extern void __VERIFIER_error() __attribute__ ((__noreturn__)); /* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ struct module; typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __le16; typedef __u16 __be16; typedef __u32 __le32; typedef __u32 __be32; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct_ldv_1016_9 { unsigned int a ; unsigned int b ; }; struct __anonstruct_ldv_1031_10 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion_ldv_1032_8 { struct __anonstruct_ldv_1016_9 ldv_1016 ; struct __anonstruct_ldv_1031_10 ldv_1031 ; }; struct desc_struct { union __anonunion_ldv_1032_8 ldv_1032 ; }; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_11 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_11 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_12 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_12 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct task_struct; struct cpumask; struct arch_spinlock; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion_ldv_1452_15 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion_ldv_1452_15 ldv_1452 ; }; typedef struct arch_spinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; struct device; struct net_device; struct file_operations; struct completion; struct pid; struct timespec; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion_ldv_2969_20 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion_ldv_2969_20 ldv_2969 ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct_ldv_5280_25 { u64 rip ; u64 rdp ; }; struct __anonstruct_ldv_5286_26 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion_ldv_5287_24 { struct __anonstruct_ldv_5280_25 ldv_5280 ; struct __anonstruct_ldv_5286_26 ldv_5286 ; }; union __anonunion_ldv_5296_27 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion_ldv_5287_24 ldv_5287 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion_ldv_5296_27 ldv_5296 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndregs_struct { u64 bndregs[8U] ; }; struct bndcsr_struct { u64 cfg_reg_u ; u64 status_reg ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndregs_struct bndregs ; struct bndcsr_struct bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct lockdep_map; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct_ldv_6337_31 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion_ldv_6338_30 { struct raw_spinlock rlock ; struct __anonstruct_ldv_6337_31 ldv_6337 ; }; struct spinlock { union __anonunion_ldv_6338_30 ldv_6338 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_32 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_32 rwlock_t; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct optimistic_spin_queue; struct rw_semaphore; struct rw_semaphore { long count ; raw_spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; struct optimistic_spin_queue *osq ; struct lockdep_map dep_map ; }; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct vm_area_struct; struct inode; struct notifier_block; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_33 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_33 seqlock_t; struct llist_node; struct llist_node { struct llist_node *next ; }; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; }; struct __anonstruct_nodemask_t_98 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_98 nodemask_t; struct __anonstruct_mm_context_t_99 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_99 mm_context_t; struct bio_vec; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct_ldv_12049_131 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct_ldv_12053_132 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion_ldv_12054_130 { struct __anonstruct_ldv_12049_131 ldv_12049 ; struct __anonstruct_ldv_12053_132 ldv_12053 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion_ldv_12054_130 ldv_12054 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; union __anonunion_ldv_12163_133 { struct address_space *mapping ; void *s_mem ; }; union __anonunion_ldv_12169_135 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct_ldv_12179_139 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion_ldv_12181_138 { atomic_t _mapcount ; struct __anonstruct_ldv_12179_139 ldv_12179 ; int units ; }; struct __anonstruct_ldv_12183_137 { union __anonunion_ldv_12181_138 ldv_12181 ; atomic_t _count ; }; union __anonunion_ldv_12185_136 { unsigned long counters ; struct __anonstruct_ldv_12183_137 ldv_12183 ; unsigned int active ; }; struct __anonstruct_ldv_12186_134 { union __anonunion_ldv_12169_135 ldv_12169 ; union __anonunion_ldv_12185_136 ldv_12185 ; }; struct __anonstruct_ldv_12193_141 { struct page *next ; int pages ; int pobjects ; }; struct slab; union __anonunion_ldv_12198_140 { struct list_head lru ; struct __anonstruct_ldv_12193_141 ldv_12193 ; struct slab *slab_page ; struct callback_head callback_head ; pgtable_t pmd_huge_pte ; }; union __anonunion_ldv_12204_142 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion_ldv_12163_133 ldv_12163 ; struct __anonstruct_ldv_12186_134 ldv_12186 ; union __anonunion_ldv_12198_140 ldv_12198 ; union __anonunion_ldv_12204_142 ldv_12204 ; unsigned long debug_flags ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_linear_144 { struct rb_node rb ; unsigned long rb_subtree_last ; }; union __anonunion_shared_143 { struct __anonstruct_linear_144 linear ; struct list_head nonlinear ; }; struct anon_vma; struct vm_operations_struct; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; union __anonunion_shared_143 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; union __anonunion_ldv_12534_145 { struct iovec const *iov ; struct bio_vec const *bvec ; }; struct iov_iter { int type ; size_t iov_offset ; size_t count ; union __anonunion_ldv_12534_145 ldv_12534 ; unsigned long nr_segs ; }; typedef unsigned short __kernel_sa_family_t; struct cred; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct msghdr { void *msg_name ; int msg_namelen ; struct iovec *msg_iov ; __kernel_size_t msg_iovlen ; void *msg_control ; __kernel_size_t msg_controllen ; unsigned int msg_flags ; }; enum ldv_13278 { SS_FREE = 0, SS_UNCONNECTED = 1, SS_CONNECTING = 2, SS_CONNECTED = 3, SS_DISCONNECTING = 4 } ; typedef enum ldv_13278 socket_state; struct poll_table_struct; struct pipe_inode_info; struct net; struct fasync_struct; struct socket_wq { wait_queue_head_t wait ; struct fasync_struct *fasync_list ; struct callback_head rcu ; }; struct sock; struct proto_ops; struct socket { socket_state state ; short type ; unsigned long flags ; struct socket_wq *wq ; struct file *file ; struct sock *sk ; struct proto_ops const *ops ; }; struct kiocb; struct proto_ops { int family ; struct module *owner ; int (*release)(struct socket * ) ; int (*bind)(struct socket * , struct sockaddr * , int ) ; int (*connect)(struct socket * , struct sockaddr * , int , int ) ; int (*socketpair)(struct socket * , struct socket * ) ; int (*accept)(struct socket * , struct socket * , int ) ; int (*getname)(struct socket * , struct sockaddr * , int * , int ) ; unsigned int (*poll)(struct file * , struct socket * , struct poll_table_struct * ) ; int (*ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*listen)(struct socket * , int ) ; int (*shutdown)(struct socket * , int ) ; int (*setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct socket * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct socket * , int , int , char * , int * ) ; int (*sendmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t , int ) ; int (*mmap)(struct file * , struct socket * , struct vm_area_struct * ) ; ssize_t (*sendpage)(struct socket * , struct page * , int , size_t , int ) ; ssize_t (*splice_read)(struct socket * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*set_peek_off)(struct sock * , int ) ; }; struct ctl_table; struct mem_cgroup; union __anonunion_ldv_13917_146 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion_ldv_13917_146 ldv_13917 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct dentry; struct iattr; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; }; union __anonunion_ldv_14061_147 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion_ldv_14061_147 ldv_14061 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct user_namespace; struct __anonstruct_kuid_t_148 { uid_t val ; }; typedef struct __anonstruct_kuid_t_148 kuid_t; struct __anonstruct_kgid_t_149 { gid_t val ; }; typedef struct __anonstruct_kgid_t_149 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; struct page *partial ; unsigned int stat[26U] ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct memcg_cache_params; struct kmem_cache_node; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int object_size ; int offset ; int cpu_partial ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; struct memcg_cache_params *memcg_params ; int max_attr_size ; struct kset *memcg_kset ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; struct __anonstruct_ldv_14953_151 { struct callback_head callback_head ; struct kmem_cache *memcg_caches[0U] ; }; struct __anonstruct_ldv_14959_152 { struct mem_cgroup *memcg ; struct list_head list ; struct kmem_cache *root_cache ; atomic_t nr_pages ; }; union __anonunion_ldv_14960_150 { struct __anonstruct_ldv_14953_151 ldv_14953 ; struct __anonstruct_ldv_14959_152 ldv_14959 ; }; struct memcg_cache_params { bool is_root_cache ; union __anonunion_ldv_14960_150 ldv_14960 ; }; struct sk_buff; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct path; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct device_node; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; nodemask_t nodes_to_scan ; int nid ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct user_struct; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; int (*migrate)(struct vm_area_struct * , nodemask_t const * , nodemask_t const * , unsigned long ) ; int (*remap_pages)(struct vm_area_struct * , unsigned long , unsigned long , unsigned long ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; typedef s32 dma_cookie_t; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; typedef u64 netdev_features_t; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; typedef unsigned long cputime_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct __anonstruct_sigset_t_155 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_155 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_157 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_158 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_159 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_160 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_161 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_162 { long _band ; int _fd ; }; struct __anonstruct__sigsys_163 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_156 { int _pad[28U] ; struct __anonstruct__kill_157 _kill ; struct __anonstruct__timer_158 _timer ; struct __anonstruct__rt_159 _rt ; struct __anonstruct__sigchld_160 _sigchld ; struct __anonstruct__sigfault_161 _sigfault ; struct __anonstruct__sigpoll_162 _sigpoll ; struct __anonstruct__sigsys_163 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_156 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct_ldv_22930_167 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion_ldv_22932_166 { struct __anonstruct_ldv_22930_167 ldv_22930 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion_ldv_22932_166 ldv_22932 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion_ldv_23076_168 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion_ldv_23084_169 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct_ldv_23097_171 { struct key_type *type ; char *description ; }; union __anonunion_ldv_23098_170 { struct keyring_index_key index_key ; struct __anonstruct_ldv_23097_171 ldv_23097 ; }; union __anonunion_type_data_172 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_174 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion_ldv_23113_173 { union __anonunion_payload_174 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion_ldv_23076_168 ldv_23076 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion_ldv_23084_169 ldv_23084 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion_ldv_23098_170 ldv_23098 ; union __anonunion_type_data_172 type_data ; union __anonunion_ldv_23113_173 ldv_23113 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct io_context; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned char brk_randomized : 1 ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char no_new_privs : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct task_struct *pi_top_task ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults_memory ; unsigned long total_numa_faults ; unsigned long *numa_faults_buffer_memory ; unsigned long *numa_faults_cpu ; unsigned long *numa_faults_buffer_cpu ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; unsigned int memcg_kmem_skip_account ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; }; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; typedef unsigned int sk_buff_data_t; struct __anonstruct_ldv_24862_179 { u32 stamp_us ; u32 stamp_jiffies ; }; union __anonunion_ldv_24863_178 { u64 v64 ; struct __anonstruct_ldv_24862_179 ldv_24862 ; }; struct skb_mstamp { union __anonunion_ldv_24863_178 ldv_24863 ; }; union __anonunion_ldv_24882_180 { ktime_t tstamp ; struct skb_mstamp skb_mstamp ; }; struct sec_path; struct __anonstruct_ldv_24898_182 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion_ldv_24899_181 { __wsum csum ; struct __anonstruct_ldv_24898_182 ldv_24898 ; }; union __anonunion_ldv_24938_183 { unsigned int napi_id ; dma_cookie_t dma_cookie ; }; union __anonunion_ldv_24944_184 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; struct sk_buff { struct sk_buff *next ; struct sk_buff *prev ; union __anonunion_ldv_24882_180 ldv_24882 ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; struct sec_path *sp ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; union __anonunion_ldv_24899_181 ldv_24899 ; __u32 priority ; unsigned char ignore_df : 1 ; unsigned char cloned : 1 ; unsigned char ip_summed : 2 ; unsigned char nohdr : 1 ; unsigned char nfctinfo : 3 ; unsigned char pkt_type : 3 ; unsigned char fclone : 2 ; unsigned char ipvs_property : 1 ; unsigned char peeked : 1 ; unsigned char nf_trace : 1 ; __be16 protocol ; void (*destructor)(struct sk_buff * ) ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; int skb_iif ; __u32 hash ; __be16 vlan_proto ; __u16 vlan_tci ; __u16 tc_index ; __u16 tc_verd ; __u16 queue_mapping ; unsigned char ndisc_nodetype : 2 ; unsigned char pfmemalloc : 1 ; unsigned char ooo_okay : 1 ; unsigned char l4_hash : 1 ; unsigned char wifi_acked_valid : 1 ; unsigned char wifi_acked : 1 ; unsigned char no_fcs : 1 ; unsigned char head_frag : 1 ; unsigned char encapsulation : 1 ; unsigned char encap_hdr_csum : 1 ; unsigned char csum_valid : 1 ; unsigned char csum_complete_sw : 1 ; union __anonunion_ldv_24938_183 ldv_24938 ; __u32 secmark ; union __anonunion_ldv_24944_184 ldv_24944 ; __be16 inner_protocol ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct pm_qos_flags_request { struct list_head node ; s32 flags ; }; enum dev_pm_qos_req_type { DEV_PM_QOS_RESUME_LATENCY = 1, DEV_PM_QOS_LATENCY_TOLERANCE = 2, DEV_PM_QOS_FLAGS = 3 } ; union __anonunion_data_185 { struct plist_node pnode ; struct pm_qos_flags_request flr ; }; struct dev_pm_qos_request { enum dev_pm_qos_req_type type ; union __anonunion_data_185 data ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; s32 no_constraint_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct pm_qos_flags { struct list_head list ; s32 effective_flags ; }; struct dev_pm_qos { struct pm_qos_constraints resume_latency ; struct pm_qos_constraints latency_tolerance ; struct pm_qos_flags flags ; struct dev_pm_qos_request *resume_latency_req ; struct dev_pm_qos_request *latency_tolerance_req ; struct dev_pm_qos_request *flags_req ; }; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; struct __anonstruct_sync_serial_settings_186 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_186 sync_serial_settings; struct __anonstruct_te1_settings_187 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_187 te1_settings; struct __anonstruct_raw_hdlc_proto_188 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_188 raw_hdlc_proto; struct __anonstruct_fr_proto_189 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_189 fr_proto; struct __anonstruct_fr_proto_pvc_190 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_190 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_191 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_191 fr_proto_pvc_info; struct __anonstruct_cisco_proto_192 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_192 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_193 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_193 ifs_ifsu ; }; union __anonunion_ifr_ifrn_194 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_195 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_194 ifr_ifrn ; union __anonunion_ifr_ifru_195 ifr_ifru ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct_ldv_26750_198 { spinlock_t lock ; unsigned int count ; }; union __anonunion_ldv_26751_197 { struct __anonstruct_ldv_26750_198 ldv_26750 ; }; struct lockref { union __anonunion_ldv_26751_197 ldv_26751 ; }; struct nameidata; struct vfsmount; struct __anonstruct_ldv_26774_200 { u32 hash ; u32 len ; }; union __anonunion_ldv_26776_199 { struct __anonstruct_ldv_26774_200 ldv_26774 ; u64 hash_len ; }; struct qstr { union __anonunion_ldv_26776_199 ldv_26776 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_201 { struct list_head d_child ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; union __anonunion_d_u_201 d_u ; struct list_head d_subdirs ; struct hlist_node d_alias ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_node { spinlock_t lock ; struct list_head list ; long nr_items ; }; struct list_lru { struct list_lru_node *node ; nodemask_t active_nodes ; }; struct __anonstruct_ldv_27137_203 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion_ldv_27139_202 { struct __anonstruct_ldv_27137_203 ldv_27137 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion_ldv_27139_202 ldv_27139 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct cgroup_subsys_state; struct bio_vec { struct page *bv_page ; unsigned int bv_len ; unsigned int bv_offset ; }; struct export_operations; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_204 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_204 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion_ldv_27664_205 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion_ldv_27664_205 ldv_27664 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_on_meta)(struct super_block * , int , int ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iov_iter * , loff_t ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct rb_root i_mmap ; struct list_head i_mmap_nonlinear ; struct mutex i_mmap_mutex ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion_ldv_28078_208 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion_ldv_28098_209 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock; struct cdev; union __anonunion_ldv_28115_210 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion_ldv_28078_208 ldv_28078 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion_ldv_28098_209 ldv_28098 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock *i_flock ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion_ldv_28115_210 ldv_28115 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_211 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_211 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , struct file_lock * , int ) ; void (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock ** , int ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct __anonstruct_afs_213 { struct list_head link ; int state ; }; union __anonunion_fl_u_212 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_213 afs ; }; struct file_lock { struct file_lock *fl_next ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_212 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context { int (*actor)(void * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; int (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , int ) ; long (*free_cached_objects)(struct super_block * , long , int ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char reserved1[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_key_size)(struct net_device * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh)(struct net_device * , u32 * , u8 * ) ; int (*set_rxfh)(struct net_device * , u32 const * , u8 const * ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[8U] ; }; struct linux_mib { unsigned long mibs[103U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct proc_dir_entry; struct netns_mib { struct tcp_mib *tcp_statistics ; struct ipstats_mib *ip_statistics ; struct linux_mib *net_statistics ; struct udp_mib *udp_statistics ; struct udp_mib *udplite_statistics ; struct icmp_mib *icmp_statistics ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6 ; struct udp_mib *udplite_stats_in6 ; struct ipstats_mib *ipv6_statistics ; struct icmpv6_mib *icmpv6_statistics ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { int nqueues ; struct list_head lru_list ; spinlock_t lru_lock ; struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct tcpm_hash_bucket; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; }; struct ping_group_range { seqlock_t lock ; kgid_t range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct inet_peer_base *peers ; struct tcpm_hash_bucket *tcp_metrics_hash ; unsigned int tcp_metrics_hash_log ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports ip_local_ports ; int sysctl_tcp_ecn ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; int sysctl_fwmark_reflect ; int sysctl_tcp_fwmark_accept ; struct ping_group_range ping_group_range ; atomic_t dev_addr_genid ; unsigned long *sysctl_local_reserved_ports ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int icmpv6_time ; int anycast_src_echo_reply ; int fwmark_reflect ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t rt_genid ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct netns_sysctl_lowpan { struct ctl_table_header *frags_hdr ; }; struct netns_ieee802154_lowpan { struct netns_sysctl_lowpan sysctl ; struct netns_frags frags ; u16 max_dsize ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; struct nlattr; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; bool ulog_warn_deprecated ; bool ebt_ulog_warn_deprecated ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ct_pcpu { spinlock_t lock ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; unsigned int sysctl_events_retry_timeout ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; seqcount_t generation ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct ct_pcpu *pcpu_lists ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; u8 gencursor ; u8 genctr ; }; struct tasklet_struct { struct tasklet_struct *next ; unsigned long state ; atomic_t count ; void (*func)(unsigned long ) ; unsigned long data ; }; struct flow_cache_percpu { struct hlist_head *hash_table ; int hash_count ; u32 hash_rnd ; int hash_rnd_recalc ; struct tasklet_struct flush_tasklet ; }; struct flow_cache { u32 hash_shift ; struct flow_cache_percpu *percpu ; struct notifier_block hotcpu_notifier ; int low_watermark ; int high_watermark ; struct timer_list rnd_timer ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[6U] ; struct xfrm_policy_hash policy_bydst[6U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; struct flow_cache flow_cache_global ; atomic_t flow_cache_genid ; struct list_head flow_cache_gc_list ; spinlock_t flow_cache_gc_lock ; struct work_struct flow_cache_gc_work ; struct work_struct flow_cache_flush_work ; struct mutex flow_flush_sem ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; unsigned int proc_inum ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_ieee802154_lowpan ieee802154_lowpan ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; struct dsa_chip_data { struct device *mii_bus ; int sw_addr ; char *port_names[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; __be16 tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct mii_bus; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct mii_bus *master_mii_bus ; u32 dsa_port_mask ; u32 phys_port_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; __be16 tag_protocol ; int priv_size ; char *(*probe)(struct mii_bus * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; u8 (*setapp)(struct net_device * , u8 , u16 , u8 ) ; u8 (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_t count ; unsigned int *pcpu_count ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_kill ; struct callback_head rcu ; }; struct cgroup_root; struct cgroup_subsys; struct cgroup; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; struct list_head sibling ; struct list_head children ; int id ; unsigned int flags ; u64 serial_nr ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct cgroup { struct cgroup_subsys_state self ; unsigned long flags ; int id ; int populated_cnt ; struct kernfs_node *kn ; struct kernfs_node *populated_kn ; unsigned int child_subsys_mask ; struct cgroup_subsys_state *subsys[12U] ; struct cgroup_root *root ; struct list_head cset_links ; struct list_head e_csets[12U] ; struct list_head release_list ; struct list_head pidlists ; struct mutex pidlist_mutex ; wait_queue_head_t offline_waitq ; }; struct cgroup_root { struct kernfs_root *kf_root ; unsigned int subsys_mask ; int hierarchy_id ; struct cgroup cgrp ; atomic_t nr_cgrps ; struct list_head root_list ; unsigned int flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head mg_tasks ; struct list_head cgrp_links ; struct cgroup *dfl_cgrp ; struct cgroup_subsys_state *subsys[12U] ; struct list_head mg_preload_node ; struct list_head mg_node ; struct cgroup *mg_src_cgrp ; struct css_set *mg_dst_cset ; struct list_head e_cset_node[12U] ; struct callback_head callback_head ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; struct list_head node ; struct kernfs_ops *kf_ops ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; struct lock_class_key lockdep_key ; }; struct cgroup_taskset; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; int id ; char const *name ; struct cgroup_root *root ; struct idr css_idr ; struct list_head cfts ; struct cftype *base_cftypes ; }; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 spoofchk ; __u32 linkstate ; __u32 min_tx_rate ; __u32 max_tx_rate ; }; struct netpoll_info; struct phy_device; struct wireless_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_port_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_rate)(struct net_device * , int , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_port_id * ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; int (*ndo_get_lock_subclass)(struct net_device * ) ; }; struct __anonstruct_adj_list_241 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_242 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct forwarding_accel_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion_ldv_39218_243 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct __anonstruct_adj_list_241 adj_list ; struct __anonstruct_all_adj_list_242 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; atomic_long_t tx_dropped ; atomic_t carrier_changes ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct forwarding_accel_ops const *fwd_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; unsigned short dev_port ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; bool uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; unsigned char broadcast[32U] ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; struct cpu_rmap *rx_cpu_rmap ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; unsigned char reg_state ; bool dismantle ; unsigned short rtnl_link_state ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion_ldv_39218_243 ldv_39218 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; int group ; struct pm_qos_request pm_qos_req ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; typedef unsigned long kernel_ulong_t; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct ieee80211_mcs_info { u8 rx_mask[10U] ; __le16 rx_highest ; u8 tx_params ; u8 reserved[3U] ; }; struct ieee80211_ht_cap { __le16 cap_info ; u8 ampdu_params_info ; struct ieee80211_mcs_info mcs ; __le16 extended_ht_cap_info ; __le32 tx_BF_cap_info ; u8 antenna_selection_info ; }; struct ieee80211_vht_mcs_info { __le16 rx_mcs_map ; __le16 rx_highest ; __le16 tx_mcs_map ; __le16 tx_highest ; }; struct ieee80211_vht_cap { __le32 vht_cap_info ; struct ieee80211_vht_mcs_info supp_mcs ; }; enum nl80211_iftype { NL80211_IFTYPE_UNSPECIFIED = 0, NL80211_IFTYPE_ADHOC = 1, NL80211_IFTYPE_STATION = 2, NL80211_IFTYPE_AP = 3, NL80211_IFTYPE_AP_VLAN = 4, NL80211_IFTYPE_WDS = 5, NL80211_IFTYPE_MONITOR = 6, NL80211_IFTYPE_MESH_POINT = 7, NL80211_IFTYPE_P2P_CLIENT = 8, NL80211_IFTYPE_P2P_GO = 9, NL80211_IFTYPE_P2P_DEVICE = 10, NUM_NL80211_IFTYPES = 11, NL80211_IFTYPE_MAX = 10 } ; enum nl80211_reg_initiator { NL80211_REGDOM_SET_BY_CORE = 0, NL80211_REGDOM_SET_BY_USER = 1, NL80211_REGDOM_SET_BY_DRIVER = 2, NL80211_REGDOM_SET_BY_COUNTRY_IE = 3 } ; enum nl80211_dfs_regions { NL80211_DFS_UNSET = 0, NL80211_DFS_FCC = 1, NL80211_DFS_ETSI = 2, NL80211_DFS_JP = 3 } ; enum nl80211_user_reg_hint_type { NL80211_USER_REG_HINT_USER = 0, NL80211_USER_REG_HINT_CELL_BASE = 1, NL80211_USER_REG_HINT_INDOOR = 2 } ; enum nl80211_chan_width { NL80211_CHAN_WIDTH_20_NOHT = 0, NL80211_CHAN_WIDTH_20 = 1, NL80211_CHAN_WIDTH_40 = 2, NL80211_CHAN_WIDTH_80 = 3, NL80211_CHAN_WIDTH_80P80 = 4, NL80211_CHAN_WIDTH_160 = 5, NL80211_CHAN_WIDTH_5 = 6, NL80211_CHAN_WIDTH_10 = 7 } ; enum nl80211_auth_type { NL80211_AUTHTYPE_OPEN_SYSTEM = 0, NL80211_AUTHTYPE_SHARED_KEY = 1, NL80211_AUTHTYPE_FT = 2, NL80211_AUTHTYPE_NETWORK_EAP = 3, NL80211_AUTHTYPE_SAE = 4, __NL80211_AUTHTYPE_NUM = 5, NL80211_AUTHTYPE_MAX = 4, NL80211_AUTHTYPE_AUTOMATIC = 5 } ; enum nl80211_mfp { NL80211_MFP_NO = 0, NL80211_MFP_REQUIRED = 1 } ; struct nl80211_wowlan_tcp_data_seq { __u32 start ; __u32 offset ; __u32 len ; }; struct nl80211_wowlan_tcp_data_token { __u32 offset ; __u32 len ; __u8 token_stream[] ; }; struct nl80211_wowlan_tcp_data_token_feature { __u32 min_len ; __u32 max_len ; __u32 bufsize ; }; enum nl80211_dfs_state { NL80211_DFS_USABLE = 0, NL80211_DFS_UNAVAILABLE = 1, NL80211_DFS_AVAILABLE = 2 } ; struct nl80211_vendor_cmd_info { __u32 vendor_id ; __u32 subcmd ; }; enum environment_cap { ENVIRON_ANY = 0, ENVIRON_INDOOR = 1, ENVIRON_OUTDOOR = 2 } ; struct regulatory_request { struct callback_head callback_head ; int wiphy_idx ; enum nl80211_reg_initiator initiator ; enum nl80211_user_reg_hint_type user_reg_hint_type ; char alpha2[2U] ; enum nl80211_dfs_regions dfs_region ; bool intersect ; bool processed ; enum environment_cap country_ie_env ; struct list_head list ; }; struct ieee80211_freq_range { u32 start_freq_khz ; u32 end_freq_khz ; u32 max_bandwidth_khz ; }; struct ieee80211_power_rule { u32 max_antenna_gain ; u32 max_eirp ; }; struct ieee80211_reg_rule { struct ieee80211_freq_range freq_range ; struct ieee80211_power_rule power_rule ; u32 flags ; u32 dfs_cac_ms ; }; struct ieee80211_regdomain { struct callback_head callback_head ; u32 n_reg_rules ; char alpha2[2U] ; enum nl80211_dfs_regions dfs_region ; struct ieee80211_reg_rule reg_rules[] ; }; struct wiphy; enum ieee80211_band { IEEE80211_BAND_2GHZ = 0, IEEE80211_BAND_5GHZ = 1, IEEE80211_BAND_60GHZ = 2, IEEE80211_NUM_BANDS = 3 } ; struct ieee80211_channel { enum ieee80211_band band ; u16 center_freq ; u16 hw_value ; u32 flags ; int max_antenna_gain ; int max_power ; int max_reg_power ; bool beacon_found ; u32 orig_flags ; int orig_mag ; int orig_mpwr ; enum nl80211_dfs_state dfs_state ; unsigned long dfs_state_entered ; unsigned int dfs_cac_ms ; }; struct ieee80211_rate { u32 flags ; u16 bitrate ; u16 hw_value ; u16 hw_value_short ; }; struct ieee80211_sta_ht_cap { u16 cap ; bool ht_supported ; u8 ampdu_factor ; u8 ampdu_density ; struct ieee80211_mcs_info mcs ; }; struct ieee80211_sta_vht_cap { bool vht_supported ; u32 cap ; struct ieee80211_vht_mcs_info vht_mcs ; }; struct ieee80211_supported_band { struct ieee80211_channel *channels ; struct ieee80211_rate *bitrates ; enum ieee80211_band band ; int n_channels ; int n_bitrates ; struct ieee80211_sta_ht_cap ht_cap ; struct ieee80211_sta_vht_cap vht_cap ; }; struct cfg80211_chan_def { struct ieee80211_channel *chan ; enum nl80211_chan_width width ; u32 center_freq1 ; u32 center_freq2 ; }; struct cfg80211_crypto_settings { u32 wpa_versions ; u32 cipher_group ; int n_ciphers_pairwise ; u32 ciphers_pairwise[5U] ; int n_akm_suites ; u32 akm_suites[2U] ; bool control_port ; __be16 control_port_ethertype ; bool control_port_no_encrypt ; }; struct mac_address { u8 addr[6U] ; }; enum cfg80211_signal_type { CFG80211_SIGNAL_TYPE_NONE = 0, CFG80211_SIGNAL_TYPE_MBM = 1, CFG80211_SIGNAL_TYPE_UNSPEC = 2 } ; struct cfg80211_ibss_params { u8 const *ssid ; u8 const *bssid ; struct cfg80211_chan_def chandef ; u8 const *ie ; u8 ssid_len ; u8 ie_len ; u16 beacon_interval ; u32 basic_rates ; bool channel_fixed ; bool privacy ; bool control_port ; bool userspace_handles_dfs ; int mcast_rate[3U] ; struct ieee80211_ht_cap ht_capa ; struct ieee80211_ht_cap ht_capa_mask ; }; struct cfg80211_connect_params { struct ieee80211_channel *channel ; struct ieee80211_channel *channel_hint ; u8 const *bssid ; u8 const *bssid_hint ; u8 const *ssid ; size_t ssid_len ; enum nl80211_auth_type auth_type ; u8 const *ie ; size_t ie_len ; bool privacy ; enum nl80211_mfp mfp ; struct cfg80211_crypto_settings crypto ; u8 const *key ; u8 key_len ; u8 key_idx ; u32 flags ; int bg_scan_period ; struct ieee80211_ht_cap ht_capa ; struct ieee80211_ht_cap ht_capa_mask ; struct ieee80211_vht_cap vht_capa ; struct ieee80211_vht_cap vht_capa_mask ; }; struct cfg80211_pkt_pattern { u8 const *mask ; u8 const *pattern ; int pattern_len ; int pkt_offset ; }; struct cfg80211_wowlan_tcp { struct socket *sock ; __be32 src ; __be32 dst ; u16 src_port ; u16 dst_port ; u8 dst_mac[6U] ; int payload_len ; u8 const *payload ; struct nl80211_wowlan_tcp_data_seq payload_seq ; u32 data_interval ; u32 wake_len ; u8 const *wake_data ; u8 const *wake_mask ; u32 tokens_size ; struct nl80211_wowlan_tcp_data_token payload_tok ; }; struct cfg80211_wowlan { bool any ; bool disconnect ; bool magic_pkt ; bool gtk_rekey_failure ; bool eap_identity_req ; bool four_way_handshake ; bool rfkill_release ; struct cfg80211_pkt_pattern *patterns ; struct cfg80211_wowlan_tcp *tcp ; int n_patterns ; }; struct ieee80211_iface_limit { u16 max ; u16 types ; }; struct ieee80211_iface_combination { struct ieee80211_iface_limit const *limits ; u32 num_different_channels ; u16 max_interfaces ; u8 n_limits ; bool beacon_int_infra_match ; u8 radar_detect_widths ; u8 radar_detect_regions ; }; struct ieee80211_txrx_stypes { u16 tx ; u16 rx ; }; struct wiphy_wowlan_tcp_support { struct nl80211_wowlan_tcp_data_token_feature const *tok ; u32 data_payload_max ; u32 data_interval_max ; u32 wake_payload_max ; bool seq ; }; struct wiphy_wowlan_support { u32 flags ; int n_patterns ; int pattern_max_len ; int pattern_min_len ; int max_pkt_offset ; struct wiphy_wowlan_tcp_support const *tcp ; }; struct wiphy_coalesce_support { int n_rules ; int max_delay ; int n_patterns ; int pattern_max_len ; int pattern_min_len ; int max_pkt_offset ; }; struct wiphy_vendor_command { struct nl80211_vendor_cmd_info info ; u32 flags ; int (*doit)(struct wiphy * , struct wireless_dev * , void const * , int ) ; }; struct wiphy { u8 perm_addr[6U] ; u8 addr_mask[6U] ; struct mac_address *addresses ; struct ieee80211_txrx_stypes const *mgmt_stypes ; struct ieee80211_iface_combination const *iface_combinations ; int n_iface_combinations ; u16 software_iftypes ; u16 n_addresses ; u16 interface_modes ; u16 max_acl_mac_addrs ; u32 flags ; u32 regulatory_flags ; u32 features ; u32 ap_sme_capa ; enum cfg80211_signal_type signal_type ; int bss_priv_size ; u8 max_scan_ssids ; u8 max_sched_scan_ssids ; u8 max_match_sets ; u16 max_scan_ie_len ; u16 max_sched_scan_ie_len ; int n_cipher_suites ; u32 const *cipher_suites ; u8 retry_short ; u8 retry_long ; u32 frag_threshold ; u32 rts_threshold ; u8 coverage_class ; char fw_version[32U] ; u32 hw_version ; struct wiphy_wowlan_support const *wowlan ; struct cfg80211_wowlan *wowlan_config ; u16 max_remain_on_channel_duration ; u8 max_num_pmkids ; u32 available_antennas_tx ; u32 available_antennas_rx ; u32 probe_resp_offload ; u8 const *extended_capabilities ; u8 const *extended_capabilities_mask ; u8 extended_capabilities_len ; void const *privid ; struct ieee80211_supported_band *bands[3U] ; void (*reg_notifier)(struct wiphy * , struct regulatory_request * ) ; struct ieee80211_regdomain const *regd ; struct device dev ; bool registered ; struct dentry *debugfsdir ; struct ieee80211_ht_cap const *ht_capa_mod_mask ; struct ieee80211_vht_cap const *vht_capa_mod_mask ; struct net *_net ; struct iw_handler_def const *wext ; struct wiphy_coalesce_support const *coalesce ; struct wiphy_vendor_command const *vendor_commands ; struct nl80211_vendor_cmd_info const *vendor_events ; int n_vendor_commands ; int n_vendor_events ; u16 max_ap_assoc_sta ; u8 max_num_csa_counters ; u8 max_adj_channel_rssi_comp ; char priv[0U] ; }; struct cfg80211_conn; struct cfg80211_internal_bss; struct cfg80211_cached_keys; struct __anonstruct_wext_284 { struct cfg80211_ibss_params ibss ; struct cfg80211_connect_params connect ; struct cfg80211_cached_keys *keys ; u8 const *ie ; size_t ie_len ; u8 bssid[6U] ; u8 prev_bssid[6U] ; u8 ssid[32U] ; s8 default_key ; s8 default_mgmt_key ; bool prev_bssid_valid ; }; struct wireless_dev { struct wiphy *wiphy ; enum nl80211_iftype iftype ; struct list_head list ; struct net_device *netdev ; u32 identifier ; struct list_head mgmt_registrations ; spinlock_t mgmt_registrations_lock ; struct mutex mtx ; bool use_4addr ; bool p2p_started ; u8 address[6U] ; u8 ssid[32U] ; u8 ssid_len ; u8 mesh_id_len ; u8 mesh_id_up_len ; struct cfg80211_conn *conn ; struct cfg80211_cached_keys *connect_keys ; struct list_head event_list ; spinlock_t event_lock ; struct cfg80211_internal_bss *current_bss ; struct cfg80211_chan_def preset_chandef ; struct cfg80211_chan_def chandef ; bool ibss_fixed ; bool ibss_dfs_possible ; bool ps ; int ps_timeout ; int beacon_interval ; u32 ap_unexpected_nlportid ; bool cac_started ; unsigned long cac_start_time ; unsigned int cac_time_ms ; u32 owner_nlportid ; struct __anonstruct_wext_284 wext ; }; enum btc_chip_interface { BTC_INTF_UNKNOWN = 0, BTC_INTF_PCI = 1, BTC_INTF_USB = 2, BTC_INTF_SDIO = 3, BTC_INTF_GSPI = 4, BTC_INTF_MAX = 5 } ; struct btc_board_info { u8 bt_chip_type ; u8 pg_ant_num ; u8 btdm_ant_num ; u8 btdm_ant_pos ; bool bt_exist ; }; struct btc_bt_info { bool bt_disabled ; u8 rssi_adjust_for_agc_table_on ; u8 rssi_adjust_for_1ant_coex_type ; bool bt_busy ; u8 agg_buf_size ; bool limited_dig ; bool reject_agg_pkt ; bool b_bt_ctrl_buf_size ; bool increase_scan_dev_num ; u16 bt_hci_ver ; u16 bt_real_fw_ver ; u8 bt_fw_ver ; bool bt_ctrl_lps ; bool bt_pwr_save_mode ; bool bt_lps_on ; bool force_to_roam ; u8 force_exec_pwr_cmd_cnt ; u8 lps_1ant ; u8 rpwm_1ant ; u32 ra_mask ; }; struct btc_stack_info { bool profile_notified ; u16 hci_version ; u8 num_of_link ; bool bt_link_exist ; bool sco_exist ; bool acl_exist ; bool a2dp_exist ; bool hid_exist ; u8 num_of_hid ; bool pan_exist ; bool unknown_acl_exist ; char min_bt_rssi ; }; struct btc_statistics { u32 cnt_bind ; u32 cnt_init_hw_config ; u32 cnt_init_coex_dm ; u32 cnt_ips_notify ; u32 cnt_lps_notify ; u32 cnt_scan_notify ; u32 cnt_connect_notify ; u32 cnt_media_status_notify ; u32 cnt_special_packet_notify ; u32 cnt_bt_info_notify ; u32 cnt_periodical ; u32 cnt_stack_operation_notify ; u32 cnt_dbg_ctrl ; }; struct btc_bt_link_info { bool bt_link_exist ; bool sco_exist ; bool sco_only ; bool a2dp_exist ; bool a2dp_only ; bool hid_exist ; bool hid_only ; bool pan_exist ; bool pan_only ; }; struct btc_coexist { bool binded ; void *adapter ; struct btc_board_info board_info ; struct btc_bt_info bt_info ; struct btc_stack_info stack_info ; enum btc_chip_interface chip_interface ; struct btc_bt_link_info bt_link_info ; bool initilized ; bool stop_coex_dm ; bool manual_control ; u8 *cli_buf ; struct btc_statistics statistics ; u8 pwr_mode_val[10U] ; u8 (*btc_read_1byte)(void * , u32 ) ; void (*btc_write_1byte)(void * , u32 , u8 ) ; void (*btc_write_1byte_bitmask)(void * , u32 , u32 , u8 ) ; u16 (*btc_read_2byte)(void * , u32 ) ; void (*btc_write_2byte)(void * , u32 , u16 ) ; u32 (*btc_read_4byte)(void * , u32 ) ; void (*btc_write_4byte)(void * , u32 , u32 ) ; void (*btc_set_bb_reg)(void * , u32 , u32 , u32 ) ; u32 (*btc_get_bb_reg)(void * , u32 , u32 ) ; void (*btc_set_rf_reg)(void * , u8 , u32 , u32 , u32 ) ; u32 (*btc_get_rf_reg)(void * , u8 , u32 , u32 ) ; void (*btc_fill_h2c)(void * , u8 , u32 , u8 * ) ; void (*btc_disp_dbg_msg)(void * , u8 ) ; bool (*btc_get)(void * , u8 , void * ) ; bool (*btc_set)(void * , u8 , void * ) ; }; struct coex_dm_8723b_2ant { bool pre_dec_bt_pwr ; bool cur_dec_bt_pwr ; u8 pre_fw_dac_swing_lvl ; u8 cur_fw_dac_swing_lvl ; bool cur_ignore_wlan_act ; bool pre_ignore_wlan_act ; u8 pre_ps_tdma ; u8 cur_ps_tdma ; u8 ps_tdma_para[5U] ; u8 tdma_adj_type ; bool reset_tdma_adjust ; bool auto_tdma_adjust ; bool pre_ps_tdma_on ; bool cur_ps_tdma_on ; bool pre_bt_auto_report ; bool cur_bt_auto_report ; bool pre_rf_rx_lpf_shrink ; bool cur_rf_rx_lpf_shrink ; u32 bt_rf0x1e_backup ; bool pre_low_penalty_ra ; bool cur_low_penalty_ra ; bool pre_dac_swing_on ; u32 pre_dac_swing_lvl ; bool cur_dac_swing_on ; u32 cur_dac_swing_lvl ; bool pre_adc_back_off ; bool cur_adc_back_off ; bool pre_agc_table_en ; bool cur_agc_table_en ; u32 pre_val0x6c0 ; u32 cur_val0x6c0 ; u32 pre_val0x6c4 ; u32 cur_val0x6c4 ; u32 pre_val0x6c8 ; u32 cur_val0x6c8 ; u8 pre_val0x6cc ; u8 cur_val0x6cc ; bool limited_dig ; u8 pre_algorithm ; u8 cur_algorithm ; u8 bt_status ; u8 wifi_chnl_info[3U] ; bool need_recover_0x948 ; u16 backup_0x948 ; }; struct coex_sta_8723b_2ant { bool bt_link_exist ; bool sco_exist ; bool a2dp_exist ; bool hid_exist ; bool pan_exist ; bool under_lps ; bool under_ips ; u32 high_priority_tx ; u32 high_priority_rx ; u32 low_priority_tx ; u32 low_priority_rx ; u8 bt_rssi ; u8 pre_bt_rssi_state ; u8 pre_wifi_rssi_state[4U] ; bool c2h_bt_info_req_sent ; u8 bt_info_c2h[3U][10U] ; u32 bt_info_c2h_cnt[3U] ; bool c2h_bt_inquiry_page ; u8 bt_retry_cnt ; u8 bt_info_ext ; }; typedef __s16 int16_t; enum hrtimer_restart; struct rtl_priv; struct usb_device_descriptor { __u8 bLength ; __u8 bDescriptorType ; __le16 bcdUSB ; __u8 bDeviceClass ; __u8 bDeviceSubClass ; __u8 bDeviceProtocol ; __u8 bMaxPacketSize0 ; __le16 idVendor ; __le16 idProduct ; __le16 bcdDevice ; __u8 iManufacturer ; __u8 iProduct ; __u8 iSerialNumber ; __u8 bNumConfigurations ; }; struct usb_config_descriptor { __u8 bLength ; __u8 bDescriptorType ; __le16 wTotalLength ; __u8 bNumInterfaces ; __u8 bConfigurationValue ; __u8 iConfiguration ; __u8 bmAttributes ; __u8 bMaxPower ; }; struct usb_interface_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bInterfaceNumber ; __u8 bAlternateSetting ; __u8 bNumEndpoints ; __u8 bInterfaceClass ; __u8 bInterfaceSubClass ; __u8 bInterfaceProtocol ; __u8 iInterface ; }; struct usb_endpoint_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bEndpointAddress ; __u8 bmAttributes ; __le16 wMaxPacketSize ; __u8 bInterval ; __u8 bRefresh ; __u8 bSynchAddress ; }; struct usb_ss_ep_comp_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bMaxBurst ; __u8 bmAttributes ; __le16 wBytesPerInterval ; }; struct usb_interface_assoc_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bFirstInterface ; __u8 bInterfaceCount ; __u8 bFunctionClass ; __u8 bFunctionSubClass ; __u8 bFunctionProtocol ; __u8 iFunction ; }; struct usb_bos_descriptor { __u8 bLength ; __u8 bDescriptorType ; __le16 wTotalLength ; __u8 bNumDeviceCaps ; }; struct usb_ext_cap_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bDevCapabilityType ; __le32 bmAttributes ; }; struct usb_ss_cap_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bDevCapabilityType ; __u8 bmAttributes ; __le16 wSpeedSupported ; __u8 bFunctionalitySupport ; __u8 bU1devExitLat ; __le16 bU2DevExitLat ; }; struct usb_ss_container_id_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bDevCapabilityType ; __u8 bReserved ; __u8 ContainerID[16U] ; }; enum usb_device_speed { USB_SPEED_UNKNOWN = 0, USB_SPEED_LOW = 1, USB_SPEED_FULL = 2, USB_SPEED_HIGH = 3, USB_SPEED_WIRELESS = 4, USB_SPEED_SUPER = 5 } ; enum usb_device_state { USB_STATE_NOTATTACHED = 0, USB_STATE_ATTACHED = 1, USB_STATE_POWERED = 2, USB_STATE_RECONNECTING = 3, USB_STATE_UNAUTHENTICATED = 4, USB_STATE_DEFAULT = 5, USB_STATE_ADDRESS = 6, USB_STATE_CONFIGURED = 7, USB_STATE_SUSPENDED = 8 } ; struct usb_device; struct wusb_dev; struct ep_device; struct usb_host_endpoint { struct usb_endpoint_descriptor desc ; struct usb_ss_ep_comp_descriptor ss_ep_comp ; struct list_head urb_list ; void *hcpriv ; struct ep_device *ep_dev ; unsigned char *extra ; int extralen ; int enabled ; int streams ; }; struct usb_host_interface { struct usb_interface_descriptor desc ; int extralen ; unsigned char *extra ; struct usb_host_endpoint *endpoint ; char *string ; }; enum usb_interface_condition { USB_INTERFACE_UNBOUND = 0, USB_INTERFACE_BINDING = 1, USB_INTERFACE_BOUND = 2, USB_INTERFACE_UNBINDING = 3 } ; struct usb_interface { struct usb_host_interface *altsetting ; struct usb_host_interface *cur_altsetting ; unsigned int num_altsetting ; struct usb_interface_assoc_descriptor *intf_assoc ; int minor ; enum usb_interface_condition condition ; unsigned char sysfs_files_created : 1 ; unsigned char ep_devs_created : 1 ; unsigned char unregistering : 1 ; unsigned char needs_remote_wakeup : 1 ; unsigned char needs_altsetting0 : 1 ; unsigned char needs_binding : 1 ; unsigned char reset_running : 1 ; unsigned char resetting_device : 1 ; struct device dev ; struct device *usb_dev ; atomic_t pm_usage_cnt ; struct work_struct reset_ws ; }; struct usb_interface_cache { unsigned int num_altsetting ; struct kref ref ; struct usb_host_interface altsetting[0U] ; }; struct usb_host_config { struct usb_config_descriptor desc ; char *string ; struct usb_interface_assoc_descriptor *intf_assoc[16U] ; struct usb_interface *interface[32U] ; struct usb_interface_cache *intf_cache[32U] ; unsigned char *extra ; int extralen ; }; struct usb_host_bos { struct usb_bos_descriptor *desc ; struct usb_ext_cap_descriptor *ext_cap ; struct usb_ss_cap_descriptor *ss_cap ; struct usb_ss_container_id_descriptor *ss_id ; }; struct usb_devmap { unsigned long devicemap[2U] ; }; struct mon_bus; struct usb_bus { struct device *controller ; int busnum ; char const *bus_name ; u8 uses_dma ; u8 uses_pio_for_control ; u8 otg_port ; unsigned char is_b_host : 1 ; unsigned char b_hnp_enable : 1 ; unsigned char no_stop_on_short : 1 ; unsigned char no_sg_constraint : 1 ; unsigned int sg_tablesize ; int devnum_next ; struct usb_devmap devmap ; struct usb_device *root_hub ; struct usb_bus *hs_companion ; struct list_head bus_list ; struct mutex usb_address0_mutex ; int bandwidth_allocated ; int bandwidth_int_reqs ; int bandwidth_isoc_reqs ; unsigned int resuming_ports ; struct mon_bus *mon_bus ; int monitored ; }; struct usb_tt; enum usb_device_removable { USB_DEVICE_REMOVABLE_UNKNOWN = 0, USB_DEVICE_REMOVABLE = 1, USB_DEVICE_FIXED = 2 } ; struct usb2_lpm_parameters { unsigned int besl ; int timeout ; }; struct usb3_lpm_parameters { unsigned int mel ; unsigned int pel ; unsigned int sel ; int timeout ; }; struct usb_device { int devnum ; char devpath[16U] ; u32 route ; enum usb_device_state state ; enum usb_device_speed speed ; struct usb_tt *tt ; int ttport ; unsigned int toggle[2U] ; struct usb_device *parent ; struct usb_bus *bus ; struct usb_host_endpoint ep0 ; struct device dev ; struct usb_device_descriptor descriptor ; struct usb_host_bos *bos ; struct usb_host_config *config ; struct usb_host_config *actconfig ; struct usb_host_endpoint *ep_in[16U] ; struct usb_host_endpoint *ep_out[16U] ; char **rawdescriptors ; unsigned short bus_mA ; u8 portnum ; u8 level ; unsigned char can_submit : 1 ; unsigned char persist_enabled : 1 ; unsigned char have_langid : 1 ; unsigned char authorized : 1 ; unsigned char authenticated : 1 ; unsigned char wusb : 1 ; unsigned char lpm_capable : 1 ; unsigned char usb2_hw_lpm_capable : 1 ; unsigned char usb2_hw_lpm_besl_capable : 1 ; unsigned char usb2_hw_lpm_enabled : 1 ; unsigned char usb2_hw_lpm_allowed : 1 ; unsigned char usb3_lpm_enabled : 1 ; int string_langid ; char *product ; char *manufacturer ; char *serial ; struct list_head filelist ; int maxchild ; u32 quirks ; atomic_t urbnum ; unsigned long active_duration ; unsigned long connect_time ; unsigned char do_remote_wakeup : 1 ; unsigned char reset_resume : 1 ; unsigned char port_is_suspended : 1 ; struct wusb_dev *wusb_dev ; int slot_id ; enum usb_device_removable removable ; struct usb2_lpm_parameters l1_params ; struct usb3_lpm_parameters u1_params ; struct usb3_lpm_parameters u2_params ; unsigned int lpm_disable_count ; }; struct usb_iso_packet_descriptor { unsigned int offset ; unsigned int length ; unsigned int actual_length ; int status ; }; struct urb; struct usb_anchor { struct list_head urb_list ; wait_queue_head_t wait ; spinlock_t lock ; atomic_t suspend_wakeups ; unsigned char poisoned : 1 ; }; struct urb { struct kref kref ; void *hcpriv ; atomic_t use_count ; atomic_t reject ; int unlinked ; struct list_head urb_list ; struct list_head anchor_list ; struct usb_anchor *anchor ; struct usb_device *dev ; struct usb_host_endpoint *ep ; unsigned int pipe ; unsigned int stream_id ; int status ; unsigned int transfer_flags ; void *transfer_buffer ; dma_addr_t transfer_dma ; struct scatterlist *sg ; int num_mapped_sgs ; int num_sgs ; u32 transfer_buffer_length ; u32 actual_length ; unsigned char *setup_packet ; dma_addr_t setup_dma ; int start_frame ; int number_of_packets ; int interval ; int error_count ; void *context ; void (*complete)(struct urb * ) ; struct usb_iso_packet_descriptor iso_frame_desc[0U] ; }; struct ieee80211_hdr { __le16 frame_control ; __le16 duration_id ; u8 addr1[6U] ; u8 addr2[6U] ; u8 addr3[6U] ; __le16 seq_ctrl ; u8 addr4[6U] ; }; struct ieee80211_p2p_noa_desc { u8 count ; __le32 duration ; __le32 interval ; __le32 start_time ; }; struct ieee80211_p2p_noa_attr { u8 index ; u8 oppps_ctwindow ; struct ieee80211_p2p_noa_desc desc[4U] ; }; enum nl80211_channel_type { NL80211_CHAN_NO_HT = 0, NL80211_CHAN_HT20 = 1, NL80211_CHAN_HT40MINUS = 2, NL80211_CHAN_HT40PLUS = 3 } ; struct ieee80211_tx_queue_params { u16 txop ; u16 cw_min ; u16 cw_max ; u8 aifs ; bool acm ; bool uapsd ; }; struct ieee80211_chanctx_conf { struct cfg80211_chan_def def ; struct cfg80211_chan_def min_def ; u8 rx_chains_static ; u8 rx_chains_dynamic ; bool radar_enabled ; u8 drv_priv[0U] ; }; struct ieee80211_vif; struct ieee80211_bss_conf { u8 const *bssid ; bool assoc ; bool ibss_joined ; bool ibss_creator ; u16 aid ; bool use_cts_prot ; bool use_short_preamble ; bool use_short_slot ; bool enable_beacon ; u8 dtim_period ; u16 beacon_int ; u16 assoc_capability ; u64 sync_tsf ; u32 sync_device_ts ; u8 sync_dtim_count ; u32 basic_rates ; struct ieee80211_rate *beacon_rate ; int mcast_rate[3U] ; u16 ht_operation_mode ; s32 cqm_rssi_thold ; u32 cqm_rssi_hyst ; struct cfg80211_chan_def chandef ; __be32 arp_addr_list[4U] ; int arp_addr_cnt ; bool qos ; bool idle ; bool ps ; u8 ssid[32U] ; size_t ssid_len ; bool hidden_ssid ; int txpower ; struct ieee80211_p2p_noa_attr p2p_noa_attr ; }; struct ieee80211_tx_rate { s8 idx ; unsigned char count : 5 ; unsigned short flags : 11 ; }; struct __anonstruct_ldv_46021_288 { struct ieee80211_tx_rate rates[4U] ; s8 rts_cts_rate_idx ; unsigned char use_rts : 1 ; unsigned char use_cts_prot : 1 ; unsigned char short_preamble : 1 ; unsigned char skip_table : 1 ; }; union __anonunion_ldv_46023_287 { struct __anonstruct_ldv_46021_288 ldv_46021 ; unsigned long jiffies ; }; struct ieee80211_key_conf; struct __anonstruct_control_286 { union __anonunion_ldv_46023_287 ldv_46023 ; struct ieee80211_vif *vif ; struct ieee80211_key_conf *hw_key ; u32 flags ; }; struct __anonstruct_status_289 { struct ieee80211_tx_rate rates[4U] ; s32 ack_signal ; u8 ampdu_ack_len ; u8 ampdu_len ; u8 antenna ; void *status_driver_data[2U] ; }; struct __anonstruct_ldv_46041_290 { struct ieee80211_tx_rate driver_rates[4U] ; u8 pad[4U] ; void *rate_driver_data[3U] ; }; union __anonunion_ldv_46043_285 { struct __anonstruct_control_286 control ; struct __anonstruct_status_289 status ; struct __anonstruct_ldv_46041_290 ldv_46041 ; void *driver_data[5U] ; }; struct ieee80211_tx_info { u32 flags ; u8 band ; u8 hw_queue ; u16 ack_frame_id ; union __anonunion_ldv_46043_285 ldv_46043 ; }; struct ieee80211_rx_status; struct ieee80211_rx_status { u64 mactime ; u32 device_timestamp ; u32 ampdu_reference ; u32 flag ; u16 freq ; u8 vht_flag ; u8 rate_idx ; u8 vht_nss ; u8 rx_flags ; u8 band ; u8 antenna ; s8 signal ; u8 chains ; s8 chain_signal[4U] ; u8 ampdu_delimiter_crc ; }; enum ieee80211_smps_mode { IEEE80211_SMPS_AUTOMATIC = 0, IEEE80211_SMPS_OFF = 1, IEEE80211_SMPS_STATIC = 2, IEEE80211_SMPS_DYNAMIC = 3, IEEE80211_SMPS_NUM_MODES = 4 } ; struct ieee80211_conf { u32 flags ; int power_level ; int dynamic_ps_timeout ; int max_sleep_period ; u16 listen_interval ; u8 ps_dtim_period ; u8 long_frame_max_tx_count ; u8 short_frame_max_tx_count ; struct cfg80211_chan_def chandef ; bool radar_enabled ; enum ieee80211_smps_mode smps_mode ; }; struct ieee80211_vif { enum nl80211_iftype type ; struct ieee80211_bss_conf bss_conf ; u8 addr[6U] ; bool p2p ; bool csa_active ; u8 cab_queue ; u8 hw_queue[4U] ; struct ieee80211_chanctx_conf *chanctx_conf ; u32 driver_flags ; struct dentry *debugfs_dir ; u8 drv_priv[0U] ; }; struct ieee80211_key_conf { u32 cipher ; u8 icv_len ; u8 iv_len ; u8 hw_key_idx ; u8 flags ; s8 keyidx ; u8 keylen ; u8 key[0U] ; }; struct ieee80211_cipher_scheme { u32 cipher ; u16 iftype ; u8 hdr_len ; u8 pn_len ; u8 pn_off ; u8 key_idx_off ; u8 key_idx_mask ; u8 key_idx_shift ; u8 mic_len ; }; enum ieee80211_sta_rx_bandwidth { IEEE80211_STA_RX_BW_20 = 0, IEEE80211_STA_RX_BW_40 = 1, IEEE80211_STA_RX_BW_80 = 2, IEEE80211_STA_RX_BW_160 = 3 } ; struct __anonstruct_rate_291 { s8 idx ; u8 count ; u8 count_cts ; u8 count_rts ; u16 flags ; }; struct ieee80211_sta_rates { struct callback_head callback_head ; struct __anonstruct_rate_291 rate[4U] ; }; struct ieee80211_sta { u32 supp_rates[3U] ; u8 addr[6U] ; u16 aid ; struct ieee80211_sta_ht_cap ht_cap ; struct ieee80211_sta_vht_cap vht_cap ; bool wme ; u8 uapsd_queues ; u8 max_sp ; u8 rx_nss ; enum ieee80211_sta_rx_bandwidth bandwidth ; enum ieee80211_smps_mode smps_mode ; struct ieee80211_sta_rates *rates ; bool tdls ; u8 drv_priv[0U] ; }; struct ieee80211_hw { struct ieee80211_conf conf ; struct wiphy *wiphy ; char const *rate_control_algorithm ; void *priv ; u32 flags ; unsigned int extra_tx_headroom ; unsigned int extra_beacon_tailroom ; int vif_data_size ; int sta_data_size ; int chanctx_data_size ; u16 queues ; u16 max_listen_interval ; s8 max_signal ; u8 max_rates ; u8 max_report_rates ; u8 max_rate_tries ; u8 max_rx_aggregation_subframes ; u8 max_tx_aggregation_subframes ; u8 offchannel_tx_hw_queue ; u8 radiotap_mcs_details ; u16 radiotap_vht_details ; netdev_features_t netdev_features ; u8 uapsd_queues ; u8 uapsd_max_sp_len ; u8 n_cipher_schemes ; struct ieee80211_cipher_scheme const *cipher_schemes ; }; enum intf_type { INTF_PCI = 0, INTF_USB = 1 } ; enum radio_path { RF90_PATH_A = 0, RF90_PATH_B = 1, RF90_PATH_C = 2, RF90_PATH_D = 3 } ; enum rf_pwrstate { ERFON = 0, ERFSLEEP = 1, ERFOFF = 2 } ; struct bb_reg_def { u32 rfintfs ; u32 rfintfi ; u32 rfintfo ; u32 rfintfe ; u32 rf3wire_offset ; u32 rflssi_select ; u32 rftxgain_stage ; u32 rfhssi_para1 ; u32 rfhssi_para2 ; u32 rfsw_ctrl ; u32 rfagc_control1 ; u32 rfagc_control2 ; u32 rfrxiq_imbal ; u32 rfrx_afe ; u32 rftxiq_imbal ; u32 rftx_afe ; u32 rf_rb ; u32 rf_rbpi ; }; enum io_type { IO_CMD_PAUSE_DM_BY_SCAN = 0, IO_CMD_PAUSE_BAND0_DM_BY_SCAN = 0, IO_CMD_PAUSE_BAND1_DM_BY_SCAN = 1, IO_CMD_RESUME_DM_BY_SCAN = 2 } ; enum _RT_MEDIA_STATUS { RT_MEDIA_DISCONNECT = 0, RT_MEDIA_CONNECT = 1 } ; enum ht_channel_width { HT_CHANNEL_WIDTH_20 = 0, HT_CHANNEL_WIDTH_20_40 = 1, HT_CHANNEL_WIDTH_80 = 2 } ; enum rt_enc_alg { NO_ENCRYPTION = 0, WEP40_ENCRYPTION = 1, TKIP_ENCRYPTION = 2, RSERVED_ENCRYPTION = 3, AESCCMP_ENCRYPTION = 4, WEP104_ENCRYPTION = 5, AESCMAC_ENCRYPTION = 6 } ; enum rt_psmode { EACTIVE = 0, EMAXPS = 1, EFASTPS = 2, EAUTOPS = 3 } ; enum led_ctl_mode { LED_CTL_POWER_ON = 1, LED_CTL_LINK = 2, LED_CTL_NO_LINK = 3, LED_CTL_TX = 4, LED_CTL_RX = 5, LED_CTL_SITE_SURVEY = 6, LED_CTL_POWER_OFF = 7, LED_CTL_START_TO_LINK = 8, LED_CTL_START_WPS = 9, LED_CTL_STOP_WPS = 10 } ; enum macphy_mode { SINGLEMAC_SINGLEPHY = 0, DUALMAC_DUALPHY = 1, DUALMAC_SINGLEPHY = 2 } ; enum band_type { BAND_ON_2_4G = 0, BAND_ON_5G = 1, BAND_ON_BOTH = 2, BANDMAX = 3 } ; enum rtl_link_state { MAC80211_NOLINK = 0, MAC80211_LINKING = 1, MAC80211_LINKED = 2, MAC80211_LINKED_SCANNING = 3 } ; enum rt_polarity_ctl { RT_POLARITY_LOW_ACT = 0, RT_POLARITY_HIGH_ACT = 1 } ; struct rtl_qos_parameters { __le16 cw_min ; __le16 cw_max ; u8 aifs ; u8 flag ; __le16 tx_op ; }; struct rt_smooth_data { u32 elements[100U] ; u32 index ; u32 total_num ; u32 total_val ; }; struct false_alarm_statistics { u32 cnt_parity_fail ; u32 cnt_rate_illegal ; u32 cnt_crc8_fail ; u32 cnt_mcs_fail ; u32 cnt_fast_fsync_fail ; u32 cnt_sb_search_fail ; u32 cnt_ofdm_fail ; u32 cnt_cck_fail ; u32 cnt_all ; u32 cnt_ofdm_cca ; u32 cnt_cck_cca ; u32 cnt_cca_all ; u32 cnt_bw_usc ; u32 cnt_bw_lsc ; }; struct init_gain { u8 xaagccore1 ; u8 xbagccore1 ; u8 xcagccore1 ; u8 xdagccore1 ; u8 cca ; }; struct wireless_stats { unsigned long txbytesunicast ; unsigned long txbytesmulticast ; unsigned long txbytesbroadcast ; unsigned long rxbytesunicast ; long rx_snr_db[4U] ; long recv_signal_power ; long signal_quality ; long last_sigstrength_inpercent ; u32 rssi_calculate_cnt ; long signal_strength ; u8 rx_rssi_percentage[4U] ; u8 rx_evm_dbm[4U] ; u8 rx_evm_percentage[2U] ; u16 rx_cfo_short[4U] ; u16 rx_cfo_tail[4U] ; struct rt_smooth_data ui_rssi ; struct rt_smooth_data ui_link_quality ; }; struct rate_adaptive { u8 rate_adaptive_disabled ; u8 ratr_state ; u16 reserve ; u32 high_rssi_thresh_for_ra ; u32 high2low_rssi_thresh_for_ra ; u8 low2high_rssi_thresh_for_ra40m ; u32 low_rssi_thresh_for_ra40m ; u8 low2high_rssi_thresh_for_ra20m ; u32 low_rssi_thresh_for_ra20m ; u32 upper_rssi_threshold_ratr ; u32 middleupper_rssi_threshold_ratr ; u32 middle_rssi_threshold_ratr ; u32 middlelow_rssi_threshold_ratr ; u32 low_rssi_threshold_ratr ; u32 ultralow_rssi_threshold_ratr ; u32 low_rssi_threshold_ratr_40m ; u32 low_rssi_threshold_ratr_20m ; u8 ping_rssi_enable ; u32 ping_rssi_ratr ; u32 ping_rssi_thresh_for_ra ; u32 last_ratr ; u8 pre_ratr_state ; u8 ldpc_thres ; bool use_ldpc ; bool lower_rts_rate ; bool is_special_data ; }; struct regd_pair_mapping { u16 reg_dmnenum ; u16 reg_5ghz_ctl ; u16 reg_2ghz_ctl ; }; struct dynamic_primary_cca { u8 pricca_flag ; u8 intf_flag ; u8 intf_type ; u8 dup_rts_flag ; u8 monitor_flag ; u8 ch_offset ; u8 mf_state ; }; struct rtl_regulatory { char alpha2[2U] ; u16 country_code ; u16 max_power_level ; u32 tp_scale ; u16 current_rd ; u16 current_rd_ext ; int16_t power_limit ; struct regd_pair_mapping *regpair ; }; struct rtl_rfkill { bool rfkill_state ; }; enum p2p_ps_state { P2P_PS_DISABLE = 0, P2P_PS_ENABLE = 1, P2P_PS_SCAN = 2, P2P_PS_SCAN_DONE = 3, P2P_PS_ALLSTASLEEP = 4 } ; enum p2p_ps_mode { P2P_PS_NONE = 0, P2P_PS_CTWINDOW = 1, P2P_PS_NOA = 2, P2P_PS_MIX = 3 } ; struct rtl_p2p_ps_info { enum p2p_ps_mode p2p_ps_mode ; enum p2p_ps_state p2p_ps_state ; u8 noa_index ; u8 ctwindow ; u8 opp_ps ; u8 noa_num ; u8 noa_count_type[2U] ; u32 noa_duration[2U] ; u32 noa_interval[2U] ; u32 noa_start_time[2U] ; }; struct p2p_ps_offload_t { unsigned char offload_en : 1 ; unsigned char role : 1 ; unsigned char ctwindow_en : 1 ; unsigned char noa0_en : 1 ; unsigned char noa1_en : 1 ; unsigned char allstasleep : 1 ; unsigned char discovery : 1 ; unsigned char reserved : 1 ; }; struct iqk_matrix_regs { bool iqk_done ; long value[1U][8U] ; }; struct phy_parameters { u16 length ; u32 *pdata ; }; struct rtl_phy { struct bb_reg_def phyreg_def[4U] ; struct init_gain initgain_backup ; enum io_type current_io_type ; u8 rf_mode ; u8 rf_type ; u8 current_chan_bw ; u8 set_bwmode_inprogress ; u8 sw_chnl_inprogress ; u8 sw_chnl_stage ; u8 sw_chnl_step ; u8 current_channel ; u8 h2c_box_num ; u8 set_io_inprogress ; u8 lck_inprogress ; s32 reg_e94 ; s32 reg_e9c ; s32 reg_ea4 ; s32 reg_eac ; s32 reg_eb4 ; s32 reg_ebc ; s32 reg_ec4 ; s32 reg_ecc ; u8 rfpienable ; u8 reserve_0 ; u16 reserve_1 ; u32 reg_c04 ; u32 reg_c08 ; u32 reg_874 ; u32 adda_backup[16U] ; u32 iqk_mac_backup[4U] ; u32 iqk_bb_backup[10U] ; bool iqk_initialized ; bool rfpath_rx_enable[4U] ; u8 reg_837 ; bool need_iqk ; struct iqk_matrix_regs iqk_matrix[46U] ; bool rfpi_enable ; bool iqk_in_progress ; u8 pwrgroup_cnt ; u8 cck_high_power ; u32 mcs_offset[13U][16U] ; u32 tx_power_by_rate_offset[2U][4U][4U][12U] ; u8 txpwr_by_rate_base_24g[4U][4U][6U] ; u8 txpwr_by_rate_base_5g[4U][4U][5U] ; u8 default_initialgain[4U] ; u8 cur_cck_txpwridx ; u8 cur_ofdm24g_txpwridx ; u8 cur_bw20_txpwridx ; u8 cur_bw40_txpwridx ; u32 rfreg_chnlval[2U] ; bool apk_done ; u32 reg_rf3c[2U] ; u32 backup_rf_0x1a ; u8 framesync ; u32 framesync_c34 ; u8 num_total_rfpath ; struct phy_parameters hwparam_tables[10U] ; u16 rf_pathmap ; u8 hw_rof_enable ; enum rt_polarity_ctl polarity_ctl ; }; struct rtl_ht_agg { u16 txq_id ; u16 wait_for_ba ; u16 start_idx ; u64 bitmap ; u32 rate_n_flags ; u8 agg_state ; u8 rx_agg_state ; }; struct rtl_tid_data { u16 seq_number ; struct rtl_ht_agg agg ; }; struct rtl_io { struct device *dev ; struct mutex bb_mutex ; unsigned long pci_mem_end ; unsigned long pci_mem_start ; unsigned long pci_base_addr ; void (*write8_async)(struct rtl_priv * , u32 , u8 ) ; void (*write16_async)(struct rtl_priv * , u32 , u16 ) ; void (*write32_async)(struct rtl_priv * , u32 , u32 ) ; void (*writeN_sync)(struct rtl_priv * , u32 , void * , u16 ) ; u8 (*read8_sync)(struct rtl_priv * , u32 ) ; u16 (*read16_sync)(struct rtl_priv * , u32 ) ; u32 (*read32_sync)(struct rtl_priv * , u32 ) ; }; struct rtl_mac { u8 mac_addr[6U] ; u8 mac80211_registered ; u8 beacon_enabled ; u32 tx_ss_num ; u32 rx_ss_num ; struct ieee80211_supported_band bands[3U] ; struct ieee80211_hw *hw ; struct ieee80211_vif *vif ; enum nl80211_iftype opmode ; struct rtl_tid_data tids[9U] ; enum rtl_link_state link_state ; int n_channels ; int n_bitrates ; bool offchan_delay ; u8 p2p ; bool p2p_in_use ; u32 rx_conf ; u16 rx_mgt_filter ; u16 rx_ctrl_filter ; u16 rx_data_filter ; bool act_scanning ; u8 cnt_after_linked ; bool skip_scan ; struct sk_buff_head skb_waitq[9U] ; bool rdg_en ; u8 bssid[6U] ; u32 vendor ; u8 mcs[16U] ; u32 basic_rates ; u8 ht_enable ; u8 sgi_40 ; u8 sgi_20 ; u8 bw_40 ; u8 mode ; u8 slot_time ; u8 short_preamble ; u8 use_cts_protect ; u8 cur_40_prime_sc ; u8 cur_40_prime_sc_bk ; u8 cur_80_prime_sc ; u64 tsf ; u8 retry_short ; u8 retry_long ; u16 assoc_id ; bool hiddenssid ; int beacon_interval ; u8 min_space_cfg ; u8 max_mss_density ; u8 current_ampdu_factor ; u8 current_ampdu_density ; struct ieee80211_tx_queue_params edca_param[5U] ; struct rtl_qos_parameters ac[4U] ; u64 last_txok_cnt ; u64 last_rxok_cnt ; u32 last_bt_edca_ul ; u32 last_bt_edca_dl ; }; struct btdm_8723 { bool all_off ; bool agc_table_en ; bool adc_back_off_on ; bool b2_ant_hid_en ; bool low_penalty_rate_adaptive ; bool rf_rx_lpf_shrink ; bool reject_aggre_pkt ; bool tra_tdma_on ; u8 tra_tdma_nav ; u8 tra_tdma_ant ; bool tdma_on ; u8 tdma_ant ; u8 tdma_nav ; u8 tdma_dac_swing ; u8 fw_dac_swing_lvl ; bool ps_tdma_on ; u8 ps_tdma_byte[5U] ; bool pta_on ; u32 val_0x6c0 ; u32 val_0x6c8 ; u32 val_0x6cc ; bool sw_dac_swing_on ; u32 sw_dac_swing_lvl ; u32 wlan_act_hi ; u32 wlan_act_lo ; u32 bt_retry_index ; bool dec_bt_pwr ; bool ignore_wlan_act ; }; struct bt_coexist_8723 { u32 high_priority_tx ; u32 high_priority_rx ; u32 low_priority_tx ; u32 low_priority_rx ; u8 c2h_bt_info ; bool c2h_bt_info_req_sent ; bool c2h_bt_inquiry_page ; u32 bt_inq_page_start_time ; u8 bt_retry_cnt ; u8 c2h_bt_info_original ; u8 bt_inquiry_page_cnt ; struct btdm_8723 btdm ; }; struct rtl_hal { struct ieee80211_hw *hw ; bool driver_is_goingto_unload ; bool up_first_time ; bool first_init ; bool being_init_adapter ; bool bbrf_ready ; bool mac_func_enable ; bool pre_edcca_enable ; struct bt_coexist_8723 hal_coex_8723 ; enum intf_type interface ; u16 hw_type ; u8 ic_class ; u8 oem_id ; u32 version ; u8 state ; u8 board_type ; u32 fwsize ; u8 *pfirmware ; u16 fw_version ; u16 fw_subversion ; bool h2c_setinprogress ; u8 last_hmeboxnum ; bool fw_ready ; u8 fw_rsvdpage_startoffset ; u8 h2c_txcmd_seq ; u8 current_ra_rate ; u16 fwcmd_iomap ; u32 fwcmd_ioparam ; bool set_fwcmd_inprogress ; u8 current_fwcmd_io ; struct p2p_ps_offload_t p2p_ps_offload ; bool fw_clk_change_in_progress ; bool allow_sw_to_change_hwclc ; u8 fw_ps_state ; bool driver_going2unload ; u8 minspace_cfg ; enum macphy_mode macphymode ; enum band_type current_bandtype ; enum band_type current_bandtypebackup ; enum band_type bandset ; u32 interfaceindex ; u8 macphyctl_reg ; bool earlymode_enable ; u8 max_earlymode_num ; bool during_mac0init_radiob ; bool during_mac1init_radioa ; bool reloadtxpowerindex ; bool load_imrandiqk_setting_for2g ; bool disable_amsdu_8k ; bool master_of_dmsp ; bool slave_of_dmsp ; u16 rx_tag ; u8 rts_en ; }; struct rtl_security { bool use_sw_sec ; bool being_setkey ; bool use_defaultkey ; enum rt_enc_alg pairwise_enc_algorithm ; enum rt_enc_alg group_enc_algorithm ; u32 hwsec_cam_bitmap ; u8 hwsec_cam_sta_addr[32U][6U] ; u8 key_buf[5U][61U] ; u8 key_len[5U] ; u8 *pairwise_key ; }; struct fast_ant_training { u8 bssid[6U] ; u8 antsel_rx_keep_0 ; u8 antsel_rx_keep_1 ; u8 antsel_rx_keep_2 ; u32 ant_sum[7U] ; u32 ant_cnt[7U] ; u32 ant_ave[7U] ; u8 fat_state ; u32 train_idx ; u8 antsel_a[33U] ; u8 antsel_b[33U] ; u8 antsel_c[33U] ; u32 main_ant_sum[33U] ; u32 aux_ant_sum[33U] ; u32 main_ant_cnt[33U] ; u32 aux_ant_cnt[33U] ; u8 rx_idle_ant ; bool becomelinked ; }; struct dm_phy_dbg_info { char rx_snrdb[4U] ; u64 num_qry_phy_status ; u64 num_qry_phy_status_cck ; u64 num_qry_phy_status_ofdm ; u16 num_qry_beacon_pkt ; u16 num_non_be_pkt ; s32 rx_evm[4U] ; }; struct rtl_dm { long entry_min_undec_sm_pwdb ; long undec_sm_cck ; long undec_sm_pwdb ; long entry_max_undec_sm_pwdb ; s32 ofdm_pkt_cnt ; bool dm_initialgain_enable ; bool dynamic_txpower_enable ; bool current_turbo_edca ; bool is_any_nonbepkts ; bool is_cur_rdlstate ; bool txpower_trackinginit ; bool disable_framebursting ; bool cck_inch14 ; bool txpower_tracking ; bool useramask ; bool rfpath_rxenable[4U] ; bool inform_fw_driverctrldm ; bool current_mrc_switch ; u8 txpowercount ; u8 powerindex_backup[6U] ; u8 thermalvalue_rxgain ; u8 thermalvalue_iqk ; u8 thermalvalue_lck ; u8 thermalvalue ; u8 last_dtp_lvl ; u8 thermalvalue_avg[8U] ; u8 thermalvalue_avg_index ; bool done_txpower ; u8 dynamic_txhighpower_lvl ; u8 dm_flag ; u8 dm_flag_tmp ; u8 dm_type ; u8 dm_rssi_sel ; u8 txpower_track_control ; bool interrupt_migration ; bool disable_tx_int ; char ofdm_index[4U] ; u8 default_ofdm_index ; u8 default_cck_index ; char cck_index ; char delta_power_index[4U] ; char delta_power_index_last[4U] ; char power_index_offset[4U] ; char absolute_ofdm_swing_idx[4U] ; char remnant_ofdm_swing_idx[4U] ; char remnant_cck_idx ; bool modify_txagc_flag_path_a ; bool modify_txagc_flag_path_b ; bool one_entry_only ; struct dm_phy_dbg_info dbginfo ; bool atc_status ; bool large_cfo_hit ; bool is_freeze ; int cfo_tail[2U] ; int cfo_ave_pre ; int crystal_cap ; u8 cfo_threshold ; u32 packet_count ; u32 packet_count_pre ; u8 tx_rate ; u8 swing_idx_ofdm[4U] ; u8 swing_idx_ofdm_cur ; u8 swing_idx_ofdm_base[4U] ; bool swing_flag_ofdm ; u8 swing_idx_cck ; u8 swing_idx_cck_cur ; u8 swing_idx_cck_base ; bool swing_flag_cck ; char swing_diff_2g ; char swing_diff_5g ; u8 delta_swing_table_idx_24gccka_p[30U] ; u8 delta_swing_table_idx_24gccka_n[30U] ; u8 delta_swing_table_idx_24gcckb_p[30U] ; u8 delta_swing_table_idx_24gcckb_n[30U] ; u8 delta_swing_table_idx_24ga_p[30U] ; u8 delta_swing_table_idx_24ga_n[30U] ; u8 delta_swing_table_idx_24gb_p[30U] ; u8 delta_swing_table_idx_24gb_n[30U] ; u8 delta_swing_table_idx_5ga_p[3U][30U] ; u8 delta_swing_table_idx_5ga_n[3U][30U] ; u8 delta_swing_table_idx_5gb_p[3U][30U] ; u8 delta_swing_table_idx_5gb_n[3U][30U] ; u8 delta_swing_table_idx_24ga_p_8188e[30U] ; u8 delta_swing_table_idx_24ga_n_8188e[30U] ; bool supp_phymode_switch ; struct fast_ant_training fat_table ; u8 resp_tx_path ; u8 path_sel ; u32 patha_sum ; u32 pathb_sum ; u32 patha_cnt ; u32 pathb_cnt ; u8 pre_channel ; u8 *p_channel ; u8 linked_interval ; u64 last_tx_ok_cnt ; u64 last_rx_ok_cnt ; }; struct rtl_efuse { bool autoLoad_ok ; bool bootfromefuse ; u16 max_physical_size ; u8 efuse_map[2U][512U] ; u16 efuse_usedbytes ; u8 efuse_usedpercentage ; u8 autoload_failflag ; u8 autoload_status ; short epromtype ; u16 eeprom_vid ; u16 eeprom_did ; u16 eeprom_svid ; u16 eeprom_smid ; u8 eeprom_oemid ; u16 eeprom_channelplan ; u8 eeprom_version ; u8 board_type ; u8 external_pa ; u8 dev_addr[6U] ; u8 wowlan_enable ; u8 antenna_div_cfg ; u8 antenna_div_type ; bool txpwr_fromeprom ; u8 eeprom_crystalcap ; u8 eeprom_tssi[2U] ; u8 eeprom_tssi_5g[3U][2U] ; u8 eeprom_pwrlimit_ht20[12U] ; u8 eeprom_pwrlimit_ht40[12U] ; u8 eeprom_chnlarea_txpwr_cck[4U][3U] ; u8 eeprom_chnlarea_txpwr_ht40_1s[4U][12U] ; u8 eprom_chnl_txpwr_ht40_2sdf[4U][12U] ; u8 internal_pa_5g[2U] ; u8 eeprom_c9 ; u8 eeprom_cc ; u8 eeprom_pwrgroup[2U][3U] ; u8 pwrgroup_ht20[2U][59U] ; u8 pwrgroup_ht40[2U][59U] ; u8 txpwrlevel_cck[4U][14U] ; u8 txpwrlevel_ht40_1s[4U][59U] ; u8 txpwrlevel_ht40_2s[4U][59U] ; char txpwr_cckdiff[4U][59U] ; char txpwr_ht20diff[4U][59U] ; char txpwr_ht40diff[4U][59U] ; char txpwr_legacyhtdiff[4U][59U] ; u8 txpwr_5g_bw40base[4U][59U] ; u8 txpwr_5g_bw80base[4U][7U] ; char txpwr_5g_ofdmdiff[4U][4U] ; char txpwr_5g_bw20diff[4U][4U] ; char txpwr_5g_bw40diff[4U][4U] ; char txpwr_5g_bw80diff[4U][4U] ; u8 txpwr_safetyflag ; u16 eeprom_txpowerdiff ; u8 legacy_httxpowerdiff ; u8 antenna_txpwdiff[3U] ; u8 eeprom_regulatory ; u8 eeprom_thermalmeter ; u8 thermalmeter[2U] ; u16 tssi_13dbm ; u8 crystalcap ; u8 delta_iqk ; u8 delta_lck ; u8 legacy_ht_txpowerdiff ; bool apk_thermalmeterignore ; bool b1x1_recvcombine ; bool b1ss_support ; u8 channel_plan ; }; struct rtl_ps_ctl { bool pwrdomain_protect ; bool in_powersavemode ; bool rfchange_inprogress ; bool swrf_processing ; bool hwradiooff ; bool support_aspm ; bool support_backdoor ; enum rt_psmode dot11_psmode ; bool swctrl_lps ; bool leisure_ps ; bool fwctrl_lps ; u8 fwctrl_psmode ; u8 reg_fwctrl_lps ; bool fw_current_inpsmode ; u8 reg_max_lps_awakeintvl ; bool report_linked ; bool low_power_enable ; bool inactiveps ; u32 rfoff_reason ; u32 cur_ps_level ; u32 reg_rfps_level ; u8 const_amdpci_aspm ; bool pwrdown_mode ; enum rf_pwrstate inactive_pwrstate ; enum rf_pwrstate rfpwr_state ; bool sw_ps_enabled ; bool state ; bool state_inap ; bool multi_buffered ; u16 nullfunc_seq ; unsigned int dtim_counter ; unsigned int sleep_ms ; unsigned long last_sleep_jiffies ; unsigned long last_awake_jiffies ; unsigned long last_delaylps_stamp_jiffies ; unsigned long last_dtim ; unsigned long last_beacon ; unsigned long last_action ; unsigned long last_slept ; struct rtl_p2p_ps_info p2p_ps_info ; u8 pwr_mode ; u8 smart_ps ; }; struct rtl_stats { u8 psaddr[6U] ; u32 mac_time[2U] ; s8 rssi ; u8 signal ; u8 noise ; u8 rate ; u8 received_channel ; u8 control ; u8 mask ; u8 freq ; u16 len ; u64 tsf ; u32 beacon_time ; u8 nic_type ; u16 length ; u8 signalquality ; s32 recvsignalpower ; s8 rxpower ; u8 signalstrength ; unsigned char hwerror : 1 ; unsigned char crc : 1 ; unsigned char icv : 1 ; unsigned char shortpreamble : 1 ; unsigned char antenna : 1 ; unsigned char decrypted : 1 ; unsigned char wakeup : 1 ; u32 timestamp_low ; u32 timestamp_high ; u8 rx_drvinfo_size ; u8 rx_bufshift ; bool isampdu ; bool isfirst_ampdu ; bool rx_is40Mhzpacket ; u32 rx_pwdb_all ; u8 rx_mimo_signalstrength[4U] ; s8 rx_mimo_sig_qual[4U] ; u8 rx_pwr[4U] ; u8 rx_snr[4U] ; bool packet_matchbssid ; bool is_cck ; bool is_ht ; bool packet_toself ; bool packet_beacon ; char cck_adc_pwdb[4U] ; u8 packet_report_type ; u32 macid ; u8 wake_match ; u32 bt_rx_rssi_percentage ; u32 macid_valid_entry[2U] ; }; struct rt_link_detect { u32 bcn_rx_inperiod ; u32 roam_times ; u32 num_tx_in4period[4U] ; u32 num_rx_in4period[4U] ; u32 num_tx_inperiod ; u32 num_rx_inperiod ; bool busytraffic ; bool tx_busy_traffic ; bool rx_busy_traffic ; bool higher_busytraffic ; bool higher_busyrxtraffic ; u32 tidtx_in4period[9U][4U] ; u32 tidtx_inperiod[9U] ; bool higher_busytxtraffic[9U] ; }; struct rtl_tcb_desc { unsigned char packet_bw : 1 ; unsigned char multicast : 1 ; unsigned char broadcast : 1 ; unsigned char rts_stbc : 1 ; unsigned char rts_enable : 1 ; unsigned char cts_enable : 1 ; unsigned char rts_use_shortpreamble : 1 ; unsigned char rts_use_shortgi : 1 ; unsigned char rts_sc : 1 ; unsigned char rts_bw : 1 ; u8 rts_rate ; unsigned char use_shortgi : 1 ; unsigned char use_shortpreamble : 1 ; unsigned char use_driver_rate : 1 ; unsigned char disable_ratefallback : 1 ; u8 ratr_index ; u8 mac_id ; u8 hw_rate ; unsigned char last_inipkt : 1 ; unsigned char cmd_or_init : 1 ; u8 queue_index ; u8 empkt_num ; u32 empkt_len[10U] ; bool btx_enable_sw_calc_duration ; }; struct rtl92c_firmware_header; struct rtl_hal_ops { int (*init_sw_vars)(struct ieee80211_hw * ) ; void (*deinit_sw_vars)(struct ieee80211_hw * ) ; void (*read_chip_version)(struct ieee80211_hw * ) ; void (*read_eeprom_info)(struct ieee80211_hw * ) ; void (*interrupt_recognized)(struct ieee80211_hw * , u32 * , u32 * ) ; int (*hw_init)(struct ieee80211_hw * ) ; void (*hw_disable)(struct ieee80211_hw * ) ; void (*hw_suspend)(struct ieee80211_hw * ) ; void (*hw_resume)(struct ieee80211_hw * ) ; void (*enable_interrupt)(struct ieee80211_hw * ) ; void (*disable_interrupt)(struct ieee80211_hw * ) ; int (*set_network_type)(struct ieee80211_hw * , enum nl80211_iftype ) ; void (*set_chk_bssid)(struct ieee80211_hw * , bool ) ; void (*set_bw_mode)(struct ieee80211_hw * , enum nl80211_channel_type ) ; u8 (*switch_channel)(struct ieee80211_hw * ) ; void (*set_qos)(struct ieee80211_hw * , int ) ; void (*set_bcn_reg)(struct ieee80211_hw * ) ; void (*set_bcn_intv)(struct ieee80211_hw * ) ; void (*update_interrupt_mask)(struct ieee80211_hw * , u32 , u32 ) ; void (*get_hw_reg)(struct ieee80211_hw * , u8 , u8 * ) ; void (*set_hw_reg)(struct ieee80211_hw * , u8 , u8 * ) ; void (*update_rate_tbl)(struct ieee80211_hw * , struct ieee80211_sta * , u8 ) ; void (*pre_fill_tx_bd_desc)(struct ieee80211_hw * , u8 * , u8 * , u8 , struct sk_buff * , dma_addr_t ) ; void (*update_rate_mask)(struct ieee80211_hw * , u8 ) ; u16 (*rx_desc_buff_remained_cnt)(struct ieee80211_hw * , u8 ) ; void (*rx_check_dma_ok)(struct ieee80211_hw * , u8 * , u8 ) ; void (*fill_tx_desc)(struct ieee80211_hw * , struct ieee80211_hdr * , u8 * , u8 * , struct ieee80211_tx_info * , struct ieee80211_sta * , struct sk_buff * , u8 , struct rtl_tcb_desc * ) ; void (*fill_fake_txdesc)(struct ieee80211_hw * , u8 * , u32 , bool ) ; void (*fill_tx_cmddesc)(struct ieee80211_hw * , u8 * , bool , bool , struct sk_buff * ) ; bool (*cmd_send_packet)(struct ieee80211_hw * , struct sk_buff * ) ; bool (*query_rx_desc)(struct ieee80211_hw * , struct rtl_stats * , struct ieee80211_rx_status * , u8 * , struct sk_buff * ) ; void (*set_channel_access)(struct ieee80211_hw * ) ; bool (*radio_onoff_checking)(struct ieee80211_hw * , u8 * ) ; void (*dm_watchdog)(struct ieee80211_hw * ) ; void (*scan_operation_backup)(struct ieee80211_hw * , u8 ) ; bool (*set_rf_power_state)(struct ieee80211_hw * , enum rf_pwrstate ) ; void (*led_control)(struct ieee80211_hw * , enum led_ctl_mode ) ; void (*set_desc)(struct ieee80211_hw * , u8 * , bool , u8 , u8 * ) ; u32 (*get_desc)(u8 * , bool , u8 ) ; bool (*is_tx_desc_closed)(struct ieee80211_hw * , u8 , u16 ) ; void (*tx_polling)(struct ieee80211_hw * , u8 ) ; void (*enable_hw_sec)(struct ieee80211_hw * ) ; void (*set_key)(struct ieee80211_hw * , u32 , u8 * , bool , u8 , bool , bool ) ; void (*init_sw_leds)(struct ieee80211_hw * ) ; void (*deinit_sw_leds)(struct ieee80211_hw * ) ; u32 (*get_bbreg)(struct ieee80211_hw * , u32 , u32 ) ; void (*set_bbreg)(struct ieee80211_hw * , u32 , u32 , u32 ) ; u32 (*get_rfreg)(struct ieee80211_hw * , enum radio_path , u32 , u32 ) ; void (*set_rfreg)(struct ieee80211_hw * , enum radio_path , u32 , u32 , u32 ) ; void (*linked_set_reg)(struct ieee80211_hw * ) ; void (*chk_switch_dmdp)(struct ieee80211_hw * ) ; void (*dualmac_easy_concurrent)(struct ieee80211_hw * ) ; void (*dualmac_switch_to_dmdp)(struct ieee80211_hw * ) ; bool (*phy_rf6052_config)(struct ieee80211_hw * ) ; void (*phy_rf6052_set_cck_txpower)(struct ieee80211_hw * , u8 * ) ; void (*phy_rf6052_set_ofdm_txpower)(struct ieee80211_hw * , u8 * , u8 ) ; bool (*config_bb_with_headerfile)(struct ieee80211_hw * , u8 ) ; bool (*config_bb_with_pgheaderfile)(struct ieee80211_hw * , u8 ) ; void (*phy_lc_calibrate)(struct ieee80211_hw * , bool ) ; void (*phy_set_bw_mode_callback)(struct ieee80211_hw * ) ; void (*dm_dynamic_txpower)(struct ieee80211_hw * ) ; void (*c2h_command_handle)(struct ieee80211_hw * ) ; void (*bt_wifi_media_status_notify)(struct ieee80211_hw * , bool ) ; void (*bt_coex_off_before_lps)(struct ieee80211_hw * ) ; void (*fill_h2c_cmd)(struct ieee80211_hw * , u8 , u32 , u8 * ) ; bool (*get_btc_status)(void) ; bool (*is_fw_header)(struct rtl92c_firmware_header * ) ; u32 (*rx_command_packet)(struct ieee80211_hw * , struct rtl_stats , struct sk_buff * ) ; }; struct rtl_intf_ops { void (*read_efuse_byte)(struct ieee80211_hw * , u16 , u8 * ) ; int (*adapter_start)(struct ieee80211_hw * ) ; void (*adapter_stop)(struct ieee80211_hw * ) ; bool (*check_buddy_priv)(struct ieee80211_hw * , struct rtl_priv ** ) ; int (*adapter_tx)(struct ieee80211_hw * , struct ieee80211_sta * , struct sk_buff * , struct rtl_tcb_desc * ) ; void (*flush)(struct ieee80211_hw * , bool ) ; int (*reset_trx_ring)(struct ieee80211_hw * ) ; bool (*waitq_insert)(struct ieee80211_hw * , struct ieee80211_sta * , struct sk_buff * ) ; void (*disable_aspm)(struct ieee80211_hw * ) ; void (*enable_aspm)(struct ieee80211_hw * ) ; }; struct rtl_mod_params { bool sw_crypto ; int debug ; bool inactiveps ; bool swctrl_lps ; bool fwctrl_lps ; bool msi_support ; }; struct rtl_hal_usbint_cfg { u32 in_ep_num ; u32 rx_urb_num ; u32 rx_max_size ; void (*usb_rx_hdl)(struct ieee80211_hw * , struct sk_buff * ) ; void (*usb_rx_segregate_hdl)(struct ieee80211_hw * , struct sk_buff * , struct sk_buff_head * ) ; void (*usb_tx_cleanup)(struct ieee80211_hw * , struct sk_buff * ) ; int (*usb_tx_post_hdl)(struct ieee80211_hw * , struct urb * , struct sk_buff * ) ; struct sk_buff *(*usb_tx_aggregate_hdl)(struct ieee80211_hw * , struct sk_buff_head * ) ; int (*usb_endpoint_mapping)(struct ieee80211_hw * ) ; u16 (*usb_mq_to_hwq)(__le16 , u16 ) ; }; struct rtl_hal_cfg { u8 bar_id ; bool write_readback ; char *name ; char *fw_name ; char *alt_fw_name ; struct rtl_hal_ops *ops ; struct rtl_mod_params *mod_params ; struct rtl_hal_usbint_cfg *usb_interface_cfg ; u32 maps[83U] ; }; struct rtl_locks { struct mutex conf_mutex ; struct mutex ps_mutex ; spinlock_t ips_lock ; spinlock_t irq_th_lock ; spinlock_t irq_pci_lock ; spinlock_t tx_lock ; spinlock_t h2c_lock ; spinlock_t rf_ps_lock ; spinlock_t rf_lock ; spinlock_t lps_lock ; spinlock_t waitq_lock ; spinlock_t entry_list_lock ; spinlock_t usb_lock ; spinlock_t fw_ps_lock ; spinlock_t cck_and_rw_pagea_lock ; spinlock_t check_sendpkt_lock ; spinlock_t iqk_lock ; }; struct rtl_works { struct ieee80211_hw *hw ; struct timer_list watchdog_timer ; struct timer_list dualmac_easyconcurrent_retrytimer ; struct timer_list fw_clockoff_timer ; struct timer_list fast_antenna_training_timer ; struct tasklet_struct irq_tasklet ; struct tasklet_struct irq_prepare_bcn_tasklet ; struct workqueue_struct *rtl_wq ; struct delayed_work watchdog_wq ; struct delayed_work ips_nic_off_wq ; struct delayed_work ps_work ; struct delayed_work ps_rfon_wq ; struct delayed_work fwevt_wq ; struct work_struct lps_change_work ; struct work_struct fill_h2c_cmd ; }; struct rtl_debug { u32 dbgp_type[19U] ; int global_debuglevel ; u64 global_debugcomponents ; struct proc_dir_entry *proc_dir ; char proc_name[20U] ; }; struct rtl_dualmac_easy_concurrent_ctl { enum band_type currentbandtype_backfordmdp ; bool close_bbandrf_for_dmsp ; bool change_to_dmdp ; bool change_to_dmsp ; bool switch_in_process ; }; struct rtl_dmsp_ctl { bool activescan_for_slaveofdmsp ; bool scan_for_anothermac_fordmsp ; bool scan_for_itself_fordmsp ; bool writedig_for_anothermacofdmsp ; u32 curdigvalue_for_anothermacofdmsp ; bool changecckpdstate_for_anothermacofdmsp ; u8 curcckpdstate_for_anothermacofdmsp ; bool changetxhighpowerlvl_for_anothermacofdmsp ; u8 curtxhighlvl_for_anothermacofdmsp ; long rssivalmin_for_anothermacofdmsp ; }; struct ps_t { u8 pre_ccastate ; u8 cur_ccasate ; u8 pre_rfstate ; u8 cur_rfstate ; u8 initialize ; long rssi_val_min ; }; struct dig_t { u32 rssi_lowthresh ; u32 rssi_highthresh ; u32 fa_lowthresh ; u32 fa_highthresh ; long last_min_undec_pwdb_for_dm ; long rssi_highpower_lowthresh ; long rssi_highpower_highthresh ; u32 recover_cnt ; u32 pre_igvalue ; u32 cur_igvalue ; long rssi_val ; u8 dig_enable_flag ; u8 dig_ext_port_stage ; u8 dig_algorithm ; u8 dig_twoport_algorithm ; u8 dig_dbgmode ; u8 dig_slgorithm_switch ; u8 cursta_cstate ; u8 presta_cstate ; u8 curmultista_cstate ; u8 stop_dig ; char back_val ; char back_range_max ; char back_range_min ; u8 rx_gain_max ; u8 rx_gain_min ; u8 min_undec_pwdb_for_dm ; u8 rssi_val_min ; u8 pre_cck_cca_thres ; u8 cur_cck_cca_thres ; u8 pre_cck_pd_state ; u8 cur_cck_pd_state ; u8 pre_cck_fa_state ; u8 cur_cck_fa_state ; u8 pre_ccastate ; u8 cur_ccasate ; u8 large_fa_hit ; u8 dig_dynamic_min ; u8 dig_dynamic_min_1 ; u8 forbidden_igi ; u8 dig_state ; u8 dig_highpwrstate ; u8 cur_sta_cstate ; u8 pre_sta_cstate ; u8 cur_ap_cstate ; u8 pre_ap_cstate ; u8 cur_pd_thstate ; u8 pre_pd_thstate ; u8 cur_cs_ratiostate ; u8 pre_cs_ratiostate ; u8 backoff_enable_flag ; char backoffval_range_max ; char backoffval_range_min ; u8 dig_min_0 ; u8 dig_min_1 ; u8 bt30_cur_igi ; bool media_connect_0 ; bool media_connect_1 ; u32 antdiv_rssi_max ; u32 rssi_max ; }; struct rtl_global_var { struct list_head glb_priv_list ; spinlock_t glb_list_lock ; }; struct rtl_btc_info { u8 bt_type ; u8 btcoexist ; u8 ant_num ; }; struct rtl_btc_ops; struct bt_coexist_info { struct rtl_btc_ops *btc_ops ; struct rtl_btc_info btc_info ; u8 eeprom_bt_coexist ; u8 eeprom_bt_type ; u8 eeprom_bt_ant_num ; u8 eeprom_bt_ant_isol ; u8 eeprom_bt_radio_shared ; u8 bt_coexistence ; u8 bt_ant_num ; u8 bt_coexist_type ; u8 bt_state ; u8 bt_cur_state ; u8 bt_ant_isolation ; u8 bt_pape_ctrl ; u8 bt_service ; u8 bt_radio_shared_type ; u8 bt_rfreg_origin_1e ; u8 bt_rfreg_origin_1f ; u8 bt_rssi_state ; u32 ratio_tx ; u32 ratio_pri ; u32 bt_edca_ul ; u32 bt_edca_dl ; bool init_set ; bool bt_busy_traffic ; bool bt_traffic_mode_set ; bool bt_non_traffic_mode_set ; bool fw_coexist_all_off ; bool sw_coexist_all_off ; bool hw_coexist_all_off ; u32 cstate ; u32 previous_state ; u32 cstate_h ; u32 previous_state_h ; u8 bt_pre_rssi_state ; u8 bt_pre_rssi_state1 ; u8 reg_bt_iso ; u8 reg_bt_sco ; bool balance_on ; u8 bt_active_zero_cnt ; bool cur_bt_disabled ; bool pre_bt_disabled ; u8 bt_profile_case ; u8 bt_profile_action ; bool bt_busy ; bool hold_for_bt_operation ; u8 lps_counter ; }; struct rtl_btc_ops { void (*btc_init_variables)(struct rtl_priv * ) ; void (*btc_init_hal_vars)(struct rtl_priv * ) ; void (*btc_init_hw_config)(struct rtl_priv * ) ; void (*btc_ips_notify)(struct rtl_priv * , u8 ) ; void (*btc_scan_notify)(struct rtl_priv * , u8 ) ; void (*btc_connect_notify)(struct rtl_priv * , u8 ) ; void (*btc_mediastatus_notify)(struct rtl_priv * , enum _RT_MEDIA_STATUS ) ; void (*btc_periodical)(struct rtl_priv * ) ; void (*btc_halt_notify)(void) ; void (*btc_btinfo_notify)(struct rtl_priv * , u8 * , u8 ) ; bool (*btc_is_limited_dig)(struct rtl_priv * ) ; bool (*btc_is_disable_edca_turbo)(struct rtl_priv * ) ; bool (*btc_is_bt_disabled)(struct rtl_priv * ) ; }; struct proxim { bool proxim_on ; void *proximity_priv ; int (*proxim_rx)(struct ieee80211_hw * , struct rtl_stats * , struct sk_buff * ) ; u8 (*proxim_get_var)(struct ieee80211_hw * , u8 ) ; }; struct rtl_rate_priv; struct rtl_priv { struct ieee80211_hw *hw ; struct completion firmware_loading_complete ; struct list_head list ; struct rtl_priv *buddy_priv ; struct rtl_global_var *glb_var ; struct rtl_dualmac_easy_concurrent_ctl easy_concurrent_ctl ; struct rtl_dmsp_ctl dmsp_ctl ; struct rtl_locks locks ; struct rtl_works works ; struct rtl_mac mac80211 ; struct rtl_hal rtlhal ; struct rtl_regulatory regd ; struct rtl_rfkill rfkill ; struct rtl_io io ; struct rtl_phy phy ; struct rtl_dm dm ; struct rtl_security sec ; struct rtl_efuse efuse ; struct rtl_ps_ctl psc ; struct rate_adaptive ra ; struct dynamic_primary_cca primarycca ; struct wireless_stats stats ; struct rt_link_detect link_info ; struct false_alarm_statistics falsealm_cnt ; struct rtl_rate_priv *rate_priv ; struct list_head entry_list ; struct rtl_debug dbg ; int max_fw_size ; struct rtl_hal_cfg *cfg ; struct rtl_intf_ops *intf_ops ; unsigned long status ; struct dig_t dm_digtable ; struct ps_t dm_pstable ; u32 reg_874 ; u32 reg_c70 ; u32 reg_85c ; u32 reg_a74 ; bool reg_init ; bool bt_operation_on ; __le32 *usb_data ; int usb_data_index ; bool initialized ; bool enter_ps ; u8 rate_mask[5U] ; struct proxim proximity ; struct bt_coexist_info btcoexist ; bool use_new_trx_flow ; u8 priv[0U] ; }; struct kernel_symbol { unsigned long value ; char const *name ; }; typedef short s16; typedef void (*ctor_fn_t)(void); struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; enum hrtimer_restart; struct exception_table_entry { int insn ; int fixup ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion_ldv_52075_303 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s16 level ; union __anonunion_ldv_52075_303 ldv_52075 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_ref { unsigned long incs ; unsigned long decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct __anonstruct____missing_field_name_257 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_256 { __wsum csum ; struct __anonstruct____missing_field_name_257 __annonCompField63 ; }; union __anonunion____missing_field_name_258 { unsigned int napi_id ; dma_cookie_t dma_cookie ; }; union __anonunion____missing_field_name_259 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; struct sk_buff___0 { struct sk_buff___0 *next ; struct sk_buff___0 *prev ; union __anonunion_ldv_24882_180 __annonCompField62 ; struct sock *sk ; struct net_device *dev ; char cb[48] __attribute__((__aligned__(8))) ; unsigned long _skb_refdst ; struct sec_path *sp ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; union __anonunion____missing_field_name_256 __annonCompField64 ; __u32 priority ; __u8 ignore_df : 1 ; __u8 cloned : 1 ; __u8 ip_summed : 2 ; __u8 nohdr : 1 ; __u8 nfctinfo : 3 ; __u8 pkt_type : 3 ; __u8 fclone : 2 ; __u8 ipvs_property : 1 ; __u8 peeked : 1 ; __u8 nf_trace : 1 ; __be16 protocol ; void (*destructor)(struct sk_buff___0 *skb ) ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; int skb_iif ; __u32 hash ; __be16 vlan_proto ; __u16 vlan_tci ; __u16 tc_index ; __u16 tc_verd ; __u16 queue_mapping ; __u8 ndisc_nodetype : 2 ; __u8 pfmemalloc : 1 ; __u8 ooo_okay : 1 ; __u8 l4_hash : 1 ; __u8 wifi_acked_valid : 1 ; __u8 wifi_acked : 1 ; __u8 no_fcs : 1 ; __u8 head_frag : 1 ; __u8 encapsulation : 1 ; __u8 encap_hdr_csum : 1 ; __u8 csum_valid : 1 ; __u8 csum_complete_sw : 1 ; union __anonunion____missing_field_name_258 __annonCompField65 ; __u32 secmark ; union __anonunion____missing_field_name_259 __annonCompField66 ; __be16 inner_protocol ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; typedef void *Element; typedef Element Set; long ldv__builtin_expect(long exp , long c ) ; extern int printk(char const * , ...) ; extern int snprintf(char * , size_t , char const * , ...) ; void ldv_kfree_skb_6(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_7(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_8(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_11(struct sk_buff *ldv_func_arg1 ) ; void ldv_consume_skb_5(struct sk_buff *ldv_func_arg1 ) ; extern void ldv_skb_free(struct sk_buff___0 * ) ; extern void *malloc(size_t size ) ; extern void *calloc(size_t nmemb , size_t size ) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; extern void __VERIFIER_assume(int expression ) ; void *ldv_malloc(size_t size ) { void *p ; void *tmp ; int tmp___0 ; { tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0) { return ((void *)0); } else { tmp = malloc(size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } } void *ldv_zalloc(size_t size ) { void *p ; void *tmp ; int tmp___0 ; { tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0) { return ((void *)0); } else { tmp = calloc(1UL, size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } } int ldv_undef_int(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { tmp = __VERIFIER_nondet_pointer(); return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { tmp = __VERIFIER_nondet_ulong(); return (tmp); } } __inline static void ldv_error(void) { { ERROR: ; __VERIFIER_error(); } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { ldv_error(); return; } } int LDV_IN_INTERRUPT = 1; extern void __const_udelay(unsigned long ) ; u32 btc_dbg_type[2U] ; void ex_halbtc8723b2ant_init_hwconfig(struct btc_coexist *btcoexist ) ; void ex_halbtc8723b2ant_init_coex_dm(struct btc_coexist *btcoexist ) ; void ex_halbtc8723b2ant_ips_notify(struct btc_coexist *btcoexist , u8 type ) ; void ex_halbtc8723b2ant_lps_notify(struct btc_coexist *btcoexist , u8 type ) ; void ex_halbtc8723b2ant_scan_notify(struct btc_coexist *btcoexist , u8 type ) ; void ex_halbtc8723b2ant_connect_notify(struct btc_coexist *btcoexist , u8 type ) ; void btc8723b_med_stat_notify(struct btc_coexist *btcoexist , u8 type ) ; void ex_halbtc8723b2ant_special_packet_notify(struct btc_coexist *btcoexist , u8 type ) ; void ex_halbtc8723b2ant_bt_info_notify(struct btc_coexist *btcoexist , u8 *tmpbuf , u8 length ) ; void ex_halbtc8723b2ant_stack_operation_notify(struct btc_coexist *btcoexist , u8 type ) ; void ex_halbtc8723b2ant_halt_notify(struct btc_coexist *btcoexist ) ; void ex_halbtc8723b2ant_periodical(struct btc_coexist *btcoexist ) ; void ex_halbtc8723b2ant_display_coex_info(struct btc_coexist *btcoexist ) ; static struct coex_dm_8723b_2ant glcoex_dm_8723b_2ant ; static struct coex_dm_8723b_2ant *coex_dm = & glcoex_dm_8723b_2ant; static struct coex_sta_8723b_2ant glcoex_sta_8723b_2ant ; static struct coex_sta_8723b_2ant *coex_sta = & glcoex_sta_8723b_2ant; static char const * const glbt_info_src_8723b_2ant[3U] = { "BT Info[wifi fw]", "BT Info[bt rsp]", "BT Info[bt auto report]"}; static u32 glcoex_ver_date_8723b_2ant = 20130731U; static u32 glcoex_ver_8723b_2ant = 59U; static u8 btc8723b2ant_bt_rssi_state(u8 level_num , u8 rssi_thresh , u8 rssi_thresh1 ) { s32 bt_rssi ; u8 bt_rssi_state ; long tmp ; long tmp___0 ; long tmp___1 ; long tmp___2 ; long tmp___3 ; long tmp___4 ; long tmp___5 ; long tmp___6 ; long tmp___7 ; long tmp___8 ; long tmp___9 ; long tmp___10 ; { bt_rssi = 0; bt_rssi_state = coex_sta->pre_bt_rssi_state; bt_rssi = (s32 )coex_sta->bt_rssi; if ((unsigned int )level_num == 2U) { if ((unsigned int )coex_sta->pre_bt_rssi_state == 2U || (unsigned int )coex_sta->pre_bt_rssi_state == 5U) { if ((int )rssi_thresh + 2 <= bt_rssi) { bt_rssi_state = 0U; tmp = ldv__builtin_expect((long )((int )btc_dbg_type[1]) & 1L, 0L); if (tmp != 0L) { printk("[BTCoex], BT Rssi state switch to High\n"); } else { } } else { bt_rssi_state = 5U; tmp___0 = ldv__builtin_expect((long )((int )btc_dbg_type[1]) & 1L, 0L); if (tmp___0 != 0L) { printk("[BTCoex], BT Rssi state stay at Low\n"); } else { } } } else if ((int )rssi_thresh > bt_rssi) { bt_rssi_state = 2U; tmp___1 = ldv__builtin_expect((long )((int )btc_dbg_type[1]) & 1L, 0L); if (tmp___1 != 0L) { printk("[BTCoex], BT Rssi state switch to Low\n"); } else { } } else { bt_rssi_state = 3U; tmp___2 = ldv__builtin_expect((long )((int )btc_dbg_type[1]) & 1L, 0L); if (tmp___2 != 0L) { printk("[BTCoex], BT Rssi state stay at High\n"); } else { } } } else if ((unsigned int )level_num == 3U) { if ((int )rssi_thresh > (int )rssi_thresh1) { tmp___3 = ldv__builtin_expect((long )((int )btc_dbg_type[1]) & 1L, 0L); if (tmp___3 != 0L) { printk("[BTCoex], BT Rssi thresh error!!\n"); } else { } return (coex_sta->pre_bt_rssi_state); } else { } if ((unsigned int )coex_sta->pre_bt_rssi_state == 2U || (unsigned int )coex_sta->pre_bt_rssi_state == 5U) { if ((int )rssi_thresh + 2 <= bt_rssi) { bt_rssi_state = 1U; tmp___4 = ldv__builtin_expect((long )((int )btc_dbg_type[1]) & 1L, 0L); if (tmp___4 != 0L) { printk("[BTCoex], BT Rssi state switch to Medium\n"); } else { } } else { bt_rssi_state = 5U; tmp___5 = ldv__builtin_expect((long )((int )btc_dbg_type[1]) & 1L, 0L); if (tmp___5 != 0L) { printk("[BTCoex], BT Rssi state stay at Low\n"); } else { } } } else if ((unsigned int )coex_sta->pre_bt_rssi_state == 1U || (unsigned int )coex_sta->pre_bt_rssi_state == 4U) { if ((int )rssi_thresh1 + 2 <= bt_rssi) { bt_rssi_state = 0U; tmp___6 = ldv__builtin_expect((long )((int )btc_dbg_type[1]) & 1L, 0L); if (tmp___6 != 0L) { printk("[BTCoex], BT Rssi state switch to High\n"); } else { } } else if ((int )rssi_thresh > bt_rssi) { bt_rssi_state = 2U; tmp___7 = ldv__builtin_expect((long )((int )btc_dbg_type[1]) & 1L, 0L); if (tmp___7 != 0L) { printk("[BTCoex], BT Rssi state switch to Low\n"); } else { } } else { bt_rssi_state = 4U; tmp___8 = ldv__builtin_expect((long )((int )btc_dbg_type[1]) & 1L, 0L); if (tmp___8 != 0L) { printk("[BTCoex], BT Rssi state stay at Medium\n"); } else { } } } else if ((int )rssi_thresh1 > bt_rssi) { bt_rssi_state = 1U; tmp___9 = ldv__builtin_expect((long )((int )btc_dbg_type[1]) & 1L, 0L); if (tmp___9 != 0L) { printk("[BTCoex], BT Rssi state switch to Medium\n"); } else { } } else { bt_rssi_state = 3U; tmp___10 = ldv__builtin_expect((long )((int )btc_dbg_type[1]) & 1L, 0L); if (tmp___10 != 0L) { printk("[BTCoex], BT Rssi state stay at High\n"); } else { } } } else { } coex_sta->pre_bt_rssi_state = bt_rssi_state; return (bt_rssi_state); } } static u8 btc8723b2ant_wifi_rssi_state(struct btc_coexist *btcoexist , u8 index , u8 level_num , u8 rssi_thresh , u8 rssi_thresh1 ) { s32 wifi_rssi ; u8 wifi_rssi_state ; long tmp ; long tmp___0 ; long tmp___1 ; long tmp___2 ; long tmp___3 ; long tmp___4 ; long tmp___5 ; long tmp___6 ; long tmp___7 ; long tmp___8 ; long tmp___9 ; long tmp___10 ; { wifi_rssi = 0; wifi_rssi_state = coex_sta->pre_wifi_rssi_state[(int )index]; (*(btcoexist->btc_get))((void *)btcoexist, 17, (void *)(& wifi_rssi)); if ((unsigned int )level_num == 2U) { if ((unsigned int )coex_sta->pre_wifi_rssi_state[(int )index] == 2U || (unsigned int )coex_sta->pre_wifi_rssi_state[(int )index] == 5U) { if ((int )rssi_thresh + 2 <= wifi_rssi) { wifi_rssi_state = 0U; tmp = ldv__builtin_expect((btc_dbg_type[1] & 2U) != 0U, 0L); if (tmp != 0L) { printk("[BTCoex], wifi RSSI state switch to High\n"); } else { } } else { wifi_rssi_state = 5U; tmp___0 = ldv__builtin_expect((btc_dbg_type[1] & 2U) != 0U, 0L); if (tmp___0 != 0L) { printk("[BTCoex], wifi RSSI state stay at Low\n"); } else { } } } else if ((int )rssi_thresh > wifi_rssi) { wifi_rssi_state = 2U; tmp___1 = ldv__builtin_expect((btc_dbg_type[1] & 2U) != 0U, 0L); if (tmp___1 != 0L) { printk("[BTCoex], wifi RSSI state switch to Low\n"); } else { } } else { wifi_rssi_state = 3U; tmp___2 = ldv__builtin_expect((btc_dbg_type[1] & 2U) != 0U, 0L); if (tmp___2 != 0L) { printk("[BTCoex], wifi RSSI state stay at High\n"); } else { } } } else if ((unsigned int )level_num == 3U) { if ((int )rssi_thresh > (int )rssi_thresh1) { tmp___3 = ldv__builtin_expect((btc_dbg_type[1] & 2U) != 0U, 0L); if (tmp___3 != 0L) { printk("[BTCoex], wifi RSSI thresh error!!\n"); } else { } return (coex_sta->pre_wifi_rssi_state[(int )index]); } else { } if ((unsigned int )coex_sta->pre_wifi_rssi_state[(int )index] == 2U || (unsigned int )coex_sta->pre_wifi_rssi_state[(int )index] == 5U) { if ((int )rssi_thresh + 2 <= wifi_rssi) { wifi_rssi_state = 1U; tmp___4 = ldv__builtin_expect((btc_dbg_type[1] & 2U) != 0U, 0L); if (tmp___4 != 0L) { printk("[BTCoex], wifi RSSI state switch to Medium\n"); } else { } } else { wifi_rssi_state = 5U; tmp___5 = ldv__builtin_expect((btc_dbg_type[1] & 2U) != 0U, 0L); if (tmp___5 != 0L) { printk("[BTCoex], wifi RSSI state stay at Low\n"); } else { } } } else if ((unsigned int )coex_sta->pre_wifi_rssi_state[(int )index] == 1U || (unsigned int )coex_sta->pre_wifi_rssi_state[(int )index] == 4U) { if ((int )rssi_thresh1 + 2 <= wifi_rssi) { wifi_rssi_state = 0U; tmp___6 = ldv__builtin_expect((btc_dbg_type[1] & 2U) != 0U, 0L); if (tmp___6 != 0L) { printk("[BTCoex], wifi RSSI state switch to High\n"); } else { } } else if ((int )rssi_thresh > wifi_rssi) { wifi_rssi_state = 2U; tmp___7 = ldv__builtin_expect((btc_dbg_type[1] & 2U) != 0U, 0L); if (tmp___7 != 0L) { printk("[BTCoex], wifi RSSI state switch to Low\n"); } else { } } else { wifi_rssi_state = 4U; tmp___8 = ldv__builtin_expect((btc_dbg_type[1] & 2U) != 0U, 0L); if (tmp___8 != 0L) { printk("[BTCoex], wifi RSSI state stay at Medium\n"); } else { } } } else if ((int )rssi_thresh1 > wifi_rssi) { wifi_rssi_state = 1U; tmp___9 = ldv__builtin_expect((btc_dbg_type[1] & 2U) != 0U, 0L); if (tmp___9 != 0L) { printk("[BTCoex], wifi RSSI state switch to Medium\n"); } else { } } else { wifi_rssi_state = 3U; tmp___10 = ldv__builtin_expect((btc_dbg_type[1] & 2U) != 0U, 0L); if (tmp___10 != 0L) { printk("[BTCoex], wifi RSSI state stay at High\n"); } else { } } } else { } coex_sta->pre_wifi_rssi_state[(int )index] = wifi_rssi_state; return (wifi_rssi_state); } } static void btc8723b2ant_monitor_bt_ctr(struct btc_coexist *btcoexist ) { u32 reg_hp_txrx ; u32 reg_lp_txrx ; u32 u32tmp ; u32 reg_hp_tx ; u32 reg_hp_rx ; u32 reg_lp_tx ; u32 reg_lp_rx ; long tmp ; long tmp___0 ; { reg_hp_tx = 0U; reg_hp_rx = 0U; reg_lp_tx = 0U; reg_lp_rx = 0U; reg_hp_txrx = 1904U; reg_lp_txrx = 1908U; u32tmp = (*(btcoexist->btc_read_4byte))((void *)btcoexist, reg_hp_txrx); reg_hp_tx = u32tmp & 65535U; reg_hp_rx = u32tmp >> 16; u32tmp = (*(btcoexist->btc_read_4byte))((void *)btcoexist, reg_lp_txrx); reg_lp_tx = u32tmp & 65535U; reg_lp_rx = u32tmp >> 16; coex_sta->high_priority_tx = reg_hp_tx; coex_sta->high_priority_rx = reg_hp_rx; coex_sta->low_priority_tx = reg_lp_tx; coex_sta->low_priority_rx = reg_lp_rx; tmp = ldv__builtin_expect((btc_dbg_type[1] & 4U) != 0U, 0L); if (tmp != 0L) { printk("[BTCoex], High Priority Tx/Rx(reg 0x%x)=0x%x(%d)/0x%x(%d)\n", reg_hp_txrx, reg_hp_tx, reg_hp_tx, reg_hp_rx, reg_hp_rx); } else { } tmp___0 = ldv__builtin_expect((btc_dbg_type[1] & 4U) != 0U, 0L); if (tmp___0 != 0L) { printk("[BTCoex], Low Priority Tx/Rx(reg 0x%x)=0x%x(%d)/0x%x(%d)\n", reg_lp_txrx, reg_lp_tx, reg_lp_tx, reg_lp_rx, reg_lp_rx); } else { } (*(btcoexist->btc_write_1byte))((void *)btcoexist, 1902U, 12); return; } } static bool btc8723b2ant_is_wifi_status_changed(struct btc_coexist *btcoexist ) { bool pre_wifi_busy ; bool pre_under_4way ; bool pre_bt_hs_on ; bool wifi_busy ; bool under_4way ; bool bt_hs_on ; bool wifi_connected ; { wifi_busy = 0; under_4way = 0; bt_hs_on = 0; wifi_connected = 0; (*(btcoexist->btc_get))((void *)btcoexist, 2, (void *)(& wifi_connected)); (*(btcoexist->btc_get))((void *)btcoexist, 3, (void *)(& wifi_busy)); (*(btcoexist->btc_get))((void *)btcoexist, 0, (void *)(& bt_hs_on)); (*(btcoexist->btc_get))((void *)btcoexist, 11, (void *)(& under_4way)); if ((int )wifi_connected) { if ((int )wifi_busy != (int )pre_wifi_busy) { pre_wifi_busy = wifi_busy; return (1); } else { } if ((int )under_4way != (int )pre_under_4way) { pre_under_4way = under_4way; return (1); } else { } if ((int )bt_hs_on != (int )pre_bt_hs_on) { pre_bt_hs_on = bt_hs_on; return (1); } else { } } else { } return (0); } } static void btc8723b2ant_update_bt_link_info(struct btc_coexist *btcoexist ) { struct btc_bt_link_info *bt_link_info ; bool bt_hs_on ; { bt_link_info = & btcoexist->bt_link_info; bt_hs_on = 0; (*(btcoexist->btc_get))((void *)btcoexist, 0, (void *)(& bt_hs_on)); bt_link_info->bt_link_exist = coex_sta->bt_link_exist; bt_link_info->sco_exist = coex_sta->sco_exist; bt_link_info->a2dp_exist = coex_sta->a2dp_exist; bt_link_info->pan_exist = coex_sta->pan_exist; bt_link_info->hid_exist = coex_sta->hid_exist; if ((int )bt_hs_on) { bt_link_info->pan_exist = 1; bt_link_info->bt_link_exist = 1; } else { } if ((((int )bt_link_info->sco_exist && ! bt_link_info->a2dp_exist) && ! bt_link_info->pan_exist) && ! bt_link_info->hid_exist) { bt_link_info->sco_only = 1; } else { bt_link_info->sco_only = 0; } if (((! bt_link_info->sco_exist && (int )bt_link_info->a2dp_exist) && ! bt_link_info->pan_exist) && ! bt_link_info->hid_exist) { bt_link_info->a2dp_only = 1; } else { bt_link_info->a2dp_only = 0; } if (((! bt_link_info->sco_exist && ! bt_link_info->a2dp_exist) && (int )bt_link_info->pan_exist) && ! bt_link_info->hid_exist) { bt_link_info->pan_only = 1; } else { bt_link_info->pan_only = 0; } if (((! bt_link_info->sco_exist && ! bt_link_info->a2dp_exist) && ! bt_link_info->pan_exist) && (int )bt_link_info->hid_exist) { bt_link_info->hid_only = 1; } else { bt_link_info->hid_only = 0; } return; } } static u8 btc8723b2ant_action_algorithm(struct btc_coexist *btcoexist ) { struct btc_bt_link_info *bt_link_info ; bool bt_hs_on ; u8 algorithm ; u8 num_of_diff_profile ; long tmp ; long tmp___0 ; long tmp___1 ; long tmp___2 ; long tmp___3 ; long tmp___4 ; long tmp___5 ; long tmp___6 ; long tmp___7 ; long tmp___8 ; long tmp___9 ; long tmp___10 ; long tmp___11 ; long tmp___12 ; long tmp___13 ; long tmp___14 ; long tmp___15 ; long tmp___16 ; long tmp___17 ; long tmp___18 ; long tmp___19 ; long tmp___20 ; long tmp___21 ; long tmp___22 ; { bt_link_info = & btcoexist->bt_link_info; bt_hs_on = 0; algorithm = 0U; num_of_diff_profile = 0U; (*(btcoexist->btc_get))((void *)btcoexist, 0, (void *)(& bt_hs_on)); if (! bt_link_info->bt_link_exist) { tmp = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp != 0L) { printk("[BTCoex], No BT link exists!!!\n"); } else { } return (algorithm); } else { } if ((int )bt_link_info->sco_exist) { num_of_diff_profile = (u8 )((int )num_of_diff_profile + 1); } else { } if ((int )bt_link_info->hid_exist) { num_of_diff_profile = (u8 )((int )num_of_diff_profile + 1); } else { } if ((int )bt_link_info->pan_exist) { num_of_diff_profile = (u8 )((int )num_of_diff_profile + 1); } else { } if ((int )bt_link_info->a2dp_exist) { num_of_diff_profile = (u8 )((int )num_of_diff_profile + 1); } else { } if ((unsigned int )num_of_diff_profile == 1U) { if ((int )bt_link_info->sco_exist) { tmp___0 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___0 != 0L) { printk("[BTCoex], SCO only\n"); } else { } algorithm = 1U; } else if ((int )bt_link_info->hid_exist) { tmp___1 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___1 != 0L) { printk("[BTCoex], HID only\n"); } else { } algorithm = 2U; } else if ((int )bt_link_info->a2dp_exist) { tmp___2 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___2 != 0L) { printk("[BTCoex], A2DP only\n"); } else { } algorithm = 3U; } else if ((int )bt_link_info->pan_exist) { if ((int )bt_hs_on) { tmp___3 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___3 != 0L) { printk("[BTCoex], PAN(HS) only\n"); } else { } algorithm = 6U; } else { tmp___4 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___4 != 0L) { printk("[BTCoex], PAN(EDR) only\n"); } else { } algorithm = 5U; } } else { } } else if ((unsigned int )num_of_diff_profile == 2U) { if ((int )bt_link_info->sco_exist) { if ((int )bt_link_info->hid_exist) { tmp___5 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___5 != 0L) { printk("[BTCoex], SCO + HID\n"); } else { } algorithm = 8U; } else if ((int )bt_link_info->a2dp_exist) { tmp___6 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___6 != 0L) { printk("[BTCoex], SCO + A2DP ==> SCO\n"); } else { } algorithm = 8U; } else if ((int )bt_link_info->pan_exist) { if ((int )bt_hs_on) { tmp___7 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___7 != 0L) { printk("[BTCoex], SCO + PAN(HS)\n"); } else { } algorithm = 1U; } else { tmp___8 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___8 != 0L) { printk("[BTCoex], SCO + PAN(EDR)\n"); } else { } algorithm = 8U; } } else { } } else if ((int )bt_link_info->hid_exist && (int )bt_link_info->a2dp_exist) { tmp___9 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___9 != 0L) { printk("[BTCoex], HID + A2DP\n"); } else { } algorithm = 10U; } else if ((int )bt_link_info->hid_exist && (int )bt_link_info->pan_exist) { if ((int )bt_hs_on) { tmp___10 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___10 != 0L) { printk("[BTCoex], HID + PAN(HS)\n"); } else { } algorithm = 2U; } else { tmp___11 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___11 != 0L) { printk("[BTCoex], HID + PAN(EDR)\n"); } else { } algorithm = 8U; } } else if ((int )bt_link_info->pan_exist && (int )bt_link_info->a2dp_exist) { if ((int )bt_hs_on) { tmp___12 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___12 != 0L) { printk("[BTCoex], A2DP + PAN(HS)\n"); } else { } algorithm = 4U; } else { tmp___13 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___13 != 0L) { printk("[BTCoex],A2DP + PAN(EDR)\n"); } else { } algorithm = 7U; } } else { } } else if ((unsigned int )num_of_diff_profile == 3U) { if ((int )bt_link_info->sco_exist) { if ((int )bt_link_info->hid_exist && (int )bt_link_info->a2dp_exist) { tmp___14 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___14 != 0L) { printk("[BTCoex], SCO + HID + A2DP ==> HID\n"); } else { } algorithm = 8U; } else if ((int )bt_link_info->hid_exist && (int )bt_link_info->pan_exist) { if ((int )bt_hs_on) { tmp___15 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___15 != 0L) { printk("[BTCoex], SCO + HID + PAN(HS)\n"); } else { } algorithm = 8U; } else { tmp___16 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___16 != 0L) { printk("[BTCoex], SCO + HID + PAN(EDR)\n"); } else { } algorithm = 8U; } } else if ((int )bt_link_info->pan_exist && (int )bt_link_info->a2dp_exist) { if ((int )bt_hs_on) { tmp___17 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___17 != 0L) { printk("[BTCoex], SCO + A2DP + PAN(HS)\n"); } else { } algorithm = 8U; } else { tmp___18 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___18 != 0L) { printk("[BTCoex], SCO + A2DP + PAN(EDR) ==> HID\n"); } else { } algorithm = 8U; } } else { } } else if (((int )bt_link_info->hid_exist && (int )bt_link_info->pan_exist) && (int )bt_link_info->a2dp_exist) { if ((int )bt_hs_on) { tmp___19 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___19 != 0L) { printk("[BTCoex], HID + A2DP + PAN(HS)\n"); } else { } algorithm = 10U; } else { tmp___20 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___20 != 0L) { printk("[BTCoex], HID + A2DP + PAN(EDR)\n"); } else { } algorithm = 9U; } } else { } } else if ((unsigned int )num_of_diff_profile > 2U) { if ((int )bt_link_info->sco_exist) { if (((int )bt_link_info->hid_exist && (int )bt_link_info->pan_exist) && (int )bt_link_info->a2dp_exist) { if ((int )bt_hs_on) { tmp___21 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___21 != 0L) { printk("[BTCoex], Error!!! SCO + HID + A2DP + PAN(HS)\n"); } else { } } else { tmp___22 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___22 != 0L) { printk("[BTCoex], SCO + HID + A2DP + PAN(EDR)==>PAN(EDR)+HID\n"); } else { } algorithm = 8U; } } else { } } else { } } else { } return (algorithm); } } static bool btc8723b_need_dec_pwr(struct btc_coexist *btcoexist ) { bool ret ; bool bt_hs_on ; bool wifi_connected ; s32 bt_hs_rssi ; u8 bt_rssi_state ; bool tmp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; bool tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { ret = 0; bt_hs_on = 0; wifi_connected = 0; bt_hs_rssi = 0; tmp = (*(btcoexist->btc_get))((void *)btcoexist, 0, (void *)(& bt_hs_on)); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (0); } else { } tmp___1 = (*(btcoexist->btc_get))((void *)btcoexist, 2, (void *)(& wifi_connected)); if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { return (0); } else { } tmp___3 = (*(btcoexist->btc_get))((void *)btcoexist, 18, (void *)(& bt_hs_rssi)); if (tmp___3) { tmp___4 = 0; } else { tmp___4 = 1; } if (tmp___4) { return (0); } else { } bt_rssi_state = btc8723b2ant_bt_rssi_state(2, 35, 0); if ((int )wifi_connected) { if ((int )bt_hs_on) { if (bt_hs_rssi > 37) { tmp___5 = ldv__builtin_expect((btc_dbg_type[1] & 16U) != 0U, 0L); if (tmp___5 != 0L) { printk("[BTCoex], Need to decrease bt power for HS mode!!\n"); } else { } ret = 1; } else { } } else if ((unsigned int )bt_rssi_state == 0U || (unsigned int )bt_rssi_state == 3U) { tmp___6 = ldv__builtin_expect((btc_dbg_type[1] & 16U) != 0U, 0L); if (tmp___6 != 0L) { printk("[BTCoex], Need to decrease bt power for Wifi is connected!!\n"); } else { } ret = 1; } else { } } else { } return (ret); } } static void btc8723b2ant_set_fw_dac_swing_level(struct btc_coexist *btcoexist , u8 dac_swing_lvl ) { u8 h2c_parameter[1U] ; long tmp ; long tmp___0 ; { h2c_parameter[0] = 0U; h2c_parameter[0] = dac_swing_lvl; tmp = ldv__builtin_expect((btc_dbg_type[1] & 64U) != 0U, 0L); if (tmp != 0L) { printk("[BTCoex], Set Dac Swing Level=0x%x\n", (int )dac_swing_lvl); } else { } tmp___0 = ldv__builtin_expect((btc_dbg_type[1] & 64U) != 0U, 0L); if (tmp___0 != 0L) { printk("[BTCoex], FW write 0x64=0x%x\n", (int )h2c_parameter[0]); } else { } (*(btcoexist->btc_fill_h2c))((void *)btcoexist, 100, 1U, (u8 *)(& h2c_parameter)); return; } } static void btc8723b2ant_set_fw_dec_bt_pwr(struct btc_coexist *btcoexist , bool dec_bt_pwr ) { u8 h2c_parameter[1U] ; long tmp ; { h2c_parameter[0] = 0U; h2c_parameter[0] = 0U; if ((int )dec_bt_pwr) { h2c_parameter[0] = (u8 )((unsigned int )h2c_parameter[0] | 2U); } else { } tmp = ldv__builtin_expect((btc_dbg_type[1] & 64U) != 0U, 0L); if (tmp != 0L) { printk("[BTCoex], decrease Bt Power : %s, FW write 0x62=0x%x\n", (int )dec_bt_pwr ? (char *)"Yes!!" : (char *)"No!!", (int )h2c_parameter[0]); } else { } (*(btcoexist->btc_fill_h2c))((void *)btcoexist, 98, 1U, (u8 *)(& h2c_parameter)); return; } } static void btc8723b2ant_dec_bt_pwr(struct btc_coexist *btcoexist , bool force_exec , bool dec_bt_pwr ) { long tmp ; long tmp___0 ; { tmp = ldv__builtin_expect((btc_dbg_type[1] & 16U) != 0U, 0L); if (tmp != 0L) { printk("[BTCoex], %s Dec BT power = %s\n", (int )force_exec ? (char *)"force to" : (char *)"", (int )dec_bt_pwr ? (char *)"ON" : (char *)"OFF"); } else { } coex_dm->cur_dec_bt_pwr = dec_bt_pwr; if (! force_exec) { tmp___0 = ldv__builtin_expect((btc_dbg_type[1] & 32U) != 0U, 0L); if (tmp___0 != 0L) { printk("[BTCoex], bPreDecBtPwr=%d, bCurDecBtPwr=%d\n", (int )coex_dm->pre_dec_bt_pwr, (int )coex_dm->cur_dec_bt_pwr); } else { } if ((int )coex_dm->pre_dec_bt_pwr == (int )coex_dm->cur_dec_bt_pwr) { return; } else { } } else { } btc8723b2ant_set_fw_dec_bt_pwr(btcoexist, (int )coex_dm->cur_dec_bt_pwr); coex_dm->pre_dec_bt_pwr = coex_dm->cur_dec_bt_pwr; return; } } static void btc8723b2ant_fw_dac_swing_lvl(struct btc_coexist *btcoexist , bool force_exec , u8 fw_dac_swing_lvl ) { long tmp ; long tmp___0 ; { tmp = ldv__builtin_expect((btc_dbg_type[1] & 16U) != 0U, 0L); if (tmp != 0L) { printk("[BTCoex], %s set FW Dac Swing level = %d\n", (int )force_exec ? (char *)"force to" : (char *)"", (int )fw_dac_swing_lvl); } else { } coex_dm->cur_fw_dac_swing_lvl = fw_dac_swing_lvl; if (! force_exec) { tmp___0 = ldv__builtin_expect((btc_dbg_type[1] & 32U) != 0U, 0L); if (tmp___0 != 0L) { printk("[BTCoex], preFwDacSwingLvl=%d, curFwDacSwingLvl=%d\n", (int )coex_dm->pre_fw_dac_swing_lvl, (int )coex_dm->cur_fw_dac_swing_lvl); } else { } if ((int )coex_dm->pre_fw_dac_swing_lvl == (int )coex_dm->cur_fw_dac_swing_lvl) { return; } else { } } else { } btc8723b2ant_set_fw_dac_swing_level(btcoexist, (int )coex_dm->cur_fw_dac_swing_lvl); coex_dm->pre_fw_dac_swing_lvl = coex_dm->cur_fw_dac_swing_lvl; return; } } static void btc8723b2ant_set_sw_rf_rx_lpf_corner(struct btc_coexist *btcoexist , bool rx_rf_shrink_on ) { long tmp ; long tmp___0 ; { if ((int )rx_rf_shrink_on) { tmp = ldv__builtin_expect((btc_dbg_type[1] & 512U) != 0U, 0L); if (tmp != 0L) { printk("[BTCoex], Shrink RF Rx LPF corner!!\n"); } else { } (*(btcoexist->btc_set_rf_reg))((void *)btcoexist, 0, 30U, 1048575U, 1048572U); } else if ((int )btcoexist->initilized) { tmp___0 = ldv__builtin_expect((btc_dbg_type[1] & 512U) != 0U, 0L); if (tmp___0 != 0L) { printk("[BTCoex], Resume RF Rx LPF corner!!\n"); } else { } (*(btcoexist->btc_set_rf_reg))((void *)btcoexist, 0, 30U, 1048575U, coex_dm->bt_rf0x1e_backup); } else { } return; } } static void btc8723b2ant_rf_shrink(struct btc_coexist *btcoexist , bool force_exec , bool rx_rf_shrink_on ) { long tmp ; long tmp___0 ; { tmp = ldv__builtin_expect((btc_dbg_type[1] & 128U) != 0U, 0L); if (tmp != 0L) { printk("[BTCoex], %s turn Rx RF Shrink = %s\n", (int )force_exec ? (char *)"force to" : (char *)"", (int )rx_rf_shrink_on ? (char *)"ON" : (char *)"OFF"); } else { } coex_dm->cur_rf_rx_lpf_shrink = rx_rf_shrink_on; if (! force_exec) { tmp___0 = ldv__builtin_expect((btc_dbg_type[1] & 256U) != 0U, 0L); if (tmp___0 != 0L) { printk("[BTCoex], bPreRfRxLpfShrink=%d, bCurRfRxLpfShrink=%d\n", (int )coex_dm->pre_rf_rx_lpf_shrink, (int )coex_dm->cur_rf_rx_lpf_shrink); } else { } if ((int )coex_dm->pre_rf_rx_lpf_shrink == (int )coex_dm->cur_rf_rx_lpf_shrink) { return; } else { } } else { } btc8723b2ant_set_sw_rf_rx_lpf_corner(btcoexist, (int )coex_dm->cur_rf_rx_lpf_shrink); coex_dm->pre_rf_rx_lpf_shrink = coex_dm->cur_rf_rx_lpf_shrink; return; } } static void btc8723b_set_penalty_txrate(struct btc_coexist *btcoexist , bool low_penalty_ra ) { u8 h2c_parameter[6U] ; unsigned int tmp ; long tmp___0 ; { h2c_parameter[0] = 0U; tmp = 1U; while (1) { if (tmp >= 6U) { break; } else { } h2c_parameter[tmp] = (unsigned char)0; tmp = tmp + 1U; } h2c_parameter[0] = 6U; if ((int )low_penalty_ra) { h2c_parameter[1] = (u8 )((unsigned int )h2c_parameter[1] | 1U); h2c_parameter[2] = 0U; h2c_parameter[3] = 247U; h2c_parameter[4] = 248U; h2c_parameter[5] = 249U; } else { } tmp___0 = ldv__builtin_expect((btc_dbg_type[1] & 64U) != 0U, 0L); if (tmp___0 != 0L) { printk("[BTCoex], set WiFi Low-Penalty Retry: %s", (int )low_penalty_ra ? (char *)"ON!!" : (char *)"OFF!!"); } else { } (*(btcoexist->btc_fill_h2c))((void *)btcoexist, 105, 6U, (u8 *)(& h2c_parameter)); return; } } static void btc8723b2ant_low_penalty_ra(struct btc_coexist *btcoexist , bool force_exec , bool low_penalty_ra ) { long tmp ; long tmp___0 ; { tmp = ldv__builtin_expect((btc_dbg_type[1] & 128U) != 0U, 0L); if (tmp != 0L) { printk("[BTCoex], %s turn LowPenaltyRA = %s\n", (int )force_exec ? (char *)"force to" : (char *)"", (int )low_penalty_ra ? (char *)"ON" : (char *)"OFF"); } else { } coex_dm->cur_low_penalty_ra = low_penalty_ra; if (! force_exec) { tmp___0 = ldv__builtin_expect((btc_dbg_type[1] & 256U) != 0U, 0L); if (tmp___0 != 0L) { printk("[BTCoex], bPreLowPenaltyRa=%d, bCurLowPenaltyRa=%d\n", (int )coex_dm->pre_low_penalty_ra, (int )coex_dm->cur_low_penalty_ra); } else { } if ((int )coex_dm->pre_low_penalty_ra == (int )coex_dm->cur_low_penalty_ra) { return; } else { } } else { } btc8723b_set_penalty_txrate(btcoexist, (int )coex_dm->cur_low_penalty_ra); coex_dm->pre_low_penalty_ra = coex_dm->cur_low_penalty_ra; return; } } static void btc8723b2ant_set_dac_swing_reg(struct btc_coexist *btcoexist , u32 level ) { u8 val ; long tmp ; { val = (unsigned char )level; tmp = ldv__builtin_expect((btc_dbg_type[1] & 512U) != 0U, 0L); if (tmp != 0L) { printk("[BTCoex], Write SwDacSwing = 0x%x\n", level); } else { } (*(btcoexist->btc_write_1byte_bitmask))((void *)btcoexist, 2179U, 62U, (int )val); return; } } static void btc8723b2ant_set_sw_fulltime_dac_swing(struct btc_coexist *btcoex , bool sw_dac_swing_on , u32 sw_dac_swing_lvl ) { { if ((int )sw_dac_swing_on) { btc8723b2ant_set_dac_swing_reg(btcoex, sw_dac_swing_lvl); } else { btc8723b2ant_set_dac_swing_reg(btcoex, 24U); } return; } } static void btc8723b2ant_dac_swing(struct btc_coexist *btcoexist , bool force_exec , bool dac_swing_on , u32 dac_swing_lvl ) { long tmp ; long tmp___0 ; unsigned long __ms ; unsigned long tmp___1 ; { tmp = ldv__builtin_expect((btc_dbg_type[1] & 128U) != 0U, 0L); if (tmp != 0L) { printk("[BTCoex], %s turn DacSwing=%s, dac_swing_lvl=0x%x\n", (int )force_exec ? (char *)"force to" : (char *)"", (int )dac_swing_on ? (char *)"ON" : (char *)"OFF", dac_swing_lvl); } else { } coex_dm->cur_dac_swing_on = dac_swing_on; coex_dm->cur_dac_swing_lvl = dac_swing_lvl; if (! force_exec) { tmp___0 = ldv__builtin_expect((btc_dbg_type[1] & 256U) != 0U, 0L); if (tmp___0 != 0L) { printk("[BTCoex], bPreDacSwingOn=%d, preDacSwingLvl=0x%x, bCurDacSwingOn=%d, curDacSwingLvl=0x%x\n", (int )coex_dm->pre_dac_swing_on, coex_dm->pre_dac_swing_lvl, (int )coex_dm->cur_dac_swing_on, coex_dm->cur_dac_swing_lvl); } else { } if ((int )coex_dm->pre_dac_swing_on == (int )coex_dm->cur_dac_swing_on && coex_dm->pre_dac_swing_lvl == coex_dm->cur_dac_swing_lvl) { return; } else { } } else { } __ms = 30UL; goto ldv_51780; ldv_51779: __const_udelay(4295000UL); ldv_51780: tmp___1 = __ms; __ms = __ms - 1UL; if (tmp___1 != 0UL) { goto ldv_51779; } else { } btc8723b2ant_set_sw_fulltime_dac_swing(btcoexist, (int )dac_swing_on, dac_swing_lvl); coex_dm->pre_dac_swing_on = coex_dm->cur_dac_swing_on; coex_dm->pre_dac_swing_lvl = coex_dm->cur_dac_swing_lvl; return; } } static void btc8723b2ant_set_agc_table(struct btc_coexist *btcoexist , bool agc_table_en ) { u8 rssi_adjust_val ; long tmp ; long tmp___0 ; long tmp___1 ; long tmp___2 ; long tmp___3 ; long tmp___4 ; { rssi_adjust_val = 0U; if ((int )agc_table_en) { tmp = ldv__builtin_expect((btc_dbg_type[1] & 512U) != 0U, 0L); if (tmp != 0L) { printk("[BTCoex], BB Agc Table On!\n"); } else { } (*(btcoexist->btc_write_4byte))((void *)btcoexist, 3192U, 1847197697U); (*(btcoexist->btc_write_4byte))((void *)btcoexist, 3192U, 1830486017U); (*(btcoexist->btc_write_4byte))((void *)btcoexist, 3192U, 1813774337U); (*(btcoexist->btc_write_4byte))((void *)btcoexist, 3192U, 1797062657U); (*(btcoexist->btc_write_4byte))((void *)btcoexist, 3192U, 1780350977U); (*(btcoexist->btc_write_4byte))((void *)btcoexist, 3192U, 1763639297U); (*(btcoexist->btc_write_4byte))((void *)btcoexist, 3192U, 1746927617U); } else { tmp___0 = ldv__builtin_expect((btc_dbg_type[1] & 512U) != 0U, 0L); if (tmp___0 != 0L) { printk("[BTCoex], BB Agc Table Off!\n"); } else { } (*(btcoexist->btc_write_4byte))((void *)btcoexist, 3192U, 2853830657U); (*(btcoexist->btc_write_4byte))((void *)btcoexist, 3192U, 2837118977U); (*(btcoexist->btc_write_4byte))((void *)btcoexist, 3192U, 2820407297U); (*(btcoexist->btc_write_4byte))((void *)btcoexist, 3192U, 2803695617U); (*(btcoexist->btc_write_4byte))((void *)btcoexist, 3192U, 2786983937U); (*(btcoexist->btc_write_4byte))((void *)btcoexist, 3192U, 2770272257U); (*(btcoexist->btc_write_4byte))((void *)btcoexist, 3192U, 2753560577U); } (*(btcoexist->btc_set_rf_reg))((void *)btcoexist, 0, 239U, 1048575U, 8192U); if ((int )agc_table_en) { tmp___1 = ldv__builtin_expect((btc_dbg_type[1] & 512U) != 0U, 0L); if (tmp___1 != 0L) { printk("[BTCoex], Agc Table On!\n"); } else { } (*(btcoexist->btc_set_rf_reg))((void *)btcoexist, 0, 59U, 1048575U, 233471U); (*(btcoexist->btc_set_rf_reg))((void *)btcoexist, 0, 59U, 1048575U, 233470U); } else { tmp___2 = ldv__builtin_expect((btc_dbg_type[1] & 512U) != 0U, 0L); if (tmp___2 != 0L) { printk("[BTCoex], Agc Table Off!\n"); } else { } (*(btcoexist->btc_set_rf_reg))((void *)btcoexist, 0, 59U, 1048575U, 229571U); (*(btcoexist->btc_set_rf_reg))((void *)btcoexist, 0, 59U, 1048575U, 167142U); } (*(btcoexist->btc_set_rf_reg))((void *)btcoexist, 0, 239U, 1048575U, 0U); (*(btcoexist->btc_set_rf_reg))((void *)btcoexist, 0, 237U, 1048575U, 1U); if ((int )agc_table_en) { tmp___3 = ldv__builtin_expect((btc_dbg_type[1] & 512U) != 0U, 0L); if (tmp___3 != 0L) { printk("[BTCoex], Agc Table On!\n"); } else { } (*(btcoexist->btc_set_rf_reg))((void *)btcoexist, 0, 64U, 1048575U, 233471U); (*(btcoexist->btc_set_rf_reg))((void *)btcoexist, 0, 64U, 1048575U, 233470U); } else { tmp___4 = ldv__builtin_expect((btc_dbg_type[1] & 512U) != 0U, 0L); if (tmp___4 != 0L) { printk("[BTCoex], Agc Table Off!\n"); } else { } (*(btcoexist->btc_set_rf_reg))((void *)btcoexist, 0, 64U, 1048575U, 229571U); (*(btcoexist->btc_set_rf_reg))((void *)btcoexist, 0, 64U, 1048575U, 167142U); } (*(btcoexist->btc_set_rf_reg))((void *)btcoexist, 0, 237U, 1048575U, 0U); if ((int )agc_table_en) { rssi_adjust_val = 8U; } else { } (*(btcoexist->btc_set))((void *)btcoexist, 7, (void *)(& rssi_adjust_val)); return; } } static void btc8723b2ant_agc_table(struct btc_coexist *btcoexist , bool force_exec , bool agc_table_en ) { long tmp ; long tmp___0 ; { tmp = ldv__builtin_expect((btc_dbg_type[1] & 128U) != 0U, 0L); if (tmp != 0L) { printk("[BTCoex], %s %s Agc Table\n", (int )force_exec ? (char *)"force to" : (char *)"", (int )agc_table_en ? (char *)"Enable" : (char *)"Disable"); } else { } coex_dm->cur_agc_table_en = agc_table_en; if (! force_exec) { tmp___0 = ldv__builtin_expect((btc_dbg_type[1] & 256U) != 0U, 0L); if (tmp___0 != 0L) { printk("[BTCoex], bPreAgcTableEn=%d, bCurAgcTableEn=%d\n", (int )coex_dm->pre_agc_table_en, (int )coex_dm->cur_agc_table_en); } else { } if ((int )coex_dm->pre_agc_table_en == (int )coex_dm->cur_agc_table_en) { return; } else { } } else { } btc8723b2ant_set_agc_table(btcoexist, (int )agc_table_en); coex_dm->pre_agc_table_en = coex_dm->cur_agc_table_en; return; } } static void btc8723b2ant_set_coex_table(struct btc_coexist *btcoexist , u32 val0x6c0 , u32 val0x6c4 , u32 val0x6c8 , u8 val0x6cc ) { long tmp ; long tmp___0 ; long tmp___1 ; long tmp___2 ; { tmp = ldv__builtin_expect((btc_dbg_type[1] & 512U) != 0U, 0L); if (tmp != 0L) { printk("[BTCoex], set coex table, set 0x6c0=0x%x\n", val0x6c0); } else { } (*(btcoexist->btc_write_4byte))((void *)btcoexist, 1728U, val0x6c0); tmp___0 = ldv__builtin_expect((btc_dbg_type[1] & 512U) != 0U, 0L); if (tmp___0 != 0L) { printk("[BTCoex], set coex table, set 0x6c4=0x%x\n", val0x6c4); } else { } (*(btcoexist->btc_write_4byte))((void *)btcoexist, 1732U, val0x6c4); tmp___1 = ldv__builtin_expect((btc_dbg_type[1] & 512U) != 0U, 0L); if (tmp___1 != 0L) { printk("[BTCoex], set coex table, set 0x6c8=0x%x\n", val0x6c8); } else { } (*(btcoexist->btc_write_4byte))((void *)btcoexist, 1736U, val0x6c8); tmp___2 = ldv__builtin_expect((btc_dbg_type[1] & 512U) != 0U, 0L); if (tmp___2 != 0L) { printk("[BTCoex], set coex table, set 0x6cc=0x%x\n", (int )val0x6cc); } else { } (*(btcoexist->btc_write_1byte))((void *)btcoexist, 1740U, (int )val0x6cc); return; } } static void btc8723b2ant_coex_table(struct btc_coexist *btcoexist , bool force_exec , u32 val0x6c0 , u32 val0x6c4 , u32 val0x6c8 , u8 val0x6cc ) { long tmp ; long tmp___0 ; long tmp___1 ; { tmp = ldv__builtin_expect((btc_dbg_type[1] & 128U) != 0U, 0L); if (tmp != 0L) { printk("[BTCoex], %s write Coex Table 0x6c0=0x%x, 0x6c4=0x%x, 0x6c8=0x%x, 0x6cc=0x%x\n", (int )force_exec ? (char *)"force to" : (char *)"", val0x6c0, val0x6c4, val0x6c8, (int )val0x6cc); } else { } coex_dm->cur_val0x6c0 = val0x6c0; coex_dm->cur_val0x6c4 = val0x6c4; coex_dm->cur_val0x6c8 = val0x6c8; coex_dm->cur_val0x6cc = val0x6cc; if (! force_exec) { tmp___0 = ldv__builtin_expect((btc_dbg_type[1] & 256U) != 0U, 0L); if (tmp___0 != 0L) { printk("[BTCoex], preVal0x6c0=0x%x, preVal0x6c4=0x%x, preVal0x6c8=0x%x, preVal0x6cc=0x%x !!\n", coex_dm->pre_val0x6c0, coex_dm->pre_val0x6c4, coex_dm->pre_val0x6c8, (int )coex_dm->pre_val0x6cc); } else { } tmp___1 = ldv__builtin_expect((btc_dbg_type[1] & 256U) != 0U, 0L); if (tmp___1 != 0L) { printk("[BTCoex], curVal0x6c0=0x%x, curVal0x6c4=0x%x, curVal0x6c8=0x%x, curVal0x6cc=0x%x !!\n", coex_dm->cur_val0x6c0, coex_dm->cur_val0x6c4, coex_dm->cur_val0x6c8, (int )coex_dm->cur_val0x6cc); } else { } if (((coex_dm->pre_val0x6c0 == coex_dm->cur_val0x6c0 && coex_dm->pre_val0x6c4 == coex_dm->cur_val0x6c4) && coex_dm->pre_val0x6c8 == coex_dm->cur_val0x6c8) && (int )coex_dm->pre_val0x6cc == (int )coex_dm->cur_val0x6cc) { return; } else { } } else { } btc8723b2ant_set_coex_table(btcoexist, val0x6c0, val0x6c4, val0x6c8, (int )val0x6cc); coex_dm->pre_val0x6c0 = coex_dm->cur_val0x6c0; coex_dm->pre_val0x6c4 = coex_dm->cur_val0x6c4; coex_dm->pre_val0x6c8 = coex_dm->cur_val0x6c8; coex_dm->pre_val0x6cc = coex_dm->cur_val0x6cc; return; } } static void btc8723b_coex_tbl_type(struct btc_coexist *btcoexist , bool force_exec , u8 type ) { { switch ((int )type) { case 0: btc8723b2ant_coex_table(btcoexist, (int )force_exec, 1431655765U, 1431655765U, 65535U, 3); goto ldv_51813; case 1: btc8723b2ant_coex_table(btcoexist, (int )force_exec, 1431655765U, 1526356730U, 65535U, 3); goto ldv_51813; case 2: btc8723b2ant_coex_table(btcoexist, (int )force_exec, 1515870810U, 1515870810U, 65535U, 3); goto ldv_51813; case 3: btc8723b2ant_coex_table(btcoexist, (int )force_exec, 2863311530U, 2863311530U, 65535U, 3); goto ldv_51813; case 4: btc8723b2ant_coex_table(btcoexist, (int )force_exec, 4294967295U, 4294967295U, 65535U, 3); goto ldv_51813; case 5: btc8723b2ant_coex_table(btcoexist, (int )force_exec, 1610571775U, 1610571775U, 65535U, 3); goto ldv_51813; case 6: btc8723b2ant_coex_table(btcoexist, (int )force_exec, 1442797055U, 1515870810U, 65535U, 3); goto ldv_51813; case 7: btc8723b2ant_coex_table(btcoexist, (int )force_exec, 1442797055U, 1526356730U, 65535U, 3); goto ldv_51813; case 8: btc8723b2ant_coex_table(btcoexist, (int )force_exec, 1525308138U, 1525308138U, 65535U, 3); goto ldv_51813; case 9: btc8723b2ant_coex_table(btcoexist, (int )force_exec, 1442797055U, 1525308138U, 65535U, 3); goto ldv_51813; case 10: btc8723b2ant_coex_table(btcoexist, (int )force_exec, 1442797055U, 1526684415U, 65535U, 3); goto ldv_51813; case 11: btc8723b2ant_coex_table(btcoexist, (int )force_exec, 1442797055U, 1516198495U, 65535U, 3); goto ldv_51813; case 12: btc8723b2ant_coex_table(btcoexist, (int )force_exec, 1442797055U, 1600085855U, 65535U, 3); goto ldv_51813; default: ; goto ldv_51813; } ldv_51813: ; return; } } static void btc8723b2ant_set_fw_ignore_wlan_act(struct btc_coexist *btcoexist , bool enable ) { u8 h2c_parameter[1U] ; long tmp ; { h2c_parameter[0] = 0U; if ((int )enable) { h2c_parameter[0] = (u8 )((unsigned int )h2c_parameter[0] | 1U); } else { } tmp = ldv__builtin_expect((btc_dbg_type[1] & 64U) != 0U, 0L); if (tmp != 0L) { printk("[BTCoex], set FW for BT Ignore Wlan_Act, FW write 0x63=0x%x\n", (int )h2c_parameter[0]); } else { } (*(btcoexist->btc_fill_h2c))((void *)btcoexist, 99, 1U, (u8 *)(& h2c_parameter)); return; } } static void btc8723b2ant_ignore_wlan_act(struct btc_coexist *btcoexist , bool force_exec , bool enable ) { long tmp ; long tmp___0 ; { tmp = ldv__builtin_expect((btc_dbg_type[1] & 16U) != 0U, 0L); if (tmp != 0L) { printk("[BTCoex], %s turn Ignore WlanAct %s\n", (int )force_exec ? (char *)"force to" : (char *)"", (int )enable ? (char *)"ON" : (char *)"OFF"); } else { } coex_dm->cur_ignore_wlan_act = enable; if (! force_exec) { tmp___0 = ldv__builtin_expect((btc_dbg_type[1] & 32U) != 0U, 0L); if (tmp___0 != 0L) { printk("[BTCoex], bPreIgnoreWlanAct = %d, bCurIgnoreWlanAct = %d!!\n", (int )coex_dm->pre_ignore_wlan_act, (int )coex_dm->cur_ignore_wlan_act); } else { } if ((int )coex_dm->pre_ignore_wlan_act == (int )coex_dm->cur_ignore_wlan_act) { return; } else { } } else { } btc8723b2ant_set_fw_ignore_wlan_act(btcoexist, (int )enable); coex_dm->pre_ignore_wlan_act = coex_dm->cur_ignore_wlan_act; return; } } static void btc8723b2ant_set_fw_ps_tdma(struct btc_coexist *btcoexist , u8 byte1 , u8 byte2 , u8 byte3 , u8 byte4 , u8 byte5 ) { u8 h2c_parameter[5U] ; long tmp ; { h2c_parameter[0] = byte1; h2c_parameter[1] = byte2; h2c_parameter[2] = byte3; h2c_parameter[3] = byte4; h2c_parameter[4] = byte5; coex_dm->ps_tdma_para[0] = byte1; coex_dm->ps_tdma_para[1] = byte2; coex_dm->ps_tdma_para[2] = byte3; coex_dm->ps_tdma_para[3] = byte4; coex_dm->ps_tdma_para[4] = byte5; tmp = ldv__builtin_expect((btc_dbg_type[1] & 64U) != 0U, 0L); if (tmp != 0L) { printk("[BTCoex], FW write 0x60(5bytes)=0x%x%08x\n", (int )h2c_parameter[0], ((((int )h2c_parameter[1] << 24) | ((int )h2c_parameter[2] << 16)) | ((int )h2c_parameter[3] << 8)) | (int )h2c_parameter[4]); } else { } (*(btcoexist->btc_fill_h2c))((void *)btcoexist, 96, 5U, (u8 *)(& h2c_parameter)); return; } } static void btc8723b2ant_sw_mechanism1(struct btc_coexist *btcoexist , bool shrink_rx_lpf , bool low_penalty_ra , bool limited_dig , bool bt_lna_constrain ) { { btc8723b2ant_rf_shrink(btcoexist, 0, (int )shrink_rx_lpf); btc8723b2ant_low_penalty_ra(btcoexist, 0, (int )low_penalty_ra); return; } } static void btc8723b2ant_sw_mechanism2(struct btc_coexist *btcoexist , bool agc_table_shift , bool adc_backoff , bool sw_dac_swing , u32 dac_swing_lvl ) { { btc8723b2ant_agc_table(btcoexist, 0, (int )agc_table_shift); btc8723b2ant_dac_swing(btcoexist, 0, (int )sw_dac_swing, dac_swing_lvl); return; } } static void btc8723b2ant_ps_tdma(struct btc_coexist *btcoexist , bool force_exec , bool turn_on , u8 type ) { long tmp ; long tmp___0 ; long tmp___1 ; { tmp = ldv__builtin_expect((btc_dbg_type[1] & 16U) != 0U, 0L); if (tmp != 0L) { printk("[BTCoex], %s turn %s PS TDMA, type=%d\n", (int )force_exec ? (char *)"force to" : (char *)"", (int )turn_on ? (char *)"ON" : (char *)"OFF", (int )type); } else { } coex_dm->cur_ps_tdma_on = turn_on; coex_dm->cur_ps_tdma = type; if (! force_exec) { tmp___0 = ldv__builtin_expect((btc_dbg_type[1] & 32U) != 0U, 0L); if (tmp___0 != 0L) { printk("[BTCoex], bPrePsTdmaOn = %d, bCurPsTdmaOn = %d!!\n", (int )coex_dm->pre_ps_tdma_on, (int )coex_dm->cur_ps_tdma_on); } else { } tmp___1 = ldv__builtin_expect((btc_dbg_type[1] & 32U) != 0U, 0L); if (tmp___1 != 0L) { printk("[BTCoex], prePsTdma = %d, curPsTdma = %d!!\n", (int )coex_dm->pre_ps_tdma, (int )coex_dm->cur_ps_tdma); } else { } if ((int )coex_dm->pre_ps_tdma_on == (int )coex_dm->cur_ps_tdma_on && (int )coex_dm->pre_ps_tdma == (int )coex_dm->cur_ps_tdma) { return; } else { } } else { } if ((int )turn_on) { switch ((int )type) { case 1: ; default: btc8723b2ant_set_fw_ps_tdma(btcoexist, 227, 26, 26, 225, 144); goto ldv_51868; case 2: btc8723b2ant_set_fw_ps_tdma(btcoexist, 227, 18, 18, 225, 144); goto ldv_51868; case 3: btc8723b2ant_set_fw_ps_tdma(btcoexist, 227, 28, 3, 241, 144); goto ldv_51868; case 4: btc8723b2ant_set_fw_ps_tdma(btcoexist, 227, 16, 3, 241, 144); goto ldv_51868; case 5: btc8723b2ant_set_fw_ps_tdma(btcoexist, 227, 26, 26, 96, 144); goto ldv_51868; case 6: btc8723b2ant_set_fw_ps_tdma(btcoexist, 227, 18, 18, 96, 144); goto ldv_51868; case 7: btc8723b2ant_set_fw_ps_tdma(btcoexist, 227, 28, 3, 112, 144); goto ldv_51868; case 8: btc8723b2ant_set_fw_ps_tdma(btcoexist, 163, 16, 3, 112, 144); goto ldv_51868; case 9: btc8723b2ant_set_fw_ps_tdma(btcoexist, 227, 26, 26, 225, 144); goto ldv_51868; case 10: btc8723b2ant_set_fw_ps_tdma(btcoexist, 227, 18, 18, 225, 144); goto ldv_51868; case 11: btc8723b2ant_set_fw_ps_tdma(btcoexist, 227, 10, 10, 225, 144); goto ldv_51868; case 12: btc8723b2ant_set_fw_ps_tdma(btcoexist, 227, 5, 5, 225, 144); goto ldv_51868; case 13: btc8723b2ant_set_fw_ps_tdma(btcoexist, 227, 26, 26, 96, 144); goto ldv_51868; case 14: btc8723b2ant_set_fw_ps_tdma(btcoexist, 227, 18, 18, 96, 144); goto ldv_51868; case 15: btc8723b2ant_set_fw_ps_tdma(btcoexist, 227, 10, 10, 96, 144); goto ldv_51868; case 16: btc8723b2ant_set_fw_ps_tdma(btcoexist, 227, 5, 5, 96, 144); goto ldv_51868; case 17: btc8723b2ant_set_fw_ps_tdma(btcoexist, 163, 47, 47, 96, 144); goto ldv_51868; case 18: btc8723b2ant_set_fw_ps_tdma(btcoexist, 227, 5, 5, 225, 144); goto ldv_51868; case 19: btc8723b2ant_set_fw_ps_tdma(btcoexist, 227, 37, 37, 225, 144); goto ldv_51868; case 20: btc8723b2ant_set_fw_ps_tdma(btcoexist, 227, 37, 37, 96, 144); goto ldv_51868; case 21: btc8723b2ant_set_fw_ps_tdma(btcoexist, 227, 21, 3, 112, 144); goto ldv_51868; case 71: btc8723b2ant_set_fw_ps_tdma(btcoexist, 227, 26, 26, 225, 144); goto ldv_51868; } ldv_51868: ; } else { switch ((int )type) { case 0: btc8723b2ant_set_fw_ps_tdma(btcoexist, 0, 0, 0, 64, 0); goto ldv_51891; case 1: btc8723b2ant_set_fw_ps_tdma(btcoexist, 0, 0, 0, 72, 0); goto ldv_51891; default: btc8723b2ant_set_fw_ps_tdma(btcoexist, 0, 0, 0, 64, 0); goto ldv_51891; } ldv_51891: ; } coex_dm->pre_ps_tdma_on = coex_dm->cur_ps_tdma_on; coex_dm->pre_ps_tdma = coex_dm->cur_ps_tdma; return; } } static void btc8723b2ant_coex_alloff(struct btc_coexist *btcoexist ) { { btc8723b2ant_ps_tdma(btcoexist, 0, 0, 1); btc8723b2ant_fw_dac_swing_lvl(btcoexist, 0, 6); btc8723b2ant_dec_bt_pwr(btcoexist, 0, 0); btc8723b2ant_sw_mechanism1(btcoexist, 0, 0, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 0, 0, 0, 24U); (*(btcoexist->btc_set_rf_reg))((void *)btcoexist, 0, 1U, 1048575U, 0U); btc8723b_coex_tbl_type(btcoexist, 0, 0); return; } } static void btc8723b2ant_init_coex_dm(struct btc_coexist *btcoexist ) { { btc8723b2ant_ps_tdma(btcoexist, 1, 0, 1); btc8723b2ant_fw_dac_swing_lvl(btcoexist, 1, 6); btc8723b2ant_dec_bt_pwr(btcoexist, 1, 0); btc8723b2ant_sw_mechanism1(btcoexist, 0, 0, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 0, 0, 0, 24U); return; } } static void btc8723b2ant_action_bt_inquiry(struct btc_coexist *btcoexist ) { bool wifi_connected ; bool low_pwr_disable ; { wifi_connected = 0; low_pwr_disable = 1; (*(btcoexist->btc_set))((void *)btcoexist, 20, (void *)(& low_pwr_disable)); (*(btcoexist->btc_get))((void *)btcoexist, 2, (void *)(& wifi_connected)); if ((int )wifi_connected) { btc8723b_coex_tbl_type(btcoexist, 0, 7); btc8723b2ant_ps_tdma(btcoexist, 0, 1, 3); } else { btc8723b_coex_tbl_type(btcoexist, 0, 0); btc8723b2ant_ps_tdma(btcoexist, 0, 0, 1); } btc8723b2ant_fw_dac_swing_lvl(btcoexist, 1, 6); btc8723b2ant_dec_bt_pwr(btcoexist, 0, 0); btc8723b2ant_sw_mechanism1(btcoexist, 0, 0, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 0, 0, 0, 24U); coex_dm->need_recover_0x948 = 1; coex_dm->backup_0x948 = (*(btcoexist->btc_read_2byte))((void *)btcoexist, 2376U); (*(btcoexist->btc_write_2byte))((void *)btcoexist, 2376U, 640); return; } } static bool btc8723b2ant_is_common_action(struct btc_coexist *btcoexist ) { bool common ; bool wifi_connected ; bool wifi_busy ; bool bt_hs_on ; bool low_pwr_disable ; long tmp ; long tmp___0 ; long tmp___1 ; long tmp___2 ; long tmp___3 ; bool tmp___4 ; { common = 0; wifi_connected = 0; wifi_busy = 0; bt_hs_on = 0; low_pwr_disable = 0; (*(btcoexist->btc_get))((void *)btcoexist, 0, (void *)(& bt_hs_on)); (*(btcoexist->btc_get))((void *)btcoexist, 2, (void *)(& wifi_connected)); (*(btcoexist->btc_get))((void *)btcoexist, 3, (void *)(& wifi_busy)); if (! wifi_connected) { low_pwr_disable = 0; (*(btcoexist->btc_set))((void *)btcoexist, 20, (void *)(& low_pwr_disable)); tmp = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp != 0L) { printk("[BTCoex], Wifi non-connected idle!!\n"); } else { } (*(btcoexist->btc_set_rf_reg))((void *)btcoexist, 0, 1U, 1048575U, 0U); btc8723b_coex_tbl_type(btcoexist, 0, 0); btc8723b2ant_ps_tdma(btcoexist, 0, 0, 1); btc8723b2ant_fw_dac_swing_lvl(btcoexist, 0, 6); btc8723b2ant_dec_bt_pwr(btcoexist, 0, 0); btc8723b2ant_sw_mechanism1(btcoexist, 0, 0, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 0, 0, 0, 24U); common = 1; } else if ((unsigned int )coex_dm->bt_status == 0U) { low_pwr_disable = 0; (*(btcoexist->btc_set))((void *)btcoexist, 20, (void *)(& low_pwr_disable)); tmp___0 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___0 != 0L) { printk("[BTCoex], Wifi connected + BT non connected-idle!!\n"); } else { } (*(btcoexist->btc_set_rf_reg))((void *)btcoexist, 0, 1U, 1048575U, 0U); btc8723b_coex_tbl_type(btcoexist, 0, 0); btc8723b2ant_ps_tdma(btcoexist, 0, 0, 1); btc8723b2ant_fw_dac_swing_lvl(btcoexist, 0, 11); btc8723b2ant_dec_bt_pwr(btcoexist, 0, 0); btc8723b2ant_sw_mechanism1(btcoexist, 0, 0, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 0, 0, 0, 24U); common = 1; } else if ((unsigned int )coex_dm->bt_status == 1U) { low_pwr_disable = 1; (*(btcoexist->btc_set))((void *)btcoexist, 20, (void *)(& low_pwr_disable)); if ((int )bt_hs_on) { return (0); } else { } tmp___1 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___1 != 0L) { printk("[BTCoex], Wifi connected + BT connected-idle!!\n"); } else { } (*(btcoexist->btc_set_rf_reg))((void *)btcoexist, 0, 1U, 1048575U, 0U); btc8723b_coex_tbl_type(btcoexist, 0, 0); btc8723b2ant_ps_tdma(btcoexist, 0, 0, 1); btc8723b2ant_fw_dac_swing_lvl(btcoexist, 0, 11); btc8723b2ant_dec_bt_pwr(btcoexist, 0, 0); btc8723b2ant_sw_mechanism1(btcoexist, 1, 0, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 0, 0, 0, 24U); common = 1; } else { low_pwr_disable = 1; (*(btcoexist->btc_set))((void *)btcoexist, 20, (void *)(& low_pwr_disable)); if ((int )wifi_busy) { tmp___2 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___2 != 0L) { printk("[BTCoex], Wifi Connected-Busy + BT Busy!!\n"); } else { } common = 0; } else { if ((int )bt_hs_on) { return (0); } else { } tmp___3 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___3 != 0L) { printk("[BTCoex], Wifi Connected-Idle + BT Busy!!\n"); } else { } (*(btcoexist->btc_set_rf_reg))((void *)btcoexist, 0, 1U, 1048575U, 0U); btc8723b_coex_tbl_type(btcoexist, 0, 7); btc8723b2ant_ps_tdma(btcoexist, 0, 1, 21); btc8723b2ant_fw_dac_swing_lvl(btcoexist, 0, 11); tmp___4 = btc8723b_need_dec_pwr(btcoexist); if ((int )tmp___4) { btc8723b2ant_dec_bt_pwr(btcoexist, 0, 1); } else { btc8723b2ant_dec_bt_pwr(btcoexist, 0, 0); } btc8723b2ant_sw_mechanism1(btcoexist, 0, 0, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 0, 0, 0, 24U); common = 1; } } return (common); } } static void set_tdma_int1(struct btc_coexist *btcoexist , bool tx_pause , s32 result ) { long tmp ; long tmp___0 ; int tmp___1 ; { if ((int )tx_pause) { tmp = ldv__builtin_expect((btc_dbg_type[1] & 32U) != 0U, 0L); if (tmp != 0L) { printk("[BTCoex], TxPause = 1\n"); } else { } if ((unsigned int )coex_dm->cur_ps_tdma == 71U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 5); coex_dm->tdma_adj_type = 5U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 1U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 5); coex_dm->tdma_adj_type = 5U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 2U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 6); coex_dm->tdma_adj_type = 6U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 3U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 7); coex_dm->tdma_adj_type = 7U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 4U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 8); coex_dm->tdma_adj_type = 8U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 9U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 13); coex_dm->tdma_adj_type = 13U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 10U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 14); coex_dm->tdma_adj_type = 14U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 11U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 15); coex_dm->tdma_adj_type = 15U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 12U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 16); coex_dm->tdma_adj_type = 16U; } else { } if (result == -1) { if ((unsigned int )coex_dm->cur_ps_tdma == 5U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 6); coex_dm->tdma_adj_type = 6U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 6U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 7); coex_dm->tdma_adj_type = 7U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 7U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 8); coex_dm->tdma_adj_type = 8U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 13U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 14); coex_dm->tdma_adj_type = 14U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 14U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 15); coex_dm->tdma_adj_type = 15U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 15U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 16); coex_dm->tdma_adj_type = 16U; } else { } } else if (result == 1) { if ((unsigned int )coex_dm->cur_ps_tdma == 8U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 7); coex_dm->tdma_adj_type = 7U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 7U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 6); coex_dm->tdma_adj_type = 6U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 6U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 5); coex_dm->tdma_adj_type = 5U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 16U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 15); coex_dm->tdma_adj_type = 15U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 15U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 14); coex_dm->tdma_adj_type = 14U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 14U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 13); coex_dm->tdma_adj_type = 13U; } else { } } else { } } else { tmp___0 = ldv__builtin_expect((btc_dbg_type[1] & 32U) != 0U, 0L); if (tmp___0 != 0L) { printk("[BTCoex], TxPause = 0\n"); } else { } if ((unsigned int )coex_dm->cur_ps_tdma == 5U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 71); coex_dm->tdma_adj_type = 71U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 6U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 2); coex_dm->tdma_adj_type = 2U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 7U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 3); coex_dm->tdma_adj_type = 3U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 8U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 4); coex_dm->tdma_adj_type = 4U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 13U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 9); coex_dm->tdma_adj_type = 9U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 14U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 10); coex_dm->tdma_adj_type = 10U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 15U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 11); coex_dm->tdma_adj_type = 11U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 16U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 12); coex_dm->tdma_adj_type = 12U; } else { } if (result == -1) { if ((unsigned int )coex_dm->cur_ps_tdma == 71U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 1); coex_dm->tdma_adj_type = 1U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 1U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 2); coex_dm->tdma_adj_type = 2U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 2U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 3); coex_dm->tdma_adj_type = 3U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 3U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 4); coex_dm->tdma_adj_type = 4U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 9U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 10); coex_dm->tdma_adj_type = 10U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 10U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 11); coex_dm->tdma_adj_type = 11U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 11U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 12); coex_dm->tdma_adj_type = 12U; } else { } } else if (result == 1) { tmp___1 = (int )coex_dm->cur_ps_tdma; switch (tmp___1) { case 4: ; case 3: ; case 2: ; case 12: ; case 11: ; case 10: btc8723b2ant_ps_tdma(btcoexist, 0, 1, (int )((unsigned int )((u8 )tmp___1) + 255U)); coex_dm->tdma_adj_type = (unsigned int )((u8 )tmp___1) + 255U; goto ldv_51925; case 1: btc8723b2ant_ps_tdma(btcoexist, 0, 1, 71); coex_dm->tdma_adj_type = 71U; goto ldv_51925; } ldv_51925: ; } else { } } return; } } static void set_tdma_int2(struct btc_coexist *btcoexist , bool tx_pause , s32 result ) { long tmp ; long tmp___0 ; { if ((int )tx_pause) { tmp = ldv__builtin_expect((btc_dbg_type[1] & 32U) != 0U, 0L); if (tmp != 0L) { printk("[BTCoex], TxPause = 1\n"); } else { } if ((unsigned int )coex_dm->cur_ps_tdma == 1U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 6); coex_dm->tdma_adj_type = 6U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 2U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 6); coex_dm->tdma_adj_type = 6U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 3U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 7); coex_dm->tdma_adj_type = 7U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 4U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 8); coex_dm->tdma_adj_type = 8U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 9U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 14); coex_dm->tdma_adj_type = 14U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 10U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 14); coex_dm->tdma_adj_type = 14U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 11U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 15); coex_dm->tdma_adj_type = 15U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 12U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 16); coex_dm->tdma_adj_type = 16U; } else { } if (result == -1) { if ((unsigned int )coex_dm->cur_ps_tdma == 5U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 6); coex_dm->tdma_adj_type = 6U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 6U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 7); coex_dm->tdma_adj_type = 7U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 7U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 8); coex_dm->tdma_adj_type = 8U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 13U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 14); coex_dm->tdma_adj_type = 14U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 14U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 15); coex_dm->tdma_adj_type = 15U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 15U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 16); coex_dm->tdma_adj_type = 16U; } else { } } else if (result == 1) { if ((unsigned int )coex_dm->cur_ps_tdma == 8U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 7); coex_dm->tdma_adj_type = 7U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 7U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 6); coex_dm->tdma_adj_type = 6U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 6U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 6); coex_dm->tdma_adj_type = 6U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 16U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 15); coex_dm->tdma_adj_type = 15U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 15U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 14); coex_dm->tdma_adj_type = 14U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 14U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 14); coex_dm->tdma_adj_type = 14U; } else { } } else { } } else { tmp___0 = ldv__builtin_expect((btc_dbg_type[1] & 32U) != 0U, 0L); if (tmp___0 != 0L) { printk("[BTCoex], TxPause = 0\n"); } else { } if ((unsigned int )coex_dm->cur_ps_tdma == 5U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 2); coex_dm->tdma_adj_type = 2U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 6U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 2); coex_dm->tdma_adj_type = 2U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 7U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 3); coex_dm->tdma_adj_type = 3U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 8U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 4); coex_dm->tdma_adj_type = 4U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 13U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 10); coex_dm->tdma_adj_type = 10U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 14U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 10); coex_dm->tdma_adj_type = 10U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 15U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 11); coex_dm->tdma_adj_type = 11U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 16U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 12); coex_dm->tdma_adj_type = 12U; } else { } if (result == -1) { if ((unsigned int )coex_dm->cur_ps_tdma == 1U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 2); coex_dm->tdma_adj_type = 2U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 2U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 3); coex_dm->tdma_adj_type = 3U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 3U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 4); coex_dm->tdma_adj_type = 4U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 9U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 10); coex_dm->tdma_adj_type = 10U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 10U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 11); coex_dm->tdma_adj_type = 11U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 11U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 12); coex_dm->tdma_adj_type = 12U; } else { } } else if (result == 1) { if ((unsigned int )coex_dm->cur_ps_tdma == 4U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 3); coex_dm->tdma_adj_type = 3U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 3U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 2); coex_dm->tdma_adj_type = 2U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 2U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 2); coex_dm->tdma_adj_type = 2U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 12U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 11); coex_dm->tdma_adj_type = 11U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 11U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 10); coex_dm->tdma_adj_type = 10U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 10U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 10); coex_dm->tdma_adj_type = 10U; } else { } } else { } } return; } } static void set_tdma_int3(struct btc_coexist *btcoexist , bool tx_pause , s32 result ) { long tmp ; long tmp___0 ; { if ((int )tx_pause) { tmp = ldv__builtin_expect((btc_dbg_type[1] & 32U) != 0U, 0L); if (tmp != 0L) { printk("[BTCoex], TxPause = 1\n"); } else { } if ((unsigned int )coex_dm->cur_ps_tdma == 1U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 7); coex_dm->tdma_adj_type = 7U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 2U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 7); coex_dm->tdma_adj_type = 7U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 3U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 7); coex_dm->tdma_adj_type = 7U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 4U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 8); coex_dm->tdma_adj_type = 8U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 9U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 15); coex_dm->tdma_adj_type = 15U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 10U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 15); coex_dm->tdma_adj_type = 15U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 11U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 15); coex_dm->tdma_adj_type = 15U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 12U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 16); coex_dm->tdma_adj_type = 16U; } else { } if (result == -1) { if ((unsigned int )coex_dm->cur_ps_tdma == 5U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 7); coex_dm->tdma_adj_type = 7U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 6U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 7); coex_dm->tdma_adj_type = 7U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 7U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 8); coex_dm->tdma_adj_type = 8U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 13U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 15); coex_dm->tdma_adj_type = 15U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 14U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 15); coex_dm->tdma_adj_type = 15U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 15U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 16); coex_dm->tdma_adj_type = 16U; } else { } } else if (result == 1) { if ((unsigned int )coex_dm->cur_ps_tdma == 8U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 7); coex_dm->tdma_adj_type = 7U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 7U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 7); coex_dm->tdma_adj_type = 7U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 6U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 7); coex_dm->tdma_adj_type = 7U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 16U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 15); coex_dm->tdma_adj_type = 15U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 15U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 15); coex_dm->tdma_adj_type = 15U; } else if ((unsigned int )coex_dm->cur_ps_tdma == 14U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 15); coex_dm->tdma_adj_type = 15U; } else { } } else { } } else { tmp___0 = ldv__builtin_expect((btc_dbg_type[1] & 32U) != 0U, 0L); if (tmp___0 != 0L) { printk("[BTCoex], TxPause = 0\n"); } else { } switch ((int )coex_dm->cur_ps_tdma) { case 5: btc8723b2ant_ps_tdma(btcoexist, 0, 1, 3); coex_dm->tdma_adj_type = 3U; goto ldv_51938; case 6: btc8723b2ant_ps_tdma(btcoexist, 0, 1, 3); coex_dm->tdma_adj_type = 3U; goto ldv_51938; case 7: btc8723b2ant_ps_tdma(btcoexist, 0, 1, 3); coex_dm->tdma_adj_type = 3U; goto ldv_51938; case 8: btc8723b2ant_ps_tdma(btcoexist, 0, 1, 4); coex_dm->tdma_adj_type = 4U; goto ldv_51938; case 13: btc8723b2ant_ps_tdma(btcoexist, 0, 1, 11); coex_dm->tdma_adj_type = 11U; goto ldv_51938; case 14: btc8723b2ant_ps_tdma(btcoexist, 0, 1, 11); coex_dm->tdma_adj_type = 11U; goto ldv_51938; case 15: btc8723b2ant_ps_tdma(btcoexist, 0, 1, 11); coex_dm->tdma_adj_type = 11U; goto ldv_51938; case 16: btc8723b2ant_ps_tdma(btcoexist, 0, 1, 12); coex_dm->tdma_adj_type = 12U; goto ldv_51938; } ldv_51938: ; if (result == -1) { switch ((int )coex_dm->cur_ps_tdma) { case 1: btc8723b2ant_ps_tdma(btcoexist, 0, 1, 3); coex_dm->tdma_adj_type = 3U; goto ldv_51947; case 2: btc8723b2ant_ps_tdma(btcoexist, 0, 1, 3); coex_dm->tdma_adj_type = 3U; goto ldv_51947; case 3: btc8723b2ant_ps_tdma(btcoexist, 0, 1, 4); coex_dm->tdma_adj_type = 4U; goto ldv_51947; case 9: btc8723b2ant_ps_tdma(btcoexist, 0, 1, 11); coex_dm->tdma_adj_type = 11U; goto ldv_51947; case 10: btc8723b2ant_ps_tdma(btcoexist, 0, 1, 11); coex_dm->tdma_adj_type = 11U; goto ldv_51947; case 11: btc8723b2ant_ps_tdma(btcoexist, 0, 1, 12); coex_dm->tdma_adj_type = 12U; goto ldv_51947; } ldv_51947: ; } else if (result == 1) { switch ((int )coex_dm->cur_ps_tdma) { case 4: btc8723b2ant_ps_tdma(btcoexist, 0, 1, 3); coex_dm->tdma_adj_type = 3U; goto ldv_51954; case 3: btc8723b2ant_ps_tdma(btcoexist, 0, 1, 3); coex_dm->tdma_adj_type = 3U; goto ldv_51954; case 2: btc8723b2ant_ps_tdma(btcoexist, 0, 1, 3); coex_dm->tdma_adj_type = 3U; goto ldv_51954; case 12: btc8723b2ant_ps_tdma(btcoexist, 0, 1, 11); coex_dm->tdma_adj_type = 11U; goto ldv_51954; case 11: btc8723b2ant_ps_tdma(btcoexist, 0, 1, 11); coex_dm->tdma_adj_type = 11U; goto ldv_51954; case 10: btc8723b2ant_ps_tdma(btcoexist, 0, 1, 11); coex_dm->tdma_adj_type = 11U; } ldv_51954: ; } else { } } return; } } static void btc8723b2ant_tdma_duration_adjust(struct btc_coexist *btcoexist , bool sco_hid , bool tx_pause , u8 max_interval ) { s32 up___0 ; s32 dn ; s32 m ; s32 n ; s32 wait_count ; s32 result ; u8 retry_count ; long tmp ; long tmp___0 ; long tmp___1 ; long tmp___2 ; long tmp___3 ; long tmp___4 ; long tmp___5 ; long tmp___6 ; bool scan ; bool link ; bool roam ; long tmp___7 ; long tmp___8 ; { retry_count = 0U; tmp = ldv__builtin_expect((btc_dbg_type[1] & 16U) != 0U, 0L); if (tmp != 0L) { printk("[BTCoex], TdmaDurationAdjust()\n"); } else { } if (! coex_dm->auto_tdma_adjust) { coex_dm->auto_tdma_adjust = 1; tmp___0 = ldv__builtin_expect((btc_dbg_type[1] & 32U) != 0U, 0L); if (tmp___0 != 0L) { printk("[BTCoex], first run TdmaDurationAdjust()!!\n"); } else { } if ((int )sco_hid) { if ((int )tx_pause) { if ((unsigned int )max_interval == 1U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 13); coex_dm->tdma_adj_type = 13U; } else if ((unsigned int )max_interval == 2U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 14); coex_dm->tdma_adj_type = 14U; } else if ((unsigned int )max_interval == 3U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 15); coex_dm->tdma_adj_type = 15U; } else { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 15); coex_dm->tdma_adj_type = 15U; } } else if ((unsigned int )max_interval == 1U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 9); coex_dm->tdma_adj_type = 9U; } else if ((unsigned int )max_interval == 2U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 10); coex_dm->tdma_adj_type = 10U; } else if ((unsigned int )max_interval == 3U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 11); coex_dm->tdma_adj_type = 11U; } else { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 11); coex_dm->tdma_adj_type = 11U; } } else if ((int )tx_pause) { if ((unsigned int )max_interval == 1U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 5); coex_dm->tdma_adj_type = 5U; } else if ((unsigned int )max_interval == 2U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 6); coex_dm->tdma_adj_type = 6U; } else if ((unsigned int )max_interval == 3U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 7); coex_dm->tdma_adj_type = 7U; } else { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 7); coex_dm->tdma_adj_type = 7U; } } else if ((unsigned int )max_interval == 1U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 1); coex_dm->tdma_adj_type = 1U; } else if ((unsigned int )max_interval == 2U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 2); coex_dm->tdma_adj_type = 2U; } else if ((unsigned int )max_interval == 3U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 3); coex_dm->tdma_adj_type = 3U; } else { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 3); coex_dm->tdma_adj_type = 3U; } up___0 = 0; dn = 0; m = 1; n = 3; result = 0; wait_count = 0; } else { retry_count = coex_sta->bt_retry_cnt; tmp___1 = ldv__builtin_expect((btc_dbg_type[1] & 32U) != 0U, 0L); if (tmp___1 != 0L) { printk("[BTCoex], retry_count = %d\n", (int )retry_count); } else { } tmp___2 = ldv__builtin_expect((btc_dbg_type[1] & 32U) != 0U, 0L); if (tmp___2 != 0L) { printk("[BTCoex], up=%d, dn=%d, m=%d, n=%d, wait_count=%d\n", up___0, dn, m, n, wait_count); } else { } result = 0; wait_count = wait_count + 1; if ((unsigned int )retry_count == 0U) { up___0 = up___0 + 1; dn = dn - 1; if (dn <= 0) { dn = 0; } else { } if (up___0 >= n) { wait_count = 0; n = 3; up___0 = 0; dn = 0; result = 1; tmp___3 = ldv__builtin_expect((btc_dbg_type[1] & 32U) != 0U, 0L); if (tmp___3 != 0L) { printk("[BTCoex], Increase wifi duration!!\n"); } else { } } else { } } else if ((unsigned int )retry_count <= 3U) { up___0 = up___0 - 1; dn = dn + 1; if (up___0 <= 0) { up___0 = 0; } else { } if (dn == 2) { if (wait_count <= 2) { m = m + 1; } else { m = 1; } if (m > 19) { m = 20; } else { } n = m * 3; up___0 = 0; dn = 0; wait_count = 0; result = -1; tmp___4 = ldv__builtin_expect((btc_dbg_type[1] & 32U) != 0U, 0L); if (tmp___4 != 0L) { printk("[BTCoex], Decrease wifi duration for retry_counter<3!!\n"); } else { } } else { } } else { if (wait_count == 1) { m = m + 1; } else { m = 1; } if (m > 19) { m = 20; } else { } n = m * 3; up___0 = 0; dn = 0; wait_count = 0; result = -1; tmp___5 = ldv__builtin_expect((btc_dbg_type[1] & 32U) != 0U, 0L); if (tmp___5 != 0L) { printk("[BTCoex], Decrease wifi duration for retry_counter>3!!\n"); } else { } } tmp___6 = ldv__builtin_expect((btc_dbg_type[1] & 32U) != 0U, 0L); if (tmp___6 != 0L) { printk("[BTCoex], max Interval = %d\n", (int )max_interval); } else { } if ((unsigned int )max_interval == 1U) { set_tdma_int1(btcoexist, (int )tx_pause, result); } else if ((unsigned int )max_interval == 2U) { set_tdma_int2(btcoexist, (int )tx_pause, result); } else if ((unsigned int )max_interval == 3U) { set_tdma_int3(btcoexist, (int )tx_pause, result); } else { } } if ((int )coex_dm->cur_ps_tdma != (int )coex_dm->tdma_adj_type) { scan = 0; link = 0; roam = 0; tmp___7 = ldv__builtin_expect((btc_dbg_type[1] & 32U) != 0U, 0L); if (tmp___7 != 0L) { printk("[BTCoex], PsTdma type dismatch!!!, curPsTdma=%d, recordPsTdma=%d\n", (int )coex_dm->cur_ps_tdma, (int )coex_dm->tdma_adj_type); } else { } (*(btcoexist->btc_get))((void *)btcoexist, 4, (void *)(& scan)); (*(btcoexist->btc_get))((void *)btcoexist, 5, (void *)(& link)); (*(btcoexist->btc_get))((void *)btcoexist, 10, (void *)(& roam)); if ((! scan && ! link) && ! roam) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, (int )coex_dm->tdma_adj_type); } else { tmp___8 = ldv__builtin_expect((btc_dbg_type[1] & 32U) != 0U, 0L); if (tmp___8 != 0L) { printk("[BTCoex], roaming/link/scan is under progress, will adjust next time!!!\n"); } else { } } } else { } return; } } static void btc8723b2ant_action_sco(struct btc_coexist *btcoexist ) { u8 wifi_rssi_state ; u32 wifi_bw ; bool tmp ; { wifi_rssi_state = btc8723b2ant_wifi_rssi_state(btcoexist, 0, 2, 15, 0); (*(btcoexist->btc_set_rf_reg))((void *)btcoexist, 0, 1U, 1048575U, 0U); btc8723b2ant_fw_dac_swing_lvl(btcoexist, 0, 4); tmp = btc8723b_need_dec_pwr(btcoexist); if ((int )tmp) { btc8723b2ant_dec_bt_pwr(btcoexist, 0, 1); } else { btc8723b2ant_dec_bt_pwr(btcoexist, 0, 0); } (*(btcoexist->btc_get))((void *)btcoexist, 19, (void *)(& wifi_bw)); if (wifi_bw == 0U) { btc8723b_coex_tbl_type(btcoexist, 0, 2); } else { btc8723b_coex_tbl_type(btcoexist, 0, 8); } btc8723b2ant_ps_tdma(btcoexist, 0, 0, 0); if (wifi_bw == 2U) { if ((unsigned int )wifi_rssi_state == 0U || (unsigned int )wifi_rssi_state == 3U) { btc8723b2ant_sw_mechanism1(btcoexist, 1, 1, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 1, 0, 1, 4U); } else { btc8723b2ant_sw_mechanism1(btcoexist, 1, 1, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 0, 0, 1, 4U); } } else if ((unsigned int )wifi_rssi_state == 0U || (unsigned int )wifi_rssi_state == 3U) { btc8723b2ant_sw_mechanism1(btcoexist, 0, 1, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 1, 0, 1, 4U); } else { btc8723b2ant_sw_mechanism1(btcoexist, 0, 1, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 0, 0, 1, 4U); } return; } } static void btc8723b2ant_action_hid(struct btc_coexist *btcoexist ) { u8 wifi_rssi_state ; u8 bt_rssi_state ; u32 wifi_bw ; bool tmp ; { wifi_rssi_state = btc8723b2ant_wifi_rssi_state(btcoexist, 0, 2, 15, 0); bt_rssi_state = btc8723b2ant_bt_rssi_state(2, 35, 0); (*(btcoexist->btc_set_rf_reg))((void *)btcoexist, 0, 1U, 1048575U, 0U); btc8723b2ant_fw_dac_swing_lvl(btcoexist, 0, 6); tmp = btc8723b_need_dec_pwr(btcoexist); if ((int )tmp) { btc8723b2ant_dec_bt_pwr(btcoexist, 0, 1); } else { btc8723b2ant_dec_bt_pwr(btcoexist, 0, 0); } (*(btcoexist->btc_get))((void *)btcoexist, 19, (void *)(& wifi_bw)); if (wifi_bw == 0U) { btc8723b_coex_tbl_type(btcoexist, 0, 7); } else { btc8723b_coex_tbl_type(btcoexist, 0, 9); } if ((unsigned int )bt_rssi_state == 0U || (unsigned int )bt_rssi_state == 3U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 9); } else { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 13); } if (wifi_bw == 2U) { if ((unsigned int )wifi_rssi_state == 0U || (unsigned int )wifi_rssi_state == 3U) { btc8723b2ant_sw_mechanism1(btcoexist, 1, 1, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 1, 0, 0, 24U); } else { btc8723b2ant_sw_mechanism1(btcoexist, 1, 1, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 0, 0, 0, 24U); } } else if ((unsigned int )wifi_rssi_state == 0U || (unsigned int )wifi_rssi_state == 3U) { btc8723b2ant_sw_mechanism1(btcoexist, 0, 1, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 1, 0, 0, 24U); } else { btc8723b2ant_sw_mechanism1(btcoexist, 0, 1, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 0, 0, 0, 24U); } return; } } static void btc8723b2ant_action_a2dp(struct btc_coexist *btcoexist ) { u8 wifi_rssi_state ; u8 bt_rssi_state ; u32 wifi_bw ; bool tmp ; { wifi_rssi_state = btc8723b2ant_wifi_rssi_state(btcoexist, 0, 2, 15, 0); bt_rssi_state = btc8723b2ant_bt_rssi_state(2, 35, 0); (*(btcoexist->btc_set_rf_reg))((void *)btcoexist, 0, 1U, 1048575U, 0U); btc8723b2ant_fw_dac_swing_lvl(btcoexist, 0, 6); tmp = btc8723b_need_dec_pwr(btcoexist); if ((int )tmp) { btc8723b2ant_dec_bt_pwr(btcoexist, 0, 1); } else { btc8723b2ant_dec_bt_pwr(btcoexist, 0, 0); } btc8723b_coex_tbl_type(btcoexist, 0, 7); if ((unsigned int )bt_rssi_state == 0U || (unsigned int )bt_rssi_state == 3U) { btc8723b2ant_tdma_duration_adjust(btcoexist, 0, 0, 1); } else { btc8723b2ant_tdma_duration_adjust(btcoexist, 0, 1, 1); } (*(btcoexist->btc_get))((void *)btcoexist, 19, (void *)(& wifi_bw)); if (wifi_bw == 2U) { if ((unsigned int )wifi_rssi_state == 0U || (unsigned int )wifi_rssi_state == 3U) { btc8723b2ant_sw_mechanism1(btcoexist, 1, 0, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 1, 0, 0, 24U); } else { btc8723b2ant_sw_mechanism1(btcoexist, 1, 0, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 0, 0, 0, 24U); } } else if ((unsigned int )wifi_rssi_state == 0U || (unsigned int )wifi_rssi_state == 3U) { btc8723b2ant_sw_mechanism1(btcoexist, 0, 0, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 1, 0, 0, 24U); } else { btc8723b2ant_sw_mechanism1(btcoexist, 0, 0, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 0, 0, 0, 24U); } return; } } static void btc8723b2ant_action_a2dp_pan_hs(struct btc_coexist *btcoexist ) { u8 wifi_rssi_state ; u32 wifi_bw ; bool tmp ; { wifi_rssi_state = btc8723b2ant_wifi_rssi_state(btcoexist, 0, 2, 15, 0); (*(btcoexist->btc_set_rf_reg))((void *)btcoexist, 0, 1U, 1048575U, 0U); btc8723b2ant_fw_dac_swing_lvl(btcoexist, 0, 6); tmp = btc8723b_need_dec_pwr(btcoexist); if ((int )tmp) { btc8723b2ant_dec_bt_pwr(btcoexist, 0, 1); } else { btc8723b2ant_dec_bt_pwr(btcoexist, 0, 0); } btc8723b_coex_tbl_type(btcoexist, 0, 7); btc8723b2ant_tdma_duration_adjust(btcoexist, 0, 1, 2); (*(btcoexist->btc_get))((void *)btcoexist, 19, (void *)(& wifi_bw)); if (wifi_bw == 2U) { if ((unsigned int )wifi_rssi_state == 0U || (unsigned int )wifi_rssi_state == 3U) { btc8723b2ant_sw_mechanism1(btcoexist, 1, 0, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 1, 0, 0, 24U); } else { btc8723b2ant_sw_mechanism1(btcoexist, 1, 0, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 0, 0, 0, 24U); } } else if ((unsigned int )wifi_rssi_state == 0U || (unsigned int )wifi_rssi_state == 3U) { btc8723b2ant_sw_mechanism1(btcoexist, 0, 0, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 1, 0, 0, 24U); } else { btc8723b2ant_sw_mechanism1(btcoexist, 0, 0, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 0, 0, 0, 24U); } return; } } static void btc8723b2ant_action_pan_edr(struct btc_coexist *btcoexist ) { u8 wifi_rssi_state ; u8 bt_rssi_state ; u32 wifi_bw ; bool tmp ; { wifi_rssi_state = btc8723b2ant_wifi_rssi_state(btcoexist, 0, 2, 15, 0); bt_rssi_state = btc8723b2ant_bt_rssi_state(2, 35, 0); (*(btcoexist->btc_set_rf_reg))((void *)btcoexist, 0, 1U, 1048575U, 0U); btc8723b2ant_fw_dac_swing_lvl(btcoexist, 0, 6); tmp = btc8723b_need_dec_pwr(btcoexist); if ((int )tmp) { btc8723b2ant_dec_bt_pwr(btcoexist, 0, 1); } else { btc8723b2ant_dec_bt_pwr(btcoexist, 0, 0); } btc8723b_coex_tbl_type(btcoexist, 0, 10); if ((unsigned int )bt_rssi_state == 0U || (unsigned int )bt_rssi_state == 3U) { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 1); } else { btc8723b2ant_ps_tdma(btcoexist, 0, 1, 5); } (*(btcoexist->btc_get))((void *)btcoexist, 19, (void *)(& wifi_bw)); if (wifi_bw == 2U) { if ((unsigned int )wifi_rssi_state == 0U || (unsigned int )wifi_rssi_state == 3U) { btc8723b2ant_sw_mechanism1(btcoexist, 1, 0, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 1, 0, 0, 24U); } else { btc8723b2ant_sw_mechanism1(btcoexist, 1, 0, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 0, 0, 0, 24U); } } else if ((unsigned int )wifi_rssi_state == 0U || (unsigned int )wifi_rssi_state == 3U) { btc8723b2ant_sw_mechanism1(btcoexist, 0, 0, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 1, 0, 0, 24U); } else { btc8723b2ant_sw_mechanism1(btcoexist, 0, 0, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 0, 0, 0, 24U); } return; } } static void btc8723b2ant_action_pan_hs(struct btc_coexist *btcoexist ) { u8 wifi_rssi_state ; u32 wifi_bw ; { wifi_rssi_state = btc8723b2ant_wifi_rssi_state(btcoexist, 0, 2, 15, 0); (*(btcoexist->btc_set_rf_reg))((void *)btcoexist, 0, 1U, 1048575U, 0U); btc8723b2ant_fw_dac_swing_lvl(btcoexist, 0, 6); if ((unsigned int )wifi_rssi_state == 0U || (unsigned int )wifi_rssi_state == 3U) { btc8723b2ant_dec_bt_pwr(btcoexist, 0, 1); } else { btc8723b2ant_dec_bt_pwr(btcoexist, 0, 0); } btc8723b_coex_tbl_type(btcoexist, 0, 7); btc8723b2ant_ps_tdma(btcoexist, 0, 0, 1); (*(btcoexist->btc_get))((void *)btcoexist, 19, (void *)(& wifi_bw)); if (wifi_bw == 2U) { if ((unsigned int )wifi_rssi_state == 0U || (unsigned int )wifi_rssi_state == 3U) { btc8723b2ant_sw_mechanism1(btcoexist, 1, 0, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 1, 0, 0, 24U); } else { btc8723b2ant_sw_mechanism1(btcoexist, 1, 0, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 0, 0, 0, 24U); } } else if ((unsigned int )wifi_rssi_state == 0U || (unsigned int )wifi_rssi_state == 3U) { btc8723b2ant_sw_mechanism1(btcoexist, 0, 0, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 1, 0, 0, 24U); } else { btc8723b2ant_sw_mechanism1(btcoexist, 0, 0, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 0, 0, 0, 24U); } return; } } static void btc8723b2ant_action_pan_edr_a2dp(struct btc_coexist *btcoexist ) { u8 wifi_rssi_state ; u8 bt_rssi_state ; u32 wifi_bw ; bool tmp ; { wifi_rssi_state = btc8723b2ant_wifi_rssi_state(btcoexist, 0, 2, 15, 0); bt_rssi_state = btc8723b2ant_bt_rssi_state(2, 35, 0); (*(btcoexist->btc_set_rf_reg))((void *)btcoexist, 0, 1U, 1048575U, 0U); btc8723b2ant_fw_dac_swing_lvl(btcoexist, 0, 6); tmp = btc8723b_need_dec_pwr(btcoexist); if ((int )tmp) { btc8723b2ant_dec_bt_pwr(btcoexist, 0, 1); } else { btc8723b2ant_dec_bt_pwr(btcoexist, 0, 0); } (*(btcoexist->btc_get))((void *)btcoexist, 19, (void *)(& wifi_bw)); if ((unsigned int )bt_rssi_state == 0U || (unsigned int )bt_rssi_state == 3U) { btc8723b_coex_tbl_type(btcoexist, 0, 12); if (wifi_bw == 2U) { btc8723b2ant_tdma_duration_adjust(btcoexist, 0, 1, 3); } else { btc8723b2ant_tdma_duration_adjust(btcoexist, 0, 0, 3); } } else { btc8723b_coex_tbl_type(btcoexist, 0, 7); btc8723b2ant_tdma_duration_adjust(btcoexist, 0, 1, 3); } if (wifi_bw == 2U) { if ((unsigned int )wifi_rssi_state == 0U || (unsigned int )wifi_rssi_state == 3U) { btc8723b2ant_sw_mechanism1(btcoexist, 1, 0, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 1, 0, 0, 24U); } else { btc8723b2ant_sw_mechanism1(btcoexist, 1, 0, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 0, 0, 0, 24U); } } else if ((unsigned int )wifi_rssi_state == 0U || (unsigned int )wifi_rssi_state == 3U) { btc8723b2ant_sw_mechanism1(btcoexist, 0, 0, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 1, 0, 0, 24U); } else { btc8723b2ant_sw_mechanism1(btcoexist, 0, 0, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 0, 0, 0, 24U); } return; } } static void btc8723b2ant_action_pan_edr_hid(struct btc_coexist *btcoexist ) { u8 wifi_rssi_state ; u8 bt_rssi_state ; u32 wifi_bw ; bool tmp ; { wifi_rssi_state = btc8723b2ant_wifi_rssi_state(btcoexist, 0, 2, 15, 0); bt_rssi_state = btc8723b2ant_bt_rssi_state(2, 35, 0); (*(btcoexist->btc_get))((void *)btcoexist, 19, (void *)(& wifi_bw)); tmp = btc8723b_need_dec_pwr(btcoexist); if ((int )tmp) { btc8723b2ant_dec_bt_pwr(btcoexist, 0, 1); } else { btc8723b2ant_dec_bt_pwr(btcoexist, 0, 0); } if ((unsigned int )bt_rssi_state == 0U || (unsigned int )bt_rssi_state == 3U) { if (wifi_bw == 2U) { btc8723b2ant_fw_dac_swing_lvl(btcoexist, 0, 3); btc8723b_coex_tbl_type(btcoexist, 0, 11); (*(btcoexist->btc_set_rf_reg))((void *)btcoexist, 0, 1U, 1048575U, 1920U); } else { btc8723b2ant_fw_dac_swing_lvl(btcoexist, 0, 6); btc8723b_coex_tbl_type(btcoexist, 0, 7); (*(btcoexist->btc_set_rf_reg))((void *)btcoexist, 0, 1U, 1048575U, 0U); } btc8723b2ant_tdma_duration_adjust(btcoexist, 1, 0, 2); } else { btc8723b2ant_fw_dac_swing_lvl(btcoexist, 0, 6); btc8723b_coex_tbl_type(btcoexist, 0, 11); (*(btcoexist->btc_set_rf_reg))((void *)btcoexist, 0, 1U, 1048575U, 0U); btc8723b2ant_tdma_duration_adjust(btcoexist, 1, 1, 2); } if (wifi_bw == 2U) { if ((unsigned int )wifi_rssi_state == 0U || (unsigned int )wifi_rssi_state == 3U) { btc8723b2ant_sw_mechanism1(btcoexist, 1, 1, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 1, 0, 0, 24U); } else { btc8723b2ant_sw_mechanism1(btcoexist, 1, 1, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 0, 0, 0, 24U); } } else if ((unsigned int )wifi_rssi_state == 0U || (unsigned int )wifi_rssi_state == 3U) { btc8723b2ant_sw_mechanism1(btcoexist, 0, 1, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 1, 0, 0, 24U); } else { btc8723b2ant_sw_mechanism1(btcoexist, 0, 1, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 0, 0, 0, 24U); } return; } } static void btc8723b2ant_action_hid_a2dp_pan_edr(struct btc_coexist *btcoexist ) { u8 wifi_rssi_state ; u8 bt_rssi_state ; u32 wifi_bw ; bool tmp ; { wifi_rssi_state = btc8723b2ant_wifi_rssi_state(btcoexist, 0, 2, 15, 0); bt_rssi_state = btc8723b2ant_bt_rssi_state(2, 35, 0); (*(btcoexist->btc_set_rf_reg))((void *)btcoexist, 0, 1U, 1048575U, 0U); btc8723b2ant_fw_dac_swing_lvl(btcoexist, 0, 6); tmp = btc8723b_need_dec_pwr(btcoexist); if ((int )tmp) { btc8723b2ant_dec_bt_pwr(btcoexist, 0, 1); } else { btc8723b2ant_dec_bt_pwr(btcoexist, 0, 0); } (*(btcoexist->btc_get))((void *)btcoexist, 19, (void *)(& wifi_bw)); btc8723b_coex_tbl_type(btcoexist, 0, 7); if ((unsigned int )bt_rssi_state == 0U || (unsigned int )bt_rssi_state == 3U) { if (wifi_bw == 2U) { btc8723b2ant_tdma_duration_adjust(btcoexist, 1, 1, 2); } else { btc8723b2ant_tdma_duration_adjust(btcoexist, 1, 0, 3); } } else { btc8723b2ant_tdma_duration_adjust(btcoexist, 1, 1, 3); } if (wifi_bw == 2U) { if ((unsigned int )wifi_rssi_state == 0U || (unsigned int )wifi_rssi_state == 3U) { btc8723b2ant_sw_mechanism1(btcoexist, 1, 1, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 1, 0, 0, 24U); } else { btc8723b2ant_sw_mechanism1(btcoexist, 1, 1, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 0, 0, 0, 24U); } } else if ((unsigned int )wifi_rssi_state == 0U || (unsigned int )wifi_rssi_state == 3U) { btc8723b2ant_sw_mechanism1(btcoexist, 0, 1, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 1, 0, 0, 24U); } else { btc8723b2ant_sw_mechanism1(btcoexist, 0, 1, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 0, 0, 0, 24U); } return; } } static void btc8723b2ant_action_hid_a2dp(struct btc_coexist *btcoexist ) { u8 wifi_rssi_state ; u8 bt_rssi_state ; u32 wifi_bw ; bool tmp ; { wifi_rssi_state = btc8723b2ant_wifi_rssi_state(btcoexist, 0, 2, 15, 0); bt_rssi_state = btc8723b2ant_bt_rssi_state(2, 35, 0); (*(btcoexist->btc_set_rf_reg))((void *)btcoexist, 0, 1U, 1048575U, 0U); btc8723b2ant_fw_dac_swing_lvl(btcoexist, 0, 6); tmp = btc8723b_need_dec_pwr(btcoexist); if ((int )tmp) { btc8723b2ant_dec_bt_pwr(btcoexist, 0, 1); } else { btc8723b2ant_dec_bt_pwr(btcoexist, 0, 0); } (*(btcoexist->btc_get))((void *)btcoexist, 19, (void *)(& wifi_bw)); btc8723b_coex_tbl_type(btcoexist, 0, 7); if ((unsigned int )bt_rssi_state == 0U || (unsigned int )bt_rssi_state == 3U) { btc8723b2ant_tdma_duration_adjust(btcoexist, 1, 0, 2); } else { btc8723b2ant_tdma_duration_adjust(btcoexist, 1, 1, 2); } if (wifi_bw == 2U) { if ((unsigned int )wifi_rssi_state == 0U || (unsigned int )wifi_rssi_state == 3U) { btc8723b2ant_sw_mechanism1(btcoexist, 1, 1, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 1, 0, 0, 24U); } else { btc8723b2ant_sw_mechanism1(btcoexist, 1, 1, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 0, 0, 0, 24U); } } else if ((unsigned int )wifi_rssi_state == 0U || (unsigned int )wifi_rssi_state == 3U) { btc8723b2ant_sw_mechanism1(btcoexist, 0, 1, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 1, 0, 0, 24U); } else { btc8723b2ant_sw_mechanism1(btcoexist, 0, 1, 0, 0); btc8723b2ant_sw_mechanism2(btcoexist, 0, 0, 0, 24U); } return; } } static void btc8723b2ant_run_coexist_mechanism(struct btc_coexist *btcoexist ) { u8 algorithm ; long tmp ; long tmp___0 ; long tmp___1 ; long tmp___2 ; long tmp___3 ; long tmp___4 ; long tmp___5 ; long tmp___6 ; long tmp___7 ; long tmp___8 ; long tmp___9 ; long tmp___10 ; long tmp___11 ; long tmp___12 ; long tmp___13 ; long tmp___14 ; long tmp___15 ; long tmp___16 ; bool tmp___17 ; { algorithm = 0U; tmp = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp != 0L) { printk("[BTCoex], RunCoexistMechanism()===>\n"); } else { } if ((int )btcoexist->manual_control) { tmp___0 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___0 != 0L) { printk("[BTCoex], RunCoexistMechanism(), return for Manual CTRL <===\n"); } else { } return; } else { } if ((int )coex_sta->under_ips) { tmp___1 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___1 != 0L) { printk("[BTCoex], wifi is under IPS !!!\n"); } else { } return; } else { } algorithm = btc8723b2ant_action_algorithm(btcoexist); if ((int )coex_sta->c2h_bt_inquiry_page && (unsigned int )algorithm != 6U) { tmp___2 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___2 != 0L) { printk("[BTCoex], BT is under inquiry/page scan !!\n"); } else { } btc8723b2ant_action_bt_inquiry(btcoexist); return; } else if ((int )coex_dm->need_recover_0x948) { coex_dm->need_recover_0x948 = 0; (*(btcoexist->btc_write_2byte))((void *)btcoexist, 2376U, (int )coex_dm->backup_0x948); } else { } coex_dm->cur_algorithm = algorithm; tmp___3 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___3 != 0L) { printk("[BTCoex], Algorithm = %d\n", (int )coex_dm->cur_algorithm); } else { } tmp___17 = btc8723b2ant_is_common_action(btcoexist); if ((int )tmp___17) { tmp___4 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___4 != 0L) { printk("[BTCoex], Action 2-Ant common.\n"); } else { } coex_dm->auto_tdma_adjust = 0; } else { if ((int )coex_dm->cur_algorithm != (int )coex_dm->pre_algorithm) { tmp___5 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___5 != 0L) { printk("[BTCoex], preAlgorithm=%d, curAlgorithm=%d\n", (int )coex_dm->pre_algorithm, (int )coex_dm->cur_algorithm); } else { } coex_dm->auto_tdma_adjust = 0; } else { } switch ((int )coex_dm->cur_algorithm) { case 1: tmp___6 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___6 != 0L) { printk("[BTCoex], Action 2-Ant, algorithm = SCO.\n"); } else { } btc8723b2ant_action_sco(btcoexist); goto ldv_52038; case 2: tmp___7 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___7 != 0L) { printk("[BTCoex], Action 2-Ant, algorithm = HID.\n"); } else { } btc8723b2ant_action_hid(btcoexist); goto ldv_52038; case 3: tmp___8 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___8 != 0L) { printk("[BTCoex], Action 2-Ant, algorithm = A2DP.\n"); } else { } btc8723b2ant_action_a2dp(btcoexist); goto ldv_52038; case 4: tmp___9 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___9 != 0L) { printk("[BTCoex], Action 2-Ant, algorithm = A2DP+PAN(HS).\n"); } else { } btc8723b2ant_action_a2dp_pan_hs(btcoexist); goto ldv_52038; case 5: tmp___10 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___10 != 0L) { printk("[BTCoex], Action 2-Ant, algorithm = PAN(EDR).\n"); } else { } btc8723b2ant_action_pan_edr(btcoexist); goto ldv_52038; case 6: tmp___11 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___11 != 0L) { printk("[BTCoex], Action 2-Ant, algorithm = HS mode.\n"); } else { } btc8723b2ant_action_pan_hs(btcoexist); goto ldv_52038; case 7: tmp___12 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___12 != 0L) { printk("[BTCoex], Action 2-Ant, algorithm = PAN+A2DP.\n"); } else { } btc8723b2ant_action_pan_edr_a2dp(btcoexist); goto ldv_52038; case 8: tmp___13 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___13 != 0L) { printk("[BTCoex], Action 2-Ant, algorithm = PAN(EDR)+HID.\n"); } else { } btc8723b2ant_action_pan_edr_hid(btcoexist); goto ldv_52038; case 9: tmp___14 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___14 != 0L) { printk("[BTCoex], Action 2-Ant, algorithm = HID+A2DP+PAN.\n"); } else { } btc8723b2ant_action_hid_a2dp_pan_edr(btcoexist); goto ldv_52038; case 10: tmp___15 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___15 != 0L) { printk("[BTCoex], Action 2-Ant, algorithm = HID+A2DP.\n"); } else { } btc8723b2ant_action_hid_a2dp(btcoexist); goto ldv_52038; default: tmp___16 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___16 != 0L) { printk("[BTCoex], Action 2-Ant, algorithm = coexist All Off!!\n"); } else { } btc8723b2ant_coex_alloff(btcoexist); goto ldv_52038; } ldv_52038: coex_dm->pre_algorithm = coex_dm->cur_algorithm; } return; } } void ex_halbtc8723b2ant_init_hwconfig(struct btc_coexist *btcoexist ) { struct btc_board_info *board_info ; u32 u32tmp ; u32 fw_ver ; u8 u8tmp ; u8 h2c_parameter[2U] ; unsigned int tmp ; long tmp___0 ; { board_info = & btcoexist->board_info; u32tmp = 0U; u8tmp = 0U; h2c_parameter[0] = 0U; tmp = 1U; while (1) { if (tmp >= 2U) { break; } else { } h2c_parameter[tmp] = (unsigned char)0; tmp = tmp + 1U; } tmp___0 = ldv__builtin_expect((long )((int )btc_dbg_type[0]) & 1L, 0L); if (tmp___0 != 0L) { printk("[BTCoex], 2Ant Init HW Config!!\n"); } else { } coex_dm->bt_rf0x1e_backup = (*(btcoexist->btc_get_rf_reg))((void *)btcoexist, 0, 30U, 1048575U); u32tmp = (*(btcoexist->btc_read_4byte))((void *)btcoexist, 76U); u32tmp = u32tmp & 4286578687U; u32tmp = u32tmp | 16777216U; (*(btcoexist->btc_write_4byte))((void *)btcoexist, 76U, u32tmp); (*(btcoexist->btc_write_1byte))((void *)btcoexist, 2420U, 255); (*(btcoexist->btc_write_1byte_bitmask))((void *)btcoexist, 2372U, 3U, 3); (*(btcoexist->btc_write_1byte))((void *)btcoexist, 2352U, 119); (*(btcoexist->btc_write_1byte_bitmask))((void *)btcoexist, 103U, 32U, 1); (*(btcoexist->btc_write_1byte_bitmask))((void *)btcoexist, 1893U, 24U, 0); (*(btcoexist->btc_write_2byte))((void *)btcoexist, 2376U, 0); u8tmp = (*(btcoexist->btc_read_1byte))((void *)btcoexist, 1936U); u8tmp = (unsigned int )u8tmp & 192U; u8tmp = (u8 )((unsigned int )u8tmp | 5U); (*(btcoexist->btc_write_1byte))((void *)btcoexist, 1936U, (int )u8tmp); (*(btcoexist->btc_get))((void *)btcoexist, 21, (void *)(& fw_ver)); if (fw_ver <= 3071U) { if ((unsigned int )board_info->btdm_ant_pos == 1U) { (*(btcoexist->btc_write_1byte_bitmask))((void *)btcoexist, 2348U, 3U, 1); (*(btcoexist->btc_write_1byte_bitmask))((void *)btcoexist, 100U, 1U, 1); h2c_parameter[0] = 0U; h2c_parameter[1] = 1U; (*(btcoexist->btc_fill_h2c))((void *)btcoexist, 101, 2U, (u8 *)(& h2c_parameter)); } else { (*(btcoexist->btc_write_1byte_bitmask))((void *)btcoexist, 2348U, 3U, 2); (*(btcoexist->btc_write_1byte_bitmask))((void *)btcoexist, 100U, 1U, 0); h2c_parameter[0] = 1U; h2c_parameter[1] = 1U; (*(btcoexist->btc_fill_h2c))((void *)btcoexist, 101, 2U, (u8 *)(& h2c_parameter)); } } else { (*(btcoexist->btc_write_1byte_bitmask))((void *)btcoexist, 2348U, 3U, 1); (*(btcoexist->btc_write_1byte_bitmask))((void *)btcoexist, 100U, 1U, 1); if ((unsigned int )board_info->btdm_ant_pos == 1U) { h2c_parameter[0] = 0U; h2c_parameter[1] = 0U; (*(btcoexist->btc_fill_h2c))((void *)btcoexist, 101, 2U, (u8 *)(& h2c_parameter)); } else { h2c_parameter[0] = 1U; h2c_parameter[1] = 0U; (*(btcoexist->btc_fill_h2c))((void *)btcoexist, 101, 2U, (u8 *)(& h2c_parameter)); } } btc8723b_coex_tbl_type(btcoexist, 1, 0); (*(btcoexist->btc_write_1byte))((void *)btcoexist, 1902U, 12); (*(btcoexist->btc_write_1byte))((void *)btcoexist, 1912U, 3); (*(btcoexist->btc_write_1byte_bitmask))((void *)btcoexist, 64U, 32U, 1); return; } } void ex_halbtc8723b2ant_init_coex_dm(struct btc_coexist *btcoexist ) { long tmp ; { tmp = ldv__builtin_expect((long )((int )btc_dbg_type[0]) & 1L, 0L); if (tmp != 0L) { printk("[BTCoex], Coex Mechanism Init!!\n"); } else { } btc8723b2ant_init_coex_dm(btcoexist); return; } } void ex_halbtc8723b2ant_display_coex_info(struct btc_coexist *btcoexist ) { struct btc_board_info *board_info ; struct btc_stack_info *stack_info ; struct btc_bt_link_info *bt_link_info ; u8 *cli_buf ; u8 u8tmp[4U] ; u8 i ; u8 bt_info_ext ; u8 ps_tdma_case ; u32 u32tmp[4U] ; bool roam ; bool scan ; bool link ; bool wifi_under_5g ; bool bt_hs_on ; bool wifi_busy ; s32 wifi_rssi ; s32 bt_hs_rssi ; u32 wifi_bw ; u32 wifi_traffic_dir ; u32 fa_ofdm ; u32 fa_cck ; u8 wifi_dot11_chnl ; u8 wifi_hs_chnl ; u32 fw_ver ; u32 bt_patch_ver ; { board_info = & btcoexist->board_info; stack_info = & btcoexist->stack_info; bt_link_info = & btcoexist->bt_link_info; cli_buf = btcoexist->cli_buf; ps_tdma_case = 0U; roam = 0; scan = 0; link = 0; wifi_under_5g = 0; bt_hs_on = 0; wifi_busy = 0; wifi_rssi = 0; bt_hs_rssi = 0; fw_ver = 0U; bt_patch_ver = 0U; snprintf((char *)cli_buf, 100UL, "\r\n ============[BT Coexist info]============"); printk((char const *)cli_buf); if ((int )btcoexist->manual_control) { snprintf((char *)cli_buf, 100UL, "\r\n ==========[Under Manual Control]============"); printk((char const *)cli_buf); snprintf((char *)cli_buf, 100UL, "\r\n =========================================="); printk((char const *)cli_buf); } else { } if (! board_info->bt_exist) { snprintf((char *)cli_buf, 100UL, "\r\n BT not exists !!!"); printk((char const *)cli_buf); return; } else { } snprintf((char *)cli_buf, 100UL, "\r\n %-35s = %d/ %d ", (char *)"Ant PG number/ Ant mechanism:", (int )board_info->pg_ant_num, (int )board_info->btdm_ant_num); printk((char const *)cli_buf); snprintf((char *)cli_buf, 100UL, "\r\n %-35s = %s / %d", (char *)"BT stack/ hci ext ver", (int )stack_info->profile_notified ? (char *)"Yes" : (char *)"No", (int )stack_info->hci_version); printk((char const *)cli_buf); (*(btcoexist->btc_get))((void *)btcoexist, 22, (void *)(& bt_patch_ver)); (*(btcoexist->btc_get))((void *)btcoexist, 21, (void *)(& fw_ver)); snprintf((char *)cli_buf, 100UL, "\r\n %-35s = %d_%x/ 0x%x/ 0x%x(%d)", (char *)"CoexVer/ FwVer/ PatchVer", glcoex_ver_date_8723b_2ant, glcoex_ver_8723b_2ant, fw_ver, bt_patch_ver, bt_patch_ver); printk((char const *)cli_buf); (*(btcoexist->btc_get))((void *)btcoexist, 0, (void *)(& bt_hs_on)); (*(btcoexist->btc_get))((void *)btcoexist, 23, (void *)(& wifi_dot11_chnl)); (*(btcoexist->btc_get))((void *)btcoexist, 25, (void *)(& wifi_hs_chnl)); snprintf((char *)cli_buf, 100UL, "\r\n %-35s = %d / %d(%d)", (char *)"Dot11 channel / HsChnl(HsMode)", (int )wifi_dot11_chnl, (int )wifi_hs_chnl, (int )bt_hs_on); printk((char const *)cli_buf); snprintf((char *)cli_buf, 100UL, "\r\n %-35s = %02x %02x %02x ", (char *)"H2C Wifi inform bt chnl Info", (int )coex_dm->wifi_chnl_info[0], (int )coex_dm->wifi_chnl_info[1], (int )coex_dm->wifi_chnl_info[2]); printk((char const *)cli_buf); (*(btcoexist->btc_get))((void *)btcoexist, 17, (void *)(& wifi_rssi)); (*(btcoexist->btc_get))((void *)btcoexist, 18, (void *)(& bt_hs_rssi)); snprintf((char *)cli_buf, 100UL, "\r\n %-35s = %d/ %d", (char *)"Wifi rssi/ HS rssi", wifi_rssi, bt_hs_rssi); printk((char const *)cli_buf); (*(btcoexist->btc_get))((void *)btcoexist, 4, (void *)(& scan)); (*(btcoexist->btc_get))((void *)btcoexist, 5, (void *)(& link)); (*(btcoexist->btc_get))((void *)btcoexist, 10, (void *)(& roam)); snprintf((char *)cli_buf, 100UL, "\r\n %-35s = %d/ %d/ %d ", (char *)"Wifi link/ roam/ scan", (int )link, (int )roam, (int )scan); printk((char const *)cli_buf); (*(btcoexist->btc_get))((void *)btcoexist, 12, (void *)(& wifi_under_5g)); (*(btcoexist->btc_get))((void *)btcoexist, 19, (void *)(& wifi_bw)); (*(btcoexist->btc_get))((void *)btcoexist, 3, (void *)(& wifi_busy)); (*(btcoexist->btc_get))((void *)btcoexist, 20, (void *)(& wifi_traffic_dir)); snprintf((char *)cli_buf, 100UL, "\r\n %-35s = %s / %s/ %s ", (char *)"Wifi status", (int )wifi_under_5g ? (char *)"5G" : (char *)"2.4G", wifi_bw != 0U ? (wifi_bw == 2U ? (char *)"HT40" : (char *)"HT20") : (char *)"Legacy", ! wifi_busy ? (char *)"idle" : (wifi_traffic_dir == 0U ? (char *)"uplink" : (char *)"downlink")); printk((char const *)cli_buf); printk((char const *)cli_buf); snprintf((char *)cli_buf, 100UL, "\r\n %-35s = %d / %d / %d / %d", (char *)"SCO/HID/PAN/A2DP", (int )bt_link_info->sco_exist, (int )bt_link_info->hid_exist, (int )bt_link_info->pan_exist, (int )bt_link_info->a2dp_exist); printk((char const *)cli_buf); (*(btcoexist->btc_disp_dbg_msg))((void *)btcoexist, 1); bt_info_ext = coex_sta->bt_info_ext; snprintf((char *)cli_buf, 100UL, "\r\n %-35s = %s", (char *)"BT Info A2DP rate", (int )bt_info_ext & 1 ? (char *)"Basic rate" : (char *)"EDR rate"); printk((char const *)cli_buf); i = 0U; goto ldv_52089; ldv_52088: ; if (coex_sta->bt_info_c2h_cnt[(int )i] != 0U) { snprintf((char *)cli_buf, 100UL, "\r\n %-35s = %02x %02x %02x %02x %02x %02x %02x(%d)", glbt_info_src_8723b_2ant[(int )i], (int )coex_sta->bt_info_c2h[(int )i][0], (int )coex_sta->bt_info_c2h[(int )i][1], (int )coex_sta->bt_info_c2h[(int )i][2], (int )coex_sta->bt_info_c2h[(int )i][3], (int )coex_sta->bt_info_c2h[(int )i][4], (int )coex_sta->bt_info_c2h[(int )i][5], (int )coex_sta->bt_info_c2h[(int )i][6], coex_sta->bt_info_c2h_cnt[(int )i]); printk((char const *)cli_buf); } else { } i = (u8 )((int )i + 1); ldv_52089: ; if ((unsigned int )i <= 2U) { goto ldv_52088; } else { } snprintf((char *)cli_buf, 100UL, "\r\n %-35s = %s/%s", (char *)"PS state, IPS/LPS", (int )coex_sta->under_ips ? (char *)"IPS ON" : (char *)"IPS OFF", (int )coex_sta->under_lps ? (char *)"LPS ON" : (char *)"LPS OFF"); printk((char const *)cli_buf); (*(btcoexist->btc_disp_dbg_msg))((void *)btcoexist, 3); snprintf((char *)cli_buf, 100UL, "\r\n %-35s", (char *)"============[Sw mechanism]============"); printk((char const *)cli_buf); snprintf((char *)cli_buf, 100UL, "\r\n %-35s = %d/ %d/ %d ", (char *)"SM1[ShRf/ LpRA/ LimDig]", (int )coex_dm->cur_rf_rx_lpf_shrink, (int )coex_dm->cur_low_penalty_ra, (int )coex_dm->limited_dig); printk((char const *)cli_buf); snprintf((char *)cli_buf, 100UL, "\r\n %-35s = %d/ %d/ %d(0x%x) ", (char *)"SM2[AgcT/ AdcB/ SwDacSwing(lvl)]", (int )coex_dm->cur_agc_table_en, (int )coex_dm->cur_adc_back_off, (int )coex_dm->cur_dac_swing_on, coex_dm->cur_dac_swing_lvl); printk((char const *)cli_buf); snprintf((char *)cli_buf, 100UL, "\r\n %-35s", (char *)"============[Fw mechanism]============"); printk((char const *)cli_buf); ps_tdma_case = coex_dm->cur_ps_tdma; snprintf((char *)cli_buf, 100UL, "\r\n %-35s = %02x %02x %02x %02x %02x case-%d (auto:%d)", (char *)"PS TDMA", (int )coex_dm->ps_tdma_para[0], (int )coex_dm->ps_tdma_para[1], (int )coex_dm->ps_tdma_para[2], (int )coex_dm->ps_tdma_para[3], (int )coex_dm->ps_tdma_para[4], (int )ps_tdma_case, (int )coex_dm->auto_tdma_adjust); printk((char const *)cli_buf); snprintf((char *)cli_buf, 100UL, "\r\n %-35s = %d/ %d ", (char *)"DecBtPwr/ IgnWlanAct", (int )coex_dm->cur_dec_bt_pwr, (int )coex_dm->cur_ignore_wlan_act); printk((char const *)cli_buf); snprintf((char *)cli_buf, 100UL, "\r\n %-35s", (char *)"============[Hw setting]============"); printk((char const *)cli_buf); snprintf((char *)cli_buf, 100UL, "\r\n %-35s = 0x%x", (char *)"RF-A, 0x1e initVal", coex_dm->bt_rf0x1e_backup); printk((char const *)cli_buf); u8tmp[0] = (*(btcoexist->btc_read_1byte))((void *)btcoexist, 1912U); u32tmp[0] = (*(btcoexist->btc_read_4byte))((void *)btcoexist, 2176U); snprintf((char *)cli_buf, 100UL, "\r\n %-35s = 0x%x/ 0x%x", (char *)"0x778/0x880[29:25]", (int )u8tmp[0], (u32tmp[0] & 1040187392U) >> 25); printk((char const *)cli_buf); u32tmp[0] = (*(btcoexist->btc_read_4byte))((void *)btcoexist, 2376U); u8tmp[0] = (*(btcoexist->btc_read_1byte))((void *)btcoexist, 103U); u8tmp[1] = (*(btcoexist->btc_read_1byte))((void *)btcoexist, 1893U); snprintf((char *)cli_buf, 100UL, "\r\n %-35s = 0x%x/ 0x%x/ 0x%x", (char *)"0x948/ 0x67[5] / 0x765", u32tmp[0], ((int )u8tmp[0] & 32) >> 5, (int )u8tmp[1]); printk((char const *)cli_buf); u32tmp[0] = (*(btcoexist->btc_read_4byte))((void *)btcoexist, 2348U); u32tmp[1] = (*(btcoexist->btc_read_4byte))((void *)btcoexist, 2352U); u32tmp[2] = (*(btcoexist->btc_read_4byte))((void *)btcoexist, 2372U); snprintf((char *)cli_buf, 100UL, "\r\n %-35s = 0x%x/ 0x%x/ 0x%x", (char *)"0x92c[1:0]/ 0x930[7:0]/0x944[1:0]", u32tmp[0] & 3U, u32tmp[1] & 255U, u32tmp[2] & 3U); printk((char const *)cli_buf); u8tmp[0] = (*(btcoexist->btc_read_1byte))((void *)btcoexist, 57U); u8tmp[1] = (*(btcoexist->btc_read_1byte))((void *)btcoexist, 64U); u32tmp[0] = (*(btcoexist->btc_read_4byte))((void *)btcoexist, 76U); u8tmp[2] = (*(btcoexist->btc_read_1byte))((void *)btcoexist, 100U); snprintf((char *)cli_buf, 100UL, "\r\n %-35s = 0x%x/ 0x%x/ 0x%x/ 0x%x", (char *)"0x38[11]/0x40/0x4c[24:23]/0x64[0]", ((int )u8tmp[0] & 8) >> 3, (int )u8tmp[1], (u32tmp[0] & 25165824U) >> 23, (int )u8tmp[2] & 1); printk((char const *)cli_buf); u32tmp[0] = (*(btcoexist->btc_read_4byte))((void *)btcoexist, 1360U); u8tmp[0] = (*(btcoexist->btc_read_1byte))((void *)btcoexist, 1314U); snprintf((char *)cli_buf, 100UL, "\r\n %-35s = 0x%x/ 0x%x", (char *)"0x550(bcn ctrl)/0x522", u32tmp[0], (int )u8tmp[0]); printk((char const *)cli_buf); u32tmp[0] = (*(btcoexist->btc_read_4byte))((void *)btcoexist, 3152U); u8tmp[0] = (*(btcoexist->btc_read_1byte))((void *)btcoexist, 1180U); snprintf((char *)cli_buf, 100UL, "\r\n %-35s = 0x%x/ 0x%x", (char *)"0xc50(dig)/0x49c(null-drop)", u32tmp[0] & 255U, (int )u8tmp[0]); printk((char const *)cli_buf); u32tmp[0] = (*(btcoexist->btc_read_4byte))((void *)btcoexist, 3488U); u32tmp[1] = (*(btcoexist->btc_read_4byte))((void *)btcoexist, 3492U); u32tmp[2] = (*(btcoexist->btc_read_4byte))((void *)btcoexist, 3496U); u32tmp[3] = (*(btcoexist->btc_read_4byte))((void *)btcoexist, 3312U); u8tmp[0] = (*(btcoexist->btc_read_1byte))((void *)btcoexist, 2651U); u8tmp[1] = (*(btcoexist->btc_read_1byte))((void *)btcoexist, 2652U); fa_ofdm = (((((u32tmp[0] >> 16) + (u32tmp[1] >> 16)) + (u32tmp[1] & 65535U)) + (u32tmp[2] & 65535U)) + (u32tmp[3] >> 16)) + (u32tmp[3] & 65535U); fa_cck = (u32 )(((int )u8tmp[0] << 8) + (int )u8tmp[1]); snprintf((char *)cli_buf, 100UL, "\r\n %-35s = 0x%x/ 0x%x/ 0x%x", (char *)"OFDM-CCA/OFDM-FA/CCK-FA", u32tmp[0] & 65535U, fa_ofdm, fa_cck); printk((char const *)cli_buf); u32tmp[0] = (*(btcoexist->btc_read_4byte))((void *)btcoexist, 1728U); u32tmp[1] = (*(btcoexist->btc_read_4byte))((void *)btcoexist, 1732U); u32tmp[2] = (*(btcoexist->btc_read_4byte))((void *)btcoexist, 1736U); u8tmp[0] = (*(btcoexist->btc_read_1byte))((void *)btcoexist, 1740U); snprintf((char *)cli_buf, 100UL, "\r\n %-35s = 0x%x/ 0x%x/ 0x%x/ 0x%x", (char *)"0x6c0/0x6c4/0x6c8/0x6cc(coexTable)", u32tmp[0], u32tmp[1], u32tmp[2], (int )u8tmp[0]); printk((char const *)cli_buf); snprintf((char *)cli_buf, 100UL, "\r\n %-35s = %d/ %d", (char *)"0x770(high-pri rx/tx)", coex_sta->high_priority_rx, coex_sta->high_priority_tx); printk((char const *)cli_buf); snprintf((char *)cli_buf, 100UL, "\r\n %-35s = %d/ %d", (char *)"0x774(low-pri rx/tx)", coex_sta->low_priority_rx, coex_sta->low_priority_tx); printk((char const *)cli_buf); btc8723b2ant_monitor_bt_ctr(btcoexist); (*(btcoexist->btc_disp_dbg_msg))((void *)btcoexist, 0); return; } } void ex_halbtc8723b2ant_ips_notify(struct btc_coexist *btcoexist , u8 type ) { long tmp ; long tmp___0 ; { if ((unsigned int )type == 1U) { tmp = ldv__builtin_expect((btc_dbg_type[0] & 4U) != 0U, 0L); if (tmp != 0L) { printk("[BTCoex], IPS ENTER notify\n"); } else { } coex_sta->under_ips = 1; btc8723b2ant_coex_alloff(btcoexist); } else if ((unsigned int )type == 0U) { tmp___0 = ldv__builtin_expect((btc_dbg_type[0] & 4U) != 0U, 0L); if (tmp___0 != 0L) { printk("[BTCoex], IPS LEAVE notify\n"); } else { } coex_sta->under_ips = 0; } else { } return; } } void ex_halbtc8723b2ant_lps_notify(struct btc_coexist *btcoexist , u8 type ) { long tmp ; long tmp___0 ; { if ((unsigned int )type == 1U) { tmp = ldv__builtin_expect((btc_dbg_type[0] & 4U) != 0U, 0L); if (tmp != 0L) { printk("[BTCoex], LPS ENABLE notify\n"); } else { } coex_sta->under_lps = 1; } else if ((unsigned int )type == 0U) { tmp___0 = ldv__builtin_expect((btc_dbg_type[0] & 4U) != 0U, 0L); if (tmp___0 != 0L) { printk("[BTCoex], LPS DISABLE notify\n"); } else { } coex_sta->under_lps = 0; } else { } return; } } void ex_halbtc8723b2ant_scan_notify(struct btc_coexist *btcoexist , u8 type ) { long tmp ; long tmp___0 ; { if ((unsigned int )type == 1U) { tmp = ldv__builtin_expect((btc_dbg_type[0] & 4U) != 0U, 0L); if (tmp != 0L) { printk("[BTCoex], SCAN START notify\n"); } else { } } else if ((unsigned int )type == 0U) { tmp___0 = ldv__builtin_expect((btc_dbg_type[0] & 4U) != 0U, 0L); if (tmp___0 != 0L) { printk("[BTCoex], SCAN FINISH notify\n"); } else { } } else { } return; } } void ex_halbtc8723b2ant_connect_notify(struct btc_coexist *btcoexist , u8 type ) { long tmp ; long tmp___0 ; { if ((unsigned int )type == 1U) { tmp = ldv__builtin_expect((btc_dbg_type[0] & 4U) != 0U, 0L); if (tmp != 0L) { printk("[BTCoex], CONNECT START notify\n"); } else { } } else if ((unsigned int )type == 0U) { tmp___0 = ldv__builtin_expect((btc_dbg_type[0] & 4U) != 0U, 0L); if (tmp___0 != 0L) { printk("[BTCoex], CONNECT FINISH notify\n"); } else { } } else { } return; } } void btc8723b_med_stat_notify(struct btc_coexist *btcoexist , u8 type ) { u8 h2c_parameter[3U] ; unsigned int tmp ; u32 wifi_bw ; u8 wifi_central_chnl ; long tmp___0 ; long tmp___1 ; long tmp___2 ; { h2c_parameter[0] = 0U; tmp = 1U; while (1) { if (tmp >= 3U) { break; } else { } h2c_parameter[tmp] = (unsigned char)0; tmp = tmp + 1U; } if ((unsigned int )type == 1U) { tmp___0 = ldv__builtin_expect((btc_dbg_type[0] & 4U) != 0U, 0L); if (tmp___0 != 0L) { printk("[BTCoex], MEDIA connect notify\n"); } else { } } else { tmp___1 = ldv__builtin_expect((btc_dbg_type[0] & 4U) != 0U, 0L); if (tmp___1 != 0L) { printk("[BTCoex], MEDIA disconnect notify\n"); } else { } } (*(btcoexist->btc_get))((void *)btcoexist, 24, (void *)(& wifi_central_chnl)); if ((unsigned int )type == 1U && (unsigned int )wifi_central_chnl <= 14U) { h2c_parameter[0] = 1U; h2c_parameter[1] = wifi_central_chnl; (*(btcoexist->btc_get))((void *)btcoexist, 19, (void *)(& wifi_bw)); if (wifi_bw == 2U) { h2c_parameter[2] = 48U; } else { h2c_parameter[2] = 32U; } } else { } coex_dm->wifi_chnl_info[0] = h2c_parameter[0]; coex_dm->wifi_chnl_info[1] = h2c_parameter[1]; coex_dm->wifi_chnl_info[2] = h2c_parameter[2]; tmp___2 = ldv__builtin_expect((btc_dbg_type[1] & 64U) != 0U, 0L); if (tmp___2 != 0L) { printk("[BTCoex], FW write 0x66=0x%x\n", (((int )h2c_parameter[0] << 16) | ((int )h2c_parameter[1] << 8)) | (int )h2c_parameter[2]); } else { } (*(btcoexist->btc_fill_h2c))((void *)btcoexist, 102, 3U, (u8 *)(& h2c_parameter)); return; } } void ex_halbtc8723b2ant_special_packet_notify(struct btc_coexist *btcoexist , u8 type ) { long tmp ; { if ((unsigned int )type == 1U) { tmp = ldv__builtin_expect((btc_dbg_type[0] & 4U) != 0U, 0L); if (tmp != 0L) { printk("[BTCoex], DHCP Packet notify\n"); } else { } } else { } return; } } void ex_halbtc8723b2ant_bt_info_notify(struct btc_coexist *btcoexist , u8 *tmpbuf , u8 length ) { u8 bt_info ; u8 i ; u8 rsp_source ; bool bt_busy ; bool limited_dig ; bool wifi_connected ; long tmp ; long tmp___0 ; long tmp___1 ; long tmp___2 ; long tmp___3 ; long tmp___4 ; long tmp___5 ; long tmp___6 ; long tmp___7 ; long tmp___8 ; long tmp___9 ; { bt_info = 0U; rsp_source = 0U; bt_busy = 0; limited_dig = 0; wifi_connected = 0; coex_sta->c2h_bt_info_req_sent = 0; rsp_source = (unsigned int )*tmpbuf & 15U; if ((unsigned int )rsp_source > 2U) { rsp_source = 0U; } else { } coex_sta->bt_info_c2h_cnt[(int )rsp_source] = coex_sta->bt_info_c2h_cnt[(int )rsp_source] + 1U; tmp = ldv__builtin_expect((btc_dbg_type[0] & 4U) != 0U, 0L); if (tmp != 0L) { printk("[BTCoex], Bt info[%d], length=%d, hex data=[", (int )rsp_source, (int )length); } else { } i = 0U; goto ldv_52130; ldv_52129: coex_sta->bt_info_c2h[(int )rsp_source][(int )i] = *(tmpbuf + (unsigned long )i); if ((unsigned int )i == 1U) { bt_info = *(tmpbuf + (unsigned long )i); } else { } if ((int )i == (int )length + -1) { tmp___0 = ldv__builtin_expect((btc_dbg_type[0] & 4U) != 0U, 0L); if (tmp___0 != 0L) { printk("0x%02x]\n", (int )*(tmpbuf + (unsigned long )i)); } else { } } else { tmp___1 = ldv__builtin_expect((btc_dbg_type[0] & 4U) != 0U, 0L); if (tmp___1 != 0L) { printk("0x%02x, ", (int )*(tmpbuf + (unsigned long )i)); } else { } } i = (u8 )((int )i + 1); ldv_52130: ; if ((int )i < (int )length) { goto ldv_52129; } else { } if ((int )btcoexist->manual_control) { tmp___2 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___2 != 0L) { printk("[BTCoex], BtInfoNotify(), return for Manual CTRL<===\n"); } else { } return; } else { } if ((unsigned int )rsp_source != 0U) { coex_sta->bt_retry_cnt = (unsigned int )coex_sta->bt_info_c2h[(int )rsp_source][2] & 15U; coex_sta->bt_rssi = (unsigned int )((u8 )((int )coex_sta->bt_info_c2h[(int )rsp_source][3] + 5)) * 2U; coex_sta->bt_info_ext = coex_sta->bt_info_c2h[(int )rsp_source][4]; if (((int )coex_sta->bt_info_ext & 2) != 0) { tmp___3 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___3 != 0L) { printk("[BTCoex], BT ext info bit1 check, send wifi BW&Chnl to BT!!\n"); } else { } (*(btcoexist->btc_get))((void *)btcoexist, 2, (void *)(& wifi_connected)); if ((int )wifi_connected) { btc8723b_med_stat_notify(btcoexist, 1); } else { btc8723b_med_stat_notify(btcoexist, 0); } } else { } if (((int )coex_sta->bt_info_ext & 8) != 0) { tmp___4 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___4 != 0L) { printk("[BTCoex], BT ext info bit3 check, set BT NOT to ignore Wlan active!!\n"); } else { } btc8723b2ant_ignore_wlan_act(btcoexist, 1, 0); } else { } } else { } if (((int )bt_info & 4) != 0) { coex_sta->c2h_bt_inquiry_page = 1; } else { coex_sta->c2h_bt_inquiry_page = 0; } if (((int )bt_info & 1) == 0) { coex_sta->bt_link_exist = 0; coex_sta->pan_exist = 0; coex_sta->a2dp_exist = 0; coex_sta->hid_exist = 0; coex_sta->sco_exist = 0; } else { coex_sta->bt_link_exist = 1; if ((int )((signed char )bt_info) < 0) { coex_sta->pan_exist = 1; } else { coex_sta->pan_exist = 0; } if (((int )bt_info & 64) != 0) { coex_sta->a2dp_exist = 1; } else { coex_sta->a2dp_exist = 0; } if (((int )bt_info & 32) != 0) { coex_sta->hid_exist = 1; } else { coex_sta->hid_exist = 0; } if (((int )bt_info & 2) != 0) { coex_sta->sco_exist = 1; } else { coex_sta->sco_exist = 0; } } btc8723b2ant_update_bt_link_info(btcoexist); if (((int )bt_info & 1) == 0) { coex_dm->bt_status = 0U; tmp___5 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___5 != 0L) { printk("[BTCoex], BtInfoNotify(), BT Non-Connected idle!!!\n"); } else { } } else if ((unsigned int )bt_info == 1U) { coex_dm->bt_status = 1U; tmp___6 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___6 != 0L) { printk("[BTCoex], BtInfoNotify(), BT Connected-idle!!!\n"); } else { } } else if (((int )bt_info & 2) != 0 || ((int )bt_info & 16) != 0) { coex_dm->bt_status = 4U; tmp___7 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___7 != 0L) { printk("[BTCoex], BtInfoNotify(), BT SCO busy!!!\n"); } else { } } else if (((int )bt_info & 8) != 0) { coex_dm->bt_status = 3U; tmp___8 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___8 != 0L) { printk("[BTCoex], BtInfoNotify(), BT ACL busy!!!\n"); } else { } } else { coex_dm->bt_status = 6U; tmp___9 = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp___9 != 0L) { printk("[BTCoex], BtInfoNotify(), BT Non-Defined state!!!\n"); } else { } } if (((unsigned int )coex_dm->bt_status == 3U || (unsigned int )coex_dm->bt_status == 4U) || (unsigned int )coex_dm->bt_status == 5U) { bt_busy = 1; limited_dig = 1; } else { bt_busy = 0; limited_dig = 0; } (*(btcoexist->btc_set))((void *)btcoexist, 1, (void *)(& bt_busy)); coex_dm->limited_dig = limited_dig; (*(btcoexist->btc_set))((void *)btcoexist, 2, (void *)(& limited_dig)); btc8723b2ant_run_coexist_mechanism(btcoexist); return; } } void ex_halbtc8723b2ant_stack_operation_notify(struct btc_coexist *btcoexist , u8 type ) { long tmp ; long tmp___0 ; { if ((unsigned int )type == 1U) { tmp = ldv__builtin_expect((btc_dbg_type[0] & 4U) != 0U, 0L); if (tmp != 0L) { printk("[BTCoex],StackOP Inquiry/page/pair start notify\n"); } else { } } else if ((unsigned int )type == 2U) { tmp___0 = ldv__builtin_expect((btc_dbg_type[0] & 4U) != 0U, 0L); if (tmp___0 != 0L) { printk("[BTCoex],StackOP Inquiry/page/pair finish notify\n"); } else { } } else { } return; } } void ex_halbtc8723b2ant_halt_notify(struct btc_coexist *btcoexist ) { long tmp ; { tmp = ldv__builtin_expect((btc_dbg_type[0] & 4U) != 0U, 0L); if (tmp != 0L) { printk("[BTCoex], Halt notify\n"); } else { } btc8723b2ant_ignore_wlan_act(btcoexist, 1, 1); btc8723b_med_stat_notify(btcoexist, 0); return; } } void ex_halbtc8723b2ant_periodical(struct btc_coexist *btcoexist ) { struct btc_board_info *board_info ; struct btc_stack_info *stack_info ; u8 dis_ver_info_cnt ; u32 fw_ver ; u32 bt_patch_ver ; long tmp ; long tmp___0 ; long tmp___1 ; long tmp___2 ; long tmp___3 ; long tmp___4 ; bool tmp___5 ; { board_info = & btcoexist->board_info; stack_info = & btcoexist->stack_info; fw_ver = 0U; bt_patch_ver = 0U; tmp = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp != 0L) { printk("[BTCoex], ==========================Periodical===========================\n"); } else { } if ((unsigned int )dis_ver_info_cnt <= 5U) { dis_ver_info_cnt = (unsigned int )dis_ver_info_cnt + 1U; tmp___0 = ldv__builtin_expect((long )((int )btc_dbg_type[0]) & 1L, 0L); if (tmp___0 != 0L) { printk("[BTCoex], ****************************************************************\n"); } else { } tmp___1 = ldv__builtin_expect((long )((int )btc_dbg_type[0]) & 1L, 0L); if (tmp___1 != 0L) { printk("[BTCoex], Ant PG Num/ Ant Mech/ Ant Pos = %d/ %d/ %d\n", (int )board_info->pg_ant_num, (int )board_info->btdm_ant_num, (int )board_info->btdm_ant_pos); } else { } tmp___2 = ldv__builtin_expect((long )((int )btc_dbg_type[0]) & 1L, 0L); if (tmp___2 != 0L) { printk("[BTCoex], BT stack/ hci ext ver = %s / %d\n", (int )stack_info->profile_notified ? (char *)"Yes" : (char *)"No", (int )stack_info->hci_version); } else { } (*(btcoexist->btc_get))((void *)btcoexist, 22, (void *)(& bt_patch_ver)); (*(btcoexist->btc_get))((void *)btcoexist, 21, (void *)(& fw_ver)); tmp___3 = ldv__builtin_expect((long )((int )btc_dbg_type[0]) & 1L, 0L); if (tmp___3 != 0L) { printk("[BTCoex], CoexVer/ FwVer/ PatchVer = %d_%x/ 0x%x/ 0x%x(%d)\n", glcoex_ver_date_8723b_2ant, glcoex_ver_8723b_2ant, fw_ver, bt_patch_ver, bt_patch_ver); } else { } tmp___4 = ldv__builtin_expect((long )((int )btc_dbg_type[0]) & 1L, 0L); if (tmp___4 != 0L) { printk("[BTCoex], ****************************************************************\n"); } else { } } else { } tmp___5 = btc8723b2ant_is_wifi_status_changed(btcoexist); if ((int )tmp___5 || (int )coex_dm->auto_tdma_adjust) { btc8723b2ant_run_coexist_mechanism(btcoexist); } else { } return; } } void ldv_consume_skb_5(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_6(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_7(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_8(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_11(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_17(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_18(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_19(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_22(struct sk_buff *ldv_func_arg1 ) ; void ldv_consume_skb_16(struct sk_buff *ldv_func_arg1 ) ; __inline static u8 rtl_read_byte(struct rtl_priv *rtlpriv , u32 addr ) { u8 tmp ; { tmp = (*(rtlpriv->io.read8_sync))(rtlpriv, addr); return (tmp); } } __inline static u16 rtl_read_word(struct rtl_priv *rtlpriv , u32 addr ) { u16 tmp ; { tmp = (*(rtlpriv->io.read16_sync))(rtlpriv, addr); return (tmp); } } __inline static u32 rtl_read_dword(struct rtl_priv *rtlpriv , u32 addr ) { u32 tmp ; { tmp = (*(rtlpriv->io.read32_sync))(rtlpriv, addr); return (tmp); } } __inline static void rtl_write_byte(struct rtl_priv *rtlpriv , u32 addr , u8 val8 ) { { (*(rtlpriv->io.write8_async))(rtlpriv, addr, (int )val8); if ((int )(rtlpriv->cfg)->write_readback) { (*(rtlpriv->io.read8_sync))(rtlpriv, addr); } else { } return; } } __inline static void rtl_write_word(struct rtl_priv *rtlpriv , u32 addr , u16 val16 ) { { (*(rtlpriv->io.write16_async))(rtlpriv, addr, (int )val16); if ((int )(rtlpriv->cfg)->write_readback) { (*(rtlpriv->io.read16_sync))(rtlpriv, addr); } else { } return; } } __inline static void rtl_write_dword(struct rtl_priv *rtlpriv , u32 addr , u32 val32 ) { { (*(rtlpriv->io.write32_async))(rtlpriv, addr, val32); if ((int )(rtlpriv->cfg)->write_readback) { (*(rtlpriv->io.read32_sync))(rtlpriv, addr); } else { } return; } } __inline static u32 rtl_get_bbreg(struct ieee80211_hw *hw , u32 regaddr , u32 bitmask ) { struct rtl_priv *rtlpriv ; u32 tmp ; { rtlpriv = (struct rtl_priv *)hw->priv; tmp = (*(((rtlpriv->cfg)->ops)->get_bbreg))(hw, regaddr, bitmask); return (tmp); } } __inline static void rtl_set_bbreg(struct ieee80211_hw *hw , u32 regaddr , u32 bitmask , u32 data ) { struct rtl_priv *rtlpriv ; { rtlpriv = (struct rtl_priv *)hw->priv; (*(((rtlpriv->cfg)->ops)->set_bbreg))(hw, regaddr, bitmask, data); return; } } __inline static u32 rtl_get_rfreg(struct ieee80211_hw *hw , enum radio_path rfpath , u32 regaddr , u32 bitmask ) { struct rtl_priv *rtlpriv ; u32 tmp ; { rtlpriv = (struct rtl_priv *)hw->priv; tmp = (*(((rtlpriv->cfg)->ops)->get_rfreg))(hw, rfpath, regaddr, bitmask); return (tmp); } } __inline static void rtl_set_rfreg(struct ieee80211_hw *hw , enum radio_path rfpath , u32 regaddr , u32 bitmask , u32 data ) { struct rtl_priv *rtlpriv ; { rtlpriv = (struct rtl_priv *)hw->priv; (*(((rtlpriv->cfg)->ops)->set_rfreg))(hw, rfpath, regaddr, bitmask, data); return; } } u32 btc_dbg_type[2U] ; bool halbtc_is_wifi_uplink(struct rtl_priv *adapter ) ; struct btc_coexist gl_bt_coexist ; bool exhalbtc_initlize_variables(struct rtl_priv *adapter ) ; void exhalbtc_init_hw_config(struct btc_coexist *btcoexist ) ; void exhalbtc_init_coex_dm(struct btc_coexist *btcoexist ) ; void exhalbtc_ips_notify(struct btc_coexist *btcoexist , u8 type ) ; void exhalbtc_lps_notify(struct btc_coexist *btcoexist , u8 type ) ; void exhalbtc_scan_notify(struct btc_coexist *btcoexist , u8 type ) ; void exhalbtc_connect_notify(struct btc_coexist *btcoexist , u8 action ) ; void exhalbtc_mediastatus_notify(struct btc_coexist *btcoexist , enum _RT_MEDIA_STATUS media_status ) ; void exhalbtc_special_packet_notify(struct btc_coexist *btcoexist , u8 pkt_type ) ; void exhalbtc_bt_info_notify(struct btc_coexist *btcoexist , u8 *tmp_buf , u8 length ) ; void exhalbtc_stack_operation_notify(struct btc_coexist *btcoexist , u8 type ) ; void exhalbtc_halt_notify(struct btc_coexist *btcoexist ) ; void exhalbtc_pnp_notify(struct btc_coexist *btcoexist , u8 pnp_state ) ; void exhalbtc_periodical(struct btc_coexist *btcoexist ) ; void exhalbtc_dbg_control(struct btc_coexist *btcoexist , u8 code , u8 len , u8 *data ) ; void exhalbtc_stack_update_profile_info(void) ; void exhalbtc_set_hci_version(u16 hci_version ) ; void exhalbtc_set_bt_patch_version(u16 bt_hci_version , u16 bt_patch_version ) ; void exhalbtc_update_min_bt_rssi(char bt_rssi ) ; void exhalbtc_set_bt_exist(bool bt_exist ) ; void exhalbtc_set_chip_type(u8 chip_type ) ; void exhalbtc_set_ant_num(u8 type , u8 ant_num ) ; void exhalbtc_display_bt_coex_info(struct btc_coexist *btcoexist ) ; static u8 btc_dbg_buf[100U] ; static bool halbtc_is_bt_coexist_available(struct btc_coexist *btcoexist ) { { if (! btcoexist->binded || (unsigned long )btcoexist->adapter == (unsigned long )((void *)0)) { return (0); } else { } return (1); } } static bool halbtc_is_wifi_busy(struct rtl_priv *rtlpriv ) { { if ((int )rtlpriv->link_info.busytraffic) { return (1); } else { return (0); } } } static void halbtc_dbg_init(void) { u8 i ; { i = 0U; goto ldv_51674; ldv_51673: btc_dbg_type[(int )i] = 0U; i = (u8 )((int )i + 1); ldv_51674: ; if ((unsigned int )i <= 1U) { goto ldv_51673; } else { } btc_dbg_type[0] = 0U; btc_dbg_type[1] = 0U; return; } } static bool halbtc_is_bt40(struct rtl_priv *adapter ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; bool is_ht40 ; enum ht_channel_width bw ; { rtlpriv = adapter; rtlphy = & rtlpriv->phy; is_ht40 = 1; bw = (enum ht_channel_width )rtlphy->current_chan_bw; if ((unsigned int )bw == 0U) { is_ht40 = 0; } else if ((unsigned int )bw == 1U) { is_ht40 = 1; } else { } return (is_ht40); } } static bool halbtc_legacy(struct rtl_priv *adapter ) { struct rtl_priv *rtlpriv ; struct rtl_mac *mac ; bool is_legacy ; { rtlpriv = adapter; mac = & rtlpriv->mac80211; is_legacy = 0; if ((unsigned int )mac->mode == 2U || (unsigned int )mac->mode == 2U) { is_legacy = 1; } else { } return (is_legacy); } } bool halbtc_is_wifi_uplink(struct rtl_priv *adapter ) { struct rtl_priv *rtlpriv ; { rtlpriv = adapter; if ((int )rtlpriv->link_info.tx_busy_traffic) { return (1); } else { return (0); } } } static u32 halbtc_get_wifi_bw(struct btc_coexist *btcoexist ) { struct rtl_priv *rtlpriv ; u32 wifi_bw ; bool tmp ; bool tmp___0 ; { rtlpriv = (struct rtl_priv *)btcoexist->adapter; wifi_bw = 1U; tmp___0 = halbtc_is_bt40(rtlpriv); if ((int )tmp___0) { wifi_bw = 2U; } else { tmp = halbtc_legacy(rtlpriv); if ((int )tmp) { wifi_bw = 0U; } else { wifi_bw = 1U; } } return (wifi_bw); } } static u8 halbtc_get_wifi_central_chnl(struct btc_coexist *btcoexist ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; u8 chnl ; long tmp ; { rtlpriv = (struct rtl_priv *)btcoexist->adapter; rtlphy = & rtlpriv->phy; chnl = 1U; if ((unsigned int )rtlphy->current_channel != 0U) { chnl = rtlphy->current_channel; } else { } tmp = ldv__builtin_expect((btc_dbg_type[1] & 8U) != 0U, 0L); if (tmp != 0L) { printk("static halbtc_get_wifi_central_chnl:%d\n", (int )chnl); } else { } return (chnl); } } static void halbtc_leave_lps(struct btc_coexist *btcoexist ) { struct rtl_priv *rtlpriv ; struct rtl_ps_ctl *ppsc ; bool ap_enable ; { ap_enable = 0; rtlpriv = (struct rtl_priv *)btcoexist->adapter; ppsc = & rtlpriv->psc; (*(btcoexist->btc_get))((void *)btcoexist, 13, (void *)(& ap_enable)); if ((int )ap_enable) { printk("\016btcoexist: halbtc_leave_lps()<--dont leave lps under AP mode\n"); return; } else { } btcoexist->bt_info.bt_ctrl_lps = 1; btcoexist->bt_info.bt_lps_on = 0; return; } } static void halbtc_enter_lps(struct btc_coexist *btcoexist ) { struct rtl_priv *rtlpriv ; struct rtl_ps_ctl *ppsc ; bool ap_enable ; { ap_enable = 0; rtlpriv = (struct rtl_priv *)btcoexist->adapter; ppsc = & rtlpriv->psc; (*(btcoexist->btc_get))((void *)btcoexist, 13, (void *)(& ap_enable)); if ((int )ap_enable) { printk("\016btcoexist: halbtc_enter_lps()<--dont enter lps under AP mode\n"); return; } else { } btcoexist->bt_info.bt_ctrl_lps = 1; btcoexist->bt_info.bt_lps_on = 0; return; } } static void halbtc_normal_lps(struct btc_coexist *btcoexist ) { { if ((int )btcoexist->bt_info.bt_ctrl_lps) { btcoexist->bt_info.bt_lps_on = 0; btcoexist->bt_info.bt_ctrl_lps = 0; } else { } return; } } static void halbtc_leave_low_power(void) { { return; } } static void halbtc_nomal_low_power(void) { { return; } } static void halbtc_disable_low_power(void) { { return; } } static void halbtc_aggregation_check(void) { { return; } } static u32 halbtc_get_bt_patch_version(struct btc_coexist *btcoexist ) { { return (0U); } } static s32 halbtc_get_wifi_rssi(struct rtl_priv *adapter ) { struct rtl_priv *rtlpriv ; s32 undec_sm_pwdb ; { rtlpriv = adapter; undec_sm_pwdb = 0; if ((unsigned int )rtlpriv->mac80211.link_state > 1U) { undec_sm_pwdb = (s32 )rtlpriv->dm.undec_sm_pwdb; } else { undec_sm_pwdb = (s32 )rtlpriv->dm.undec_sm_pwdb; } return (undec_sm_pwdb); } } static bool halbtc_get(void *void_btcoexist , u8 get_type , void *out_buf ) { struct btc_coexist *btcoexist ; struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct rtl_mac *mac ; struct rtl_hal *rtlhal ; bool *bool_tmp ; int *s32_tmp ; u32 *u32_tmp ; u8 *u8_tmp ; bool tmp ; bool tmp___0 ; int tmp___1 ; bool tmp___2 ; bool tmp___3 ; { btcoexist = (struct btc_coexist *)void_btcoexist; rtlpriv = (struct rtl_priv *)btcoexist->adapter; rtlphy = & rtlpriv->phy; mac = & rtlpriv->mac80211; rtlhal = & rtlpriv->rtlhal; bool_tmp = (bool *)out_buf; s32_tmp = (int *)out_buf; u32_tmp = (u32 *)out_buf; u8_tmp = (u8 *)out_buf; tmp = 0; tmp___0 = halbtc_is_bt_coexist_available(btcoexist); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (0); } else { } switch ((int )get_type) { case 0: *bool_tmp = 0; goto ldv_51755; case 1: *bool_tmp = 0; goto ldv_51755; case 2: ; if ((unsigned int )rtlpriv->mac80211.link_state > 1U) { tmp = 1; } else { } *bool_tmp = tmp; goto ldv_51755; case 3: tmp___2 = halbtc_is_wifi_busy(rtlpriv); if ((int )tmp___2) { *bool_tmp = 1; } else { *bool_tmp = 0; } goto ldv_51755; case 4: ; if ((int )mac->act_scanning) { *bool_tmp = 1; } else { *bool_tmp = 0; } goto ldv_51755; case 5: ; if ((unsigned int )mac->link_state == 1U) { *bool_tmp = 1; } else { *bool_tmp = 0; } goto ldv_51755; case 10: ; if ((unsigned int )mac->link_state == 1U) { *bool_tmp = 1; } else { *bool_tmp = 0; } goto ldv_51755; case 11: *bool_tmp = 0; goto ldv_51755; case 12: *bool_tmp = 0; case 6: ; goto ldv_51755; case 7: *bool_tmp = 1; goto ldv_51755; case 8: *bool_tmp = 0; goto ldv_51755; case 9: *bool_tmp = 0; goto ldv_51755; case 13: *bool_tmp = 0; goto ldv_51755; case 14: ; if ((unsigned int )rtlpriv->sec.pairwise_enc_algorithm == 0U) { *bool_tmp = 0; } else { *bool_tmp = 1; } goto ldv_51755; case 15: *bool_tmp = 0; goto ldv_51755; case 16: *bool_tmp = 0; goto ldv_51755; case 17: *s32_tmp = halbtc_get_wifi_rssi(rtlpriv); goto ldv_51755; case 18: *s32_tmp = halbtc_get_wifi_rssi(rtlpriv); goto ldv_51755; case 19: *u32_tmp = halbtc_get_wifi_bw(btcoexist); goto ldv_51755; case 20: tmp___3 = halbtc_is_wifi_uplink(rtlpriv); if ((int )tmp___3) { *u32_tmp = 0U; } else { *u32_tmp = 1U; } goto ldv_51755; case 21: *u32_tmp = (u32 )rtlhal->fw_version; goto ldv_51755; case 22: *u32_tmp = halbtc_get_bt_patch_version(btcoexist); goto ldv_51755; case 23: *u8_tmp = rtlphy->current_channel; goto ldv_51755; case 24: *u8_tmp = halbtc_get_wifi_central_chnl(btcoexist); goto ldv_51755; case 25: *u8_tmp = 1U; goto ldv_51755; case 26: *u8_tmp = 255U; goto ldv_51755; case 27: *u8_tmp = btcoexist->pwr_mode_val[0]; goto ldv_51755; default: ; goto ldv_51755; } ldv_51755: ; return (1); } } static bool halbtc_set(void *void_btcoexist , u8 set_type , void *in_buf ) { struct btc_coexist *btcoexist ; bool *bool_tmp ; u8 *u8_tmp ; u32 *u32_tmp ; bool tmp ; int tmp___0 ; { btcoexist = (struct btc_coexist *)void_btcoexist; bool_tmp = (bool *)in_buf; u8_tmp = (u8 *)in_buf; u32_tmp = (u32 *)in_buf; tmp = halbtc_is_bt_coexist_available(btcoexist); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (0); } else { } switch ((int )set_type) { case 0: btcoexist->bt_info.bt_disabled = *bool_tmp; goto ldv_51794; case 1: btcoexist->bt_info.bt_busy = *bool_tmp; goto ldv_51794; case 2: btcoexist->bt_info.limited_dig = *bool_tmp; goto ldv_51794; case 3: btcoexist->bt_info.force_to_roam = *bool_tmp; goto ldv_51794; case 4: btcoexist->bt_info.reject_agg_pkt = *bool_tmp; goto ldv_51794; case 5: btcoexist->bt_info.b_bt_ctrl_buf_size = *bool_tmp; goto ldv_51794; case 6: btcoexist->bt_info.increase_scan_dev_num = *bool_tmp; goto ldv_51794; case 7: btcoexist->bt_info.rssi_adjust_for_agc_table_on = *u8_tmp; goto ldv_51794; case 10: btcoexist->bt_info.agg_buf_size = *u8_tmp; goto ldv_51794; case 11: ; goto ldv_51794; case 12: halbtc_aggregation_check(); goto ldv_51794; case 8: btcoexist->bt_info.rssi_adjust_for_1ant_coex_type = *u8_tmp; goto ldv_51794; case 9: ; goto ldv_51794; case 14: btcoexist->bt_info.lps_1ant = *u8_tmp; goto ldv_51794; case 15: btcoexist->bt_info.rpwm_1ant = *u8_tmp; goto ldv_51794; case 16: halbtc_leave_lps(btcoexist); goto ldv_51794; case 17: halbtc_enter_lps(btcoexist); goto ldv_51794; case 18: halbtc_normal_lps(btcoexist); goto ldv_51794; case 20: halbtc_disable_low_power(); goto ldv_51794; case 21: btcoexist->bt_info.ra_mask = *u32_tmp; goto ldv_51794; case 22: ; goto ldv_51794; case 19: btcoexist->bt_info.force_exec_pwr_cmd_cnt = (u8 )((int )btcoexist->bt_info.force_exec_pwr_cmd_cnt + 1); goto ldv_51794; case 23: ; goto ldv_51794; case 24: ; goto ldv_51794; default: ; goto ldv_51794; } ldv_51794: ; return (1); } } static void halbtc_display_coex_statistics(struct btc_coexist *btcoexist ) { { return; } } static void halbtc_display_bt_link_info(struct btc_coexist *btcoexist ) { { return; } } static void halbtc_display_bt_fw_info(struct btc_coexist *btcoexist ) { { return; } } static void halbtc_display_fw_pwr_mode_cmd(struct btc_coexist *btcoexist ) { { return; } } static u8 halbtc_read_1byte(void *bt_context , u32 reg_addr ) { struct btc_coexist *btcoexist ; struct rtl_priv *rtlpriv ; u8 tmp ; { btcoexist = (struct btc_coexist *)bt_context; rtlpriv = (struct rtl_priv *)btcoexist->adapter; tmp = rtl_read_byte(rtlpriv, reg_addr); return (tmp); } } static u16 halbtc_read_2byte(void *bt_context , u32 reg_addr ) { struct btc_coexist *btcoexist ; struct rtl_priv *rtlpriv ; u16 tmp ; { btcoexist = (struct btc_coexist *)bt_context; rtlpriv = (struct rtl_priv *)btcoexist->adapter; tmp = rtl_read_word(rtlpriv, reg_addr); return (tmp); } } static u32 halbtc_read_4byte(void *bt_context , u32 reg_addr ) { struct btc_coexist *btcoexist ; struct rtl_priv *rtlpriv ; u32 tmp ; { btcoexist = (struct btc_coexist *)bt_context; rtlpriv = (struct rtl_priv *)btcoexist->adapter; tmp = rtl_read_dword(rtlpriv, reg_addr); return (tmp); } } static void halbtc_write_1byte(void *bt_context , u32 reg_addr , u8 data ) { struct btc_coexist *btcoexist ; struct rtl_priv *rtlpriv ; { btcoexist = (struct btc_coexist *)bt_context; rtlpriv = (struct rtl_priv *)btcoexist->adapter; rtl_write_byte(rtlpriv, reg_addr, (int )data); return; } } static void halbtc_bitmask_write_1byte(void *bt_context , u32 reg_addr , u32 bit_mask , u8 data ) { struct btc_coexist *btcoexist ; struct rtl_priv *rtlpriv ; u8 original_value ; u8 bit_shift ; u8 i ; { btcoexist = (struct btc_coexist *)bt_context; rtlpriv = (struct rtl_priv *)btcoexist->adapter; bit_shift = 0U; if (bit_mask != 4294967295U) { original_value = rtl_read_byte(rtlpriv, reg_addr); i = 0U; goto ldv_51869; ldv_51868: ; if ((int )(bit_mask >> (int )i) & 1) { goto ldv_51867; } else { } i = (u8 )((int )i + 1); ldv_51869: ; if ((unsigned int )i <= 7U) { goto ldv_51868; } else { } ldv_51867: bit_shift = i; data = (~ ((int )((u8 )bit_mask)) & (int )original_value) | ((int )((u8 )((int )data << (int )bit_shift)) & (int )((u8 )bit_mask)); } else { } rtl_write_byte(rtlpriv, reg_addr, (int )data); return; } } static void halbtc_write_2byte(void *bt_context , u32 reg_addr , u16 data ) { struct btc_coexist *btcoexist ; struct rtl_priv *rtlpriv ; { btcoexist = (struct btc_coexist *)bt_context; rtlpriv = (struct rtl_priv *)btcoexist->adapter; rtl_write_word(rtlpriv, reg_addr, (int )data); return; } } static void halbtc_write_4byte(void *bt_context , u32 reg_addr , u32 data ) { struct btc_coexist *btcoexist ; struct rtl_priv *rtlpriv ; { btcoexist = (struct btc_coexist *)bt_context; rtlpriv = (struct rtl_priv *)btcoexist->adapter; rtl_write_dword(rtlpriv, reg_addr, data); return; } } static void halbtc_set_bbreg(void *bt_context , u32 reg_addr , u32 bit_mask , u32 data ) { struct btc_coexist *btcoexist ; struct rtl_priv *rtlpriv ; { btcoexist = (struct btc_coexist *)bt_context; rtlpriv = (struct rtl_priv *)btcoexist->adapter; rtl_set_bbreg(rtlpriv->mac80211.hw, reg_addr, bit_mask, data); return; } } static u32 halbtc_get_bbreg(void *bt_context , u32 reg_addr , u32 bit_mask ) { struct btc_coexist *btcoexist ; struct rtl_priv *rtlpriv ; u32 tmp ; { btcoexist = (struct btc_coexist *)bt_context; rtlpriv = (struct rtl_priv *)btcoexist->adapter; tmp = rtl_get_bbreg(rtlpriv->mac80211.hw, reg_addr, bit_mask); return (tmp); } } static void halbtc_set_rfreg(void *bt_context , u8 rf_path , u32 reg_addr , u32 bit_mask , u32 data ) { struct btc_coexist *btcoexist ; struct rtl_priv *rtlpriv ; { btcoexist = (struct btc_coexist *)bt_context; rtlpriv = (struct rtl_priv *)btcoexist->adapter; rtl_set_rfreg(rtlpriv->mac80211.hw, (enum radio_path )rf_path, reg_addr, bit_mask, data); return; } } static u32 halbtc_get_rfreg(void *bt_context , u8 rf_path , u32 reg_addr , u32 bit_mask ) { struct btc_coexist *btcoexist ; struct rtl_priv *rtlpriv ; u32 tmp ; { btcoexist = (struct btc_coexist *)bt_context; rtlpriv = (struct rtl_priv *)btcoexist->adapter; tmp = rtl_get_rfreg(rtlpriv->mac80211.hw, (enum radio_path )rf_path, reg_addr, bit_mask); return (tmp); } } static void halbtc_fill_h2c_cmd(void *bt_context , u8 element_id , u32 cmd_len , u8 *cmd_buf ) { struct btc_coexist *btcoexist ; struct rtl_priv *rtlpriv ; { btcoexist = (struct btc_coexist *)bt_context; rtlpriv = (struct rtl_priv *)btcoexist->adapter; (*(((rtlpriv->cfg)->ops)->fill_h2c_cmd))(rtlpriv->mac80211.hw, (int )element_id, cmd_len, cmd_buf); return; } } static void halbtc_display_dbg_msg(void *bt_context , u8 disp_type ) { struct btc_coexist *btcoexist ; { btcoexist = (struct btc_coexist *)bt_context; switch ((int )disp_type) { case 0: halbtc_display_coex_statistics(btcoexist); goto ldv_51930; case 1: halbtc_display_bt_link_info(btcoexist); goto ldv_51930; case 2: halbtc_display_bt_fw_info(btcoexist); goto ldv_51930; case 3: halbtc_display_fw_pwr_mode_cmd(btcoexist); goto ldv_51930; default: ; goto ldv_51930; } ldv_51930: ; return; } } bool exhalbtc_initlize_variables(struct rtl_priv *adapter ) { struct btc_coexist *btcoexist ; { btcoexist = & gl_bt_coexist; btcoexist->statistics.cnt_bind = btcoexist->statistics.cnt_bind + 1U; halbtc_dbg_init(); if ((int )btcoexist->binded) { return (0); } else { btcoexist->binded = 1; } btcoexist->chip_interface = 0; if ((unsigned long )btcoexist->adapter == (unsigned long )((void *)0)) { btcoexist->adapter = (void *)adapter; } else { } btcoexist->stack_info.profile_notified = 0; btcoexist->btc_read_1byte = & halbtc_read_1byte; btcoexist->btc_write_1byte = & halbtc_write_1byte; btcoexist->btc_write_1byte_bitmask = & halbtc_bitmask_write_1byte; btcoexist->btc_read_2byte = & halbtc_read_2byte; btcoexist->btc_write_2byte = & halbtc_write_2byte; btcoexist->btc_read_4byte = & halbtc_read_4byte; btcoexist->btc_write_4byte = & halbtc_write_4byte; btcoexist->btc_set_bb_reg = & halbtc_set_bbreg; btcoexist->btc_get_bb_reg = & halbtc_get_bbreg; btcoexist->btc_set_rf_reg = & halbtc_set_rfreg; btcoexist->btc_get_rf_reg = & halbtc_get_rfreg; btcoexist->btc_fill_h2c = & halbtc_fill_h2c_cmd; btcoexist->btc_disp_dbg_msg = & halbtc_display_dbg_msg; btcoexist->btc_get = & halbtc_get; btcoexist->btc_set = & halbtc_set; btcoexist->cli_buf = (u8 *)(& btc_dbg_buf); btcoexist->bt_info.b_bt_ctrl_buf_size = 0; btcoexist->bt_info.agg_buf_size = 5U; btcoexist->bt_info.increase_scan_dev_num = 0; return (1); } } void exhalbtc_init_hw_config(struct btc_coexist *btcoexist ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; bool tmp ; int tmp___0 ; { rtlpriv = (struct rtl_priv *)btcoexist->adapter; rtlhal = & rtlpriv->rtlhal; tmp = halbtc_is_bt_coexist_available(btcoexist); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return; } else { } btcoexist->statistics.cnt_init_hw_config = btcoexist->statistics.cnt_init_hw_config + 1U; if ((unsigned int )rtlhal->hw_type == 10U) { ex_halbtc8723b2ant_init_hwconfig(btcoexist); } else { } return; } } void exhalbtc_init_coex_dm(struct btc_coexist *btcoexist ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; bool tmp ; int tmp___0 ; { rtlpriv = (struct rtl_priv *)btcoexist->adapter; rtlhal = & rtlpriv->rtlhal; tmp = halbtc_is_bt_coexist_available(btcoexist); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return; } else { } btcoexist->statistics.cnt_init_coex_dm = btcoexist->statistics.cnt_init_coex_dm + 1U; if ((unsigned int )rtlhal->hw_type == 10U) { ex_halbtc8723b2ant_init_coex_dm(btcoexist); } else { } btcoexist->initilized = 1; return; } } void exhalbtc_ips_notify(struct btc_coexist *btcoexist , u8 type ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; u8 ips_type ; bool tmp ; int tmp___0 ; { rtlpriv = (struct rtl_priv *)btcoexist->adapter; rtlhal = & rtlpriv->rtlhal; tmp = halbtc_is_bt_coexist_available(btcoexist); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return; } else { } btcoexist->statistics.cnt_ips_notify = btcoexist->statistics.cnt_ips_notify + 1U; if ((int )btcoexist->manual_control) { return; } else { } if ((unsigned int )type == 2U) { ips_type = 1U; } else { ips_type = 0U; } halbtc_leave_low_power(); if ((unsigned int )rtlhal->hw_type == 10U) { ex_halbtc8723b2ant_ips_notify(btcoexist, (int )ips_type); } else { } halbtc_nomal_low_power(); return; } } void exhalbtc_lps_notify(struct btc_coexist *btcoexist , u8 type ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; u8 lps_type ; bool tmp ; int tmp___0 ; { rtlpriv = (struct rtl_priv *)btcoexist->adapter; rtlhal = & rtlpriv->rtlhal; tmp = halbtc_is_bt_coexist_available(btcoexist); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return; } else { } btcoexist->statistics.cnt_lps_notify = btcoexist->statistics.cnt_lps_notify + 1U; if ((int )btcoexist->manual_control) { return; } else { } if ((unsigned int )type == 0U) { lps_type = 0U; } else { lps_type = 1U; } if ((unsigned int )rtlhal->hw_type == 10U) { ex_halbtc8723b2ant_lps_notify(btcoexist, (int )lps_type); } else { } return; } } void exhalbtc_scan_notify(struct btc_coexist *btcoexist , u8 type ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; u8 scan_type ; bool tmp ; int tmp___0 ; { rtlpriv = (struct rtl_priv *)btcoexist->adapter; rtlhal = & rtlpriv->rtlhal; tmp = halbtc_is_bt_coexist_available(btcoexist); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return; } else { } btcoexist->statistics.cnt_scan_notify = btcoexist->statistics.cnt_scan_notify + 1U; if ((int )btcoexist->manual_control) { return; } else { } if ((unsigned int )type != 0U) { scan_type = 1U; } else { scan_type = 0U; } halbtc_leave_low_power(); if ((unsigned int )rtlhal->hw_type == 10U) { ex_halbtc8723b2ant_scan_notify(btcoexist, (int )scan_type); } else { } halbtc_nomal_low_power(); return; } } void exhalbtc_connect_notify(struct btc_coexist *btcoexist , u8 action ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; u8 asso_type ; bool tmp ; int tmp___0 ; { rtlpriv = (struct rtl_priv *)btcoexist->adapter; rtlhal = & rtlpriv->rtlhal; tmp = halbtc_is_bt_coexist_available(btcoexist); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return; } else { } btcoexist->statistics.cnt_connect_notify = btcoexist->statistics.cnt_connect_notify + 1U; if ((int )btcoexist->manual_control) { return; } else { } if ((unsigned int )action != 0U) { asso_type = 1U; } else { asso_type = 0U; } halbtc_leave_low_power(); if ((unsigned int )rtlhal->hw_type == 10U) { ex_halbtc8723b2ant_connect_notify(btcoexist, (int )asso_type); } else { } return; } } void exhalbtc_mediastatus_notify(struct btc_coexist *btcoexist , enum _RT_MEDIA_STATUS media_status ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; u8 status ; bool tmp ; int tmp___0 ; { rtlpriv = (struct rtl_priv *)btcoexist->adapter; rtlhal = & rtlpriv->rtlhal; tmp = halbtc_is_bt_coexist_available(btcoexist); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return; } else { } btcoexist->statistics.cnt_media_status_notify = btcoexist->statistics.cnt_media_status_notify + 1U; if ((int )btcoexist->manual_control) { return; } else { } if ((unsigned int )media_status == 1U) { status = 1U; } else { status = 0U; } halbtc_leave_low_power(); if ((unsigned int )rtlhal->hw_type == 10U) { btc8723b_med_stat_notify(btcoexist, (int )status); } else { } halbtc_nomal_low_power(); return; } } void exhalbtc_special_packet_notify(struct btc_coexist *btcoexist , u8 pkt_type ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; u8 packet_type ; bool tmp ; int tmp___0 ; { rtlpriv = (struct rtl_priv *)btcoexist->adapter; rtlhal = & rtlpriv->rtlhal; tmp = halbtc_is_bt_coexist_available(btcoexist); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return; } else { } btcoexist->statistics.cnt_special_packet_notify = btcoexist->statistics.cnt_special_packet_notify + 1U; if ((int )btcoexist->manual_control) { return; } else { } packet_type = 1U; halbtc_leave_low_power(); if ((unsigned int )rtlhal->hw_type == 10U) { ex_halbtc8723b2ant_special_packet_notify(btcoexist, (int )packet_type); } else { } halbtc_nomal_low_power(); return; } } void exhalbtc_bt_info_notify(struct btc_coexist *btcoexist , u8 *tmp_buf , u8 length ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; bool tmp ; int tmp___0 ; { rtlpriv = (struct rtl_priv *)btcoexist->adapter; rtlhal = & rtlpriv->rtlhal; tmp = halbtc_is_bt_coexist_available(btcoexist); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return; } else { } btcoexist->statistics.cnt_bt_info_notify = btcoexist->statistics.cnt_bt_info_notify + 1U; if ((unsigned int )rtlhal->hw_type == 10U) { ex_halbtc8723b2ant_bt_info_notify(btcoexist, tmp_buf, (int )length); } else { } return; } } void exhalbtc_stack_operation_notify(struct btc_coexist *btcoexist , u8 type ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; u8 stack_op_type ; bool tmp ; int tmp___0 ; { rtlpriv = (struct rtl_priv *)btcoexist->adapter; rtlhal = & rtlpriv->rtlhal; tmp = halbtc_is_bt_coexist_available(btcoexist); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return; } else { } btcoexist->statistics.cnt_stack_operation_notify = btcoexist->statistics.cnt_stack_operation_notify + 1U; if ((int )btcoexist->manual_control) { return; } else { } stack_op_type = 0U; halbtc_leave_low_power(); if ((unsigned int )rtlhal->hw_type == 10U) { ex_halbtc8723b2ant_stack_operation_notify(btcoexist, (int )stack_op_type); } else { } halbtc_nomal_low_power(); return; } } void exhalbtc_halt_notify(struct btc_coexist *btcoexist ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; bool tmp ; int tmp___0 ; { rtlpriv = (struct rtl_priv *)btcoexist->adapter; rtlhal = & rtlpriv->rtlhal; tmp = halbtc_is_bt_coexist_available(btcoexist); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return; } else { } if ((unsigned int )rtlhal->hw_type == 10U) { ex_halbtc8723b2ant_halt_notify(btcoexist); } else { } return; } } void exhalbtc_pnp_notify(struct btc_coexist *btcoexist , u8 pnp_state ) { bool tmp ; int tmp___0 ; { tmp = halbtc_is_bt_coexist_available(btcoexist); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return; } else { } return; } } void exhalbtc_periodical(struct btc_coexist *btcoexist ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; bool tmp ; int tmp___0 ; { rtlpriv = (struct rtl_priv *)btcoexist->adapter; rtlhal = & rtlpriv->rtlhal; tmp = halbtc_is_bt_coexist_available(btcoexist); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return; } else { } btcoexist->statistics.cnt_periodical = btcoexist->statistics.cnt_periodical + 1U; halbtc_leave_low_power(); if ((unsigned int )rtlhal->hw_type == 10U) { ex_halbtc8723b2ant_periodical(btcoexist); } else { } halbtc_nomal_low_power(); return; } } void exhalbtc_dbg_control(struct btc_coexist *btcoexist , u8 code , u8 len , u8 *data ) { bool tmp ; int tmp___0 ; { tmp = halbtc_is_bt_coexist_available(btcoexist); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return; } else { } btcoexist->statistics.cnt_dbg_ctrl = btcoexist->statistics.cnt_dbg_ctrl + 1U; return; } } void exhalbtc_stack_update_profile_info(void) { { return; } } void exhalbtc_update_min_bt_rssi(char bt_rssi ) { struct btc_coexist *btcoexist ; bool tmp ; int tmp___0 ; { btcoexist = & gl_bt_coexist; tmp = halbtc_is_bt_coexist_available(btcoexist); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return; } else { } btcoexist->stack_info.min_bt_rssi = bt_rssi; return; } } void exhalbtc_set_hci_version(u16 hci_version ) { struct btc_coexist *btcoexist ; bool tmp ; int tmp___0 ; { btcoexist = & gl_bt_coexist; tmp = halbtc_is_bt_coexist_available(btcoexist); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return; } else { } btcoexist->stack_info.hci_version = hci_version; return; } } void exhalbtc_set_bt_patch_version(u16 bt_hci_version , u16 bt_patch_version ) { struct btc_coexist *btcoexist ; bool tmp ; int tmp___0 ; { btcoexist = & gl_bt_coexist; tmp = halbtc_is_bt_coexist_available(btcoexist); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return; } else { } btcoexist->bt_info.bt_real_fw_ver = bt_patch_version; btcoexist->bt_info.bt_hci_ver = bt_hci_version; return; } } void exhalbtc_set_bt_exist(bool bt_exist ) { { gl_bt_coexist.board_info.bt_exist = bt_exist; return; } } void exhalbtc_set_chip_type(u8 chip_type ) { { switch ((int )chip_type) { default: ; case 0: ; case 1: ; case 2: ; case 5: gl_bt_coexist.board_info.bt_chip_type = 0U; goto ldv_52052; case 3: gl_bt_coexist.board_info.bt_chip_type = 1U; goto ldv_52052; case 4: gl_bt_coexist.board_info.bt_chip_type = 2U; goto ldv_52052; case 6: gl_bt_coexist.board_info.bt_chip_type = 3U; goto ldv_52052; case 7: gl_bt_coexist.board_info.bt_chip_type = 4U; goto ldv_52052; case 8: gl_bt_coexist.board_info.bt_chip_type = 5U; goto ldv_52052; } ldv_52052: ; return; } } void exhalbtc_set_ant_num(u8 type , u8 ant_num ) { { if ((unsigned int )type == 0U) { gl_bt_coexist.board_info.pg_ant_num = ant_num; gl_bt_coexist.board_info.btdm_ant_num = ant_num; } else if ((unsigned int )type == 1U) { gl_bt_coexist.board_info.btdm_ant_num = ant_num; } else { } return; } } void exhalbtc_display_bt_coex_info(struct btc_coexist *btcoexist ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; bool tmp ; int tmp___0 ; { rtlpriv = (struct rtl_priv *)btcoexist->adapter; rtlhal = & rtlpriv->rtlhal; tmp = halbtc_is_bt_coexist_available(btcoexist); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return; } else { } if ((unsigned int )rtlhal->hw_type == 10U) { ex_halbtc8723b2ant_display_coex_info(btcoexist); } else { } return; } } void ldv_consume_skb_16(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_17(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_18(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_19(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_22(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } extern void __bad_percpu_size(void) ; extern void *memset(void * , int , size_t ) ; extern int __preempt_count ; __inline static int preempt_count(void) { int pfo_ret__ ; { switch (4UL) { case 1UL: __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "m" (__preempt_count)); goto ldv_5995; case 2UL: __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_5995; case 4UL: __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_5995; case 8UL: __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_5995; default: __bad_percpu_size(); } ldv_5995: ; return (pfo_ret__ & 2147483647); } } void ldv_kfree_skb_28(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_29(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_30(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_33(struct sk_buff *ldv_func_arg1 ) ; void ldv_consume_skb_27(struct sk_buff *ldv_func_arg1 ) ; extern u8 __VERIFIER_nondet_u8(void) ; __inline static void ldv_stop(void) { { LDV_STOP: ; goto LDV_STOP; } } int ldv_state_variable_1 ; struct rtl_priv *rtl_btc_operation_group0 ; int ref_cnt ; int ldv_state_variable_0 ; void ldv_initialize_rtl_btc_ops_1(void) ; void rtl_btc_init_variables(struct rtl_priv *rtlpriv ) ; void rtl_btc_init_hal_vars(struct rtl_priv *rtlpriv ) ; void rtl_btc_init_hw_config(struct rtl_priv *rtlpriv ) ; void rtl_btc_ips_notify(struct rtl_priv *rtlpriv , u8 type ) ; void rtl_btc_scan_notify(struct rtl_priv *rtlpriv , u8 scantype ) ; void rtl_btc_connect_notify(struct rtl_priv *rtlpriv , u8 action ) ; void rtl_btc_mediastatus_notify(struct rtl_priv *rtlpriv , enum _RT_MEDIA_STATUS mstatus ) ; void rtl_btc_periodical(struct rtl_priv *rtlpriv ) ; void rtl_btc_halt_notify(void) ; void rtl_btc_btinfo_notify(struct rtl_priv *rtlpriv , u8 *tmp_buf , u8 length ) ; bool rtl_btc_is_limited_dig(struct rtl_priv *rtlpriv ) ; bool rtl_btc_is_disable_edca_turbo(struct rtl_priv *rtlpriv ) ; bool rtl_btc_is_bt_disabled(struct rtl_priv *rtlpriv ) ; struct rtl_btc_ops *rtl_btc_get_ops_pointer(void) ; u8 rtl_get_hwpg_ant_num(struct rtl_priv *rtlpriv ) ; u8 rtl_get_hwpg_bt_exist(struct rtl_priv *rtlpriv ) ; u8 rtl_get_hwpg_bt_type(struct rtl_priv *rtlpriv ) ; enum _RT_MEDIA_STATUS mgnt_link_status_query(struct ieee80211_hw *hw ) ; static struct rtl_btc_ops rtl_btc_operation = {& rtl_btc_init_variables, & rtl_btc_init_hal_vars, & rtl_btc_init_hw_config, & rtl_btc_ips_notify, & rtl_btc_scan_notify, & rtl_btc_connect_notify, & rtl_btc_mediastatus_notify, & rtl_btc_periodical, & rtl_btc_halt_notify, & rtl_btc_btinfo_notify, & rtl_btc_is_limited_dig, & rtl_btc_is_disable_edca_turbo, & rtl_btc_is_bt_disabled}; void rtl_btc_init_variables(struct rtl_priv *rtlpriv ) { { exhalbtc_initlize_variables(rtlpriv); return; } } void rtl_btc_init_hal_vars(struct rtl_priv *rtlpriv ) { u8 ant_num ; u8 bt_exist ; u8 bt_type ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; { ant_num = rtl_get_hwpg_ant_num(rtlpriv); tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017btcoexist:%s():<%lx-%x> %s, antNum is %d\n", "rtl_btc_init_hal_vars", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, "rtl_btc_init_hal_vars", (int )ant_num); } else { } } else { } bt_exist = rtl_get_hwpg_bt_exist(rtlpriv); tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___5 != 0L) { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); if (tmp___6 != 0L) { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017btcoexist:%s():<%lx-%x> %s, bt_exist is %d\n", "rtl_btc_init_hal_vars", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, "rtl_btc_init_hal_vars", (int )bt_exist); } else { } } else { } exhalbtc_set_bt_exist((unsigned int )bt_exist != 0U); bt_type = rtl_get_hwpg_bt_type(rtlpriv); tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___9 != 0L) { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); if (tmp___10 != 0L) { tmp___7 = preempt_count(); tmp___8 = preempt_count(); printk("\017btcoexist:%s():<%lx-%x> %s, bt_type is %d\n", "rtl_btc_init_hal_vars", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL, "rtl_btc_init_hal_vars", (int )bt_type); } else { } } else { } exhalbtc_set_chip_type((int )bt_type); exhalbtc_set_ant_num(0, (int )ant_num); return; } } void rtl_btc_init_hw_config(struct rtl_priv *rtlpriv ) { { exhalbtc_init_hw_config(& gl_bt_coexist); exhalbtc_init_coex_dm(& gl_bt_coexist); return; } } void rtl_btc_ips_notify(struct rtl_priv *rtlpriv , u8 type ) { { exhalbtc_ips_notify(& gl_bt_coexist, (int )type); return; } } void rtl_btc_scan_notify(struct rtl_priv *rtlpriv , u8 scantype ) { { exhalbtc_scan_notify(& gl_bt_coexist, (int )scantype); return; } } void rtl_btc_connect_notify(struct rtl_priv *rtlpriv , u8 action ) { { exhalbtc_connect_notify(& gl_bt_coexist, (int )action); return; } } void rtl_btc_mediastatus_notify(struct rtl_priv *rtlpriv , enum _RT_MEDIA_STATUS mstatus ) { { exhalbtc_mediastatus_notify(& gl_bt_coexist, mstatus); return; } } void rtl_btc_periodical(struct rtl_priv *rtlpriv ) { { exhalbtc_periodical(& gl_bt_coexist); return; } } void rtl_btc_halt_notify(void) { { exhalbtc_halt_notify(& gl_bt_coexist); return; } } void rtl_btc_btinfo_notify(struct rtl_priv *rtlpriv , u8 *tmp_buf , u8 length ) { { exhalbtc_bt_info_notify(& gl_bt_coexist, tmp_buf, (int )length); return; } } bool rtl_btc_is_limited_dig(struct rtl_priv *rtlpriv ) { { return (gl_bt_coexist.bt_info.limited_dig); } } bool rtl_btc_is_disable_edca_turbo(struct rtl_priv *rtlpriv ) { bool bt_change_edca ; u32 cur_edca_val ; u32 edca_bt_hs_uplink ; u32 edca_bt_hs_downlink ; u32 edca_hs ; u32 edca_addr ; bool tmp ; { bt_change_edca = 0; edca_bt_hs_uplink = 6202411U; edca_bt_hs_downlink = 6202411U; edca_addr = 1284U; cur_edca_val = rtl_read_dword(rtlpriv, edca_addr); tmp = halbtc_is_wifi_uplink(rtlpriv); if ((int )tmp) { if (cur_edca_val != edca_bt_hs_uplink) { edca_hs = edca_bt_hs_uplink; bt_change_edca = 1; } else { } } else if (cur_edca_val != edca_bt_hs_downlink) { edca_hs = edca_bt_hs_downlink; bt_change_edca = 1; } else { } if ((int )bt_change_edca) { rtl_write_dword(rtlpriv, edca_addr, edca_hs); } else { } return (1); } } bool rtl_btc_is_bt_disabled(struct rtl_priv *rtlpriv ) { { if ((int )gl_bt_coexist.bt_info.bt_disabled) { return (1); } else { return (0); } } } struct rtl_btc_ops *rtl_btc_get_ops_pointer(void) { { return (& rtl_btc_operation); } } static char const __kstrtab_rtl_btc_get_ops_pointer[24U] = { 'r', 't', 'l', '_', 'b', 't', 'c', '_', 'g', 'e', 't', '_', 'o', 'p', 's', '_', 'p', 'o', 'i', 'n', 't', 'e', 'r', '\000'}; struct kernel_symbol const __ksymtab_rtl_btc_get_ops_pointer ; struct kernel_symbol const __ksymtab_rtl_btc_get_ops_pointer = {(unsigned long )(& rtl_btc_get_ops_pointer), (char const *)(& __kstrtab_rtl_btc_get_ops_pointer)}; u8 rtl_get_hwpg_ant_num(struct rtl_priv *rtlpriv ) { u8 num ; { if ((unsigned int )rtlpriv->btcoexist.btc_info.ant_num == 0U) { num = 2U; } else { num = 1U; } return (num); } } enum _RT_MEDIA_STATUS mgnt_link_status_query(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_mac *mac ; enum _RT_MEDIA_STATUS m_status ; u8 bibss ; { rtlpriv = (struct rtl_priv *)hw->priv; mac = & ((struct rtl_priv *)hw->priv)->mac80211; m_status = 0; bibss = (unsigned int )mac->opmode == 1U; if ((unsigned int )bibss != 0U || (unsigned int )rtlpriv->mac80211.link_state > 1U) { m_status = 1; } else { } return (m_status); } } u8 rtl_get_hwpg_bt_exist(struct rtl_priv *rtlpriv ) { { return (rtlpriv->btcoexist.btc_info.btcoexist); } } u8 rtl_get_hwpg_bt_type(struct rtl_priv *rtlpriv ) { { return (rtlpriv->btcoexist.btc_info.bt_type); } } static int rtl_btcoexist_module_init(void) { { return (0); } } static void rtl_btcoexist_module_exit(void) { { return; } } int ldv_retval_0 ; void ldv_initialize(void) ; void ldv_check_final_state(void) ; void ldv_initialize_rtl_btc_ops_1(void) { void *tmp ; { tmp = ldv_zalloc(19648UL); rtl_btc_operation_group0 = (struct rtl_priv *)tmp; return; } } int main(void) { u8 ldvarg1 ; u8 tmp ; enum _RT_MEDIA_STATUS ldvarg4 ; u8 ldvarg3 ; u8 tmp___0 ; u8 ldvarg0 ; u8 tmp___1 ; u8 ldvarg5 ; u8 tmp___2 ; u8 *ldvarg2 ; void *tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; { tmp = __VERIFIER_nondet_u8(); ldvarg1 = tmp; tmp___0 = __VERIFIER_nondet_u8(); ldvarg3 = tmp___0; tmp___1 = __VERIFIER_nondet_u8(); ldvarg0 = tmp___1; tmp___2 = __VERIFIER_nondet_u8(); ldvarg5 = tmp___2; tmp___3 = ldv_zalloc(1UL); ldvarg2 = (u8 *)tmp___3; ldv_initialize(); memset((void *)(& ldvarg4), 0, 4UL); ldv_state_variable_1 = 0; ref_cnt = 0; ldv_state_variable_0 = 1; ldv_52613: tmp___4 = __VERIFIER_nondet_int(); switch (tmp___4) { case 0: ; if (ldv_state_variable_1 != 0) { tmp___5 = __VERIFIER_nondet_int(); switch (tmp___5) { case 0: ; if (ldv_state_variable_1 == 1) { rtl_btc_periodical(rtl_btc_operation_group0); ldv_state_variable_1 = 1; } else { } goto ldv_52591; case 1: ; if (ldv_state_variable_1 == 1) { rtl_btc_init_variables(rtl_btc_operation_group0); ldv_state_variable_1 = 1; } else { } goto ldv_52591; case 2: ; if (ldv_state_variable_1 == 1) { rtl_btc_connect_notify(rtl_btc_operation_group0, (int )ldvarg5); ldv_state_variable_1 = 1; } else { } goto ldv_52591; case 3: ; if (ldv_state_variable_1 == 1) { rtl_btc_mediastatus_notify(rtl_btc_operation_group0, ldvarg4); ldv_state_variable_1 = 1; } else { } goto ldv_52591; case 4: ; if (ldv_state_variable_1 == 1) { rtl_btc_is_bt_disabled(rtl_btc_operation_group0); ldv_state_variable_1 = 1; } else { } goto ldv_52591; case 5: ; if (ldv_state_variable_1 == 1) { rtl_btc_is_disable_edca_turbo(rtl_btc_operation_group0); ldv_state_variable_1 = 1; } else { } goto ldv_52591; case 6: ; if (ldv_state_variable_1 == 1) { rtl_btc_halt_notify(); ldv_state_variable_1 = 1; } else { } goto ldv_52591; case 7: ; if (ldv_state_variable_1 == 1) { rtl_btc_ips_notify(rtl_btc_operation_group0, (int )ldvarg3); ldv_state_variable_1 = 1; } else { } goto ldv_52591; case 8: ; if (ldv_state_variable_1 == 1) { rtl_btc_init_hw_config(rtl_btc_operation_group0); ldv_state_variable_1 = 1; } else { } goto ldv_52591; case 9: ; if (ldv_state_variable_1 == 1) { rtl_btc_is_limited_dig(rtl_btc_operation_group0); ldv_state_variable_1 = 1; } else { } goto ldv_52591; case 10: ; if (ldv_state_variable_1 == 1) { rtl_btc_btinfo_notify(rtl_btc_operation_group0, ldvarg2, (int )ldvarg1); ldv_state_variable_1 = 1; } else { } goto ldv_52591; case 11: ; if (ldv_state_variable_1 == 1) { rtl_btc_scan_notify(rtl_btc_operation_group0, (int )ldvarg0); ldv_state_variable_1 = 1; } else { } goto ldv_52591; case 12: ; if (ldv_state_variable_1 == 1) { rtl_btc_init_hal_vars(rtl_btc_operation_group0); ldv_state_variable_1 = 1; } else { } goto ldv_52591; default: ldv_stop(); } ldv_52591: ; } else { } goto ldv_52605; case 1: ; if (ldv_state_variable_0 != 0) { tmp___6 = __VERIFIER_nondet_int(); switch (tmp___6) { case 0: ; if (ldv_state_variable_0 == 3 && ref_cnt == 0) { rtl_btcoexist_module_exit(); ldv_state_variable_0 = 2; goto ldv_final; } else { } goto ldv_52609; case 1: ; if (ldv_state_variable_0 == 1) { ldv_retval_0 = rtl_btcoexist_module_init(); if (ldv_retval_0 == 0) { ldv_state_variable_0 = 3; ldv_state_variable_1 = 1; ldv_initialize_rtl_btc_ops_1(); } else { } if (ldv_retval_0 != 0) { ldv_state_variable_0 = 2; goto ldv_final; } else { } } else { } goto ldv_52609; default: ldv_stop(); } ldv_52609: ; } else { } goto ldv_52605; default: ldv_stop(); } ldv_52605: ; goto ldv_52613; ldv_final: ldv_check_final_state(); return 0; } } void ldv_consume_skb_27(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_28(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_29(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_30(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_33(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } __inline static void ldv_error(void); Element set_impl[15] ; int last_index = 0; __inline static void ldv_set_init(Set set ) __attribute__((__no_instrument_function__)) ; __inline static void ldv_set_init(Set set ) { { set = set_impl; last_index = 0; return; } } __inline static void ldv_set_add(Set set , Element e ) __attribute__((__no_instrument_function__)) ; __inline static void ldv_set_add(Set set , Element e ) { int i ; { i = 0; while (1) { if (i < last_index) { } else { break; } if ((unsigned long )set_impl[i] == (unsigned long )e) { return; } else { } i = i + 1; } if (last_index < 15) { set_impl[last_index] = e; last_index = last_index + 1; } else { } return; } } __inline static void ldv_set_remove(Set set , Element e ) __attribute__((__no_instrument_function__)) ; __inline static void ldv_set_remove(Set set , Element e ) { int i ; int deleted_index ; { deleted_index = -1; i = 0; while (1) { if (i < last_index) { } else { break; } if ((unsigned long )set_impl[i] == (unsigned long )e) { deleted_index = i; break; } else { } i = i + 1; } if (deleted_index != -1) { i = deleted_index + 1; while (1) { if (i < last_index) { } else { break; } set_impl[i - 1] = set_impl[i]; i = i + 1; } last_index = last_index - 1; } else { } return; } } __inline static int ldv_set_contains(Set set , Element e ) __attribute__((__no_instrument_function__)) ; __inline static int ldv_set_contains(Set set , Element e ) { int i ; { i = 0; while (1) { if (i < last_index) { } else { break; } if ((unsigned long )set_impl[i] == (unsigned long )e) { return (1); } else { } i = i + 1; } return (0); } } __inline static int ldv_set_is_empty(Set set ) __attribute__((__no_instrument_function__)) ; __inline static int ldv_set_is_empty(Set set ) { { return (last_index == 0); } } bool ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 2012UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(2012L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(2012UL - (unsigned long )ptr)); } } bool ldv_is_err_or_null(void const *ptr ) { bool tmp___7 ; int tmp___8 ; { if (! ptr) { tmp___8 = 1; } else { tmp___7 = ldv_is_err((unsigned long )ptr); if (tmp___7) { tmp___8 = 1; } else { tmp___8 = 0; } } return (tmp___8); } } Set LDV_SKBS ; struct sk_buff___0 *ldv_skb_alloc(void) { void *skb ; void *tmp___7 ; { tmp___7 = ldv_zalloc(sizeof(struct sk_buff___0 )); skb = (struct sk_buff___0 *)tmp___7; if (! skb) { return ((void *)0); } else { ldv_set_add(LDV_SKBS, skb); return (skb); } } } void ldv_initialize(void) { { ldv_set_init(LDV_SKBS); return; } } void ldv_skb_free(struct sk_buff___0 *skb ) { { ldv_set_remove(LDV_SKBS, skb); return; } } int ldv_skb_free_int(struct sk_buff___0 *skb ) { { ldv_set_remove(LDV_SKBS, skb); return (0); } } struct sk_buff___0 *ldv_netdev_alloc_skb(void) ; struct sk_buff___0 *ldv_dev_alloc_skb(void) { void *skb ; int tmp___7 ; { tmp___7 = (int )ldv_netdev_alloc_skb(); skb = tmp___7; return (skb); } } struct sk_buff___0 *ldv_netdev_alloc_skb(void) { struct sk_buff___0 *tmp___7 ; { tmp___7 = ldv_skb_alloc(); return (tmp___7); } } int ldv_skb_current(struct sk_buff___0 *skb ) { int tmp___7 ; { tmp___7 = ldv_set_contains(LDV_SKBS, skb); if (tmp___7) { return (1); } else { return (0); } } } void ldv_check_final_state(void) { int tmp___7 ; { tmp___7 = ldv_set_is_empty(LDV_SKBS); if (tmp___7) { } else { ldv_error(); } return; } }