinfo->ctwindow; rtl88e_set_p2p_ctw_period_cmd(hw, (int )((u8 )ctwindow)); } } else { } i = 0U; goto ldv_51290; ldv_51289: { rtl_write_byte(rtlpriv, 1487U, (int )i << 4U); } if ((unsigned int )i == 0U) { p2p_ps_offload->noa0_en = 1U; } else { p2p_ps_offload->noa1_en = 1U; } { rtl_write_dword(rtlpriv, 1504U, p2pinfo->noa_duration[(int )i]); rtl_write_dword(rtlpriv, 1508U, p2pinfo->noa_interval[(int )i]); tsf_low = rtl_read_dword(rtlpriv, 1376U); start_time = p2pinfo->noa_start_time[(int )i]; } if ((unsigned int )p2pinfo->noa_count_type[(int )i] != 1U) { goto ldv_51287; ldv_51286: start_time = start_time + p2pinfo->noa_interval[(int )i]; if ((unsigned int )p2pinfo->noa_count_type[(int )i] != 255U) { p2pinfo->noa_count_type[(int )i] = (u8 )((int )p2pinfo->noa_count_type[(int )i] - 1); } else { } ldv_51287: ; if (start_time <= tsf_low + 51200U) { goto ldv_51286; } else { } } else { } { rtl_write_dword(rtlpriv, 1512U, start_time); rtl_write_dword(rtlpriv, 1516U, (u32 )p2pinfo->noa_count_type[(int )i]); i = (u8 )((int )i + 1); } ldv_51290: ; if ((int )i < (int )p2pinfo->noa_num) { goto ldv_51289; } else { } if ((unsigned int )p2pinfo->opp_ps == 1U || (unsigned int )p2pinfo->noa_num != 0U) { { rtl_write_byte(rtlpriv, 1363U, 16); p2p_ps_offload->offload_en = 1U; } if ((unsigned int )rtlpriv->mac80211.p2p == 3U) { p2p_ps_offload->role = 1U; p2p_ps_offload->allstasleep = 0U; } else { p2p_ps_offload->role = 0U; } p2p_ps_offload->discovery = 0U; } else { } goto ldv_51284; case_2: /* CIL Label */ { tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 2ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count___0(); tmp___8 = preempt_count___0(); printk("\017rtl8188ee:%s():<%lx-%x> P2P_PS_SCAN\n", "rtl88e_set_p2p_ps_offload_cmd", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } p2p_ps_offload->discovery = 1U; goto ldv_51284; case_3: /* CIL Label */ { tmp___13 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 2ULL) != 0ULL, 0L); } if (tmp___13 != 0L) { { tmp___14 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___14 != 0L) { { tmp___11 = preempt_count___0(); tmp___12 = preempt_count___0(); printk("\017rtl8188ee:%s():<%lx-%x> P2P_PS_SCAN_DONE\n", "rtl88e_set_p2p_ps_offload_cmd", (unsigned long )tmp___12 & 2096896UL, ((unsigned long )tmp___11 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } p2p_ps_offload->discovery = 0U; p2pinfo->p2p_ps_state = 1; goto ldv_51284; switch_default: /* CIL Label */ ; goto ldv_51284; switch_break: /* CIL Label */ ; } ldv_51284: { rtl88e_fill_h2c_cmd(hw, 20, 1U, (u8 *)p2p_ps_offload); } return; } } static void ldv___ldv_spin_lock_64(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_h2c_lock_of_rtl_locks(); __ldv_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_65(spinlock_t *lock , unsigned long flags ) { { { ldv_spin_unlock_h2c_lock_of_rtl_locks(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_spin_lock_66(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_h2c_lock_of_rtl_locks(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_69(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_h2c_lock_of_rtl_locks(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_71(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_irq_th_lock_of_rtl_locks(); __ldv_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_72(spinlock_t *lock , unsigned long flags ) { { { ldv_spin_unlock_irq_th_lock_of_rtl_locks(); spin_unlock_irqrestore(lock, flags); } return; } } void ldv_spin_lock_fw_ps_lock_of_rtl_locks(void) ; void ldv_spin_unlock_fw_ps_lock_of_rtl_locks(void) ; void ldv_spin_lock_rf_ps_lock_of_rtl_locks(void) ; void ldv_spin_unlock_rf_ps_lock_of_rtl_locks(void) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; __inline static void spin_lock(spinlock_t *lock ) { { { _raw_spin_lock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_lock_81(spinlock_t *lock ) ; __inline static void ldv_spin_lock_81(spinlock_t *lock ) ; __inline static void ldv_spin_lock_81(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_64___0(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_64___0(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_64___0(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_64___0(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_64___0(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_64___0(spinlock_t *lock ) ; __inline static void spin_unlock(spinlock_t *lock ) { { { _raw_spin_unlock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_unlock_82(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_82(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_82(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_82(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_65___0(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_65___0(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_65___0(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_65___0(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_65___0(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_65___0(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_65___0(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_65___0(spinlock_t *lock ) ; static int ldv_mod_timer_71(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static int ldv_mod_timer_74(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static int ldv_mod_timer_80(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; __inline static int valid_dma_direction(int dma_direction ) { { return ((unsigned int )dma_direction <= 2U); } } extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); } if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static void dma_unmap_single_attrs(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (36), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, attrs); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 1); } return; } } __inline static __u32 skb_queue_len(struct sk_buff_head const *list_ ) { { return ((__u32 )list_->qlen); } } extern void synchronize_irq(unsigned int ) ; __inline static void pci_unmap_single(struct pci_dev *hwdev , dma_addr_t dma_addr , size_t size , int direction ) { { { dma_unmap_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_addr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); } return; } } __inline static u16 rtl_read_word(struct rtl_priv *rtlpriv , u32 addr ) { u16 tmp ; { { tmp = (*(rtlpriv->io.read16_sync))(rtlpriv, addr); } return (tmp); } } __inline static void rtl_write_word(struct rtl_priv *rtlpriv , u32 addr , u16 val16 ) { { { (*(rtlpriv->io.write16_async))(rtlpriv, addr, (int )val16); } if ((int )(rtlpriv->cfg)->write_readback) { { (*(rtlpriv->io.read16_sync))(rtlpriv, addr); } } else { } return; } } __inline static u8 get_rf_type(struct rtl_phy *rtlphy ) { { return (rtlphy->rf_type); } } extern u8 efuse_read_1byte(struct ieee80211_hw * , u16 ) ; extern void rtl_efuse_shadow_map_update(struct ieee80211_hw * ) ; extern void rtl_cam_reset_all_entry(struct ieee80211_hw * ) ; extern u8 rtl_cam_add_one_entry(struct ieee80211_hw * , u8 * , u32 , u32 , u32 , u32 , u8 * ) ; extern int rtl_cam_delete_one_entry(struct ieee80211_hw * , u8 * , u32 ) ; extern void rtl_cam_mark_invalid(struct ieee80211_hw * , u8 ) ; extern void rtl_cam_empty_entry(struct ieee80211_hw * , u8 ) ; extern u8 rtl_cam_get_free_entry(struct ieee80211_hw * , u8 * ) ; extern void rtl_cam_del_entry(struct ieee80211_hw * , u8 * ) ; bool rtl88e_phy_mac_config(struct ieee80211_hw *hw ) ; bool rtl88e_phy_bb_config(struct ieee80211_hw *hw ) ; bool rtl88e_phy_rf_config(struct ieee80211_hw *hw ) ; void rtl88e_phy_set_rfpath_switch(struct ieee80211_hw *hw , bool bmain ) ; bool rtl88e_phy_set_io_cmd(struct ieee80211_hw *hw , enum io_type iotype ) ; void rtl88ee_sw_led_on(struct ieee80211_hw *hw , struct rtl_led *pled ) ; void rtl88ee_sw_led_off(struct ieee80211_hw *hw , struct rtl_led *pled ) ; void rtl88ee_get_hw_reg(struct ieee80211_hw *hw , u8 variable , u8 *val ) ; void rtl88ee_read_eeprom_info(struct ieee80211_hw *hw ) ; void rtl88ee_interrupt_recognized(struct ieee80211_hw *hw , u32 *p_inta , u32 *p_intb ) ; int rtl88ee_hw_init(struct ieee80211_hw *hw ) ; void rtl88ee_card_disable(struct ieee80211_hw *hw ) ; void rtl88ee_enable_interrupt(struct ieee80211_hw *hw ) ; void rtl88ee_disable_interrupt(struct ieee80211_hw *hw ) ; int rtl88ee_set_network_type(struct ieee80211_hw *hw , enum nl80211_iftype type ) ; void rtl88ee_set_check_bssid(struct ieee80211_hw *hw , bool check_bssid ) ; void rtl88ee_set_qos(struct ieee80211_hw *hw , int aci ) ; void rtl88ee_set_beacon_related_registers(struct ieee80211_hw *hw ) ; void rtl88ee_set_beacon_interval(struct ieee80211_hw *hw ) ; void rtl88ee_update_interrupt_mask(struct ieee80211_hw *hw , u32 add_msr , u32 rm_msr ) ; void rtl88ee_set_hw_reg(struct ieee80211_hw *hw , u8 variable , u8 *val ) ; void rtl88ee_update_hal_rate_tbl(struct ieee80211_hw *hw , struct ieee80211_sta *sta , u8 rssi ) ; void rtl88ee_update_channel_access_setting(struct ieee80211_hw *hw ) ; bool rtl88ee_gpio_radio_on_off_checking(struct ieee80211_hw *hw , u8 *valid ) ; void rtl88ee_enable_hw_security_config(struct ieee80211_hw *hw ) ; void rtl88ee_set_key(struct ieee80211_hw *hw , u32 key , u8 *mac_ad , bool is_group , u8 enc_algo , bool is_wepkey , bool clear_all ) ; void rtl8188ee_read_bt_coexist_info_from_hwpg(struct ieee80211_hw *hw , bool auto_load_fail , u8 *hwinfo ) ; void rtl8188ee_bt_reg_init(struct ieee80211_hw *hw ) ; void rtl8188ee_bt_hw_init(struct ieee80211_hw *hw ) ; void rtl88ee_suspend(struct ieee80211_hw *hw ) ; void rtl88ee_resume(struct ieee80211_hw *hw ) ; void rtl88ee_allow_all_destaddr(struct ieee80211_hw *hw , bool allow_all_da , bool write_into_reg ) ; void rtl88ee_fw_clk_off_timer_callback(unsigned long data ) ; bool rtl88_hal_pwrseqcmdparsing(struct rtl_priv *rtlpriv , u8 cut_version , u8 fab_version , u8 interface_type , struct wlan_pwr_cfg *pwrcfgcmd ) ; struct wlan_pwr_cfg rtl8188e_card_disable_flow[21U] ; struct wlan_pwr_cfg rtl8188e_card_enable_flow[21U] ; struct wlan_pwr_cfg rtl8188e_enter_lps_flow[16U] ; static void _rtl88ee_set_bcn_ctrl_reg(struct ieee80211_hw *hw , u8 set_bits , u8 clear_bits ) { struct rtl_pci *rtlpci ; struct rtl_priv *rtlpriv ; { { rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; rtlpriv = (struct rtl_priv *)hw->priv; rtlpci->reg_bcn_ctrl_val = rtlpci->reg_bcn_ctrl_val | (u32 )set_bits; rtlpci->reg_bcn_ctrl_val = rtlpci->reg_bcn_ctrl_val & (u32 )(~ ((int )clear_bits)); rtl_write_byte(rtlpriv, 1360U, (int )((unsigned char )rtlpci->reg_bcn_ctrl_val)); } return; } } static void _rtl88ee_stop_tx_beacon(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; u8 tmp1byte ; { { rtlpriv = (struct rtl_priv *)hw->priv; tmp1byte = rtl_read_byte(rtlpriv, 1058U); rtl_write_byte(rtlpriv, 1058U, (int )tmp1byte & 191); rtl_write_byte(rtlpriv, 1345U, 100); tmp1byte = rtl_read_byte(rtlpriv, 1346U); tmp1byte = (unsigned int )tmp1byte & 254U; rtl_write_byte(rtlpriv, 1346U, (int )tmp1byte); } return; } } static void _rtl88ee_resume_tx_beacon(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; u8 tmp1byte ; { { rtlpriv = (struct rtl_priv *)hw->priv; tmp1byte = rtl_read_byte(rtlpriv, 1058U); rtl_write_byte(rtlpriv, 1058U, (int )((unsigned int )tmp1byte | 64U)); rtl_write_byte(rtlpriv, 1345U, 255); tmp1byte = rtl_read_byte(rtlpriv, 1346U); tmp1byte = (u8 )((unsigned int )tmp1byte | 1U); rtl_write_byte(rtlpriv, 1346U, (int )tmp1byte); } return; } } static void _rtl88ee_enable_bcn_sub_func(struct ieee80211_hw *hw ) { { { _rtl88ee_set_bcn_ctrl_reg(hw, 0, 2); } return; } } static void _rtl88ee_return_beacon_queue_skb(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; struct rtl8192_tx_ring *ring ; struct rtl_tx_desc *entry ; struct sk_buff *skb ; struct sk_buff *tmp ; u32 tmp___0 ; __u32 tmp___1 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; ring = (struct rtl8192_tx_ring *)(& rtlpci->tx_ring) + 4UL; goto ldv_51670; ldv_51669: { entry = ring->desc + (unsigned long )ring->idx; tmp = __skb_dequeue(& ring->queue); skb = tmp; tmp___0 = (*(((rtlpriv->cfg)->ops)->get_desc))((u8 *)entry, 1, 3); pci_unmap_single(rtlpci->pdev, (dma_addr_t )tmp___0, (size_t )skb->len, 1); kfree_skb(skb); ring->idx = (ring->idx + 1U) % ring->entries; } ldv_51670: { tmp___1 = skb_queue_len((struct sk_buff_head const *)(& ring->queue)); } if (tmp___1 != 0U) { goto ldv_51669; } else { } return; } } static void _rtl88ee_disable_bcn_sub_func(struct ieee80211_hw *hw ) { { { _rtl88ee_set_bcn_ctrl_reg(hw, 2, 0); } return; } } static void _rtl88ee_set_fw_clock_on(struct ieee80211_hw *hw , u8 rpwm_val , bool need_turn_off_ckk ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; bool support_remote_wake_up ; u32 count ; u32 isr_regaddr ; u32 content ; bool schedule_timer ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; unsigned long tmp___3 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; count = 0U; schedule_timer = need_turn_off_ckk; (*(((rtlpriv->cfg)->ops)->get_hw_reg))(hw, 89, (u8 *)(& support_remote_wake_up)); } if (! rtlhal->fw_ready) { return; } else { } if (! rtlpriv->psc.fw_current_inpsmode) { return; } else { } ldv_51691: { ldv_spin_lock_bh_64___0(& rtlpriv->locks.fw_ps_lock); } if ((int )rtlhal->fw_clk_change_in_progress) { goto ldv_51688; ldv_51687: { ldv_spin_unlock_bh_65___0(& rtlpriv->locks.fw_ps_lock); __const_udelay(429500UL); count = count + 1U; } if (count > 1000U) { return; } else { } { ldv_spin_lock_bh_64___0(& rtlpriv->locks.fw_ps_lock); } ldv_51688: ; if ((int )rtlhal->fw_clk_change_in_progress) { goto ldv_51687; } else { } { ldv_spin_unlock_bh_65___0(& rtlpriv->locks.fw_ps_lock); } } else { { rtlhal->fw_clk_change_in_progress = 0; ldv_spin_unlock_bh_65___0(& rtlpriv->locks.fw_ps_lock); } goto ldv_51690; } goto ldv_51691; ldv_51690: ; if (((unsigned int )rtlhal->fw_ps_state & 15U) == 1U) { { (*(((rtlpriv->cfg)->ops)->get_hw_reg))(hw, 59, & rpwm_val); } if (((unsigned long )rpwm_val & 64UL) != 0UL) { { isr_regaddr = 180U; content = rtl_read_dword(rtlpriv, isr_regaddr); } goto ldv_51693; ldv_51692: { __const_udelay(214750UL); count = count + 1U; content = rtl_read_dword(rtlpriv, isr_regaddr); } ldv_51693: ; if (((unsigned long )content & 256UL) == 0UL && count <= 499U) { goto ldv_51692; } else { } if (((unsigned long )content & 256UL) != 0UL) { { rtl_write_word(rtlpriv, isr_regaddr, 256); rtlhal->fw_ps_state = 0U; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> Receive CPWM INT!!! Set pHalData->FwPSState = %X\n", "_rtl88ee_set_fw_clock_on", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )rtlhal->fw_ps_state); } } else { } } else { } } else { } } else { } { ldv_spin_lock_bh_64___0(& rtlpriv->locks.fw_ps_lock); rtlhal->fw_clk_change_in_progress = 0; ldv_spin_unlock_bh_65___0(& rtlpriv->locks.fw_ps_lock); } if ((int )schedule_timer) { { tmp___3 = msecs_to_jiffies(10U); ldv_mod_timer_71(& rtlpriv->works.fw_clockoff_timer, (unsigned long )jiffies + tmp___3); } } else { } } else { { ldv_spin_lock_bh_64___0(& rtlpriv->locks.fw_ps_lock); rtlhal->fw_clk_change_in_progress = 0; ldv_spin_unlock_bh_65___0(& rtlpriv->locks.fw_ps_lock); } } return; } } static void _rtl88ee_set_fw_clock_off(struct ieee80211_hw *hw , u8 rpwm_val ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; struct rtl_pci *rtlpci ; struct rtl8192_tx_ring *ring ; enum rf_pwrstate rtstate ; bool schedule_timer ; u8 queue ; __u32 tmp ; unsigned long tmp___0 ; unsigned long tmp___1 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; schedule_timer = 0; if (! rtlhal->fw_ready) { return; } else { } if (! rtlpriv->psc.fw_current_inpsmode) { return; } else { } if (! rtlhal->allow_sw_to_change_hwclc) { return; } else { } { (*(((rtlpriv->cfg)->ops)->get_hw_reg))(hw, 39, (u8 *)(& rtstate)); } if ((unsigned int )rtstate == 2U || (unsigned int )rtlpriv->psc.inactive_pwrstate == 2U) { return; } else { } queue = 0U; goto ldv_51709; ldv_51708: { ring = (struct rtl8192_tx_ring *)(& rtlpci->tx_ring) + (unsigned long )queue; tmp = skb_queue_len((struct sk_buff_head const *)(& ring->queue)); } if (tmp != 0U) { schedule_timer = 1; goto ldv_51707; } else { } queue = (u8 )((int )queue + 1); ldv_51709: ; if ((unsigned int )queue <= 8U) { goto ldv_51708; } else { } ldv_51707: ; if ((int )schedule_timer) { { tmp___0 = msecs_to_jiffies(10U); ldv_mod_timer_74(& rtlpriv->works.fw_clockoff_timer, (unsigned long )jiffies + tmp___0); } return; } else { } if (((unsigned int )rtlhal->fw_ps_state & 15U) != 1U) { { ldv_spin_lock_bh_64___0(& rtlpriv->locks.fw_ps_lock); } if (! rtlhal->fw_clk_change_in_progress) { { rtlhal->fw_clk_change_in_progress = 1; ldv_spin_unlock_bh_65___0(& rtlpriv->locks.fw_ps_lock); rtlhal->fw_ps_state = (unsigned int )rpwm_val & 15U; rtl_write_word(rtlpriv, 180U, 256); (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 59, & rpwm_val); ldv_spin_lock_bh_64___0(& rtlpriv->locks.fw_ps_lock); rtlhal->fw_clk_change_in_progress = 0; ldv_spin_unlock_bh_65___0(& rtlpriv->locks.fw_ps_lock); } } else { { ldv_spin_unlock_bh_65___0(& rtlpriv->locks.fw_ps_lock); tmp___1 = msecs_to_jiffies(10U); ldv_mod_timer_80(& rtlpriv->works.fw_clockoff_timer, (unsigned long )jiffies + tmp___1); } } } else { } return; } } static void _rtl88ee_set_fw_ps_rf_on(struct ieee80211_hw *hw ) { u8 rpwm_val ; { { rpwm_val = 0U; rpwm_val = (u8 )((unsigned int )rpwm_val | 64U); _rtl88ee_set_fw_clock_on(hw, (int )rpwm_val, 1); } return; } } static void _rtl88ee_set_fw_ps_rf_off_low_power(struct ieee80211_hw *hw ) { u8 rpwm_val ; { { rpwm_val = 0U; rpwm_val = (u8 )((unsigned int )rpwm_val | 1U); _rtl88ee_set_fw_clock_off(hw, (int )rpwm_val); } return; } } void rtl88ee_fw_clk_off_timer_callback(unsigned long data ) { struct ieee80211_hw *hw ; { { hw = (struct ieee80211_hw *)data; _rtl88ee_set_fw_ps_rf_off_low_power(hw); } return; } } static void _rtl88ee_fwlps_leave(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_ps_ctl *ppsc ; struct rtl_hal *rtlhal ; bool fw_current_inps ; u8 rpwm_val ; u8 fw_pwrmode ; { rtlpriv = (struct rtl_priv *)hw->priv; ppsc = & ((struct rtl_priv *)hw->priv)->psc; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; fw_current_inps = 0; rpwm_val = 0U; fw_pwrmode = 0U; if ((int )ppsc->low_power_enable) { { rpwm_val = 64U; _rtl88ee_set_fw_clock_on(hw, (int )rpwm_val, 0); rtlhal->allow_sw_to_change_hwclc = 0; (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 60, & fw_pwrmode); (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 63, (u8 *)(& fw_current_inps)); } } else { { rpwm_val = 0U; (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 59, & rpwm_val); (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 60, & fw_pwrmode); (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 63, (u8 *)(& fw_current_inps)); } } return; } } static void _rtl88ee_fwlps_enter(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_ps_ctl *ppsc ; struct rtl_hal *rtlhal ; bool fw_current_inps ; u8 rpwm_val ; { rtlpriv = (struct rtl_priv *)hw->priv; ppsc = & ((struct rtl_priv *)hw->priv)->psc; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; fw_current_inps = 1; if ((int )ppsc->low_power_enable) { { rpwm_val = 1U; (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 63, (u8 *)(& fw_current_inps)); (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 60, & ppsc->fwctrl_psmode); rtlhal->allow_sw_to_change_hwclc = 1; _rtl88ee_set_fw_clock_off(hw, (int )rpwm_val); } } else { { rpwm_val = 0U; (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 63, (u8 *)(& fw_current_inps)); (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 60, & ppsc->fwctrl_psmode); (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 59, & rpwm_val); } } return; } } void rtl88ee_get_hw_reg(struct ieee80211_hw *hw , u8 variable , u8 *val ) { struct rtl_priv *rtlpriv ; struct rtl_ps_ctl *ppsc ; struct rtl_pci *rtlpci ; enum rf_pwrstate rfstate ; u32 val_rcr ; u64 tsf ; u32 *ptsf_low ; u32 *ptsf_high ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { rtlpriv = (struct rtl_priv *)hw->priv; ppsc = & ((struct rtl_priv *)hw->priv)->psc; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; { if ((int )variable == 43) { goto case_43; } else { } if ((int )variable == 39) { goto case_39; } else { } if ((int )variable == 83) { goto case_83; } else { } if ((int )variable == 63) { goto case_63; } else { } if ((int )variable == 81) { goto case_81; } else { } goto switch_default; case_43: /* CIL Label */ *((u32 *)val) = rtlpci->receive_config; goto ldv_51748; case_39: /* CIL Label */ *((enum rf_pwrstate *)val) = ppsc->rfpwr_state; goto ldv_51748; case_83: /* CIL Label */ { (*(((rtlpriv->cfg)->ops)->get_hw_reg))(hw, 39, (u8 *)(& rfstate)); } if ((unsigned int )rfstate == 2U) { *((bool *)val) = 1; } else { { val_rcr = rtl_read_dword(rtlpriv, 1544U); val_rcr = val_rcr & 458752U; } if (val_rcr != 0U) { *((bool *)val) = 0; } else { *((bool *)val) = 1; } } goto ldv_51748; case_63: /* CIL Label */ *((bool *)val) = ppsc->fw_current_inpsmode; goto ldv_51748; case_81: /* CIL Label */ { ptsf_low = (u32 *)(& tsf); ptsf_high = (u32 *)(& tsf) + 1UL; *ptsf_high = rtl_read_dword(rtlpriv, 1380U); *ptsf_low = rtl_read_dword(rtlpriv, 1376U); *((u64 *)val) = tsf; } goto ldv_51748; switch_default: /* CIL Label */ { tmp___1 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> switch case not process %x\n", "rtl88ee_get_hw_reg", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )variable); } } else { } } else { } goto ldv_51748; switch_break: /* CIL Label */ ; } ldv_51748: ; return; } } void rtl88ee_set_hw_reg(struct ieee80211_hw *hw , u8 variable , u8 *val ) { struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; struct rtl_mac *mac ; struct rtl_efuse *rtlefuse ; struct rtl_ps_ctl *ppsc ; u8 idx ; u16 rate_cfg ; u8 rate_index ; u8 e_aci ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; u8 reg_tmp ; u8 short_preamble ; u8 min_spacing_to_set ; u8 sec_min_space ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; u8 density_to_set ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; u8 regtoset_normal[4U] ; u8 factor ; u8 *reg ; u8 id ; int tmp___11 ; int tmp___12 ; long tmp___13 ; long tmp___14 ; u8 e_aci___0 ; u8 e_aci___1 ; union aci_aifsn *p_aci_aifsn ; u8 acm ; u8 acm_ctrl ; u8 tmp___15 ; int tmp___16 ; int tmp___17 ; long tmp___18 ; long tmp___19 ; int tmp___20 ; int tmp___21 ; long tmp___22 ; long tmp___23 ; int tmp___24 ; int tmp___25 ; long tmp___26 ; long tmp___27 ; u8 retry_limit ; u8 rpwm_val ; bool enter_fwlps ; u8 mstatus ; u8 tmp___28 ; u8 tmp_reg422 ; u8 uval ; u8 count ; u8 dlbcn_count ; bool recover ; u16 u2btmp ; u8 btype_ibss ; int tmp___29 ; int tmp___30 ; long tmp___31 ; long tmp___32 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; mac = & ((struct rtl_priv *)hw->priv)->mac80211; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; ppsc = & ((struct rtl_priv *)hw->priv)->psc; { if ((int )variable == 0) { goto case_0; } else { } if ((int )variable == 2) { goto case_2; } else { } if ((int )variable == 3) { goto case_3; } else { } if ((int )variable == 14) { goto case_14; } else { } if ((int )variable == 17) { goto case_17; } else { } if ((int )variable == 18) { goto case_18; } else { } if ((int )variable == 26) { goto case_26; } else { } if ((int )variable == 27) { goto case_27; } else { } if ((int )variable == 28) { goto case_28; } else { } if ((int )variable == 29) { goto case_29; } else { } if ((int )variable == 31) { goto case_31; } else { } if ((int )variable == 32) { goto case_32; } else { } if ((int )variable == 43) { goto case_43; } else { } if ((int )variable == 52) { goto case_52; } else { } if ((int )variable == 84) { goto case_84; } else { } if ((int )variable == 56) { goto case_56; } else { } if ((int )variable == 55) { goto case_55; } else { } if ((int )variable == 69) { goto case_69; } else { } if ((int )variable == 59) { goto case_59; } else { } if ((int )variable == 60) { goto case_60; } else { } if ((int )variable == 63) { goto case_63; } else { } if ((int )variable == 64) { goto case_64; } else { } if ((int )variable == 65) { goto case_65; } else { } if ((int )variable == 61) { goto case_61; } else { } if ((int )variable == 62) { goto case_62; } else { } if ((int )variable == 79) { goto case_79; } else { } if ((int )variable == 81) { goto case_81; } else { } goto switch_default___1; case_0: /* CIL Label */ idx = 0U; goto ldv_51773; ldv_51772: { rtl_write_byte(rtlpriv, (u32 )((int )idx + 1552), (int )*(val + (unsigned long )idx)); idx = (u8 )((int )idx + 1); } ldv_51773: ; if ((unsigned int )idx <= 5U) { goto ldv_51772; } else { } goto ldv_51775; case_2: /* CIL Label */ { rate_cfg = *((u16 *)val); rate_index = 0U; rate_cfg = (unsigned int )rate_cfg & 351U; rate_cfg = (u16 )((unsigned int )rate_cfg | 1U); rtl_write_byte(rtlpriv, 1088U, (int )((u8 )rate_cfg)); rtl_write_byte(rtlpriv, 1089U, (int )((u8 )((int )rate_cfg >> 8))); } goto ldv_51780; ldv_51779: rate_cfg = (u16 )((int )rate_cfg >> 1); rate_index = (u8 )((int )rate_index + 1); ldv_51780: ; if ((unsigned int )rate_cfg > 1U) { goto ldv_51779; } else { } { rtl_write_byte(rtlpriv, 1152U, (int )rate_index); } goto ldv_51775; case_3: /* CIL Label */ idx = 0U; goto ldv_51784; ldv_51783: { rtl_write_byte(rtlpriv, (u32 )((int )idx + 1560), (int )*(val + (unsigned long )idx)); idx = (u8 )((int )idx + 1); } ldv_51784: ; if ((unsigned int )idx <= 5U) { goto ldv_51783; } else { } goto ldv_51775; case_14: /* CIL Label */ { rtl_write_byte(rtlpriv, 1301U, (int )*val); rtl_write_byte(rtlpriv, 1303U, (int )*(val + 1UL)); rtl_write_byte(rtlpriv, 1065U, (int )*val); rtl_write_byte(rtlpriv, 1595U, (int )*val); } if ((unsigned int )mac->ht_enable == 0U) { { rtl_write_word(rtlpriv, 1598U, 3598); } } else { { rtl_write_word(rtlpriv, 1598U, (int )*((u16 *)val)); } } goto ldv_51775; case_17: /* CIL Label */ { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 32ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> HW_VAR_SLOT_TIME %x\n", "rtl88ee_set_hw_reg", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )*val); } } else { } } else { } { rtl_write_byte(rtlpriv, 1307U, (int )*val); e_aci = 0U; } goto ldv_51791; ldv_51790: { (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 31, & e_aci); e_aci = (u8 )((int )e_aci + 1); } ldv_51791: ; if ((unsigned int )e_aci <= 3U) { goto ldv_51790; } else { } goto ldv_51775; case_18: /* CIL Label */ { short_preamble = (unsigned int )*val != 0U; reg_tmp = rtl_read_byte(rtlpriv, 1642U); } if ((unsigned int )short_preamble != 0U) { { reg_tmp = (u8 )((unsigned int )reg_tmp | 2U); rtl_write_byte(rtlpriv, 1642U, (int )reg_tmp); } } else { { reg_tmp = (u8 )((unsigned int )reg_tmp | 253U); rtl_write_byte(rtlpriv, 1642U, (int )reg_tmp); } } goto ldv_51775; case_26: /* CIL Label */ { rtl_write_byte(rtlpriv, 1664U, (int )*val); } goto ldv_51775; case_27: /* CIL Label */ min_spacing_to_set = *val; if ((unsigned int )min_spacing_to_set <= 7U) { sec_min_space = 0U; if ((int )min_spacing_to_set < (int )sec_min_space) { min_spacing_to_set = sec_min_space; } else { } { mac->min_space_cfg = (u8 )(((int )((signed char )mac->min_space_cfg) & -8) | (int )((signed char )min_spacing_to_set)); *val = min_spacing_to_set; tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 32ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> Set HW_VAR_AMPDU_MIN_SPACE: %#x\n", "rtl88ee_set_hw_reg", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, (int )mac->min_space_cfg); } } else { } } else { } { rtl_write_byte(rtlpriv, 1116U, (int )mac->min_space_cfg); } } else { } goto ldv_51775; case_28: /* CIL Label */ { density_to_set = *val; mac->min_space_cfg = (u8 )((int )((signed char )mac->min_space_cfg) | (int )((signed char )((int )density_to_set << 3))); tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 32ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count(); tmp___8 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> Set HW_VAR_SHORTGI_DENSITY: %#x\n", "rtl88ee_set_hw_reg", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL, (int )mac->min_space_cfg); } } else { } } else { } { rtl_write_byte(rtlpriv, 1116U, (int )mac->min_space_cfg); } goto ldv_51775; case_29: /* CIL Label */ regtoset_normal[0] = 65U; regtoset_normal[1] = 168U; regtoset_normal[2] = 114U; regtoset_normal[3] = 185U; reg = (u8 *)0U; id = 0U; reg = (u8 *)(& regtoset_normal); factor = *val; if ((unsigned int )factor <= 3U) { factor = (u8 )(1 << ((int )factor + 2)); if ((unsigned int )factor > 15U) { factor = 15U; } else { } id = 0U; goto ldv_51808; ldv_51807: ; if (((int )*(reg + (unsigned long )id) & 240) > (int )factor << 4) { *(reg + (unsigned long )id) = (u8 )(((int )((signed char )*(reg + (unsigned long )id)) & 15) | (int )((signed char )((int )factor << 4))); } else { } if (((int )*(reg + (unsigned long )id) & 15) > (int )factor) { *(reg + (unsigned long )id) = (u8 )(((int )((signed char )*(reg + (unsigned long )id)) & -16) | (int )((signed char )factor)); } else { } { rtl_write_byte(rtlpriv, (u32 )((int )id + 1112), (int )*(reg + (unsigned long )id)); id = (u8 )((int )id + 1); } ldv_51808: ; if ((unsigned int )id <= 3U) { goto ldv_51807; } else { } { tmp___13 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 32ULL) != 0ULL, 0L); } if (tmp___13 != 0L) { { tmp___14 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___14 != 0L) { { tmp___11 = preempt_count(); tmp___12 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> Set HW_VAR_AMPDU_FACTOR: %#x\n", "rtl88ee_set_hw_reg", (unsigned long )tmp___12 & 2096896UL, ((unsigned long )tmp___11 & 0xffffffffffdfffffUL) != 0UL, (int )factor); } } else { } } else { } } else { } goto ldv_51775; case_31: /* CIL Label */ { e_aci___0 = *val; rtl88e_dm_init_edca_turbo(hw); } if ((unsigned int )rtlpci->acm_method != 2U) { { (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 32, & e_aci___0); } } else { } goto ldv_51775; case_32: /* CIL Label */ { e_aci___1 = *val; p_aci_aifsn = (union aci_aifsn *)(& mac->ac[0].aifs); acm = p_aci_aifsn->f.acm; tmp___15 = rtl_read_byte(rtlpriv, 1472U); acm_ctrl = tmp___15; acm_ctrl = (u8 )((int )((signed char )acm_ctrl) | ((unsigned int )rtlpci->acm_method != 2U)); } if ((unsigned int )acm != 0U) { { if ((int )e_aci___1 == 0) { goto case_0___0; } else { } if ((int )e_aci___1 == 2) { goto case_2___0; } else { } if ((int )e_aci___1 == 3) { goto case_3___0; } else { } goto switch_default; case_0___0: /* CIL Label */ acm_ctrl = (u8 )((unsigned int )acm_ctrl | 2U); goto ldv_51818; case_2___0: /* CIL Label */ acm_ctrl = (u8 )((unsigned int )acm_ctrl | 4U); goto ldv_51818; case_3___0: /* CIL Label */ acm_ctrl = (u8 )((unsigned int )acm_ctrl | 8U); goto ldv_51818; switch_default: /* CIL Label */ { tmp___18 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___18 != 0L) { { tmp___19 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 1, 0L); } if (tmp___19 != 0L) { { tmp___16 = preempt_count(); tmp___17 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> HW_VAR_ACM_CTRL acm set failed: eACI is %d\n", "rtl88ee_set_hw_reg", (unsigned long )tmp___17 & 2096896UL, ((unsigned long )tmp___16 & 0xffffffffffdfffffUL) != 0UL, (int )acm); } } else { } } else { } goto ldv_51818; switch_break___0: /* CIL Label */ ; } ldv_51818: ; } else { { if ((int )e_aci___1 == 0) { goto case_0___1; } else { } if ((int )e_aci___1 == 2) { goto case_2___1; } else { } if ((int )e_aci___1 == 3) { goto case_3___1; } else { } goto switch_default___0; case_0___1: /* CIL Label */ acm_ctrl = (unsigned int )acm_ctrl & 253U; goto ldv_51823; case_2___1: /* CIL Label */ acm_ctrl = (unsigned int )acm_ctrl & 251U; goto ldv_51823; case_3___1: /* CIL Label */ acm_ctrl = (unsigned int )acm_ctrl & 253U; goto ldv_51823; switch_default___0: /* CIL Label */ { tmp___22 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___22 != 0L) { { tmp___23 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___23 != 0L) { { tmp___20 = preempt_count(); tmp___21 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> switch case not process\n", "rtl88ee_set_hw_reg", (unsigned long )tmp___21 & 2096896UL, ((unsigned long )tmp___20 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_51823; switch_break___1: /* CIL Label */ ; } ldv_51823: ; } { tmp___26 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 33554432ULL) != 0ULL, 0L); } if (tmp___26 != 0L) { { tmp___27 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___27 != 0L) { { tmp___24 = preempt_count(); tmp___25 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n", "rtl88ee_set_hw_reg", (unsigned long )tmp___25 & 2096896UL, ((unsigned long )tmp___24 & 0xffffffffffdfffffUL) != 0UL, (int )acm_ctrl); } } else { } } else { } { rtl_write_byte(rtlpriv, 1472U, (int )acm_ctrl); } goto ldv_51775; case_43: /* CIL Label */ { rtl_write_dword(rtlpriv, 1544U, *((u32 *)val)); rtlpci->receive_config = *((u32 *)val); } goto ldv_51775; case_52: /* CIL Label */ { retry_limit = *val; rtl_write_word(rtlpriv, 1066U, (int )((u16 )((int )((short )((int )retry_limit << 8)) | (int )((short )retry_limit)))); } goto ldv_51775; case_84: /* CIL Label */ { rtl_write_byte(rtlpriv, 1363U, 3); } goto ldv_51775; case_56: /* CIL Label */ rtlefuse->efuse_usedbytes = *((u16 *)val); goto ldv_51775; case_55: /* CIL Label */ rtlefuse->efuse_usedpercentage = *val; goto ldv_51775; case_69: /* CIL Label */ { rtl88e_phy_set_io_cmd(hw, *((enum io_type *)val)); } goto ldv_51775; case_59: /* CIL Label */ { rpwm_val = rtl_read_byte(rtlpriv, 865U); __const_udelay(4295UL); } if ((int )((signed char )rpwm_val) < 0) { { rtl_write_byte(rtlpriv, 865U, (int )*val); } } else { { rtl_write_byte(rtlpriv, 865U, (int )((unsigned int )*val | 128U)); } } goto ldv_51775; case_60: /* CIL Label */ { rtl88e_set_fw_pwrmode_cmd(hw, (int )*val); } goto ldv_51775; case_63: /* CIL Label */ ppsc->fw_current_inpsmode = *((bool *)val); goto ldv_51775; case_64: /* CIL Label */ { _rtl88ee_set_fw_ps_rf_on(hw); } goto ldv_51775; case_65: /* CIL Label */ enter_fwlps = *((bool *)val); if ((int )enter_fwlps) { { _rtl88ee_fwlps_enter(hw); } } else { { _rtl88ee_fwlps_leave(hw); } } goto ldv_51775; case_61: /* CIL Label */ mstatus = *val; count = 0U; dlbcn_count = 0U; recover = 0; if ((unsigned int )mstatus == 1U) { { (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 79, (u8 *)0U); tmp___28 = rtl_read_byte(rtlpriv, 257U); rtl_write_byte(rtlpriv, 257U, (int )((unsigned int )tmp___28 | 1U)); _rtl88ee_set_bcn_ctrl_reg(hw, 0, 8); _rtl88ee_set_bcn_ctrl_reg(hw, 16, 0); tmp_reg422 = rtl_read_byte(rtlpriv, 1058U); rtl_write_byte(rtlpriv, 1058U, (int )tmp_reg422 & 191); } if (((unsigned long )tmp_reg422 & 64UL) != 0UL) { recover = 1; } else { } ldv_51852: { uval = rtl_read_byte(rtlpriv, 522U); rtl_write_byte(rtlpriv, 522U, (int )((unsigned int )uval | 1U)); _rtl88ee_return_beacon_queue_skb(hw); rtl88e_set_fw_rsvdpagepkt(hw, 0); uval = rtl_read_byte(rtlpriv, 522U); count = 0U; } goto ldv_51850; ldv_51849: { count = (u8 )((int )count + 1); __const_udelay(42950UL); uval = rtl_read_byte(rtlpriv, 522U); } ldv_51850: ; if (((unsigned long )uval & 1UL) == 0UL && (unsigned int )count <= 19U) { goto ldv_51849; } else { } dlbcn_count = (u8 )((int )dlbcn_count + 1); if (((unsigned long )uval & 1UL) == 0UL && (unsigned int )dlbcn_count <= 4U) { goto ldv_51852; } else { } if ((int )uval & 1) { { rtl_write_byte(rtlpriv, 522U, 1); } } else { } { _rtl88ee_set_bcn_ctrl_reg(hw, 8, 0); _rtl88ee_set_bcn_ctrl_reg(hw, 0, 16); } if ((int )recover) { { rtl_write_byte(rtlpriv, 1058U, (int )tmp_reg422); } } else { } { rtl_write_byte(rtlpriv, 257U, (int )tmp___28 & 254); } } else { } { rtl88e_set_fw_joinbss_report_cmd(hw, (int )*val); } goto ldv_51775; case_62: /* CIL Label */ { rtl88e_set_p2p_ps_offload_cmd(hw, (int )*val); } goto ldv_51775; case_79: /* CIL Label */ { u2btmp = rtl_read_word(rtlpriv, 1704U); u2btmp = (unsigned int )u2btmp & 49152U; rtl_write_word(rtlpriv, 1704U, (int )u2btmp | (int )mac->assoc_id); } goto ldv_51775; case_81: /* CIL Label */ btype_ibss = *val; if ((unsigned int )btype_ibss == 1U) { { _rtl88ee_stop_tx_beacon(hw); } } else { } { _rtl88ee_set_bcn_ctrl_reg(hw, 0, 8); rtl_write_dword(rtlpriv, 1376U, (unsigned int )mac->tsf); rtl_write_dword(rtlpriv, 1380U, (unsigned int )(mac->tsf >> 32)); _rtl88ee_set_bcn_ctrl_reg(hw, 8, 0); } if ((unsigned int )btype_ibss == 1U) { { _rtl88ee_resume_tx_beacon(hw); } } else { } goto ldv_51775; switch_default___1: /* CIL Label */ { tmp___31 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___31 != 0L) { { tmp___32 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___32 != 0L) { { tmp___29 = preempt_count(); tmp___30 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> switch case not process %x\n", "rtl88ee_set_hw_reg", (unsigned long )tmp___30 & 2096896UL, ((unsigned long )tmp___29 & 0xffffffffffdfffffUL) != 0UL, (int )variable); } } else { } } else { } goto ldv_51775; switch_break: /* CIL Label */ ; } ldv_51775: ; return; } } static bool _rtl88ee_llt_write(struct ieee80211_hw *hw , u32 address , u32 data ) { struct rtl_priv *rtlpriv ; bool status ; long count ; u32 value ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { { rtlpriv = (struct rtl_priv *)hw->priv; status = 1; count = 0L; value = (((address << 8) & 65535U) | (data & 255U)) | 1073741824U; rtl_write_dword(rtlpriv, 480U, value); } ldv_51871: { value = rtl_read_dword(rtlpriv, 480U); } if (value >> 30 == 0U) { goto ldv_51869; } else { } if (count > 20L) { { tmp___1 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> Failed to polling write LLT done at address %d!\n", "_rtl88ee_llt_write", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, address); } } else { } } else { } status = 0; goto ldv_51869; } else { } count = count + 1L; if (count != 0L) { goto ldv_51871; } else { } ldv_51869: ; return (status); } } static bool _rtl88ee_llt_table_init(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; unsigned short i ; u8 txpktbuf_bndy ; u8 maxpage ; bool status ; { { rtlpriv = (struct rtl_priv *)hw->priv; maxpage = 175U; txpktbuf_bndy = 171U; rtl_write_byte(rtlpriv, 532U, 1); rtl_write_dword(rtlpriv, 512U, 2155023657U); rtl_write_dword(rtlpriv, 276U, (u32 )((int )txpktbuf_bndy | 637468672)); rtl_write_byte(rtlpriv, 521U, (int )txpktbuf_bndy); rtl_write_byte(rtlpriv, 1060U, (int )txpktbuf_bndy); rtl_write_byte(rtlpriv, 1061U, (int )txpktbuf_bndy); rtl_write_byte(rtlpriv, 1117U, (int )txpktbuf_bndy); rtl_write_byte(rtlpriv, 260U, 17); rtl_write_byte(rtlpriv, 1551U, 4); i = 0U; } goto ldv_51881; ldv_51880: { status = _rtl88ee_llt_write(hw, (u32 )i, (u32 )((int )i + 1)); } if (! status) { return (status); } else { } i = (unsigned short )((int )i + 1); ldv_51881: ; if ((int )i < (int )txpktbuf_bndy + -1) { goto ldv_51880; } else { } { status = _rtl88ee_llt_write(hw, (u32 )((int )txpktbuf_bndy + -1), 255U); } if (! status) { return (status); } else { } i = (unsigned short )txpktbuf_bndy; goto ldv_51884; ldv_51883: { status = _rtl88ee_llt_write(hw, (u32 )i, (u32 )((int )i + 1)); } if (! status) { return (status); } else { } i = (unsigned short )((int )i + 1); ldv_51884: ; if ((int )i < (int )((unsigned short )maxpage)) { goto ldv_51883; } else { } { status = _rtl88ee_llt_write(hw, (u32 )maxpage, (u32 )txpktbuf_bndy); } if (! status) { return (status); } else { } return (1); } } static void _rtl88ee_gen_refresh_led_state(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_pci_priv *pcipriv ; struct rtl_ps_ctl *ppsc ; struct rtl_led *pLed0 ; { rtlpriv = (struct rtl_priv *)hw->priv; pcipriv = (struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv); ppsc = & ((struct rtl_priv *)hw->priv)->psc; pLed0 = & pcipriv->ledctl.sw_led0; if ((int )rtlpriv->rtlhal.up_first_time) { return; } else { } if (ppsc->rfoff_reason == 268435456U) { { rtl88ee_sw_led_on(hw, pLed0); } } else if (ppsc->rfoff_reason == 0U) { { rtl88ee_sw_led_on(hw, pLed0); } } else { { rtl88ee_sw_led_off(hw, pLed0); } } return; } } static bool _rtl88ee_init_mac(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; struct rtl_hal *rtlhal ; u8 bytetmp ; u16 wordtmp ; u8 tmp ; u8 tmp___0 ; int tmp___1 ; int tmp___2 ; long tmp___3 ; long tmp___4 ; bool tmp___5 ; int tmp___6 ; u8 tmp___7 ; int tmp___8 ; int tmp___9 ; long tmp___10 ; long tmp___11 ; bool tmp___12 ; int tmp___13 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; tmp = rtl_read_byte(rtlpriv, 124U); bytetmp = (unsigned int )tmp & 254U; rtl_write_byte(rtlpriv, 124U, (int )bytetmp); tmp___0 = rtl_read_byte(rtlpriv, 5U); bytetmp = (unsigned int )tmp___0 & 127U; rtl_write_byte(rtlpriv, 5U, (int )bytetmp); rtl_write_byte(rtlpriv, 28U, 0); tmp___5 = rtl88_hal_pwrseqcmdparsing(rtlpriv, 255, 15, 4, (struct wlan_pwr_cfg *)(& rtl8188e_card_enable_flow)); } if (tmp___5) { tmp___6 = 0; } else { tmp___6 = 1; } if (tmp___6) { { tmp___3 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___3 != 0L) { { tmp___4 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___4 != 0L) { { tmp___1 = preempt_count(); tmp___2 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> init MAC Fail as rtl88_hal_pwrseqcmdparsing\n", "_rtl88ee_init_mac", (unsigned long )tmp___2 & 2096896UL, ((unsigned long )tmp___1 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return (0); } else { } { tmp___7 = rtl_read_byte(rtlpriv, 4U); bytetmp = (u8 )((unsigned int )tmp___7 | 16U); rtl_write_byte(rtlpriv, 4U, (int )bytetmp); bytetmp = rtl_read_byte(rtlpriv, 770U); rtl_write_byte(rtlpriv, 770U, (int )((unsigned int )bytetmp | 4U)); bytetmp = rtl_read_byte(rtlpriv, 873U); rtl_write_byte(rtlpriv, 873U, (int )((unsigned int )bytetmp | 128U)); bytetmp = rtl_read_byte(rtlpriv, 121U); rtl_write_byte(rtlpriv, 121U, (int )((unsigned int )bytetmp | 2U)); bytetmp = rtl_read_byte(rtlpriv, 1260U); rtl_write_byte(rtlpriv, 1260U, (int )((unsigned int )bytetmp | 3U)); rtl_write_byte(rtlpriv, 1261U, 2); rtl_write_word(rtlpriv, 1264U, 52720); bytetmp = rtl_read_byte(rtlpriv, 8U); rtl_write_byte(rtlpriv, 8U, (int )((unsigned int )bytetmp | 8U)); bytetmp = rtl_read_byte(rtlpriv, 65U); rtl_write_byte(rtlpriv, 65U, (int )bytetmp & 239); rtl_write_byte(rtlpriv, 871U, 128); rtl_write_word(rtlpriv, 256U, 767); rtl_write_byte(rtlpriv, 257U, 6); rtl_write_byte(rtlpriv, 258U, 0); } if (! rtlhal->mac_func_enable) { { tmp___12 = _rtl88ee_llt_table_init(hw); } if (tmp___12) { tmp___13 = 0; } else { tmp___13 = 1; } if (tmp___13) { { tmp___10 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___10 != 0L) { { tmp___11 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___11 != 0L) { { tmp___8 = preempt_count(); tmp___9 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> LLT table init fail\n", "_rtl88ee_init_mac", (unsigned long )tmp___9 & 2096896UL, ((unsigned long )tmp___8 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return (0); } else { } } else { } { rtl_write_dword(rtlpriv, 180U, 4294967295U); rtl_write_dword(rtlpriv, 188U, 4294967295U); wordtmp = rtl_read_word(rtlpriv, 268U); wordtmp = (unsigned int )wordtmp & 15U; wordtmp = (u16 )((unsigned int )wordtmp | 59249U); rtl_write_word(rtlpriv, 268U, (int )wordtmp); rtl_write_dword(rtlpriv, 1544U, rtlpci->receive_config); rtl_write_word(rtlpriv, 1700U, 65535); rtl_write_dword(rtlpriv, 1540U, rtlpci->transmit_config); rtl_write_dword(rtlpriv, 776U, (u32 )rtlpci->tx_ring[4].dma); rtl_write_dword(rtlpriv, 792U, (u32 )rtlpci->tx_ring[6].dma); rtl_write_dword(rtlpriv, 800U, (u32 )rtlpci->tx_ring[3].dma); rtl_write_dword(rtlpriv, 808U, (u32 )rtlpci->tx_ring[2].dma); rtl_write_dword(rtlpriv, 816U, (u32 )rtlpci->tx_ring[1].dma); rtl_write_dword(rtlpriv, 824U, (u32 )rtlpci->tx_ring[0].dma); rtl_write_dword(rtlpriv, 784U, (u32 )rtlpci->tx_ring[7].dma); rtl_write_dword(rtlpriv, 832U, (u32 )rtlpci->rx_ring[0].dma); rtl_write_dword(rtlpriv, 772U, 0U); rtl_write_dword(rtlpriv, 448U, 0U); rtl_write_byte(rtlpriv, 769U, 0); } if ((int )rtlhal->earlymode_enable) { { bytetmp = rtl_read_byte(rtlpriv, 1232U); bytetmp = (u8 )((unsigned int )bytetmp | 31U); rtl_write_byte(rtlpriv, 1232U, (int )bytetmp); rtl_write_byte(rtlpriv, 1235U, 129); } } else { } { _rtl88ee_gen_refresh_led_state(hw); } return (1); } } static void _rtl88ee_hw_configure(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; u32 reg_prsr ; { { rtlpriv = (struct rtl_priv *)hw->priv; reg_prsr = 4095U; rtl_write_dword(rtlpriv, 1088U, reg_prsr); rtl_write_byte(rtlpriv, 1059U, 255); } return; } } static void _rtl88ee_enable_aspm_back_door(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_ps_ctl *ppsc ; u8 tmp1byte ; u32 tmp4Byte ; u32 count ; { { rtlpriv = (struct rtl_priv *)hw->priv; ppsc = & ((struct rtl_priv *)hw->priv)->psc; tmp1byte = 0U; tmp4Byte = 0U; rtl_write_word(rtlpriv, 852U, 33028); rtl_write_word(rtlpriv, 856U, 36); rtl_write_word(rtlpriv, 848U, 1804); rtl_write_byte(rtlpriv, 850U, 2); tmp1byte = rtl_read_byte(rtlpriv, 850U); count = 0U; } goto ldv_51916; ldv_51915: { __const_udelay(42950UL); tmp1byte = rtl_read_byte(rtlpriv, 850U); count = count + 1U; } ldv_51916: ; if ((unsigned int )tmp1byte != 0U && count <= 19U) { goto ldv_51915; } else { } if ((unsigned int )tmp1byte == 0U) { { tmp4Byte = rtl_read_dword(rtlpriv, 844U); rtl_write_dword(rtlpriv, 840U, tmp4Byte | 2147483648U); rtl_write_word(rtlpriv, 848U, 63244); rtl_write_byte(rtlpriv, 850U, 1); } } else { } { tmp1byte = rtl_read_byte(rtlpriv, 850U); count = 0U; } goto ldv_51919; ldv_51918: { __const_udelay(42950UL); tmp1byte = rtl_read_byte(rtlpriv, 850U); count = count + 1U; } ldv_51919: ; if ((unsigned int )tmp1byte != 0U && count <= 19U) { goto ldv_51918; } else { } { rtl_write_word(rtlpriv, 848U, 1816); rtl_write_byte(rtlpriv, 850U, 2); tmp1byte = rtl_read_byte(rtlpriv, 850U); count = 0U; } goto ldv_51922; ldv_51921: { __const_udelay(42950UL); tmp1byte = rtl_read_byte(rtlpriv, 850U); count = count + 1U; } ldv_51922: ; if ((unsigned int )tmp1byte != 0U && count <= 19U) { goto ldv_51921; } else { } if ((int )ppsc->support_backdoor || (unsigned int )tmp1byte == 0U) { { tmp4Byte = rtl_read_dword(rtlpriv, 844U); rtl_write_dword(rtlpriv, 840U, tmp4Byte | 6144U); rtl_write_word(rtlpriv, 848U, 63256); rtl_write_byte(rtlpriv, 850U, 1); } } else { } { tmp1byte = rtl_read_byte(rtlpriv, 850U); count = 0U; } goto ldv_51925; ldv_51924: { __const_udelay(42950UL); tmp1byte = rtl_read_byte(rtlpriv, 850U); count = count + 1U; } ldv_51925: ; if ((unsigned int )tmp1byte != 0U && count <= 19U) { goto ldv_51924; } else { } return; } } void rtl88ee_enable_hw_security_config(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; u8 sec_reg_value ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; { { rtlpriv = (struct rtl_priv *)hw->priv; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n", "rtl88ee_enable_hw_security_config", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (unsigned int )rtlpriv->sec.pairwise_enc_algorithm, (unsigned int )rtlpriv->sec.group_enc_algorithm); } } else { } } else { } if ((int )((rtlpriv->cfg)->mod_params)->sw_crypto || (int )rtlpriv->sec.use_sw_sec) { { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 512ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> not open hw encryption\n", "rtl88ee_enable_hw_security_config", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } else { } sec_reg_value = 12U; if ((int )rtlpriv->sec.use_defaultkey) { sec_reg_value = (u8 )((unsigned int )sec_reg_value | 1U); sec_reg_value = (u8 )((unsigned int )sec_reg_value | 2U); } else { } { sec_reg_value = (u8 )((unsigned int )sec_reg_value | 192U); rtl_write_byte(rtlpriv, 257U, 2); tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 512ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count(); tmp___8 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> The SECR-value %x\n", "rtl88ee_enable_hw_security_config", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL, (int )sec_reg_value); } } else { } } else { } { (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 26, & sec_reg_value); } return; } } int rtl88ee_hw_init(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; struct rtl_mac *mac ; struct rtl_phy *rtlphy ; struct rtl_ps_ctl *ppsc ; struct rtl_pci *rtlpci ; struct rtl_efuse *rtlefuse ; bool rtstatus ; int err ; u8 tmp_u1b ; u8 u1byte ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; int tmp___11 ; int tmp___12 ; long tmp___13 ; long tmp___14 ; int tmp___15 ; int tmp___16 ; long tmp___17 ; long tmp___18 ; int tmp___19 ; int tmp___20 ; long tmp___21 ; long tmp___22 ; int tmp___23 ; int tmp___24 ; long tmp___25 ; long tmp___26 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; mac = & ((struct rtl_priv *)hw->priv)->mac80211; rtlphy = & rtlpriv->phy; ppsc = & ((struct rtl_priv *)hw->priv)->psc; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; rtstatus = 1; err = 0; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> Rtl8188EE hw init\n", "rtl88ee_hw_init", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { rtlpriv->rtlhal.being_init_adapter = 1; (*((rtlpriv->intf_ops)->disable_aspm))(hw); tmp_u1b = rtl_read_byte(rtlpriv, 9U); u1byte = rtl_read_byte(rtlpriv, 256U); } if (((unsigned long )tmp_u1b & 8UL) != 0UL && ((unsigned int )u1byte != 0U && (unsigned int )u1byte != 234U)) { rtlhal->mac_func_enable = 1; } else { rtlhal->mac_func_enable = 0; rtlhal->fw_ps_state = 0U; } { rtstatus = _rtl88ee_init_mac(hw); } if (! rtstatus) { { tmp___5 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> Init MAC failed\n", "rtl88ee_hw_init", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } err = 1; return (err); } else { } { err = rtl88e_download_fw(hw, 0); } if (err != 0) { { tmp___9 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 1, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count(); tmp___8 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> Failed to download FW. Init HW without FW now..\n", "rtl88ee_hw_init", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } err = 1; rtlhal->fw_ready = 0; return (err); } else { rtlhal->fw_ready = 1; } { rtlhal->last_hmeboxnum = 0U; rtlhal->fw_ps_state = 0U; rtlhal->fw_clk_change_in_progress = 0; rtlhal->allow_sw_to_change_hwclc = 0; ppsc->fw_current_inpsmode = 0; rtl88e_phy_mac_config(hw); rtlpci->receive_config = rtlpci->receive_config & 4294966527U; rtl_write_dword(rtlpriv, 1544U, rtlpci->receive_config); rtl88e_phy_bb_config(hw); rtl_set_bbreg(hw, 2048U, 16777216U, 1U); rtl_set_bbreg(hw, 2048U, 33554432U, 1U); rtlphy->rf_mode = 0U; rtl88e_phy_rf_config(hw); rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, 0, 24U, 1048575U); rtlphy->rfreg_chnlval[0] = rtlphy->rfreg_chnlval[0] & 4293922815U; _rtl88ee_hw_configure(hw); rtl_cam_reset_all_entry(hw); rtl88ee_enable_hw_security_config(hw); rtlhal->mac_func_enable = 1; ppsc->rfpwr_state = 0; (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 0, (u8 *)(& mac->mac_addr)); _rtl88ee_enable_aspm_back_door(hw); (*((rtlpriv->intf_ops)->enable_aspm))(hw); } if ((unsigned int )ppsc->rfpwr_state == 0U) { if ((unsigned int )rtlefuse->antenna_div_type == 2U || ((unsigned int )rtlefuse->antenna_div_type == 1U && (unsigned int )rtlhal->oem_id == 27U)) { { rtl88e_phy_set_rfpath_switch(hw, 1); rtlpriv->dm.fat_table.rx_idle_ant = 0U; } } else { { rtl88e_phy_set_rfpath_switch(hw, 0); rtlpriv->dm.fat_table.rx_idle_ant = 1U; } } { tmp___13 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___13 != 0L) { { tmp___14 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___14 != 0L) { { tmp___11 = preempt_count(); tmp___12 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> rx idle ant %s\n", "rtl88ee_hw_init", (unsigned long )tmp___12 & 2096896UL, ((unsigned long )tmp___11 & 0xffffffffffdfffffUL) != 0UL, (unsigned int )rtlpriv->dm.fat_table.rx_idle_ant == 0U ? (char *)"MAIN_ANT" : (char *)"AUX_ANT"); } } else { } } else { } if ((int )rtlphy->iqk_initialized) { { rtl88e_phy_iq_calibrate(hw, 1); } } else { { rtl88e_phy_iq_calibrate(hw, 0); rtlphy->iqk_initialized = 1; } } { rtl88e_dm_check_txpower_tracking(hw); rtl88e_phy_lc_calibrate(hw); } } else { } { tmp_u1b = efuse_read_1byte(hw, 506); } if (((unsigned long )tmp_u1b & 1UL) == 0UL) { { rtl_set_rfreg(hw, 0, 21U, 15U, 5U); tmp___17 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___17 != 0L) { { tmp___18 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___18 != 0L) { { tmp___15 = preempt_count(); tmp___16 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> PA BIAS path A\n", "rtl88ee_hw_init", (unsigned long )tmp___16 & 2096896UL, ((unsigned long )tmp___15 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } else { } if (((unsigned long )tmp_u1b & 16UL) == 0UL) { { tmp_u1b = rtl_read_byte(rtlpriv, 22U); tmp_u1b = (unsigned int )tmp_u1b & 15U; rtl_write_byte(rtlpriv, 22U, (int )((unsigned int )tmp_u1b | 128U)); __const_udelay(42950UL); rtl_write_byte(rtlpriv, 22U, (int )((unsigned int )tmp_u1b | 144U)); tmp___21 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___21 != 0L) { { tmp___22 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___22 != 0L) { { tmp___19 = preempt_count(); tmp___20 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> under 1.5V\n", "rtl88ee_hw_init", (unsigned long )tmp___20 & 2096896UL, ((unsigned long )tmp___19 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } else { } { rtl_write_byte(rtlpriv, 1618U, 235); rtl88e_dm_init(hw); rtlpriv->rtlhal.being_init_adapter = 0; tmp___25 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___25 != 0L) { { tmp___26 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___26 != 0L) { { tmp___23 = preempt_count(); tmp___24 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> end of Rtl8188EE hw init %x\n", "rtl88ee_hw_init", (unsigned long )tmp___24 & 2096896UL, ((unsigned long )tmp___23 & 0xffffffffffdfffffUL) != 0UL, err); } } else { } } else { } return (0); } } static enum version_8188e _rtl88ee_read_chip_version(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; enum version_8188e version ; u32 value32 ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; version = 255; value32 = rtl_read_dword(rtlpriv, 240U); } if (((unsigned long )value32 & 8388608UL) != 0UL) { version = 0; } else { version = 8; version = (enum version_8188e )((unsigned int )version | (((unsigned long )value32 & 134217728UL) != 0UL ? 32U : 0U)); version = (enum version_8188e )((unsigned int )version | (((unsigned long )value32 & 524288UL) != 0UL ? 128U : 0U)); } { rtlphy->rf_type = 0U; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> Chip RF Type: %s\n", "_rtl88ee_read_chip_version", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (unsigned int )rtlphy->rf_type == 2U ? (char *)"RF_2T2R" : (char *)"RF_1T1R"); } } else { } } else { } return (version); } } static int _rtl88ee_set_media_status(struct ieee80211_hw *hw , enum nl80211_iftype type ) { struct rtl_priv *rtlpriv ; u8 bt_msr ; u8 tmp ; enum led_ctl_mode ledaction ; int tmp___0 ; int tmp___1 ; long tmp___2 ; long tmp___3 ; int tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; int tmp___8 ; int tmp___9 ; long tmp___10 ; long tmp___11 ; int tmp___12 ; int tmp___13 ; long tmp___14 ; long tmp___15 ; int tmp___16 ; int tmp___17 ; long tmp___18 ; long tmp___19 ; int tmp___20 ; int tmp___21 ; long tmp___22 ; long tmp___23 ; int tmp___24 ; int tmp___25 ; long tmp___26 ; long tmp___27 ; { { rtlpriv = (struct rtl_priv *)hw->priv; tmp = rtl_read_byte(rtlpriv, 258U); bt_msr = tmp; ledaction = 3; bt_msr = (unsigned int )bt_msr & 252U; } if ((unsigned int )type == 0U || (unsigned int )type == 2U) { { _rtl88ee_stop_tx_beacon(hw); _rtl88ee_enable_bcn_sub_func(hw); } } else if (((unsigned int )type == 1U || (unsigned int )type == 3U) || (unsigned int )type == 7U) { { _rtl88ee_resume_tx_beacon(hw); _rtl88ee_disable_bcn_sub_func(hw); } } else { { tmp___2 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___2 != 0L) { { tmp___3 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 1, 0L); } if (tmp___3 != 0L) { { tmp___0 = preempt_count(); tmp___1 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> Set HW_VAR_MEDIA_STATUS: No such media status(%x).\n", "_rtl88ee_set_media_status", (unsigned long )tmp___1 & 2096896UL, ((unsigned long )tmp___0 & 0xffffffffffdfffffUL) != 0UL, (unsigned int )type); } } else { } } else { } } { if ((unsigned int )type == 0U) { goto case_0; } else { } if ((unsigned int )type == 1U) { goto case_1; } else { } if ((unsigned int )type == 2U) { goto case_2; } else { } if ((unsigned int )type == 3U) { goto case_3; } else { } if ((unsigned int )type == 7U) { goto case_7; } else { } goto switch_default; case_0: /* CIL Label */ { bt_msr = bt_msr; ledaction = 2; tmp___6 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___6 != 0L) { { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___7 != 0L) { { tmp___4 = preempt_count(); tmp___5 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> Set Network type to NO LINK!\n", "_rtl88ee_set_media_status", (unsigned long )tmp___5 & 2096896UL, ((unsigned long )tmp___4 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_51965; case_1: /* CIL Label */ { bt_msr = (u8 )((unsigned int )bt_msr | 1U); tmp___10 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___10 != 0L) { { tmp___11 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___11 != 0L) { { tmp___8 = preempt_count(); tmp___9 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> Set Network type to Ad Hoc!\n", "_rtl88ee_set_media_status", (unsigned long )tmp___9 & 2096896UL, ((unsigned long )tmp___8 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_51965; case_2: /* CIL Label */ { bt_msr = (u8 )((unsigned int )bt_msr | 2U); ledaction = 2; tmp___14 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___14 != 0L) { { tmp___15 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___15 != 0L) { { tmp___12 = preempt_count(); tmp___13 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> Set Network type to STA!\n", "_rtl88ee_set_media_status", (unsigned long )tmp___13 & 2096896UL, ((unsigned long )tmp___12 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_51965; case_3: /* CIL Label */ { bt_msr = (u8 )((unsigned int )bt_msr | 3U); tmp___18 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___18 != 0L) { { tmp___19 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___19 != 0L) { { tmp___16 = preempt_count(); tmp___17 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> Set Network type to AP!\n", "_rtl88ee_set_media_status", (unsigned long )tmp___17 & 2096896UL, ((unsigned long )tmp___16 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_51965; case_7: /* CIL Label */ { bt_msr = (u8 )((unsigned int )bt_msr | 1U); tmp___22 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___22 != 0L) { { tmp___23 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___23 != 0L) { { tmp___20 = preempt_count(); tmp___21 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> Set Network type to Mesh Point!\n", "_rtl88ee_set_media_status", (unsigned long )tmp___21 & 2096896UL, ((unsigned long )tmp___20 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_51965; switch_default: /* CIL Label */ { tmp___26 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___26 != 0L) { { tmp___27 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___27 != 0L) { { tmp___24 = preempt_count(); tmp___25 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> Network type %d not support!\n", "_rtl88ee_set_media_status", (unsigned long )tmp___25 & 2096896UL, ((unsigned long )tmp___24 & 0xffffffffffdfffffUL) != 0UL, (unsigned int )type); } } else { } } else { } return (1); switch_break: /* CIL Label */ ; } ldv_51965: { rtl_write_byte(rtlpriv, 258U, (int )bt_msr); (*(((rtlpriv->cfg)->ops)->led_control))(hw, ledaction); rtl_write_byte(rtlpriv, 1297U, 102); } return (0); } } void rtl88ee_set_check_bssid(struct ieee80211_hw *hw , bool check_bssid ) { struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; u32 reg_rcr ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; reg_rcr = rtlpci->receive_config; if ((unsigned int )rtlpriv->psc.rfpwr_state != 0U) { return; } else { } if ((int )check_bssid) { { reg_rcr = reg_rcr | 192U; (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 43, (u8 *)(& reg_rcr)); _rtl88ee_set_bcn_ctrl_reg(hw, 0, 16); } } else if (! check_bssid) { { reg_rcr = reg_rcr & 4294967103U; _rtl88ee_set_bcn_ctrl_reg(hw, 16, 0); (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 43, (u8 *)(& reg_rcr)); } } else { } return; } } int rtl88ee_set_network_type(struct ieee80211_hw *hw , enum nl80211_iftype type ) { struct rtl_priv *rtlpriv ; int tmp ; { { rtlpriv = (struct rtl_priv *)hw->priv; tmp = _rtl88ee_set_media_status(hw, type); } if (tmp != 0) { return (-95); } else { } if ((unsigned int )rtlpriv->mac80211.link_state == 2U) { if ((unsigned int )type != 3U && (unsigned int )type != 7U) { { rtl88ee_set_check_bssid(hw, 1); } } else { } } else { { rtl88ee_set_check_bssid(hw, 0); } } return (0); } } void rtl88ee_set_qos(struct ieee80211_hw *hw , int aci ) { struct rtl_priv *rtlpriv ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtl88e_dm_init_edca_turbo(hw); } { if (aci == 1) { goto case_1; } else { } if (aci == 0) { goto case_0; } else { } if (aci == 2) { goto case_2; } else { } if (aci == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { rtl_write_dword(rtlpriv, 1292U, 42063U); } goto ldv_51989; case_0: /* CIL Label */ ; goto ldv_51989; case_2: /* CIL Label */ { rtl_write_dword(rtlpriv, 1284U, 6177570U); } goto ldv_51989; case_3: /* CIL Label */ { rtl_write_dword(rtlpriv, 1280U, 3093026U); } goto ldv_51989; switch_default: /* CIL Label */ { printk("\017rtl8188ee:%s(): invalid aci: %d !\n", "rtl88ee_set_qos", aci); } goto ldv_51989; switch_break: /* CIL Label */ ; } ldv_51989: ; return; } } void rtl88ee_enable_interrupt(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; rtl_write_dword(rtlpriv, 176U, rtlpci->irq_mask[0]); rtl_write_dword(rtlpriv, 184U, rtlpci->irq_mask[1]); rtlpci->irq_enabled = 1; rtl_write_byte(rtlpriv, 431U, 0); rtl_write_dword(rtlpriv, 88U, rtlpci->sys_irq_mask); } return; } } void rtl88ee_disable_interrupt(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; rtl_write_dword(rtlpriv, 176U, 0U); rtl_write_dword(rtlpriv, 184U, 0U); rtlpci->irq_enabled = 0; synchronize_irq((rtlpci->pdev)->irq); } return; } } static void _rtl88ee_poweroff_adapter(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; u8 u1b_tmp ; u32 count ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; u32 tmp___3 ; u8 tmp___4 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; count = 0U; rtlhal->mac_func_enable = 0; (*((rtlpriv->intf_ops)->enable_aspm))(hw); tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> POWER OFF adapter\n", "_rtl88ee_poweroff_adapter", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { u1b_tmp = rtl_read_byte(rtlpriv, 1260U); rtl_write_byte(rtlpriv, 1260U, (int )u1b_tmp & 253); u1b_tmp = rtl_read_byte(rtlpriv, 646U); } goto ldv_52014; ldv_52013: { __const_udelay(42950UL); u1b_tmp = rtl_read_byte(rtlpriv, 646U); count = count + 1U; } ldv_52014: ; if (((unsigned long )u1b_tmp & 2UL) == 0UL) { tmp___3 = count; count = count + 1U; if (tmp___3 <= 99U) { goto ldv_52013; } else { goto ldv_52015; } } else { } ldv_52015: { rtl_write_byte(rtlpriv, 769U, 255); rtl88_hal_pwrseqcmdparsing(rtlpriv, 255, 15, 4, (struct wlan_pwr_cfg *)(& rtl8188e_enter_lps_flow)); rtl_write_byte(rtlpriv, 31U, 0); tmp___4 = rtl_read_byte(rtlpriv, 128U); } if ((int )((signed char )tmp___4) < 0 && (int )rtlhal->fw_ready) { { rtl88e_firmware_selfreset(hw); } } else { } { u1b_tmp = rtl_read_byte(rtlpriv, 3U); rtl_write_byte(rtlpriv, 3U, (int )u1b_tmp & 251); rtl_write_byte(rtlpriv, 128U, 0); u1b_tmp = rtl_read_byte(rtlpriv, 404U); rtl_write_byte(rtlpriv, 404U, (int )u1b_tmp & 254); rtl88_hal_pwrseqcmdparsing(rtlpriv, 255, 15, 4, (struct wlan_pwr_cfg *)(& rtl8188e_card_disable_flow)); u1b_tmp = rtl_read_byte(rtlpriv, 29U); rtl_write_byte(rtlpriv, 29U, (int )u1b_tmp & 247); u1b_tmp = rtl_read_byte(rtlpriv, 29U); rtl_write_byte(rtlpriv, 29U, (int )((unsigned int )u1b_tmp | 8U)); rtl_write_byte(rtlpriv, 28U, 14); u1b_tmp = rtl_read_byte(rtlpriv, 68U); rtl_write_byte(rtlpriv, 69U, (int )u1b_tmp); rtl_write_byte(rtlpriv, 70U, 127); u1b_tmp = rtl_read_byte(rtlpriv, 66U); rtl_write_byte(rtlpriv, 66U, (int )((u8 )((int )((signed char )((int )u1b_tmp << 4)) | (int )((signed char )u1b_tmp)))); u1b_tmp = rtl_read_byte(rtlpriv, 67U); rtl_write_byte(rtlpriv, 67U, (int )((unsigned int )u1b_tmp | 15U)); rtl_write_dword(rtlpriv, 100U, 526344U); } return; } } void rtl88ee_card_disable(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_ps_ctl *ppsc ; struct rtl_mac *mac ; enum nl80211_iftype opmode ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { { rtlpriv = (struct rtl_priv *)hw->priv; ppsc = & ((struct rtl_priv *)hw->priv)->psc; mac = & ((struct rtl_priv *)hw->priv)->mac80211; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> RTL8188ee card disable\n", "rtl88ee_card_disable", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { mac->link_state = 0; opmode = 0; _rtl88ee_set_media_status(hw, opmode); } if ((int )rtlpriv->rtlhal.driver_is_goingto_unload || ppsc->rfoff_reason > 536870912U) { { (*(((rtlpriv->cfg)->ops)->led_control))(hw, 7); } } else { } { ppsc->cur_ps_level = ppsc->cur_ps_level | 8U; _rtl88ee_poweroff_adapter(hw); rtlpriv->phy.iqk_initialized = 0; } return; } } void rtl88ee_interrupt_recognized(struct ieee80211_hw *hw , u32 *p_inta , u32 *p_intb ) { struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; u32 tmp ; u32 tmp___0 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; tmp = rtl_read_dword(rtlpriv, 180U); *p_inta = tmp & rtlpci->irq_mask[0]; rtl_write_dword(rtlpriv, 180U, *p_inta); tmp___0 = rtl_read_dword(rtlpriv, 188U); *p_intb = tmp___0 & rtlpci->irq_mask[1]; rtl_write_dword(rtlpriv, 188U, *p_intb); } return; } } void rtl88ee_set_beacon_related_registers(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_mac *mac ; struct rtl_pci *rtlpci ; u16 bcn_interval ; u16 atim_window ; { { rtlpriv = (struct rtl_priv *)hw->priv; mac = & ((struct rtl_priv *)hw->priv)->mac80211; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; bcn_interval = (u16 )mac->beacon_interval; atim_window = 2U; rtl88ee_disable_interrupt(hw); rtl_write_word(rtlpriv, 1370U, (int )atim_window); rtl_write_word(rtlpriv, 1364U, (int )bcn_interval); rtl_write_word(rtlpriv, 1296U, 26127); rtl_write_byte(rtlpriv, 1374U, 24); rtl_write_byte(rtlpriv, 1375U, 24); rtl_write_byte(rtlpriv, 1542U, 48); rtlpci->reg_bcn_ctrl_val = rtlpci->reg_bcn_ctrl_val | 8U; rtl_write_byte(rtlpriv, 1360U, (int )((unsigned char )rtlpci->reg_bcn_ctrl_val)); } return; } } void rtl88ee_set_beacon_interval(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_mac *mac ; u16 bcn_interval ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { { rtlpriv = (struct rtl_priv *)hw->priv; mac = & ((struct rtl_priv *)hw->priv)->mac80211; bcn_interval = (u16 )mac->beacon_interval; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1024ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> beacon_interval:%d\n", "rtl88ee_set_beacon_interval", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )bcn_interval); } } else { } } else { } { rtl_write_word(rtlpriv, 1364U, (int )bcn_interval); } return; } } void rtl88ee_update_interrupt_mask(struct ieee80211_hw *hw , u32 add_msr , u32 rm_msr ) { struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 128ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> add_msr:%x, rm_msr:%x\n", "rtl88ee_update_interrupt_mask", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, add_msr, rm_msr); } } else { } } else { } { rtl88ee_disable_interrupt(hw); } if (add_msr != 0U) { rtlpci->irq_mask[0] = rtlpci->irq_mask[0] | add_msr; } else { } if (rm_msr != 0U) { rtlpci->irq_mask[0] = rtlpci->irq_mask[0] & ~ rm_msr; } else { } { rtl88ee_enable_interrupt(hw); } return; } } __inline static u8 get_chnl_group(u8 chnl ) { u8 group ; { group = (u8 )((unsigned int )chnl / 3U); if ((unsigned int )chnl == 14U) { group = 5U; } else { } return (group); } } static void set_diff0_2g(struct txpower_info_2g *pwr2g , u8 *hwinfo , u32 path , u32 i , u32 eadr ) { { pwr2g->bw40_diff[path][i] = 0U; if ((unsigned int )*(hwinfo + (unsigned long )eadr) == 255U) { pwr2g->bw20_diff[path][i] = 2U; } else { pwr2g->bw20_diff[path][i] = (int )*(hwinfo + (unsigned long )eadr) >> 4; if (((unsigned long )pwr2g->bw20_diff[path][i] & 8UL) != 0UL) { pwr2g->bw20_diff[path][i] = (u8 )((unsigned int )pwr2g->bw20_diff[path][i] | 240U); } else { } } if ((unsigned int )*(hwinfo + (unsigned long )eadr) == 255U) { pwr2g->ofdm_diff[path][i] = 4U; } else { pwr2g->ofdm_diff[path][i] = (unsigned int )*(hwinfo + (unsigned long )eadr) & 15U; if (((unsigned long )pwr2g->ofdm_diff[path][i] & 8UL) != 0UL) { pwr2g->ofdm_diff[path][i] = (u8 )((unsigned int )pwr2g->ofdm_diff[path][i] | 240U); } else { } } pwr2g->cck_diff[path][i] = 0U; return; } } static void set_diff0_5g(struct txpower_info_5g *pwr5g , u8 *hwinfo , u32 path , u32 i , u32 eadr ) { { pwr5g->bw40_diff[path][i] = 0U; if ((unsigned int )*(hwinfo + (unsigned long )eadr) == 255U) { pwr5g->bw20_diff[path][i] = 0U; } else { pwr5g->bw20_diff[path][i] = (int )*(hwinfo + (unsigned long )eadr) >> 4; if (((unsigned long )pwr5g->bw20_diff[path][i] & 8UL) != 0UL) { pwr5g->bw20_diff[path][i] = (u8 )((unsigned int )pwr5g->bw20_diff[path][i] | 240U); } else { } } if ((unsigned int )*(hwinfo + (unsigned long )eadr) == 255U) { pwr5g->ofdm_diff[path][i] = 4U; } else { pwr5g->ofdm_diff[path][i] = (unsigned int )*(hwinfo + (unsigned long )eadr) & 15U; if (((unsigned long )pwr5g->ofdm_diff[path][i] & 8UL) != 0UL) { pwr5g->ofdm_diff[path][i] = (u8 )((unsigned int )pwr5g->ofdm_diff[path][i] | 240U); } else { } } return; } } static void set_diff1_2g(struct txpower_info_2g *pwr2g , u8 *hwinfo , u32 path , u32 i , u32 eadr ) { { if ((unsigned int )*(hwinfo + (unsigned long )eadr) == 255U) { pwr2g->bw40_diff[path][i] = 254U; } else { pwr2g->bw40_diff[path][i] = (int )*(hwinfo + (unsigned long )eadr) >> 4; if (((unsigned long )pwr2g->bw40_diff[path][i] & 8UL) != 0UL) { pwr2g->bw40_diff[path][i] = (u8 )((unsigned int )pwr2g->bw40_diff[path][i] | 240U); } else { } } if ((unsigned int )*(hwinfo + (unsigned long )eadr) == 255U) { pwr2g->bw20_diff[path][i] = 254U; } else { pwr2g->bw20_diff[path][i] = (unsigned int )*(hwinfo + (unsigned long )eadr) & 15U; if (((unsigned long )pwr2g->bw20_diff[path][i] & 8UL) != 0UL) { pwr2g->bw20_diff[path][i] = (u8 )((unsigned int )pwr2g->bw20_diff[path][i] | 240U); } else { } } return; } } static void set_diff1_5g(struct txpower_info_5g *pwr5g , u8 *hwinfo , u32 path , u32 i , u32 eadr ) { { if ((unsigned int )*(hwinfo + (unsigned long )eadr) == 255U) { pwr5g->bw40_diff[path][i] = 254U; } else { pwr5g->bw40_diff[path][i] = (int )*(hwinfo + (unsigned long )eadr) >> 4; if (((unsigned long )pwr5g->bw40_diff[path][i] & 8UL) != 0UL) { pwr5g->bw40_diff[path][i] = (u8 )((unsigned int )pwr5g->bw40_diff[path][i] | 240U); } else { } } if ((unsigned int )*(hwinfo + (unsigned long )eadr) == 255U) { pwr5g->bw20_diff[path][i] = 254U; } else { pwr5g->bw20_diff[path][i] = (unsigned int )*(hwinfo + (unsigned long )eadr) & 15U; if (((unsigned long )pwr5g->bw20_diff[path][i] & 8UL) != 0UL) { pwr5g->bw20_diff[path][i] = (u8 )((unsigned int )pwr5g->bw20_diff[path][i] | 240U); } else { } } return; } } static void set_diff2_2g(struct txpower_info_2g *pwr2g , u8 *hwinfo , u32 path , u32 i , u32 eadr ) { { if ((unsigned int )*(hwinfo + (unsigned long )eadr) == 255U) { pwr2g->ofdm_diff[path][i] = 254U; } else { pwr2g->ofdm_diff[path][i] = (int )*(hwinfo + (unsigned long )eadr) >> 4; if (((unsigned long )pwr2g->ofdm_diff[path][i] & 8UL) != 0UL) { pwr2g->ofdm_diff[path][i] = (u8 )((unsigned int )pwr2g->ofdm_diff[path][i] | 240U); } else { } } if ((unsigned int )*(hwinfo + (unsigned long )eadr) == 255U) { pwr2g->cck_diff[path][i] = 254U; } else { pwr2g->cck_diff[path][i] = (unsigned int )*(hwinfo + (unsigned long )eadr) & 15U; if (((unsigned long )pwr2g->cck_diff[path][i] & 8UL) != 0UL) { pwr2g->cck_diff[path][i] = (u8 )((unsigned int )pwr2g->cck_diff[path][i] | 240U); } else { } } return; } } static void _rtl8188e_read_power_value_fromprom(struct ieee80211_hw *hw , struct txpower_info_2g *pwr2g , struct txpower_info_5g *pwr5g , bool autoload_fail , u8 *hwinfo ) { struct rtl_priv *rtlpriv ; u32 path ; u32 eadr ; u32 i ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; u32 tmp___7 ; u32 tmp___8 ; u32 tmp___9 ; { { rtlpriv = (struct rtl_priv *)hw->priv; eadr = 16U; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> hal_ReadPowerValueFromPROM88E(): PROMContent[0x%x]= 0x%x\n", "_rtl8188e_read_power_value_fromprom", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, eadr + 1U, (int )*(hwinfo + (unsigned long )(eadr + 1U))); } } else { } } else { } if ((unsigned int )*(hwinfo + (unsigned long )(eadr + 1U)) == 255U) { autoload_fail = 1; } else { } if ((int )autoload_fail) { { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> auto load fail : Use Default value!\n", "_rtl8188e_read_power_value_fromprom", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } path = 0U; goto ldv_52112; ldv_52111: i = 0U; goto ldv_52106; ldv_52105: pwr2g->index_cck_base[path][i] = 45U; pwr2g->index_bw40_base[path][i] = 45U; i = i + 1U; ldv_52106: ; if (i <= 5U) { goto ldv_52105; } else { } i = 0U; goto ldv_52109; ldv_52108: ; if (i == 0U) { pwr2g->bw20_diff[path][0] = 2U; pwr2g->ofdm_diff[path][0] = 4U; } else { pwr2g->bw20_diff[path][i] = 254U; pwr2g->bw40_diff[path][i] = 254U; pwr2g->cck_diff[path][i] = 254U; pwr2g->ofdm_diff[path][i] = 254U; } i = i + 1U; ldv_52109: ; if (i <= 3U) { goto ldv_52108; } else { } path = path + 1U; ldv_52112: ; if (path <= 3U) { goto ldv_52111; } else { } return; } else { } path = 0U; goto ldv_52133; ldv_52132: i = 0U; goto ldv_52115; ldv_52114: tmp___7 = eadr; eadr = eadr + 1U; pwr2g->index_cck_base[path][i] = *(hwinfo + (unsigned long )tmp___7); if ((unsigned int )pwr2g->index_cck_base[path][i] == 255U) { pwr2g->index_cck_base[path][i] = 45U; } else { } i = i + 1U; ldv_52115: ; if (i <= 5U) { goto ldv_52114; } else { } i = 0U; goto ldv_52118; ldv_52117: tmp___8 = eadr; eadr = eadr + 1U; pwr2g->index_bw40_base[path][i] = *(hwinfo + (unsigned long )tmp___8); if ((unsigned int )pwr2g->index_bw40_base[path][i] == 255U) { pwr2g->index_bw40_base[path][i] = 45U; } else { } i = i + 1U; ldv_52118: ; if (i <= 5U) { goto ldv_52117; } else { } i = 0U; goto ldv_52121; ldv_52120: ; if (i == 0U) { { set_diff0_2g(pwr2g, hwinfo, path, i, eadr); eadr = eadr + 1U; } } else { { set_diff1_2g(pwr2g, hwinfo, path, i, eadr); eadr = eadr + 1U; set_diff2_2g(pwr2g, hwinfo, path, i, eadr); eadr = eadr + 1U; } } i = i + 1U; ldv_52121: ; if (i <= 3U) { goto ldv_52120; } else { } i = 0U; goto ldv_52124; ldv_52123: tmp___9 = eadr; eadr = eadr + 1U; pwr5g->index_bw40_base[path][i] = *(hwinfo + (unsigned long )tmp___9); if ((unsigned int )pwr5g->index_bw40_base[path][i] == 255U) { pwr5g->index_bw40_base[path][i] = 254U; } else { } i = i + 1U; ldv_52124: ; if (i <= 13U) { goto ldv_52123; } else { } i = 0U; goto ldv_52127; ldv_52126: ; if (i == 0U) { { set_diff0_5g(pwr5g, hwinfo, path, i, eadr); eadr = eadr + 1U; } } else { { set_diff1_5g(pwr5g, hwinfo, path, i, eadr); eadr = eadr + 1U; } } i = i + 1U; ldv_52127: ; if (i <= 3U) { goto ldv_52126; } else { } if ((unsigned int )*(hwinfo + (unsigned long )eadr) == 255U) { pwr5g->ofdm_diff[path][1] = 254U; pwr5g->ofdm_diff[path][2] = 254U; } else { pwr5g->ofdm_diff[path][1] = (int )*(hwinfo + (unsigned long )eadr) >> 4; pwr5g->ofdm_diff[path][2] = (unsigned int )*(hwinfo + (unsigned long )eadr) & 15U; } eadr = eadr + 1U; if ((unsigned int )*(hwinfo + (unsigned long )eadr) == 255U) { pwr5g->ofdm_diff[path][3] = 254U; } else { pwr5g->ofdm_diff[path][3] = (unsigned int )*(hwinfo + (unsigned long )eadr) & 15U; } eadr = eadr + 1U; i = 1U; goto ldv_52130; ldv_52129: ; if ((unsigned int )pwr5g->ofdm_diff[path][i] == 255U) { pwr5g->ofdm_diff[path][i] = 254U; } else if (((unsigned long )pwr5g->ofdm_diff[path][i] & 8UL) != 0UL) { pwr5g->ofdm_diff[path][i] = (u8 )((unsigned int )pwr5g->ofdm_diff[path][i] | 240U); } else { } i = i + 1U; ldv_52130: ; if (i <= 3U) { goto ldv_52129; } else { } path = path + 1U; ldv_52133: ; if (path <= 3U) { goto ldv_52132; } else { } return; } } static void _rtl88ee_read_txpower_info_from_hwpg(struct ieee80211_hw *hw , bool autoload_fail , u8 *hwinfo ) { struct rtl_priv *rtlpriv ; struct rtl_efuse *rtlefuse ; struct txpower_info_2g pwrinfo24g ; struct txpower_info_5g pwrinfo5g ; u8 rf_path ; u8 index ; u8 i ; int jj ; int kk ; long tmp ; long tmp___0 ; long tmp___1 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; jj = 193; kk = 186; _rtl8188e_read_power_value_fromprom(hw, & pwrinfo24g, & pwrinfo5g, (int )autoload_fail, hwinfo); rf_path = 0U; } goto ldv_52156; ldv_52155: i = 0U; goto ldv_52150; ldv_52149: { index = get_chnl_group((int )((unsigned int )i + 1U)); rtlefuse->txpwrlevel_cck[(int )rf_path][(int )i] = pwrinfo24g.index_cck_base[(int )rf_path][(int )index]; } if ((unsigned int )i == 13U) { rtlefuse->txpwrlevel_ht40_1s[(int )rf_path][(int )i] = pwrinfo24g.index_bw40_base[(int )rf_path][4]; } else { rtlefuse->txpwrlevel_ht40_1s[(int )rf_path][(int )i] = pwrinfo24g.index_bw40_base[(int )rf_path][(int )index]; } rtlefuse->txpwr_ht20diff[(int )rf_path][(int )i] = (char )pwrinfo24g.bw20_diff[(int )rf_path][0]; rtlefuse->txpwr_legacyhtdiff[(int )rf_path][(int )i] = pwrinfo24g.ofdm_diff[(int )rf_path][0]; i = (u8 )((int )i + 1); ldv_52150: ; if ((unsigned int )i <= 13U) { goto ldv_52149; } else { } i = 0U; goto ldv_52153; ldv_52152: { tmp = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 2UL) != 0UL, 0L); } if (tmp != 0L) { { printk("\017rtl8188ee: RF(%d)-Ch(%d) [CCK / HT40_1S ] = [0x%x / 0x%x ]\n", (int )rf_path, (int )i, (int )rtlefuse->txpwrlevel_cck[(int )rf_path][(int )i], (int )rtlefuse->txpwrlevel_ht40_1s[(int )rf_path][(int )i]); } } else { } i = (u8 )((int )i + 1); ldv_52153: ; if ((unsigned int )i <= 13U) { goto ldv_52152; } else { } rf_path = (u8 )((int )rf_path + 1); ldv_52156: ; if ((unsigned int )rf_path <= 1U) { goto ldv_52155; } else { } if (! autoload_fail) { rtlefuse->eeprom_thermalmeter = *(hwinfo + (unsigned long )kk); } else { rtlefuse->eeprom_thermalmeter = 24U; } if ((unsigned int )rtlefuse->eeprom_thermalmeter == 255U || (int )autoload_fail) { rtlefuse->apk_thermalmeterignore = 1; rtlefuse->eeprom_thermalmeter = 24U; } else { } { rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter; tmp___0 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 2UL) != 0UL, 0L); } if (tmp___0 != 0L) { { printk("\017rtl8188ee: thermalmeter = 0x%x\n", (int )rtlefuse->eeprom_thermalmeter); } } else { } if (! autoload_fail) { rtlefuse->eeprom_regulatory = (unsigned int )*(hwinfo + (unsigned long )jj) & 7U; if ((unsigned int )*(hwinfo + (unsigned long )jj) == 255U) { rtlefuse->eeprom_regulatory = 0U; } else { } } else { rtlefuse->eeprom_regulatory = 0U; } { tmp___1 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 2UL) != 0UL, 0L); } if (tmp___1 != 0L) { { printk("\017rtl8188ee: eeprom_regulatory = 0x%x\n", (int )rtlefuse->eeprom_regulatory); } } else { } return; } } static void _rtl88ee_read_adapter_info(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_efuse *rtlefuse ; struct rtl_hal *rtlhal ; struct rtl_pci_priv *rppriv ; u16 i ; u16 usvalue ; u8 hwinfo[512U] ; u16 eeprom_id ; int jj ; int kk ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; struct task_struct *tmp___3 ; struct task_struct *tmp___4 ; struct _ddebug descriptor ; long tmp___5 ; long tmp___6 ; long tmp___7 ; int tmp___8 ; int tmp___9 ; long tmp___10 ; long tmp___11 ; int tmp___12 ; int tmp___13 ; long tmp___14 ; long tmp___15 ; int tmp___16 ; int tmp___17 ; long tmp___18 ; long tmp___19 ; int tmp___20 ; int tmp___21 ; long tmp___22 ; long tmp___23 ; int tmp___24 ; int tmp___25 ; long tmp___26 ; long tmp___27 ; int tmp___28 ; int tmp___29 ; long tmp___30 ; long tmp___31 ; int tmp___32 ; int tmp___33 ; long tmp___34 ; long tmp___35 ; int tmp___36 ; int tmp___37 ; long tmp___38 ; long tmp___39 ; int tmp___40 ; int tmp___41 ; long tmp___42 ; long tmp___43 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; rppriv = (struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv); jj = 193; kk = 194; if ((int )rtlefuse->epromtype == 2) { { rtl_efuse_shadow_map_update(hw); memcpy((void *)(& hwinfo), (void const *)(& rtlefuse->efuse_map), 512UL); } } else if ((int )rtlefuse->epromtype == 0) { { tmp___1 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> RTL819X Not boot from eeprom, check it !!", "_rtl88ee_read_adapter_info", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } else { } { tmp___6 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___6 != 0L) { { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___7 != 0L) { { tmp___3 = get_current(); tmp___4 = get_current(); printk("\017%s: In process \"%s\" (pid %i): %s\n", (char *)"rtl8188ee", (char *)(& tmp___4->comm), tmp___3->pid, (char *)"MAP\n"); descriptor.modname = "rtl8188ee"; descriptor.function = "_rtl88ee_read_adapter_info"; descriptor.filename = "drivers/net/wireless/rtlwifi/rtl8188ee/hw.c"; descriptor.format = ""; descriptor.lineno = 1789U; descriptor.flags = 0U; tmp___5 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___5 != 0L) { { print_hex_dump("\017", "", 0, 16, 1, (void const *)(& hwinfo), 512UL, 1); } } else { } } else { } } else { } eeprom_id = *((u16 *)(& hwinfo)); if ((unsigned int )eeprom_id != 33065U) { { tmp___10 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___10 != 0L) { { tmp___11 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 1, 0L); } if (tmp___11 != 0L) { { tmp___8 = preempt_count(); tmp___9 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> EEPROM ID(%#x) is invalid!!\n", "_rtl88ee_read_adapter_info", (unsigned long )tmp___9 & 2096896UL, ((unsigned long )tmp___8 & 0xffffffffffdfffffUL) != 0UL, (int )eeprom_id); } } else { } } else { } rtlefuse->autoload_failflag = 1U; } else { { tmp___14 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___14 != 0L) { { tmp___15 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___15 != 0L) { { tmp___12 = preempt_count(); tmp___13 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> Autoload OK\n", "_rtl88ee_read_adapter_info", (unsigned long )tmp___13 & 2096896UL, ((unsigned long )tmp___12 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } rtlefuse->autoload_failflag = 0U; } if ((unsigned int )rtlefuse->autoload_failflag == 1U) { return; } else { } { rtlefuse->eeprom_vid = *((u16 *)(& hwinfo) + 214U); rtlefuse->eeprom_did = *((u16 *)(& hwinfo) + 216U); rtlefuse->eeprom_svid = *((u16 *)(& hwinfo) + 218U); rtlefuse->eeprom_smid = *((u16 *)(& hwinfo) + 220U); tmp___18 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___18 != 0L) { { tmp___19 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___19 != 0L) { { tmp___16 = preempt_count(); tmp___17 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> EEPROMId = 0x%4x\n", "_rtl88ee_read_adapter_info", (unsigned long )tmp___17 & 2096896UL, ((unsigned long )tmp___16 & 0xffffffffffdfffffUL) != 0UL, (int )eeprom_id); } } else { } } else { } { tmp___22 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___22 != 0L) { { tmp___23 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___23 != 0L) { { tmp___20 = preempt_count(); tmp___21 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> EEPROM VID = 0x%4x\n", "_rtl88ee_read_adapter_info", (unsigned long )tmp___21 & 2096896UL, ((unsigned long )tmp___20 & 0xffffffffffdfffffUL) != 0UL, (int )rtlefuse->eeprom_vid); } } else { } } else { } { tmp___26 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___26 != 0L) { { tmp___27 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___27 != 0L) { { tmp___24 = preempt_count(); tmp___25 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> EEPROM DID = 0x%4x\n", "_rtl88ee_read_adapter_info", (unsigned long )tmp___25 & 2096896UL, ((unsigned long )tmp___24 & 0xffffffffffdfffffUL) != 0UL, (int )rtlefuse->eeprom_did); } } else { } } else { } { tmp___30 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___30 != 0L) { { tmp___31 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___31 != 0L) { { tmp___28 = preempt_count(); tmp___29 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> EEPROM SVID = 0x%4x\n", "_rtl88ee_read_adapter_info", (unsigned long )tmp___29 & 2096896UL, ((unsigned long )tmp___28 & 0xffffffffffdfffffUL) != 0UL, (int )rtlefuse->eeprom_svid); } } else { } } else { } { tmp___34 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___34 != 0L) { { tmp___35 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___35 != 0L) { { tmp___32 = preempt_count(); tmp___33 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> EEPROM SMID = 0x%4x\n", "_rtl88ee_read_adapter_info", (unsigned long )tmp___33 & 2096896UL, ((unsigned long )tmp___32 & 0xffffffffffdfffffUL) != 0UL, (int )rtlefuse->eeprom_smid); } } else { } } else { } rtlefuse->eeprom_oemid = *((u8 *)(& hwinfo) + 197UL); if ((unsigned int )rtlefuse->eeprom_oemid == 255U) { rtlefuse->eeprom_oemid = 0U; } else { } { tmp___38 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___38 != 0L) { { tmp___39 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___39 != 0L) { { tmp___36 = preempt_count(); tmp___37 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> EEPROM Customer ID: 0x%2x\n", "_rtl88ee_read_adapter_info", (unsigned long )tmp___37 & 2096896UL, ((unsigned long )tmp___36 & 0xffffffffffdfffffUL) != 0UL, (int )rtlefuse->eeprom_oemid); } } else { } } else { } rtlefuse->eeprom_version = (u8 )*((u16 *)(& hwinfo) + 196U); i = 0U; goto ldv_52174; ldv_52173: usvalue = *((u16 *)(& hwinfo) + (unsigned long )((int )i + 208)); *((u16 *)(& rtlefuse->dev_addr) + (unsigned long )i) = usvalue; i = (unsigned int )i + 2U; ldv_52174: ; if ((unsigned int )i <= 5U) { goto ldv_52173; } else { } { tmp___42 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___42 != 0L) { { tmp___43 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___43 != 0L) { { tmp___40 = preempt_count(); tmp___41 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> dev_addr: %pM\n", "_rtl88ee_read_adapter_info", (unsigned long )tmp___41 & 2096896UL, ((unsigned long )tmp___40 & 0xffffffffffdfffffUL) != 0UL, (u8 *)(& rtlefuse->dev_addr)); } } else { } } else { } { rtlefuse->eeprom_channelplan = (u16 )*((u8 *)(& hwinfo) + 184UL); rtlefuse->channel_plan = 11U; _rtl88ee_read_txpower_info_from_hwpg(hw, (unsigned int )rtlefuse->autoload_failflag != 0U, (u8 *)(& hwinfo)); rtlefuse->txpwr_fromeprom = 1; rtl8188ee_read_bt_coexist_info_from_hwpg(hw, (unsigned int )rtlefuse->autoload_failflag != 0U, (u8 *)(& hwinfo)); rtlefuse->board_type = (int )*((u8 *)(& hwinfo) + (unsigned long )jj) >> 5; rtlefuse->wowlan_enable = (u8 )(((int )hwinfo[kk] & 64) >> 6); rtlefuse->crystalcap = hwinfo[185]; } if ((unsigned int )hwinfo[185] != 0U) { rtlefuse->crystalcap = 32U; } else { } rtlefuse->antenna_div_cfg = (u8 )(((int )hwinfo[jj] & 24) >> 3); if ((unsigned int )hwinfo[jj] == 255U) { rtlefuse->antenna_div_cfg = 0U; } else { } if ((unsigned int )rppriv->bt_coexist.eeprom_bt_coexist != 0U && (unsigned int )rppriv->bt_coexist.eeprom_bt_ant_num == 1U) { rtlefuse->antenna_div_cfg = 0U; } else { } rtlefuse->antenna_div_type = hwinfo[201]; if ((unsigned int )rtlefuse->antenna_div_type == 255U) { rtlefuse->antenna_div_type = 1U; } else { } if ((unsigned int )rtlefuse->antenna_div_type - 1U <= 1U) { rtlefuse->antenna_div_cfg = 1U; } else { } if ((unsigned int )rtlhal->oem_id == 0U) { { if ((int )rtlefuse->eeprom_oemid == 0) { goto case_0; } else { } if ((int )rtlefuse->eeprom_oemid == 4) { goto case_4; } else { } if ((int )rtlefuse->eeprom_oemid == 13) { goto case_13; } else { } if ((int )rtlefuse->eeprom_oemid == 254) { goto case_254; } else { } goto switch_default; case_0: /* CIL Label */ ; if ((unsigned int )rtlefuse->eeprom_did == 33145U) { if ((unsigned int )rtlefuse->eeprom_svid == 4133U) { rtlhal->oem_id = 24U; } else if (((unsigned int )rtlefuse->eeprom_svid == 4332U || (unsigned int )rtlefuse->eeprom_svid == 6058U) && (unsigned int )rtlefuse->eeprom_smid == 377U) { rtlhal->oem_id = 18U; } else if ((unsigned int )rtlefuse->eeprom_svid == 4156U && (unsigned int )rtlefuse->eeprom_smid == 6525U) { rtlhal->oem_id = 27U; } else { rtlhal->oem_id = 0U; } } else { rtlhal->oem_id = 0U; } goto ldv_52177; case_4: /* CIL Label */ rtlhal->oem_id = 9U; goto ldv_52177; case_13: /* CIL Label */ rtlhal->oem_id = 19U; goto ldv_52177; case_254: /* CIL Label */ ; switch_default: /* CIL Label */ rtlhal->oem_id = 0U; goto ldv_52177; switch_break: /* CIL Label */ ; } ldv_52177: ; } else { } return; } } static void _rtl88ee_hal_customized_behavior(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_pci_priv *pcipriv ; struct rtl_hal *rtlhal ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { rtlpriv = (struct rtl_priv *)hw->priv; pcipriv = (struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv); rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; pcipriv->ledctl.led_opendrain = 1; { if ((int )rtlhal->oem_id == 27) { goto case_27; } else { } if ((int )rtlhal->oem_id == 18) { goto case_18; } else { } if ((int )rtlhal->oem_id == 0) { goto case_0; } else { } if ((int )rtlhal->oem_id == 9) { goto case_9; } else { } if ((int )rtlhal->oem_id == 17) { goto case_17; } else { } if ((int )rtlhal->oem_id == 24) { goto case_24; } else { } if ((int )rtlhal->oem_id == 5) { goto case_5; } else { } goto switch_default; case_27: /* CIL Label */ pcipriv->ledctl.led_opendrain = 1; goto ldv_52189; case_18: /* CIL Label */ ; case_0: /* CIL Label */ ; case_9: /* CIL Label */ ; case_17: /* CIL Label */ ; case_24: /* CIL Label */ ; case_5: /* CIL Label */ ; switch_default: /* CIL Label */ ; goto ldv_52189; switch_break: /* CIL Label */ ; } ldv_52189: { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> RT Customized ID: 0x%02X\n", "_rtl88ee_hal_customized_behavior", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )rtlhal->oem_id); } } else { } } else { } return; } } void rtl88ee_read_eeprom_info(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_efuse *rtlefuse ; struct rtl_phy *rtlphy ; struct rtl_hal *rtlhal ; u8 tmp_u1b ; enum version_8188e tmp ; u8 tmp___0 ; int tmp___1 ; int tmp___2 ; long tmp___3 ; long tmp___4 ; int tmp___5 ; int tmp___6 ; long tmp___7 ; long tmp___8 ; int tmp___9 ; int tmp___10 ; long tmp___11 ; long tmp___12 ; int tmp___13 ; int tmp___14 ; long tmp___15 ; long tmp___16 ; int tmp___17 ; int tmp___18 ; long tmp___19 ; long tmp___20 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; rtlphy = & rtlpriv->phy; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; tmp = _rtl88ee_read_chip_version(hw); rtlhal->version = (u32 )tmp; tmp___0 = get_rf_type(rtlphy); } if ((unsigned int )tmp___0 == 0U) { rtlpriv->dm.rfpath_rxenable[0] = 1; } else { rtlpriv->dm.rfpath_rxenable[0] = 1; rtlpriv->dm.rfpath_rxenable[1] = 1; } { tmp___3 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___3 != 0L) { { tmp___4 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___4 != 0L) { { tmp___1 = preempt_count(); tmp___2 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> VersionID = 0x%4x\n", "rtl88ee_read_eeprom_info", (unsigned long )tmp___2 & 2096896UL, ((unsigned long )tmp___1 & 0xffffffffffdfffffUL) != 0UL, rtlhal->version); } } else { } } else { } { tmp_u1b = rtl_read_byte(rtlpriv, 10U); } if (((unsigned long )tmp_u1b & 16UL) != 0UL) { { tmp___7 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___7 != 0L) { { tmp___8 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___8 != 0L) { { tmp___5 = preempt_count(); tmp___6 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> Boot from EEPROM\n", "rtl88ee_read_eeprom_info", (unsigned long )tmp___6 & 2096896UL, ((unsigned long )tmp___5 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } rtlefuse->epromtype = 0; } else { { tmp___11 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___11 != 0L) { { tmp___12 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___12 != 0L) { { tmp___9 = preempt_count(); tmp___10 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> Boot from EFUSE\n", "rtl88ee_read_eeprom_info", (unsigned long )tmp___10 & 2096896UL, ((unsigned long )tmp___9 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } rtlefuse->epromtype = 2; } if (((unsigned long )tmp_u1b & 32UL) != 0UL) { { tmp___15 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___15 != 0L) { { tmp___16 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___16 != 0L) { { tmp___13 = preempt_count(); tmp___14 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> Autoload OK\n", "rtl88ee_read_eeprom_info", (unsigned long )tmp___14 & 2096896UL, ((unsigned long )tmp___13 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { rtlefuse->autoload_failflag = 0U; _rtl88ee_read_adapter_info(hw); } } else { { tmp___19 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___19 != 0L) { { tmp___20 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___20 != 0L) { { tmp___17 = preempt_count(); tmp___18 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> Autoload ERR!!\n", "rtl88ee_read_eeprom_info", (unsigned long )tmp___18 & 2096896UL, ((unsigned long )tmp___17 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } { _rtl88ee_hal_customized_behavior(hw); } return; } } static void rtl88ee_update_hal_rate_table(struct ieee80211_hw *hw , struct ieee80211_sta *sta ) { struct rtl_priv *rtlpriv ; struct rtl_pci_priv *rppriv ; struct rtl_phy *rtlphy ; struct rtl_mac *mac ; struct rtl_hal *rtlhal ; u32 ratr_value ; u8 ratr_index ; u8 nmode ; u8 mimo_ps ; u16 shortgi_rate ; u32 tmp_ratr_value ; u8 ctx40 ; u16 cap ; u8 short40 ; u8 short20 ; enum wireless_mode wirelessmode ; u32 ratr_mask ; u8 tmp ; u8 tmp___0 ; u32 tmp___1 ; int tmp___2 ; int tmp___3 ; long tmp___4 ; long tmp___5 ; { rtlpriv = (struct rtl_priv *)hw->priv; rppriv = (struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv); rtlphy = & rtlpriv->phy; mac = & ((struct rtl_priv *)hw->priv)->mac80211; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; ratr_index = 0U; nmode = mac->ht_enable; mimo_ps = 1U; ctx40 = mac->bw_40; cap = sta->ht_cap.cap; short40 = ((int )cap & 64) != 0; short20 = ((int )cap & 32) != 0; wirelessmode = (enum wireless_mode )mac->mode; if ((unsigned int )rtlhal->current_bandtype == 1U) { ratr_value = sta->supp_rates[1] << 4; } else { ratr_value = sta->supp_rates[0]; } if ((unsigned int )mac->opmode == 1U) { ratr_value = 4095U; } else { } ratr_value = ratr_value | (u32 )(((int )sta->ht_cap.mcs.rx_mask[1] << 20) | ((int )sta->ht_cap.mcs.rx_mask[0] << 12)); { if ((unsigned int )wirelessmode == 2U) { goto case_2; } else { } if ((unsigned int )wirelessmode == 4U) { goto case_4; } else { } if ((unsigned int )wirelessmode == 16U) { goto case_16; } else { } if ((unsigned int )wirelessmode == 32U) { goto case_32; } else { } goto switch_default; case_2: /* CIL Label */ ; if ((ratr_value & 12U) != 0U) { ratr_value = ratr_value & 13U; } else { ratr_value = ratr_value & 15U; } goto ldv_52228; case_4: /* CIL Label */ ratr_value = ratr_value & 4085U; goto ldv_52228; case_16: /* CIL Label */ ; case_32: /* CIL Label */ nmode = 1U; if ((unsigned int )mimo_ps == 2U) { ratr_value = ratr_value & 520197U; } else { { tmp = get_rf_type(rtlphy); } if ((unsigned int )tmp == 1U) { ratr_mask = 1044485U; } else { { tmp___0 = get_rf_type(rtlphy); } if ((unsigned int )tmp___0 == 0U) { ratr_mask = 1044485U; } else { ratr_mask = 252702725U; } } ratr_value = ratr_value & ratr_mask; } goto ldv_52228; switch_default: /* CIL Label */ ; if ((unsigned int )rtlphy->rf_type == 1U) { ratr_value = ratr_value & 1044735U; } else { ratr_value = ratr_value & 252702975U; } goto ldv_52228; switch_break: /* CIL Label */ ; } ldv_52228: ; if (((((unsigned int )rppriv->bt_coexist.bt_coexistence != 0U && (unsigned int )rppriv->bt_coexist.bt_coexist_type == 3U) && (unsigned int )rppriv->bt_coexist.bt_cur_state != 0U) && (unsigned int )rppriv->bt_coexist.bt_ant_isolation != 0U) && ((unsigned int )rppriv->bt_coexist.bt_service == 0U || (unsigned int )rppriv->bt_coexist.bt_service == 7U)) { ratr_value = ratr_value & 268423104U; } else { ratr_value = ratr_value & 268435455U; } if ((unsigned int )nmode != 0U && (((unsigned int )ctx40 != 0U && (unsigned int )short40 != 0U) || ((unsigned int )ctx40 == 0U && (unsigned int )short20 != 0U))) { ratr_value = ratr_value | 268435456U; tmp_ratr_value = ratr_value >> 12; shortgi_rate = 15U; goto ldv_52236; ldv_52235: ; if (((u32 )(1 << (int )shortgi_rate) & tmp_ratr_value) != 0U) { goto ldv_52234; } else { } shortgi_rate = (u16 )((int )shortgi_rate - 1); ldv_52236: ; if ((unsigned int )shortgi_rate != 0U) { goto ldv_52235; } else { } ldv_52234: shortgi_rate = (u16 )((((int )((short )((int )shortgi_rate << 12)) | (int )((short )((int )shortgi_rate << 8))) | (int )((short )((int )shortgi_rate << 4))) | (int )((short )shortgi_rate)); } else { } { rtl_write_dword(rtlpriv, (u32 )(((int )ratr_index + 273) * 4), ratr_value); tmp___4 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4194304ULL) != 0ULL, 0L); } if (tmp___4 != 0L) { { tmp___5 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___5 != 0L) { { tmp___1 = rtl_read_dword(rtlpriv, 1092U); tmp___2 = preempt_count(); tmp___3 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> %x\n", "rtl88ee_update_hal_rate_table", (unsigned long )tmp___3 & 2096896UL, ((unsigned long )tmp___2 & 0xffffffffffdfffffUL) != 0UL, tmp___1); } } else { } } else { } return; } } static void rtl88ee_update_hal_rate_mask(struct ieee80211_hw *hw , struct ieee80211_sta *sta , u8 rssi ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct rtl_mac *mac ; struct rtl_hal *rtlhal ; struct rtl_sta_info *sta_entry ; u32 ratr_bitmap ; u8 ratr_index ; u16 cap ; u8 ctx40 ; u8 short40 ; u8 short20 ; enum wireless_mode wirelessmode ; bool shortgi ; u8 rate_mask[5U] ; u8 macid ; u8 mimo_ps ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; mac = & ((struct rtl_priv *)hw->priv)->mac80211; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; sta_entry = (struct rtl_sta_info *)0; cap = sta->ht_cap.cap; ctx40 = ((int )cap & 2) != 0; short40 = ((int )cap & 64) != 0; short20 = ((int )cap & 32) != 0; wirelessmode = 0; shortgi = 0; macid = 0U; mimo_ps = 1U; sta_entry = (struct rtl_sta_info *)(& sta->drv_priv); wirelessmode = (enum wireless_mode )sta_entry->wireless_mode; if ((unsigned int )mac->opmode == 2U || (unsigned int )mac->opmode == 7U) { ctx40 = mac->bw_40; } else if ((unsigned int )mac->opmode == 3U || (unsigned int )mac->opmode == 1U) { macid = (unsigned int )((u8 )sta->aid) + 1U; } else { } if ((unsigned int )rtlhal->current_bandtype == 1U) { ratr_bitmap = sta->supp_rates[1] << 4; } else { ratr_bitmap = sta->supp_rates[0]; } if ((unsigned int )mac->opmode == 1U) { ratr_bitmap = 4095U; } else { } ratr_bitmap = ratr_bitmap | (u32 )(((int )sta->ht_cap.mcs.rx_mask[1] << 20) | ((int )sta->ht_cap.mcs.rx_mask[0] << 12)); { if ((unsigned int )wirelessmode == 2U) { goto case_2; } else { } if ((unsigned int )wirelessmode == 4U) { goto case_4; } else { } if ((unsigned int )wirelessmode == 1U) { goto case_1; } else { } if ((unsigned int )wirelessmode == 16U) { goto case_16; } else { } if ((unsigned int )wirelessmode == 32U) { goto case_32; } else { } goto switch_default; case_2: /* CIL Label */ ratr_index = 6U; if ((ratr_bitmap & 12U) != 0U) { ratr_bitmap = ratr_bitmap & 13U; } else { ratr_bitmap = ratr_bitmap & 15U; } goto ldv_52260; case_4: /* CIL Label */ ratr_index = 4U; if ((unsigned int )rssi == 1U) { ratr_bitmap = ratr_bitmap & 3840U; } else if ((unsigned int )rssi == 2U) { ratr_bitmap = ratr_bitmap & 4080U; } else { ratr_bitmap = ratr_bitmap & 4085U; } goto ldv_52260; case_1: /* CIL Label */ ratr_index = 8U; ratr_bitmap = ratr_bitmap & 4080U; goto ldv_52260; case_16: /* CIL Label */ ; case_32: /* CIL Label */ ratr_index = 0U; if ((unsigned int )mimo_ps == 2U) { if ((unsigned int )rssi == 1U) { ratr_bitmap = ratr_bitmap & 458752U; } else if ((unsigned int )rssi == 2U) { ratr_bitmap = ratr_bitmap & 520192U; } else { ratr_bitmap = ratr_bitmap & 520197U; } } else if ((unsigned int )rtlphy->rf_type <= 1U) { if ((unsigned int )ctx40 != 0U) { if ((unsigned int )rssi == 1U) { ratr_bitmap = ratr_bitmap & 983040U; } else if ((unsigned int )rssi == 2U) { ratr_bitmap = ratr_bitmap & 1044480U; } else { ratr_bitmap = ratr_bitmap & 1044501U; } } else if ((unsigned int )rssi == 1U) { ratr_bitmap = ratr_bitmap & 983040U; } else if ((unsigned int )rssi == 2U) { ratr_bitmap = ratr_bitmap & 1044480U; } else { ratr_bitmap = ratr_bitmap & 1044485U; } } else if ((unsigned int )ctx40 != 0U) { if ((unsigned int )rssi == 1U) { ratr_bitmap = ratr_bitmap & 261029888U; } else if ((unsigned int )rssi == 2U) { ratr_bitmap = ratr_bitmap & 261091328U; } else { ratr_bitmap = ratr_bitmap & 261091349U; } } else if ((unsigned int )rssi == 1U) { ratr_bitmap = ratr_bitmap & 261029888U; } else if ((unsigned int )rssi == 2U) { ratr_bitmap = ratr_bitmap & 261091328U; } else { ratr_bitmap = ratr_bitmap & 261091333U; } if (((unsigned int )ctx40 != 0U && (unsigned int )short40 != 0U) || ((unsigned int )ctx40 == 0U && (unsigned int )short20 != 0U)) { if ((unsigned int )macid == 0U) { shortgi = 1; } else if ((unsigned int )macid == 1U) { shortgi = 0; } else { } } else { } goto ldv_52260; switch_default: /* CIL Label */ ratr_index = 0U; if ((unsigned int )rtlphy->rf_type == 1U) { ratr_bitmap = ratr_bitmap & 1044735U; } else { ratr_bitmap = ratr_bitmap & 252702975U; } goto ldv_52260; switch_break: /* CIL Label */ ; } ldv_52260: { sta_entry->ratr_index = ratr_index; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4194304ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> ratr_bitmap :%x\n", "rtl88ee_update_hal_rate_mask", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, ratr_bitmap); } } else { } } else { } { *((u32 *)(& rate_mask)) = (ratr_bitmap & 268435455U) | (u32 )((int )ratr_index << 28); rate_mask[4] = (u8 )(((int )((signed char )macid) | ((int )shortgi ? 32 : 0)) | -128); tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4194304ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> Rate_index:%x, ratr_val:%x, %x:%x:%x:%x:%x\n", "rtl88ee_update_hal_rate_mask", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, (int )ratr_index, ratr_bitmap, (int )rate_mask[0], (int )rate_mask[1], (int )rate_mask[2], (int )rate_mask[3], (int )rate_mask[4]); } } else { } } else { } { rtl88e_fill_h2c_cmd(hw, 132, 5U, (u8 *)(& rate_mask)); _rtl88ee_set_bcn_ctrl_reg(hw, 8, 0); } return; } } void rtl88ee_update_hal_rate_tbl(struct ieee80211_hw *hw , struct ieee80211_sta *sta , u8 rssi ) { struct rtl_priv *rtlpriv ; { rtlpriv = (struct rtl_priv *)hw->priv; if ((int )rtlpriv->dm.useramask) { { rtl88ee_update_hal_rate_mask(hw, sta, (int )rssi); } } else { { rtl88ee_update_hal_rate_table(hw, sta); } } return; } } void rtl88ee_update_channel_access_setting(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_mac *mac ; u16 sifs_timer ; { { rtlpriv = (struct rtl_priv *)hw->priv; mac = & ((struct rtl_priv *)hw->priv)->mac80211; (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 17, & mac->slot_time); } if ((unsigned int )mac->ht_enable == 0U) { sifs_timer = 2570U; } else { sifs_timer = 3598U; } { (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 14, (u8 *)(& sifs_timer)); } return; } } bool rtl88ee_gpio_radio_on_off_checking(struct ieee80211_hw *hw , u8 *valid ) { struct rtl_priv *rtlpriv ; struct rtl_ps_ctl *ppsc ; enum rf_pwrstate state_toset ; u32 u4tmp ; bool actuallyset ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { rtlpriv = (struct rtl_priv *)hw->priv; ppsc = & ((struct rtl_priv *)hw->priv)->psc; actuallyset = 0; if ((int )rtlpriv->rtlhal.being_init_adapter) { return (0); } else { } if ((int )ppsc->swrf_processing) { return (0); } else { } { ldv_spin_lock_81(& rtlpriv->locks.rf_ps_lock); } if ((int )ppsc->rfchange_inprogress) { { ldv_spin_unlock_82(& rtlpriv->locks.rf_ps_lock); } return (0); } else { { ppsc->rfchange_inprogress = 1; ldv_spin_unlock_82(& rtlpriv->locks.rf_ps_lock); } } { u4tmp = rtl_read_dword(rtlpriv, 108U); state_toset = (int )u4tmp < 0 ? 0 : 2; } if ((int )ppsc->hwradiooff && (unsigned int )state_toset == 0U) { { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> GPIOChangeRF - HW Radio ON, RF ON\n", "rtl88ee_gpio_radio_on_off_checking", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } state_toset = 0; ppsc->hwradiooff = 0; actuallyset = 1; } else if (! ppsc->hwradiooff && (unsigned int )state_toset == 2U) { { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> GPIOChangeRF - HW Radio OFF, RF OFF\n", "rtl88ee_gpio_radio_on_off_checking", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } state_toset = 2; ppsc->hwradiooff = 1; actuallyset = 1; } else { } if ((int )actuallyset) { { ldv_spin_lock_81(& rtlpriv->locks.rf_ps_lock); ppsc->rfchange_inprogress = 0; ldv_spin_unlock_82(& rtlpriv->locks.rf_ps_lock); } } else { if (((unsigned long )ppsc->reg_rfps_level & 8UL) != 0UL) { ppsc->cur_ps_level = ppsc->cur_ps_level | 8U; } else { } { ldv_spin_lock_81(& rtlpriv->locks.rf_ps_lock); ppsc->rfchange_inprogress = 0; ldv_spin_unlock_82(& rtlpriv->locks.rf_ps_lock); } } *valid = 1U; return ((bool )(! ((int )ppsc->hwradiooff != 0))); } } static void add_one_key(struct ieee80211_hw *hw , u8 *macaddr , struct rtl_mac *mac , u32 key , u32 id , u8 enc_algo , bool is_pairwise ) { struct rtl_priv *rtlpriv ; struct rtl_efuse *rtlefuse ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 512ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> add one entry\n", "add_one_key", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } if ((int )is_pairwise) { { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 512ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> set Pairwise key\n", "add_one_key", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { rtl_cam_add_one_entry(hw, macaddr, key, id, (u32 )enc_algo, 0U, (u8 *)(& rtlpriv->sec.key_buf) + (unsigned long )key); } } else { { tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 512ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count(); tmp___8 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> set group key\n", "add_one_key", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } if ((unsigned int )mac->opmode == 1U) { { rtl_cam_add_one_entry(hw, (u8 *)(& rtlefuse->dev_addr), 0U, 4U, (u32 )enc_algo, 0U, (u8 *)(& rtlpriv->sec.key_buf) + (unsigned long )id); } } else { } { rtl_cam_add_one_entry(hw, macaddr, key, id, (u32 )enc_algo, 0U, (u8 *)(& rtlpriv->sec.key_buf) + (unsigned long )id); } } return; } } void rtl88ee_set_key(struct ieee80211_hw *hw , u32 key , u8 *mac_ad , bool is_group , u8 enc_algo , bool is_wepkey , bool clear_all ) { struct rtl_priv *rtlpriv ; struct rtl_mac *mac ; u8 *macaddr ; u32 id ; bool is_pairwise ; u8 cam_const_addr[4U][6U] ; u8 cam_const_broad[6U] ; u8 idx ; u8 cam_offset ; u8 clear_number ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; u8 tmp___7 ; int tmp___8 ; int tmp___9 ; long tmp___10 ; long tmp___11 ; int tmp___12 ; int tmp___13 ; long tmp___14 ; long tmp___15 ; { rtlpriv = (struct rtl_priv *)hw->priv; mac = & ((struct rtl_priv *)hw->priv)->mac80211; macaddr = mac_ad; id = 0U; is_pairwise = 0; cam_const_addr[0][0] = 0U; cam_const_addr[0][1] = 0U; cam_const_addr[0][2] = 0U; cam_const_addr[0][3] = 0U; cam_const_addr[0][4] = 0U; cam_const_addr[0][5] = 0U; cam_const_addr[1][0] = 0U; cam_const_addr[1][1] = 0U; cam_const_addr[1][2] = 0U; cam_const_addr[1][3] = 0U; cam_const_addr[1][4] = 0U; cam_const_addr[1][5] = 1U; cam_const_addr[2][0] = 0U; cam_const_addr[2][1] = 0U; cam_const_addr[2][2] = 0U; cam_const_addr[2][3] = 0U; cam_const_addr[2][4] = 0U; cam_const_addr[2][5] = 2U; cam_const_addr[3][0] = 0U; cam_const_addr[3][1] = 0U; cam_const_addr[3][2] = 0U; cam_const_addr[3][3] = 0U; cam_const_addr[3][4] = 0U; cam_const_addr[3][5] = 3U; cam_const_broad[0] = 255U; cam_const_broad[1] = 255U; cam_const_broad[2] = 255U; cam_const_broad[3] = 255U; cam_const_broad[4] = 255U; cam_const_broad[5] = 255U; if ((int )clear_all) { { idx = 0U; cam_offset = 0U; clear_number = 5U; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 512ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> clear_all\n", "rtl88ee_set_key", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } idx = 0U; goto ldv_52322; ldv_52321: { rtl_cam_mark_invalid(hw, (int )cam_offset + (int )idx); rtl_cam_empty_entry(hw, (int )cam_offset + (int )idx); } if ((unsigned int )idx <= 4U) { { memset((void *)(& rtlpriv->sec.key_buf) + (unsigned long )idx, 0, 61UL); rtlpriv->sec.key_len[(int )idx] = 0U; } } else { } idx = (u8 )((int )idx + 1); ldv_52322: ; if ((int )idx < (int )clear_number) { goto ldv_52321; } else { } } else { { if ((int )enc_algo == 1) { goto case_1; } else { } if ((int )enc_algo == 5) { goto case_5; } else { } if ((int )enc_algo == 2) { goto case_2; } else { } if ((int )enc_algo == 4) { goto case_4; } else { } goto switch_default; case_1: /* CIL Label */ enc_algo = 1U; goto ldv_52325; case_5: /* CIL Label */ enc_algo = 5U; goto ldv_52325; case_2: /* CIL Label */ enc_algo = 2U; goto ldv_52325; case_4: /* CIL Label */ enc_algo = 4U; goto ldv_52325; switch_default: /* CIL Label */ { tmp___5 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> switch case not processed\n", "rtl88ee_set_key", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } enc_algo = 2U; goto ldv_52325; switch_break: /* CIL Label */ ; } ldv_52325: ; if ((int )is_wepkey || (int )rtlpriv->sec.use_defaultkey) { macaddr = (u8 *)(& cam_const_addr) + (unsigned long )key; id = key; } else if ((int )is_group) { macaddr = (u8 *)(& cam_const_broad); id = key; } else { if ((unsigned int )mac->opmode == 3U || (unsigned int )mac->opmode == 7U) { { tmp___7 = rtl_cam_get_free_entry(hw, mac_ad); id = (u32 )tmp___7; } if (id > 31U) { { tmp___10 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 512ULL) != 0ULL, 0L); } if (tmp___10 != 0L) { { tmp___11 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___11 != 0L) { { tmp___8 = preempt_count(); tmp___9 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> Can not find free hw security cam entry\n", "rtl88ee_set_key", (unsigned long )tmp___9 & 2096896UL, ((unsigned long )tmp___8 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } else { } } else { id = 4U; } key = 0U; is_pairwise = 1; } if ((unsigned int )rtlpriv->sec.key_len[key] == 0U) { { tmp___14 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 512ULL) != 0ULL, 0L); } if (tmp___14 != 0L) { { tmp___15 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___15 != 0L) { { tmp___12 = preempt_count(); tmp___13 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> delete one entry, id is %d\n", "rtl88ee_set_key", (unsigned long )tmp___13 & 2096896UL, ((unsigned long )tmp___12 & 0xffffffffffdfffffUL) != 0UL, id); } } else { } } else { } if ((unsigned int )mac->opmode == 3U || (unsigned int )mac->opmode == 7U) { { rtl_cam_del_entry(hw, mac_ad); } } else { } { rtl_cam_delete_one_entry(hw, mac_ad, id); } } else { { add_one_key(hw, macaddr, mac, key, id, (int )enc_algo, (int )is_pairwise); } } } return; } } static void rtl8188ee_bt_var_init(struct ieee80211_hw *hw ) { struct rtl_pci_priv *rppriv ; struct bt_coexist_info coexist ; { rppriv = (struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv); coexist = rppriv->bt_coexist; coexist.bt_coexistence = rppriv->bt_coexist.eeprom_bt_coexist; coexist.bt_ant_num = coexist.eeprom_bt_ant_num; coexist.bt_coexist_type = coexist.eeprom_bt_type; if ((unsigned int )coexist.reg_bt_iso == 2U) { coexist.bt_ant_isolation = coexist.eeprom_bt_ant_isol; } else { coexist.bt_ant_isolation = coexist.reg_bt_iso; } coexist.bt_radio_shared_type = coexist.eeprom_bt_radio_shared; if ((unsigned int )coexist.bt_coexistence != 0U) { if ((unsigned int )coexist.reg_bt_sco == 1U) { coexist.bt_service = 6U; } else if ((unsigned int )coexist.reg_bt_sco == 2U) { coexist.bt_service = 0U; } else if ((unsigned int )coexist.reg_bt_sco == 4U) { coexist.bt_service = 7U; } else if ((unsigned int )coexist.reg_bt_sco == 5U) { coexist.bt_service = 8U; } else { coexist.bt_service = 5U; } coexist.bt_edca_ul = 0U; coexist.bt_edca_dl = 0U; coexist.bt_rssi_state = 255U; } else { } return; } } void rtl8188ee_read_bt_coexist_info_from_hwpg(struct ieee80211_hw *hw , bool auto_load_fail , u8 *hwinfo ) { { { rtl8188ee_bt_var_init(hw); } return; } } void rtl8188ee_bt_reg_init(struct ieee80211_hw *hw ) { struct rtl_pci_priv *rppriv ; { rppriv = (struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv); rppriv->bt_coexist.reg_bt_iso = 2U; rppriv->bt_coexist.reg_bt_sco = 3U; rppriv->bt_coexist.reg_bt_sco = 0U; return; } } void rtl8188ee_bt_hw_init(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct rtl_pci_priv *rppriv ; struct bt_coexist_info coexist ; u8 u1_tmp ; u8 tmp ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; rppriv = (struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv); coexist = rppriv->bt_coexist; if ((unsigned int )coexist.bt_coexistence != 0U && (unsigned int )coexist.bt_coexist_type - 3U <= 1U) { if ((unsigned int )coexist.bt_ant_isolation != 0U) { { rtl_write_byte(rtlpriv, 64U, 160); } } else { } { tmp = rtl_read_byte(rtlpriv, 1277U); u1_tmp = (unsigned int )tmp & 1U; u1_tmp = ((unsigned int )u1_tmp | ((unsigned int )coexist.bt_ant_isolation == 1U ? 0U : 2U)) | ((unsigned int )coexist.bt_service == 0U ? 0U : 4U); rtl_write_byte(rtlpriv, 1277U, (int )u1_tmp); rtl_write_dword(rtlpriv, 1732U, 2863307434U); rtl_write_dword(rtlpriv, 1736U, 4290576448U); rtl_write_dword(rtlpriv, 1740U, 1073741840U); } if ((unsigned int )rtlphy->rf_type == 0U) { { u1_tmp = rtl_read_byte(rtlpriv, 3076U); u1_tmp = (unsigned int )u1_tmp & 253U; rtl_write_byte(rtlpriv, 3076U, (int )u1_tmp); u1_tmp = rtl_read_byte(rtlpriv, 3332U); u1_tmp = (unsigned int )u1_tmp & 253U; rtl_write_byte(rtlpriv, 3332U, (int )u1_tmp); } } else { } } else { } return; } } void rtl88ee_suspend(struct ieee80211_hw *hw ) { { return; } } void rtl88ee_resume(struct ieee80211_hw *hw ) { { return; } } void rtl88ee_allow_all_destaddr(struct ieee80211_hw *hw , bool allow_all_da , bool write_into_reg ) { struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; if ((int )allow_all_da) { rtlpci->receive_config = rtlpci->receive_config | 1U; } else { rtlpci->receive_config = rtlpci->receive_config & 4294967294U; } if ((int )write_into_reg) { { rtl_write_dword(rtlpriv, 1544U, rtlpci->receive_config); } } else { } { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 2097156ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> receive_config = 0x%08X, write_into_reg =%d\n", "rtl88ee_allow_all_destaddr", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, rtlpci->receive_config, (int )write_into_reg); } } else { } } else { } return; } } __inline static void ldv_spin_lock_bh_64___0(spinlock_t *lock ) { { { ldv_spin_lock_fw_ps_lock_of_rtl_locks(); spin_lock_bh(lock); } return; } } __inline static void ldv_spin_unlock_bh_65___0(spinlock_t *lock ) { { { ldv_spin_unlock_fw_ps_lock_of_rtl_locks(); spin_unlock_bh(lock); } return; } } static int ldv_mod_timer_71(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static int ldv_mod_timer_74(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static int ldv_mod_timer_80(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } __inline static void ldv_spin_lock_81(spinlock_t *lock ) { { { ldv_spin_lock_rf_ps_lock_of_rtl_locks(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_82(spinlock_t *lock ) { { { ldv_spin_unlock_rf_ps_lock_of_rtl_locks(); spin_unlock(lock); } return; } } void rtl88ee_init_sw_leds(struct ieee80211_hw *hw ) ; void rtl88ee_led_control(struct ieee80211_hw *hw , enum led_ctl_mode ledaction ) ; static void rtl88ee_init_led(struct ieee80211_hw *hw , struct rtl_led *pled , enum rtl_led_pin ledpin ) { { pled->hw = (void *)hw; pled->ledpin = ledpin; pled->ledon = 0; return; } } void rtl88ee_sw_led_on(struct ieee80211_hw *hw , struct rtl_led *pled ) { u8 ledcfg ; struct rtl_priv *rtlpriv ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { { rtlpriv = (struct rtl_priv *)hw->priv; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 256ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> LedAddr:%X ledpin =%d\n", "rtl88ee_sw_led_on", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, 78, (unsigned int )pled->ledpin); } } else { } } else { } { if ((unsigned int )pled->ledpin == 0U) { goto case_0; } else { } if ((unsigned int )pled->ledpin == 1U) { goto case_1; } else { } if ((unsigned int )pled->ledpin == 2U) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; goto ldv_50740; case_1: /* CIL Label */ { ledcfg = rtl_read_byte(rtlpriv, 78U); rtl_write_byte(rtlpriv, 78U, (int )(((unsigned int )ledcfg & 144U) | 96U)); } goto ldv_50740; case_2: /* CIL Label */ { ledcfg = rtl_read_byte(rtlpriv, 77U); rtl_write_byte(rtlpriv, 77U, (int )ledcfg & 16); } goto ldv_50740; switch_default: /* CIL Label */ { tmp___5 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> switch case not processed\n", "rtl88ee_sw_led_on", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_50740; switch_break: /* CIL Label */ ; } ldv_50740: pled->ledon = 1; return; } } void rtl88ee_sw_led_off(struct ieee80211_hw *hw , struct rtl_led *pled ) { struct rtl_priv *rtlpriv ; struct rtl_pci_priv *pcipriv ; u8 ledcfg ; u8 val ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { { rtlpriv = (struct rtl_priv *)hw->priv; pcipriv = (struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv); tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 256ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> LedAddr:%X ledpin =%d\n", "rtl88ee_sw_led_off", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, 78, (unsigned int )pled->ledpin); } } else { } } else { } { if ((unsigned int )pled->ledpin == 0U) { goto case_0; } else { } if ((unsigned int )pled->ledpin == 1U) { goto case_1; } else { } if ((unsigned int )pled->ledpin == 2U) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; goto ldv_50754; case_1: /* CIL Label */ { ledcfg = rtl_read_byte(rtlpriv, 78U); ledcfg = (unsigned int )ledcfg & 240U; val = (u8 )((unsigned int )ledcfg | 104U); } if ((int )pcipriv->ledctl.led_opendrain) { { rtl_write_byte(rtlpriv, 78U, (int )val); ledcfg = rtl_read_byte(rtlpriv, 67U); val = (unsigned int )ledcfg & 254U; rtl_write_byte(rtlpriv, 67U, (int )val); } } else { { rtl_write_byte(rtlpriv, 78U, (int )val); } } goto ldv_50754; case_2: /* CIL Label */ { ledcfg = rtl_read_byte(rtlpriv, 77U); ledcfg = (unsigned int )ledcfg & 16U; rtl_write_byte(rtlpriv, 77U, (int )((unsigned int )ledcfg | 8U)); } goto ldv_50754; switch_default: /* CIL Label */ { tmp___5 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> switch case not processed\n", "rtl88ee_sw_led_off", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_50754; switch_break: /* CIL Label */ ; } ldv_50754: pled->ledon = 0; return; } } void rtl88ee_init_sw_leds(struct ieee80211_hw *hw ) { struct rtl_pci_priv *pcipriv ; { { pcipriv = (struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv); rtl88ee_init_led(hw, & pcipriv->ledctl.sw_led0, 1); rtl88ee_init_led(hw, & pcipriv->ledctl.sw_led1, 2); } return; } } static void rtl88ee_sw_led_control(struct ieee80211_hw *hw , enum led_ctl_mode ledaction ) { struct rtl_pci_priv *pcipriv ; struct rtl_led *pLed0 ; { pcipriv = (struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv); pLed0 = & pcipriv->ledctl.sw_led0; { if ((unsigned int )ledaction == 1U) { goto case_1; } else { } if ((unsigned int )ledaction == 2U) { goto case_2; } else { } if ((unsigned int )ledaction == 3U) { goto case_3; } else { } if ((unsigned int )ledaction == 7U) { goto case_7; } else { } goto switch_default; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; case_3: /* CIL Label */ { rtl88ee_sw_led_on(hw, pLed0); } goto ldv_50771; case_7: /* CIL Label */ { rtl88ee_sw_led_off(hw, pLed0); } goto ldv_50771; switch_default: /* CIL Label */ ; goto ldv_50771; switch_break: /* CIL Label */ ; } ldv_50771: ; return; } } void rtl88ee_led_control(struct ieee80211_hw *hw , enum led_ctl_mode ledaction ) { struct rtl_priv *rtlpriv ; struct rtl_ps_ctl *ppsc ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { rtlpriv = (struct rtl_priv *)hw->priv; ppsc = & ((struct rtl_priv *)hw->priv)->psc; if (ppsc->rfoff_reason > 536870912U && ((((unsigned int )ledaction - 4U <= 2U || (unsigned int )ledaction == 2U) || ((unsigned int )ledaction == 3U || (unsigned int )ledaction == 8U)) || (unsigned int )ledaction == 1U)) { return; } else { } { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 256ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> ledaction %d,\n", "rtl88ee_led_control", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (unsigned int )ledaction); } } else { } } else { } { rtl88ee_sw_led_control(hw, ledaction); } return; } } static void ldv___ldv_spin_lock_64___0(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_66___0(spinlock_t *ldv_func_arg1 ) ; void ldv_spin_lock_rf_lock_of_rtl_locks(void) ; void ldv_spin_unlock_rf_lock_of_rtl_locks(void) ; __inline static int preempt_count___3(void) { int pfo_ret__ ; { { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "m" (__preempt_count)); goto ldv_6481; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6481; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6481; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6481; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_6481: ; return (pfo_ret__ & 2147483647); } } __inline static void ldv_spin_unlock_irqrestore_65___0(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_65___0(spinlock_t *lock , unsigned long flags ) ; extern unsigned int jiffies_to_msecs(unsigned long const ) ; extern bool rtl_ps_enable_nic(struct ieee80211_hw * ) ; extern bool rtl_ps_disable_nic(struct ieee80211_hw * ) ; u32 rtl88e_phy_query_bb_reg(struct ieee80211_hw *hw , u32 regaddr , u32 bitmask ) ; void rtl88e_phy_set_bb_reg(struct ieee80211_hw *hw , u32 regaddr , u32 bitmask , u32 data ) ; u32 rtl88e_phy_query_rf_reg(struct ieee80211_hw *hw , enum radio_path rfpath , u32 regaddr , u32 bitmask ) ; void rtl88e_phy_set_rf_reg(struct ieee80211_hw *hw , enum radio_path rfpath , u32 regaddr , u32 bitmask , u32 data ) ; void rtl88e_phy_get_hw_reg_originalvalue(struct ieee80211_hw *hw ) ; void rtl88e_phy_get_txpower_level(struct ieee80211_hw *hw , long *powerlevel ) ; void rtl88e_phy_set_bw_mode_callback(struct ieee80211_hw *hw ) ; void rtl88e_phy_set_bw_mode(struct ieee80211_hw *hw , enum nl80211_channel_type ch_type ) ; void rtl88e_phy_sw_chnl_callback(struct ieee80211_hw *hw ) ; u8 rtl88e_phy_sw_chnl(struct ieee80211_hw *hw ) ; bool rtl88e_phy_config_rf_with_headerfile(struct ieee80211_hw *hw , enum radio_path rfpath ) ; bool rtl88e_phy_set_rf_power_state(struct ieee80211_hw *hw , enum rf_pwrstate rfpwr_state ) ; void rtl88e_phy_rf6052_set_bandwidth(struct ieee80211_hw *hw , u8 bandwidth ) ; void rtl88e_phy_rf6052_set_cck_txpower(struct ieee80211_hw *hw , u8 *plevel ) ; void rtl88e_phy_rf6052_set_ofdm_txpower(struct ieee80211_hw *hw , u8 *pwrlvlofdm , u8 *pwrlvlbw20 , u8 *pwrlvlbw40 , u8 chan ) ; bool rtl88e_phy_rf6052_config(struct ieee80211_hw *hw ) ; u32 RTL8188EEPHY_REG_1TARRAY[382U] ; u32 RTL8188EEPHY_REG_ARRAY_PG[264U] ; u32 RTL8188EE_RADIOA_1TARRAY[190U] ; u32 RTL8188EEMAC_1T_ARRAY[180U] ; u32 RTL8188EEAGCTAB_1TARRAY[256U] ; static void set_baseband_phy_config(struct ieee80211_hw *hw ) ; static void set_baseband_agc_config(struct ieee80211_hw *hw ) ; static void store_pwrindex_offset(struct ieee80211_hw *hw , u32 regaddr , u32 bitmask , u32 data ) ; static bool check_cond(struct ieee80211_hw *hw , u32 const condition ) ; static u32 rf_serial_read(struct ieee80211_hw *hw , enum radio_path rfpath , u32 offset ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct bb_reg_def *phreg ; u32 newoffset ; u32 tmplong ; u32 tmplong2 ; u8 rfpi_enable ; u32 ret ; int jj ; int kk ; unsigned long __ms ; unsigned long tmp___3 ; unsigned long __ms___0 ; unsigned long tmp___4 ; u32 tmp___5 ; u32 tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; phreg = (struct bb_reg_def *)(& rtlphy->phyreg_def) + (unsigned long )rfpath; rfpi_enable = 0U; jj = 0; kk = 1; offset = offset & 255U; newoffset = offset; tmplong = rtl_get_bbreg(hw, 2084U, 4294967295U); } if ((unsigned int )rfpath == (unsigned int )jj) { tmplong2 = tmplong; } else { { tmplong2 = rtl_get_bbreg(hw, phreg->rfhssi_para2, 4294967295U); } } { tmplong2 = ((tmplong2 & 2155872255U) | (newoffset << 23)) | 2147483648U; rtl_set_bbreg(hw, 2084U, 4294967295U, tmplong & 2147483647U); } if (1) { { __const_udelay(4295000UL); } } else { __ms = 1UL; goto ldv_51176; ldv_51175: { __const_udelay(4295000UL); } ldv_51176: tmp___3 = __ms; __ms = __ms - 1UL; if (tmp___3 != 0UL) { goto ldv_51175; } else { } } { rtl_set_bbreg(hw, phreg->rfhssi_para2, 4294967295U, tmplong2); } if (1) { { __const_udelay(8590000UL); } } else { __ms___0 = 2UL; goto ldv_51180; ldv_51179: { __const_udelay(4295000UL); } ldv_51180: tmp___4 = __ms___0; __ms___0 = __ms___0 - 1UL; if (tmp___4 != 0UL) { goto ldv_51179; } else { } } if ((unsigned int )rfpath == (unsigned int )jj) { { tmp___5 = rtl_get_bbreg(hw, 2080U, 256U); rfpi_enable = (unsigned char )tmp___5; } } else if ((unsigned int )rfpath == (unsigned int )kk) { { tmp___6 = rtl_get_bbreg(hw, 2088U, 256U); rfpi_enable = (unsigned char )tmp___6; } } else { } if ((unsigned int )rfpi_enable != 0U) { { ret = rtl_get_bbreg(hw, phreg->rf_rbpi, 1048575U); } } else { { ret = rtl_get_bbreg(hw, phreg->rf_rb, 1048575U); } } { tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count___3(); tmp___8 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> RFR-%d Addr[0x%x]= 0x%x\n", "rf_serial_read", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL, (unsigned int )rfpath, phreg->rf_rb, ret); } } else { } } else { } return (ret); } } static void rf_serial_write(struct ieee80211_hw *hw , enum radio_path rfpath , u32 offset , u32 data ) { u32 data_and_addr ; u32 newoffset ; struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct bb_reg_def *phreg ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; phreg = (struct bb_reg_def *)(& rtlphy->phyreg_def) + (unsigned long )rfpath; offset = offset & 255U; newoffset = offset; data_and_addr = ((newoffset << 20) | (data & 1048575U)) & 268435455U; rtl_set_bbreg(hw, phreg->rf3wire_offset, 4294967295U, data_and_addr); tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___3(); tmp___4 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> RFW-%d Addr[0x%x]= 0x%x\n", "rf_serial_write", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, (unsigned int )rfpath, phreg->rf3wire_offset, data_and_addr); } } else { } } else { } return; } } static u32 cal_bit_shift(u32 bitmask ) { u32 i ; { i = 0U; goto ldv_51200; ldv_51199: ; if ((int )(bitmask >> (int )i) & 1) { goto ldv_51198; } else { } i = i + 1U; ldv_51200: ; if (i <= 31U) { goto ldv_51199; } else { } ldv_51198: ; return (i); } } static bool config_bb_with_header(struct ieee80211_hw *hw , u8 configtype ) { { if ((unsigned int )configtype == 0U) { { set_baseband_phy_config(hw); } } else if ((unsigned int )configtype == 1U) { { set_baseband_agc_config(hw); } } else { } return (1); } } static bool config_bb_with_pgheader(struct ieee80211_hw *hw , u8 configtype ) { struct rtl_priv *rtlpriv ; int i ; u32 *table_pg ; u16 tbl_page_len ; u32 v1 ; u32 v2 ; unsigned long __ms ; unsigned long tmp ; unsigned long __ms___0 ; unsigned long tmp___0 ; unsigned long __ms___1 ; unsigned long tmp___1 ; bool tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; { rtlpriv = (struct rtl_priv *)hw->priv; v1 = 0U; v2 = 0U; tbl_page_len = 264U; table_pg = (u32 *)(& RTL8188EEPHY_REG_ARRAY_PG); if ((unsigned int )configtype == 0U) { i = 0; goto ldv_51232; ldv_51231: v1 = *(table_pg + (unsigned long )i); v2 = *(table_pg + ((unsigned long )i + 1UL)); if (v1 <= 3452816844U) { if (*(table_pg + (unsigned long )i) == 254U) { __ms = 50UL; goto ldv_51217; ldv_51216: { __const_udelay(4295000UL); } ldv_51217: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_51216; } else { } } else if (*(table_pg + (unsigned long )i) == 253U) { if (1) { { __const_udelay(21475000UL); } } else { __ms___0 = 5UL; goto ldv_51221; ldv_51220: { __const_udelay(4295000UL); } ldv_51221: tmp___0 = __ms___0; __ms___0 = __ms___0 - 1UL; if (tmp___0 != 0UL) { goto ldv_51220; } else { } } } else if (*(table_pg + (unsigned long )i) == 252U) { if (1) { { __const_udelay(4295000UL); } } else { __ms___1 = 1UL; goto ldv_51225; ldv_51224: { __const_udelay(4295000UL); } ldv_51225: tmp___1 = __ms___1; __ms___1 = __ms___1 - 1UL; if (tmp___1 != 0UL) { goto ldv_51224; } else { } } } else if (*(table_pg + (unsigned long )i) == 251U) { { __const_udelay(214750UL); } } else if (*(table_pg + (unsigned long )i) == 250U) { { __const_udelay(21475UL); } } else if (*(table_pg + (unsigned long )i) == 249U) { { __const_udelay(4295UL); } } else { } { store_pwrindex_offset(hw, *(table_pg + (unsigned long )i), *(table_pg + ((unsigned long )i + 1UL)), *(table_pg + ((unsigned long )i + 2UL))); } goto ldv_51227; } else { { tmp___2 = check_cond(hw, *(table_pg + (unsigned long )i)); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { i = i + 2; v1 = *(table_pg + (unsigned long )i); v2 = *(table_pg + ((unsigned long )i + 1UL)); goto ldv_51229; ldv_51228: i = i + 3; v1 = *(table_pg + (unsigned long )i); v2 = *(table_pg + ((unsigned long )i + 1UL)); ldv_51229: ; if (v2 != 57005U) { goto ldv_51228; } else { } } else { } } ldv_51227: i = i + 3; ldv_51232: ; if (i < (int )tbl_page_len) { goto ldv_51231; } else { } } else { { tmp___6 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 16ULL) != 0ULL, 0L); } if (tmp___6 != 0L) { { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___7 != 0L) { { tmp___4 = preempt_count___3(); tmp___5 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> configtype != BaseBand_Config_PHY_REG\n", "config_bb_with_pgheader", (unsigned long )tmp___5 & 2096896UL, ((unsigned long )tmp___4 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } return (1); } } static bool config_parafile(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct rtl_efuse *fuse ; bool rtstatus ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; u32 tmp___11 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; fuse = & ((struct rtl_priv *)hw->priv)->efuse; rtstatus = config_bb_with_header(hw, 0); } if (! rtstatus) { { tmp___1 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___3(); tmp___0 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> Write BB Reg Fail!!", "config_parafile", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return (0); } else { } if ((unsigned int )fuse->autoload_failflag == 0U) { { rtlphy->pwrgroup_cnt = 0U; rtstatus = config_bb_with_pgheader(hw, 0); } } else { } if (! rtstatus) { { tmp___5 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___3(); tmp___4 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> BB_PG Reg Fail!!", "config_parafile", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return (0); } else { } { rtstatus = config_bb_with_header(hw, 1); } if (! rtstatus) { { tmp___9 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count___3(); tmp___8 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> AGC Table Fail\n", "config_parafile", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return (0); } else { } { tmp___11 = rtl_get_bbreg(hw, 2084U, 512U); rtlphy->cck_high_power = tmp___11 != 0U; } return (1); } } static void rtl88e_phy_init_bb_rf_register_definition(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; int jj ; int kk ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; jj = 0; kk = 1; rtlphy->phyreg_def[jj].rfintfs = 2160U; rtlphy->phyreg_def[kk].rfintfs = 2160U; rtlphy->phyreg_def[2].rfintfs = 2164U; rtlphy->phyreg_def[3].rfintfs = 2164U; rtlphy->phyreg_def[jj].rfintfi = 2272U; rtlphy->phyreg_def[kk].rfintfi = 2272U; rtlphy->phyreg_def[2].rfintfi = 2276U; rtlphy->phyreg_def[3].rfintfi = 2276U; rtlphy->phyreg_def[jj].rfintfo = 2144U; rtlphy->phyreg_def[kk].rfintfo = 2148U; rtlphy->phyreg_def[jj].rfintfe = 2144U; rtlphy->phyreg_def[kk].rfintfe = 2148U; rtlphy->phyreg_def[jj].rf3wire_offset = 2112U; rtlphy->phyreg_def[kk].rf3wire_offset = 2116U; rtlphy->phyreg_def[jj].rflssi_select = 2168U; rtlphy->phyreg_def[kk].rflssi_select = 2168U; rtlphy->phyreg_def[2].rflssi_select = 2172U; rtlphy->phyreg_def[3].rflssi_select = 2172U; rtlphy->phyreg_def[jj].rftxgain_stage = 2060U; rtlphy->phyreg_def[kk].rftxgain_stage = 2060U; rtlphy->phyreg_def[2].rftxgain_stage = 2060U; rtlphy->phyreg_def[3].rftxgain_stage = 2060U; rtlphy->phyreg_def[jj].rfhssi_para1 = 2080U; rtlphy->phyreg_def[kk].rfhssi_para1 = 2088U; rtlphy->phyreg_def[jj].rfhssi_para2 = 2084U; rtlphy->phyreg_def[kk].rfhssi_para2 = 2092U; rtlphy->phyreg_def[jj].rfsw_ctrl = 2136U; rtlphy->phyreg_def[kk].rfsw_ctrl = 2136U; rtlphy->phyreg_def[2].rfsw_ctrl = 2140U; rtlphy->phyreg_def[3].rfsw_ctrl = 2140U; rtlphy->phyreg_def[jj].rfagc_control1 = 3152U; rtlphy->phyreg_def[kk].rfagc_control1 = 3160U; rtlphy->phyreg_def[2].rfagc_control1 = 3168U; rtlphy->phyreg_def[3].rfagc_control1 = 3176U; rtlphy->phyreg_def[jj].rfagc_control2 = 3156U; rtlphy->phyreg_def[kk].rfagc_control2 = 3164U; rtlphy->phyreg_def[2].rfagc_control2 = 3172U; rtlphy->phyreg_def[3].rfagc_control2 = 3180U; rtlphy->phyreg_def[jj].rfrxiq_imbal = 3092U; rtlphy->phyreg_def[kk].rfrxiq_imbal = 3100U; rtlphy->phyreg_def[2].rfrxiq_imbal = 3108U; rtlphy->phyreg_def[3].rfrxiq_imbal = 3116U; rtlphy->phyreg_def[jj].rfrx_afe = 3088U; rtlphy->phyreg_def[kk].rfrx_afe = 3096U; rtlphy->phyreg_def[2].rfrx_afe = 3104U; rtlphy->phyreg_def[3].rfrx_afe = 3112U; rtlphy->phyreg_def[jj].rftxiq_imbal = 3200U; rtlphy->phyreg_def[kk].rftxiq_imbal = 3208U; rtlphy->phyreg_def[2].rftxiq_imbal = 3216U; rtlphy->phyreg_def[3].rftxiq_imbal = 3224U; rtlphy->phyreg_def[jj].rftx_afe = 3204U; rtlphy->phyreg_def[kk].rftx_afe = 3212U; rtlphy->phyreg_def[jj].rf_rb = 2208U; rtlphy->phyreg_def[kk].rf_rb = 2212U; rtlphy->phyreg_def[jj].rf_rbpi = 2232U; rtlphy->phyreg_def[kk].rf_rbpi = 2236U; return; } } static bool rtl88e_phy_set_sw_chnl_cmdarray(struct swchnlcmd *cmdtable , u32 cmdtableidx , u32 cmdtablesz , enum swchnlcmd_id cmdid , u32 para1 , u32 para2 , u32 msdelay ) { struct swchnlcmd *pcmd ; { if ((unsigned long )cmdtable == (unsigned long )((struct swchnlcmd *)0)) { { printk("\017rtl8188ee:%s(): cmdtable cannot be NULL.\n", "rtl88e_phy_set_sw_chnl_cmdarray"); } return (0); } else { } if (cmdtableidx >= cmdtablesz) { return (0); } else { } pcmd = cmdtable + (unsigned long )cmdtableidx; pcmd->cmdid = cmdid; pcmd->para1 = para1; pcmd->para2 = para2; pcmd->msdelay = msdelay; return (1); } } static bool chnl_step_by_step(struct ieee80211_hw *hw , u8 channel , u8 *stage , u8 *step , u32 *delay ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct swchnlcmd precommoncmd[16U] ; u32 precommoncmdcnt ; struct swchnlcmd postcommoncmd[16U] ; u32 postcommoncmdcnt ; struct swchnlcmd rfdependcmd[16U] ; u32 rfdependcmdcnt ; struct swchnlcmd *currentcmd ; u8 rfpath ; u8 num_total_rfpath ; u32 tmp ; u32 tmp___0 ; u32 tmp___1 ; u32 tmp___2 ; u32 tmp___3 ; int tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; currentcmd = (struct swchnlcmd *)0; num_total_rfpath = rtlphy->num_total_rfpath; precommoncmdcnt = 0U; tmp = precommoncmdcnt; precommoncmdcnt = precommoncmdcnt + 1U; rtl88e_phy_set_sw_chnl_cmdarray((struct swchnlcmd *)(& precommoncmd), tmp, 16U, 1, 0U, 0U, 0U); tmp___0 = precommoncmdcnt; precommoncmdcnt = precommoncmdcnt + 1U; rtl88e_phy_set_sw_chnl_cmdarray((struct swchnlcmd *)(& precommoncmd), tmp___0, 16U, 0, 0U, 0U, 0U); postcommoncmdcnt = 0U; tmp___1 = postcommoncmdcnt; postcommoncmdcnt = postcommoncmdcnt + 1U; rtl88e_phy_set_sw_chnl_cmdarray((struct swchnlcmd *)(& postcommoncmd), tmp___1, 16U, 0, 0U, 0U, 0U); rfdependcmdcnt = 0U; } if ((unsigned int )channel - 1U > 13U) { { printk("\017rtl8188ee:%s(): illegal channel for Zebra: %d\n", "chnl_step_by_step", (int )channel); } } else { } { tmp___2 = rfdependcmdcnt; rfdependcmdcnt = rfdependcmdcnt + 1U; rtl88e_phy_set_sw_chnl_cmdarray((struct swchnlcmd *)(& rfdependcmd), tmp___2, 16U, 6, 24U, (u32 )channel, 10U); tmp___3 = rfdependcmdcnt; rfdependcmdcnt = rfdependcmdcnt + 1U; rtl88e_phy_set_sw_chnl_cmdarray((struct swchnlcmd *)(& rfdependcmd), tmp___3, 16U, 0, 0U, 0U, 0U); } ldv_51296: ; { if ((int )*stage == 0) { goto case_0; } else { } if ((int )*stage == 1) { goto case_1; } else { } if ((int )*stage == 2) { goto case_2; } else { } goto switch_break; case_0: /* CIL Label */ currentcmd = (struct swchnlcmd *)(& precommoncmd) + (unsigned long )*step; goto ldv_51281; case_1: /* CIL Label */ currentcmd = (struct swchnlcmd *)(& rfdependcmd) + (unsigned long )*step; goto ldv_51281; case_2: /* CIL Label */ currentcmd = (struct swchnlcmd *)(& postcommoncmd) + (unsigned long )*step; goto ldv_51281; switch_break: /* CIL Label */ ; } ldv_51281: ; if ((unsigned int )currentcmd->cmdid == 0U) { if ((unsigned int )*stage == 2U) { return (1); } else { *stage = (u8 )((int )*stage + 1); *step = 0U; goto ldv_51284; } } else { } { if ((unsigned int )currentcmd->cmdid == 1U) { goto case_1___0; } else { } if ((unsigned int )currentcmd->cmdid == 3U) { goto case_3; } else { } if ((unsigned int )currentcmd->cmdid == 4U) { goto case_4; } else { } if ((unsigned int )currentcmd->cmdid == 5U) { goto case_5; } else { } if ((unsigned int )currentcmd->cmdid == 6U) { goto case_6; } else { } goto switch_default; case_1___0: /* CIL Label */ { rtl88e_phy_set_txpower_level(hw, (int )channel); } goto ldv_51286; case_3: /* CIL Label */ { rtl_write_dword(rtlpriv, currentcmd->para1, currentcmd->para2); } goto ldv_51286; case_4: /* CIL Label */ { rtl_write_word(rtlpriv, currentcmd->para1, (int )((unsigned short )currentcmd->para2)); } goto ldv_51286; case_5: /* CIL Label */ { rtl_write_byte(rtlpriv, currentcmd->para1, (int )((unsigned char )currentcmd->para2)); } goto ldv_51286; case_6: /* CIL Label */ rfpath = 0U; goto ldv_51292; ldv_51291: { rtlphy->rfreg_chnlval[(int )rfpath] = (rtlphy->rfreg_chnlval[(int )rfpath] & 4294966272U) | currentcmd->para2; rtl_set_rfreg(hw, (enum radio_path )rfpath, currentcmd->para1, 1048575U, rtlphy->rfreg_chnlval[(int )rfpath]); rfpath = (u8 )((int )rfpath + 1); } ldv_51292: ; if ((int )rfpath < (int )num_total_rfpath) { goto ldv_51291; } else { } goto ldv_51286; switch_default: /* CIL Label */ { tmp___6 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___6 != 0L) { { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___7 != 0L) { { tmp___4 = preempt_count___3(); tmp___5 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> switch case not processed\n", "chnl_step_by_step", (unsigned long )tmp___5 & 2096896UL, ((unsigned long )tmp___4 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_51286; switch_break___0: /* CIL Label */ ; } ldv_51286: ; goto ldv_51295; ldv_51284: ; goto ldv_51296; ldv_51295: *delay = currentcmd->msdelay; *step = (u8 )((int )*step + 1); return (0); } } static long rtl88e_pwr_idx_dbm(struct ieee80211_hw *hw , enum wireless_mode wirelessmode , u8 txpwridx ) { long offset ; long pwrout_dbm ; { { if ((unsigned int )wirelessmode == 2U) { goto case_2; } else { } if ((unsigned int )wirelessmode == 4U) { goto case_4; } else { } if ((unsigned int )wirelessmode == 16U) { goto case_16; } else { } goto switch_default; case_2: /* CIL Label */ offset = -7L; goto ldv_51305; case_4: /* CIL Label */ ; case_16: /* CIL Label */ offset = -8L; goto ldv_51305; switch_default: /* CIL Label */ offset = -8L; goto ldv_51305; switch_break: /* CIL Label */ ; } ldv_51305: pwrout_dbm = (long )((unsigned int )txpwridx / 2U) + offset; return (pwrout_dbm); } } static void rtl88e_phy_set_io(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct dig_t *dm_digtable ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; dm_digtable = & rtlpriv->dm_digtable; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___3(); tmp___0 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> --->Cmd(%#x), set_io_inprogress(%d)\n", "rtl88e_phy_set_io", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (unsigned int )rtlphy->current_io_type, (int )rtlphy->set_io_inprogress); } } else { } } else { } { if ((unsigned int )rtlphy->current_io_type == 1U) { goto case_1; } else { } if ((unsigned int )rtlphy->current_io_type == 0U) { goto case_0; } else { } goto switch_default; case_1: /* CIL Label */ { dm_digtable->cur_igvalue = (u32 )rtlphy->initgain_backup.xaagccore1; rtl88e_phy_set_txpower_level(hw, (int )rtlphy->current_channel); rtl_set_bbreg(hw, 2568U, 16711680U, 131U); } goto ldv_51317; case_0: /* CIL Label */ { rtlphy->initgain_backup.xaagccore1 = (u8 )dm_digtable->cur_igvalue; dm_digtable->cur_igvalue = 23U; rtl_set_bbreg(hw, 2568U, 16711680U, 64U); } goto ldv_51317; switch_default: /* CIL Label */ { tmp___5 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___3(); tmp___4 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> switch case not processed\n", "rtl88e_phy_set_io", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_51317; switch_break: /* CIL Label */ ; } ldv_51317: { rtlphy->set_io_inprogress = 0U; tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count___3(); tmp___8 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> (%#x)\n", "rtl88e_phy_set_io", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL, (unsigned int )rtlphy->current_io_type); } } else { } } else { } return; } } u32 rtl88e_phy_query_bb_reg(struct ieee80211_hw *hw , u32 regaddr , u32 bitmask ) { struct rtl_priv *rtlpriv ; u32 returnvalue ; u32 originalvalue ; u32 bitshift ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { { rtlpriv = (struct rtl_priv *)hw->priv; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___3(); tmp___0 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> regaddr(%#x), bitmask(%#x)\n", "rtl88e_phy_query_bb_reg", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, regaddr, bitmask); } } else { } } else { } { originalvalue = rtl_read_dword(rtlpriv, regaddr); bitshift = cal_bit_shift(bitmask); returnvalue = (originalvalue & bitmask) >> (int )bitshift; tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___3(); tmp___4 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> BBR MASK = 0x%x Addr[0x%x]= 0x%x\n", "rtl88e_phy_query_bb_reg", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, bitmask, regaddr, originalvalue); } } else { } } else { } return (returnvalue); } } void rtl88e_phy_set_bb_reg(struct ieee80211_hw *hw , u32 regaddr , u32 bitmask , u32 data ) { struct rtl_priv *rtlpriv ; u32 originalvalue ; u32 bitshift ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { { rtlpriv = (struct rtl_priv *)hw->priv; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___3(); tmp___0 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> regaddr(%#x), bitmask(%#x),data(%#x)\n", "rtl88e_phy_set_bb_reg", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, regaddr, bitmask, data); } } else { } } else { } if (bitmask != 4294967295U) { { originalvalue = rtl_read_dword(rtlpriv, regaddr); bitshift = cal_bit_shift(bitmask); data = (originalvalue & ~ bitmask) | (data << (int )bitshift); } } else { } { rtl_write_dword(rtlpriv, regaddr, data); tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___3(); tmp___4 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> regaddr(%#x), bitmask(%#x), data(%#x)\n", "rtl88e_phy_set_bb_reg", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, regaddr, bitmask, data); } } else { } } else { } return; } } u32 rtl88e_phy_query_rf_reg(struct ieee80211_hw *hw , enum radio_path rfpath , u32 regaddr , u32 bitmask ) { struct rtl_priv *rtlpriv ; u32 original_value ; u32 readback_value ; u32 bitshift ; unsigned long flags ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { { rtlpriv = (struct rtl_priv *)hw->priv; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___3(); tmp___0 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> regaddr(%#x), rfpath(%#x), bitmask(%#x)\n", "rtl88e_phy_query_rf_reg", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, regaddr, (unsigned int )rfpath, bitmask); } } else { } } else { } { ldv___ldv_spin_lock_64___0(& rtlpriv->locks.rf_lock); original_value = rf_serial_read(hw, rfpath, regaddr); bitshift = cal_bit_shift(bitmask); readback_value = (original_value & bitmask) >> (int )bitshift; ldv_spin_unlock_irqrestore_65___0(& rtlpriv->locks.rf_lock, flags); tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___3(); tmp___4 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> regaddr(%#x), rfpath(%#x), bitmask(%#x), original_value(%#x)\n", "rtl88e_phy_query_rf_reg", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, regaddr, (unsigned int )rfpath, bitmask, original_value); } } else { } } else { } return (readback_value); } } void rtl88e_phy_set_rf_reg(struct ieee80211_hw *hw , enum radio_path rfpath , u32 regaddr , u32 bitmask , u32 data ) { struct rtl_priv *rtlpriv ; u32 original_value ; u32 bitshift ; unsigned long flags ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { { rtlpriv = (struct rtl_priv *)hw->priv; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___3(); tmp___0 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n", "rtl88e_phy_set_rf_reg", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, regaddr, bitmask, data, (unsigned int )rfpath); } } else { } } else { } { ldv___ldv_spin_lock_66___0(& rtlpriv->locks.rf_lock); } if (bitmask != 1048575U) { { original_value = rf_serial_read(hw, rfpath, regaddr); bitshift = cal_bit_shift(bitmask); data = (original_value & ~ bitmask) | (data << (int )bitshift); } } else { } { rf_serial_write(hw, rfpath, regaddr, data); ldv_spin_unlock_irqrestore_65___0(& rtlpriv->locks.rf_lock, flags); tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___3(); tmp___4 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n", "rtl88e_phy_set_rf_reg", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, regaddr, bitmask, data, (unsigned int )rfpath); } } else { } } else { } return; } } static bool config_mac_with_header(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; u32 i ; u32 arraylength ; u32 *ptrarray ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { { rtlpriv = (struct rtl_priv *)hw->priv; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___3(); tmp___0 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> Read Rtl8188EMACPHY_Array\n", "config_mac_with_header", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { arraylength = 180U; ptrarray = (u32 *)(& RTL8188EEMAC_1T_ARRAY); tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___3(); tmp___4 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> Img:RTL8188EEMAC_1T_ARRAY LEN %d\n", "config_mac_with_header", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, arraylength); } } else { } } else { } i = 0U; goto ldv_51373; ldv_51372: { rtl_write_byte(rtlpriv, *(ptrarray + (unsigned long )i), (int )((unsigned char )*(ptrarray + (unsigned long )(i + 1U)))); i = i + 2U; } ldv_51373: ; if (i < arraylength) { goto ldv_51372; } else { } return (1); } } bool rtl88e_phy_mac_config(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; bool rtstatus ; bool tmp ; { { rtlpriv = (struct rtl_priv *)hw->priv; tmp = config_mac_with_header(hw); rtstatus = tmp; rtl_write_byte(rtlpriv, 1226U, 11); } return (rtstatus); } } bool rtl88e_phy_bb_config(struct ieee80211_hw *hw ) { bool rtstatus ; struct rtl_priv *rtlpriv ; u16 regval ; u8 reg_hwparafile ; u32 tmp ; { { rtstatus = 1; rtlpriv = (struct rtl_priv *)hw->priv; reg_hwparafile = 1U; rtl88e_phy_init_bb_rf_register_definition(hw); regval = rtl_read_word(rtlpriv, 2U); rtl_write_word(rtlpriv, 2U, (int )((unsigned int )regval | 8195U)); rtl_write_byte(rtlpriv, 31U, 7); rtl_write_byte(rtlpriv, 2U, 227); tmp = rtl_read_dword(rtlpriv, 76U); rtl_write_dword(rtlpriv, 76U, tmp | 8388608U); } if ((unsigned int )reg_hwparafile == 1U) { { rtstatus = config_parafile(hw); } } else { } return (rtstatus); } } bool rtl88e_phy_rf_config(struct ieee80211_hw *hw ) { bool tmp ; { { tmp = rtl88e_phy_rf6052_config(hw); } return (tmp); } } static bool check_cond(struct ieee80211_hw *hw , u32 const condition ) { struct rtl_hal *rtlhal ; struct rtl_efuse *fuse ; u32 _board ; u32 _interface ; u32 _platform ; u32 cond ; { rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; fuse = & ((struct rtl_priv *)hw->priv)->efuse; _board = (u32 )fuse->board_type; _interface = rtlhal->interface; _platform = 8U; cond = condition; if ((unsigned int )condition == 3452816845U) { return (1); } else { } cond = (unsigned int )condition & 255U; if ((_board & cond) == 0U && cond != 31U) { return (0); } else { } cond = (unsigned int )condition & 65280U; cond = cond >> 8; if ((_interface & cond) == 0U && cond != 7U) { return (0); } else { } cond = (unsigned int )condition & 16711680U; cond = cond >> 16; if ((_platform & cond) == 0U && cond != 15U) { return (0); } else { } return (1); } } static void _rtl8188e_config_rf_reg(struct ieee80211_hw *hw , u32 addr , u32 data , enum radio_path rfpath , u32 regaddr ) { unsigned long __ms ; unsigned long tmp ; unsigned long __ms___0 ; unsigned long tmp___0 ; unsigned long __ms___1 ; unsigned long tmp___1 ; { if (addr == 4094U) { __ms = 50UL; goto ldv_51410; ldv_51409: { __const_udelay(4295000UL); } ldv_51410: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_51409; } else { } } else if (addr == 253U) { if (1) { { __const_udelay(21475000UL); } } else { __ms___0 = 5UL; goto ldv_51414; ldv_51413: { __const_udelay(4295000UL); } ldv_51414: tmp___0 = __ms___0; __ms___0 = __ms___0 - 1UL; if (tmp___0 != 0UL) { goto ldv_51413; } else { } } } else if (addr == 252U) { if (1) { { __const_udelay(4295000UL); } } else { __ms___1 = 1UL; goto ldv_51418; ldv_51417: { __const_udelay(4295000UL); } ldv_51418: tmp___1 = __ms___1; __ms___1 = __ms___1 - 1UL; if (tmp___1 != 0UL) { goto ldv_51417; } else { } } } else if (addr == 251U) { { __const_udelay(214750UL); } } else if (addr == 250U) { { __const_udelay(21475UL); } } else if (addr == 249U) { { __const_udelay(4295UL); } } else { { rtl_set_rfreg(hw, rfpath, regaddr, 1048575U, data); __const_udelay(4295UL); } } return; } } static void rtl88_config_s(struct ieee80211_hw *hw , u32 addr , u32 data ) { u32 content ; u32 maskforphyset ; { { content = 4096U; maskforphyset = content & 57344U; _rtl8188e_config_rf_reg(hw, addr, data, 0, addr | maskforphyset); } return; } } static void _rtl8188e_config_bb_reg(struct ieee80211_hw *hw , u32 addr , u32 data ) { unsigned long __ms ; unsigned long tmp ; unsigned long __ms___0 ; unsigned long tmp___0 ; unsigned long __ms___1 ; unsigned long tmp___1 ; { if (addr == 254U) { __ms = 50UL; goto ldv_51434; ldv_51433: { __const_udelay(4295000UL); } ldv_51434: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_51433; } else { } } else if (addr == 253U) { if (1) { { __const_udelay(21475000UL); } } else { __ms___0 = 5UL; goto ldv_51438; ldv_51437: { __const_udelay(4295000UL); } ldv_51438: tmp___0 = __ms___0; __ms___0 = __ms___0 - 1UL; if (tmp___0 != 0UL) { goto ldv_51437; } else { } } } else if (addr == 252U) { if (1) { { __const_udelay(4295000UL); } } else { __ms___1 = 1UL; goto ldv_51442; ldv_51441: { __const_udelay(4295000UL); } ldv_51442: tmp___1 = __ms___1; __ms___1 = __ms___1 - 1UL; if (tmp___1 != 0UL) { goto ldv_51441; } else { } } } else if (addr == 251U) { { __const_udelay(214750UL); } } else if (addr == 250U) { { __const_udelay(21475UL); } } else if (addr == 249U) { { __const_udelay(4295UL); } } else { { rtl_set_bbreg(hw, addr, 4294967295U, data); __const_udelay(4295UL); } } return; } } static void set_baseband_agc_config(struct ieee80211_hw *hw ) { int i ; u32 *array_table ; u16 arraylen ; struct rtl_priv *rtlpriv ; u32 v1 ; u32 v2 ; bool tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; long tmp___3 ; long tmp___4 ; { rtlpriv = (struct rtl_priv *)hw->priv; v1 = 0U; v2 = 0U; arraylen = 256U; array_table = (u32 *)(& RTL8188EEAGCTAB_1TARRAY); i = 0; goto ldv_51465; ldv_51464: v1 = *(array_table + (unsigned long )i); v2 = *(array_table + ((unsigned long )i + 1UL)); if (v1 <= 3452816844U) { { rtl_set_bbreg(hw, *(array_table + (unsigned long )i), 4294967295U, *(array_table + ((unsigned long )i + 1UL))); __const_udelay(4295UL); } goto ldv_51453; } else { { tmp = check_cond(hw, *(array_table + (unsigned long )i)); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { i = i + 2; v1 = *(array_table + (unsigned long )i); v2 = *(array_table + ((unsigned long )i + 1UL)); goto ldv_51455; ldv_51454: i = i + 2; v1 = *(array_table + (unsigned long )i); v2 = *(array_table + ((unsigned long )i + 1UL)); ldv_51455: ; if (((v2 != 57005U && v2 != 52719U) && v2 != 52685U) && i < (int )arraylen + -2) { goto ldv_51454; } else { } i = i + -2; } else { i = i + 2; v1 = *(array_table + (unsigned long )i); v2 = *(array_table + ((unsigned long )i + 1UL)); goto ldv_51458; ldv_51457: { rtl_set_bbreg(hw, *(array_table + (unsigned long )i), 4294967295U, *(array_table + ((unsigned long )i + 1UL))); __const_udelay(4295UL); i = i + 2; v1 = *(array_table + (unsigned long )i); v2 = *(array_table + ((unsigned long )i + 1UL)); } ldv_51458: ; if (((v2 != 57005U && v2 != 52719U) && v2 != 52685U) && i < (int )arraylen + -2) { goto ldv_51457; } else { } goto ldv_51461; ldv_51460: i = i + 2; v1 = *(array_table + (unsigned long )i); v2 = *(array_table + ((unsigned long )i + 1UL)); ldv_51461: ; if (v2 != 57005U && i < (int )arraylen + -2) { goto ldv_51460; } else { } } } { tmp___3 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___3 != 0L) { { tmp___4 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___4 != 0L) { { tmp___1 = preempt_count___3(); tmp___2 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> The agctab_array_table[0] is %x Rtl818EEPHY_REGArray[1] is %x\n", "set_baseband_agc_config", (unsigned long )tmp___2 & 2096896UL, ((unsigned long )tmp___1 & 0xffffffffffdfffffUL) != 0UL, *(array_table + (unsigned long )i), *(array_table + ((unsigned long )i + 1UL))); } } else { } } else { } ldv_51453: i = i + 2; ldv_51465: ; if (i < (int )arraylen) { goto ldv_51464; } else { } return; } } static void set_baseband_phy_config(struct ieee80211_hw *hw ) { int i ; u32 *array_table ; u16 arraylen ; u32 v1 ; u32 v2 ; bool tmp ; int tmp___0 ; { v1 = 0U; v2 = 0U; arraylen = 382U; array_table = (u32 *)(& RTL8188EEPHY_REG_1TARRAY); i = 0; goto ldv_51485; ldv_51484: v1 = *(array_table + (unsigned long )i); v2 = *(array_table + ((unsigned long )i + 1UL)); if (v1 <= 3452816844U) { { _rtl8188e_config_bb_reg(hw, v1, v2); } } else { { tmp = check_cond(hw, *(array_table + (unsigned long )i)); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { i = i + 2; v1 = *(array_table + (unsigned long )i); v2 = *(array_table + ((unsigned long )i + 1UL)); goto ldv_51476; ldv_51475: i = i + 2; v1 = *(array_table + (unsigned long )i); v2 = *(array_table + ((unsigned long )i + 1UL)); ldv_51476: ; if (((v2 != 57005U && v2 != 52719U) && v2 != 52685U) && i < (int )arraylen + -2) { goto ldv_51475; } else { } i = i + -2; } else { i = i + 2; v1 = *(array_table + (unsigned long )i); v2 = *(array_table + ((unsigned long )i + 1UL)); goto ldv_51479; ldv_51478: { _rtl8188e_config_bb_reg(hw, v1, v2); i = i + 2; v1 = *(array_table + (unsigned long )i); v2 = *(array_table + ((unsigned long )i + 1UL)); } ldv_51479: ; if (((v2 != 57005U && v2 != 52719U) && v2 != 52685U) && i < (int )arraylen + -2) { goto ldv_51478; } else { } goto ldv_51482; ldv_51481: i = i + 2; v1 = *(array_table + (unsigned long )i); v2 = *(array_table + ((unsigned long )i + 1UL)); ldv_51482: ; if (v2 != 57005U && i < (int )arraylen + -2) { goto ldv_51481; } else { } } } i = i + 2; ldv_51485: ; if (i < (int )arraylen) { goto ldv_51484; } else { } return; } } static void store_pwrindex_offset(struct ieee80211_hw *hw , u32 regaddr , u32 bitmask , u32 data ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; int tmp___11 ; int tmp___12 ; long tmp___13 ; long tmp___14 ; int tmp___15 ; int tmp___16 ; long tmp___17 ; long tmp___18 ; int tmp___19 ; int tmp___20 ; long tmp___21 ; long tmp___22 ; int tmp___23 ; int tmp___24 ; long tmp___25 ; long tmp___26 ; u8 tmp___27 ; int tmp___28 ; int tmp___29 ; long tmp___30 ; long tmp___31 ; int tmp___32 ; int tmp___33 ; long tmp___34 ; long tmp___35 ; int tmp___36 ; int tmp___37 ; long tmp___38 ; long tmp___39 ; int tmp___40 ; int tmp___41 ; long tmp___42 ; long tmp___43 ; int tmp___44 ; int tmp___45 ; long tmp___46 ; long tmp___47 ; int tmp___48 ; int tmp___49 ; long tmp___50 ; long tmp___51 ; int tmp___52 ; int tmp___53 ; long tmp___54 ; long tmp___55 ; int tmp___56 ; int tmp___57 ; long tmp___58 ; long tmp___59 ; int tmp___60 ; int tmp___61 ; long tmp___62 ; long tmp___63 ; u8 tmp___64 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; if (regaddr == 3584U) { { rtlphy->mcs_offset[(int )rtlphy->pwrgroup_cnt][0] = data; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___3(); tmp___0 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> MCSTxPowerLevelOriginalOffset[%d][0] = 0x%x\n", "store_pwrindex_offset", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )rtlphy->pwrgroup_cnt, rtlphy->mcs_offset[(int )rtlphy->pwrgroup_cnt][0]); } } else { } } else { } } else { } if (regaddr == 3588U) { { rtlphy->mcs_offset[(int )rtlphy->pwrgroup_cnt][1] = data; tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___3(); tmp___4 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> MCSTxPowerLevelOriginalOffset[%d][1] = 0x%x\n", "store_pwrindex_offset", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, (int )rtlphy->pwrgroup_cnt, rtlphy->mcs_offset[(int )rtlphy->pwrgroup_cnt][1]); } } else { } } else { } } else { } if (regaddr == 3592U) { { rtlphy->mcs_offset[(int )rtlphy->pwrgroup_cnt][6] = data; tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count___3(); tmp___8 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> MCSTxPowerLevelOriginalOffset[%d][6] = 0x%x\n", "store_pwrindex_offset", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL, (int )rtlphy->pwrgroup_cnt, rtlphy->mcs_offset[(int )rtlphy->pwrgroup_cnt][6]); } } else { } } else { } } else { } if (regaddr == 2156U && bitmask == 4294967040U) { { rtlphy->mcs_offset[(int )rtlphy->pwrgroup_cnt][7] = data; tmp___13 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___13 != 0L) { { tmp___14 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___14 != 0L) { { tmp___11 = preempt_count___3(); tmp___12 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> MCSTxPowerLevelOriginalOffset[%d][7] = 0x%x\n", "store_pwrindex_offset", (unsigned long )tmp___12 & 2096896UL, ((unsigned long )tmp___11 & 0xffffffffffdfffffUL) != 0UL, (int )rtlphy->pwrgroup_cnt, rtlphy->mcs_offset[(int )rtlphy->pwrgroup_cnt][7]); } } else { } } else { } } else { } if (regaddr == 3600U) { { rtlphy->mcs_offset[(int )rtlphy->pwrgroup_cnt][2] = data; tmp___17 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___17 != 0L) { { tmp___18 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___18 != 0L) { { tmp___15 = preempt_count___3(); tmp___16 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> MCSTxPowerLevelOriginalOffset[%d][2] = 0x%x\n", "store_pwrindex_offset", (unsigned long )tmp___16 & 2096896UL, ((unsigned long )tmp___15 & 0xffffffffffdfffffUL) != 0UL, (int )rtlphy->pwrgroup_cnt, rtlphy->mcs_offset[(int )rtlphy->pwrgroup_cnt][2]); } } else { } } else { } } else { } if (regaddr == 3604U) { { rtlphy->mcs_offset[(int )rtlphy->pwrgroup_cnt][3] = data; tmp___21 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___21 != 0L) { { tmp___22 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___22 != 0L) { { tmp___19 = preempt_count___3(); tmp___20 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> MCSTxPowerLevelOriginalOffset[%d][3] = 0x%x\n", "store_pwrindex_offset", (unsigned long )tmp___20 & 2096896UL, ((unsigned long )tmp___19 & 0xffffffffffdfffffUL) != 0UL, (int )rtlphy->pwrgroup_cnt, rtlphy->mcs_offset[(int )rtlphy->pwrgroup_cnt][3]); } } else { } } else { } } else { } if (regaddr == 3608U) { { rtlphy->mcs_offset[(int )rtlphy->pwrgroup_cnt][4] = data; tmp___25 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___25 != 0L) { { tmp___26 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___26 != 0L) { { tmp___23 = preempt_count___3(); tmp___24 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> MCSTxPowerLevelOriginalOffset[%d][4] = 0x%x\n", "store_pwrindex_offset", (unsigned long )tmp___24 & 2096896UL, ((unsigned long )tmp___23 & 0xffffffffffdfffffUL) != 0UL, (int )rtlphy->pwrgroup_cnt, rtlphy->mcs_offset[(int )rtlphy->pwrgroup_cnt][4]); } } else { } } else { } } else { } if (regaddr == 3612U) { { rtlphy->mcs_offset[(int )rtlphy->pwrgroup_cnt][5] = data; tmp___27 = get_rf_type(rtlphy); } if ((unsigned int )tmp___27 == 0U) { rtlphy->pwrgroup_cnt = (u8 )((int )rtlphy->pwrgroup_cnt + 1); } else { } { tmp___30 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___30 != 0L) { { tmp___31 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___31 != 0L) { { tmp___28 = preempt_count___3(); tmp___29 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> MCSTxPowerLevelOriginalOffset[%d][5] = 0x%x\n", "store_pwrindex_offset", (unsigned long )tmp___29 & 2096896UL, ((unsigned long )tmp___28 & 0xffffffffffdfffffUL) != 0UL, (int )rtlphy->pwrgroup_cnt, rtlphy->mcs_offset[(int )rtlphy->pwrgroup_cnt][5]); } } else { } } else { } } else { } if (regaddr == 2096U) { { rtlphy->mcs_offset[(int )rtlphy->pwrgroup_cnt][8] = data; tmp___34 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___34 != 0L) { { tmp___35 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___35 != 0L) { { tmp___32 = preempt_count___3(); tmp___33 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> MCSTxPowerLevelOriginalOffset[%d][8] = 0x%x\n", "store_pwrindex_offset", (unsigned long )tmp___33 & 2096896UL, ((unsigned long )tmp___32 & 0xffffffffffdfffffUL) != 0UL, (int )rtlphy->pwrgroup_cnt, rtlphy->mcs_offset[(int )rtlphy->pwrgroup_cnt][8]); } } else { } } else { } } else { } if (regaddr == 2100U) { { rtlphy->mcs_offset[(int )rtlphy->pwrgroup_cnt][9] = data; tmp___38 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___38 != 0L) { { tmp___39 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___39 != 0L) { { tmp___36 = preempt_count___3(); tmp___37 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> MCSTxPowerLevelOriginalOffset[%d][9] = 0x%x\n", "store_pwrindex_offset", (unsigned long )tmp___37 & 2096896UL, ((unsigned long )tmp___36 & 0xffffffffffdfffffUL) != 0UL, (int )rtlphy->pwrgroup_cnt, rtlphy->mcs_offset[(int )rtlphy->pwrgroup_cnt][9]); } } else { } } else { } } else { } if (regaddr == 2104U) { { rtlphy->mcs_offset[(int )rtlphy->pwrgroup_cnt][14] = data; tmp___42 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___42 != 0L) { { tmp___43 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___43 != 0L) { { tmp___40 = preempt_count___3(); tmp___41 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> MCSTxPowerLevelOriginalOffset[%d][14] = 0x%x\n", "store_pwrindex_offset", (unsigned long )tmp___41 & 2096896UL, ((unsigned long )tmp___40 & 0xffffffffffdfffffUL) != 0UL, (int )rtlphy->pwrgroup_cnt, rtlphy->mcs_offset[(int )rtlphy->pwrgroup_cnt][14]); } } else { } } else { } } else { } if (regaddr == 2156U && bitmask == 255U) { { rtlphy->mcs_offset[(int )rtlphy->pwrgroup_cnt][15] = data; tmp___46 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___46 != 0L) { { tmp___47 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___47 != 0L) { { tmp___44 = preempt_count___3(); tmp___45 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> MCSTxPowerLevelOriginalOffset[%d][15] = 0x%x\n", "store_pwrindex_offset", (unsigned long )tmp___45 & 2096896UL, ((unsigned long )tmp___44 & 0xffffffffffdfffffUL) != 0UL, (int )rtlphy->pwrgroup_cnt, rtlphy->mcs_offset[(int )rtlphy->pwrgroup_cnt][15]); } } else { } } else { } } else { } if (regaddr == 2108U) { { rtlphy->mcs_offset[(int )rtlphy->pwrgroup_cnt][10] = data; tmp___50 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___50 != 0L) { { tmp___51 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___51 != 0L) { { tmp___48 = preempt_count___3(); tmp___49 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> MCSTxPowerLevelOriginalOffset[%d][10] = 0x%x\n", "store_pwrindex_offset", (unsigned long )tmp___49 & 2096896UL, ((unsigned long )tmp___48 & 0xffffffffffdfffffUL) != 0UL, (int )rtlphy->pwrgroup_cnt, rtlphy->mcs_offset[(int )rtlphy->pwrgroup_cnt][10]); } } else { } } else { } } else { } if (regaddr == 2120U) { { rtlphy->mcs_offset[(int )rtlphy->pwrgroup_cnt][11] = data; tmp___54 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___54 != 0L) { { tmp___55 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___55 != 0L) { { tmp___52 = preempt_count___3(); tmp___53 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> MCSTxPowerLevelOriginalOffset[%d][11] = 0x%x\n", "store_pwrindex_offset", (unsigned long )tmp___53 & 2096896UL, ((unsigned long )tmp___52 & 0xffffffffffdfffffUL) != 0UL, (int )rtlphy->pwrgroup_cnt, rtlphy->mcs_offset[(int )rtlphy->pwrgroup_cnt][11]); } } else { } } else { } } else { } if (regaddr == 2124U) { { rtlphy->mcs_offset[(int )rtlphy->pwrgroup_cnt][12] = data; tmp___58 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___58 != 0L) { { tmp___59 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___59 != 0L) { { tmp___56 = preempt_count___3(); tmp___57 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> MCSTxPowerLevelOriginalOffset[%d][12] = 0x%x\n", "store_pwrindex_offset", (unsigned long )tmp___57 & 2096896UL, ((unsigned long )tmp___56 & 0xffffffffffdfffffUL) != 0UL, (int )rtlphy->pwrgroup_cnt, rtlphy->mcs_offset[(int )rtlphy->pwrgroup_cnt][12]); } } else { } } else { } } else { } if (regaddr == 2152U) { { rtlphy->mcs_offset[(int )rtlphy->pwrgroup_cnt][13] = data; tmp___62 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___62 != 0L) { { tmp___63 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___63 != 0L) { { tmp___60 = preempt_count___3(); tmp___61 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> MCSTxPowerLevelOriginalOffset[%d][13] = 0x%x\n", "store_pwrindex_offset", (unsigned long )tmp___61 & 2096896UL, ((unsigned long )tmp___60 & 0xffffffffffdfffffUL) != 0UL, (int )rtlphy->pwrgroup_cnt, rtlphy->mcs_offset[(int )rtlphy->pwrgroup_cnt][13]); } } else { } } else { } { tmp___64 = get_rf_type(rtlphy); } if ((unsigned int )tmp___64 != 0U) { rtlphy->pwrgroup_cnt = (u8 )((int )rtlphy->pwrgroup_cnt + 1); } else { } } else { } return; } } bool rtl88e_phy_config_rf_with_headerfile(struct ieee80211_hw *hw , enum radio_path rfpath ) { int i ; u32 *a_table ; u16 a_len ; struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; u32 v1 ; u32 v2 ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; bool tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; long tmp___11 ; long tmp___12 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; v1 = 0U; v2 = 0U; a_len = 190U; a_table = (u32 *)(& RTL8188EE_RADIOA_1TARRAY); tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___3(); tmp___0 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> Radio_A:RTL8188EE_RADIOA_1TARRAY %d\n", "rtl88e_phy_config_rf_with_headerfile", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )a_len); } } else { } } else { } { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___3(); tmp___4 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> Radio No %x\n", "rtl88e_phy_config_rf_with_headerfile", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, (unsigned int )rfpath); } } else { } } else { } { if ((unsigned int )rfpath == 0U) { goto case_0; } else { } if ((unsigned int )rfpath == 1U) { goto case_1; } else { } if ((unsigned int )rfpath == 2U) { goto case_2; } else { } if ((unsigned int )rfpath == 3U) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ i = 0; goto ldv_51519; ldv_51518: v1 = *(a_table + (unsigned long )i); v2 = *(a_table + ((unsigned long )i + 1UL)); if (v1 <= 3452816844U) { { rtl88_config_s(hw, v1, v2); } } else { { tmp___7 = check_cond(hw, *(a_table + (unsigned long )i)); } if (tmp___7) { tmp___8 = 0; } else { tmp___8 = 1; } if (tmp___8) { i = i + 2; v1 = *(a_table + (unsigned long )i); v2 = *(a_table + ((unsigned long )i + 1UL)); goto ldv_51510; ldv_51509: i = i + 2; v1 = *(a_table + (unsigned long )i); v2 = *(a_table + ((unsigned long )i + 1UL)); ldv_51510: ; if (((v2 != 57005U && v2 != 52719U) && v2 != 52685U) && i < (int )a_len + -2) { goto ldv_51509; } else { } i = i + -2; } else { i = i + 2; v1 = *(a_table + (unsigned long )i); v2 = *(a_table + ((unsigned long )i + 1UL)); goto ldv_51513; ldv_51512: { rtl88_config_s(hw, v1, v2); i = i + 2; v1 = *(a_table + (unsigned long )i); v2 = *(a_table + ((unsigned long )i + 1UL)); } ldv_51513: ; if (((v2 != 57005U && v2 != 52719U) && v2 != 52685U) && i < (int )a_len + -2) { goto ldv_51512; } else { } goto ldv_51516; ldv_51515: i = i + 2; v1 = *(a_table + (unsigned long )i); v2 = *(a_table + ((unsigned long )i + 1UL)); ldv_51516: ; if (v2 != 57005U && i < (int )a_len + -2) { goto ldv_51515; } else { } } } i = i + 2; ldv_51519: ; if (i < (int )a_len) { goto ldv_51518; } else { } if ((unsigned int )rtlhal->oem_id == 27U) { { rtl88_config_s(hw, 82U, 517309U); } } else { } goto ldv_51521; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; case_3: /* CIL Label */ ; switch_default: /* CIL Label */ { tmp___11 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___11 != 0L) { { tmp___12 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___12 != 0L) { { tmp___9 = preempt_count___3(); tmp___10 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> switch case not processed\n", "rtl88e_phy_config_rf_with_headerfile", (unsigned long )tmp___10 & 2096896UL, ((unsigned long )tmp___9 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_51521; switch_break: /* CIL Label */ ; } ldv_51521: ; return (1); } } void rtl88e_phy_get_hw_reg_originalvalue(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; u32 tmp ; u32 tmp___0 ; u32 tmp___1 ; u32 tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; u32 tmp___7 ; int tmp___8 ; int tmp___9 ; long tmp___10 ; long tmp___11 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; tmp = rtl_get_bbreg(hw, 3152U, 255U); rtlphy->default_initialgain[0] = (u8 )tmp; tmp___0 = rtl_get_bbreg(hw, 3160U, 255U); rtlphy->default_initialgain[1] = (u8 )tmp___0; tmp___1 = rtl_get_bbreg(hw, 3168U, 255U); rtlphy->default_initialgain[2] = (u8 )tmp___1; tmp___2 = rtl_get_bbreg(hw, 3176U, 255U); rtlphy->default_initialgain[3] = (u8 )tmp___2; tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___3(); tmp___4 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> Default initial gain (c50 = 0x%x, c58 = 0x%x, c60 = 0x%x, c68 = 0x%x\n", "rtl88e_phy_get_hw_reg_originalvalue", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, (int )rtlphy->default_initialgain[0], (int )rtlphy->default_initialgain[1], (int )rtlphy->default_initialgain[2], (int )rtlphy->default_initialgain[3]); } } else { } } else { } { tmp___7 = rtl_get_bbreg(hw, 3128U, 255U); rtlphy->framesync = (u8 )tmp___7; rtlphy->framesync_c34 = rtl_get_bbreg(hw, 3124U, 4294967295U); tmp___10 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___10 != 0L) { { tmp___11 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___11 != 0L) { { tmp___8 = preempt_count___3(); tmp___9 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> Default framesync (0x%x) = 0x%x\n", "rtl88e_phy_get_hw_reg_originalvalue", (unsigned long )tmp___9 & 2096896UL, ((unsigned long )tmp___8 & 0xffffffffffdfffffUL) != 0UL, 3128, (int )rtlphy->framesync); } } else { } } else { } return; } } void rtl88e_phy_get_txpower_level(struct ieee80211_hw *hw , long *powerlevel ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; u8 level ; long dbm ; long tmp ; long tmp___0 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; level = rtlphy->cur_cck_txpwridx; dbm = rtl88e_pwr_idx_dbm(hw, 2, (int )level); level = rtlphy->cur_ofdm24g_txpwridx; tmp = rtl88e_pwr_idx_dbm(hw, 4, (int )level); } if (tmp > dbm) { { dbm = rtl88e_pwr_idx_dbm(hw, 4, (int )level); } } else { } { level = rtlphy->cur_ofdm24g_txpwridx; tmp___0 = rtl88e_pwr_idx_dbm(hw, 16, (int )level); } if (tmp___0 > dbm) { { dbm = rtl88e_pwr_idx_dbm(hw, 16, (int )level); } } else { } *powerlevel = dbm; return; } } static void _rtl88e_get_txpower_index(struct ieee80211_hw *hw , u8 channel , u8 *cckpower , u8 *ofdm , u8 *bw20_pwr , u8 *bw40_pwr ) { struct rtl_efuse *fuse ; u8 i ; u8 rf_path ; int jj ; int kk ; { fuse = & ((struct rtl_priv *)hw->priv)->efuse; i = (unsigned int )channel + 255U; rf_path = 0U; jj = 0; kk = 1; rf_path = 0U; goto ldv_51554; ldv_51553: ; if ((int )rf_path == jj) { *(cckpower + (unsigned long )jj) = fuse->txpwrlevel_cck[jj][(int )i]; if ((int )((signed char )fuse->txpwr_ht20diff[jj][(int )i]) > 15) { *(bw20_pwr + (unsigned long )jj) = (int )fuse->txpwrlevel_ht40_1s[jj][(int )i] + (int )((u8 )fuse->txpwr_ht20diff[jj][(int )i]); } else { *(bw20_pwr + (unsigned long )jj) = (int )fuse->txpwrlevel_ht40_1s[jj][(int )i] + (int )((u8 )fuse->txpwr_ht20diff[jj][(int )i]); } if ((unsigned int )fuse->txpwr_legacyhtdiff[jj][(int )i] > 15U) { *(ofdm + (unsigned long )jj) = (int )fuse->txpwrlevel_ht40_1s[jj][(int )i] + (int )fuse->txpwr_legacyhtdiff[jj][(int )i]; } else { *(ofdm + (unsigned long )jj) = (int )fuse->txpwrlevel_ht40_1s[jj][(int )i] + (int )fuse->txpwr_legacyhtdiff[jj][(int )i]; } *(bw40_pwr + (unsigned long )jj) = fuse->txpwrlevel_ht40_1s[jj][(int )i]; } else if ((int )rf_path == kk) { *(cckpower + (unsigned long )kk) = fuse->txpwrlevel_cck[kk][(int )i]; *(bw20_pwr + (unsigned long )kk) = (int )fuse->txpwrlevel_ht40_1s[kk][(int )i] + (int )((u8 )fuse->txpwr_ht20diff[kk][(int )i]); *(ofdm + (unsigned long )kk) = (int )fuse->txpwrlevel_ht40_1s[kk][(int )i] + (int )fuse->txpwr_legacyhtdiff[kk][(int )i]; *(bw40_pwr + (unsigned long )kk) = fuse->txpwrlevel_ht40_1s[kk][(int )i]; } else { } rf_path = (u8 )((int )rf_path + 1); ldv_51554: ; if ((unsigned int )rf_path <= 1U) { goto ldv_51553; } else { } return; } } static void _rtl88e_ccxpower_index_check(struct ieee80211_hw *hw , u8 channel , u8 *cckpower , u8 *ofdm , u8 *bw20_pwr , u8 *bw40_pwr ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; rtlphy->cur_cck_txpwridx = *cckpower; rtlphy->cur_ofdm24g_txpwridx = *ofdm; rtlphy->cur_bw20_txpwridx = *bw20_pwr; rtlphy->cur_bw40_txpwridx = *bw40_pwr; return; } } void rtl88e_phy_set_txpower_level(struct ieee80211_hw *hw , u8 channel ) { struct rtl_efuse *fuse ; u8 cckpower[4U] ; unsigned int tmp ; u8 ofdm[4U] ; unsigned int tmp___0 ; u8 bw20_pwr[4U] ; unsigned int tmp___1 ; u8 bw40_pwr[4U] ; unsigned int tmp___2 ; { fuse = & ((struct rtl_priv *)hw->priv)->efuse; cckpower[0] = 0U; tmp = 1U; { while (1) { while_continue: /* CIL Label */ ; if (tmp >= 4U) { goto while_break; } else { } cckpower[tmp] = (unsigned char)0; tmp = tmp + 1U; } while_break: /* CIL Label */ ; } ofdm[0] = 0U; tmp___0 = 1U; { while (1) { while_continue___0: /* CIL Label */ ; if (tmp___0 >= 4U) { goto while_break___0; } else { } ofdm[tmp___0] = (unsigned char)0; tmp___0 = tmp___0 + 1U; } while_break___0: /* CIL Label */ ; } bw20_pwr[0] = 0U; tmp___1 = 1U; { while (1) { while_continue___1: /* CIL Label */ ; if (tmp___1 >= 4U) { goto while_break___1; } else { } bw20_pwr[tmp___1] = (unsigned char)0; tmp___1 = tmp___1 + 1U; } while_break___1: /* CIL Label */ ; } bw40_pwr[0] = 0U; tmp___2 = 1U; { while (1) { while_continue___2: /* CIL Label */ ; if (tmp___2 >= 4U) { goto while_break___2; } else { } bw40_pwr[tmp___2] = (unsigned char)0; tmp___2 = tmp___2 + 1U; } while_break___2: /* CIL Label */ ; } if (! fuse->txpwr_fromeprom) { return; } else { } { _rtl88e_get_txpower_index(hw, (int )channel, (u8 *)(& cckpower), (u8 *)(& ofdm), (u8 *)(& bw20_pwr), (u8 *)(& bw40_pwr)); _rtl88e_ccxpower_index_check(hw, (int )channel, (u8 *)(& cckpower), (u8 *)(& ofdm), (u8 *)(& bw20_pwr), (u8 *)(& bw40_pwr)); rtl88e_phy_rf6052_set_cck_txpower(hw, (u8 *)(& cckpower)); rtl88e_phy_rf6052_set_ofdm_txpower(hw, (u8 *)(& ofdm), (u8 *)(& bw20_pwr), (u8 *)(& bw40_pwr), (int )channel); } return; } } void rtl88e_phy_set_bw_mode_callback(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; struct rtl_phy *rtlphy ; struct rtl_mac *mac ; u8 reg_bw_opmode ; u8 reg_prsr_rsc ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; bool tmp___3 ; int tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; int tmp___8 ; int tmp___9 ; long tmp___10 ; long tmp___11 ; int tmp___12 ; int tmp___13 ; long tmp___14 ; long tmp___15 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; rtlphy = & rtlpriv->phy; mac = & ((struct rtl_priv *)hw->priv)->mac80211; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 64ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___3(); tmp___0 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> Switch to %s bandwidth\n", "rtl88e_phy_set_bw_mode_callback", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (unsigned int )rtlphy->current_chan_bw == 0U ? (char *)"20MHz" : (char *)"40MHz"); } } else { } } else { } { tmp___3 = is_hal_stop(rtlhal); } if ((int )tmp___3) { rtlphy->set_bwmode_inprogress = 0U; return; } else { } { reg_bw_opmode = rtl_read_byte(rtlpriv, 1539U); reg_prsr_rsc = rtl_read_byte(rtlpriv, 1090U); } { if ((int )rtlphy->current_chan_bw == 0) { goto case_0; } else { } if ((int )rtlphy->current_chan_bw == 1) { goto case_1; } else { } goto switch_default; case_0: /* CIL Label */ { reg_bw_opmode = (u8 )((unsigned int )reg_bw_opmode | 4U); rtl_write_byte(rtlpriv, 1539U, (int )reg_bw_opmode); } goto ldv_51586; case_1: /* CIL Label */ { reg_bw_opmode = (unsigned int )reg_bw_opmode & 251U; rtl_write_byte(rtlpriv, 1539U, (int )reg_bw_opmode); reg_prsr_rsc = (u8 )(((int )((signed char )reg_prsr_rsc) & -112) | (int )((signed char )((int )mac->cur_40_prime_sc << 5))); rtl_write_byte(rtlpriv, 1090U, (int )reg_prsr_rsc); } goto ldv_51586; switch_default: /* CIL Label */ { tmp___6 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___6 != 0L) { { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___7 != 0L) { { tmp___4 = preempt_count___3(); tmp___5 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> unknown bandwidth: %#X\n", "rtl88e_phy_set_bw_mode_callback", (unsigned long )tmp___5 & 2096896UL, ((unsigned long )tmp___4 & 0xffffffffffdfffffUL) != 0UL, (int )rtlphy->current_chan_bw); } } else { } } else { } goto ldv_51586; switch_break: /* CIL Label */ ; } ldv_51586: ; { if ((int )rtlphy->current_chan_bw == 0) { goto case_0___0; } else { } if ((int )rtlphy->current_chan_bw == 1) { goto case_1___0; } else { } goto switch_default___0; case_0___0: /* CIL Label */ { rtl_set_bbreg(hw, 2048U, 1U, 0U); rtl_set_bbreg(hw, 2304U, 1U, 0U); } goto ldv_51590; case_1___0: /* CIL Label */ { rtl_set_bbreg(hw, 2048U, 1U, 1U); rtl_set_bbreg(hw, 2304U, 1U, 1U); rtl_set_bbreg(hw, 2560U, 16U, (u32 )((int )mac->cur_40_prime_sc >> 1)); rtl_set_bbreg(hw, 3328U, 3072U, (u32 )mac->cur_40_prime_sc); rtl_set_bbreg(hw, 2072U, 201326592U, (unsigned int )mac->cur_40_prime_sc == 1U ? 2U : 1U); } goto ldv_51590; switch_default___0: /* CIL Label */ { tmp___10 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___10 != 0L) { { tmp___11 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___11 != 0L) { { tmp___8 = preempt_count___3(); tmp___9 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> unknown bandwidth: %#X\n", "rtl88e_phy_set_bw_mode_callback", (unsigned long )tmp___9 & 2096896UL, ((unsigned long )tmp___8 & 0xffffffffffdfffffUL) != 0UL, (int )rtlphy->current_chan_bw); } } else { } } else { } goto ldv_51590; switch_break___0: /* CIL Label */ ; } ldv_51590: { rtl88e_phy_rf6052_set_bandwidth(hw, (int )rtlphy->current_chan_bw); rtlphy->set_bwmode_inprogress = 0U; tmp___14 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 64ULL) != 0ULL, 0L); } if (tmp___14 != 0L) { { tmp___15 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___15 != 0L) { { tmp___12 = preempt_count___3(); tmp___13 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> \n", "rtl88e_phy_set_bw_mode_callback", (unsigned long )tmp___13 & 2096896UL, ((unsigned long )tmp___12 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } } void rtl88e_phy_set_bw_mode(struct ieee80211_hw *hw , enum nl80211_channel_type ch_type ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct rtl_hal *rtlhal ; u8 tmp_bw ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; bool tmp___3 ; int tmp___4 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; tmp_bw = rtlphy->current_chan_bw; if ((unsigned int )rtlphy->set_bwmode_inprogress != 0U) { return; } else { } { rtlphy->set_bwmode_inprogress = 1U; tmp___3 = is_hal_stop(rtlhal); } if (tmp___3) { tmp___4 = 0; } else { tmp___4 = 1; } if (tmp___4) { { rtl88e_phy_set_bw_mode_callback(hw); } } else { { tmp___1 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 1, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___3(); tmp___0 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> FALSE driver sleep or unload\n", "rtl88e_phy_set_bw_mode", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } rtlphy->set_bwmode_inprogress = 0U; rtlphy->current_chan_bw = tmp_bw; } return; } } void rtl88e_phy_sw_chnl_callback(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; struct rtl_phy *rtlphy ; u32 delay ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; bool tmp___3 ; unsigned long __ms ; unsigned long tmp___4 ; bool tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; rtlphy = & rtlpriv->phy; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 64ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___3(); tmp___0 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> switch to channel%d\n", "rtl88e_phy_sw_chnl_callback", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )rtlphy->current_channel); } } else { } } else { } { tmp___3 = is_hal_stop(rtlhal); } if ((int )tmp___3) { return; } else { } ldv_51616: ; if ((unsigned int )rtlphy->sw_chnl_inprogress == 0U) { goto ldv_51610; } else { } { tmp___5 = chnl_step_by_step(hw, (int )rtlphy->current_channel, & rtlphy->sw_chnl_stage, & rtlphy->sw_chnl_step, & delay); } if (tmp___5) { tmp___6 = 0; } else { tmp___6 = 1; } if (tmp___6) { if (delay != 0U) { __ms = (unsigned long )delay; goto ldv_51613; ldv_51612: { __const_udelay(4295000UL); } ldv_51613: tmp___4 = __ms; __ms = __ms - 1UL; if (tmp___4 != 0UL) { goto ldv_51612; } else { } } else { goto ldv_51615; } } else { rtlphy->sw_chnl_inprogress = 0U; } goto ldv_51610; ldv_51615: ; goto ldv_51616; ldv_51610: { tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 64ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count___3(); tmp___8 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> \n", "rtl88e_phy_sw_chnl_callback", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } } u8 rtl88e_phy_sw_chnl(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct rtl_hal *rtlhal ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; bool tmp___7 ; int tmp___8 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; if ((unsigned int )rtlphy->sw_chnl_inprogress != 0U) { return (0U); } else { } if ((unsigned int )rtlphy->set_bwmode_inprogress != 0U) { return (0U); } else { } if ((unsigned int )rtlphy->current_channel > 14U) { { printk("\017rtl8188ee:%s(): WIRELESS_MODE_G but channel>14", "rtl88e_phy_sw_chnl"); } } else { } { rtlphy->sw_chnl_inprogress = 1U; rtlphy->sw_chnl_stage = 0U; rtlphy->sw_chnl_step = 0U; tmp___7 = is_hal_stop(rtlhal); } if (tmp___7) { tmp___8 = 0; } else { tmp___8 = 1; } if (tmp___8) { { rtl88e_phy_sw_chnl_callback(hw); tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 268435456ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___3(); tmp___0 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> sw_chnl_inprogress false schdule workitem current channel %d\n", "rtl88e_phy_sw_chnl", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )rtlphy->current_channel); } } else { } } else { } rtlphy->sw_chnl_inprogress = 0U; } else { { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 268435456ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___3(); tmp___4 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> sw_chnl_inprogress false driver sleep or unload\n", "rtl88e_phy_sw_chnl", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } rtlphy->sw_chnl_inprogress = 0U; } return (1U); } } static u8 _rtl88e_phy_path_a_iqk(struct ieee80211_hw *hw , bool config_pathb ) { u32 reg_eac ; u32 reg_e94 ; u32 reg_e9c ; u8 result ; unsigned long __ms ; unsigned long tmp ; { { result = 0U; rtl_set_bbreg(hw, 3632U, 4294967295U, 268471324U); rtl_set_bbreg(hw, 3636U, 4294967295U, 805342236U); rtl_set_bbreg(hw, 3640U, 4294967295U, 2182349610U); rtl_set_bbreg(hw, 3644U, 4294967295U, 672530432U); rtl_set_bbreg(hw, 3660U, 4294967295U, 4598033U); rtl_set_bbreg(hw, 3656U, 4294967295U, 4177526784U); rtl_set_bbreg(hw, 3656U, 4294967295U, 4160749568U); __ms = 10UL; } goto ldv_51634; ldv_51633: { __const_udelay(4295000UL); } ldv_51634: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_51633; } else { } { reg_eac = rtl_get_bbreg(hw, 3756U, 4294967295U); reg_e94 = rtl_get_bbreg(hw, 3732U, 4294967295U); reg_e9c = rtl_get_bbreg(hw, 3740U, 4294967295U); } if ((((unsigned long )reg_eac & 268435456UL) == 0UL && (reg_e94 & 67043328U) >> 16 != 322U) && (reg_e9c & 67043328U) >> 16 != 66U) { result = (u8 )((unsigned int )result | 1U); } else { } return (result); } } static u8 _rtl88e_phy_path_b_iqk(struct ieee80211_hw *hw ) { u32 reg_eac ; u32 reg_eb4 ; u32 reg_ebc ; u32 reg_ec4 ; u32 reg_ecc ; u8 result ; unsigned long __ms ; unsigned long tmp ; { { result = 0U; rtl_set_bbreg(hw, 3680U, 4294967295U, 2U); rtl_set_bbreg(hw, 3680U, 4294967295U, 0U); __ms = 10UL; } goto ldv_51647; ldv_51646: { __const_udelay(4295000UL); } ldv_51647: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_51646; } else { } { reg_eac = rtl_get_bbreg(hw, 3756U, 4294967295U); reg_eb4 = rtl_get_bbreg(hw, 3764U, 4294967295U); reg_ebc = rtl_get_bbreg(hw, 3772U, 4294967295U); reg_ec4 = rtl_get_bbreg(hw, 3780U, 4294967295U); reg_ecc = rtl_get_bbreg(hw, 3788U, 4294967295U); } if (((int )reg_eac >= 0 && (reg_eb4 & 67043328U) >> 16 != 322U) && (reg_ebc & 67043328U) >> 16 != 66U) { result = (u8 )((unsigned int )result | 1U); } else { return (result); } if ((((unsigned long )reg_eac & 1073741824UL) == 0UL && (reg_ec4 & 67043328U) >> 16 != 306U) && (reg_ecc & 67043328U) >> 16 != 54U) { result = (u8 )((unsigned int )result | 2U); } else { } return (result); } } static u8 _rtl88e_phy_path_a_rx_iqk(struct ieee80211_hw *hw , bool config_pathb ) { u32 reg_eac ; u32 reg_e94 ; u32 reg_e9c ; u32 reg_ea4 ; u32 u32temp ; u8 result ; int jj ; unsigned long __ms ; unsigned long tmp ; unsigned long __ms___0 ; unsigned long tmp___0 ; { { result = 0U; jj = 0; rtl_set_bbreg(hw, 3624U, 4294967295U, 0U); rtl_set_rfreg(hw, (enum radio_path )jj, 239U, 1048575U, 524448U); rtl_set_rfreg(hw, (enum radio_path )jj, 48U, 1048575U, 196608U); rtl_set_rfreg(hw, (enum radio_path )jj, 49U, 1048575U, 15U); rtl_set_rfreg(hw, (enum radio_path )jj, 50U, 1048575U, 987515U); rtl_set_bbreg(hw, 3624U, 4294967295U, 2155872256U); rtl_set_bbreg(hw, 3648U, 4294967295U, 16808960U); rtl_set_bbreg(hw, 3652U, 4294967295U, 2164279296U); rtl_set_bbreg(hw, 3632U, 4294967295U, 268471324U); rtl_set_bbreg(hw, 3636U, 4294967295U, 805342236U); rtl_set_bbreg(hw, 3640U, 4294967295U, 2182481924U); rtl_set_bbreg(hw, 3644U, 4294967295U, 672530432U); rtl_set_bbreg(hw, 3660U, 4294967295U, 4630801U); rtl_set_bbreg(hw, 3656U, 4294967295U, 4177526784U); rtl_set_bbreg(hw, 3656U, 4294967295U, 4160749568U); __ms = 10UL; } goto ldv_51662; ldv_51661: { __const_udelay(4295000UL); } ldv_51662: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_51661; } else { } { reg_eac = rtl_get_bbreg(hw, 3756U, 4294967295U); reg_e94 = rtl_get_bbreg(hw, 3732U, 4294967295U); reg_e9c = rtl_get_bbreg(hw, 3740U, 4294967295U); } if ((((unsigned long )reg_eac & 268435456UL) == 0UL && (reg_e94 & 67043328U) >> 16 != 322U) && (reg_e9c & 67043328U) >> 16 != 66U) { result = (u8 )((unsigned int )result | 1U); } else { return (result); } { u32temp = ((reg_e94 & 67043328U) | ((reg_e9c & 67043328U) >> 16)) | 2147515392U; rtl_set_bbreg(hw, 3648U, 4294967295U, u32temp); rtl_set_bbreg(hw, 3624U, 4294967295U, 0U); rtl_set_rfreg(hw, (enum radio_path )jj, 239U, 1048575U, 524448U); rtl_set_rfreg(hw, (enum radio_path )jj, 48U, 1048575U, 196608U); rtl_set_rfreg(hw, (enum radio_path )jj, 49U, 1048575U, 15U); rtl_set_rfreg(hw, (enum radio_path )jj, 50U, 1048575U, 1015802U); rtl_set_bbreg(hw, 3624U, 4294967295U, 2155872256U); rtl_set_bbreg(hw, 3652U, 4294967295U, 16795648U); rtl_set_bbreg(hw, 3632U, 4294967295U, 805342236U); rtl_set_bbreg(hw, 3636U, 4294967295U, 268471324U); rtl_set_bbreg(hw, 3640U, 4294967295U, 2182482949U); rtl_set_bbreg(hw, 3644U, 4294967295U, 672533509U); rtl_set_bbreg(hw, 3660U, 4294967295U, 4630801U); rtl_set_bbreg(hw, 3656U, 4294967295U, 4177526784U); rtl_set_bbreg(hw, 3656U, 4294967295U, 4160749568U); __ms___0 = 10UL; } goto ldv_51666; ldv_51665: { __const_udelay(4295000UL); } ldv_51666: tmp___0 = __ms___0; __ms___0 = __ms___0 - 1UL; if (tmp___0 != 0UL) { goto ldv_51665; } else { } { reg_eac = rtl_get_bbreg(hw, 3756U, 4294967295U); reg_e94 = rtl_get_bbreg(hw, 3732U, 4294967295U); reg_e9c = rtl_get_bbreg(hw, 3740U, 4294967295U); reg_ea4 = rtl_get_bbreg(hw, 3748U, 4294967295U); } if ((((unsigned long )reg_eac & 134217728UL) == 0UL && (reg_ea4 & 67043328U) >> 16 != 306U) && (reg_eac & 67043328U) >> 16 != 54U) { result = (u8 )((unsigned int )result | 2U); } else { } return (result); } } static void fill_iqk(struct ieee80211_hw *hw , bool iqk_ok , long (*result)[8U] , u8 final , bool btxonly ) { u32 oldval_0 ; u32 x ; u32 tx0_a ; u32 reg ; long y ; long tx0_c ; u32 tmp ; { if ((unsigned int )final == 255U) { return; } else if ((int )iqk_ok) { { tmp = rtl_get_bbreg(hw, 3200U, 4294967295U); oldval_0 = tmp >> 22; x = (u32 )(*(result + (unsigned long )final))[0]; } if ((x & 512U) != 0U) { x = x | 4294966272U; } else { } { tx0_a = x * oldval_0 >> 8; rtl_set_bbreg(hw, 3200U, 1023U, tx0_a); rtl_set_bbreg(hw, 3148U, 2147483648U, (x * oldval_0 >> 7) & 1U); y = (*(result + (unsigned long )final))[1]; } if ((y & 512L) != 0L) { y = y | 4294966272L; } else { } { tx0_c = y * (long )oldval_0 >> 8; rtl_set_bbreg(hw, 3220U, 4026531840U, (u32 )((tx0_c & 960L) >> 6)); rtl_set_bbreg(hw, 3200U, 4128768U, (u32 )tx0_c & 63U); rtl_set_bbreg(hw, 3148U, 536870912U, (u32 )(y * (long )oldval_0 >> 7) & 1U); } if ((int )btxonly) { return; } else { } { reg = (u32 )(*(result + (unsigned long )final))[2]; rtl_set_bbreg(hw, 3092U, 1023U, reg); reg = (u32 )(*(result + (unsigned long )final))[3] & 63U; rtl_set_bbreg(hw, 3092U, 64512U, reg); reg = (u32 )((*(result + (unsigned long )final))[3] >> 6) & 15U; rtl_set_bbreg(hw, 3232U, 4026531840U, reg); } } else { } return; } } static void save_adda_reg(struct ieee80211_hw *hw , u32 const *addareg , u32 *backup , u32 registernum ) { u32 i ; { i = 0U; goto ldv_51689; ldv_51688: { *(backup + (unsigned long )i) = rtl_get_bbreg(hw, *(addareg + (unsigned long )i), 4294967295U); i = i + 1U; } ldv_51689: ; if (i < registernum) { goto ldv_51688; } else { } return; } } static void save_mac_reg(struct ieee80211_hw *hw , u32 const *macreg , u32 *macbackup ) { struct rtl_priv *rtlpriv ; u32 i ; u8 tmp ; { rtlpriv = (struct rtl_priv *)hw->priv; i = 0U; goto ldv_51699; ldv_51698: { tmp = rtl_read_byte(rtlpriv, *(macreg + (unsigned long )i)); *(macbackup + (unsigned long )i) = (u32 )tmp; i = i + 1U; } ldv_51699: ; if (i <= 2U) { goto ldv_51698; } else { } { *(macbackup + (unsigned long )i) = rtl_read_dword(rtlpriv, *(macreg + (unsigned long )i)); } return; } } static void reload_adda(struct ieee80211_hw *hw , u32 const *addareg , u32 *backup , u32 reg_num ) { u32 i ; { i = 0U; goto ldv_51709; ldv_51708: { rtl_set_bbreg(hw, *(addareg + (unsigned long )i), 4294967295U, *(backup + (unsigned long )i)); i = i + 1U; } ldv_51709: ; if (i < reg_num) { goto ldv_51708; } else { } return; } } static void reload_mac(struct ieee80211_hw *hw , u32 const *macreg , u32 *macbackup ) { struct rtl_priv *rtlpriv ; u32 i ; { rtlpriv = (struct rtl_priv *)hw->priv; i = 0U; goto ldv_51719; ldv_51718: { rtl_write_byte(rtlpriv, *(macreg + (unsigned long )i), (int )((unsigned char )*(macbackup + (unsigned long )i))); i = i + 1U; } ldv_51719: ; if (i <= 2U) { goto ldv_51718; } else { } { rtl_write_dword(rtlpriv, *(macreg + (unsigned long )i), *(macbackup + (unsigned long )i)); } return; } } static void _rtl88e_phy_path_adda_on(struct ieee80211_hw *hw , u32 const *addareg , bool is_patha_on , bool is2t ) { u32 pathon ; u32 i ; { pathon = (int )is_patha_on ? 81470884U : 186328484U; if (! is2t) { { pathon = 198911392U; rtl_set_bbreg(hw, *addareg, 4294967295U, 186328480U); } } else { { rtl_set_bbreg(hw, *addareg, 4294967295U, pathon); } } i = 1U; goto ldv_51730; ldv_51729: { rtl_set_bbreg(hw, *(addareg + (unsigned long )i), 4294967295U, pathon); i = i + 1U; } ldv_51730: ; if (i <= 15U) { goto ldv_51729; } else { } return; } } static void _rtl88e_phy_mac_setting_calibration(struct ieee80211_hw *hw , u32 const *macreg , u32 *macbackup ) { struct rtl_priv *rtlpriv ; u32 i ; { { rtlpriv = (struct rtl_priv *)hw->priv; i = 0U; rtl_write_byte(rtlpriv, *(macreg + (unsigned long )i), 63); i = 1U; } goto ldv_51740; ldv_51739: { rtl_write_byte(rtlpriv, *(macreg + (unsigned long )i), (int )((unsigned char )*(macbackup + (unsigned long )i)) & 247); i = i + 1U; } ldv_51740: ; if (i <= 2U) { goto ldv_51739; } else { } { rtl_write_byte(rtlpriv, *(macreg + (unsigned long )i), (int )((unsigned char )*(macbackup + (unsigned long )i)) & 223); } return; } } static void _rtl88e_phy_path_a_standby(struct ieee80211_hw *hw ) { { { rtl_set_bbreg(hw, 3624U, 4294967295U, 0U); rtl_set_bbreg(hw, 2112U, 4294967295U, 65536U); rtl_set_bbreg(hw, 3624U, 4294967295U, 2155872256U); } return; } } static void _rtl88e_phy_pi_mode_switch(struct ieee80211_hw *hw , bool pi_mode ) { u32 mode ; { { mode = (int )pi_mode ? 16777472U : 16777216U; rtl_set_bbreg(hw, 2080U, 4294967295U, mode); rtl_set_bbreg(hw, 2088U, 4294967295U, mode); } return; } } static bool sim_comp(struct ieee80211_hw *hw , long (*result)[8U] , u8 c1 , u8 c2 ) { u32 i ; u32 j ; u32 diff ; u32 bitmap ; u32 bound ; struct rtl_hal *rtlhal ; u8 final[2U] ; bool bresult ; bool is2t ; { rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; final[0] = 255U; final[1] = 255U; bresult = 1; is2t = ((unsigned long )rtlhal->version & 119UL) == 32UL; if ((int )is2t) { bound = 8U; } else { bound = 4U; } bitmap = 0U; i = 0U; goto ldv_51766; ldv_51765: diff = (*(result + (unsigned long )c1))[i] > (*(result + (unsigned long )c2))[i] ? (u32 )(*(result + (unsigned long )c1))[i] - (u32 )(*(result + (unsigned long )c2))[i] : (u32 )(*(result + (unsigned long )c2))[i] - (u32 )(*(result + (unsigned long )c1))[i]; if (diff > 5U) { if ((i == 2U || i == 6U) && bitmap == 0U) { if ((*(result + (unsigned long )c1))[i] + (*(result + (unsigned long )c1))[i + 1U] == 0L) { final[i / 4U] = c2; } else if ((*(result + (unsigned long )c2))[i] + (*(result + (unsigned long )c2))[i + 1U] == 0L) { final[i / 4U] = c1; } else { bitmap = bitmap | (u32 )(1 << (int )i); } } else { bitmap = bitmap | (u32 )(1 << (int )i); } } else { } i = i + 1U; ldv_51766: ; if (i < bound) { goto ldv_51765; } else { } if (bitmap == 0U) { i = 0U; goto ldv_51772; ldv_51771: ; if ((unsigned int )final[i] != 255U) { j = i * 4U; goto ldv_51769; ldv_51768: (*(result + 3UL))[j] = (*(result + (unsigned long )final[i]))[j]; j = j + 1U; ldv_51769: ; if (j < (i + 1U) * 4U - 2U) { goto ldv_51768; } else { } bresult = 0; } else { } i = i + 1U; ldv_51772: ; if (i < bound / 4U) { goto ldv_51771; } else { } return (bresult); } else if ((bitmap & 15U) == 0U) { i = 0U; goto ldv_51775; ldv_51774: (*(result + 3UL))[i] = (*(result + (unsigned long )c1))[i]; i = i + 1U; ldv_51775: ; if (i <= 3U) { goto ldv_51774; } else { } return (0); } else if ((bitmap & 240U) == 0U && (int )is2t) { i = 4U; goto ldv_51778; ldv_51777: (*(result + 3UL))[i] = (*(result + (unsigned long )c1))[i]; i = i + 1U; ldv_51778: ; if (i <= 7U) { goto ldv_51777; } else { } return (0); } else { return (0); } } } static void _rtl88e_phy_iq_calibrate(struct ieee80211_hw *hw , long (*result)[8U] , u8 t , bool is2t ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; u32 i ; u8 patha_ok ; u8 pathb_ok ; u32 adda_reg[16U] ; u32 iqk_mac_reg[4U] ; u32 iqk_bb_reg[9U] ; u32 retrycount ; u32 tmp ; int tmp___0 ; int tmp___1 ; long tmp___2 ; long tmp___3 ; u32 tmp___4 ; u32 tmp___5 ; int tmp___6 ; int tmp___7 ; long tmp___8 ; long tmp___9 ; u32 tmp___10 ; u32 tmp___11 ; int tmp___12 ; int tmp___13 ; long tmp___14 ; long tmp___15 ; int tmp___16 ; int tmp___17 ; long tmp___18 ; long tmp___19 ; u32 tmp___20 ; u32 tmp___21 ; u32 tmp___22 ; u32 tmp___23 ; u32 tmp___24 ; u32 tmp___25 ; int tmp___26 ; int tmp___27 ; long tmp___28 ; long tmp___29 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; adda_reg[0] = 2140U; adda_reg[1] = 3692U; adda_reg[2] = 3696U; adda_reg[3] = 3700U; adda_reg[4] = 3704U; adda_reg[5] = 3708U; adda_reg[6] = 3712U; adda_reg[7] = 3716U; adda_reg[8] = 3720U; adda_reg[9] = 3724U; adda_reg[10] = 3792U; adda_reg[11] = 3796U; adda_reg[12] = 3800U; adda_reg[13] = 3804U; adda_reg[14] = 3808U; adda_reg[15] = 3820U; iqk_mac_reg[0] = 1314U; iqk_mac_reg[1] = 1360U; iqk_mac_reg[2] = 1361U; iqk_mac_reg[3] = 64U; iqk_bb_reg[0] = 3076U; iqk_bb_reg[1] = 3080U; iqk_bb_reg[2] = 2164U; iqk_bb_reg[3] = 2920U; iqk_bb_reg[4] = 2924U; iqk_bb_reg[5] = 2160U; iqk_bb_reg[6] = 2144U; iqk_bb_reg[7] = 2148U; iqk_bb_reg[8] = 2048U; retrycount = 2U; if ((unsigned int )t == 0U) { { save_adda_reg(hw, (u32 const *)(& adda_reg), (u32 *)(& rtlphy->adda_backup), 16U); save_mac_reg(hw, (u32 const *)(& iqk_mac_reg), (u32 *)(& rtlphy->iqk_mac_backup)); save_adda_reg(hw, (u32 const *)(& iqk_bb_reg), (u32 *)(& rtlphy->iqk_bb_backup), 9U); } } else { } { _rtl88e_phy_path_adda_on(hw, (u32 const *)(& adda_reg), 1, (int )is2t); } if ((unsigned int )t == 0U) { { tmp = rtl_get_bbreg(hw, 2080U, 256U); rtlphy->rfpi_enable = (unsigned int )((unsigned char )tmp) != 0U; } } else { } if (! rtlphy->rfpi_enable) { { _rtl88e_phy_pi_mode_switch(hw, 1); } } else { } { rtl_set_bbreg(hw, 2048U, 16777216U, 0U); rtl_set_bbreg(hw, 3076U, 4294967295U, 60839424U); rtl_set_bbreg(hw, 3080U, 4294967295U, 524516U); rtl_set_bbreg(hw, 2164U, 4294967295U, 572538880U); rtl_set_bbreg(hw, 2160U, 1024U, 1U); rtl_set_bbreg(hw, 2160U, 67108864U, 1U); rtl_set_bbreg(hw, 2144U, 1024U, 0U); rtl_set_bbreg(hw, 2148U, 1024U, 0U); } if ((int )is2t) { { rtl_set_bbreg(hw, 2112U, 4294967295U, 65536U); rtl_set_bbreg(hw, 2116U, 4294967295U, 65536U); } } else { } { _rtl88e_phy_mac_setting_calibration(hw, (u32 const *)(& iqk_mac_reg), (u32 *)(& rtlphy->iqk_mac_backup)); rtl_set_bbreg(hw, 2920U, 4294967295U, 257949696U); } if ((int )is2t) { { rtl_set_bbreg(hw, 2924U, 4294967295U, 257949696U); } } else { } { rtl_set_bbreg(hw, 3624U, 4294967295U, 2155872256U); rtl_set_bbreg(hw, 3648U, 4294967295U, 16808960U); rtl_set_bbreg(hw, 3652U, 4294967295U, 2164279296U); i = 0U; } goto ldv_51798; ldv_51797: { patha_ok = _rtl88e_phy_path_a_iqk(hw, (int )is2t); } if ((unsigned int )patha_ok == 1U) { { tmp___2 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___2 != 0L) { { tmp___3 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___3 != 0L) { { tmp___0 = preempt_count___3(); tmp___1 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> Path A Tx IQK Success!!\n", "_rtl88e_phy_iq_calibrate", (unsigned long )tmp___1 & 2096896UL, ((unsigned long )tmp___0 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { tmp___4 = rtl_get_bbreg(hw, 3732U, 4294967295U); (*(result + (unsigned long )t))[0] = (long )((tmp___4 & 67043328U) >> 16); tmp___5 = rtl_get_bbreg(hw, 3740U, 4294967295U); (*(result + (unsigned long )t))[1] = (long )((tmp___5 & 67043328U) >> 16); } goto ldv_51796; } else { } i = i + 1U; ldv_51798: ; if (i <= 1U) { goto ldv_51797; } else { } ldv_51796: i = 0U; goto ldv_51801; ldv_51800: { patha_ok = _rtl88e_phy_path_a_rx_iqk(hw, (int )is2t); } if ((unsigned int )patha_ok == 3U) { { tmp___8 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___8 != 0L) { { tmp___9 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___9 != 0L) { { tmp___6 = preempt_count___3(); tmp___7 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> Path A Rx IQK Success!!\n", "_rtl88e_phy_iq_calibrate", (unsigned long )tmp___7 & 2096896UL, ((unsigned long )tmp___6 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { tmp___10 = rtl_get_bbreg(hw, 3748U, 4294967295U); (*(result + (unsigned long )t))[2] = (long )((tmp___10 & 67043328U) >> 16); tmp___11 = rtl_get_bbreg(hw, 3756U, 4294967295U); (*(result + (unsigned long )t))[3] = (long )((tmp___11 & 67043328U) >> 16); } goto ldv_51799; } else { { tmp___14 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___14 != 0L) { { tmp___15 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___15 != 0L) { { tmp___12 = preempt_count___3(); tmp___13 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> Path a RX iqk fail!!!\n", "_rtl88e_phy_iq_calibrate", (unsigned long )tmp___13 & 2096896UL, ((unsigned long )tmp___12 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } i = i + 1U; ldv_51801: ; if (i <= 1U) { goto ldv_51800; } else { } ldv_51799: ; if ((unsigned int )patha_ok == 0U) { { tmp___18 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___18 != 0L) { { tmp___19 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___19 != 0L) { { tmp___16 = preempt_count___3(); tmp___17 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> Path A IQK Success!!\n", "_rtl88e_phy_iq_calibrate", (unsigned long )tmp___17 & 2096896UL, ((unsigned long )tmp___16 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } } else { } if ((int )is2t) { { _rtl88e_phy_path_a_standby(hw); _rtl88e_phy_path_adda_on(hw, (u32 const *)(& adda_reg), 0, (int )is2t); i = 0U; } goto ldv_51804; ldv_51803: { pathb_ok = _rtl88e_phy_path_b_iqk(hw); } if ((unsigned int )pathb_ok == 3U) { { tmp___20 = rtl_get_bbreg(hw, 3764U, 4294967295U); (*(result + (unsigned long )t))[4] = (long )((tmp___20 & 67043328U) >> 16); tmp___21 = rtl_get_bbreg(hw, 3772U, 4294967295U); (*(result + (unsigned long )t))[5] = (long )((tmp___21 & 67043328U) >> 16); tmp___22 = rtl_get_bbreg(hw, 3780U, 4294967295U); (*(result + (unsigned long )t))[6] = (long )((tmp___22 & 67043328U) >> 16); tmp___23 = rtl_get_bbreg(hw, 3788U, 4294967295U); (*(result + (unsigned long )t))[7] = (long )((tmp___23 & 67043328U) >> 16); } goto ldv_51802; } else if (i == 1U && (unsigned int )pathb_ok == 1U) { { tmp___24 = rtl_get_bbreg(hw, 3764U, 4294967295U); (*(result + (unsigned long )t))[4] = (long )((tmp___24 & 67043328U) >> 16); } } else { } { tmp___25 = rtl_get_bbreg(hw, 3772U, 4294967295U); (*(result + (unsigned long )t))[5] = (long )((tmp___25 & 67043328U) >> 16); i = i + 1U; } ldv_51804: ; if (i <= 1U) { goto ldv_51803; } else { } ldv_51802: ; } else { } { rtl_set_bbreg(hw, 3624U, 4294967295U, 0U); } if ((unsigned int )t != 0U) { if (! rtlphy->rfpi_enable) { { _rtl88e_phy_pi_mode_switch(hw, 0); } } else { } { reload_adda(hw, (u32 const *)(& adda_reg), (u32 *)(& rtlphy->adda_backup), 16U); reload_mac(hw, (u32 const *)(& iqk_mac_reg), (u32 *)(& rtlphy->iqk_mac_backup)); reload_adda(hw, (u32 const *)(& iqk_bb_reg), (u32 *)(& rtlphy->iqk_bb_backup), 9U); rtl_set_bbreg(hw, 2112U, 4294967295U, 208595U); } if ((int )is2t) { { rtl_set_bbreg(hw, 2116U, 4294967295U, 208595U); } } else { } { rtl_set_bbreg(hw, 3632U, 4294967295U, 16813056U); rtl_set_bbreg(hw, 3636U, 4294967295U, 16813056U); } } else { } { tmp___28 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___28 != 0L) { { tmp___29 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___29 != 0L) { { tmp___26 = preempt_count___3(); tmp___27 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> 88ee IQK Finish!!\n", "_rtl88e_phy_iq_calibrate", (unsigned long )tmp___27 & 2096896UL, ((unsigned long )tmp___26 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } } static void _rtl88e_phy_lc_calibrate(struct ieee80211_hw *hw , bool is2t ) { u8 tmpreg ; u32 rf_a_mode ; u32 rf_b_mode ; u32 lc_cal ; struct rtl_priv *rtlpriv ; int jj ; int kk ; unsigned long __ms ; unsigned long tmp ; int tmp___0 ; int tmp___1 ; long tmp___2 ; long tmp___3 ; { { rf_a_mode = 0U; rf_b_mode = 0U; rtlpriv = (struct rtl_priv *)hw->priv; jj = 0; kk = 1; tmpreg = rtl_read_byte(rtlpriv, 3331U); } if (((int )tmpreg & 112) != 0) { { rtl_write_byte(rtlpriv, 3331U, (int )tmpreg & 143); } } else { { rtl_write_byte(rtlpriv, 1314U, 255); } } if (((int )tmpreg & 112) != 0) { { rf_a_mode = rtl_get_rfreg(hw, (enum radio_path )jj, 0U, 4095U); } if ((int )is2t) { { rf_b_mode = rtl_get_rfreg(hw, (enum radio_path )kk, 0U, 4095U); } } else { } { rtl_set_rfreg(hw, (enum radio_path )jj, 0U, 4095U, (rf_a_mode & 589823U) | 65536U); } if ((int )is2t) { { rtl_set_rfreg(hw, (enum radio_path )kk, 0U, 4095U, (rf_b_mode & 589823U) | 65536U); } } else { } } else { } { lc_cal = rtl_get_rfreg(hw, (enum radio_path )jj, 24U, 4095U); rtl_set_rfreg(hw, (enum radio_path )jj, 24U, 4095U, lc_cal | 32768U); __ms = 100UL; } goto ldv_51818; ldv_51817: { __const_udelay(4295000UL); } ldv_51818: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_51817; } else { } if (((int )tmpreg & 112) != 0) { { rtl_write_byte(rtlpriv, 3331U, (int )tmpreg); rtl_set_rfreg(hw, (enum radio_path )jj, 0U, 4095U, rf_a_mode); } if ((int )is2t) { { rtl_set_rfreg(hw, (enum radio_path )kk, 0U, 4095U, rf_b_mode); } } else { } } else { { rtl_write_byte(rtlpriv, 1314U, 0); } } { tmp___2 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___2 != 0L) { { tmp___3 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___3 != 0L) { { tmp___0 = preempt_count___3(); tmp___1 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> \n", "_rtl88e_phy_lc_calibrate", (unsigned long )tmp___1 & 2096896UL, ((unsigned long )tmp___0 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } } static void rfpath_switch(struct ieee80211_hw *hw , bool bmain , bool is2t ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; struct rtl_efuse *fuse ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; u8 u1btmp ; bool tmp___3 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; fuse = & ((struct rtl_priv *)hw->priv)->efuse; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___3(); tmp___0 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> \n", "rfpath_switch", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { tmp___3 = is_hal_stop(rtlhal); } if ((int )tmp___3) { { u1btmp = rtl_read_byte(rtlpriv, 76U); rtl_write_byte(rtlpriv, 76U, (int )((unsigned int )u1btmp | 128U)); rtl_set_bbreg(hw, 2168U, 8192U, 1U); } } else { } if ((int )is2t) { if ((int )bmain) { { rtl_set_bbreg(hw, 2148U, 96U, 1U); } } else { { rtl_set_bbreg(hw, 2148U, 96U, 2U); } } } else { { rtl_set_bbreg(hw, 2160U, 768U, 0U); rtl_set_bbreg(hw, 2324U, 65535U, 513U); } if ((int )bmain) { { rtl_set_bbreg(hw, 2144U, 28672U, 0U); rtl_set_bbreg(hw, 2148U, 56U, 0U); } if ((unsigned int )fuse->antenna_div_type == 2U) { { rtl_set_bbreg(hw, 2860U, 2147483648U, 0U); } } else { } } else { { rtl_set_bbreg(hw, 2144U, 28672U, 1U); rtl_set_bbreg(hw, 2148U, 56U, 1U); } if ((unsigned int )fuse->antenna_div_type == 2U) { { rtl_set_bbreg(hw, 2860U, 2147483648U, 1U); } } else { } } } return; } } void rtl88e_phy_iq_calibrate(struct ieee80211_hw *hw , bool recovery ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; long result[4U][8U] ; u8 i ; u8 final ; bool patha_ok ; long reg_e94 ; long reg_e9c ; long reg_ea4 ; long reg_eb4 ; long reg_ebc ; long reg_tmp ; bool is12simular ; bool is13simular ; bool is23simular ; u32 iqk_bb_reg[9U] ; u8 tmp ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; reg_tmp = 0L; iqk_bb_reg[0] = 3092U; iqk_bb_reg[1] = 3100U; iqk_bb_reg[2] = 3148U; iqk_bb_reg[3] = 3192U; iqk_bb_reg[4] = 3200U; iqk_bb_reg[5] = 3208U; iqk_bb_reg[6] = 3220U; iqk_bb_reg[7] = 3228U; iqk_bb_reg[8] = 3232U; if ((int )recovery) { { reload_adda(hw, (u32 const *)(& iqk_bb_reg), (u32 *)(& rtlphy->iqk_bb_backup), 9U); } return; } else { } { memset((void *)(& result), 0, 256UL); final = 255U; patha_ok = 0; is12simular = 0; is23simular = 0; is13simular = 0; i = 0U; } goto ldv_51856; ldv_51855: { tmp = get_rf_type(rtlphy); } if ((unsigned int )tmp == 2U) { { _rtl88e_phy_iq_calibrate(hw, (long (*)[8])(& result), (int )i, 1); } } else { { _rtl88e_phy_iq_calibrate(hw, (long (*)[8])(& result), (int )i, 0); } } if ((unsigned int )i == 1U) { { is12simular = sim_comp(hw, (long (*)[8])(& result), 0, 1); } if ((int )is12simular) { final = 0U; goto ldv_51851; } else { } } else { } if ((unsigned int )i == 2U) { { is13simular = sim_comp(hw, (long (*)[8])(& result), 0, 2); } if ((int )is13simular) { final = 0U; goto ldv_51851; } else { } { is23simular = sim_comp(hw, (long (*)[8])(& result), 1, 2); } if ((int )is23simular) { final = 1U; } else { i = 0U; goto ldv_51853; ldv_51852: reg_tmp = reg_tmp + result[3][(int )i]; i = (u8 )((int )i + 1); ldv_51853: ; if ((unsigned int )i <= 7U) { goto ldv_51852; } else { } if (reg_tmp != 0L) { final = 3U; } else { final = 255U; } } } else { } i = (u8 )((int )i + 1); ldv_51856: ; if ((unsigned int )i <= 2U) { goto ldv_51855; } else { } ldv_51851: i = 0U; goto ldv_51858; ldv_51857: reg_e94 = result[(int )i][0]; reg_e9c = result[(int )i][1]; reg_ea4 = result[(int )i][2]; reg_eb4 = result[(int )i][4]; reg_ebc = result[(int )i][5]; i = (u8 )((int )i + 1); ldv_51858: ; if ((unsigned int )i <= 3U) { goto ldv_51857; } else { } if ((unsigned int )final != 255U) { reg_e94 = result[(int )final][0]; rtlphy->reg_e94 = (s32 )reg_e94; reg_e9c = result[(int )final][1]; rtlphy->reg_e9c = (s32 )reg_e9c; reg_ea4 = result[(int )final][2]; reg_eb4 = result[(int )final][4]; rtlphy->reg_eb4 = (s32 )reg_eb4; reg_ebc = result[(int )final][5]; rtlphy->reg_ebc = (s32 )reg_ebc; patha_ok = 1; } else { rtlphy->reg_e94 = 256; rtlphy->reg_eb4 = 256; rtlphy->reg_ebc = 0; rtlphy->reg_e9c = 0; } if (reg_e94 != 0L) { { fill_iqk(hw, (int )patha_ok, (long (*)[8])(& result), (int )final, reg_ea4 == 0L); } } else { } if ((unsigned int )final != 255U) { i = 0U; goto ldv_51861; ldv_51860: rtlphy->iqk_matrix[0].value[0][(int )i] = result[(int )final][(int )i]; i = (u8 )((int )i + 1); ldv_51861: ; if ((unsigned int )i <= 7U) { goto ldv_51860; } else { } rtlphy->iqk_matrix[0].iqk_done = 1; } else { } { save_adda_reg(hw, (u32 const *)(& iqk_bb_reg), (u32 *)(& rtlphy->iqk_bb_backup), 9U); } return; } } void rtl88e_phy_lc_calibrate(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct rtl_hal *rtlhal ; bool start_conttx ; bool singletone ; u32 timeout ; u32 timecount ; long tmp ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; rtlhal = & rtlpriv->rtlhal; start_conttx = 0; singletone = 0; timeout = 2000U; timecount = 0U; if ((int )start_conttx || (int )singletone) { return; } else { } goto ldv_51874; ldv_51873: { __const_udelay(214750UL); timecount = timecount + 50U; } ldv_51874: ; if ((int )rtlpriv->mac80211.act_scanning && timecount < timeout) { goto ldv_51873; } else { } { rtlphy->lck_inprogress = 1U; tmp = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[17] & 4UL) != 0UL, 0L); } if (tmp != 0L) { { printk("\017rtl8188ee: LCK:Start!!! currentband %x delay %d ms\n", (unsigned int )rtlhal->current_bandtype, timecount); } } else { } { _rtl88e_phy_lc_calibrate(hw, 0); rtlphy->lck_inprogress = 0U; } return; } } void rtl88e_phy_set_rfpath_switch(struct ieee80211_hw *hw , bool bmain ) { { { rfpath_switch(hw, (int )bmain, 0); } return; } } bool rtl88e_phy_set_io_cmd(struct ieee80211_hw *hw , enum io_type iotype ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; bool postprocessing ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; int tmp___11 ; int tmp___12 ; long tmp___13 ; long tmp___14 ; int tmp___15 ; int tmp___16 ; long tmp___17 ; long tmp___18 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; postprocessing = 0; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___3(); tmp___0 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> -->IO Cmd(%#x), set_io_inprogress(%d)\n", "rtl88e_phy_set_io_cmd", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (unsigned int )iotype, (int )rtlphy->set_io_inprogress); } } else { } } else { } { if ((unsigned int )iotype == 1U) { goto case_1; } else { } if ((unsigned int )iotype == 0U) { goto case_0; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count___3(); tmp___4 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> [IO CMD] Resume DM after scan.\n", "rtl88e_phy_set_io_cmd", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } postprocessing = 1; goto ldv_51889; case_0: /* CIL Label */ { tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count___3(); tmp___8 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> [IO CMD] Pause DM before scan.\n", "rtl88e_phy_set_io_cmd", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } postprocessing = 1; goto ldv_51889; switch_default: /* CIL Label */ { tmp___13 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___13 != 0L) { { tmp___14 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___14 != 0L) { { tmp___11 = preempt_count___3(); tmp___12 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> switch case not processed\n", "rtl88e_phy_set_io_cmd", (unsigned long )tmp___12 & 2096896UL, ((unsigned long )tmp___11 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_51889; switch_break: /* CIL Label */ ; } ldv_51889: ; if ((int )postprocessing && (unsigned int )rtlphy->set_io_inprogress == 0U) { rtlphy->set_io_inprogress = 1U; rtlphy->current_io_type = iotype; } else { return (0); } { rtl88e_phy_set_io(hw); tmp___17 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___17 != 0L) { { tmp___18 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___18 != 0L) { { tmp___15 = preempt_count___3(); tmp___16 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> IO Type(%#x)\n", "rtl88e_phy_set_io_cmd", (unsigned long )tmp___16 & 2096896UL, ((unsigned long )tmp___15 & 0xffffffffffdfffffUL) != 0UL, (unsigned int )iotype); } } else { } } else { } return (1); } } static void rtl88ee_phy_set_rf_on(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtl_write_byte(rtlpriv, 17U, 43); rtl_write_byte(rtlpriv, 2U, 227); rtl_write_byte(rtlpriv, 2U, 226); rtl_write_byte(rtlpriv, 2U, 227); rtl_write_byte(rtlpriv, 1314U, 0); } return; } } static void _rtl88ee_phy_set_rf_sleep(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; int jj ; { { rtlpriv = (struct rtl_priv *)hw->priv; jj = 0; rtl_write_byte(rtlpriv, 1314U, 255); rtl_set_rfreg(hw, (enum radio_path )jj, 0U, 1048575U, 0U); rtl_write_byte(rtlpriv, 2U, 226); rtl_write_byte(rtlpriv, 17U, 34); } return; } } static bool _rtl88ee_phy_set_rf_power_state(struct ieee80211_hw *hw , enum rf_pwrstate rfpwr_state ) { struct rtl_priv *rtlpriv ; struct rtl_pci_priv *pcipriv ; struct rtl_mac *mac ; struct rtl_ps_ctl *ppsc ; struct rtl8192_tx_ring *ring ; bool bresult ; u8 i ; u8 queue_id ; bool rtstatus ; u32 init ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; unsigned int tmp___3 ; int tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; __u32 tmp___8 ; int tmp___9 ; int tmp___10 ; long tmp___11 ; long tmp___12 ; __u32 tmp___13 ; __u32 tmp___14 ; int tmp___15 ; int tmp___16 ; long tmp___17 ; long tmp___18 ; int tmp___19 ; int tmp___20 ; long tmp___21 ; long tmp___22 ; __u32 tmp___23 ; int tmp___24 ; int tmp___25 ; long tmp___26 ; long tmp___27 ; __u32 tmp___28 ; __u32 tmp___29 ; int tmp___30 ; int tmp___31 ; long tmp___32 ; long tmp___33 ; unsigned int tmp___34 ; int tmp___35 ; int tmp___36 ; long tmp___37 ; long tmp___38 ; int tmp___39 ; int tmp___40 ; long tmp___41 ; long tmp___42 ; { rtlpriv = (struct rtl_priv *)hw->priv; pcipriv = (struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv); mac = & ((struct rtl_priv *)hw->priv)->mac80211; ppsc = & ((struct rtl_priv *)hw->priv)->psc; ring = (struct rtl8192_tx_ring *)0; bresult = 1; { if ((unsigned int )rfpwr_state == 0U) { goto case_0; } else { } if ((unsigned int )rfpwr_state == 2U) { goto case_2; } else { } if ((unsigned int )rfpwr_state == 1U) { goto case_1; } else { } goto switch_default; case_0: /* CIL Label */ ; if ((unsigned int )ppsc->rfpwr_state == 2U && ((unsigned long )ppsc->cur_ps_level & 8UL) != 0UL) { init = 0U; ldv_51917: { init = init + 1U; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count___3(); tmp___0 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> IPS Set eRf nic enable\n", "_rtl88ee_phy_set_rf_power_state", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { rtstatus = rtl_ps_enable_nic(hw); } if (! rtstatus && init <= 9U) { goto ldv_51917; } else { } ppsc->cur_ps_level = ppsc->cur_ps_level & 4294967287U; } else { { tmp___6 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___6 != 0L) { { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___7 != 0L) { { tmp___3 = jiffies_to_msecs((unsigned long )jiffies - ppsc->last_sleep_jiffies); tmp___4 = preempt_count___3(); tmp___5 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> Set ERFON sleeped:%d ms\n", "_rtl88ee_phy_set_rf_power_state", (unsigned long )tmp___5 & 2096896UL, ((unsigned long )tmp___4 & 0xffffffffffdfffffUL) != 0UL, tmp___3); } } else { } } else { } { ppsc->last_awake_jiffies = jiffies; rtl88ee_phy_set_rf_on(hw); } } if ((unsigned int )mac->link_state == 2U) { { (*(((rtlpriv->cfg)->ops)->led_control))(hw, 2); } } else { { (*(((rtlpriv->cfg)->ops)->led_control))(hw, 3); } } goto ldv_51919; case_2: /* CIL Label */ queue_id = 0U; i = 0U; goto ldv_51921; ldv_51923: { ring = (struct rtl8192_tx_ring *)(& pcipriv->dev.tx_ring) + (unsigned long )queue_id; tmp___13 = skb_queue_len((struct sk_buff_head const *)(& ring->queue)); } if (tmp___13 == 0U) { queue_id = (u8 )((int )queue_id + 1); goto ldv_51921; } else { { tmp___11 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___11 != 0L) { { tmp___12 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 1, 0L); } if (tmp___12 != 0L) { { tmp___8 = skb_queue_len((struct sk_buff_head const *)(& ring->queue)); tmp___9 = preempt_count___3(); tmp___10 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> eRf Off/Sleep: %d times TcbBusyQueue[%d] =%d before doze!\n", "_rtl88ee_phy_set_rf_power_state", (unsigned long )tmp___10 & 2096896UL, ((unsigned long )tmp___9 & 0xffffffffffdfffffUL) != 0UL, (int )i + 1, (int )queue_id, tmp___8); } } else { } } else { } { __const_udelay(42950UL); i = (u8 )((int )i + 1); } } if ((unsigned int )i > 63U) { { tmp___17 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___17 != 0L) { { tmp___18 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 1, 0L); } if (tmp___18 != 0L) { { tmp___14 = skb_queue_len((struct sk_buff_head const *)(& ring->queue)); tmp___15 = preempt_count___3(); tmp___16 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> \n ERFSLEEP: %d times TcbBusyQueue[%d] = %d !\n", "_rtl88ee_phy_set_rf_power_state", (unsigned long )tmp___16 & 2096896UL, ((unsigned long )tmp___15 & 0xffffffffffdfffffUL) != 0UL, 64, (int )queue_id, tmp___14); } } else { } } else { } goto ldv_51922; } else { } ldv_51921: ; if ((unsigned int )queue_id <= 8U) { goto ldv_51923; } else { } ldv_51922: ; if (((unsigned long )ppsc->reg_rfps_level & 8UL) != 0UL) { { tmp___21 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___21 != 0L) { { tmp___22 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___22 != 0L) { { tmp___19 = preempt_count___3(); tmp___20 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> IPS Set eRf nic disable\n", "_rtl88ee_phy_set_rf_power_state", (unsigned long )tmp___20 & 2096896UL, ((unsigned long )tmp___19 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { rtl_ps_disable_nic(hw); ppsc->cur_ps_level = ppsc->cur_ps_level | 8U; } } else if (ppsc->rfoff_reason == 268435456U) { { (*(((rtlpriv->cfg)->ops)->led_control))(hw, 3); } } else { { (*(((rtlpriv->cfg)->ops)->led_control))(hw, 7); } } goto ldv_51919; case_1: /* CIL Label */ ; if ((unsigned int )ppsc->rfpwr_state == 2U) { goto ldv_51919; } else { } queue_id = 0U; i = 0U; goto ldv_51925; ldv_51927: { ring = (struct rtl8192_tx_ring *)(& pcipriv->dev.tx_ring) + (unsigned long )queue_id; tmp___28 = skb_queue_len((struct sk_buff_head const *)(& ring->queue)); } if (tmp___28 == 0U) { queue_id = (u8 )((int )queue_id + 1); goto ldv_51925; } else { { tmp___26 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___26 != 0L) { { tmp___27 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 1, 0L); } if (tmp___27 != 0L) { { tmp___23 = skb_queue_len((struct sk_buff_head const *)(& ring->queue)); tmp___24 = preempt_count___3(); tmp___25 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> eRf Off/Sleep: %d times TcbBusyQueue[%d] =%d before doze!\n", "_rtl88ee_phy_set_rf_power_state", (unsigned long )tmp___25 & 2096896UL, ((unsigned long )tmp___24 & 0xffffffffffdfffffUL) != 0UL, (int )i + 1, (int )queue_id, tmp___23); } } else { } } else { } { __const_udelay(42950UL); i = (u8 )((int )i + 1); } } if ((unsigned int )i > 63U) { { tmp___32 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___32 != 0L) { { tmp___33 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 1, 0L); } if (tmp___33 != 0L) { { tmp___29 = skb_queue_len((struct sk_buff_head const *)(& ring->queue)); tmp___30 = preempt_count___3(); tmp___31 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> \n ERFSLEEP: %d times TcbBusyQueue[%d] = %d !\n", "_rtl88ee_phy_set_rf_power_state", (unsigned long )tmp___31 & 2096896UL, ((unsigned long )tmp___30 & 0xffffffffffdfffffUL) != 0UL, 64, (int )queue_id, tmp___29); } } else { } } else { } goto ldv_51926; } else { } ldv_51925: ; if ((unsigned int )queue_id <= 8U) { goto ldv_51927; } else { } ldv_51926: { tmp___37 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); } if (tmp___37 != 0L) { { tmp___38 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); } if (tmp___38 != 0L) { { tmp___34 = jiffies_to_msecs((unsigned long )jiffies - ppsc->last_awake_jiffies); tmp___35 = preempt_count___3(); tmp___36 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> Set ERFSLEEP awaked:%d ms\n", "_rtl88ee_phy_set_rf_power_state", (unsigned long )tmp___36 & 2096896UL, ((unsigned long )tmp___35 & 0xffffffffffdfffffUL) != 0UL, tmp___34); } } else { } } else { } { ppsc->last_sleep_jiffies = jiffies; _rtl88ee_phy_set_rf_sleep(hw); } goto ldv_51919; switch_default: /* CIL Label */ { tmp___41 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___41 != 0L) { { tmp___42 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___42 != 0L) { { tmp___39 = preempt_count___3(); tmp___40 = preempt_count___3(); printk("\017rtl8188ee:%s():<%lx-%x> switch case not processed\n", "_rtl88ee_phy_set_rf_power_state", (unsigned long )tmp___40 & 2096896UL, ((unsigned long )tmp___39 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } bresult = 0; goto ldv_51919; switch_break: /* CIL Label */ ; } ldv_51919: ; if ((int )bresult) { ppsc->rfpwr_state = rfpwr_state; } else { } return (bresult); } } bool rtl88e_phy_set_rf_power_state(struct ieee80211_hw *hw , enum rf_pwrstate rfpwr_state ) { struct rtl_ps_ctl *ppsc ; bool bresult ; { ppsc = & ((struct rtl_priv *)hw->priv)->psc; if ((unsigned int )rfpwr_state == (unsigned int )ppsc->rfpwr_state) { return (0); } else { } { bresult = _rtl88ee_phy_set_rf_power_state(hw, rfpwr_state); } return (bresult); } } static void ldv___ldv_spin_lock_64___0(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_rf_lock_of_rtl_locks(); __ldv_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_65___0(spinlock_t *lock , unsigned long flags ) { { { ldv_spin_unlock_rf_lock_of_rtl_locks(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_spin_lock_66___0(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_rf_lock_of_rtl_locks(); __ldv_spin_lock(ldv_func_arg1); } return; } } struct wlan_pwr_cfg rtl8188e_power_on_flow[11U] ; struct wlan_pwr_cfg rtl8188e_radio_off_flow[11U] ; struct wlan_pwr_cfg rtl8188e_suspend_flow[21U] ; struct wlan_pwr_cfg rtl8188e_resume_flow[21U] ; struct wlan_pwr_cfg rtl8188e_hwpdn_flow[21U] ; struct wlan_pwr_cfg rtl8188e_leave_lps_flow[16U] ; struct wlan_pwr_cfg rtl8188e_power_on_flow[11U] = { {6U, 255U, 15U, 15U, 0U, 2U, 2U, 2U}, {2U, 255U, 15U, 15U, 0U, 1U, 3U, 0U}, {38U, 255U, 15U, 15U, 0U, 1U, 128U, 128U}, {5U, 255U, 15U, 15U, 0U, 1U, 128U, 0U}, {5U, 255U, 15U, 15U, 0U, 1U, 24U, 0U}, {5U, 255U, 15U, 15U, 0U, 1U, 1U, 1U}, {5U, 255U, 15U, 15U, 0U, 2U, 1U, 0U}, {35U, 255U, 15U, 15U, 0U, 1U, 16U, 0U}, {116U, 255U, 15U, 1U, 0U, 1U, 16U, 16U}, {65535U, 255U, 15U, 15U, 0U, 4U, 0U, 0U}}; struct wlan_pwr_cfg rtl8188e_radio_off_flow[11U] = { {31U, 255U, 15U, 15U, 0U, 1U, 255U, 0U}, {35U, 255U, 15U, 15U, 0U, 1U, 16U, 16U}, {5U, 255U, 15U, 15U, 0U, 1U, 2U, 2U}, {5U, 255U, 15U, 15U, 0U, 2U, 2U, 0U}, {65535U, 255U, 15U, 15U, 0U, 4U, 0U, 0U}}; struct wlan_pwr_cfg rtl8188e_card_disable_flow[21U] = { {31U, 255U, 15U, 15U, 0U, 1U, 255U, 0U}, {35U, 255U, 15U, 15U, 0U, 1U, 16U, 16U}, {5U, 255U, 15U, 15U, 0U, 1U, 2U, 2U}, {5U, 255U, 15U, 15U, 0U, 2U, 2U, 0U}, {38U, 255U, 15U, 15U, 0U, 1U, 128U, 128U}, {5U, 255U, 15U, 3U, 0U, 1U, 24U, 8U}, {7U, 255U, 15U, 3U, 0U, 1U, 255U, 0U}, {65U, 255U, 15U, 3U, 0U, 1U, 16U, 0U}, {65040U, 255U, 15U, 2U, 0U, 1U, 16U, 16U}, {134U, 255U, 15U, 1U, 3U, 1U, 1U, 1U}, {134U, 255U, 15U, 1U, 2U, 2U, 0U, (unsigned char)0}, {65535U, 255U, 15U, 15U, 0U, 4U, 0U, 0U}}; struct wlan_pwr_cfg rtl8188e_card_enable_flow[21U] = { {134U, 255U, 15U, 1U, 3U, 1U, 1U, 0U}, {134U, 255U, 15U, 1U, 3U, 2U, 2U, 2U}, {5U, 255U, 15U, 15U, 0U, 1U, 24U, 0U}, {6U, 255U, 15U, 15U, 0U, 2U, 2U, 2U}, {2U, 255U, 15U, 15U, 0U, 1U, 3U, 0U}, {38U, 255U, 15U, 15U, 0U, 1U, 128U, 128U}, {5U, 255U, 15U, 15U, 0U, 1U, 128U, 0U}, {5U, 255U, 15U, 15U, 0U, 1U, 24U, 0U}, {5U, 255U, 15U, 15U, 0U, 1U, 1U, 1U}, {5U, 255U, 15U, 15U, 0U, 2U, 1U, 0U}, {35U, 255U, 15U, 15U, 0U, 1U, 16U, 0U}, {116U, 255U, 15U, 1U, 0U, 1U, 16U, 16U}, {65535U, 255U, 15U, 15U, 0U, 4U, 0U, 0U}}; struct wlan_pwr_cfg rtl8188e_suspend_flow[21U] = { {31U, 255U, 15U, 15U, 0U, 1U, 255U, 0U}, {35U, 255U, 15U, 15U, 0U, 1U, 16U, 16U}, {5U, 255U, 15U, 15U, 0U, 1U, 2U, 2U}, {5U, 255U, 15U, 15U, 0U, 2U, 2U, 0U}, {5U, 255U, 15U, 3U, 0U, 1U, 24U, 8U}, {5U, 255U, 15U, 4U, 0U, 1U, 24U, 24U}, {7U, 255U, 15U, 3U, 0U, 1U, 255U, 128U}, {65U, 255U, 15U, 3U, 0U, 1U, 16U, 0U}, {65040U, 255U, 15U, 3U, 0U, 1U, 16U, 16U}, {134U, 255U, 15U, 1U, 3U, 1U, 1U, 1U}, {134U, 255U, 15U, 1U, 3U, 2U, 2U, 0U}, {65535U, 255U, 15U, 15U, 0U, 4U, 0U, 0U}}; struct wlan_pwr_cfg rtl8188e_resume_flow[21U] = { {134U, 255U, 15U, 1U, 3U, 1U, 1U, 0U}, {134U, 255U, 15U, 1U, 3U, 2U, 2U, 2U}, {5U, 255U, 15U, 15U, 0U, 1U, 24U, 0U}, {6U, 255U, 15U, 15U, 0U, 2U, 2U, 2U}, {2U, 255U, 15U, 15U, 0U, 1U, 3U, 0U}, {38U, 255U, 15U, 15U, 0U, 1U, 128U, 128U}, {5U, 255U, 15U, 15U, 0U, 1U, 128U, 0U}, {5U, 255U, 15U, 15U, 0U, 1U, 24U, 0U}, {5U, 255U, 15U, 15U, 0U, 1U, 1U, 1U}, {5U, 255U, 15U, 15U, 0U, 2U, 1U, 0U}, {35U, 255U, 15U, 15U, 0U, 1U, 16U, 0U}, {116U, 255U, 15U, 1U, 0U, 1U, 16U, 16U}, {65535U, 255U, 15U, 15U, 0U, 4U, 0U, 0U}}; struct wlan_pwr_cfg rtl8188e_hwpdn_flow[21U] = { {31U, 255U, 15U, 15U, 0U, 1U, 255U, 0U}, {35U, 255U, 15U, 15U, 0U, 1U, 16U, 16U}, {5U, 255U, 15U, 15U, 0U, 1U, 2U, 2U}, {5U, 255U, 15U, 15U, 0U, 2U, 2U, 0U}, {6U, 255U, 15U, 15U, 0U, 1U, 1U, 0U}, {5U, 255U, 15U, 15U, 0U, 1U, 128U, 128U}, {65535U, 255U, 15U, 15U, 0U, 4U, 0U, 0U}}; struct wlan_pwr_cfg rtl8188e_enter_lps_flow[16U] = { {1314U, 255U, 15U, 15U, 0U, 1U, 255U, 127U}, {1528U, 255U, 15U, 15U, 0U, 2U, 255U, 0U}, {1529U, 255U, 15U, 15U, 0U, 2U, 255U, 0U}, {1530U, 255U, 15U, 15U, 0U, 2U, 255U, 0U}, {1531U, 255U, 15U, 15U, 0U, 2U, 255U, 0U}, {2U, 255U, 15U, 15U, 0U, 1U, 1U, 0U}, {2U, 255U, 15U, 15U, 0U, 3U, 0U, 0U}, {256U, 255U, 15U, 15U, 0U, 1U, 255U, 63U}, {257U, 255U, 15U, 15U, 0U, 1U, 2U, 0U}, {1363U, 255U, 15U, 15U, 0U, 1U, 32U, 32U}, {65535U, 255U, 15U, 15U, 0U, 4U, 0U, 0U}}; struct wlan_pwr_cfg rtl8188e_leave_lps_flow[16U] = { {128U, 255U, 15U, 1U, 3U, 1U, 255U, 132U}, {65112U, 255U, 15U, 2U, 0U, 1U, 255U, 132U}, {865U, 255U, 15U, 4U, 0U, 1U, 255U, 132U}, {2U, 255U, 15U, 15U, 0U, 3U, 0U, 1U}, {8U, 255U, 15U, 15U, 0U, 1U, 16U, 0U}, {265U, 255U, 15U, 15U, 0U, 2U, 128U, 0U}, {41U, 255U, 15U, 15U, 0U, 1U, 192U, 0U}, {257U, 255U, 15U, 15U, 0U, 1U, 2U, 2U}, {256U, 255U, 15U, 15U, 0U, 1U, 255U, 255U}, {2U, 255U, 15U, 15U, 0U, 1U, 3U, 3U}, {1314U, 255U, 15U, 15U, 0U, 1U, 255U, 0U}, {65535U, 255U, 15U, 15U, 0U, 4U, 0U, 0U}}; extern void __udelay(unsigned long ) ; bool rtl88_hal_pwrseqcmdparsing(struct rtl_priv *rtlpriv , u8 cut_version , u8 fab_version , u8 interface_type , struct wlan_pwr_cfg *pwrcfgcmd ) { struct wlan_pwr_cfg cmd ; bool polling_bit ; u32 ary_idx ; u8 val ; u32 offset ; u32 polling_count ; u32 max_polling_cnt ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; int tmp___11 ; int tmp___12 ; long tmp___13 ; long tmp___14 ; int tmp___15 ; int tmp___16 ; long tmp___17 ; long tmp___18 ; u32 tmp___19 ; int tmp___20 ; int tmp___21 ; long tmp___22 ; long tmp___23 ; unsigned long __ms ; unsigned long tmp___24 ; int tmp___25 ; int tmp___26 ; long tmp___27 ; long tmp___28 ; { cmd.offset = 0U; cmd.cut_msk = (unsigned char)0; cmd.fab_msk = (unsigned char)0; cmd.interface_msk = (unsigned char)0; cmd.base = (unsigned char)0; cmd.cmd = (unsigned char)0; cmd.msk = (unsigned char)0; cmd.value = (unsigned char)0; polling_bit = 0; ary_idx = 0U; val = 0U; offset = 0U; polling_count = 0U; max_polling_cnt = 5000U; ldv_50655: { cmd = *(pwrcfgcmd + (unsigned long )ary_idx); tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> rtl88_hal_pwrseqcmdparsing(): offset(%#x), cut_msk(%#x), fab_msk(%#x),interface_msk(%#x), base(%#x), cmd(%#x), msk(%#x), val(%#x)\n", "rtl88_hal_pwrseqcmdparsing", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )cmd.offset, (int )cmd.cut_msk, (int )cmd.fab_msk, (int )cmd.interface_msk, (int )cmd.base, (int )cmd.cmd, (int )cmd.msk, (int )cmd.value); } } else { } } else { } if ((((int )cmd.fab_msk & (int )fab_version) != 0 && (unsigned int )((int )cmd.cut_msk & (int )cut_version) != 0U) && ((int )cmd.interface_msk & (int )interface_type) != 0) { { if ((int )cmd.cmd == 0) { goto case_0; } else { } if ((int )cmd.cmd == 1) { goto case_1; } else { } if ((int )cmd.cmd == 2) { goto case_2; } else { } if ((int )cmd.cmd == 3) { goto case_3; } else { } if ((int )cmd.cmd == 4) { goto case_4; } else { } goto switch_default; case_0: /* CIL Label */ { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> rtl88_hal_pwrseqcmdparsing(): PWR_CMD_READ\n", "rtl88_hal_pwrseqcmdparsing", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } goto ldv_50643; case_1: /* CIL Label */ { tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count(); tmp___8 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> rtl88_hal_pwrseqcmdparsing(): PWR_CMD_WRITE\n", "rtl88_hal_pwrseqcmdparsing", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } { offset = (u32 )cmd.offset; val = rtl_read_byte(rtlpriv, offset); val = (u8 )((int )((signed char )val) & ~ ((int )((signed char )cmd.msk))); val = (u8 )((int )val | ((int )cmd.value & (int )cmd.msk)); rtl_write_byte(rtlpriv, offset, (int )val); } goto ldv_50643; case_2: /* CIL Label */ { tmp___13 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___13 != 0L) { { tmp___14 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___14 != 0L) { { tmp___11 = preempt_count(); tmp___12 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> rtl88_hal_pwrseqcmdparsing(): PWR_CMD_POLLING\n", "rtl88_hal_pwrseqcmdparsing", (unsigned long )tmp___12 & 2096896UL, ((unsigned long )tmp___11 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } polling_bit = 0; offset = (u32 )cmd.offset; ldv_50646: { val = rtl_read_byte(rtlpriv, offset); val = (u8 )((int )val & (int )cmd.msk); } if ((int )val == ((int )cmd.value & (int )cmd.msk)) { polling_bit = 1; } else { { __const_udelay(42950UL); } } tmp___19 = polling_count; polling_count = polling_count + 1U; if (tmp___19 > max_polling_cnt) { { tmp___17 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___17 != 0L) { { tmp___18 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___18 != 0L) { { tmp___15 = preempt_count(); tmp___16 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> polling fail in pwrseqcmd\n", "rtl88_hal_pwrseqcmdparsing", (unsigned long )tmp___16 & 2096896UL, ((unsigned long )tmp___15 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return (0); } else { } if (! polling_bit) { goto ldv_50646; } else { } goto ldv_50643; case_3: /* CIL Label */ { tmp___22 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___22 != 0L) { { tmp___23 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___23 != 0L) { { tmp___20 = preempt_count(); tmp___21 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> rtl88_hal_pwrseqcmdparsing(): PWR_CMD_DELAY\n", "rtl88_hal_pwrseqcmdparsing", (unsigned long )tmp___21 & 2096896UL, ((unsigned long )tmp___20 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } if ((unsigned int )cmd.value == 0U) { { __udelay((unsigned long )cmd.offset); } } else { __ms = (unsigned long )cmd.offset; goto ldv_50651; ldv_50650: { __const_udelay(4295000UL); } ldv_50651: tmp___24 = __ms; __ms = __ms - 1UL; if (tmp___24 != 0UL) { goto ldv_50650; } else { } } goto ldv_50643; case_4: /* CIL Label */ { tmp___27 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___27 != 0L) { { tmp___28 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___28 != 0L) { { tmp___25 = preempt_count(); tmp___26 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> rtl88_hal_pwrseqcmdparsing(): PWR_CMD_END\n", "rtl88_hal_pwrseqcmdparsing", (unsigned long )tmp___26 & 2096896UL, ((unsigned long )tmp___25 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return (1); switch_default: /* CIL Label */ { printk("\017rtl8188ee:%s(): rtl88_hal_pwrseqcmdparsing(): Unknown CMD!!\n", "rtl88_hal_pwrseqcmdparsing"); } goto ldv_50643; switch_break: /* CIL Label */ ; } ldv_50643: ; } else { } ary_idx = ary_idx + 1U; goto ldv_50655; return (1); } } void rtl88e_phy_rf6052_set_bandwidth(struct ieee80211_hw *hw , u8 bandwidth ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; { if ((int )bandwidth == 0) { goto case_0; } else { } if ((int )bandwidth == 1) { goto case_1; } else { } goto switch_default; case_0: /* CIL Label */ { rtlphy->rfreg_chnlval[0] = rtlphy->rfreg_chnlval[0] | 3072U; rtl_set_rfreg(hw, 0, 24U, 1048575U, rtlphy->rfreg_chnlval[0]); } goto ldv_50969; case_1: /* CIL Label */ { rtlphy->rfreg_chnlval[0] = (rtlphy->rfreg_chnlval[0] & 4294964223U) | 1024U; rtl_set_rfreg(hw, 0, 24U, 1048575U, rtlphy->rfreg_chnlval[0]); } goto ldv_50969; switch_default: /* CIL Label */ { tmp___1 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> unknown bandwidth: %#X\n", "rtl88e_phy_rf6052_set_bandwidth", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )bandwidth); } } else { } } else { } goto ldv_50969; switch_break: /* CIL Label */ ; } ldv_50969: ; return; } } void rtl88e_phy_rf6052_set_cck_txpower(struct ieee80211_hw *hw , u8 *plevel ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct rtl_mac *mac ; struct rtl_efuse *rtlefuse ; u32 tx_agc[2U] ; u32 tmpval ; bool turbo_scanoff ; u8 idx1 ; u8 idx2 ; u8 *ptr ; u8 direction ; u32 pwrtrac_value ; long tmp ; long tmp___0 ; long tmp___1 ; long tmp___2 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; mac = & ((struct rtl_priv *)hw->priv)->mac80211; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; tx_agc[0] = 0U; tx_agc[1] = 0U; turbo_scanoff = 0; if ((unsigned int )rtlefuse->eeprom_regulatory != 0U) { turbo_scanoff = 1; } else { } if ((int )mac->act_scanning) { tx_agc[0] = 1061109567U; tx_agc[1] = 1061109567U; if ((int )turbo_scanoff) { idx1 = 0U; goto ldv_50990; ldv_50989: tx_agc[(int )idx1] = (u32 )((((int )*(plevel + (unsigned long )idx1) | ((int )*(plevel + (unsigned long )idx1) << 8)) | ((int )*(plevel + (unsigned long )idx1) << 16)) | ((int )*(plevel + (unsigned long )idx1) << 24)); idx1 = (u8 )((int )idx1 + 1); ldv_50990: ; if ((unsigned int )idx1 <= 1U) { goto ldv_50989; } else { } } else { } } else { idx1 = 0U; goto ldv_50993; ldv_50992: tx_agc[(int )idx1] = (u32 )((((int )*(plevel + (unsigned long )idx1) | ((int )*(plevel + (unsigned long )idx1) << 8)) | ((int )*(plevel + (unsigned long )idx1) << 16)) | ((int )*(plevel + (unsigned long )idx1) << 24)); idx1 = (u8 )((int )idx1 + 1); ldv_50993: ; if ((unsigned int )idx1 <= 1U) { goto ldv_50992; } else { } if ((unsigned int )rtlefuse->eeprom_regulatory == 0U) { tmpval = rtlphy->mcs_offset[0][6] + (rtlphy->mcs_offset[0][7] << 8); tx_agc[0] = tx_agc[0] + tmpval; tmpval = rtlphy->mcs_offset[0][14] + (rtlphy->mcs_offset[0][15] << 24); tx_agc[1] = tx_agc[1] + tmpval; } else { } } idx1 = 0U; goto ldv_50999; ldv_50998: ptr = (u8 *)(& tx_agc) + (unsigned long )idx1; idx2 = 0U; goto ldv_50996; ldv_50995: ; if ((unsigned int )*ptr > 63U) { *ptr = 63U; } else { } ptr = ptr + 1; idx2 = (u8 )((int )idx2 + 1); ldv_50996: ; if ((unsigned int )idx2 <= 3U) { goto ldv_50995; } else { } idx1 = (u8 )((int )idx1 + 1); ldv_50999: ; if ((unsigned int )idx1 <= 1U) { goto ldv_50998; } else { } { rtl88e_dm_txpower_track_adjust(hw, 1, & direction, & pwrtrac_value); } if ((unsigned int )direction == 1U) { tx_agc[0] = tx_agc[0] + pwrtrac_value; tx_agc[1] = tx_agc[1] + pwrtrac_value; } else if ((unsigned int )direction == 2U) { tx_agc[0] = tx_agc[0] - pwrtrac_value; tx_agc[1] = tx_agc[1] - pwrtrac_value; } else { } { tmpval = tx_agc[0] & 255U; rtl_set_bbreg(hw, 3592U, 65280U, tmpval); tmp = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[9] & 256UL) != 0UL, 0L); } if (tmp != 0L) { { printk("\017rtl8188ee: CCK PWR 1M (rf-A) = 0x%x (reg 0x%x)\n", tmpval, 3592); } } else { } { tmpval = tx_agc[0] >> 8; rtl_set_bbreg(hw, 2156U, 4294967040U, tmpval); tmp___0 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[9] & 256UL) != 0UL, 0L); } if (tmp___0 != 0L) { { printk("\017rtl8188ee: CCK PWR 2~11M (rf-A) = 0x%x (reg 0x%x)\n", tmpval, 2156); } } else { } { tmpval = tx_agc[1] >> 24; rtl_set_bbreg(hw, 2156U, 255U, tmpval); tmp___1 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[9] & 256UL) != 0UL, 0L); } if (tmp___1 != 0L) { { printk("\017rtl8188ee: CCK PWR 11M (rf-B) = 0x%x (reg 0x%x)\n", tmpval, 2156); } } else { } { tmpval = tx_agc[1] & 16777215U; rtl_set_bbreg(hw, 2104U, 4294967040U, tmpval); tmp___2 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[9] & 256UL) != 0UL, 0L); } if (tmp___2 != 0L) { { printk("\017rtl8188ee: CCK PWR 1~5.5M (rf-B) = 0x%x (reg 0x%x)\n", tmpval, 2104); } } else { } return; } } static void rtl88e_phy_get_power_base(struct ieee80211_hw *hw , u8 *pwrlvlofdm , u8 *pwrlvlbw20 , u8 *pwrlvlbw40 , u8 channel , u32 *ofdmbase , u32 *mcsbase ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; u32 base0 ; u32 base1 ; u8 i ; u8 powerlevel[2U] ; long tmp ; long tmp___0 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; i = 0U; goto ldv_51017; ldv_51016: { base0 = (u32 )*(pwrlvlofdm + (unsigned long )i); base0 = (((base0 << 24) | (base0 << 16)) | (base0 << 8)) | base0; *(ofdmbase + (unsigned long )i) = base0; tmp = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[9] & 256UL) != 0UL, 0L); } if (tmp != 0L) { { printk("\017rtl8188ee: [OFDM power base index rf(%c) = 0x%x]\n", (unsigned int )i == 0U ? 65 : 66, *(ofdmbase + (unsigned long )i)); } } else { } i = (u8 )((int )i + 1); ldv_51017: ; if ((unsigned int )i <= 1U) { goto ldv_51016; } else { } i = 0U; goto ldv_51020; ldv_51019: ; if ((unsigned int )rtlphy->current_chan_bw == 0U) { powerlevel[(int )i] = *(pwrlvlbw20 + (unsigned long )i); } else { powerlevel[(int )i] = *(pwrlvlbw40 + (unsigned long )i); } { base1 = (u32 )powerlevel[(int )i]; base1 = (((base1 << 24) | (base1 << 16)) | (base1 << 8)) | base1; *(mcsbase + (unsigned long )i) = base1; tmp___0 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[9] & 256UL) != 0UL, 0L); } if (tmp___0 != 0L) { { printk("\017rtl8188ee: [MCS power base index rf(%c) = 0x%x]\n", (unsigned int )i == 0U ? 65 : 66, *(mcsbase + (unsigned long )i)); } } else { } i = (u8 )((int )i + 1); ldv_51020: ; if ((unsigned int )i <= 1U) { goto ldv_51019; } else { } return; } } static void get_txpwr_by_reg(struct ieee80211_hw *hw , u8 chan , u8 index , u32 *base0 , u32 *base1 , u32 *outval ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct rtl_efuse *rtlefuse ; u8 i ; u8 chg ; u8 pwr_lim[4U] ; u8 pwr_diff ; u8 cust_pwr_dif ; u32 writeval ; u32 cust_lim ; u32 rf ; u32 tmp ; u8 ch ; u8 j ; long tmp___0 ; long tmp___1 ; long tmp___2 ; long tmp___3 ; long tmp___4 ; long tmp___5 ; long tmp___6 ; long tmp___7 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; chg = 0U; pwr_diff = 0U; ch = (unsigned int )chan + 255U; rf = 0U; goto ldv_51054; ldv_51053: j = (unsigned int )index + (rf != 0U ? 8U : 0U); tmp = (unsigned int )index <= 1U ? *(base0 + (unsigned long )rf) : *(base1 + (unsigned long )rf); { if ((int )rtlefuse->eeprom_regulatory == 0) { goto case_0; } else { } if ((int )rtlefuse->eeprom_regulatory == 1) { goto case_1; } else { } if ((int )rtlefuse->eeprom_regulatory == 2) { goto case_2; } else { } if ((int )rtlefuse->eeprom_regulatory == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ { chg = 0U; writeval = rtlphy->mcs_offset[(int )chg][(int )j] + tmp; tmp___0 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[9] & 256UL) != 0UL, 0L); } if (tmp___0 != 0L) { { printk("\017rtl8188ee: RTK better performance, writeval(%c) = 0x%x\n", rf == 0U ? 65 : 66, writeval); } } else { } goto ldv_51045; case_1: /* CIL Label */ ; if ((unsigned int )rtlphy->pwrgroup_cnt == 1U) { chg = 0U; } else { chg = (u8 )((unsigned int )chan / 3U); if ((unsigned int )chan == 14U) { chg = 5U; } else { } } { writeval = rtlphy->mcs_offset[(int )chg][(int )j] + tmp; tmp___1 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[9] & 256UL) != 0UL, 0L); } if (tmp___1 != 0L) { { printk("\017rtl8188ee: Realtek regulatory, 20MHz, writeval(%c) = 0x%x\n", rf == 0U ? 65 : 66, writeval); } } else { } goto ldv_51045; case_2: /* CIL Label */ { writeval = (unsigned int )index <= 1U ? *(base0 + (unsigned long )rf) : *(base1 + (unsigned long )rf); tmp___2 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[9] & 256UL) != 0UL, 0L); } if (tmp___2 != 0L) { { printk("\017rtl8188ee: Better regulatory, writeval(%c) = 0x%x\n", rf == 0U ? 65 : 66, writeval); } } else { } goto ldv_51045; case_3: /* CIL Label */ chg = 0U; if ((unsigned int )rtlphy->current_chan_bw == 1U) { { tmp___3 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[9] & 256UL) != 0UL, 0L); } if (tmp___3 != 0L) { { printk("\017rtl8188ee: customer\'s limit, 40MHz rf(%c) = 0x%x\n", rf == 0U ? 65 : 66, (int )rtlefuse->pwrgroup_ht40[rf][(int )ch]); } } else { } } else { { tmp___4 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[9] & 256UL) != 0UL, 0L); } if (tmp___4 != 0L) { { printk("\017rtl8188ee: customer\'s limit, 20MHz rf(%c) = 0x%x\n", rf == 0U ? 65 : 66, (int )rtlefuse->pwrgroup_ht20[rf][(int )ch]); } } else { } } if ((unsigned int )index <= 1U) { pwr_diff = rtlefuse->txpwr_legacyhtdiff[rf][(int )ch]; } else if ((unsigned int )rtlphy->current_chan_bw == 0U) { pwr_diff = (u8 )rtlefuse->txpwr_ht20diff[rf][(int )ch]; } else { } if ((unsigned int )rtlphy->current_chan_bw == 1U) { cust_pwr_dif = rtlefuse->pwrgroup_ht40[rf][(int )ch]; } else { cust_pwr_dif = rtlefuse->pwrgroup_ht20[rf][(int )ch]; } if ((int )pwr_diff > (int )cust_pwr_dif) { pwr_diff = 0U; } else { pwr_diff = (int )cust_pwr_dif - (int )pwr_diff; } i = 0U; goto ldv_51050; ldv_51049: pwr_lim[(int )i] = (unsigned char )((rtlphy->mcs_offset[(int )chg][(int )j] & (u32 )(127 << (int )i * 8)) >> (int )i * 8); if ((int )pwr_lim[(int )i] > (int )pwr_diff) { pwr_lim[(int )i] = pwr_diff; } else { } i = (u8 )((int )i + 1); ldv_51050: ; if ((unsigned int )i <= 3U) { goto ldv_51049; } else { } { cust_lim = (u32 )(((((int )pwr_lim[3] << 24) | ((int )pwr_lim[2] << 16)) | ((int )pwr_lim[1] << 8)) | (int )pwr_lim[0]); tmp___5 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[9] & 256UL) != 0UL, 0L); } if (tmp___5 != 0L) { { printk("\017rtl8188ee: Customer\'s limit rf(%c) = 0x%x\n", rf == 0U ? 65 : 66, cust_lim); } } else { } { writeval = cust_lim + tmp; tmp___6 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[9] & 256UL) != 0UL, 0L); } if (tmp___6 != 0L) { { printk("\017rtl8188ee: Customer, writeval rf(%c) = 0x%x\n", rf == 0U ? 65 : 66, writeval); } } else { } goto ldv_51045; switch_default: /* CIL Label */ { chg = 0U; writeval = rtlphy->mcs_offset[(int )chg][(int )j] + tmp; tmp___7 = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[9] & 256UL) != 0UL, 0L); } if (tmp___7 != 0L) { { printk("\017rtl8188ee: RTK better performance, writeval rf(%c) = 0x%x\n", rf == 0U ? 65 : 66, writeval); } } else { } goto ldv_51045; switch_break: /* CIL Label */ ; } ldv_51045: ; if ((unsigned int )rtlpriv->dm.dynamic_txhighpower_lvl == 3U) { writeval = writeval - 101058054U; } else if ((unsigned int )rtlpriv->dm.dynamic_txhighpower_lvl == 4U) { writeval = writeval - 202116108U; } else { } *(outval + (unsigned long )rf) = writeval; rf = rf + 1U; ldv_51054: ; if (rf <= 1U) { goto ldv_51053; } else { } return; } } static void write_ofdm_pwr(struct ieee80211_hw *hw , u8 index , u32 *pvalue ) { struct rtl_priv *rtlpriv ; u16 regoffset_a[6U] ; u16 regoffset_b[6U] ; u8 i ; u8 rf ; u8 pwr_val[4U] ; u32 writeval ; u16 regoffset ; long tmp ; { rtlpriv = (struct rtl_priv *)hw->priv; regoffset_a[0] = 3584U; regoffset_a[1] = 3588U; regoffset_a[2] = 3600U; regoffset_a[3] = 3604U; regoffset_a[4] = 3608U; regoffset_a[5] = 3612U; regoffset_b[0] = 2096U; regoffset_b[1] = 2100U; regoffset_b[2] = 2108U; regoffset_b[3] = 2120U; regoffset_b[4] = 2124U; regoffset_b[5] = 2152U; rf = 0U; goto ldv_51073; ldv_51072: writeval = *(pvalue + (unsigned long )rf); i = 0U; goto ldv_51070; ldv_51069: pwr_val[(int )i] = (unsigned char )((writeval & (u32 )(127 << (int )i * 8)) >> (int )i * 8); if ((unsigned int )pwr_val[(int )i] > 63U) { pwr_val[(int )i] = 63U; } else { } i = (u8 )((int )i + 1); ldv_51070: ; if ((unsigned int )i <= 3U) { goto ldv_51069; } else { } writeval = (u32 )(((((int )pwr_val[3] << 24) | ((int )pwr_val[2] << 16)) | ((int )pwr_val[1] << 8)) | (int )pwr_val[0]); if ((unsigned int )rf == 0U) { regoffset = regoffset_a[(int )index]; } else { regoffset = regoffset_b[(int )index]; } { rtl_set_bbreg(hw, (u32 )regoffset, 4294967295U, writeval); tmp = ldv__builtin_expect(((unsigned long )rtlpriv->dbg.dbgp_type[9] & 256UL) != 0UL, 0L); } if (tmp != 0L) { { printk("\017rtl8188ee: Set 0x%x = %08x\n", (int )regoffset, writeval); } } else { } rf = (u8 )((int )rf + 1); ldv_51073: ; if ((unsigned int )rf <= 1U) { goto ldv_51072; } else { } return; } } void rtl88e_phy_rf6052_set_ofdm_txpower(struct ieee80211_hw *hw , u8 *pwrlvlofdm , u8 *pwrlvlbw20 , u8 *pwrlvlbw40 , u8 chan ) { u32 writeval[2U] ; u32 base0[2U] ; u32 base1[2U] ; u8 index ; u8 direction ; u32 pwrtrac_value ; { { rtl88e_phy_get_power_base(hw, pwrlvlofdm, pwrlvlbw20, pwrlvlbw40, (int )chan, (u32 *)(& base0), (u32 *)(& base1)); rtl88e_dm_txpower_track_adjust(hw, 1, & direction, & pwrtrac_value); index = 0U; } goto ldv_51089; ldv_51088: { get_txpwr_by_reg(hw, (int )chan, (int )index, (u32 *)(& base0), (u32 *)(& base1), (u32 *)(& writeval)); } if ((unsigned int )direction == 1U) { writeval[0] = writeval[0] + pwrtrac_value; writeval[1] = writeval[1] + pwrtrac_value; } else if ((unsigned int )direction == 2U) { writeval[0] = writeval[0] - pwrtrac_value; writeval[1] = writeval[1] - pwrtrac_value; } else { } { write_ofdm_pwr(hw, (int )index, (u32 *)(& writeval)); index = (u8 )((int )index + 1); } ldv_51089: ; if ((unsigned int )index <= 5U) { goto ldv_51088; } else { } return; } } static bool rf6052_conf_para(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; u32 u4val ; u8 rfpath ; bool rtstatus ; struct bb_reg_def *pphyreg ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; u4val = 0U; rtstatus = 1; rfpath = 0U; goto ldv_51117; ldv_51116: pphyreg = (struct bb_reg_def *)(& rtlphy->phyreg_def) + (unsigned long )rfpath; { if ((int )rfpath == 0) { goto case_0; } else { } if ((int )rfpath == 2) { goto case_2; } else { } if ((int )rfpath == 1) { goto case_1; } else { } if ((int )rfpath == 3) { goto case_3; } else { } goto switch_break; case_0: /* CIL Label */ ; case_2: /* CIL Label */ { u4val = rtl_get_bbreg(hw, pphyreg->rfintfs, 16U); } goto ldv_51102; case_1: /* CIL Label */ ; case_3: /* CIL Label */ { u4val = rtl_get_bbreg(hw, pphyreg->rfintfs, 1048576U); } goto ldv_51102; switch_break: /* CIL Label */ ; } ldv_51102: { rtl_set_bbreg(hw, pphyreg->rfintfe, 1048576U, 1U); __const_udelay(4295UL); rtl_set_bbreg(hw, pphyreg->rfintfo, 16U, 1U); __const_udelay(4295UL); rtl_set_bbreg(hw, pphyreg->rfhssi_para2, 1024U, 0U); __const_udelay(4295UL); rtl_set_bbreg(hw, pphyreg->rfhssi_para2, 2048U, 0U); __const_udelay(4295UL); } { if ((int )rfpath == 0) { goto case_0___0; } else { } if ((int )rfpath == 1) { goto case_1___0; } else { } if ((int )rfpath == 2) { goto case_2___0; } else { } if ((int )rfpath == 3) { goto case_3___0; } else { } goto switch_break___0; case_0___0: /* CIL Label */ { rtstatus = rtl88e_phy_config_rf_with_headerfile(hw, (enum radio_path )rfpath); } goto ldv_51106; case_1___0: /* CIL Label */ { rtstatus = rtl88e_phy_config_rf_with_headerfile(hw, (enum radio_path )rfpath); } goto ldv_51106; case_2___0: /* CIL Label */ ; goto ldv_51106; case_3___0: /* CIL Label */ ; goto ldv_51106; switch_break___0: /* CIL Label */ ; } ldv_51106: ; { if ((int )rfpath == 0) { goto case_0___1; } else { } if ((int )rfpath == 2) { goto case_2___1; } else { } if ((int )rfpath == 1) { goto case_1___1; } else { } if ((int )rfpath == 3) { goto case_3___1; } else { } goto switch_break___1; case_0___1: /* CIL Label */ ; case_2___1: /* CIL Label */ { rtl_set_bbreg(hw, pphyreg->rfintfs, 16U, u4val); } goto ldv_51112; case_1___1: /* CIL Label */ ; case_3___1: /* CIL Label */ { rtl_set_bbreg(hw, pphyreg->rfintfs, 1048576U, u4val); } goto ldv_51112; switch_break___1: /* CIL Label */ ; } ldv_51112: ; if (! rtstatus) { { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> Radio[%d] Fail!!", "rf6052_conf_para", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )rfpath); } } else { } } else { } return (0); } else { } rfpath = (u8 )((int )rfpath + 1); ldv_51117: ; if ((int )rfpath < (int )rtlphy->num_total_rfpath) { goto ldv_51116; } else { } { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___6 != 0L) { { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> \n", "rf6052_conf_para", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return (rtstatus); } } bool rtl88e_phy_rf6052_config(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; bool tmp ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; if ((unsigned int )rtlphy->rf_type == 0U) { rtlphy->num_total_rfpath = 1U; } else { rtlphy->num_total_rfpath = 2U; } { tmp = rf6052_conf_para(hw); } return (tmp); } } extern struct module __this_module ; extern void ldv_initialize(void) ; int ldv_post_init(int init_ret_val ) ; extern void ldv_pre_probe(void) ; int ldv_post_probe(int probe_ret_val ) ; int ldv_filter_err_code(int ret_val ) ; void ldv_check_final_state(void) ; extern void ldv_switch_to_interrupt_context(void) ; extern void ldv_switch_to_process_context(void) ; void ldv_stop(void) ; void ldv_free(void *s ) ; extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField19.rlock); } } extern void init_timer_key(struct timer_list * , unsigned int , char const * , struct lock_class_key * ) ; extern int del_timer_sync(struct timer_list * ) ; static int ldv_del_timer_sync_64(struct timer_list *ldv_func_arg1 ) ; static int ldv_del_timer_sync_65(struct timer_list *ldv_func_arg1 ) ; extern void *vmalloc(unsigned long ) ; extern void vfree(void const * ) ; __inline static void __skb_queue_head_init(struct sk_buff_head *list ) { struct sk_buff *tmp ; { tmp = (struct sk_buff *)list; list->next = tmp; list->prev = tmp; list->qlen = 0U; return; } } __inline static void skb_queue_head_init(struct sk_buff_head *list ) { struct lock_class_key __key ; { { spinlock_check(& list->lock); __raw_spin_lock_init(& list->lock.__annonCompField19.rlock, "&(&list->lock)->rlock", & __key); __skb_queue_head_init(list); } return; } } extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; static int ldv___pci_register_driver_66(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; static void ldv_pci_unregister_driver_67(struct pci_driver *ldv_func_arg1 ) ; extern void rtnl_lock(void) ; extern void rtnl_unlock(void) ; extern int request_firmware_nowait(struct module * , bool , char const * , struct device * , gfp_t , void * , void (*)(struct firmware const * , void * ) ) ; extern void rtl_fw_cb(struct firmware const * , void * ) ; extern int rtl_pci_probe(struct pci_dev * , struct pci_device_id const * ) ; extern void rtl_pci_disconnect(struct pci_dev * ) ; extern int rtl_pci_suspend(struct device * ) ; extern int rtl_pci_resume(struct device * ) ; extern void rtl_phy_scan_operation_backup(struct ieee80211_hw * , u8 ) ; int rtl88e_init_sw_vars(struct ieee80211_hw *hw ) ; void rtl88e_deinit_sw_vars(struct ieee80211_hw *hw ) ; void rtl88ee_tx_fill_desc(struct ieee80211_hw *hw , struct ieee80211_hdr *hdr , u8 *pdesc_tx , struct ieee80211_tx_info *info , struct ieee80211_sta *sta , struct sk_buff *skb , u8 hw_queue , struct rtl_tcb_desc *ptcb_desc ) ; bool rtl88ee_rx_query_desc(struct ieee80211_hw *hw , struct rtl_stats *status , struct ieee80211_rx_status *rx_status , u8 *pdesc , struct sk_buff *skb ) ; void rtl88ee_set_desc(u8 *pdesc , bool istx , u8 desc_name , u8 *val ) ; u32 rtl88ee_get_desc(u8 *pdesc , bool istx , u8 desc_name ) ; void rtl88ee_tx_polling(struct ieee80211_hw *hw , u8 hw_queue ) ; void rtl88ee_tx_fill_cmddesc(struct ieee80211_hw *hw , u8 *pdesc , bool firstseg , bool lastseg , struct sk_buff *skb ) ; static void rtl88e_init_aspm_vars(struct ieee80211_hw *hw ) { struct rtl_pci *rtlpci ; { rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; rtlpci->const_amdpci_aspm = 0U; rtlpci->const_pci_aspm = 3U; rtlpci->const_devicepci_aspm_setting = 3U; rtlpci->const_hostpci_aspm_setting = 2U; rtlpci->const_hwsw_rfoff_d3 = 0U; rtlpci->const_support_pciaspm = 1U; return; } } int rtl88e_init_sw_vars(struct ieee80211_hw *hw ) { int err ; struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; u8 tid ; void *tmp ; int tmp___0 ; int tmp___1 ; long tmp___2 ; long tmp___3 ; int tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; struct lock_class_key __key ; struct lock_class_key __key___0 ; struct lock_class_key __key___1 ; struct lock_class_key __key___2 ; { { err = 0; rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; rtl8188ee_bt_reg_init(hw); rtlpriv->dm.dm_initialgain_enable = 1; rtlpriv->dm.dm_flag = 0U; rtlpriv->dm.disable_framebursting = 0; rtlpriv->dm.thermalvalue = 0U; rtlpci->transmit_config = 33280U; rtlpriv->rtlhal.current_bandtype = 0; rtlpriv->rtlhal.bandset = 0; rtlpriv->rtlhal.macphymode = 0; rtlpci->receive_config = 4026563342U; rtlpci->irq_mask[0] = 536904959U; rtlpci->irq_mask[1] = 256U; rtlpci->sys_irq_mask = 192U; rtlpriv->dbg.global_debuglevel = ((rtlpriv->cfg)->mod_params)->debug; rtlpriv->psc.inactiveps = ((rtlpriv->cfg)->mod_params)->inactiveps; rtlpriv->psc.swctrl_lps = ((rtlpriv->cfg)->mod_params)->swctrl_lps; rtlpriv->psc.fwctrl_lps = ((rtlpriv->cfg)->mod_params)->fwctrl_lps; } if (! rtlpriv->psc.inactiveps) { { printk("\016rtl8188ee: rtl8188ee: Power Save off (module option)\n"); } } else { } if (! rtlpriv->psc.fwctrl_lps) { { printk("\016rtl8188ee: rtl8188ee: FW Power Save off (module option)\n"); } } else { } { rtlpriv->psc.reg_fwctrl_lps = 3U; rtlpriv->psc.reg_max_lps_awakeintvl = 5U; rtl88e_init_aspm_vars(hw); } if ((unsigned int )rtlpriv->psc.reg_fwctrl_lps == 1U) { rtlpriv->psc.fwctrl_psmode = 1U; } else if ((unsigned int )rtlpriv->psc.reg_fwctrl_lps == 2U) { rtlpriv->psc.fwctrl_psmode = 2U; } else if ((unsigned int )rtlpriv->psc.reg_fwctrl_lps == 3U) { rtlpriv->psc.fwctrl_psmode = 3U; } else { } { tmp = vmalloc(32768UL); rtlpriv->rtlhal.pfirmware = (u8 *)tmp; } if ((unsigned long )rtlpriv->rtlhal.pfirmware == (unsigned long )((u8 *)0U)) { { tmp___2 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___2 != 0L) { { tmp___3 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___3 != 0L) { { tmp___0 = preempt_count(); tmp___1 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> Can\'t alloc buffer for fw.\n", "rtl88e_init_sw_vars", (unsigned long )tmp___1 & 2096896UL, ((unsigned long )tmp___0 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return (1); } else { } { (rtlpriv->cfg)->fw_name = (char *)"rtlwifi/rtl8188efw.bin"; rtlpriv->max_fw_size = 32768; printk("\016rtl8188ee: Using firmware %s\n", (rtlpriv->cfg)->fw_name); err = request_firmware_nowait(& __this_module, 1, (char const *)(rtlpriv->cfg)->fw_name, rtlpriv->io.dev, 208U, (void *)hw, & rtl_fw_cb); } if (err != 0) { { tmp___6 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); } if (tmp___6 != 0L) { { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); } if (tmp___7 != 0L) { { tmp___4 = preempt_count(); tmp___5 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> Failed to request firmware!\n", "rtl88e_init_sw_vars", (unsigned long )tmp___5 & 2096896UL, ((unsigned long )tmp___4 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return (1); } else { } rtlpriv->rtlhal.earlymode_enable = 0; rtlpriv->rtlhal.max_earlymode_num = 10U; tid = 0U; goto ldv_52317; ldv_52316: { skb_queue_head_init((struct sk_buff_head *)(& rtlpriv->mac80211.skb_waitq) + (unsigned long )tid); tid = (u8 )((int )tid + 1); } ldv_52317: ; if ((unsigned int )tid <= 7U) { goto ldv_52316; } else { } rtlpriv->psc.low_power_enable = 0; if ((int )rtlpriv->psc.low_power_enable) { { init_timer_key(& rtlpriv->works.fw_clockoff_timer, 0U, "(&rtlpriv->works.fw_clockoff_timer)", & __key); init_timer_key(& rtlpriv->works.fw_clockoff_timer, 0U, "((&rtlpriv->works.fw_clockoff_timer))", & __key___0); rtlpriv->works.fw_clockoff_timer.function = & rtl88ee_fw_clk_off_timer_callback; rtlpriv->works.fw_clockoff_timer.data = (unsigned long )hw; } } else { } { init_timer_key(& rtlpriv->works.fast_antenna_training_timer, 0U, "(&rtlpriv->works.fast_antenna_training_timer)", & __key___1); init_timer_key(& rtlpriv->works.fast_antenna_training_timer, 0U, "((&rtlpriv->works.fast_antenna_training_timer))", & __key___2); rtlpriv->works.fast_antenna_training_timer.function = & rtl88e_dm_fast_antenna_training_callback; rtlpriv->works.fast_antenna_training_timer.data = (unsigned long )hw; } return (err); } } void rtl88e_deinit_sw_vars(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; { rtlpriv = (struct rtl_priv *)hw->priv; if ((unsigned long )rtlpriv->rtlhal.pfirmware != (unsigned long )((u8 *)0U)) { { vfree((void const *)rtlpriv->rtlhal.pfirmware); rtlpriv->rtlhal.pfirmware = (u8 *)0U; } } else { } if ((int )rtlpriv->psc.low_power_enable) { { ldv_del_timer_sync_64(& rtlpriv->works.fw_clockoff_timer); } } else { } { ldv_del_timer_sync_65(& rtlpriv->works.fast_antenna_training_timer); } return; } } static struct rtl_hal_ops rtl8188ee_hal_ops = {& rtl88e_init_sw_vars, & rtl88e_deinit_sw_vars, 0, & rtl88ee_read_eeprom_info, & rtl88ee_interrupt_recognized, & rtl88ee_hw_init, & rtl88ee_card_disable, & rtl88ee_suspend, & rtl88ee_resume, & rtl88ee_enable_interrupt, & rtl88ee_disable_interrupt, & rtl88ee_set_network_type, & rtl88ee_set_check_bssid, & rtl88e_phy_set_bw_mode, & rtl88e_phy_sw_chnl, & rtl88ee_set_qos, & rtl88ee_set_beacon_related_registers, & rtl88ee_set_beacon_interval, & rtl88ee_update_interrupt_mask, & rtl88ee_get_hw_reg, & rtl88ee_set_hw_reg, & rtl88ee_update_hal_rate_tbl, 0, & rtl88ee_tx_fill_desc, 0, & rtl88ee_tx_fill_cmddesc, 0, & rtl88ee_rx_query_desc, & rtl88ee_update_channel_access_setting, & rtl88ee_gpio_radio_on_off_checking, & rtl88e_dm_watchdog, & rtl_phy_scan_operation_backup, & rtl88e_phy_set_rf_power_state, & rtl88ee_led_control, & rtl88ee_set_desc, & rtl88ee_get_desc, & rtl88ee_tx_polling, & rtl88ee_enable_hw_security_config, & rtl88ee_set_key, & rtl88ee_init_sw_leds, 0, & rtl88e_phy_query_bb_reg, & rtl88e_phy_set_bb_reg, & rtl88e_phy_query_rf_reg, & rtl88e_phy_set_rf_reg, & rtl88ee_allow_all_destaddr, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct rtl_mod_params rtl88ee_mod_params = {0, 0, 1, 0, 1}; static struct rtl_hal_cfg rtl88ee_hal_cfg = {2U, 1, (char *)"rtl88e_pci", 0, 0, & rtl8188ee_hal_ops, & rtl88ee_mod_params, 0, {0U, 2U, 8U, 4U, 8U, 256U, 4096U, 1U, 52U, 48U, 0U, 48U, 32768U, 4096U, 32U, 2U, 512U, 64U, 256U, 18U, 207U, 1648U, 1652U, 1656U, 1660U, 1664U, 0U, 1U, 2U, 4U, 5U, 67108864U, 33554432U, 16777216U, 8388608U, 4194304U, 2097152U, 0U, 1048576U, 524288U, 262144U, 131072U, 65536U, 32768U, 16384U, 0U, 0U, 512U, 536870912U, 1048576U, 256U, 2U, 4096U, 65536U, 128U, 0U, 33554432U, 64U, 67108864U, 32U, 16U, 8U, 4U, 1U, 101711872U, 0U, 0U, 1U, 2U, 3U, 4U, 5U, 6U, 7U, 8U, 9U, 10U, 11U, 19U, 27U}}; static struct pci_device_id const rtl88ee_pci_ids[2U] = { {4332U, 33145U, 4294967295U, 4294967295U, 0U, 0U, (unsigned long )(& rtl88ee_hal_cfg)}}; struct pci_device_id const __mod_pci_device_table ; static struct dev_pm_ops const rtlwifi_pm_ops = {0, 0, & rtl_pci_suspend, & rtl_pci_resume, & rtl_pci_suspend, & rtl_pci_resume, & rtl_pci_suspend, & rtl_pci_resume, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct pci_driver rtl88ee_driver = {{0, 0}, "rtl8188ee", (struct pci_device_id const *)(& rtl88ee_pci_ids), & rtl_pci_probe, & rtl_pci_disconnect, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, & rtlwifi_pm_ops, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int rtl88ee_driver_init(void) { int tmp ; { { tmp = ldv___pci_register_driver_66(& rtl88ee_driver, & __this_module, "rtl8188ee"); } return (tmp); } } static void rtl88ee_driver_exit(void) { { { ldv_pci_unregister_driver_67(& rtl88ee_driver); } return; } } void ldv_EMGentry_exit_rtl88ee_driver_exit_9_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_rtl88ee_driver_init_9_11(int (*arg0)(void) ) ; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) ; int ldv_del_timer_sync(int arg0 , struct timer_list *arg1 ) ; void ldv_dispatch_deregister_7_1(struct pci_driver *arg0 ) ; void ldv_dispatch_deregister_ieee80211_instance_3_9_4(void) ; void ldv_dispatch_deregister_platform_instance_8_9_5(void) ; void ldv_dispatch_instance_deregister_5_1(struct timer_list *arg0 ) ; void ldv_dispatch_pm_deregister_3_5(void) ; void ldv_dispatch_pm_register_3_6(void) ; void ldv_dispatch_register_8_2(struct pci_driver *arg0 ) ; void ldv_dispatch_register_ieee80211_instance_3_9_6(void) ; void ldv_dispatch_register_platform_instance_8_9_7(void) ; void ldv_entry_EMGentry_9(void *arg0 ) ; int main(void) ; void ldv_ieee80211_ieee80211_instance_0(void *arg0 ) ; void ldv_ieee80211_instance_callback_0_10(void (*arg0)(struct ieee80211_hw * , _Bool , _Bool ) , struct ieee80211_hw *arg1 , _Bool arg2 , _Bool arg3 ) ; void ldv_ieee80211_instance_callback_0_20(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_21(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_22(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_23(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_24(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_25(void (*arg0)(struct ieee80211_hw * , unsigned char * , _Bool , _Bool , struct sk_buff * ) , struct ieee80211_hw *arg1 , unsigned char *arg2 , _Bool arg3 , _Bool arg4 , struct sk_buff *arg5 ) ; void ldv_ieee80211_instance_callback_0_28(void (*arg0)(struct ieee80211_hw * , struct ieee80211_hdr * , unsigned char * , struct ieee80211_tx_info * , struct ieee80211_sta * , struct sk_buff * , unsigned char , struct rtl_tcb_desc * ) , struct ieee80211_hw *arg1 , struct ieee80211_hdr *arg2 , unsigned char *arg3 , struct ieee80211_tx_info *arg4 , struct ieee80211_sta *arg5 , struct sk_buff *arg6 , unsigned char arg7 , struct rtl_tcb_desc *arg8 ) ; void ldv_ieee80211_instance_callback_0_31(unsigned int (*arg0)(struct ieee80211_hw * , unsigned int , unsigned int ) , struct ieee80211_hw *arg1 , unsigned int arg2 , unsigned int arg3 ) ; void ldv_ieee80211_instance_callback_0_34(unsigned int (*arg0)(unsigned char * , _Bool , unsigned char ) , unsigned char *arg1 , _Bool arg2 , unsigned char arg3 ) ; void ldv_ieee80211_instance_callback_0_37(void (*arg0)(struct ieee80211_hw * , unsigned char , unsigned char * ) , struct ieee80211_hw *arg1 , unsigned char arg2 , unsigned char *arg3 ) ; void ldv_ieee80211_instance_callback_0_40(unsigned int (*arg0)(struct ieee80211_hw * , enum radio_path , unsigned int , unsigned int ) , struct ieee80211_hw *arg1 , enum radio_path arg2 , unsigned int arg3 , unsigned int arg4 ) ; void ldv_ieee80211_instance_callback_0_43(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_44(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_45(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_46(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_47(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_48(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_49(void (*arg0)(struct ieee80211_hw * , unsigned int * , unsigned int * ) , struct ieee80211_hw *arg1 , unsigned int *arg2 , unsigned int *arg3 ) ; void ldv_ieee80211_instance_callback_0_52(void (*arg0)(struct ieee80211_hw * , enum led_ctl_mode ) , struct ieee80211_hw *arg1 , enum led_ctl_mode arg2 ) ; void ldv_ieee80211_instance_callback_0_53(_Bool (*arg0)(struct ieee80211_hw * , struct rtl_stats * , struct ieee80211_rx_status * , unsigned char * , struct sk_buff * ) , struct ieee80211_hw *arg1 , struct rtl_stats *arg2 , struct ieee80211_rx_status *arg3 , unsigned char *arg4 , struct sk_buff *arg5 ) ; void ldv_ieee80211_instance_callback_0_56(_Bool (*arg0)(struct ieee80211_hw * , unsigned char * ) , struct ieee80211_hw *arg1 , unsigned char *arg2 ) ; void ldv_ieee80211_instance_callback_0_59(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_60(void (*arg0)(struct ieee80211_hw * , unsigned char ) , struct ieee80211_hw *arg1 , unsigned char arg2 ) ; void ldv_ieee80211_instance_callback_0_63(void (*arg0)(struct ieee80211_hw * , unsigned int , unsigned int , unsigned int ) , struct ieee80211_hw *arg1 , unsigned int arg2 , unsigned int arg3 , unsigned int arg4 ) ; void ldv_ieee80211_instance_callback_0_66(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_67(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_68(void (*arg0)(struct ieee80211_hw * , enum nl80211_channel_type ) , struct ieee80211_hw *arg1 , enum nl80211_channel_type arg2 ) ; void ldv_ieee80211_instance_callback_0_69(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_70(void (*arg0)(struct ieee80211_hw * , _Bool ) , struct ieee80211_hw *arg1 , _Bool arg2 ) ; void ldv_ieee80211_instance_callback_0_73(void (*arg0)(unsigned char * , _Bool , unsigned char , unsigned char * ) , unsigned char *arg1 , _Bool arg2 , unsigned char arg3 , unsigned char *arg4 ) ; void ldv_ieee80211_instance_callback_0_76(void (*arg0)(struct ieee80211_hw * , unsigned char , unsigned char * ) , struct ieee80211_hw *arg1 , unsigned char arg2 , unsigned char *arg3 ) ; void ldv_ieee80211_instance_callback_0_79(void (*arg0)(struct ieee80211_hw * , unsigned int , unsigned char * , _Bool , unsigned char , _Bool , _Bool ) , struct ieee80211_hw *arg1 , unsigned int arg2 , unsigned char *arg3 , _Bool arg4 , unsigned char arg5 , _Bool arg6 , _Bool arg7 ) ; void ldv_ieee80211_instance_callback_0_82(int (*arg0)(struct ieee80211_hw * , enum nl80211_iftype ) , struct ieee80211_hw *arg1 , enum nl80211_iftype arg2 ) ; void ldv_ieee80211_instance_callback_0_83(void (*arg0)(struct ieee80211_hw * , int ) , struct ieee80211_hw *arg1 , int arg2 ) ; void ldv_ieee80211_instance_callback_0_86(_Bool (*arg0)(struct ieee80211_hw * , enum rf_pwrstate ) , struct ieee80211_hw *arg1 , enum rf_pwrstate arg2 ) ; void ldv_ieee80211_instance_callback_0_87(void (*arg0)(struct ieee80211_hw * , enum radio_path , unsigned int , unsigned int , unsigned int ) , struct ieee80211_hw *arg1 , enum radio_path arg2 , unsigned int arg3 , unsigned int arg4 , unsigned int arg5 ) ; void ldv_ieee80211_instance_callback_0_90(unsigned char (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_0_91(void (*arg0)(struct ieee80211_hw * , unsigned char ) , struct ieee80211_hw *arg1 , unsigned char arg2 ) ; void ldv_ieee80211_instance_callback_0_94(void (*arg0)(struct ieee80211_hw * , unsigned int , unsigned int ) , struct ieee80211_hw *arg1 , unsigned int arg2 , unsigned int arg3 ) ; void ldv_ieee80211_instance_callback_0_97(void (*arg0)(struct ieee80211_hw * , struct ieee80211_sta * , unsigned char ) , struct ieee80211_hw *arg1 , struct ieee80211_sta *arg2 , unsigned char arg3 ) ; void ldv_ieee80211_instance_resume_0_12(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; int ldv_ieee80211_instance_start_0_6(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_stop_0_8(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; int ldv_pci_instance_probe_1_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_1_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_1_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_1_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_1_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_1_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_1_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_1(void *arg0 ) ; void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) ; int ldv_platform_instance_probe_3_14(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) ; void ldv_platform_instance_release_3_3(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) ; void ldv_pm_ops_instance_complete_2_3(void (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_2_15(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_late_2_14(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_noirq_2_12(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_2_9(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_late_2_8(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_noirq_2_6(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_prepare_2_22(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_2_4(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_early_2_7(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_noirq_2_5(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_2_16(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_early_2_17(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_noirq_2_19(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_idle_2_27(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_resume_2_24(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_suspend_2_25(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_2_21(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_late_2_18(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_noirq_2_20(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_2_10(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_early_2_13(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_noirq_2_11(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_platform_instance_3(void *arg0 ) ; void ldv_pm_pm_ops_instance_2(void *arg0 ) ; void ldv_timer_instance_callback_4_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) ; struct ldv_thread ldv_thread_0 ; struct ldv_thread ldv_thread_1 ; struct ldv_thread ldv_thread_2 ; struct ldv_thread ldv_thread_3 ; struct ldv_thread ldv_thread_4 ; struct ldv_thread ldv_thread_9 ; void ldv_EMGentry_exit_rtl88ee_driver_exit_9_2(void (*arg0)(void) ) { { { rtl88ee_driver_exit(); } return; } } int ldv_EMGentry_init_rtl88ee_driver_init_9_11(int (*arg0)(void) ) { int tmp ; { { tmp = rtl88ee_driver_init(); } return (tmp); } } int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) { struct pci_driver *ldv_8_pci_driver_pci_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_8_pci_driver_pci_driver = arg1; ldv_dispatch_register_8_2(ldv_8_pci_driver_pci_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } int ldv_del_timer_sync(int arg0 , struct timer_list *arg1 ) { struct timer_list *ldv_5_timer_list_timer_list ; { { ldv_5_timer_list_timer_list = arg1; ldv_dispatch_instance_deregister_5_1(ldv_5_timer_list_timer_list); } return (arg0); return (arg0); } } void ldv_dispatch_deregister_7_1(struct pci_driver *arg0 ) { { return; } } void ldv_dispatch_deregister_ieee80211_instance_3_9_4(void) { { return; } } void ldv_dispatch_deregister_platform_instance_8_9_5(void) { { return; } } void ldv_dispatch_instance_deregister_5_1(struct timer_list *arg0 ) { { return; } } void ldv_dispatch_pm_deregister_3_5(void) { { return; } } void ldv_dispatch_pm_register_3_6(void) { struct ldv_struct_platform_instance_3 *cf_arg_2 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_2 = (struct ldv_struct_platform_instance_3 *)tmp; ldv_pm_pm_ops_instance_2((void *)cf_arg_2); } return; } } void ldv_dispatch_register_8_2(struct pci_driver *arg0 ) { struct ldv_struct_pci_instance_1 *cf_arg_1 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_1 = (struct ldv_struct_pci_instance_1 *)tmp; cf_arg_1->arg0 = arg0; ldv_pci_pci_instance_1((void *)cf_arg_1); } return; } } void ldv_dispatch_register_ieee80211_instance_3_9_6(void) { struct ldv_struct_platform_instance_3 *cf_arg_0 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_0 = (struct ldv_struct_platform_instance_3 *)tmp; ldv_ieee80211_ieee80211_instance_0((void *)cf_arg_0); } return; } } void ldv_dispatch_register_platform_instance_8_9_7(void) { struct ldv_struct_platform_instance_3 *cf_arg_3 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_3 = (struct ldv_struct_platform_instance_3 *)tmp; ldv_pm_platform_instance_3((void *)cf_arg_3); } return; } } void ldv_entry_EMGentry_9(void *arg0 ) { void (*ldv_9_exit_rtl88ee_driver_exit_default)(void) ; int (*ldv_9_init_rtl88ee_driver_init_default)(void) ; int ldv_9_ret_default ; int tmp ; int tmp___0 ; { { ldv_9_ret_default = ldv_EMGentry_init_rtl88ee_driver_init_9_11(ldv_9_init_rtl88ee_driver_init_default); ldv_9_ret_default = ldv_post_init(ldv_9_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_9_ret_default != 0); ldv_check_final_state(); ldv_stop(); } return; } else { { ldv_assume(ldv_9_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dispatch_register_platform_instance_8_9_7(); ldv_dispatch_register_ieee80211_instance_3_9_6(); ldv_dispatch_deregister_platform_instance_8_9_5(); ldv_dispatch_deregister_ieee80211_instance_3_9_4(); } } else { } { ldv_EMGentry_exit_rtl88ee_driver_exit_9_2(ldv_9_exit_rtl88ee_driver_exit_default); ldv_check_final_state(); ldv_stop(); } return; } return; } } int main(void) { { { ldv_initialize(); ldv_entry_EMGentry_9((void *)0); } return 0; } } void ldv_ieee80211_ieee80211_instance_0(void *arg0 ) { void (*ldv_0_callback_allow_all_destaddr)(struct ieee80211_hw * , _Bool , _Bool ) ; void (*ldv_0_callback_deinit_sw_vars)(struct ieee80211_hw * ) ; void (*ldv_0_callback_disable_interrupt)(struct ieee80211_hw * ) ; void (*ldv_0_callback_dm_watchdog)(struct ieee80211_hw * ) ; void (*ldv_0_callback_enable_hw_sec)(struct ieee80211_hw * ) ; void (*ldv_0_callback_enable_interrupt)(struct ieee80211_hw * ) ; void (*ldv_0_callback_fill_tx_cmddesc)(struct ieee80211_hw * , unsigned char * , _Bool , _Bool , struct sk_buff * ) ; void (*ldv_0_callback_fill_tx_desc)(struct ieee80211_hw * , struct ieee80211_hdr * , unsigned char * , struct ieee80211_tx_info * , struct ieee80211_sta * , struct sk_buff * , unsigned char , struct rtl_tcb_desc * ) ; unsigned int (*ldv_0_callback_get_bbreg)(struct ieee80211_hw * , unsigned int , unsigned int ) ; unsigned int (*ldv_0_callback_get_desc)(unsigned char * , _Bool , unsigned char ) ; void (*ldv_0_callback_get_hw_reg)(struct ieee80211_hw * , unsigned char , unsigned char * ) ; unsigned int (*ldv_0_callback_get_rfreg)(struct ieee80211_hw * , enum radio_path , unsigned int , unsigned int ) ; void (*ldv_0_callback_hw_disable)(struct ieee80211_hw * ) ; int (*ldv_0_callback_hw_init)(struct ieee80211_hw * ) ; void (*ldv_0_callback_hw_resume)(struct ieee80211_hw * ) ; void (*ldv_0_callback_hw_suspend)(struct ieee80211_hw * ) ; void (*ldv_0_callback_init_sw_leds)(struct ieee80211_hw * ) ; int (*ldv_0_callback_init_sw_vars)(struct ieee80211_hw * ) ; void (*ldv_0_callback_interrupt_recognized)(struct ieee80211_hw * , unsigned int * , unsigned int * ) ; void (*ldv_0_callback_led_control)(struct ieee80211_hw * , enum led_ctl_mode ) ; _Bool (*ldv_0_callback_query_rx_desc)(struct ieee80211_hw * , struct rtl_stats * , struct ieee80211_rx_status * , unsigned char * , struct sk_buff * ) ; _Bool (*ldv_0_callback_radio_onoff_checking)(struct ieee80211_hw * , unsigned char * ) ; void (*ldv_0_callback_read_eeprom_info)(struct ieee80211_hw * ) ; void (*ldv_0_callback_scan_operation_backup)(struct ieee80211_hw * , unsigned char ) ; void (*ldv_0_callback_set_bbreg)(struct ieee80211_hw * , unsigned int , unsigned int , unsigned int ) ; void (*ldv_0_callback_set_bcn_intv)(struct ieee80211_hw * ) ; void (*ldv_0_callback_set_bcn_reg)(struct ieee80211_hw * ) ; void (*ldv_0_callback_set_bw_mode)(struct ieee80211_hw * , enum nl80211_channel_type ) ; void (*ldv_0_callback_set_channel_access)(struct ieee80211_hw * ) ; void (*ldv_0_callback_set_chk_bssid)(struct ieee80211_hw * , _Bool ) ; void (*ldv_0_callback_set_desc)(unsigned char * , _Bool , unsigned char , unsigned char * ) ; void (*ldv_0_callback_set_hw_reg)(struct ieee80211_hw * , unsigned char , unsigned char * ) ; void (*ldv_0_callback_set_key)(struct ieee80211_hw * , unsigned int , unsigned char * , _Bool , unsigned char , _Bool , _Bool ) ; int (*ldv_0_callback_set_network_type)(struct ieee80211_hw * , enum nl80211_iftype ) ; void (*ldv_0_callback_set_qos)(struct ieee80211_hw * , int ) ; _Bool (*ldv_0_callback_set_rf_power_state)(struct ieee80211_hw * , enum rf_pwrstate ) ; void (*ldv_0_callback_set_rfreg)(struct ieee80211_hw * , enum radio_path , unsigned int , unsigned int , unsigned int ) ; unsigned char (*ldv_0_callback_switch_channel)(struct ieee80211_hw * ) ; void (*ldv_0_callback_tx_polling)(struct ieee80211_hw * , unsigned char ) ; void (*ldv_0_callback_update_interrupt_mask)(struct ieee80211_hw * , unsigned int , unsigned int ) ; void (*ldv_0_callback_update_rate_tbl)(struct ieee80211_hw * , struct ieee80211_sta * , unsigned char ) ; struct ieee80211_ops *ldv_0_container_ieee80211_ops ; _Bool ldv_0_ldv_param_10_1_default ; _Bool ldv_0_ldv_param_10_2_default ; unsigned char *ldv_0_ldv_param_25_1_default ; _Bool ldv_0_ldv_param_25_2_default ; _Bool ldv_0_ldv_param_25_3_default ; unsigned char *ldv_0_ldv_param_28_2_default ; unsigned char ldv_0_ldv_param_28_6_default ; unsigned int ldv_0_ldv_param_31_1_default ; unsigned int ldv_0_ldv_param_31_2_default ; unsigned char *ldv_0_ldv_param_34_0_default ; _Bool ldv_0_ldv_param_34_1_default ; unsigned char ldv_0_ldv_param_34_2_default ; unsigned char ldv_0_ldv_param_37_1_default ; unsigned char *ldv_0_ldv_param_37_2_default ; unsigned int ldv_0_ldv_param_40_2_default ; unsigned int ldv_0_ldv_param_40_3_default ; unsigned int *ldv_0_ldv_param_49_1_default ; unsigned int *ldv_0_ldv_param_49_2_default ; unsigned char *ldv_0_ldv_param_53_3_default ; unsigned char *ldv_0_ldv_param_56_1_default ; unsigned char ldv_0_ldv_param_60_1_default ; unsigned int ldv_0_ldv_param_63_1_default ; unsigned int ldv_0_ldv_param_63_2_default ; unsigned int ldv_0_ldv_param_63_3_default ; _Bool ldv_0_ldv_param_70_1_default ; unsigned char *ldv_0_ldv_param_73_0_default ; _Bool ldv_0_ldv_param_73_1_default ; unsigned char ldv_0_ldv_param_73_2_default ; unsigned char *ldv_0_ldv_param_73_3_default ; unsigned char ldv_0_ldv_param_76_1_default ; unsigned char *ldv_0_ldv_param_76_2_default ; unsigned int ldv_0_ldv_param_79_1_default ; unsigned char *ldv_0_ldv_param_79_2_default ; _Bool ldv_0_ldv_param_79_3_default ; unsigned char ldv_0_ldv_param_79_4_default ; _Bool ldv_0_ldv_param_79_5_default ; _Bool ldv_0_ldv_param_79_6_default ; int ldv_0_ldv_param_83_1_default ; unsigned int ldv_0_ldv_param_87_2_default ; unsigned int ldv_0_ldv_param_87_3_default ; unsigned int ldv_0_ldv_param_87_4_default ; unsigned char ldv_0_ldv_param_91_1_default ; unsigned int ldv_0_ldv_param_94_1_default ; unsigned int ldv_0_ldv_param_94_2_default ; unsigned char ldv_0_ldv_param_97_2_default ; enum led_ctl_mode ldv_0_resource_enum_led_ctl_mode ; enum nl80211_channel_type ldv_0_resource_enum_nl80211_channel_type ; enum nl80211_iftype ldv_0_resource_enum_nl80211_iftype ; enum radio_path ldv_0_resource_enum_radio_path ; enum rf_pwrstate ldv_0_resource_enum_rf_pwrstate ; struct ieee80211_hw *ldv_0_resource_ieee80211_hw ; struct ieee80211_hdr *ldv_0_resource_struct_ieee80211_hdr_ptr ; struct ieee80211_rx_status *ldv_0_resource_struct_ieee80211_rx_status_ptr ; struct ieee80211_sta *ldv_0_resource_struct_ieee80211_sta_ptr ; struct ieee80211_tx_info *ldv_0_resource_struct_ieee80211_tx_info_ptr ; struct rtl_stats *ldv_0_resource_struct_rtl_stats_ptr ; struct rtl_tcb_desc *ldv_0_resource_struct_rtl_tcb_desc_ptr ; struct sk_buff *ldv_0_resource_struct_sk_buff_ptr ; int ldv_0_ret_default ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; void *tmp___3 ; void *tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; void *tmp___8 ; void *tmp___9 ; void *tmp___10 ; void *tmp___11 ; void *tmp___12 ; void *tmp___13 ; void *tmp___14 ; { goto ldv_main_0; return; ldv_main_0: { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { rtnl_lock(); } if ((unsigned long )ldv_0_container_ieee80211_ops->start != (unsigned long )((int (*)(struct ieee80211_hw * ))0)) { { ldv_0_ret_default = ldv_ieee80211_instance_start_0_6(ldv_0_container_ieee80211_ops->start, ldv_0_resource_ieee80211_hw); } } else { } { ldv_0_ret_default = ldv_filter_err_code(ldv_0_ret_default); rtnl_unlock(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_0_ret_default == 0); } goto ldv_started_0; } else { { ldv_assume(ldv_0_ret_default != 0); } goto ldv_main_0; } } else { return; } return; ldv_started_0: { tmp___1 = ldv_undef_int(); } { if (tmp___1 == 1) { goto case_1; } else { } if (tmp___1 == 2) { goto case_2; } else { } if (tmp___1 == 3) { goto case_3; } else { } goto switch_default___0; case_1: /* CIL Label */ ; if ((unsigned long )ldv_0_container_ieee80211_ops->resume != (unsigned long )((int (*)(struct ieee80211_hw * ))0)) { { ldv_ieee80211_instance_resume_0_12(ldv_0_container_ieee80211_ops->resume, ldv_0_resource_ieee80211_hw); } } else { } goto ldv_started_0; case_2: /* CIL Label */ { rtnl_lock(); } if ((unsigned long )ldv_0_container_ieee80211_ops->stop != (unsigned long )((void (*)(struct ieee80211_hw * ))0)) { { ldv_ieee80211_instance_stop_0_8(ldv_0_container_ieee80211_ops->stop, ldv_0_resource_ieee80211_hw); } } else { } { rtnl_unlock(); } goto ldv_main_0; case_3: /* CIL Label */ { tmp___2 = ldv_undef_int(); } { if (tmp___2 == 1) { goto case_1___0; } else { } if (tmp___2 == 2) { goto case_2___0; } else { } if (tmp___2 == 3) { goto case_3___0; } else { } if (tmp___2 == 4) { goto case_4; } else { } if (tmp___2 == 5) { goto case_5; } else { } if (tmp___2 == 6) { goto case_6; } else { } if (tmp___2 == 7) { goto case_7; } else { } if (tmp___2 == 8) { goto case_8; } else { } if (tmp___2 == 9) { goto case_9; } else { } if (tmp___2 == 10) { goto case_10; } else { } if (tmp___2 == 11) { goto case_11; } else { } if (tmp___2 == 12) { goto case_12; } else { } if (tmp___2 == 13) { goto case_13; } else { } if (tmp___2 == 14) { goto case_14; } else { } if (tmp___2 == 15) { goto case_15; } else { } if (tmp___2 == 16) { goto case_16; } else { } if (tmp___2 == 17) { goto case_17; } else { } if (tmp___2 == 18) { goto case_18; } else { } if (tmp___2 == 19) { goto case_19; } else { } if (tmp___2 == 20) { goto case_20; } else { } if (tmp___2 == 21) { goto case_21; } else { } if (tmp___2 == 22) { goto case_22; } else { } if (tmp___2 == 23) { goto case_23; } else { } if (tmp___2 == 24) { goto case_24; } else { } if (tmp___2 == 25) { goto case_25; } else { } if (tmp___2 == 26) { goto case_26; } else { } if (tmp___2 == 27) { goto case_27; } else { } if (tmp___2 == 28) { goto case_28; } else { } if (tmp___2 == 29) { goto case_29; } else { } if (tmp___2 == 30) { goto case_30; } else { } if (tmp___2 == 31) { goto case_31; } else { } if (tmp___2 == 32) { goto case_32; } else { } if (tmp___2 == 33) { goto case_33; } else { } if (tmp___2 == 34) { goto case_34; } else { } if (tmp___2 == 35) { goto case_35; } else { } if (tmp___2 == 36) { goto case_36; } else { } if (tmp___2 == 37) { goto case_37; } else { } if (tmp___2 == 38) { goto case_38; } else { } if (tmp___2 == 39) { goto case_39; } else { } if (tmp___2 == 40) { goto case_40; } else { } if (tmp___2 == 41) { goto case_41; } else { } goto switch_default; case_1___0: /* CIL Label */ { ldv_ieee80211_instance_callback_0_97(ldv_0_callback_update_rate_tbl, ldv_0_resource_ieee80211_hw, ldv_0_resource_struct_ieee80211_sta_ptr, (int )ldv_0_ldv_param_97_2_default); } goto ldv_53194; case_2___0: /* CIL Label */ { ldv_ieee80211_instance_callback_0_94(ldv_0_callback_update_interrupt_mask, ldv_0_resource_ieee80211_hw, ldv_0_ldv_param_94_1_default, ldv_0_ldv_param_94_2_default); } goto ldv_53194; case_3___0: /* CIL Label */ { ldv_ieee80211_instance_callback_0_91(ldv_0_callback_tx_polling, ldv_0_resource_ieee80211_hw, (int )ldv_0_ldv_param_91_1_default); } goto ldv_53194; case_4: /* CIL Label */ { ldv_ieee80211_instance_callback_0_90(ldv_0_callback_switch_channel, ldv_0_resource_ieee80211_hw); } goto ldv_53194; case_5: /* CIL Label */ { ldv_ieee80211_instance_callback_0_87(ldv_0_callback_set_rfreg, ldv_0_resource_ieee80211_hw, ldv_0_resource_enum_radio_path, ldv_0_ldv_param_87_2_default, ldv_0_ldv_param_87_3_default, ldv_0_ldv_param_87_4_default); } goto ldv_53194; case_6: /* CIL Label */ { ldv_ieee80211_instance_callback_0_86(ldv_0_callback_set_rf_power_state, ldv_0_resource_ieee80211_hw, ldv_0_resource_enum_rf_pwrstate); } goto ldv_53194; case_7: /* CIL Label */ { ldv_ieee80211_instance_callback_0_83(ldv_0_callback_set_qos, ldv_0_resource_ieee80211_hw, ldv_0_ldv_param_83_1_default); } goto ldv_53194; case_8: /* CIL Label */ { ldv_ieee80211_instance_callback_0_82(ldv_0_callback_set_network_type, ldv_0_resource_ieee80211_hw, ldv_0_resource_enum_nl80211_iftype); } goto ldv_53194; case_9: /* CIL Label */ { tmp___3 = ldv_xmalloc(1UL); ldv_0_ldv_param_79_2_default = (unsigned char *)tmp___3; ldv_ieee80211_instance_callback_0_79(ldv_0_callback_set_key, ldv_0_resource_ieee80211_hw, ldv_0_ldv_param_79_1_default, ldv_0_ldv_param_79_2_default, (int )ldv_0_ldv_param_79_3_default, (int )ldv_0_ldv_param_79_4_default, (int )ldv_0_ldv_param_79_5_default, (int )ldv_0_ldv_param_79_6_default); ldv_free((void *)ldv_0_ldv_param_79_2_default); } goto ldv_53194; case_10: /* CIL Label */ { tmp___4 = ldv_xmalloc(1UL); ldv_0_ldv_param_76_2_default = (unsigned char *)tmp___4; ldv_ieee80211_instance_callback_0_76(ldv_0_callback_set_hw_reg, ldv_0_resource_ieee80211_hw, (int )ldv_0_ldv_param_76_1_default, ldv_0_ldv_param_76_2_default); ldv_free((void *)ldv_0_ldv_param_76_2_default); } goto ldv_53194; case_11: /* CIL Label */ { tmp___5 = ldv_xmalloc(1UL); ldv_0_ldv_param_73_0_default = (unsigned char *)tmp___5; tmp___6 = ldv_xmalloc(1UL); ldv_0_ldv_param_73_3_default = (unsigned char *)tmp___6; ldv_ieee80211_instance_callback_0_73(ldv_0_callback_set_desc, ldv_0_ldv_param_73_0_default, (int )ldv_0_ldv_param_73_1_default, (int )ldv_0_ldv_param_73_2_default, ldv_0_ldv_param_73_3_default); ldv_free((void *)ldv_0_ldv_param_73_0_default); ldv_free((void *)ldv_0_ldv_param_73_3_default); } goto ldv_53194; case_12: /* CIL Label */ { ldv_ieee80211_instance_callback_0_70(ldv_0_callback_set_chk_bssid, ldv_0_resource_ieee80211_hw, (int )ldv_0_ldv_param_70_1_default); } goto ldv_53194; case_13: /* CIL Label */ { ldv_ieee80211_instance_callback_0_69(ldv_0_callback_set_channel_access, ldv_0_resource_ieee80211_hw); } goto ldv_53194; case_14: /* CIL Label */ { ldv_ieee80211_instance_callback_0_68(ldv_0_callback_set_bw_mode, ldv_0_resource_ieee80211_hw, ldv_0_resource_enum_nl80211_channel_type); } goto ldv_53194; case_15: /* CIL Label */ { ldv_ieee80211_instance_callback_0_67(ldv_0_callback_set_bcn_reg, ldv_0_resource_ieee80211_hw); } goto ldv_53194; case_16: /* CIL Label */ { ldv_ieee80211_instance_callback_0_66(ldv_0_callback_set_bcn_intv, ldv_0_resource_ieee80211_hw); } goto ldv_53194; case_17: /* CIL Label */ { ldv_ieee80211_instance_callback_0_63(ldv_0_callback_set_bbreg, ldv_0_resource_ieee80211_hw, ldv_0_ldv_param_63_1_default, ldv_0_ldv_param_63_2_default, ldv_0_ldv_param_63_3_default); } goto ldv_53194; case_18: /* CIL Label */ { ldv_ieee80211_instance_callback_0_60(ldv_0_callback_scan_operation_backup, ldv_0_resource_ieee80211_hw, (int )ldv_0_ldv_param_60_1_default); } goto ldv_53194; case_19: /* CIL Label */ { ldv_ieee80211_instance_callback_0_59(ldv_0_callback_read_eeprom_info, ldv_0_resource_ieee80211_hw); } goto ldv_53194; case_20: /* CIL Label */ { tmp___7 = ldv_xmalloc(1UL); ldv_0_ldv_param_56_1_default = (unsigned char *)tmp___7; ldv_ieee80211_instance_callback_0_56(ldv_0_callback_radio_onoff_checking, ldv_0_resource_ieee80211_hw, ldv_0_ldv_param_56_1_default); ldv_free((void *)ldv_0_ldv_param_56_1_default); } goto ldv_53194; case_21: /* CIL Label */ { tmp___8 = ldv_xmalloc(1UL); ldv_0_ldv_param_53_3_default = (unsigned char *)tmp___8; ldv_ieee80211_instance_callback_0_53(ldv_0_callback_query_rx_desc, ldv_0_resource_ieee80211_hw, ldv_0_resource_struct_rtl_stats_ptr, ldv_0_resource_struct_ieee80211_rx_status_ptr, ldv_0_ldv_param_53_3_default, ldv_0_resource_struct_sk_buff_ptr); ldv_free((void *)ldv_0_ldv_param_53_3_default); } goto ldv_53194; case_22: /* CIL Label */ { ldv_ieee80211_instance_callback_0_52(ldv_0_callback_led_control, ldv_0_resource_ieee80211_hw, ldv_0_resource_enum_led_ctl_mode); } goto ldv_53194; case_23: /* CIL Label */ { tmp___9 = ldv_xmalloc(4UL); ldv_0_ldv_param_49_1_default = (unsigned int *)tmp___9; tmp___10 = ldv_xmalloc(4UL); ldv_0_ldv_param_49_2_default = (unsigned int *)tmp___10; ldv_ieee80211_instance_callback_0_49(ldv_0_callback_interrupt_recognized, ldv_0_resource_ieee80211_hw, ldv_0_ldv_param_49_1_default, ldv_0_ldv_param_49_2_default); ldv_free((void *)ldv_0_ldv_param_49_1_default); ldv_free((void *)ldv_0_ldv_param_49_2_default); } goto ldv_53194; case_24: /* CIL Label */ { ldv_ieee80211_instance_callback_0_48(ldv_0_callback_init_sw_vars, ldv_0_resource_ieee80211_hw); } goto ldv_53194; case_25: /* CIL Label */ { ldv_ieee80211_instance_callback_0_47(ldv_0_callback_init_sw_leds, ldv_0_resource_ieee80211_hw); } goto ldv_53194; case_26: /* CIL Label */ { ldv_ieee80211_instance_callback_0_46(ldv_0_callback_hw_suspend, ldv_0_resource_ieee80211_hw); } goto ldv_53194; case_27: /* CIL Label */ { ldv_ieee80211_instance_callback_0_45(ldv_0_callback_hw_resume, ldv_0_resource_ieee80211_hw); } goto ldv_53194; case_28: /* CIL Label */ { ldv_ieee80211_instance_callback_0_44(ldv_0_callback_hw_init, ldv_0_resource_ieee80211_hw); } goto ldv_53194; case_29: /* CIL Label */ { ldv_ieee80211_instance_callback_0_43(ldv_0_callback_hw_disable, ldv_0_resource_ieee80211_hw); } goto ldv_53194; case_30: /* CIL Label */ { ldv_ieee80211_instance_callback_0_40(ldv_0_callback_get_rfreg, ldv_0_resource_ieee80211_hw, ldv_0_resource_enum_radio_path, ldv_0_ldv_param_40_2_default, ldv_0_ldv_param_40_3_default); } goto ldv_53194; case_31: /* CIL Label */ { tmp___11 = ldv_xmalloc(1UL); ldv_0_ldv_param_37_2_default = (unsigned char *)tmp___11; ldv_ieee80211_instance_callback_0_37(ldv_0_callback_get_hw_reg, ldv_0_resource_ieee80211_hw, (int )ldv_0_ldv_param_37_1_default, ldv_0_ldv_param_37_2_default); ldv_free((void *)ldv_0_ldv_param_37_2_default); } goto ldv_53194; case_32: /* CIL Label */ { tmp___12 = ldv_xmalloc(1UL); ldv_0_ldv_param_34_0_default = (unsigned char *)tmp___12; ldv_ieee80211_instance_callback_0_34(ldv_0_callback_get_desc, ldv_0_ldv_param_34_0_default, (int )ldv_0_ldv_param_34_1_default, (int )ldv_0_ldv_param_34_2_default); ldv_free((void *)ldv_0_ldv_param_34_0_default); } goto ldv_53194; case_33: /* CIL Label */ { ldv_ieee80211_instance_callback_0_31(ldv_0_callback_get_bbreg, ldv_0_resource_ieee80211_hw, ldv_0_ldv_param_31_1_default, ldv_0_ldv_param_31_2_default); } goto ldv_53194; case_34: /* CIL Label */ { tmp___13 = ldv_xmalloc(1UL); ldv_0_ldv_param_28_2_default = (unsigned char *)tmp___13; ldv_ieee80211_instance_callback_0_28(ldv_0_callback_fill_tx_desc, ldv_0_resource_ieee80211_hw, ldv_0_resource_struct_ieee80211_hdr_ptr, ldv_0_ldv_param_28_2_default, ldv_0_resource_struct_ieee80211_tx_info_ptr, ldv_0_resource_struct_ieee80211_sta_ptr, ldv_0_resource_struct_sk_buff_ptr, (int )ldv_0_ldv_param_28_6_default, ldv_0_resource_struct_rtl_tcb_desc_ptr); ldv_free((void *)ldv_0_ldv_param_28_2_default); } goto ldv_53194; case_35: /* CIL Label */ { tmp___14 = ldv_xmalloc(1UL); ldv_0_ldv_param_25_1_default = (unsigned char *)tmp___14; ldv_ieee80211_instance_callback_0_25(ldv_0_callback_fill_tx_cmddesc, ldv_0_resource_ieee80211_hw, ldv_0_ldv_param_25_1_default, (int )ldv_0_ldv_param_25_2_default, (int )ldv_0_ldv_param_25_3_default, ldv_0_resource_struct_sk_buff_ptr); ldv_free((void *)ldv_0_ldv_param_25_1_default); } goto ldv_53194; case_36: /* CIL Label */ { ldv_ieee80211_instance_callback_0_24(ldv_0_callback_enable_interrupt, ldv_0_resource_ieee80211_hw); } goto ldv_53194; case_37: /* CIL Label */ { ldv_ieee80211_instance_callback_0_23(ldv_0_callback_enable_hw_sec, ldv_0_resource_ieee80211_hw); } goto ldv_53194; case_38: /* CIL Label */ { ldv_ieee80211_instance_callback_0_22(ldv_0_callback_dm_watchdog, ldv_0_resource_ieee80211_hw); } goto ldv_53194; case_39: /* CIL Label */ { ldv_ieee80211_instance_callback_0_21(ldv_0_callback_disable_interrupt, ldv_0_resource_ieee80211_hw); } goto ldv_53194; case_40: /* CIL Label */ { ldv_ieee80211_instance_callback_0_20(ldv_0_callback_deinit_sw_vars, ldv_0_resource_ieee80211_hw); } goto ldv_53194; case_41: /* CIL Label */ { ldv_ieee80211_instance_callback_0_10(ldv_0_callback_allow_all_destaddr, ldv_0_resource_ieee80211_hw, (int )ldv_0_ldv_param_10_1_default, (int )ldv_0_ldv_param_10_2_default); } goto ldv_53194; switch_default: /* CIL Label */ { ldv_stop(); } switch_break___0: /* CIL Label */ ; } ldv_53194: ; goto ldv_53236; switch_default___0: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_53236: ; goto ldv_started_0; return; } } void ldv_ieee80211_instance_callback_0_10(void (*arg0)(struct ieee80211_hw * , _Bool , _Bool ) , struct ieee80211_hw *arg1 , _Bool arg2 , _Bool arg3 ) { { { rtl88ee_allow_all_destaddr(arg1, (int )arg2, (int )arg3); } return; } } void ldv_ieee80211_instance_callback_0_20(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl88e_deinit_sw_vars(arg1); } return; } } void ldv_ieee80211_instance_callback_0_21(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl88ee_disable_interrupt(arg1); } return; } } void ldv_ieee80211_instance_callback_0_22(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl88e_dm_watchdog(arg1); } return; } } void ldv_ieee80211_instance_callback_0_23(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl88ee_enable_hw_security_config(arg1); } return; } } void ldv_ieee80211_instance_callback_0_24(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl88ee_enable_interrupt(arg1); } return; } } void ldv_ieee80211_instance_callback_0_25(void (*arg0)(struct ieee80211_hw * , unsigned char * , _Bool , _Bool , struct sk_buff * ) , struct ieee80211_hw *arg1 , unsigned char *arg2 , _Bool arg3 , _Bool arg4 , struct sk_buff *arg5 ) { { { rtl88ee_tx_fill_cmddesc(arg1, arg2, (int )arg3, (int )arg4, arg5); } return; } } void ldv_ieee80211_instance_callback_0_28(void (*arg0)(struct ieee80211_hw * , struct ieee80211_hdr * , unsigned char * , struct ieee80211_tx_info * , struct ieee80211_sta * , struct sk_buff * , unsigned char , struct rtl_tcb_desc * ) , struct ieee80211_hw *arg1 , struct ieee80211_hdr *arg2 , unsigned char *arg3 , struct ieee80211_tx_info *arg4 , struct ieee80211_sta *arg5 , struct sk_buff *arg6 , unsigned char arg7 , struct rtl_tcb_desc *arg8 ) { { { rtl88ee_tx_fill_desc(arg1, arg2, arg3, arg4, arg5, arg6, (int )arg7, arg8); } return; } } void ldv_ieee80211_instance_callback_0_31(unsigned int (*arg0)(struct ieee80211_hw * , unsigned int , unsigned int ) , struct ieee80211_hw *arg1 , unsigned int arg2 , unsigned int arg3 ) { { { rtl88e_phy_query_bb_reg(arg1, arg2, arg3); } return; } } void ldv_ieee80211_instance_callback_0_34(unsigned int (*arg0)(unsigned char * , _Bool , unsigned char ) , unsigned char *arg1 , _Bool arg2 , unsigned char arg3 ) { { { rtl88ee_get_desc(arg1, (int )arg2, (int )arg3); } return; } } void ldv_ieee80211_instance_callback_0_37(void (*arg0)(struct ieee80211_hw * , unsigned char , unsigned char * ) , struct ieee80211_hw *arg1 , unsigned char arg2 , unsigned char *arg3 ) { { { rtl88ee_get_hw_reg(arg1, (int )arg2, arg3); } return; } } void ldv_ieee80211_instance_callback_0_40(unsigned int (*arg0)(struct ieee80211_hw * , enum radio_path , unsigned int , unsigned int ) , struct ieee80211_hw *arg1 , enum radio_path arg2 , unsigned int arg3 , unsigned int arg4 ) { { { rtl88e_phy_query_rf_reg(arg1, arg2, arg3, arg4); } return; } } void ldv_ieee80211_instance_callback_0_43(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl88ee_card_disable(arg1); } return; } } void ldv_ieee80211_instance_callback_0_44(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl88ee_hw_init(arg1); } return; } } void ldv_ieee80211_instance_callback_0_45(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl88ee_resume(arg1); } return; } } void ldv_ieee80211_instance_callback_0_46(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl88ee_suspend(arg1); } return; } } void ldv_ieee80211_instance_callback_0_47(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl88ee_init_sw_leds(arg1); } return; } } void ldv_ieee80211_instance_callback_0_48(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl88e_init_sw_vars(arg1); } return; } } void ldv_ieee80211_instance_callback_0_49(void (*arg0)(struct ieee80211_hw * , unsigned int * , unsigned int * ) , struct ieee80211_hw *arg1 , unsigned int *arg2 , unsigned int *arg3 ) { { { rtl88ee_interrupt_recognized(arg1, arg2, arg3); } return; } } void ldv_ieee80211_instance_callback_0_52(void (*arg0)(struct ieee80211_hw * , enum led_ctl_mode ) , struct ieee80211_hw *arg1 , enum led_ctl_mode arg2 ) { { { rtl88ee_led_control(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_0_53(_Bool (*arg0)(struct ieee80211_hw * , struct rtl_stats * , struct ieee80211_rx_status * , unsigned char * , struct sk_buff * ) , struct ieee80211_hw *arg1 , struct rtl_stats *arg2 , struct ieee80211_rx_status *arg3 , unsigned char *arg4 , struct sk_buff *arg5 ) { { { rtl88ee_rx_query_desc(arg1, arg2, arg3, arg4, arg5); } return; } } void ldv_ieee80211_instance_callback_0_56(_Bool (*arg0)(struct ieee80211_hw * , unsigned char * ) , struct ieee80211_hw *arg1 , unsigned char *arg2 ) { { { rtl88ee_gpio_radio_on_off_checking(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_0_59(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl88ee_read_eeprom_info(arg1); } return; } } void ldv_ieee80211_instance_callback_0_60(void (*arg0)(struct ieee80211_hw * , unsigned char ) , struct ieee80211_hw *arg1 , unsigned char arg2 ) { { { rtl_phy_scan_operation_backup(arg1, (int )arg2); } return; } } void ldv_ieee80211_instance_callback_0_63(void (*arg0)(struct ieee80211_hw * , unsigned int , unsigned int , unsigned int ) , struct ieee80211_hw *arg1 , unsigned int arg2 , unsigned int arg3 , unsigned int arg4 ) { { { rtl88e_phy_set_bb_reg(arg1, arg2, arg3, arg4); } return; } } void ldv_ieee80211_instance_callback_0_66(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl88ee_set_beacon_interval(arg1); } return; } } void ldv_ieee80211_instance_callback_0_67(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl88ee_set_beacon_related_registers(arg1); } return; } } void ldv_ieee80211_instance_callback_0_68(void (*arg0)(struct ieee80211_hw * , enum nl80211_channel_type ) , struct ieee80211_hw *arg1 , enum nl80211_channel_type arg2 ) { { { rtl88e_phy_set_bw_mode(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_0_69(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl88ee_update_channel_access_setting(arg1); } return; } } void ldv_ieee80211_instance_callback_0_70(void (*arg0)(struct ieee80211_hw * , _Bool ) , struct ieee80211_hw *arg1 , _Bool arg2 ) { { { rtl88ee_set_check_bssid(arg1, (int )arg2); } return; } } void ldv_ieee80211_instance_callback_0_73(void (*arg0)(unsigned char * , _Bool , unsigned char , unsigned char * ) , unsigned char *arg1 , _Bool arg2 , unsigned char arg3 , unsigned char *arg4 ) { { { rtl88ee_set_desc(arg1, (int )arg2, (int )arg3, arg4); } return; } } void ldv_ieee80211_instance_callback_0_76(void (*arg0)(struct ieee80211_hw * , unsigned char , unsigned char * ) , struct ieee80211_hw *arg1 , unsigned char arg2 , unsigned char *arg3 ) { { { rtl88ee_set_hw_reg(arg1, (int )arg2, arg3); } return; } } void ldv_ieee80211_instance_callback_0_79(void (*arg0)(struct ieee80211_hw * , unsigned int , unsigned char * , _Bool , unsigned char , _Bool , _Bool ) , struct ieee80211_hw *arg1 , unsigned int arg2 , unsigned char *arg3 , _Bool arg4 , unsigned char arg5 , _Bool arg6 , _Bool arg7 ) { { { rtl88ee_set_key(arg1, arg2, arg3, (int )arg4, (int )arg5, (int )arg6, (int )arg7); } return; } } void ldv_ieee80211_instance_callback_0_82(int (*arg0)(struct ieee80211_hw * , enum nl80211_iftype ) , struct ieee80211_hw *arg1 , enum nl80211_iftype arg2 ) { { { rtl88ee_set_network_type(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_0_83(void (*arg0)(struct ieee80211_hw * , int ) , struct ieee80211_hw *arg1 , int arg2 ) { { { rtl88ee_set_qos(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_0_86(_Bool (*arg0)(struct ieee80211_hw * , enum rf_pwrstate ) , struct ieee80211_hw *arg1 , enum rf_pwrstate arg2 ) { { { rtl88e_phy_set_rf_power_state(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_0_87(void (*arg0)(struct ieee80211_hw * , enum radio_path , unsigned int , unsigned int , unsigned int ) , struct ieee80211_hw *arg1 , enum radio_path arg2 , unsigned int arg3 , unsigned int arg4 , unsigned int arg5 ) { { { rtl88e_phy_set_rf_reg(arg1, arg2, arg3, arg4, arg5); } return; } } void ldv_ieee80211_instance_callback_0_90(unsigned char (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { rtl88e_phy_sw_chnl(arg1); } return; } } void ldv_ieee80211_instance_callback_0_91(void (*arg0)(struct ieee80211_hw * , unsigned char ) , struct ieee80211_hw *arg1 , unsigned char arg2 ) { { { rtl88ee_tx_polling(arg1, (int )arg2); } return; } } void ldv_ieee80211_instance_callback_0_94(void (*arg0)(struct ieee80211_hw * , unsigned int , unsigned int ) , struct ieee80211_hw *arg1 , unsigned int arg2 , unsigned int arg3 ) { { { rtl88ee_update_interrupt_mask(arg1, arg2, arg3); } return; } } void ldv_ieee80211_instance_callback_0_97(void (*arg0)(struct ieee80211_hw * , struct ieee80211_sta * , unsigned char ) , struct ieee80211_hw *arg1 , struct ieee80211_sta *arg2 , unsigned char arg3 ) { { { rtl88ee_update_hal_rate_tbl(arg1, arg2, (int )arg3); } return; } } void ldv_ieee80211_instance_resume_0_12(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { (*arg0)(arg1); } return; } } int ldv_ieee80211_instance_start_0_6(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { int tmp ; { { tmp = (*arg0)(arg1); } return (tmp); } } void ldv_ieee80211_instance_stop_0_8(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { (*arg0)(arg1); } return; } } int ldv_pci_instance_probe_1_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = rtl_pci_probe(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_1_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { rtl_pci_disconnect(arg1); } return; } } void ldv_pci_instance_resume_1_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_resume_early_1_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_1_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } int ldv_pci_instance_suspend_1_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_1_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_1(void *arg0 ) { struct pci_driver *ldv_1_container_pci_driver ; struct pci_dev *ldv_1_resource_dev ; struct pm_message ldv_1_resource_pm_message ; struct pci_device_id *ldv_1_resource_struct_pci_device_id_ptr ; int ldv_1_ret_default ; struct ldv_struct_pci_instance_1 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { data = (struct ldv_struct_pci_instance_1 *)arg0; ldv_1_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_pci_instance_1 *)0)) { { ldv_1_container_pci_driver = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(2936UL); ldv_1_resource_dev = (struct pci_dev *)tmp; tmp___0 = ldv_xmalloc(32UL); ldv_1_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___0; } goto ldv_main_1; return; ldv_main_1: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_pre_probe(); ldv_1_ret_default = ldv_pci_instance_probe_1_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_1_container_pci_driver->probe, ldv_1_resource_dev, ldv_1_resource_struct_pci_device_id_ptr); ldv_1_ret_default = ldv_post_probe(ldv_1_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { ldv_assume(ldv_1_ret_default == 0); } goto ldv_call_1; } else { { ldv_assume(ldv_1_ret_default != 0); } goto ldv_main_1; } } else { { ldv_free((void *)ldv_1_resource_dev); ldv_free((void *)ldv_1_resource_struct_pci_device_id_ptr); } return; } return; ldv_call_1: { tmp___3 = ldv_undef_int(); } { if (tmp___3 == 1) { goto case_1; } else { } if (tmp___3 == 2) { goto case_2; } else { } if (tmp___3 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_call_1; case_2: /* CIL Label */ ; if ((unsigned long )ldv_1_container_pci_driver->suspend != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_1_ret_default = ldv_pci_instance_suspend_1_8(ldv_1_container_pci_driver->suspend, ldv_1_resource_dev, ldv_1_resource_pm_message); } } else { } { ldv_1_ret_default = ldv_filter_err_code(ldv_1_ret_default); } if ((unsigned long )ldv_1_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_1_ret_default = ldv_pci_instance_suspend_late_1_7(ldv_1_container_pci_driver->suspend_late, ldv_1_resource_dev, ldv_1_resource_pm_message); } } else { } { ldv_1_ret_default = ldv_filter_err_code(ldv_1_ret_default); } if ((unsigned long )ldv_1_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_1_6(ldv_1_container_pci_driver->resume_early, ldv_1_resource_dev); } } else { } if ((unsigned long )ldv_1_container_pci_driver->resume != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_1_5(ldv_1_container_pci_driver->resume, ldv_1_resource_dev); } } else { } goto ldv_call_1; case_3: /* CIL Label */ ; if ((unsigned long )ldv_1_container_pci_driver->shutdown != (unsigned long )((void (*)(struct pci_dev * ))0)) { { ldv_pci_instance_shutdown_1_3(ldv_1_container_pci_driver->shutdown, ldv_1_resource_dev); } } else { } { ldv_pci_instance_release_1_2(ldv_1_container_pci_driver->remove, ldv_1_resource_dev); } goto ldv_main_1; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) { struct pci_driver *ldv_7_pci_driver_pci_driver ; { { ldv_7_pci_driver_pci_driver = arg1; ldv_dispatch_deregister_7_1(ldv_7_pci_driver_pci_driver); } return; return; } } int ldv_platform_instance_probe_3_14(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) { int tmp ; { { tmp = (*arg0)(arg1); } return (tmp); } } void ldv_platform_instance_release_3_3(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_complete_2_3(void (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_freeze_2_15(int (*arg0)(struct device * ) , struct device *arg1 ) { { { rtl_pci_suspend(arg1); } return; } } void ldv_pm_ops_instance_freeze_late_2_14(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_freeze_noirq_2_12(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_poweroff_2_9(int (*arg0)(struct device * ) , struct device *arg1 ) { { { rtl_pci_suspend(arg1); } return; } } void ldv_pm_ops_instance_poweroff_late_2_8(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_poweroff_noirq_2_6(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_prepare_2_22(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_restore_2_4(int (*arg0)(struct device * ) , struct device *arg1 ) { { { rtl_pci_resume(arg1); } return; } } void ldv_pm_ops_instance_restore_early_2_7(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_restore_noirq_2_5(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_resume_2_16(int (*arg0)(struct device * ) , struct device *arg1 ) { { { rtl_pci_resume(arg1); } return; } } void ldv_pm_ops_instance_resume_early_2_17(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_resume_noirq_2_19(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_idle_2_27(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_resume_2_24(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_suspend_2_25(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_suspend_2_21(int (*arg0)(struct device * ) , struct device *arg1 ) { { { rtl_pci_suspend(arg1); } return; } } void ldv_pm_ops_instance_suspend_late_2_18(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_suspend_noirq_2_20(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_thaw_2_10(int (*arg0)(struct device * ) , struct device *arg1 ) { { { rtl_pci_resume(arg1); } return; } } void ldv_pm_ops_instance_thaw_early_2_13(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_thaw_noirq_2_11(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_platform_instance_3(void *arg0 ) { struct platform_driver *ldv_3_container_platform_driver ; struct platform_device *ldv_3_ldv_param_14_0_default ; struct platform_device *ldv_3_ldv_param_3_0_default ; int ldv_3_probed_default ; void *tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; void *tmp___3 ; { ldv_3_probed_default = 1; goto ldv_main_3; return; ldv_main_3: { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = ldv_xmalloc(1432UL); ldv_3_ldv_param_14_0_default = (struct platform_device *)tmp; ldv_pre_probe(); } if ((unsigned long )ldv_3_container_platform_driver->probe != (unsigned long )((int (*)(struct platform_device * ))0)) { { ldv_3_probed_default = ldv_platform_instance_probe_3_14(ldv_3_container_platform_driver->probe, ldv_3_ldv_param_14_0_default); } } else { } { ldv_3_probed_default = ldv_post_probe(ldv_3_probed_default); ldv_free((void *)ldv_3_ldv_param_14_0_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_3_probed_default == 0); } goto ldv_call_3; } else { { ldv_assume(ldv_3_probed_default != 0); } goto ldv_main_3; } } else { return; } return; ldv_call_3: { tmp___2 = ldv_undef_int(); } { if (tmp___2 == 1) { goto case_1; } else { } if (tmp___2 == 2) { goto case_2; } else { } if (tmp___2 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___3 = ldv_xmalloc(1432UL); ldv_3_ldv_param_3_0_default = (struct platform_device *)tmp___3; } if ((unsigned long )ldv_3_container_platform_driver->remove != (unsigned long )((int (*)(struct platform_device * ))0)) { { ldv_platform_instance_release_3_3(ldv_3_container_platform_driver->remove, ldv_3_ldv_param_3_0_default); } } else { } { ldv_free((void *)ldv_3_ldv_param_3_0_default); ldv_3_probed_default = 1; } goto ldv_main_3; case_2: /* CIL Label */ ; goto ldv_call_3; case_3: /* CIL Label */ { ldv_dispatch_pm_register_3_6(); ldv_dispatch_pm_deregister_3_5(); } goto ldv_call_3; goto ldv_call_3; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_pm_pm_ops_instance_2(void *arg0 ) { struct device *ldv_2_device_device ; struct dev_pm_ops *ldv_2_pm_ops_dev_pm_ops ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { goto ldv_do_2; return; ldv_do_2: { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } goto switch_default___0; case_1: /* CIL Label */ ; if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->runtime_idle != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_idle_2_27(ldv_2_pm_ops_dev_pm_ops->runtime_idle, ldv_2_device_device); } } else { } goto ldv_do_2; case_2: /* CIL Label */ ; if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->runtime_suspend != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_suspend_2_25(ldv_2_pm_ops_dev_pm_ops->runtime_suspend, ldv_2_device_device); } } else { } if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->runtime_resume != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_resume_2_24(ldv_2_pm_ops_dev_pm_ops->runtime_resume, ldv_2_device_device); } } else { } goto ldv_do_2; case_3: /* CIL Label */ ; if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->prepare != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_prepare_2_22(ldv_2_pm_ops_dev_pm_ops->prepare, ldv_2_device_device); } } else { } { tmp___0 = ldv_undef_int(); } { if (tmp___0 == 1) { goto case_1___0; } else { } if (tmp___0 == 2) { goto case_2___0; } else { } if (tmp___0 == 3) { goto case_3___0; } else { } goto switch_default; case_1___0: /* CIL Label */ { ldv_pm_ops_instance_suspend_2_21(ldv_2_pm_ops_dev_pm_ops->suspend, ldv_2_device_device); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->suspend_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_suspend_noirq_2_20(ldv_2_pm_ops_dev_pm_ops->suspend_noirq, ldv_2_device_device); } } else { } if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->resume_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_resume_noirq_2_19(ldv_2_pm_ops_dev_pm_ops->resume_noirq, ldv_2_device_device); } } else { } } else { if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->suspend_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_suspend_late_2_18(ldv_2_pm_ops_dev_pm_ops->suspend_late, ldv_2_device_device); } } else { } if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->resume_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_resume_early_2_17(ldv_2_pm_ops_dev_pm_ops->resume_early, ldv_2_device_device); } } else { } } { ldv_pm_ops_instance_resume_2_16(ldv_2_pm_ops_dev_pm_ops->resume, ldv_2_device_device); } goto ldv_53785; case_2___0: /* CIL Label */ { ldv_pm_ops_instance_freeze_2_15(ldv_2_pm_ops_dev_pm_ops->freeze, ldv_2_device_device); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->freeze_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_freeze_late_2_14(ldv_2_pm_ops_dev_pm_ops->freeze_late, ldv_2_device_device); } } else { } if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->thaw_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_thaw_early_2_13(ldv_2_pm_ops_dev_pm_ops->thaw_early, ldv_2_device_device); } } else { } } else { if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->freeze_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_freeze_noirq_2_12(ldv_2_pm_ops_dev_pm_ops->freeze_noirq, ldv_2_device_device); } } else { } if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->thaw_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_thaw_noirq_2_11(ldv_2_pm_ops_dev_pm_ops->thaw_noirq, ldv_2_device_device); } } else { } } { ldv_pm_ops_instance_thaw_2_10(ldv_2_pm_ops_dev_pm_ops->thaw, ldv_2_device_device); } goto ldv_53785; case_3___0: /* CIL Label */ { ldv_pm_ops_instance_poweroff_2_9(ldv_2_pm_ops_dev_pm_ops->poweroff, ldv_2_device_device); tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->poweroff_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_poweroff_late_2_8(ldv_2_pm_ops_dev_pm_ops->poweroff_late, ldv_2_device_device); } } else { } if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->restore_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_restore_early_2_7(ldv_2_pm_ops_dev_pm_ops->restore_early, ldv_2_device_device); } } else { } } else { if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->poweroff_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_poweroff_noirq_2_6(ldv_2_pm_ops_dev_pm_ops->poweroff_noirq, ldv_2_device_device); } } else { } if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->restore_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_restore_noirq_2_5(ldv_2_pm_ops_dev_pm_ops->restore_noirq, ldv_2_device_device); } } else { } } { ldv_pm_ops_instance_restore_2_4(ldv_2_pm_ops_dev_pm_ops->restore, ldv_2_device_device); } goto ldv_53785; switch_default: /* CIL Label */ { ldv_stop(); } switch_break___0: /* CIL Label */ ; } ldv_53785: ; if ((unsigned long )ldv_2_pm_ops_dev_pm_ops->complete != (unsigned long )((void (*)(struct device * ))0)) { { ldv_pm_ops_instance_complete_2_3(ldv_2_pm_ops_dev_pm_ops->complete, ldv_2_device_device); } } else { } goto ldv_do_2; case_4: /* CIL Label */ ; return; switch_default___0: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_timer_instance_callback_4_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_timer_timer_instance_4(void *arg0 ) { struct timer_list *ldv_4_container_timer_list ; struct ldv_struct_timer_instance_4 *data ; { data = (struct ldv_struct_timer_instance_4 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_timer_instance_4 *)0)) { { ldv_4_container_timer_list = data->arg0; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); } if ((unsigned long )ldv_4_container_timer_list->function != (unsigned long )((void (*)(unsigned long ))0)) { { ldv_timer_instance_callback_4_2(ldv_4_container_timer_list->function, ldv_4_container_timer_list->data); } } else { } { ldv_switch_to_process_context(); } return; return; } } static int ldv_del_timer_sync_64(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static int ldv_del_timer_sync_65(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static int ldv___pci_register_driver_66(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___pci_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_pci_unregister_driver_67(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } u32 RTL8188EEPHY_REG_1TARRAY[382U] = { 2048U, 2147745792U, 2052U, 3U, 2056U, 64512U, 2060U, 10U, 2064U, 268440369U, 2068U, 34356496U, 2072U, 35652485U, 2076U, 0U, 2080U, 16777472U, 2084U, 3736068U, 2088U, 0U, 2092U, 0U, 2096U, 0U, 2100U, 0U, 2104U, 0U, 2108U, 0U, 2112U, 65536U, 2116U, 0U, 2120U, 0U, 2124U, 0U, 2128U, 0U, 2132U, 0U, 2136U, 1452937641U, 2140U, 16777236U, 2144U, 1727398160U, 2148U, 102696521U, 2152U, 0U, 2156U, 656877312U, 2160U, 117442400U, 2164U, 620773376U, 2168U, 2056U, 2172U, 0U, 2176U, 2952793116U, 2180U, 1U, 2184U, 0U, 2188U, 3435135168U, 2192U, 2048U, 2196U, 4294967294U, 2200U, 1076895760U, 2204U, 7364688U, 2304U, 0U, 2308U, 35U, 2312U, 0U, 2316U, 2165444881U, 2320U, 2U, 2324U, 513U, 2560U, 13649864U, 2564U, 2164195340U, 2568U, 2357428992U, 2572U, 780079631U, 2576U, 2499853176U, 2580U, 286576680U, 2584U, 8917271U, 2588U, 2299793152U, 2592U, 437977088U, 2596U, 151917335U, 2600U, 516U, 2604U, 13828096U, 2672U, 270515968U, 2676U, 7U, 2680U, 2304U, 2684U, 576390662U, 2688U, 562066865U, 2860U, 2147483648U, 3072U, 1208425792U, 3076U, 60839441U, 3080U, 228U, 3084U, 1819044972U, 3088U, 142606336U, 3092U, 1073742080U, 3096U, 142606336U, 3100U, 1073742080U, 3104U, 0U, 3108U, 0U, 3112U, 0U, 3116U, 0U, 3120U, 1776921671U, 3124U, 1184256687U, 3128U, 1232689556U, 3132U, 177706780U, 3136U, 528236607U, 3140U, 65719U, 3144U, 3959554311U, 3148U, 8323967U, 3152U, 1767191584U, 3156U, 1136394388U, 3160U, 78185U, 3164U, 2426002U, 3168U, 0U, 3172U, 1897038987U, 3176U, 1203768319U, 3180U, 54U, 3184U, 746520589U, 3188U, 33951963U, 3192U, 31U, 3196U, 12129810U, 3200U, 956301540U, 3204U, 552992768U, 3208U, 1073742080U, 3212U, 538968064U, 3216U, 595233U, 3220U, 0U, 3224U, 1185824U, 3228U, 32639U, 3232U, 0U, 3236U, 196768U, 3240U, 0U, 3244U, 0U, 3248U, 0U, 3252U, 0U, 3256U, 0U, 3260U, 671088640U, 3264U, 0U, 3268U, 0U, 3272U, 0U, 3276U, 0U, 3280U, 0U, 3284U, 0U, 3288U, 1689396263U, 3292U, 7760178U, 3296U, 2236962U, 3300U, 0U, 3304U, 929317634U, 3308U, 798479372U, 3328U, 1856U, 3332U, 132097U, 3336U, 36991U, 3340U, 536936961U, 3344U, 2690855731U, 3348U, 859028547U, 3352U, 2056215407U, 3372U, 3432487285U, 3376U, 0U, 3380U, 2153807872U, 3384U, 0U, 3388U, 1209171U, 3392U, 0U, 3396U, 0U, 3400U, 0U, 3404U, 0U, 3408U, 1681331210U, 3412U, 0U, 3416U, 642U, 3420U, 805511268U, 3424U, 1179901544U, 3428U, 72452668U, 3432U, 8449U, 3436U, 706747414U, 3440U, 403846702U, 3444U, 841753120U, 3448U, 932900U, 3584U, 757935405U, 3588U, 757935405U, 3592U, 59778861U, 3600U, 757935405U, 3604U, 757935405U, 3608U, 757935405U, 3612U, 757935405U, 3624U, 0U, 3632U, 268491807U, 3636U, 268471327U, 3640U, 34865410U, 3644U, 1746273474U, 3648U, 16808960U, 3652U, 16795648U, 3656U, 4211081216U, 3660U, 10449U, 3664U, 268491807U, 3668U, 268471327U, 3672U, 34865410U, 3676U, 672533765U, 3680U, 8U, 3688U, 1779108U, 3692U, 12582932U, 3696U, 12582932U, 3700U, 16777236U, 3704U, 16777236U, 3708U, 16777236U, 3712U, 16777236U, 3716U, 12582932U, 3720U, 16777236U, 3724U, 12582932U, 3792U, 12582932U, 3796U, 12582932U, 3800U, 12582932U, 3804U, 20U, 3808U, 20U, 3820U, 29360148U, 3860U, 3U, 3916U, 0U, 3840U, 768U}; u32 RTL8188EEPHY_REG_ARRAY_PG[264U] = { 3584U, 4294967295U, 101124105U, 3588U, 4294967295U, 33686533U, 3592U, 65280U, 6U, 2156U, 4294967040U, 132096U, 3600U, 4294967295U, 134810123U, 3604U, 4294967295U, 16975367U, 3608U, 4294967295U, 134810123U, 3612U, 4294967295U, 16975367U, 3584U, 4294967295U, 0U, 3588U, 4294967295U, 0U, 3592U, 65280U, 0U, 2156U, 4294967040U, 0U, 3600U, 4294967295U, 0U, 3604U, 4294967295U, 0U, 3608U, 4294967295U, 0U, 3612U, 4294967295U, 0U, 3584U, 4294967295U, 33686018U, 3588U, 4294967295U, 131586U, 3592U, 65280U, 0U, 2156U, 4294967040U, 0U, 3600U, 4294967295U, 67372036U, 3604U, 4294967295U, 132100U, 3608U, 4294967295U, 0U, 3612U, 4294967295U, 0U, 3584U, 4294967295U, 33686018U, 3588U, 4294967295U, 131586U, 3592U, 65280U, 0U, 2156U, 4294967040U, 0U, 3600U, 4294967295U, 67372036U, 3604U, 4294967295U, 132100U, 3608U, 4294967295U, 0U, 3612U, 4294967295U, 0U, 3584U, 4294967295U, 0U, 3588U, 4294967295U, 0U, 3592U, 65280U, 0U, 2156U, 4294967040U, 0U, 3600U, 4294967295U, 0U, 3604U, 4294967295U, 0U, 3608U, 4294967295U, 0U, 3612U, 4294967295U, 0U, 3584U, 4294967295U, 33686018U, 3588U, 4294967295U, 131586U, 3592U, 65280U, 0U, 2156U, 4294967040U, 0U, 3600U, 4294967295U, 67372036U, 3604U, 4294967295U, 132100U, 3608U, 4294967295U, 0U, 3612U, 4294967295U, 0U, 3584U, 4294967295U, 0U, 3588U, 4294967295U, 0U, 3592U, 65280U, 0U, 2156U, 4294967040U, 0U, 3600U, 4294967295U, 0U, 3604U, 4294967295U, 0U, 3608U, 4294967295U, 0U, 3612U, 4294967295U, 0U, 3584U, 4294967295U, 0U, 3588U, 4294967295U, 0U, 3592U, 65280U, 0U, 2156U, 4294967040U, 0U, 3600U, 4294967295U, 0U, 3604U, 4294967295U, 0U, 3608U, 4294967295U, 0U, 3612U, 4294967295U, 0U, 3584U, 4294967295U, 0U, 3588U, 4294967295U, 0U, 3592U, 65280U, 0U, 2156U, 4294967040U, 0U, 3600U, 4294967295U, 0U, 3604U, 4294967295U, 0U, 3608U, 4294967295U, 0U, 3612U, 4294967295U, 0U, 3584U, 4294967295U, 0U, 3588U, 4294967295U, 0U, 3592U, 65280U, 0U, 2156U, 4294967040U, 0U, 3600U, 4294967295U, 0U, 3604U, 4294967295U, 0U, 3608U, 4294967295U, 0U, 3612U, 4294967295U, 0U, 3584U, 4294967295U, 0U, 3588U, 4294967295U, 0U, 3592U, 65280U, 0U, 2156U, 4294967040U, 0U, 3600U, 4294967295U, 0U, 3604U, 4294967295U, 0U, 3608U, 4294967295U, 0U, 3612U, 4294967295U, 0U}; u32 RTL8188EE_RADIOA_1TARRAY[190U] = { 0U, 196608U, 8U, 540672U, 24U, 1031U, 25U, 18U, 30U, 524297U, 31U, 2176U, 47U, 106592U, 63U, 0U, 66U, 24768U, 87U, 851968U, 88U, 778624U, 103U, 5458U, 131U, 0U, 176U, 1046780U, 177U, 345088U, 178U, 838681U, 180U, 274435U, 182U, 300350U, 183U, 116504U, 184U, 24831U, 185U, 524289U, 186U, 262144U, 187U, 1024U, 191U, 786432U, 194U, 9216U, 195U, 9U, 196U, 265361U, 197U, 629145U, 198U, 163U, 199U, 559136U, 200U, 486406U, 201U, 0U, 202U, 524288U, 223U, 384U, 239U, 416U, 81U, 438909U, 82U, 517277U, 83U, 115U, 86U, 335859U, 53U, 134U, 53U, 390U, 53U, 646U, 54U, 7205U, 54U, 39973U, 54U, 72741U, 54U, 105509U, 182U, 296248U, 24U, 3079U, 90U, 310528U, 25U, 473552U, 52U, 44531U, 52U, 40432U, 52U, 36333U, 52U, 32234U, 52U, 28135U, 52U, 21742U, 52U, 17643U, 52U, 13544U, 52U, 9323U, 52U, 5224U, 52U, 109U, 0U, 196953U, 132U, 426496U, 134U, 206U, 135U, 297472U, 142U, 415040U, 143U, 557056U, 239U, 8352U, 59U, 983728U, 59U, 980912U, 59U, 872368U, 59U, 847968U, 59U, 721040U, 59U, 655488U, 59U, 589952U, 59U, 587648U, 59U, 467632U, 59U, 456624U, 59U, 348080U, 59U, 323680U, 59U, 196752U, 59U, 131200U, 59U, 65664U, 59U, 63360U, 239U, 160U, 0U, 65881U, 24U, 62471U, 4094U, 0U, 4094U, 0U, 31U, 524291U, 4094U, 0U, 4094U, 0U, 30U, 1U, 31U, 524288U, 0U, 212576U}; u32 RTL8188EEMAC_1T_ARRAY[180U] = { 38U, 65U, 39U, 53U, 1064U, 10U, 1065U, 16U, 1072U, 0U, 1073U, 1U, 1074U, 2U, 1075U, 4U, 1076U, 5U, 1077U, 6U, 1078U, 7U, 1079U, 8U, 1080U, 0U, 1081U, 0U, 1082U, 1U, 1083U, 2U, 1084U, 4U, 1085U, 5U, 1086U, 6U, 1087U, 7U, 1088U, 93U, 1089U, 1U, 1090U, 0U, 1092U, 21U, 1093U, 240U, 1094U, 15U, 1095U, 0U, 1112U, 65U, 1113U, 168U, 1114U, 114U, 1115U, 185U, 1120U, 102U, 1121U, 102U, 1152U, 8U, 1224U, 255U, 1225U, 8U, 1228U, 255U, 1229U, 255U, 1230U, 1U, 1235U, 1U, 1280U, 38U, 1281U, 162U, 1282U, 47U, 1283U, 0U, 1284U, 40U, 1285U, 163U, 1286U, 94U, 1287U, 0U, 1288U, 43U, 1289U, 164U, 1290U, 94U, 1291U, 0U, 1292U, 79U, 1293U, 164U, 1294U, 0U, 1295U, 0U, 1298U, 28U, 1300U, 10U, 1302U, 10U, 1317U, 79U, 1360U, 16U, 1361U, 16U, 1369U, 2U, 1373U, 255U, 1541U, 48U, 1544U, 14U, 1545U, 42U, 1568U, 255U, 1569U, 255U, 1570U, 255U, 1571U, 255U, 1572U, 255U, 1573U, 255U, 1574U, 255U, 1575U, 255U, 1618U, 32U, 1596U, 10U, 1597U, 10U, 1598U, 14U, 1599U, 14U, 1600U, 64U, 1646U, 5U, 1792U, 33U, 1793U, 67U, 1794U, 101U, 1795U, 135U, 1800U, 33U, 1801U, 67U, 1802U, 101U, 1803U, 135U}; u32 RTL8188EEAGCTAB_1TARRAY[256U] = { 3192U, 4211081217U, 3192U, 4211146753U, 3192U, 4211212289U, 3192U, 4211277825U, 3192U, 4211343361U, 3192U, 4211408897U, 3192U, 4194697217U, 3192U, 4177985537U, 3192U, 4161273857U, 3192U, 4144562177U, 3192U, 4127850497U, 3192U, 4111138817U, 3192U, 4094427137U, 3192U, 4077715457U, 3192U, 4061003777U, 3192U, 4044292097U, 3192U, 4027580417U, 3192U, 4010868737U, 3192U, 3994157057U, 3192U, 3977445377U, 3192U, 3960733697U, 3192U, 3944022017U, 3192U, 3927310337U, 3192U, 3910598657U, 3192U, 3893886977U, 3192U, 3877175297U, 3192U, 3860463617U, 3192U, 3843751937U, 3192U, 3827040257U, 3192U, 3810328577U, 3192U, 3793616897U, 3192U, 3776905217U, 3192U, 2317352961U, 3192U, 2300641281U, 3192U, 2283929601U, 3192U, 2267217921U, 3192U, 2250506241U, 3192U, 2233794561U, 3192U, 2217082881U, 3192U, 2200371201U, 3192U, 2183659521U, 3192U, 1797849089U, 3192U, 1781137409U, 3192U, 1764425729U, 3192U, 1747714049U, 3192U, 1731002369U, 3192U, 1714290689U, 3192U, 1697579009U, 3192U, 1680867329U, 3192U, 1664155649U, 3192U, 1647443969U, 3192U, 1630732289U, 3192U, 1177812993U, 3192U, 1161101313U, 3192U, 1144389633U, 3192U, 1127677953U, 3192U, 1110966273U, 3192U, 1094254593U, 3192U, 1077542913U, 3192U, 1077608449U, 3192U, 1077673985U, 3192U, 1077739521U, 3192U, 1077805057U, 3192U, 1077870593U, 3192U, 4215275521U, 3192U, 4215341057U, 3192U, 4215406593U, 3192U, 4215472129U, 3192U, 4215537665U, 3192U, 4215603201U, 3192U, 4215668737U, 3192U, 4215734273U, 3192U, 4215799809U, 3192U, 4199088129U, 3192U, 4182376449U, 3192U, 4165664769U, 3192U, 4148953089U, 3192U, 4132241409U, 3192U, 4115529729U, 3192U, 4098818049U, 3192U, 4082106369U, 3192U, 4065394689U, 3192U, 4048683009U, 3192U, 4031971329U, 3192U, 4015259649U, 3192U, 3998547969U, 3192U, 3981836289U, 3192U, 3965124609U, 3192U, 3948412929U, 3192U, 3931701249U, 3192U, 3914989569U, 3192U, 3898277889U, 3192U, 3881566209U, 3192U, 3864854529U, 3192U, 3848142849U, 3192U, 3831431169U, 3192U, 3814719489U, 3192U, 3798007809U, 3192U, 3277979649U, 3192U, 3261267969U, 3192U, 3244556289U, 3192U, 2338652161U, 3192U, 2321940481U, 3192U, 2305228801U, 3192U, 2288517121U, 3192U, 2271805441U, 3192U, 2255093761U, 3192U, 2238382081U, 3192U, 2221670401U, 3192U, 1735196673U, 3192U, 1718484993U, 3192U, 1701773313U, 3192U, 1685061633U, 3192U, 1668349953U, 3192U, 1651638273U, 3192U, 1634926593U, 3192U, 1618214913U, 3192U, 1182072833U, 3192U, 1165361153U, 3192U, 1148649473U, 3192U, 1131937793U, 3192U, 1115226113U, 3192U, 1098514433U, 3192U, 1081802753U, 3192U, 1081868289U, 3192U, 1081933825U, 3192U, 1081999361U, 3192U, 1082064897U}; extern unsigned long __phys_addr(unsigned long ) ; __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_mapping_error(struct device * , dma_addr_t ) ; __inline static dma_addr_t dma_map_single_attrs(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, (struct page *)-24189255811072L + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, (struct page *)-24189255811072L + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); } return (addr); } } __inline static int dma_mapping_error(struct device *dev , dma_addr_t dma_addr ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; { { tmp = get_dma_ops(dev); ops = tmp; debug_dma_mapping_error(dev, dma_addr); } if ((unsigned long )ops->mapping_error != (unsigned long )((int (*)(struct device * , dma_addr_t ))0)) { { tmp___0 = (*(ops->mapping_error))(dev, dma_addr); } return (tmp___0); } else { } return (dma_addr == 0ULL); } } extern unsigned char *skb_push(struct sk_buff * , unsigned int ) ; __inline static int ieee80211_has_tods(__le16 fc ) { { return (((int )fc & 256) != 0); } } __inline static int ieee80211_has_fromds(__le16 fc ) { { return (((int )fc & 512) != 0); } } __inline static int ieee80211_has_a4(__le16 fc ) { __le16 tmp ; { tmp = 768U; return (((int )fc & (int )tmp) == (int )tmp); } } __inline static int ieee80211_has_protected(__le16 fc ) { { return (((int )fc & 16384) != 0); } } __inline static int ieee80211_is_mgmt(__le16 fc ) { { return (((int )fc & 12) == 0); } } __inline static int ieee80211_is_ctl(__le16 fc ) { { return (((int )fc & 12) == 4); } } __inline static int ieee80211_is_data_qos(__le16 fc ) { { return (((int )fc & 140) == 136); } } __inline static int ieee80211_is_beacon(__le16 fc ) { { return (((int )fc & 252) == 128); } } __inline static int ieee80211_is_disassoc(__le16 fc ) { { return (((int )fc & 252) == 160); } } __inline static int ieee80211_is_deauth(__le16 fc ) { { return (((int )fc & 252) == 192); } } __inline static int ieee80211_is_action(__le16 fc ) { { return (((int )fc & 252) == 208); } } __inline static int ieee80211_is_nullfunc(__le16 fc ) { { return (((int )fc & 252) == 72); } } __inline static u8 *ieee80211_get_SA(struct ieee80211_hdr *hdr ) { int tmp ; int tmp___0 ; { { tmp = ieee80211_has_a4((int )hdr->frame_control); } if (tmp != 0) { return ((u8 *)(& hdr->addr4)); } else { } { tmp___0 = ieee80211_has_fromds((int )hdr->frame_control); } if (tmp___0 != 0) { return ((u8 *)(& hdr->addr3)); } else { } return ((u8 *)(& hdr->addr2)); } } __inline static u8 *ieee80211_get_DA(struct ieee80211_hdr *hdr ) { int tmp ; { { tmp = ieee80211_has_tods((int )hdr->frame_control); } if (tmp != 0) { return ((u8 *)(& hdr->addr3)); } else { return ((u8 *)(& hdr->addr1)); } } } __inline static bool ieee80211_is_robust_mgmt_frame(struct ieee80211_hdr *hdr ) { int tmp ; int tmp___0 ; u8 *category ; int tmp___1 ; int tmp___2 ; { { tmp = ieee80211_is_disassoc((int )hdr->frame_control); } if (tmp != 0) { return (1); } else { { tmp___0 = ieee80211_is_deauth((int )hdr->frame_control); } if (tmp___0 != 0) { return (1); } else { } } { tmp___2 = ieee80211_is_action((int )hdr->frame_control); } if (tmp___2 != 0) { { tmp___1 = ieee80211_has_protected((int )hdr->frame_control); } if (tmp___1 != 0) { return (1); } else { } category = (u8 *)hdr + 24UL; return ((bool )((((unsigned int )*category != 4U && (unsigned int )*category != 7U) && (unsigned int )*category != 15U) && (unsigned int )*category != 127U)); } else { } return (0); } } __inline static dma_addr_t pci_map_single(struct pci_dev *hwdev , void *ptr , size_t size , int direction ) { dma_addr_t tmp ; { { tmp = dma_map_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, ptr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); } return (tmp); } } __inline static int pci_dma_mapping_error(struct pci_dev *pdev , dma_addr_t dma_addr ) { int tmp ; { { tmp = dma_mapping_error(& pdev->dev, dma_addr); } return (tmp); } } __inline static bool is_multicast_ether_addr(u8 const *addr ) { { return (((int )*addr & 1) != 0); } } __inline static bool is_broadcast_ether_addr(u8 const *addr ) { { return ((unsigned int )(((int )((unsigned short )*((u16 const *)addr)) & (int )((unsigned short )*((u16 const *)addr + 2U))) & (int )((unsigned short )*((u16 const *)addr + 4U))) == 65535U); } } __inline static bool ether_addr_equal(u8 const *addr1 , u8 const *addr2 ) { u32 fold ; { fold = ((unsigned int )*((u32 const *)addr1) ^ (unsigned int )*((u32 const *)addr2)) | (unsigned int )((int )((unsigned short )*((u16 const *)addr1 + 4U)) ^ (int )((unsigned short )*((u16 const *)addr2 + 4U))); return (fold == 0U); } } __inline static struct ieee80211_hdr *rtl_get_hdr(struct sk_buff *skb ) { { return ((struct ieee80211_hdr *)skb->data); } } __inline static __le16 rtl_get_fc(struct sk_buff *skb ) { struct ieee80211_hdr *tmp ; { { tmp = rtl_get_hdr(skb); } return (tmp->frame_control); } } extern void rtl_get_tcb_desc(struct ieee80211_hw * , struct ieee80211_tx_info * , struct ieee80211_sta * , struct sk_buff * , struct rtl_tcb_desc * ) ; extern int rtlwifi_rate_mapping(struct ieee80211_hw * , bool , u8 , bool ) ; extern u8 rtl_query_rxpwrpercentage(char ) ; extern u8 rtl_evm_db_to_percentage(char ) ; extern long rtl_signal_scale_mapping(struct ieee80211_hw * , long ) ; extern void rtl_process_phyinfo(struct ieee80211_hw * , u8 * , struct rtl_stats * ) ; static u8 _rtl88ee_map_hwqueue_to_fwqueue(struct sk_buff *skb , u8 hw_queue ) { __le16 fc ; __le16 tmp ; int tmp___0 ; long tmp___1 ; int tmp___2 ; int tmp___3 ; { { tmp = rtl_get_fc(skb); fc = tmp; tmp___0 = ieee80211_is_beacon((int )fc); tmp___1 = ldv__builtin_expect(tmp___0 != 0, 0L); } if (tmp___1 != 0L) { return (16U); } else { } { tmp___2 = ieee80211_is_mgmt((int )fc); } if (tmp___2 != 0) { return (18U); } else { { tmp___3 = ieee80211_is_ctl((int )fc); } if (tmp___3 != 0) { return (18U); } else { } } return ((u8 )skb->priority); } } static void _rtl88ee_query_rxphystatus(struct ieee80211_hw *hw , struct rtl_stats *pstatus , u8 *pdesc , struct rx_fwinfo_88e *p_drvinfo , bool bpacket_match_bssid , bool bpacket_toself , bool packet_beacon ) { struct rtl_priv *rtlpriv ; struct rtl_ps_ctl *ppsc ; struct phy_sts_cck_8192s_t *cck_buf ; struct phy_status_rpt *phystrpt ; struct rtl_dm *rtldm ; char rx_pwr_all ; char rx_pwr[4U] ; u8 rf_rx_num ; u8 evm ; u8 pwdb_all ; u8 i ; u8 max_spatial_stream ; u32 rssi ; u32 total_rssi ; bool is_cck ; u8 lan_idx ; u8 vga_idx ; u8 cck_hipwr ; u8 cck_agc_rpt ; u32 tmp ; u8 sq ; bool tmp___0 ; u8 tmp___1 ; long tmp___2 ; long tmp___3 ; { rtlpriv = (struct rtl_priv *)hw->priv; ppsc = & rtlpriv->psc; phystrpt = (struct phy_status_rpt *)p_drvinfo; rtldm = & ((struct rtl_priv *)hw->priv)->dm; rx_pwr_all = 0; rf_rx_num = 0U; total_rssi = 0U; is_cck = pstatus->is_cck; pstatus->packet_matchbssid = bpacket_match_bssid; pstatus->packet_toself = bpacket_toself; pstatus->packet_beacon = packet_beacon; pstatus->rx_mimo_sig_qual[0] = -1; pstatus->rx_mimo_sig_qual[1] = -1; if ((int )is_cck) { cck_buf = (struct phy_sts_cck_8192s_t *)p_drvinfo; cck_agc_rpt = cck_buf->cck_agc_rpt; if ((unsigned int )ppsc->rfpwr_state == 0U) { { tmp = rtl_get_bbreg(hw, 2084U, 512U); cck_hipwr = (u8 )tmp; } } else { cck_hipwr = 0U; } lan_idx = (int )cck_agc_rpt >> 5; vga_idx = (unsigned int )cck_agc_rpt & 31U; { if ((int )lan_idx == 7) { goto case_7; } else { } if ((int )lan_idx == 6) { goto case_6; } else { } if ((int )lan_idx == 5) { goto case_5; } else { } if ((int )lan_idx == 4) { goto case_4; } else { } if ((int )lan_idx == 3) { goto case_3; } else { } if ((int )lan_idx == 2) { goto case_2; } else { } if ((int )lan_idx == 1) { goto case_1; } else { } if ((int )lan_idx == 0) { goto case_0; } else { } goto switch_default; case_7: /* CIL Label */ ; if ((unsigned int )vga_idx <= 27U) { rx_pwr_all = (char )((unsigned int )((unsigned char )(-23 - (int )vga_idx)) * 2U); } else { rx_pwr_all = -100; } goto ldv_51442; case_6: /* CIL Label */ rx_pwr_all = (char )((unsigned int )((unsigned char )(-22 - (int )vga_idx)) * 2U); goto ldv_51442; case_5: /* CIL Label */ rx_pwr_all = (char )((unsigned int )((unsigned char )(-14 - (int )vga_idx)) * 2U); goto ldv_51442; case_4: /* CIL Label */ rx_pwr_all = (char )((unsigned int )((unsigned char )(-11 - (int )vga_idx)) * 2U); goto ldv_51442; case_3: /* CIL Label */ rx_pwr_all = (char )((unsigned int )((unsigned char )(-5 - (int )vga_idx)) * 2U); goto ldv_51442; case_2: /* CIL Label */ ; if ((unsigned int )cck_hipwr != 0U) { rx_pwr_all = (char )((unsigned int )((unsigned char )(~ ((int )vga_idx))) * 2U); } else { rx_pwr_all = (char )((unsigned int )((unsigned char )(2 - (int )vga_idx)) * 2U); } goto ldv_51442; case_1: /* CIL Label */ rx_pwr_all = (char )((unsigned int )((unsigned char )(4 - (int )vga_idx)) * 2U); goto ldv_51442; case_0: /* CIL Label */ rx_pwr_all = (char )((unsigned int )((unsigned char )(7 - (int )vga_idx)) * 2U); goto ldv_51442; switch_default: /* CIL Label */ ; goto ldv_51442; switch_break: /* CIL Label */ ; } ldv_51442: { rx_pwr_all = (char )((unsigned int )((unsigned char )rx_pwr_all) + 6U); pwdb_all = rtl_query_rxpwrpercentage((int )rx_pwr_all); pwdb_all = (unsigned int )pwdb_all + 6U; } if ((unsigned int )pwdb_all > 100U) { pwdb_all = 100U; } else { } if ((unsigned int )pwdb_all - 35U <= 7U) { pwdb_all = (unsigned int )pwdb_all + 254U; } else if ((unsigned int )pwdb_all - 27U <= 7U) { pwdb_all = (unsigned int )pwdb_all + 250U; } else if ((unsigned int )pwdb_all - 15U <= 11U) { pwdb_all = (unsigned int )pwdb_all + 248U; } else if ((unsigned int )pwdb_all - 5U <= 9U) { pwdb_all = (unsigned int )pwdb_all + 252U; } else { } if ((unsigned int )cck_hipwr == 0U) { if ((unsigned int )pwdb_all > 79U) { pwdb_all = ((((unsigned int )pwdb_all + 176U) << 1U) + (unsigned int )((u8 )(((int )pwdb_all + -80) >> 1))) + 80U; } else if ((unsigned int )pwdb_all - 20U <= 58U) { pwdb_all = (unsigned int )pwdb_all + 3U; } else { } if ((unsigned int )pwdb_all > 100U) { pwdb_all = 100U; } else { } } else { } pstatus->rx_pwdb_all = (u32 )pwdb_all; pstatus->recvsignalpower = (s32 )rx_pwr_all; if ((int )bpacket_match_bssid) { if (pstatus->rx_pwdb_all > 40U) { sq = 100U; } else { sq = cck_buf->sq_rpt; if ((unsigned int )sq > 64U) { sq = 0U; } else if ((unsigned int )sq <= 19U) { sq = 100U; } else { sq = (u8 )(((int )sq * -100 + 6400) / 44); } } pstatus->signalquality = sq; pstatus->rx_mimo_sig_qual[0] = (s8 )sq; pstatus->rx_mimo_sig_qual[1] = -1; } else { } } else { tmp___0 = 1; rtlpriv->dm.rfpath_rxenable[1] = tmp___0; rtlpriv->dm.rfpath_rxenable[0] = tmp___0; i = 0U; goto ldv_51453; ldv_51452: ; if ((int )rtlpriv->dm.rfpath_rxenable[(int )i]) { rf_rx_num = (u8 )((int )rf_rx_num + 1); } else { } { rx_pwr[(int )i] = (char )((unsigned int )((unsigned char )(((int )p_drvinfo->gain_trsw[(int )i] & 63) + -55)) * 2U); tmp___1 = rtl_query_rxpwrpercentage((int )rx_pwr[(int )i]); rssi = (u32 )tmp___1; total_rssi = total_rssi + rssi; rtlpriv->stats.rx_snr_db[(int )i] = (long )((int )((signed char )p_drvinfo->rxsnr[(int )i]) / 2); } if ((int )bpacket_match_bssid) { pstatus->rx_mimo_signalstrength[(int )i] = (unsigned char )rssi; } else { } i = (u8 )((int )i + 1); ldv_51453: ; if ((unsigned int )i <= 1U) { goto ldv_51452; } else { } { rx_pwr_all = (char )((unsigned int )((int )p_drvinfo->pwdb_all >> 1) + 146U); pwdb_all = rtl_query_rxpwrpercentage((int )rx_pwr_all); pstatus->rx_pwdb_all = (u32 )pwdb_all; pstatus->rxpower = (s8 )rx_pwr_all; pstatus->recvsignalpower = (s32 )rx_pwr_all; } if (((int )pstatus->is_ht && (unsigned int )pstatus->rate > 19U) && (unsigned int )pstatus->rate <= 27U) { max_spatial_stream = 2U; } else { max_spatial_stream = 1U; } i = 0U; goto ldv_51456; ldv_51455: { evm = rtl_evm_db_to_percentage((int )p_drvinfo->rxevm[(int )i]); } if ((int )bpacket_match_bssid) { if ((unsigned int )i == 0U) { pstatus->signalquality = evm; } else { } pstatus->rx_mimo_sig_qual[(int )i] = (s8 )evm; } else { } i = (u8 )((int )i + 1); ldv_51456: ; if ((int )i < (int )max_spatial_stream) { goto ldv_51455; } else { } } if ((int )is_cck) { { tmp___2 = rtl_signal_scale_mapping(hw, (long )pwdb_all); pstatus->signalstrength = (unsigned char )tmp___2; } } else if ((unsigned int )rf_rx_num != 0U) { { total_rssi = total_rssi / (u32 )rf_rx_num; tmp___3 = rtl_signal_scale_mapping(hw, (long )total_rssi); pstatus->signalstrength = (unsigned char )tmp___3; } } else { } rtldm->fat_table.antsel_rx_keep_0 = phystrpt->ant_sel; rtldm->fat_table.antsel_rx_keep_1 = phystrpt->ant_sel_b; rtldm->fat_table.antsel_rx_keep_2 = phystrpt->antsel_rx_keep_2; return; } } static void _rtl88ee_smart_antenna(struct ieee80211_hw *hw , struct rtl_stats *pstatus ) { struct rtl_dm *rtldm ; struct rtl_efuse *rtlefuse ; u8 ant_mux ; struct fast_ant_training *pfat ; { rtldm = & ((struct rtl_priv *)hw->priv)->dm; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; pfat = & rtldm->fat_table; if ((unsigned int )rtlefuse->antenna_div_type == 4U) { if ((unsigned int )pfat->fat_state == 1U) { if ((int )pstatus->packet_toself) { ant_mux = (u8 )(((int )((signed char )((int )pfat->antsel_rx_keep_2 << 2)) | (int )((signed char )((int )pfat->antsel_rx_keep_1 << 1))) | (int )((signed char )pfat->antsel_rx_keep_0)); pfat->ant_sum[(int )ant_mux] = pfat->ant_sum[(int )ant_mux] + pstatus->rx_pwdb_all; pfat->ant_cnt[(int )ant_mux] = pfat->ant_cnt[(int )ant_mux] + 1U; } else { } } else { } } else if ((unsigned int )rtlefuse->antenna_div_type - 1U <= 1U) { if ((int )pstatus->packet_toself || (int )pstatus->packet_matchbssid) { { ant_mux = (u8 )(((int )((signed char )((int )pfat->antsel_rx_keep_2 << 2)) | (int )((signed char )((int )pfat->antsel_rx_keep_1 << 1))) | (int )((signed char )pfat->antsel_rx_keep_0)); rtl88e_dm_ant_sel_statistics(hw, (int )ant_mux, 0U, pstatus->rx_pwdb_all); } } else { } } else { } return; } } static void _rtl88ee_translate_rx_signal_stuff(struct ieee80211_hw *hw , struct sk_buff *skb , struct rtl_stats *pstatus , u8 *pdesc , struct rx_fwinfo_88e *p_drvinfo ) { struct rtl_mac *mac ; struct rtl_efuse *rtlefuse ; struct ieee80211_hdr *hdr ; u8 *tmp_buf ; u8 *praddr ; u8 *psaddr ; __le16 fc ; u16 type ; u16 ufc ; bool match_bssid ; bool packet_toself ; bool packet_beacon ; bool addr ; int tmp ; { { mac = & ((struct rtl_priv *)hw->priv)->mac80211; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; tmp_buf = skb->data + ((unsigned long )pstatus->rx_drvinfo_size + (unsigned long )pstatus->rx_bufshift); hdr = (struct ieee80211_hdr *)tmp_buf; fc = hdr->frame_control; ufc = fc; type = (unsigned int )fc & 12U; praddr = (u8 *)(& hdr->addr1); psaddr = ieee80211_get_SA(hdr); memcpy((void *)(& pstatus->psaddr), (void const *)psaddr, 6UL); addr = ether_addr_equal((u8 const *)(& mac->bssid), (u8 const *)(((int )ufc & 256) != 0 ? & hdr->addr1 : (((int )ufc & 512) != 0 ? & hdr->addr2 : & hdr->addr3))); match_bssid = (bool )(((unsigned int )type != 4U && (unsigned int )*((unsigned char *)pstatus + 58UL) == 0U) && (int )addr); addr = ether_addr_equal((u8 const *)praddr, (u8 const *)(& rtlefuse->dev_addr)); packet_toself = (bool )((int )match_bssid && (int )addr); tmp = ieee80211_is_beacon((int )fc); } if (tmp != 0) { packet_beacon = 1; } else { } { _rtl88ee_query_rxphystatus(hw, pstatus, pdesc, p_drvinfo, (int )match_bssid, (int )packet_toself, (int )packet_beacon); _rtl88ee_smart_antenna(hw, pstatus); rtl_process_phyinfo(hw, tmp_buf, pstatus); } return; } } static void insert_em(struct rtl_tcb_desc *ptcb_desc , u8 *virtualaddress ) { u32 dwtmp ; { { dwtmp = 0U; memset((void *)virtualaddress, 0, 8UL); *((u32 *)virtualaddress) = (*((__le32 *)virtualaddress) & 4294967280U) | ((__le32 )ptcb_desc->empkt_num & 15U); } if ((unsigned int )ptcb_desc->empkt_num == 1U) { dwtmp = ptcb_desc->empkt_len[0]; } else { dwtmp = ptcb_desc->empkt_len[0]; dwtmp = dwtmp + ((dwtmp & 3U) != 0U ? 8U - (dwtmp & 3U) : 4U); dwtmp = dwtmp + ptcb_desc->empkt_len[1]; } *((u32 *)virtualaddress) = (*((__le32 *)virtualaddress) & 4294901775U) | ((dwtmp << 4) & 65535U); if ((unsigned int )ptcb_desc->empkt_num <= 3U) { dwtmp = ptcb_desc->empkt_len[2]; } else { dwtmp = ptcb_desc->empkt_len[2]; dwtmp = dwtmp + ((dwtmp & 3U) != 0U ? 8U - (dwtmp & 3U) : 4U); dwtmp = dwtmp + ptcb_desc->empkt_len[3]; } *((u32 *)virtualaddress) = (*((__le32 *)virtualaddress) & 4026597375U) | ((dwtmp & 4095U) << 16); if ((unsigned int )ptcb_desc->empkt_num <= 5U) { dwtmp = ptcb_desc->empkt_len[4]; } else { dwtmp = ptcb_desc->empkt_len[4]; dwtmp = dwtmp + ((dwtmp & 3U) != 0U ? 8U - (dwtmp & 3U) : 4U); dwtmp = dwtmp + ptcb_desc->empkt_len[5]; } *((u32 *)virtualaddress) = (*((__le32 *)virtualaddress) & 268435455U) | (dwtmp << 28); *((u32 *)virtualaddress + 4U) = (*((__le32 *)virtualaddress + 4U) & 4294967040U) | ((dwtmp >> 4) & 255U); if ((unsigned int )ptcb_desc->empkt_num <= 7U) { dwtmp = ptcb_desc->empkt_len[6]; } else { dwtmp = ptcb_desc->empkt_len[6]; dwtmp = dwtmp + ((dwtmp & 3U) != 0U ? 8U - (dwtmp & 3U) : 4U); dwtmp = dwtmp + ptcb_desc->empkt_len[7]; } *((u32 *)virtualaddress + 4U) = (*((__le32 *)virtualaddress + 4U) & 4293918975U) | ((dwtmp & 4095U) << 8); if ((unsigned int )ptcb_desc->empkt_num <= 9U) { dwtmp = ptcb_desc->empkt_len[8]; } else { dwtmp = ptcb_desc->empkt_len[8]; dwtmp = dwtmp + ((dwtmp & 3U) != 0U ? 8U - (dwtmp & 3U) : 4U); dwtmp = dwtmp + ptcb_desc->empkt_len[9]; } *((u32 *)virtualaddress + 4U) = (*((__le32 *)virtualaddress + 4U) & 1048575U) | (dwtmp << 20); return; } } bool rtl88ee_rx_query_desc(struct ieee80211_hw *hw , struct rtl_stats *status , struct ieee80211_rx_status *rx_status , u8 *pdesc , struct sk_buff *skb ) { struct rtl_priv *rtlpriv ; struct rx_fwinfo_88e *p_drvinfo ; struct ieee80211_hdr *hdr ; u32 phystatus ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; bool tmp___3 ; int tmp___4 ; int tmp___5 ; { rtlpriv = (struct rtl_priv *)hw->priv; phystatus = (*((__le32 *)pdesc) >> 26) & 1U; status->packet_report_type = (unsigned int )((unsigned char )(*((__le32 *)pdesc + 12U) >> 14)) & 3U; if ((unsigned int )status->packet_report_type == 2U) { status->length = (unsigned int )((unsigned short )*((__le32 *)pdesc)) & 511U; } else { status->length = (unsigned int )((unsigned short )*((__le32 *)pdesc)) & 16383U; } status->rx_drvinfo_size = ((unsigned int )((u8 )(*((__le32 *)pdesc) >> 16)) & 15U) * 8U; status->rx_bufshift = (unsigned int )((unsigned char )(*((__le32 *)pdesc) >> 24)) & 3U; status->icv = (unsigned int )((unsigned char )(*((__le32 *)pdesc) >> 15)) & 1U; status->crc = (unsigned int )((unsigned char )(*((__le32 *)pdesc) >> 14)) & 1U; status->hwerror = (int )((unsigned char )status->crc) | (int )((unsigned char )status->icv); status->decrypted = (*((__le32 *)pdesc) & 134217728U) == 0U; status->rate = (unsigned int )((unsigned char )*((__le32 *)pdesc + 12U)) & 63U; status->shortpreamble = (unsigned int )((unsigned char )(*((__le32 *)pdesc + 12U) >> 8)) & 1U; status->isampdu = (*((__le32 *)pdesc + 4U) & 16384U) != 0U; status->isfirst_ampdu = (*((__le32 *)pdesc + 4U) & 49152U) == 49152U; if ((unsigned int )status->packet_report_type == 0U) { status->timestamp_low = *((__le32 *)pdesc + 20U); } else { } status->rx_is40Mhzpacket = (*((__le32 *)pdesc + 12U) & 512U) != 0U; status->is_ht = (*((__le32 *)pdesc + 12U) & 64U) != 0U; status->is_cck = (unsigned int )status->rate <= 3U; status->macid = *((__le32 *)pdesc + 4U) & 63U; if ((int )*((__le32 *)pdesc + 12U) < 0) { status->wake_match = 4U; } else if ((int )*((__le32 *)pdesc + 12U) < 0) { status->wake_match = 2U; } else if ((*((__le32 *)pdesc + 12U) & 1073741824U) != 0U) { status->wake_match = 1U; } else { status->wake_match = 0U; } if ((unsigned int )status->wake_match != 0U) { { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4096ULL) != 0ULL, 0L); } if (tmp___1 != 0L) { { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___2 != 0L) { { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> Get Wakeup Packet!! WakeMatch =%d\n", "rtl88ee_rx_query_desc", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )status->wake_match); } } else { } } else { } } else { } rx_status->freq = (hw->conf.chandef.chan)->center_freq; rx_status->band = (u8 )(hw->conf.chandef.chan)->band; if ((unsigned int )*((unsigned char *)status + 58UL) != 0U) { rx_status->flag = rx_status->flag | 32U; } else { } if ((int )status->rx_is40Mhzpacket) { rx_status->flag = rx_status->flag | 1024U; } else { } if ((int )status->is_ht) { rx_status->flag = rx_status->flag | 512U; } else { } rx_status->flag = rx_status->flag | 128U; if ((unsigned int )*((unsigned char *)status + 58UL) != 0U) { hdr = (struct ieee80211_hdr *)(skb->data + ((unsigned long )status->rx_drvinfo_size + (unsigned long )status->rx_bufshift)); if ((unsigned long )hdr == (unsigned long )((struct ieee80211_hdr *)0)) { return (0); } else { } { tmp___3 = ieee80211_is_robust_mgmt_frame(hdr); } if ((int )tmp___3) { { tmp___4 = ieee80211_has_protected((int )hdr->frame_control); } if (tmp___4 != 0) { rx_status->flag = rx_status->flag & 4294967293U; } else { rx_status->flag = rx_status->flag | 2U; } } else { rx_status->flag = rx_status->flag | 2U; } } else { } { tmp___5 = rtlwifi_rate_mapping(hw, (int )status->is_ht, (int )status->rate, 0); rx_status->rate_idx = (u8 )tmp___5; rx_status->mactime = (u64 )status->timestamp_low; } if (phystatus == 1U) { { p_drvinfo = (struct rx_fwinfo_88e *)skb->data + (unsigned long )status->rx_bufshift; _rtl88ee_translate_rx_signal_stuff(hw, skb, status, pdesc, p_drvinfo); } } else { } rx_status->signal = (s8 )((unsigned int )((unsigned char )status->recvsignalpower) + 10U); if ((unsigned int )status->packet_report_type == 2U) { status->macid_valid_entry[0] = *((__le32 *)pdesc + 16U); status->macid_valid_entry[1] = *((__le32 *)pdesc + 20U); } else { } return (1); } } void rtl88ee_tx_fill_desc(struct ieee80211_hw *hw , struct ieee80211_hdr *hdr , u8 *pdesc_tx , struct ieee80211_tx_info *info , struct ieee80211_sta *sta , struct sk_buff *skb , u8 hw_queue , struct rtl_tcb_desc *ptcb_desc ) { struct rtl_priv *rtlpriv ; struct rtl_mac *mac ; struct rtl_pci *rtlpci ; struct rtl_hal *rtlhal ; u8 *pdesc ; u16 seq_number ; __le16 fc ; unsigned int buf_len ; unsigned int skb_len ; u8 fw_qsel ; u8 tmp ; bool firstseg ; bool lastseg ; dma_addr_t mapping ; u8 bw_40 ; u8 short_gi ; int tmp___0 ; int tmp___1 ; long tmp___2 ; long tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; u8 ampdu_density ; struct ieee80211_key_conf *keyconf ; int tmp___11 ; int tmp___12 ; long tmp___13 ; long tmp___14 ; int tmp___15 ; int tmp___16 ; int tmp___17 ; u8 *tmp___18 ; bool tmp___19 ; u8 *tmp___20 ; bool tmp___21 ; int tmp___22 ; int tmp___23 ; long tmp___24 ; long tmp___25 ; { { rtlpriv = (struct rtl_priv *)hw->priv; mac = & ((struct rtl_priv *)hw->priv)->mac80211; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; rtlhal = & rtlpriv->rtlhal; pdesc = pdesc_tx; fc = hdr->frame_control; buf_len = 0U; skb_len = skb->len; tmp = _rtl88ee_map_hwqueue_to_fwqueue(skb, (int )hw_queue); fw_qsel = tmp; firstseg = ((int )hdr->seq_ctrl & 15) == 0; lastseg = ((int )hdr->frame_control & 1024) == 0; bw_40 = 0U; short_gi = 0U; } if ((unsigned int )mac->opmode == 2U) { bw_40 = mac->bw_40; } else if ((unsigned int )mac->opmode == 3U || (unsigned int )mac->opmode == 1U) { if ((unsigned long )sta != (unsigned long )((struct ieee80211_sta *)0)) { bw_40 = (unsigned int )((u8 )sta->ht_cap.cap) & 2U; } else { } } else { } { seq_number = (u16 )((int )hdr->seq_ctrl >> 4); rtl_get_tcb_desc(hw, info, sta, skb, ptcb_desc); } if ((int )rtlhal->earlymode_enable) { { skb_push(skb, 8U); memset((void *)skb->data, 0, 8UL); } } else { } { buf_len = skb->len; mapping = pci_map_single(rtlpci->pdev, (void *)skb->data, (size_t )skb->len, 1); tmp___4 = pci_dma_mapping_error(rtlpci->pdev, mapping); } if (tmp___4 != 0) { { tmp___2 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 16ULL) != 0ULL, 0L); } if (tmp___2 != 0L) { { tmp___3 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___3 != 0L) { { tmp___0 = preempt_count(); tmp___1 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> DMA mapping error", "rtl88ee_tx_fill_desc", (unsigned long )tmp___1 & 2096896UL, ((unsigned long )tmp___0 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } else { } { memset((void *)pdesc, 0, 40UL); tmp___5 = ieee80211_is_nullfunc((int )fc); } if (tmp___5 != 0) { firstseg = 1; lastseg = 1; } else { { tmp___6 = ieee80211_is_ctl((int )fc); } if (tmp___6 != 0) { firstseg = 1; lastseg = 1; } else { } } if ((int )firstseg) { if ((int )rtlhal->earlymode_enable) { *((u32 *)pdesc + 4U) = (*((__le32 *)pdesc + 4U) & 2214592511U) | 67108864U; *((u32 *)pdesc) = (*((__le32 *)pdesc) & 4278255615U) | 2621440U; if ((unsigned int )ptcb_desc->empkt_num != 0U) { { tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 16ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___10 != 0L) { { tmp___7 = preempt_count(); tmp___8 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> Insert 8 byte.pTcb->EMPktNum:%d\n", "rtl88ee_tx_fill_desc", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL, (int )ptcb_desc->empkt_num); } } else { } } else { } { insert_em(ptcb_desc, skb->data); } } else { } } else { *((u32 *)pdesc) = (*((__le32 *)pdesc) & 4278255615U) | 2097152U; } ptcb_desc->use_driver_rate = 1U; *((u32 *)pdesc + 20U) = (*((__le32 *)pdesc + 20U) & 4294967232U) | ((__le32 )ptcb_desc->hw_rate & 63U); if ((unsigned int )ptcb_desc->hw_rate > 12U) { short_gi = (unsigned int )*((unsigned char *)ptcb_desc + 3UL) & 1U; } else { short_gi = (unsigned int )*((unsigned char *)ptcb_desc + 3UL) != 0U; } *((u32 *)pdesc + 20U) = (*((__le32 *)pdesc + 20U) & 4294967231U) | (((unsigned int )short_gi & 1U) << 6); if ((info->flags & 64U) != 0U) { *((u32 *)pdesc + 8U) = *((__le32 *)pdesc + 8U) | 4096U; *((u32 *)pdesc + 24U) = (*((__le32 *)pdesc + 24U) & 4294903807U) | 40960U; } else { } *((u32 *)pdesc + 12U) = (*((__le32 *)pdesc + 12U) & 4026597375U) | (((unsigned int )seq_number & 4095U) << 16); *((u32 *)pdesc + 16U) = (*((__le32 *)pdesc + 16U) & 4294963199U) | ((unsigned int )*((unsigned char *)ptcb_desc + 0UL) == 16U ? 4096U : 0U); *((u32 *)pdesc + 16U) = *((__le32 *)pdesc + 16U) & 4294959103U; *((u32 *)pdesc + 16U) = (*((__le32 *)pdesc + 16U) & 4294965247U) | ((unsigned int )*((unsigned char *)ptcb_desc + 0UL) != 0U ? 2048U : 0U); *((u32 *)pdesc + 16U) = (*((__le32 *)pdesc + 16U) & 1073741823U) | ((unsigned int )*((unsigned char *)ptcb_desc + 0UL) != 0U ? 1073741824U : 0U); *((u32 *)pdesc + 16U) = (*((__le32 *)pdesc + 16U) & 4294967264U) | ((__le32 )ptcb_desc->rts_rate & 31U); *((u32 *)pdesc + 16U) = *((__le32 *)pdesc + 16U) & 4160749567U; *((u32 *)pdesc + 16U) = (*((__le32 *)pdesc + 16U) & 3489660927U) | ((unsigned int )ptcb_desc->rts_sc << 28); *((u32 *)pdesc + 16U) = (*((__le32 *)pdesc + 16U) & 4227858431U) | ((unsigned int )ptcb_desc->rts_rate <= 11U ? ((unsigned int )*((unsigned char *)ptcb_desc + 0UL) != 0U ? 67108864U : 0U) : ((unsigned int )*((unsigned char *)ptcb_desc + 0UL) != 0U ? 67108864U : 0U)); if ((int )ptcb_desc->btx_enable_sw_calc_duration) { *((u32 *)pdesc + 4U) = *((__le32 *)pdesc + 4U) | 1048576U; } else { } if ((unsigned int )bw_40 != 0U) { if ((unsigned int )*((unsigned char *)ptcb_desc + 0UL) != 0U) { *((u32 *)pdesc + 16U) = *((__le32 *)pdesc + 16U) | 33554432U; *((u32 *)pdesc + 16U) = *((__le32 *)pdesc + 16U) | 3145728U; } else { *((u32 *)pdesc + 16U) = *((__le32 *)pdesc + 16U) & 4261412863U; *((u32 *)pdesc + 16U) = (*((__le32 *)pdesc + 16U) & 4291821567U) | (((unsigned int )mac->cur_40_prime_sc & 3U) << 20); } } else { *((u32 *)pdesc + 16U) = *((__le32 *)pdesc + 16U) & 4261412863U; *((u32 *)pdesc + 16U) = *((__le32 *)pdesc + 16U) & 4291821567U; } *((u32 *)pdesc) = *((__le32 *)pdesc) & 4026531839U; *((u32 *)pdesc) = (*((__le32 *)pdesc) & 4294901760U) | (__le32 )((unsigned short )skb_len); if ((unsigned long )sta != (unsigned long )((struct ieee80211_sta *)0)) { ampdu_density = sta->ht_cap.ampdu_density; *((u32 *)pdesc + 8U) = (*((__le32 *)pdesc + 8U) & 4287627263U) | (((unsigned int )ampdu_density & 7U) << 20); } else { } if ((unsigned long )info->__annonCompField79.control.hw_key != (unsigned long )((struct ieee80211_key_conf *)0)) { keyconf = info->__annonCompField79.control.hw_key; { if (keyconf->cipher == 1027073U) { goto case_1027073; } else { } if (keyconf->cipher == 1027077U) { goto case_1027077; } else { } if (keyconf->cipher == 1027074U) { goto case_1027074; } else { } if (keyconf->cipher == 1027076U) { goto case_1027076; } else { } goto switch_default; case_1027073: /* CIL Label */ ; case_1027077: /* CIL Label */ ; case_1027074: /* CIL Label */ *((u32 *)pdesc + 4U) = (*((__le32 *)pdesc + 4U) & 4282384383U) | 4194304U; goto ldv_51534; case_1027076: /* CIL Label */ *((u32 *)pdesc + 4U) = *((__le32 *)pdesc + 4U) | 12582912U; goto ldv_51534; switch_default: /* CIL Label */ *((u32 *)pdesc + 4U) = *((__le32 *)pdesc + 4U) & 4282384383U; goto ldv_51534; switch_break: /* CIL Label */ ; } ldv_51534: ; } else { } { *((u32 *)pdesc + 4U) = (*((__le32 *)pdesc + 4U) & 4294959359U) | (((unsigned int )fw_qsel & 31U) << 8); *((u32 *)pdesc + 20U) = *((__le32 *)pdesc + 20U) | 7936U; *((u32 *)pdesc + 20U) = *((__le32 *)pdesc + 20U) | 122880U; *((u32 *)pdesc + 16U) = (*((__le32 *)pdesc + 16U) & 4294966271U) | ((unsigned int )*((unsigned char *)ptcb_desc + 3UL) != 0U ? 1024U : 0U); *((u32 *)pdesc + 16U) = (*((__le32 *)pdesc + 16U) & 4294967039U) | ((unsigned int )*((unsigned char *)ptcb_desc + 3UL) != 0U ? 256U : 0U); tmp___15 = ieee80211_is_data_qos((int )fc); } if (tmp___15 != 0) { if ((int )mac->rdg_en) { { tmp___13 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 16ULL) != 0ULL, 0L); } if (tmp___13 != 0L) { { tmp___14 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___14 != 0L) { { tmp___11 = preempt_count(); tmp___12 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> Enable RDG function.\n", "rtl88ee_tx_fill_desc", (unsigned long )tmp___12 & 2096896UL, ((unsigned long )tmp___11 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } *((u32 *)pdesc + 8U) = *((__le32 *)pdesc + 8U) | 8192U; *((u32 *)pdesc) = *((__le32 *)pdesc) | 33554432U; } else { } } else { } } else { } *((u32 *)pdesc) = (*((__le32 *)pdesc) & 4160749567U) | ((int )firstseg ? 134217728U : 0U); *((u32 *)pdesc) = (*((__le32 *)pdesc) & 4227858431U) | ((int )lastseg ? 67108864U : 0U); *((u32 *)pdesc + 28U) = (*((__le32 *)pdesc + 28U) & 4294901760U) | (__le32 )((unsigned short )buf_len); *((u32 *)pdesc + 32U) = (__le32 )mapping; if ((int )rtlpriv->dm.useramask) { *((u32 *)pdesc + 4U) = (*((__le32 *)pdesc + 4U) & 4293984255U) | (((unsigned int )ptcb_desc->ratr_index & 15U) << 16); *((u32 *)pdesc + 4U) = (*((__le32 *)pdesc + 4U) & 4294967232U) | ((__le32 )ptcb_desc->mac_id & 63U); } else { *((u32 *)pdesc + 4U) = (*((__le32 *)pdesc + 4U) & 4293984255U) | ((((unsigned int )ptcb_desc->ratr_index + 12U) & 15U) << 16); *((u32 *)pdesc + 4U) = (*((__le32 *)pdesc + 4U) & 4294967232U) | ((__le32 )ptcb_desc->ratr_index & 63U); } { tmp___16 = ieee80211_is_data_qos((int )fc); } if (tmp___16 != 0) { *((u32 *)pdesc + 16U) = *((__le32 *)pdesc + 16U) | 64U; } else { } { tmp___17 = ieee80211_is_data_qos((int )fc); } if (tmp___17 == 0) { *((u32 *)pdesc + 12U) = *((__le32 *)pdesc + 12U) | 2147483648U; } else { } { *((u32 *)pdesc + 8U) = (*((__le32 *)pdesc + 8U) & 4294836223U) | ((unsigned int )(! lastseg) << 17); tmp___18 = ieee80211_get_DA(hdr); tmp___19 = is_multicast_ether_addr((u8 const *)tmp___18); } if ((int )tmp___19) { *((u32 *)pdesc) = *((__le32 *)pdesc) | 16777216U; } else { { tmp___20 = ieee80211_get_DA(hdr); tmp___21 = is_broadcast_ether_addr((u8 const *)tmp___20); } if ((int )tmp___21) { *((u32 *)pdesc) = *((__le32 *)pdesc) | 16777216U; } else { } } { rtl88e_dm_set_tx_ant_by_tx_info(hw, pdesc, (u32 )ptcb_desc->mac_id); tmp___24 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 16ULL) != 0ULL, 0L); } if (tmp___24 != 0L) { { tmp___25 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___25 != 0L) { { tmp___22 = preempt_count(); tmp___23 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> \n", "rtl88ee_tx_fill_desc", (unsigned long )tmp___23 & 2096896UL, ((unsigned long )tmp___22 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } } void rtl88ee_tx_fill_cmddesc(struct ieee80211_hw *hw , u8 *pdesc , bool firstseg , bool lastseg , struct sk_buff *skb ) { struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; u8 fw_queue ; dma_addr_t mapping ; dma_addr_t tmp ; struct ieee80211_hdr *hdr ; __le16 fc ; int tmp___0 ; int tmp___1 ; long tmp___2 ; long tmp___3 ; int tmp___4 ; int tmp___5 ; struct task_struct *tmp___6 ; struct task_struct *tmp___7 ; struct _ddebug descriptor ; long tmp___8 ; long tmp___9 ; long tmp___10 ; { { rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; fw_queue = 16U; tmp = pci_map_single(rtlpci->pdev, (void *)skb->data, (size_t )skb->len, 1); mapping = tmp; hdr = (struct ieee80211_hdr *)skb->data; fc = hdr->frame_control; tmp___4 = pci_dma_mapping_error(rtlpci->pdev, mapping); } if (tmp___4 != 0) { { tmp___2 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 16ULL) != 0ULL, 0L); } if (tmp___2 != 0L) { { tmp___3 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); } if (tmp___3 != 0L) { { tmp___0 = preempt_count(); tmp___1 = preempt_count(); printk("\017rtl8188ee:%s():<%lx-%x> DMA mapping error", "rtl88ee_tx_fill_cmddesc", (unsigned long )tmp___1 & 2096896UL, ((unsigned long )tmp___0 & 0xffffffffffdfffffUL) != 0UL); } } else { } } else { } return; } else { } { memset((void *)pdesc, 0, 40UL); } if ((int )firstseg) { *((u32 *)pdesc) = (*((__le32 *)pdesc) & 4278255615U) | 2097152U; } else { } { *((u32 *)pdesc + 20U) = *((__le32 *)pdesc + 20U) & 4294967232U; *((u32 *)pdesc + 12U) = *((__le32 *)pdesc + 12U) & 4026597375U; *((u32 *)pdesc) = *((__le32 *)pdesc) & 4026531839U; *((u32 *)pdesc + 4U) = (*((__le32 *)pdesc + 4U) & 4294959359U) | (((unsigned int )fw_queue & 31U) << 8); *((u32 *)pdesc) = *((__le32 *)pdesc) | 134217728U; *((u32 *)pdesc) = *((__le32 *)pdesc) | 67108864U; *((u32 *)pdesc + 28U) = (*((__le32 *)pdesc + 28U) & 4294901760U) | (__le32 )((unsigned short )skb->len); *((u32 *)pdesc + 32U) = (__le32 )mapping; *((u32 *)pdesc + 4U) = (*((__le32 *)pdesc + 4U) & 4293984255U) | 458752U; *((u32 *)pdesc + 4U) = *((__le32 *)pdesc + 4U) & 4294967232U; *((u32 *)pdesc) = *((__le32 *)pdesc) | 2147483648U; *((u32 *)pdesc) = (*((__le32 *)pdesc) & 4294901760U) | (__le32 )((unsigned short )skb->len); *((u32 *)pdesc) = *((__le32 *)pdesc) | 134217728U; *((u32 *)pdesc) = *((__le32 *)pdesc) | 67108864U; *((u32 *)pdesc) = (*((__le32 *)pdesc) & 4278255615U) | 2097152U; *((u32 *)pdesc + 16U) = *((__le32 *)pdesc + 16U) | 256U; tmp___5 = ieee80211_is_data_qos((int )fc); } if (tmp___5 == 0) { *((u32 *)pdesc + 12U) = *((__le32 *)pdesc + 12U) | 2147483648U; } else { } { tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); } if (tmp___9 != 0L) { { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); } if (tmp___10 != 0L) { { tmp___6 = get_current(); tmp___7 = get_current(); printk("\017%s: In process \"%s\" (pid %i): %s\n", (char *)"rtl8188ee", (char *)(& tmp___7->comm), tmp___6->pid, (char *)"H2C Tx Cmd Content\n"); descriptor.modname = "rtl8188ee"; descriptor.function = "rtl88ee_tx_fill_cmddesc"; descriptor.filename = "drivers/net/wireless/rtlwifi/rtl8188ee/trx.c"; descriptor.format = ""; descriptor.lineno = 734U; descriptor.flags = 0U; tmp___8 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___8 != 0L) { { print_hex_dump("\017", "", 0, 16, 1, (void const *)pdesc, 64UL, 1); } } else { } } else { } } else { } return; } } void rtl88ee_set_desc(u8 *pdesc , bool istx , u8 desc_name , u8 *val ) { { if ((int )istx) { { if ((int )desc_name == 0) { goto case_0; } else { } if ((int )desc_name == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ *((u32 *)pdesc) = *((__le32 *)pdesc) | 2147483648U; goto ldv_51559; case_2: /* CIL Label */ *((u32 *)pdesc + 40U) = *((u32 *)val); goto ldv_51559; switch_default: /* CIL Label */ { printk("\017rtl8188ee:%s(): ERR txdesc :%d not processed\n", "rtl88ee_set_desc", (int )desc_name); } goto ldv_51559; switch_break: /* CIL Label */ ; } ldv_51559: ; } else { { if ((int )desc_name == 1) { goto case_1; } else { } if ((int )desc_name == 4) { goto case_4; } else { } if ((int )desc_name == 5) { goto case_5; } else { } if ((int )desc_name == 6) { goto case_6; } else { } goto switch_default___0; case_1: /* CIL Label */ *((u32 *)pdesc) = *((__le32 *)pdesc) | 2147483648U; goto ldv_51564; case_4: /* CIL Label */ *((u32 *)pdesc + 24U) = *((u32 *)val); goto ldv_51564; case_5: /* CIL Label */ *((u32 *)pdesc) = (*((__le32 *)pdesc) & 4294950912U) | (*((u32 *)val) & 16383U); goto ldv_51564; case_6: /* CIL Label */ *((u32 *)pdesc) = *((__le32 *)pdesc) | 1073741824U; goto ldv_51564; switch_default___0: /* CIL Label */ { printk("\017rtl8188ee:%s(): ERR rxdesc :%d not processed\n", "rtl88ee_set_desc", (int )desc_name); } goto ldv_51564; switch_break___0: /* CIL Label */ ; } ldv_51564: ; } return; } } u32 rtl88ee_get_desc(u8 *pdesc , bool istx , u8 desc_name ) { u32 ret ; { ret = 0U; if ((int )istx) { { if ((int )desc_name == 0) { goto case_0; } else { } if ((int )desc_name == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ ret = *((__le32 *)pdesc) >> 31; goto ldv_51576; case_3: /* CIL Label */ ret = *((__le32 *)pdesc + 32U); goto ldv_51576; switch_default: /* CIL Label */ { printk("\017rtl8188ee:%s(): ERR txdesc :%d not processed\n", "rtl88ee_get_desc", (int )desc_name); } goto ldv_51576; switch_break: /* CIL Label */ ; } ldv_51576: ; } else { { if ((int )desc_name == 0) { goto case_0___0; } else { } if ((int )desc_name == 5) { goto case_5; } else { } goto switch_default___0; case_0___0: /* CIL Label */ ret = *((__le32 *)pdesc) >> 31; goto ldv_51581; case_5: /* CIL Label */ ret = *((__le32 *)pdesc) & 16383U; goto ldv_51581; switch_default___0: /* CIL Label */ { printk("\017rtl8188ee:%s(): ERR rxdesc :%d not processed\n", "rtl88ee_get_desc", (int )desc_name); } goto ldv_51581; switch_break___0: /* CIL Label */ ; } ldv_51581: ; } return (ret); } } void rtl88ee_tx_polling(struct ieee80211_hw *hw , u8 hw_queue ) { struct rtl_priv *rtlpriv ; { rtlpriv = (struct rtl_priv *)hw->priv; if ((unsigned int )hw_queue == 4U) { { rtl_write_word(rtlpriv, 768U, 16); } } else { { rtl_write_word(rtlpriv, 768U, (int )((u16 )(1UL << (int )hw_queue))); } } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2200UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } extern void ldv_check_alloc_flags(gfp_t ) ; extern void ldv_after_alloc(void * ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *external_allocated_data(void) ; void *ldv_malloc_unknown_size(void) ; void *ldv_calloc_unknown_size(void) ; void *ldv_zalloc_unknown_size(void) ; void *ldv_xmalloc_unknown_size(size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_malloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; memset(res, 0, 8UL); ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc_unknown_size(void) { void *tmp ; { { tmp = ldv_calloc_unknown_size(); } return (tmp); } } void *ldv_xmalloc_unknown_size(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_undef_ptr(void) ; unsigned long ldv_undef_ulong(void) ; int ldv_undef_int_negative(void) ; int ldv_undef_int_nonpositive(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { { tmp = __VERIFIER_nondet_pointer(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_spin__xmit_lock_of_netdev_queue = 1; void ldv_spin_lock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_spin__xmit_lock_of_netdev_queue = 2; } return; } } void ldv_spin_unlock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_spin__xmit_lock_of_netdev_queue = 1; } return; } } int ldv_spin_trylock__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } } } void ldv_spin_unlock_wait__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); } return; } } int ldv_spin_is_locked__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin__xmit_lock_of_netdev_queue == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock__xmit_lock_of_netdev_queue(void) { int tmp ; { { tmp = ldv_spin_is_locked__xmit_lock_of_netdev_queue(); } return (tmp == 0); } } int ldv_spin_is_contended__xmit_lock_of_netdev_queue(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock__xmit_lock_of_netdev_queue(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } else { } return (0); } } static int ldv_spin_addr_list_lock_of_net_device = 1; void ldv_spin_lock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); ldv_spin_addr_list_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_addr_list_lock_of_net_device == 2); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 2); ldv_spin_addr_list_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_addr_list_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_addr_list_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_addr_list_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_addr_list_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_addr_list_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } else { } return (0); } } static int ldv_spin_alloc_lock_of_task_struct = 1; void ldv_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); ldv_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 2); ldv_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_entry_list_lock_of_rtl_locks = 1; void ldv_spin_lock_entry_list_lock_of_rtl_locks(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_entry_list_lock_of_rtl_locks == 1); ldv_assume(ldv_spin_entry_list_lock_of_rtl_locks == 1); ldv_spin_entry_list_lock_of_rtl_locks = 2; } return; } } void ldv_spin_unlock_entry_list_lock_of_rtl_locks(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_entry_list_lock_of_rtl_locks == 2); ldv_assume(ldv_spin_entry_list_lock_of_rtl_locks == 2); ldv_spin_entry_list_lock_of_rtl_locks = 1; } return; } } int ldv_spin_trylock_entry_list_lock_of_rtl_locks(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_entry_list_lock_of_rtl_locks == 1); ldv_assume(ldv_spin_entry_list_lock_of_rtl_locks == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_entry_list_lock_of_rtl_locks = 2; return (1); } } } void ldv_spin_unlock_wait_entry_list_lock_of_rtl_locks(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_entry_list_lock_of_rtl_locks == 1); ldv_assume(ldv_spin_entry_list_lock_of_rtl_locks == 1); } return; } } int ldv_spin_is_locked_entry_list_lock_of_rtl_locks(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_entry_list_lock_of_rtl_locks == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_entry_list_lock_of_rtl_locks(void) { int tmp ; { { tmp = ldv_spin_is_locked_entry_list_lock_of_rtl_locks(); } return (tmp == 0); } } int ldv_spin_is_contended_entry_list_lock_of_rtl_locks(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_entry_list_lock_of_rtl_locks(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_entry_list_lock_of_rtl_locks == 1); ldv_assume(ldv_spin_entry_list_lock_of_rtl_locks == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_entry_list_lock_of_rtl_locks = 2; return (1); } else { } return (0); } } static int ldv_spin_fw_ps_lock_of_rtl_locks = 1; void ldv_spin_lock_fw_ps_lock_of_rtl_locks(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_fw_ps_lock_of_rtl_locks == 1); ldv_assume(ldv_spin_fw_ps_lock_of_rtl_locks == 1); ldv_spin_fw_ps_lock_of_rtl_locks = 2; } return; } } void ldv_spin_unlock_fw_ps_lock_of_rtl_locks(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_fw_ps_lock_of_rtl_locks == 2); ldv_assume(ldv_spin_fw_ps_lock_of_rtl_locks == 2); ldv_spin_fw_ps_lock_of_rtl_locks = 1; } return; } } int ldv_spin_trylock_fw_ps_lock_of_rtl_locks(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_fw_ps_lock_of_rtl_locks == 1); ldv_assume(ldv_spin_fw_ps_lock_of_rtl_locks == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_fw_ps_lock_of_rtl_locks = 2; return (1); } } } void ldv_spin_unlock_wait_fw_ps_lock_of_rtl_locks(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_fw_ps_lock_of_rtl_locks == 1); ldv_assume(ldv_spin_fw_ps_lock_of_rtl_locks == 1); } return; } } int ldv_spin_is_locked_fw_ps_lock_of_rtl_locks(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_fw_ps_lock_of_rtl_locks == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_fw_ps_lock_of_rtl_locks(void) { int tmp ; { { tmp = ldv_spin_is_locked_fw_ps_lock_of_rtl_locks(); } return (tmp == 0); } } int ldv_spin_is_contended_fw_ps_lock_of_rtl_locks(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_fw_ps_lock_of_rtl_locks(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_fw_ps_lock_of_rtl_locks == 1); ldv_assume(ldv_spin_fw_ps_lock_of_rtl_locks == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_fw_ps_lock_of_rtl_locks = 2; return (1); } else { } return (0); } } static int ldv_spin_h2c_lock_of_rtl_locks = 1; void ldv_spin_lock_h2c_lock_of_rtl_locks(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_h2c_lock_of_rtl_locks == 1); ldv_assume(ldv_spin_h2c_lock_of_rtl_locks == 1); ldv_spin_h2c_lock_of_rtl_locks = 2; } return; } } void ldv_spin_unlock_h2c_lock_of_rtl_locks(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_h2c_lock_of_rtl_locks == 2); ldv_assume(ldv_spin_h2c_lock_of_rtl_locks == 2); ldv_spin_h2c_lock_of_rtl_locks = 1; } return; } } int ldv_spin_trylock_h2c_lock_of_rtl_locks(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_h2c_lock_of_rtl_locks == 1); ldv_assume(ldv_spin_h2c_lock_of_rtl_locks == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_h2c_lock_of_rtl_locks = 2; return (1); } } } void ldv_spin_unlock_wait_h2c_lock_of_rtl_locks(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_h2c_lock_of_rtl_locks == 1); ldv_assume(ldv_spin_h2c_lock_of_rtl_locks == 1); } return; } } int ldv_spin_is_locked_h2c_lock_of_rtl_locks(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_h2c_lock_of_rtl_locks == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_h2c_lock_of_rtl_locks(void) { int tmp ; { { tmp = ldv_spin_is_locked_h2c_lock_of_rtl_locks(); } return (tmp == 0); } } int ldv_spin_is_contended_h2c_lock_of_rtl_locks(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_h2c_lock_of_rtl_locks(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_h2c_lock_of_rtl_locks == 1); ldv_assume(ldv_spin_h2c_lock_of_rtl_locks == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_h2c_lock_of_rtl_locks = 2; return (1); } else { } return (0); } } static int ldv_spin_i_lock_of_inode = 1; void ldv_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); ldv_spin_i_lock_of_inode = 2; } return; } } void ldv_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_i_lock_of_inode == 2); ldv_assume(ldv_spin_i_lock_of_inode == 2); ldv_spin_i_lock_of_inode = 1; } return; } } int ldv_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_i_lock_of_inode = 2; return (1); } } } void ldv_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); } return; } } int ldv_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_spin_irq_th_lock_of_rtl_locks = 1; void ldv_spin_lock_irq_th_lock_of_rtl_locks(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_irq_th_lock_of_rtl_locks == 1); ldv_assume(ldv_spin_irq_th_lock_of_rtl_locks == 1); ldv_spin_irq_th_lock_of_rtl_locks = 2; } return; } } void ldv_spin_unlock_irq_th_lock_of_rtl_locks(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_irq_th_lock_of_rtl_locks == 2); ldv_assume(ldv_spin_irq_th_lock_of_rtl_locks == 2); ldv_spin_irq_th_lock_of_rtl_locks = 1; } return; } } int ldv_spin_trylock_irq_th_lock_of_rtl_locks(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_irq_th_lock_of_rtl_locks == 1); ldv_assume(ldv_spin_irq_th_lock_of_rtl_locks == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_irq_th_lock_of_rtl_locks = 2; return (1); } } } void ldv_spin_unlock_wait_irq_th_lock_of_rtl_locks(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_irq_th_lock_of_rtl_locks == 1); ldv_assume(ldv_spin_irq_th_lock_of_rtl_locks == 1); } return; } } int ldv_spin_is_locked_irq_th_lock_of_rtl_locks(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_irq_th_lock_of_rtl_locks == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_irq_th_lock_of_rtl_locks(void) { int tmp ; { { tmp = ldv_spin_is_locked_irq_th_lock_of_rtl_locks(); } return (tmp == 0); } } int ldv_spin_is_contended_irq_th_lock_of_rtl_locks(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_irq_th_lock_of_rtl_locks(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_irq_th_lock_of_rtl_locks == 1); ldv_assume(ldv_spin_irq_th_lock_of_rtl_locks == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_irq_th_lock_of_rtl_locks = 2; return (1); } else { } return (0); } } static int ldv_spin_lock = 1; void ldv_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); ldv_spin_lock = 2; } return; } } void ldv_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lock == 2); ldv_assume(ldv_spin_lock == 2); ldv_spin_lock = 1; } return; } } int ldv_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock = 2; return (1); } } } void ldv_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); } return; } } int ldv_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_spin_lru_lock_of_netns_frags = 1; void ldv_spin_lock_lru_lock_of_netns_frags(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); ldv_spin_lru_lock_of_netns_frags = 2; } return; } } void ldv_spin_unlock_lru_lock_of_netns_frags(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lru_lock_of_netns_frags == 2); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 2); ldv_spin_lru_lock_of_netns_frags = 1; } return; } } int ldv_spin_trylock_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } } } void ldv_spin_unlock_wait_lru_lock_of_netns_frags(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); } return; } } int ldv_spin_is_locked_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lru_lock_of_netns_frags == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lru_lock_of_netns_frags(void) { int tmp ; { { tmp = ldv_spin_is_locked_lru_lock_of_netns_frags(); } return (tmp == 0); } } int ldv_spin_is_contended_lru_lock_of_netns_frags(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lru_lock_of_netns_frags(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } else { } return (0); } } static int ldv_spin_node_size_lock_of_pglist_data = 1; void ldv_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 2); ldv_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_spin_ptl = 1; void ldv_spin_lock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); ldv_spin_ptl = 2; } return; } } void ldv_spin_unlock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_ptl == 2); ldv_assume(ldv_spin_ptl == 2); ldv_spin_ptl = 1; } return; } } int ldv_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_ptl = 2; return (1); } } } void ldv_spin_unlock_wait_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); } return; } } int ldv_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_spin_rf_lock_of_rtl_locks = 1; void ldv_spin_lock_rf_lock_of_rtl_locks(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_rf_lock_of_rtl_locks == 1); ldv_assume(ldv_spin_rf_lock_of_rtl_locks == 1); ldv_spin_rf_lock_of_rtl_locks = 2; } return; } } void ldv_spin_unlock_rf_lock_of_rtl_locks(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_rf_lock_of_rtl_locks == 2); ldv_assume(ldv_spin_rf_lock_of_rtl_locks == 2); ldv_spin_rf_lock_of_rtl_locks = 1; } return; } } int ldv_spin_trylock_rf_lock_of_rtl_locks(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_rf_lock_of_rtl_locks == 1); ldv_assume(ldv_spin_rf_lock_of_rtl_locks == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_rf_lock_of_rtl_locks = 2; return (1); } } } void ldv_spin_unlock_wait_rf_lock_of_rtl_locks(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_rf_lock_of_rtl_locks == 1); ldv_assume(ldv_spin_rf_lock_of_rtl_locks == 1); } return; } } int ldv_spin_is_locked_rf_lock_of_rtl_locks(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_rf_lock_of_rtl_locks == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_rf_lock_of_rtl_locks(void) { int tmp ; { { tmp = ldv_spin_is_locked_rf_lock_of_rtl_locks(); } return (tmp == 0); } } int ldv_spin_is_contended_rf_lock_of_rtl_locks(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_rf_lock_of_rtl_locks(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_rf_lock_of_rtl_locks == 1); ldv_assume(ldv_spin_rf_lock_of_rtl_locks == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_rf_lock_of_rtl_locks = 2; return (1); } else { } return (0); } } static int ldv_spin_rf_ps_lock_of_rtl_locks = 1; void ldv_spin_lock_rf_ps_lock_of_rtl_locks(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_rf_ps_lock_of_rtl_locks == 1); ldv_assume(ldv_spin_rf_ps_lock_of_rtl_locks == 1); ldv_spin_rf_ps_lock_of_rtl_locks = 2; } return; } } void ldv_spin_unlock_rf_ps_lock_of_rtl_locks(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_rf_ps_lock_of_rtl_locks == 2); ldv_assume(ldv_spin_rf_ps_lock_of_rtl_locks == 2); ldv_spin_rf_ps_lock_of_rtl_locks = 1; } return; } } int ldv_spin_trylock_rf_ps_lock_of_rtl_locks(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_rf_ps_lock_of_rtl_locks == 1); ldv_assume(ldv_spin_rf_ps_lock_of_rtl_locks == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_rf_ps_lock_of_rtl_locks = 2; return (1); } } } void ldv_spin_unlock_wait_rf_ps_lock_of_rtl_locks(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_rf_ps_lock_of_rtl_locks == 1); ldv_assume(ldv_spin_rf_ps_lock_of_rtl_locks == 1); } return; } } int ldv_spin_is_locked_rf_ps_lock_of_rtl_locks(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_rf_ps_lock_of_rtl_locks == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_rf_ps_lock_of_rtl_locks(void) { int tmp ; { { tmp = ldv_spin_is_locked_rf_ps_lock_of_rtl_locks(); } return (tmp == 0); } } int ldv_spin_is_contended_rf_ps_lock_of_rtl_locks(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_rf_ps_lock_of_rtl_locks(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_rf_ps_lock_of_rtl_locks == 1); ldv_assume(ldv_spin_rf_ps_lock_of_rtl_locks == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_rf_ps_lock_of_rtl_locks = 2; return (1); } else { } return (0); } } static int ldv_spin_siglock_of_sighand_struct = 1; void ldv_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); ldv_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_spin_siglock_of_sighand_struct == 2); ldv_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_tx_global_lock_of_net_device = 1; void ldv_spin_lock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); ldv_spin_tx_global_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_tx_global_lock_of_net_device == 2); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 2); ldv_spin_tx_global_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_tx_global_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_tx_global_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_tx_global_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_tx_global_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_tx_global_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } else { } return (0); } } void ldv_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_entry_list_lock_of_rtl_locks == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_fw_ps_lock_of_rtl_locks == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_h2c_lock_of_rtl_locks == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_irq_th_lock_of_rtl_locks == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_ptl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_rf_lock_of_rtl_locks == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_rf_ps_lock_of_rtl_locks == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_siglock_of_sighand_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_spin__xmit_lock_of_netdev_queue == 2) { return (1); } else { } if (ldv_spin_addr_list_lock_of_net_device == 2) { return (1); } else { } if (ldv_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_spin_entry_list_lock_of_rtl_locks == 2) { return (1); } else { } if (ldv_spin_fw_ps_lock_of_rtl_locks == 2) { return (1); } else { } if (ldv_spin_h2c_lock_of_rtl_locks == 2) { return (1); } else { } if (ldv_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_spin_irq_th_lock_of_rtl_locks == 2) { return (1); } else { } if (ldv_spin_lock == 2) { return (1); } else { } if (ldv_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_spin_lru_lock_of_netns_frags == 2) { return (1); } else { } if (ldv_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_spin_ptl == 2) { return (1); } else { } if (ldv_spin_rf_lock_of_rtl_locks == 2) { return (1); } else { } if (ldv_spin_rf_ps_lock_of_rtl_locks == 2) { return (1); } else { } if (ldv_spin_siglock_of_sighand_struct == 2) { return (1); } else { } if (ldv_spin_tx_global_lock_of_net_device == 2) { return (1); } else { } return (0); } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } }