extern void __VERIFIER_error() __attribute__ ((__noreturn__)); /* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef short s16; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __le16; typedef __u16 __be16; typedef __u32 __le32; typedef __u32 __be32; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct_ldv_1016_9 { unsigned int a ; unsigned int b ; }; struct __anonstruct_ldv_1031_10 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion_ldv_1032_8 { struct __anonstruct_ldv_1016_9 ldv_1016 ; struct __anonstruct_ldv_1031_10 ldv_1031 ; }; struct desc_struct { union __anonunion_ldv_1032_8 ldv_1032 ; }; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_11 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_11 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_12 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_12 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct task_struct; struct cpumask; struct arch_spinlock; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion_ldv_1452_15 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion_ldv_1452_15 ldv_1452 ; }; typedef struct arch_spinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; typedef void (*ctor_fn_t)(void); struct device; struct net_device; struct file_operations; struct completion; struct pid; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct timespec; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion_ldv_2969_20 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion_ldv_2969_20 ldv_2969 ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct_ldv_5280_25 { u64 rip ; u64 rdp ; }; struct __anonstruct_ldv_5286_26 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion_ldv_5287_24 { struct __anonstruct_ldv_5280_25 ldv_5280 ; struct __anonstruct_ldv_5286_26 ldv_5286 ; }; union __anonunion_ldv_5296_27 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion_ldv_5287_24 ldv_5287 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion_ldv_5296_27 ldv_5296 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndregs_struct { u64 bndregs[8U] ; }; struct bndcsr_struct { u64 cfg_reg_u ; u64 status_reg ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndregs_struct bndregs ; struct bndcsr_struct bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; typedef int pao_T__; typedef int pao_T_____0; struct lockdep_map; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct_ldv_6337_31 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion_ldv_6338_30 { struct raw_spinlock rlock ; struct __anonstruct_ldv_6337_31 ldv_6337 ; }; struct spinlock { union __anonunion_ldv_6338_30 ldv_6338 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_32 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_32 rwlock_t; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct optimistic_spin_queue; struct rw_semaphore; struct rw_semaphore { long count ; raw_spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; struct optimistic_spin_queue *osq ; struct lockdep_map dep_map ; }; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct vm_area_struct; struct inode; struct notifier_block; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_33 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_33 seqlock_t; struct llist_node; struct llist_node { struct llist_node *next ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; }; struct __anonstruct_nodemask_t_98 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_98 nodemask_t; struct __anonstruct_mm_context_t_99 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_99 mm_context_t; struct bio_vec; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct_ldv_12049_131 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct_ldv_12053_132 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion_ldv_12054_130 { struct __anonstruct_ldv_12049_131 ldv_12049 ; struct __anonstruct_ldv_12053_132 ldv_12053 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion_ldv_12054_130 ldv_12054 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; union __anonunion_ldv_12163_133 { struct address_space *mapping ; void *s_mem ; }; union __anonunion_ldv_12169_135 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct_ldv_12179_139 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion_ldv_12181_138 { atomic_t _mapcount ; struct __anonstruct_ldv_12179_139 ldv_12179 ; int units ; }; struct __anonstruct_ldv_12183_137 { union __anonunion_ldv_12181_138 ldv_12181 ; atomic_t _count ; }; union __anonunion_ldv_12185_136 { unsigned long counters ; struct __anonstruct_ldv_12183_137 ldv_12183 ; unsigned int active ; }; struct __anonstruct_ldv_12186_134 { union __anonunion_ldv_12169_135 ldv_12169 ; union __anonunion_ldv_12185_136 ldv_12185 ; }; struct __anonstruct_ldv_12193_141 { struct page *next ; int pages ; int pobjects ; }; struct slab; union __anonunion_ldv_12198_140 { struct list_head lru ; struct __anonstruct_ldv_12193_141 ldv_12193 ; struct slab *slab_page ; struct callback_head callback_head ; pgtable_t pmd_huge_pte ; }; union __anonunion_ldv_12204_142 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion_ldv_12163_133 ldv_12163 ; struct __anonstruct_ldv_12186_134 ldv_12186 ; union __anonunion_ldv_12198_140 ldv_12198 ; union __anonunion_ldv_12204_142 ldv_12204 ; unsigned long debug_flags ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_linear_144 { struct rb_node rb ; unsigned long rb_subtree_last ; }; union __anonunion_shared_143 { struct __anonstruct_linear_144 linear ; struct list_head nonlinear ; }; struct anon_vma; struct vm_operations_struct; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; union __anonunion_shared_143 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; union __anonunion_ldv_12534_145 { struct iovec const *iov ; struct bio_vec const *bvec ; }; struct iov_iter { int type ; size_t iov_offset ; size_t count ; union __anonunion_ldv_12534_145 ldv_12534 ; unsigned long nr_segs ; }; typedef unsigned short __kernel_sa_family_t; struct cred; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct msghdr { void *msg_name ; int msg_namelen ; struct iovec *msg_iov ; __kernel_size_t msg_iovlen ; void *msg_control ; __kernel_size_t msg_controllen ; unsigned int msg_flags ; }; enum ldv_13278 { SS_FREE = 0, SS_UNCONNECTED = 1, SS_CONNECTING = 2, SS_CONNECTED = 3, SS_DISCONNECTING = 4 } ; typedef enum ldv_13278 socket_state; struct poll_table_struct; struct pipe_inode_info; struct net; struct fasync_struct; struct socket_wq { wait_queue_head_t wait ; struct fasync_struct *fasync_list ; struct callback_head rcu ; }; struct sock; struct proto_ops; struct socket { socket_state state ; short type ; unsigned long flags ; struct socket_wq *wq ; struct file *file ; struct sock *sk ; struct proto_ops const *ops ; }; struct kiocb; struct proto_ops { int family ; struct module *owner ; int (*release)(struct socket * ) ; int (*bind)(struct socket * , struct sockaddr * , int ) ; int (*connect)(struct socket * , struct sockaddr * , int , int ) ; int (*socketpair)(struct socket * , struct socket * ) ; int (*accept)(struct socket * , struct socket * , int ) ; int (*getname)(struct socket * , struct sockaddr * , int * , int ) ; unsigned int (*poll)(struct file * , struct socket * , struct poll_table_struct * ) ; int (*ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*listen)(struct socket * , int ) ; int (*shutdown)(struct socket * , int ) ; int (*setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct socket * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct socket * , int , int , char * , int * ) ; int (*sendmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t , int ) ; int (*mmap)(struct file * , struct socket * , struct vm_area_struct * ) ; ssize_t (*sendpage)(struct socket * , struct page * , int , size_t , int ) ; ssize_t (*splice_read)(struct socket * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*set_peek_off)(struct sock * , int ) ; }; struct ctl_table; struct mem_cgroup; union __anonunion_ldv_13917_146 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion_ldv_13917_146 ldv_13917 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct dentry; struct iattr; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; }; union __anonunion_ldv_14061_147 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion_ldv_14061_147 ldv_14061 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct user_namespace; struct __anonstruct_kuid_t_148 { uid_t val ; }; typedef struct __anonstruct_kuid_t_148 kuid_t; struct __anonstruct_kgid_t_149 { gid_t val ; }; typedef struct __anonstruct_kgid_t_149 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; struct page *partial ; unsigned int stat[26U] ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct memcg_cache_params; struct kmem_cache_node; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int object_size ; int offset ; int cpu_partial ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; struct memcg_cache_params *memcg_params ; int max_attr_size ; struct kset *memcg_kset ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; struct __anonstruct_ldv_14953_151 { struct callback_head callback_head ; struct kmem_cache *memcg_caches[0U] ; }; struct __anonstruct_ldv_14959_152 { struct mem_cgroup *memcg ; struct list_head list ; struct kmem_cache *root_cache ; atomic_t nr_pages ; }; union __anonunion_ldv_14960_150 { struct __anonstruct_ldv_14953_151 ldv_14953 ; struct __anonstruct_ldv_14959_152 ldv_14959 ; }; struct memcg_cache_params { bool is_root_cache ; union __anonunion_ldv_14960_150 ldv_14960 ; }; struct exception_table_entry { int insn ; int fixup ; }; struct sk_buff; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct path; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct pdev_archdata { }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct device_node; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; nodemask_t nodes_to_scan ; int nid ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct user_struct; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; int (*migrate)(struct vm_area_struct * , nodemask_t const * , nodemask_t const * , unsigned long ) ; int (*remap_pages)(struct vm_area_struct * , unsigned long , unsigned long , unsigned long ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; typedef s32 dma_cookie_t; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; typedef u64 netdev_features_t; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; typedef unsigned long cputime_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct __anonstruct_sigset_t_155 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_155 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_157 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_158 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_159 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_160 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_161 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_162 { long _band ; int _fd ; }; struct __anonstruct__sigsys_163 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_156 { int _pad[28U] ; struct __anonstruct__kill_157 _kill ; struct __anonstruct__timer_158 _timer ; struct __anonstruct__rt_159 _rt ; struct __anonstruct__sigchld_160 _sigchld ; struct __anonstruct__sigfault_161 _sigfault ; struct __anonstruct__sigpoll_162 _sigpoll ; struct __anonstruct__sigsys_163 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_156 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct_ldv_22930_167 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion_ldv_22932_166 { struct __anonstruct_ldv_22930_167 ldv_22930 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion_ldv_22932_166 ldv_22932 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion_ldv_23076_168 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion_ldv_23084_169 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct_ldv_23097_171 { struct key_type *type ; char *description ; }; union __anonunion_ldv_23098_170 { struct keyring_index_key index_key ; struct __anonstruct_ldv_23097_171 ldv_23097 ; }; union __anonunion_type_data_172 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_174 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion_ldv_23113_173 { union __anonunion_payload_174 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion_ldv_23076_168 ldv_23076 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion_ldv_23084_169 ldv_23084 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion_ldv_23098_170 ldv_23098 ; union __anonunion_type_data_172 type_data ; union __anonunion_ldv_23113_173 ldv_23113 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct io_context; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned char brk_randomized : 1 ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char no_new_privs : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct task_struct *pi_top_task ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults_memory ; unsigned long total_numa_faults ; unsigned long *numa_faults_buffer_memory ; unsigned long *numa_faults_cpu ; unsigned long *numa_faults_buffer_cpu ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; unsigned int memcg_kmem_skip_account ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; }; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; typedef unsigned int sk_buff_data_t; struct __anonstruct_ldv_24862_179 { u32 stamp_us ; u32 stamp_jiffies ; }; union __anonunion_ldv_24863_178 { u64 v64 ; struct __anonstruct_ldv_24862_179 ldv_24862 ; }; struct skb_mstamp { union __anonunion_ldv_24863_178 ldv_24863 ; }; union __anonunion_ldv_24882_180 { ktime_t tstamp ; struct skb_mstamp skb_mstamp ; }; struct sec_path; struct __anonstruct_ldv_24898_182 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion_ldv_24899_181 { __wsum csum ; struct __anonstruct_ldv_24898_182 ldv_24898 ; }; union __anonunion_ldv_24938_183 { unsigned int napi_id ; dma_cookie_t dma_cookie ; }; union __anonunion_ldv_24944_184 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; struct sk_buff { struct sk_buff *next ; struct sk_buff *prev ; union __anonunion_ldv_24882_180 ldv_24882 ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; struct sec_path *sp ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; union __anonunion_ldv_24899_181 ldv_24899 ; __u32 priority ; unsigned char ignore_df : 1 ; unsigned char cloned : 1 ; unsigned char ip_summed : 2 ; unsigned char nohdr : 1 ; unsigned char nfctinfo : 3 ; unsigned char pkt_type : 3 ; unsigned char fclone : 2 ; unsigned char ipvs_property : 1 ; unsigned char peeked : 1 ; unsigned char nf_trace : 1 ; __be16 protocol ; void (*destructor)(struct sk_buff * ) ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; int skb_iif ; __u32 hash ; __be16 vlan_proto ; __u16 vlan_tci ; __u16 tc_index ; __u16 tc_verd ; __u16 queue_mapping ; unsigned char ndisc_nodetype : 2 ; unsigned char pfmemalloc : 1 ; unsigned char ooo_okay : 1 ; unsigned char l4_hash : 1 ; unsigned char wifi_acked_valid : 1 ; unsigned char wifi_acked : 1 ; unsigned char no_fcs : 1 ; unsigned char head_frag : 1 ; unsigned char encapsulation : 1 ; unsigned char encap_hdr_csum : 1 ; unsigned char csum_valid : 1 ; unsigned char csum_complete_sw : 1 ; union __anonunion_ldv_24938_183 ldv_24938 ; __u32 secmark ; union __anonunion_ldv_24944_184 ldv_24944 ; __be16 inner_protocol ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct ieee80211_hw; struct platform_device; struct ieee80211_vif; struct ieee80211_sta; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion_ldv_26704_189 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s16 level ; union __anonunion_ldv_26704_189 ldv_26704 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_ref { unsigned long incs ; unsigned long decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct firmware { size_t size ; u8 const *data ; struct page **pages ; void *priv ; }; typedef unsigned long kernel_ulong_t; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct platform_device_id { char name[20U] ; kernel_ulong_t driver_data ; }; struct mfd_cell; struct platform_device { char const *name ; int id ; bool id_auto ; struct device dev ; u32 num_resources ; struct resource *resource ; struct platform_device_id const *id_entry ; struct mfd_cell *mfd_cell ; struct pdev_archdata archdata ; }; struct platform_driver { int (*probe)(struct platform_device * ) ; int (*remove)(struct platform_device * ) ; void (*shutdown)(struct platform_device * ) ; int (*suspend)(struct platform_device * , pm_message_t ) ; int (*resume)(struct platform_device * ) ; struct device_driver driver ; struct platform_device_id const *id_table ; bool prevent_deferred_probe ; }; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct ieee80211_p2p_noa_desc { u8 count ; __le32 duration ; __le32 interval ; __le32 start_time ; }; struct ieee80211_p2p_noa_attr { u8 index ; u8 oppps_ctwindow ; struct ieee80211_p2p_noa_desc desc[4U] ; }; struct ieee80211_mcs_info { u8 rx_mask[10U] ; __le16 rx_highest ; u8 tx_params ; u8 reserved[3U] ; }; struct ieee80211_ht_cap { __le16 cap_info ; u8 ampdu_params_info ; struct ieee80211_mcs_info mcs ; __le16 extended_ht_cap_info ; __le32 tx_BF_cap_info ; u8 antenna_selection_info ; }; struct ieee80211_vht_mcs_info { __le16 rx_mcs_map ; __le16 rx_highest ; __le16 tx_mcs_map ; __le16 tx_highest ; }; struct ieee80211_vht_cap { __le32 vht_cap_info ; struct ieee80211_vht_mcs_info supp_mcs ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct pm_qos_flags_request { struct list_head node ; s32 flags ; }; enum dev_pm_qos_req_type { DEV_PM_QOS_RESUME_LATENCY = 1, DEV_PM_QOS_LATENCY_TOLERANCE = 2, DEV_PM_QOS_FLAGS = 3 } ; union __anonunion_data_229 { struct plist_node pnode ; struct pm_qos_flags_request flr ; }; struct dev_pm_qos_request { enum dev_pm_qos_req_type type ; union __anonunion_data_229 data ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; s32 no_constraint_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct pm_qos_flags { struct list_head list ; s32 effective_flags ; }; struct dev_pm_qos { struct pm_qos_constraints resume_latency ; struct pm_qos_constraints latency_tolerance ; struct pm_qos_flags flags ; struct dev_pm_qos_request *resume_latency_req ; struct dev_pm_qos_request *latency_tolerance_req ; struct dev_pm_qos_request *flags_req ; }; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; struct __anonstruct_sync_serial_settings_230 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_230 sync_serial_settings; struct __anonstruct_te1_settings_231 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_231 te1_settings; struct __anonstruct_raw_hdlc_proto_232 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_232 raw_hdlc_proto; struct __anonstruct_fr_proto_233 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_233 fr_proto; struct __anonstruct_fr_proto_pvc_234 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_234 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_235 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_235 fr_proto_pvc_info; struct __anonstruct_cisco_proto_236 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_236 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_237 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_237 ifs_ifsu ; }; union __anonunion_ifr_ifrn_238 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_239 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_238 ifr_ifrn ; union __anonunion_ifr_ifru_239 ifr_ifru ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct_ldv_28986_242 { spinlock_t lock ; unsigned int count ; }; union __anonunion_ldv_28987_241 { struct __anonstruct_ldv_28986_242 ldv_28986 ; }; struct lockref { union __anonunion_ldv_28987_241 ldv_28987 ; }; struct nameidata; struct vfsmount; struct __anonstruct_ldv_29010_244 { u32 hash ; u32 len ; }; union __anonunion_ldv_29012_243 { struct __anonstruct_ldv_29010_244 ldv_29010 ; u64 hash_len ; }; struct qstr { union __anonunion_ldv_29012_243 ldv_29012 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_245 { struct list_head d_child ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; union __anonunion_d_u_245 d_u ; struct list_head d_subdirs ; struct hlist_node d_alias ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_node { spinlock_t lock ; struct list_head list ; long nr_items ; }; struct list_lru { struct list_lru_node *node ; nodemask_t active_nodes ; }; struct __anonstruct_ldv_29373_247 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion_ldv_29375_246 { struct __anonstruct_ldv_29373_247 ldv_29373 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion_ldv_29375_246 ldv_29375 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct cgroup_subsys_state; struct bio_vec { struct page *bv_page ; unsigned int bv_len ; unsigned int bv_offset ; }; struct export_operations; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_248 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_248 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion_ldv_29900_249 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion_ldv_29900_249 ldv_29900 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_on_meta)(struct super_block * , int , int ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iov_iter * , loff_t ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct rb_root i_mmap ; struct list_head i_mmap_nonlinear ; struct mutex i_mmap_mutex ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion_ldv_30314_252 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion_ldv_30334_253 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock; struct cdev; union __anonunion_ldv_30351_254 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion_ldv_30314_252 ldv_30314 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion_ldv_30334_253 ldv_30334 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock *i_flock ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion_ldv_30351_254 ldv_30351 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_255 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_255 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , struct file_lock * , int ) ; void (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock ** , int ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct __anonstruct_afs_257 { struct list_head link ; int state ; }; union __anonunion_fl_u_256 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_257 afs ; }; struct file_lock { struct file_lock *fl_next ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_256 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context { int (*actor)(void * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; int (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , int ) ; long (*free_cached_objects)(struct super_block * , long , int ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char reserved1[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_key_size)(struct net_device * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh)(struct net_device * , u32 * , u8 * ) ; int (*set_rxfh)(struct net_device * , u32 const * , u8 const * ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[8U] ; }; struct linux_mib { unsigned long mibs[103U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct proc_dir_entry; struct netns_mib { struct tcp_mib *tcp_statistics ; struct ipstats_mib *ip_statistics ; struct linux_mib *net_statistics ; struct udp_mib *udp_statistics ; struct udp_mib *udplite_statistics ; struct icmp_mib *icmp_statistics ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6 ; struct udp_mib *udplite_stats_in6 ; struct ipstats_mib *ipv6_statistics ; struct icmpv6_mib *icmpv6_statistics ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { int nqueues ; struct list_head lru_list ; spinlock_t lru_lock ; struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct tcpm_hash_bucket; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; }; struct ping_group_range { seqlock_t lock ; kgid_t range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct inet_peer_base *peers ; struct tcpm_hash_bucket *tcp_metrics_hash ; unsigned int tcp_metrics_hash_log ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports ip_local_ports ; int sysctl_tcp_ecn ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; int sysctl_fwmark_reflect ; int sysctl_tcp_fwmark_accept ; struct ping_group_range ping_group_range ; atomic_t dev_addr_genid ; unsigned long *sysctl_local_reserved_ports ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int icmpv6_time ; int anycast_src_echo_reply ; int fwmark_reflect ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t rt_genid ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct netns_sysctl_lowpan { struct ctl_table_header *frags_hdr ; }; struct netns_ieee802154_lowpan { struct netns_sysctl_lowpan sysctl ; struct netns_frags frags ; u16 max_dsize ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; struct nlattr; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; bool ulog_warn_deprecated ; bool ebt_ulog_warn_deprecated ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ct_pcpu { spinlock_t lock ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; unsigned int sysctl_events_retry_timeout ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; seqcount_t generation ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct ct_pcpu *pcpu_lists ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; u8 gencursor ; u8 genctr ; }; struct tasklet_struct { struct tasklet_struct *next ; unsigned long state ; atomic_t count ; void (*func)(unsigned long ) ; unsigned long data ; }; struct flow_cache_percpu { struct hlist_head *hash_table ; int hash_count ; u32 hash_rnd ; int hash_rnd_recalc ; struct tasklet_struct flush_tasklet ; }; struct flow_cache { u32 hash_shift ; struct flow_cache_percpu *percpu ; struct notifier_block hotcpu_notifier ; int low_watermark ; int high_watermark ; struct timer_list rnd_timer ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[6U] ; struct xfrm_policy_hash policy_bydst[6U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; struct flow_cache flow_cache_global ; atomic_t flow_cache_genid ; struct list_head flow_cache_gc_list ; spinlock_t flow_cache_gc_lock ; struct work_struct flow_cache_gc_work ; struct work_struct flow_cache_flush_work ; struct mutex flow_flush_sem ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; unsigned int proc_inum ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_ieee802154_lowpan ieee802154_lowpan ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; struct dsa_chip_data { struct device *mii_bus ; int sw_addr ; char *port_names[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; __be16 tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct mii_bus; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct mii_bus *master_mii_bus ; u32 dsa_port_mask ; u32 phys_port_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; __be16 tag_protocol ; int priv_size ; char *(*probe)(struct mii_bus * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; u8 (*setapp)(struct net_device * , u8 , u16 , u8 ) ; u8 (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_t count ; unsigned int *pcpu_count ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_kill ; struct callback_head rcu ; }; struct cgroup_root; struct cgroup_subsys; struct cgroup; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; struct list_head sibling ; struct list_head children ; int id ; unsigned int flags ; u64 serial_nr ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct cgroup { struct cgroup_subsys_state self ; unsigned long flags ; int id ; int populated_cnt ; struct kernfs_node *kn ; struct kernfs_node *populated_kn ; unsigned int child_subsys_mask ; struct cgroup_subsys_state *subsys[12U] ; struct cgroup_root *root ; struct list_head cset_links ; struct list_head e_csets[12U] ; struct list_head release_list ; struct list_head pidlists ; struct mutex pidlist_mutex ; wait_queue_head_t offline_waitq ; }; struct cgroup_root { struct kernfs_root *kf_root ; unsigned int subsys_mask ; int hierarchy_id ; struct cgroup cgrp ; atomic_t nr_cgrps ; struct list_head root_list ; unsigned int flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head mg_tasks ; struct list_head cgrp_links ; struct cgroup *dfl_cgrp ; struct cgroup_subsys_state *subsys[12U] ; struct list_head mg_preload_node ; struct list_head mg_node ; struct cgroup *mg_src_cgrp ; struct css_set *mg_dst_cset ; struct list_head e_cset_node[12U] ; struct callback_head callback_head ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; struct list_head node ; struct kernfs_ops *kf_ops ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; struct lock_class_key lockdep_key ; }; struct cgroup_taskset; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; int id ; char const *name ; struct cgroup_root *root ; struct idr css_idr ; struct list_head cfts ; struct cftype *base_cftypes ; }; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 spoofchk ; __u32 linkstate ; __u32 min_tx_rate ; __u32 max_tx_rate ; }; struct netpoll_info; struct phy_device; struct wireless_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_port_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_rate)(struct net_device * , int , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_port_id * ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; int (*ndo_get_lock_subclass)(struct net_device * ) ; }; struct __anonstruct_adj_list_285 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_286 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct forwarding_accel_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion_ldv_41447_287 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct __anonstruct_adj_list_285 adj_list ; struct __anonstruct_all_adj_list_286 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; atomic_long_t tx_dropped ; atomic_t carrier_changes ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct forwarding_accel_ops const *fwd_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; unsigned short dev_port ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; bool uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; unsigned char broadcast[32U] ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; struct cpu_rmap *rx_cpu_rmap ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; unsigned char reg_state ; bool dismantle ; unsigned short rtnl_link_state ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion_ldv_41447_287 ldv_41447 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; int group ; struct pm_qos_request pm_qos_req ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; enum nl80211_iftype { NL80211_IFTYPE_UNSPECIFIED = 0, NL80211_IFTYPE_ADHOC = 1, NL80211_IFTYPE_STATION = 2, NL80211_IFTYPE_AP = 3, NL80211_IFTYPE_AP_VLAN = 4, NL80211_IFTYPE_WDS = 5, NL80211_IFTYPE_MONITOR = 6, NL80211_IFTYPE_MESH_POINT = 7, NL80211_IFTYPE_P2P_CLIENT = 8, NL80211_IFTYPE_P2P_GO = 9, NL80211_IFTYPE_P2P_DEVICE = 10, NUM_NL80211_IFTYPES = 11, NL80211_IFTYPE_MAX = 10 } ; enum nl80211_reg_initiator { NL80211_REGDOM_SET_BY_CORE = 0, NL80211_REGDOM_SET_BY_USER = 1, NL80211_REGDOM_SET_BY_DRIVER = 2, NL80211_REGDOM_SET_BY_COUNTRY_IE = 3 } ; enum nl80211_dfs_regions { NL80211_DFS_UNSET = 0, NL80211_DFS_FCC = 1, NL80211_DFS_ETSI = 2, NL80211_DFS_JP = 3 } ; enum nl80211_user_reg_hint_type { NL80211_USER_REG_HINT_USER = 0, NL80211_USER_REG_HINT_CELL_BASE = 1, NL80211_USER_REG_HINT_INDOOR = 2 } ; enum nl80211_chan_width { NL80211_CHAN_WIDTH_20_NOHT = 0, NL80211_CHAN_WIDTH_20 = 1, NL80211_CHAN_WIDTH_40 = 2, NL80211_CHAN_WIDTH_80 = 3, NL80211_CHAN_WIDTH_80P80 = 4, NL80211_CHAN_WIDTH_160 = 5, NL80211_CHAN_WIDTH_5 = 6, NL80211_CHAN_WIDTH_10 = 7 } ; enum nl80211_bss_scan_width { NL80211_BSS_CHAN_WIDTH_20 = 0, NL80211_BSS_CHAN_WIDTH_10 = 1, NL80211_BSS_CHAN_WIDTH_5 = 2 } ; enum nl80211_auth_type { NL80211_AUTHTYPE_OPEN_SYSTEM = 0, NL80211_AUTHTYPE_SHARED_KEY = 1, NL80211_AUTHTYPE_FT = 2, NL80211_AUTHTYPE_NETWORK_EAP = 3, NL80211_AUTHTYPE_SAE = 4, __NL80211_AUTHTYPE_NUM = 5, NL80211_AUTHTYPE_MAX = 4, NL80211_AUTHTYPE_AUTOMATIC = 5 } ; enum nl80211_mfp { NL80211_MFP_NO = 0, NL80211_MFP_REQUIRED = 1 } ; enum nl80211_txrate_gi { NL80211_TXRATE_DEFAULT_GI = 0, NL80211_TXRATE_FORCE_SGI = 1, NL80211_TXRATE_FORCE_LGI = 2 } ; struct nl80211_wowlan_tcp_data_seq { __u32 start ; __u32 offset ; __u32 len ; }; struct nl80211_wowlan_tcp_data_token { __u32 offset ; __u32 len ; __u8 token_stream[] ; }; struct nl80211_wowlan_tcp_data_token_feature { __u32 min_len ; __u32 max_len ; __u32 bufsize ; }; enum nl80211_dfs_state { NL80211_DFS_USABLE = 0, NL80211_DFS_UNAVAILABLE = 1, NL80211_DFS_AVAILABLE = 2 } ; struct nl80211_vendor_cmd_info { __u32 vendor_id ; __u32 subcmd ; }; enum environment_cap { ENVIRON_ANY = 0, ENVIRON_INDOOR = 1, ENVIRON_OUTDOOR = 2 } ; struct regulatory_request { struct callback_head callback_head ; int wiphy_idx ; enum nl80211_reg_initiator initiator ; enum nl80211_user_reg_hint_type user_reg_hint_type ; char alpha2[2U] ; enum nl80211_dfs_regions dfs_region ; bool intersect ; bool processed ; enum environment_cap country_ie_env ; struct list_head list ; }; struct ieee80211_freq_range { u32 start_freq_khz ; u32 end_freq_khz ; u32 max_bandwidth_khz ; }; struct ieee80211_power_rule { u32 max_antenna_gain ; u32 max_eirp ; }; struct ieee80211_reg_rule { struct ieee80211_freq_range freq_range ; struct ieee80211_power_rule power_rule ; u32 flags ; u32 dfs_cac_ms ; }; struct ieee80211_regdomain { struct callback_head callback_head ; u32 n_reg_rules ; char alpha2[2U] ; enum nl80211_dfs_regions dfs_region ; struct ieee80211_reg_rule reg_rules[] ; }; struct wiphy; enum ieee80211_band { IEEE80211_BAND_2GHZ = 0, IEEE80211_BAND_5GHZ = 1, IEEE80211_BAND_60GHZ = 2, IEEE80211_NUM_BANDS = 3 } ; struct ieee80211_channel { enum ieee80211_band band ; u16 center_freq ; u16 hw_value ; u32 flags ; int max_antenna_gain ; int max_power ; int max_reg_power ; bool beacon_found ; u32 orig_flags ; int orig_mag ; int orig_mpwr ; enum nl80211_dfs_state dfs_state ; unsigned long dfs_state_entered ; unsigned int dfs_cac_ms ; }; struct ieee80211_rate { u32 flags ; u16 bitrate ; u16 hw_value ; u16 hw_value_short ; }; struct ieee80211_sta_ht_cap { u16 cap ; bool ht_supported ; u8 ampdu_factor ; u8 ampdu_density ; struct ieee80211_mcs_info mcs ; }; struct ieee80211_sta_vht_cap { bool vht_supported ; u32 cap ; struct ieee80211_vht_mcs_info vht_mcs ; }; struct ieee80211_supported_band { struct ieee80211_channel *channels ; struct ieee80211_rate *bitrates ; enum ieee80211_band band ; int n_channels ; int n_bitrates ; struct ieee80211_sta_ht_cap ht_cap ; struct ieee80211_sta_vht_cap vht_cap ; }; struct cfg80211_chan_def { struct ieee80211_channel *chan ; enum nl80211_chan_width width ; u32 center_freq1 ; u32 center_freq2 ; }; struct survey_info { struct ieee80211_channel *channel ; u64 channel_time ; u64 channel_time_busy ; u64 channel_time_ext_busy ; u64 channel_time_rx ; u64 channel_time_tx ; u32 filled ; s8 noise ; }; struct cfg80211_crypto_settings { u32 wpa_versions ; u32 cipher_group ; int n_ciphers_pairwise ; u32 ciphers_pairwise[5U] ; int n_akm_suites ; u32 akm_suites[2U] ; bool control_port ; __be16 control_port_ethertype ; bool control_port_no_encrypt ; }; struct mac_address { u8 addr[6U] ; }; struct cfg80211_ssid { u8 ssid[32U] ; u8 ssid_len ; }; struct cfg80211_scan_request { struct cfg80211_ssid *ssids ; int n_ssids ; u32 n_channels ; enum nl80211_bss_scan_width scan_width ; u8 const *ie ; size_t ie_len ; u32 flags ; u32 rates[3U] ; struct wireless_dev *wdev ; struct wiphy *wiphy ; unsigned long scan_start ; bool aborted ; bool notified ; bool no_cck ; struct ieee80211_channel *channels[0U] ; }; struct cfg80211_match_set { struct cfg80211_ssid ssid ; s32 rssi_thold ; }; struct cfg80211_sched_scan_request { struct cfg80211_ssid *ssids ; int n_ssids ; u32 n_channels ; enum nl80211_bss_scan_width scan_width ; u32 interval ; u8 const *ie ; size_t ie_len ; u32 flags ; struct cfg80211_match_set *match_sets ; int n_match_sets ; s32 min_rssi_thold ; struct wiphy *wiphy ; struct net_device *dev ; unsigned long scan_start ; struct ieee80211_channel *channels[0U] ; }; enum cfg80211_signal_type { CFG80211_SIGNAL_TYPE_NONE = 0, CFG80211_SIGNAL_TYPE_MBM = 1, CFG80211_SIGNAL_TYPE_UNSPEC = 2 } ; struct cfg80211_ibss_params { u8 const *ssid ; u8 const *bssid ; struct cfg80211_chan_def chandef ; u8 const *ie ; u8 ssid_len ; u8 ie_len ; u16 beacon_interval ; u32 basic_rates ; bool channel_fixed ; bool privacy ; bool control_port ; bool userspace_handles_dfs ; int mcast_rate[3U] ; struct ieee80211_ht_cap ht_capa ; struct ieee80211_ht_cap ht_capa_mask ; }; struct cfg80211_connect_params { struct ieee80211_channel *channel ; struct ieee80211_channel *channel_hint ; u8 const *bssid ; u8 const *bssid_hint ; u8 const *ssid ; size_t ssid_len ; enum nl80211_auth_type auth_type ; u8 const *ie ; size_t ie_len ; bool privacy ; enum nl80211_mfp mfp ; struct cfg80211_crypto_settings crypto ; u8 const *key ; u8 key_len ; u8 key_idx ; u32 flags ; int bg_scan_period ; struct ieee80211_ht_cap ht_capa ; struct ieee80211_ht_cap ht_capa_mask ; struct ieee80211_vht_cap vht_capa ; struct ieee80211_vht_cap vht_capa_mask ; }; struct __anonstruct_control_288 { u32 legacy ; u8 ht_mcs[10U] ; u16 vht_mcs[8U] ; enum nl80211_txrate_gi gi ; }; struct cfg80211_bitrate_mask { struct __anonstruct_control_288 control[3U] ; }; struct cfg80211_pkt_pattern { u8 const *mask ; u8 const *pattern ; int pattern_len ; int pkt_offset ; }; struct cfg80211_wowlan_tcp { struct socket *sock ; __be32 src ; __be32 dst ; u16 src_port ; u16 dst_port ; u8 dst_mac[6U] ; int payload_len ; u8 const *payload ; struct nl80211_wowlan_tcp_data_seq payload_seq ; u32 data_interval ; u32 wake_len ; u8 const *wake_data ; u8 const *wake_mask ; u32 tokens_size ; struct nl80211_wowlan_tcp_data_token payload_tok ; }; struct cfg80211_wowlan { bool any ; bool disconnect ; bool magic_pkt ; bool gtk_rekey_failure ; bool eap_identity_req ; bool four_way_handshake ; bool rfkill_release ; struct cfg80211_pkt_pattern *patterns ; struct cfg80211_wowlan_tcp *tcp ; int n_patterns ; }; struct cfg80211_gtk_rekey_data { u8 kek[16U] ; u8 kck[16U] ; u8 replay_ctr[8U] ; }; struct ieee80211_iface_limit { u16 max ; u16 types ; }; struct ieee80211_iface_combination { struct ieee80211_iface_limit const *limits ; u32 num_different_channels ; u16 max_interfaces ; u8 n_limits ; bool beacon_int_infra_match ; u8 radar_detect_widths ; u8 radar_detect_regions ; }; struct ieee80211_txrx_stypes { u16 tx ; u16 rx ; }; struct wiphy_wowlan_tcp_support { struct nl80211_wowlan_tcp_data_token_feature const *tok ; u32 data_payload_max ; u32 data_interval_max ; u32 wake_payload_max ; bool seq ; }; struct wiphy_wowlan_support { u32 flags ; int n_patterns ; int pattern_max_len ; int pattern_min_len ; int max_pkt_offset ; struct wiphy_wowlan_tcp_support const *tcp ; }; struct wiphy_coalesce_support { int n_rules ; int max_delay ; int n_patterns ; int pattern_max_len ; int pattern_min_len ; int max_pkt_offset ; }; struct wiphy_vendor_command { struct nl80211_vendor_cmd_info info ; u32 flags ; int (*doit)(struct wiphy * , struct wireless_dev * , void const * , int ) ; }; struct wiphy { u8 perm_addr[6U] ; u8 addr_mask[6U] ; struct mac_address *addresses ; struct ieee80211_txrx_stypes const *mgmt_stypes ; struct ieee80211_iface_combination const *iface_combinations ; int n_iface_combinations ; u16 software_iftypes ; u16 n_addresses ; u16 interface_modes ; u16 max_acl_mac_addrs ; u32 flags ; u32 regulatory_flags ; u32 features ; u32 ap_sme_capa ; enum cfg80211_signal_type signal_type ; int bss_priv_size ; u8 max_scan_ssids ; u8 max_sched_scan_ssids ; u8 max_match_sets ; u16 max_scan_ie_len ; u16 max_sched_scan_ie_len ; int n_cipher_suites ; u32 const *cipher_suites ; u8 retry_short ; u8 retry_long ; u32 frag_threshold ; u32 rts_threshold ; u8 coverage_class ; char fw_version[32U] ; u32 hw_version ; struct wiphy_wowlan_support const *wowlan ; struct cfg80211_wowlan *wowlan_config ; u16 max_remain_on_channel_duration ; u8 max_num_pmkids ; u32 available_antennas_tx ; u32 available_antennas_rx ; u32 probe_resp_offload ; u8 const *extended_capabilities ; u8 const *extended_capabilities_mask ; u8 extended_capabilities_len ; void const *privid ; struct ieee80211_supported_band *bands[3U] ; void (*reg_notifier)(struct wiphy * , struct regulatory_request * ) ; struct ieee80211_regdomain const *regd ; struct device dev ; bool registered ; struct dentry *debugfsdir ; struct ieee80211_ht_cap const *ht_capa_mod_mask ; struct ieee80211_vht_cap const *vht_capa_mod_mask ; struct net *_net ; struct iw_handler_def const *wext ; struct wiphy_coalesce_support const *coalesce ; struct wiphy_vendor_command const *vendor_commands ; struct nl80211_vendor_cmd_info const *vendor_events ; int n_vendor_commands ; int n_vendor_events ; u16 max_ap_assoc_sta ; u8 max_num_csa_counters ; u8 max_adj_channel_rssi_comp ; char priv[0U] ; }; struct cfg80211_conn; struct cfg80211_internal_bss; struct cfg80211_cached_keys; struct __anonstruct_wext_289 { struct cfg80211_ibss_params ibss ; struct cfg80211_connect_params connect ; struct cfg80211_cached_keys *keys ; u8 const *ie ; size_t ie_len ; u8 bssid[6U] ; u8 prev_bssid[6U] ; u8 ssid[32U] ; s8 default_key ; s8 default_mgmt_key ; bool prev_bssid_valid ; }; struct wireless_dev { struct wiphy *wiphy ; enum nl80211_iftype iftype ; struct list_head list ; struct net_device *netdev ; u32 identifier ; struct list_head mgmt_registrations ; spinlock_t mgmt_registrations_lock ; struct mutex mtx ; bool use_4addr ; bool p2p_started ; u8 address[6U] ; u8 ssid[32U] ; u8 ssid_len ; u8 mesh_id_len ; u8 mesh_id_up_len ; struct cfg80211_conn *conn ; struct cfg80211_cached_keys *connect_keys ; struct list_head event_list ; spinlock_t event_lock ; struct cfg80211_internal_bss *current_bss ; struct cfg80211_chan_def preset_chandef ; struct cfg80211_chan_def chandef ; bool ibss_fixed ; bool ibss_dfs_possible ; bool ps ; int ps_timeout ; int beacon_interval ; u32 ap_unexpected_nlportid ; bool cac_started ; unsigned long cac_start_time ; unsigned int cac_time_ms ; u32 owner_nlportid ; struct __anonstruct_wext_289 wext ; }; struct ieee80211_tx_queue_params { u16 txop ; u16 cw_min ; u16 cw_max ; u8 aifs ; bool acm ; bool uapsd ; }; struct ieee80211_low_level_stats { unsigned int dot11ACKFailureCount ; unsigned int dot11RTSFailureCount ; unsigned int dot11FCSErrorCount ; unsigned int dot11RTSSuccessCount ; }; struct ieee80211_chanctx_conf { struct cfg80211_chan_def def ; struct cfg80211_chan_def min_def ; u8 rx_chains_static ; u8 rx_chains_dynamic ; bool radar_enabled ; u8 drv_priv[0U] ; }; enum ieee80211_chanctx_switch_mode { CHANCTX_SWMODE_REASSIGN_VIF = 0, CHANCTX_SWMODE_SWAP_CONTEXTS = 1 } ; struct ieee80211_vif_chanctx_switch { struct ieee80211_vif *vif ; struct ieee80211_chanctx_conf *old_ctx ; struct ieee80211_chanctx_conf *new_ctx ; }; enum ieee80211_rssi_event { RSSI_EVENT_HIGH = 0, RSSI_EVENT_LOW = 1 } ; struct ieee80211_bss_conf { u8 const *bssid ; bool assoc ; bool ibss_joined ; bool ibss_creator ; u16 aid ; bool use_cts_prot ; bool use_short_preamble ; bool use_short_slot ; bool enable_beacon ; u8 dtim_period ; u16 beacon_int ; u16 assoc_capability ; u64 sync_tsf ; u32 sync_device_ts ; u8 sync_dtim_count ; u32 basic_rates ; struct ieee80211_rate *beacon_rate ; int mcast_rate[3U] ; u16 ht_operation_mode ; s32 cqm_rssi_thold ; u32 cqm_rssi_hyst ; struct cfg80211_chan_def chandef ; __be32 arp_addr_list[4U] ; int arp_addr_cnt ; bool qos ; bool idle ; bool ps ; u8 ssid[32U] ; size_t ssid_len ; bool hidden_ssid ; int txpower ; struct ieee80211_p2p_noa_attr p2p_noa_attr ; }; struct ieee80211_key_conf; struct ieee80211_sched_scan_ies { u8 *ie[3U] ; size_t len[3U] ; }; enum ieee80211_smps_mode { IEEE80211_SMPS_AUTOMATIC = 0, IEEE80211_SMPS_OFF = 1, IEEE80211_SMPS_STATIC = 2, IEEE80211_SMPS_DYNAMIC = 3, IEEE80211_SMPS_NUM_MODES = 4 } ; struct ieee80211_conf { u32 flags ; int power_level ; int dynamic_ps_timeout ; int max_sleep_period ; u16 listen_interval ; u8 ps_dtim_period ; u8 long_frame_max_tx_count ; u8 short_frame_max_tx_count ; struct cfg80211_chan_def chandef ; bool radar_enabled ; enum ieee80211_smps_mode smps_mode ; }; struct ieee80211_channel_switch { u64 timestamp ; bool block_tx ; struct cfg80211_chan_def chandef ; u8 count ; }; struct ieee80211_vif { enum nl80211_iftype type ; struct ieee80211_bss_conf bss_conf ; u8 addr[6U] ; bool p2p ; bool csa_active ; u8 cab_queue ; u8 hw_queue[4U] ; struct ieee80211_chanctx_conf *chanctx_conf ; u32 driver_flags ; struct dentry *debugfs_dir ; u8 drv_priv[0U] ; }; struct ieee80211_key_conf { u32 cipher ; u8 icv_len ; u8 iv_len ; u8 hw_key_idx ; u8 flags ; s8 keyidx ; u8 keylen ; u8 key[0U] ; }; struct ieee80211_cipher_scheme { u32 cipher ; u16 iftype ; u8 hdr_len ; u8 pn_len ; u8 pn_off ; u8 key_idx_off ; u8 key_idx_mask ; u8 key_idx_shift ; u8 mic_len ; }; enum set_key_cmd { SET_KEY = 0, DISABLE_KEY = 1 } ; enum ieee80211_sta_state { IEEE80211_STA_NOTEXIST = 0, IEEE80211_STA_NONE = 1, IEEE80211_STA_AUTH = 2, IEEE80211_STA_ASSOC = 3, IEEE80211_STA_AUTHORIZED = 4 } ; enum ieee80211_sta_rx_bandwidth { IEEE80211_STA_RX_BW_20 = 0, IEEE80211_STA_RX_BW_40 = 1, IEEE80211_STA_RX_BW_80 = 2, IEEE80211_STA_RX_BW_160 = 3 } ; struct __anonstruct_rate_296 { s8 idx ; u8 count ; u8 count_cts ; u8 count_rts ; u16 flags ; }; struct ieee80211_sta_rates { struct callback_head callback_head ; struct __anonstruct_rate_296 rate[4U] ; }; struct ieee80211_sta { u32 supp_rates[3U] ; u8 addr[6U] ; u16 aid ; struct ieee80211_sta_ht_cap ht_cap ; struct ieee80211_sta_vht_cap vht_cap ; bool wme ; u8 uapsd_queues ; u8 max_sp ; u8 rx_nss ; enum ieee80211_sta_rx_bandwidth bandwidth ; enum ieee80211_smps_mode smps_mode ; struct ieee80211_sta_rates *rates ; bool tdls ; u8 drv_priv[0U] ; }; enum sta_notify_cmd { STA_NOTIFY_SLEEP = 0, STA_NOTIFY_AWAKE = 1 } ; struct ieee80211_tx_control { struct ieee80211_sta *sta ; }; struct ieee80211_hw { struct ieee80211_conf conf ; struct wiphy *wiphy ; char const *rate_control_algorithm ; void *priv ; u32 flags ; unsigned int extra_tx_headroom ; unsigned int extra_beacon_tailroom ; int vif_data_size ; int sta_data_size ; int chanctx_data_size ; u16 queues ; u16 max_listen_interval ; s8 max_signal ; u8 max_rates ; u8 max_report_rates ; u8 max_rate_tries ; u8 max_rx_aggregation_subframes ; u8 max_tx_aggregation_subframes ; u8 offchannel_tx_hw_queue ; u8 radiotap_mcs_details ; u16 radiotap_vht_details ; netdev_features_t netdev_features ; u8 uapsd_queues ; u8 uapsd_max_sp_len ; u8 n_cipher_schemes ; struct ieee80211_cipher_scheme const *cipher_schemes ; }; enum ieee80211_ampdu_mlme_action { IEEE80211_AMPDU_RX_START = 0, IEEE80211_AMPDU_RX_STOP = 1, IEEE80211_AMPDU_TX_START = 2, IEEE80211_AMPDU_TX_STOP_CONT = 3, IEEE80211_AMPDU_TX_STOP_FLUSH = 4, IEEE80211_AMPDU_TX_STOP_FLUSH_CONT = 5, IEEE80211_AMPDU_TX_OPERATIONAL = 6 } ; enum ieee80211_frame_release_type { IEEE80211_FRAME_RELEASE_PSPOLL = 0, IEEE80211_FRAME_RELEASE_UAPSD = 1 } ; enum ieee80211_roc_type { IEEE80211_ROC_TYPE_NORMAL = 0, IEEE80211_ROC_TYPE_MGMT_TX = 1 } ; struct ieee80211_ops { void (*tx)(struct ieee80211_hw * , struct ieee80211_tx_control * , struct sk_buff * ) ; int (*start)(struct ieee80211_hw * ) ; void (*stop)(struct ieee80211_hw * ) ; int (*suspend)(struct ieee80211_hw * , struct cfg80211_wowlan * ) ; int (*resume)(struct ieee80211_hw * ) ; void (*set_wakeup)(struct ieee80211_hw * , bool ) ; int (*add_interface)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*change_interface)(struct ieee80211_hw * , struct ieee80211_vif * , enum nl80211_iftype , bool ) ; void (*remove_interface)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*config)(struct ieee80211_hw * , u32 ) ; void (*bss_info_changed)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_bss_conf * , u32 ) ; int (*start_ap)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*stop_ap)(struct ieee80211_hw * , struct ieee80211_vif * ) ; u64 (*prepare_multicast)(struct ieee80211_hw * , struct netdev_hw_addr_list * ) ; void (*configure_filter)(struct ieee80211_hw * , unsigned int , unsigned int * , u64 ) ; int (*set_tim)(struct ieee80211_hw * , struct ieee80211_sta * , bool ) ; int (*set_key)(struct ieee80211_hw * , enum set_key_cmd , struct ieee80211_vif * , struct ieee80211_sta * , struct ieee80211_key_conf * ) ; void (*update_tkip_key)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_key_conf * , struct ieee80211_sta * , u32 , u16 * ) ; void (*set_rekey_data)(struct ieee80211_hw * , struct ieee80211_vif * , struct cfg80211_gtk_rekey_data * ) ; void (*set_default_unicast_key)(struct ieee80211_hw * , struct ieee80211_vif * , int ) ; int (*hw_scan)(struct ieee80211_hw * , struct ieee80211_vif * , struct cfg80211_scan_request * ) ; void (*cancel_hw_scan)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*sched_scan_start)(struct ieee80211_hw * , struct ieee80211_vif * , struct cfg80211_sched_scan_request * , struct ieee80211_sched_scan_ies * ) ; int (*sched_scan_stop)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*sw_scan_start)(struct ieee80211_hw * ) ; void (*sw_scan_complete)(struct ieee80211_hw * ) ; int (*get_stats)(struct ieee80211_hw * , struct ieee80211_low_level_stats * ) ; void (*get_tkip_seq)(struct ieee80211_hw * , u8 , u32 * , u16 * ) ; int (*set_frag_threshold)(struct ieee80211_hw * , u32 ) ; int (*set_rts_threshold)(struct ieee80211_hw * , u32 ) ; int (*sta_add)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * ) ; int (*sta_remove)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * ) ; void (*sta_add_debugfs)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , struct dentry * ) ; void (*sta_remove_debugfs)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , struct dentry * ) ; void (*sta_notify)(struct ieee80211_hw * , struct ieee80211_vif * , enum sta_notify_cmd , struct ieee80211_sta * ) ; int (*sta_state)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , enum ieee80211_sta_state , enum ieee80211_sta_state ) ; void (*sta_pre_rcu_remove)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * ) ; void (*sta_rc_update)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , u32 ) ; int (*conf_tx)(struct ieee80211_hw * , struct ieee80211_vif * , u16 , struct ieee80211_tx_queue_params const * ) ; u64 (*get_tsf)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*set_tsf)(struct ieee80211_hw * , struct ieee80211_vif * , u64 ) ; void (*reset_tsf)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*tx_last_beacon)(struct ieee80211_hw * ) ; int (*ampdu_action)(struct ieee80211_hw * , struct ieee80211_vif * , enum ieee80211_ampdu_mlme_action , struct ieee80211_sta * , u16 , u16 * , u8 ) ; int (*get_survey)(struct ieee80211_hw * , int , struct survey_info * ) ; void (*rfkill_poll)(struct ieee80211_hw * ) ; void (*set_coverage_class)(struct ieee80211_hw * , u8 ) ; int (*testmode_cmd)(struct ieee80211_hw * , struct ieee80211_vif * , void * , int ) ; int (*testmode_dump)(struct ieee80211_hw * , struct sk_buff * , struct netlink_callback * , void * , int ) ; void (*flush)(struct ieee80211_hw * , struct ieee80211_vif * , u32 , bool ) ; void (*channel_switch)(struct ieee80211_hw * , struct ieee80211_channel_switch * ) ; int (*set_antenna)(struct ieee80211_hw * , u32 , u32 ) ; int (*get_antenna)(struct ieee80211_hw * , u32 * , u32 * ) ; int (*remain_on_channel)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_channel * , int , enum ieee80211_roc_type ) ; int (*cancel_remain_on_channel)(struct ieee80211_hw * ) ; int (*set_ringparam)(struct ieee80211_hw * , u32 , u32 ) ; void (*get_ringparam)(struct ieee80211_hw * , u32 * , u32 * , u32 * , u32 * ) ; bool (*tx_frames_pending)(struct ieee80211_hw * ) ; int (*set_bitrate_mask)(struct ieee80211_hw * , struct ieee80211_vif * , struct cfg80211_bitrate_mask const * ) ; void (*rssi_callback)(struct ieee80211_hw * , struct ieee80211_vif * , enum ieee80211_rssi_event ) ; void (*allow_buffered_frames)(struct ieee80211_hw * , struct ieee80211_sta * , u16 , int , enum ieee80211_frame_release_type , bool ) ; void (*release_buffered_frames)(struct ieee80211_hw * , struct ieee80211_sta * , u16 , int , enum ieee80211_frame_release_type , bool ) ; int (*get_et_sset_count)(struct ieee80211_hw * , struct ieee80211_vif * , int ) ; void (*get_et_stats)(struct ieee80211_hw * , struct ieee80211_vif * , struct ethtool_stats * , u64 * ) ; void (*get_et_strings)(struct ieee80211_hw * , struct ieee80211_vif * , u32 , u8 * ) ; int (*get_rssi)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , s8 * ) ; void (*mgd_prepare_tx)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*add_chanctx)(struct ieee80211_hw * , struct ieee80211_chanctx_conf * ) ; void (*remove_chanctx)(struct ieee80211_hw * , struct ieee80211_chanctx_conf * ) ; void (*change_chanctx)(struct ieee80211_hw * , struct ieee80211_chanctx_conf * , u32 ) ; int (*assign_vif_chanctx)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_chanctx_conf * ) ; void (*unassign_vif_chanctx)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_chanctx_conf * ) ; int (*switch_vif_chanctx)(struct ieee80211_hw * , struct ieee80211_vif_chanctx_switch * , int , enum ieee80211_chanctx_switch_mode ) ; void (*restart_complete)(struct ieee80211_hw * ) ; void (*ipv6_addr_change)(struct ieee80211_hw * , struct ieee80211_vif * , struct inet6_dev * ) ; void (*channel_switch_beacon)(struct ieee80211_hw * , struct ieee80211_vif * , struct cfg80211_chan_def * ) ; int (*join_ibss)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*leave_ibss)(struct ieee80211_hw * , struct ieee80211_vif * ) ; u32 (*get_expected_throughput)(struct ieee80211_sta * ) ; }; enum wcn36xx_hal_sys_mode { HAL_SYS_MODE_NORMAL = 0, HAL_SYS_MODE_LEARN = 1, HAL_SYS_MODE_SCAN = 2, HAL_SYS_MODE_PROMISC = 3, HAL_SYS_MODE_SUSPEND_LINK = 4, HAL_SYS_MODE_ROAM_SCAN = 5, HAL_SYS_MODE_ROAM_SUSPEND_LINK = 6, HAL_SYS_MODE_MAX = 2147483647 } ; enum sta_rate_mode { STA_TAURUS = 0, STA_TITAN = 1, STA_POLARIS = 2, STA_11b = 3, STA_11bg = 4, STA_11a = 5, STA_11n = 6, STA_11ac = 7, STA_INVALID_RATE_MODE = 2147483647 } ; enum ani_ed_type { WCN36XX_HAL_ED_NONE = 0, WCN36XX_HAL_ED_WEP40 = 1, WCN36XX_HAL_ED_WEP104 = 2, WCN36XX_HAL_ED_TKIP = 3, WCN36XX_HAL_ED_CCMP = 4, WCN36XX_HAL_ED_WPI = 5, WCN36XX_HAL_ED_AES_128_CMAC = 6, WCN36XX_HAL_ED_NOT_IMPLEMENTED = 2147483647 } ; enum wcn36xx_hal_link_state { WCN36XX_HAL_LINK_IDLE_STATE = 0, WCN36XX_HAL_LINK_PREASSOC_STATE = 1, WCN36XX_HAL_LINK_POSTASSOC_STATE = 2, WCN36XX_HAL_LINK_AP_STATE = 3, WCN36XX_HAL_LINK_IBSS_STATE = 4, WCN36XX_HAL_LINK_BTAMP_PREASSOC_STATE = 5, WCN36XX_HAL_LINK_BTAMP_POSTASSOC_STATE = 6, WCN36XX_HAL_LINK_BTAMP_AP_STATE = 7, WCN36XX_HAL_LINK_BTAMP_STA_STATE = 8, WCN36XX_HAL_LINK_LEARN_STATE = 9, WCN36XX_HAL_LINK_SCAN_STATE = 10, WCN36XX_HAL_LINK_FINISH_SCAN_STATE = 11, WCN36XX_HAL_LINK_INIT_CAL_STATE = 12, WCN36XX_HAL_LINK_FINISH_CAL_STATE = 13, WCN36XX_HAL_LINK_LISTEN_STATE = 14, WCN36XX_HAL_LINK_MAX = 2147483647 } ; struct wcn36xx_hal_supported_rates { enum sta_rate_mode op_rate_mode ; u16 dsss_rates[4U] ; u16 ofdm_rates[8U] ; u16 legacy_rates[3U] ; u16 reserved ; u32 enhanced_rate_bitmap ; u8 supported_mcs_set[16U] ; u16 rx_highest_data_rate ; }; struct wcn36xx_hal_mac_ssid { u8 length ; u8 ssid[32U] ; }; enum place_holder_in_cap_bitmap { MCC = 0, P2P = 1, DOT11AC = 2, SLM_SESSIONIZATION = 3, DOT11AC_OPMODE = 4, SAP32STA = 5, TDLS = 6, P2P_GO_NOA_DECOUPLE_INIT_SCAN = 7, WLANACTIVE_OFFLOAD = 8, BEACON_OFFLOAD = 9, SCAN_OFFLOAD = 10, ROAM_OFFLOAD = 11, BCN_MISS_OFFLOAD = 12, STA_POWERSAVE = 13, STA_ADVANCED_PWRSAVE = 14, AP_UAPSD = 15, AP_DFS = 16, BLOCKACK = 17, PHY_ERR = 18, BCN_FILTER = 19, RTT = 20, RATECTRL = 21, WOW = 22, MAX_FEATURE_SUPPORTED = 128 } ; struct wcn36xx; struct wcn36xx_sta; enum wcn36xx_dxe_ch_type { WCN36XX_DXE_CH_TX_L = 0, WCN36XX_DXE_CH_TX_H = 1, WCN36XX_DXE_CH_RX_L = 2, WCN36XX_DXE_CH_RX_H = 3 } ; enum wcn36xx_dxe_ch_desc_num { WCN36XX_DXE_CH_DESC_NUMB_TX_L = 128, WCN36XX_DXE_CH_DESC_NUMB_TX_H = 10, WCN36XX_DXE_CH_DESC_NUMB_RX_L = 512, WCN36XX_DXE_CH_DESC_NUMB_RX_H = 40 } ; struct wcn36xx_dxe_desc { u32 ctrl ; u32 fr_len ; u32 src_addr_l ; u32 dst_addr_l ; u32 phy_next_l ; u32 src_addr_h ; u32 dst_addr_h ; u32 phy_next_h ; }; struct wcn36xx_dxe_ctl { struct wcn36xx_dxe_ctl *next ; struct wcn36xx_dxe_desc *desc ; unsigned int desc_phy_addr ; int ctl_blk_order ; struct sk_buff *skb ; spinlock_t skb_lock ; void *bd_cpu_addr ; dma_addr_t bd_phy_addr ; }; struct wcn36xx_dxe_ch { enum wcn36xx_dxe_ch_type ch_type ; void *cpu_addr ; dma_addr_t dma_addr ; enum wcn36xx_dxe_ch_desc_num desc_num ; struct wcn36xx_dxe_ctl *head_blk_ctl ; struct wcn36xx_dxe_ctl *tail_blk_ctl ; u32 dxe_wq ; u32 ctrl_bd ; u32 ctrl_skb ; u32 reg_ctrl ; u32 def_ctrl ; }; struct wcn36xx_dxe_mem_pool { int chunk_size ; void *virt_addr ; dma_addr_t phy_addr ; }; struct wcn36xx_vif; enum wcn36xx_power_state { WCN36XX_FULL_POWER = 0, WCN36XX_BMPS = 1 } ; struct wcn36xx_dfs_file { struct dentry *dentry ; u32 value ; }; struct wcn36xx_dfs_entry { struct dentry *rootdir ; struct wcn36xx_dfs_file file_bmps_switcher ; struct wcn36xx_dfs_file file_dump ; }; struct wcn36xx_platform_ctrl_ops { int (*open)(void * , void * ) ; void (*close)(void) ; int (*tx)(char * , size_t ) ; int (*get_hw_mac)(u8 * ) ; int (*smsm_change_state)(u32 , u32 ) ; }; struct wcn36xx_vif { struct list_head list ; struct wcn36xx_sta *sta ; u8 dtim_period ; enum ani_ed_type encrypt_type ; bool is_joining ; struct wcn36xx_hal_mac_ssid ssid ; enum wcn36xx_power_state pw_state ; u8 bss_index ; u8 self_sta_index ; u8 self_dpu_desc_index ; u8 self_ucast_dpu_sign ; }; struct wcn36xx_sta { struct wcn36xx_vif *vif ; u16 aid ; u16 tid ; u8 sta_index ; u8 dpu_desc_index ; u8 ucast_dpu_sign ; u8 bss_sta_index ; u8 bss_dpu_desc_index ; bool is_data_encrypted ; struct wcn36xx_hal_supported_rates supported_rates ; }; struct wcn36xx { struct ieee80211_hw *hw ; struct device *dev ; struct list_head vif_list ; struct firmware const *nv ; u8 fw_revision ; u8 fw_version ; u8 fw_minor ; u8 fw_major ; u32 fw_feat_caps[4U] ; u32 chip_version ; u8 crm_version[65U] ; u8 wlan_version[65U] ; int tx_irq ; int rx_irq ; void *mmio ; struct wcn36xx_platform_ctrl_ops *ctrl_ops ; u8 *hal_buf ; size_t hal_rsp_len ; struct mutex hal_mutex ; struct completion hal_rsp_compl ; struct workqueue_struct *hal_ind_wq ; struct work_struct hal_ind_work ; struct mutex hal_ind_mutex ; struct list_head hal_ind_queue ; struct wcn36xx_dxe_ch dxe_tx_l_ch ; struct wcn36xx_dxe_ch dxe_tx_h_ch ; struct wcn36xx_dxe_ch dxe_rx_l_ch ; struct wcn36xx_dxe_ch dxe_rx_h_ch ; spinlock_t dxe_lock ; bool queues_stopped ; struct wcn36xx_dxe_mem_pool mgmt_mem_pool ; struct wcn36xx_dxe_mem_pool data_mem_pool ; struct sk_buff *tx_ack_skb ; struct wcn36xx_dfs_entry dfs ; }; typedef int ldv_func_ret_type; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; enum hrtimer_restart; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct ieee80211_tx_rate { s8 idx ; unsigned char count : 5 ; unsigned short flags : 11 ; }; struct __anonstruct_ldv_44722_285 { struct ieee80211_tx_rate rates[4U] ; s8 rts_cts_rate_idx ; unsigned char use_rts : 1 ; unsigned char use_cts_prot : 1 ; unsigned char short_preamble : 1 ; unsigned char skip_table : 1 ; }; union __anonunion_ldv_44724_284 { struct __anonstruct_ldv_44722_285 ldv_44722 ; unsigned long jiffies ; }; struct __anonstruct_control_283 { union __anonunion_ldv_44724_284 ldv_44724 ; struct ieee80211_vif *vif ; struct ieee80211_key_conf *hw_key ; u32 flags ; }; struct __anonstruct_status_286 { struct ieee80211_tx_rate rates[4U] ; s32 ack_signal ; u8 ampdu_ack_len ; u8 ampdu_len ; u8 antenna ; void *status_driver_data[2U] ; }; struct __anonstruct_ldv_44742_287 { struct ieee80211_tx_rate driver_rates[4U] ; u8 pad[4U] ; void *rate_driver_data[3U] ; }; union __anonunion_ldv_44744_282 { struct __anonstruct_control_283 control ; struct __anonstruct_status_286 status ; struct __anonstruct_ldv_44742_287 ldv_44742 ; void *driver_data[5U] ; }; struct ieee80211_tx_info { u32 flags ; u8 band ; u8 hw_queue ; u16 ack_frame_id ; union __anonunion_ldv_44744_282 ldv_44744 ; }; typedef int ldv_func_ret_type___0; enum hrtimer_restart; struct ieee80211_hdr { __le16 frame_control ; __le16 duration_id ; u8 addr1[6U] ; u8 addr2[6U] ; u8 addr3[6U] ; __le16 seq_ctrl ; u8 addr4[6U] ; }; struct ieee80211_rx_status; struct ieee80211_rx_status { u64 mactime ; u32 device_timestamp ; u32 ampdu_reference ; u32 flag ; u16 freq ; u8 vht_flag ; u8 rate_idx ; u8 vht_nss ; u8 rx_flags ; u8 band ; u8 antenna ; s8 signal ; u8 chains ; s8 chain_signal[4U] ; u8 ampdu_delimiter_crc ; }; struct wcn36xx_pdu { unsigned char dpu_fb ; unsigned char adu_fb ; unsigned short pdu_id ; unsigned short tail_pdu_idx ; unsigned short head_pdu_idx ; unsigned char pdu_count : 7 ; unsigned short mpdu_data_off : 9 ; unsigned char mpdu_header_off ; unsigned char mpdu_header_len ; unsigned char reserved4 ; unsigned char tid : 4 ; unsigned char reserved3 : 4 ; unsigned short mpdu_len ; }; struct wcn36xx_rx_bd { unsigned char bdt : 2 ; unsigned char ft : 1 ; unsigned char dpu_ne : 1 ; unsigned char rx_key_id : 3 ; unsigned char ub : 1 ; unsigned char rmf : 1 ; unsigned char uma_bypass : 1 ; unsigned char csr11 : 1 ; unsigned char reserved0 : 1 ; unsigned char scan_learn : 1 ; unsigned char rx_ch : 4 ; unsigned char rtsf : 1 ; unsigned char bsf : 1 ; unsigned char a2hf : 1 ; unsigned char st_auf : 1 ; unsigned char dpu_sign : 3 ; unsigned char dpu_rf ; struct wcn36xx_pdu pdu ; unsigned char addr3 ; unsigned char addr2 ; unsigned char addr1 ; unsigned char dpu_desc_idx ; unsigned int rxp_flags : 23 ; unsigned short rate_id : 9 ; u32 phy_stat0 ; u32 phy_stat1 ; u32 rx_times ; u32 pmi_cmd[6U] ; unsigned char reserved7 : 4 ; unsigned char reorder_slot_id : 6 ; unsigned char reorder_fwd_id : 6 ; unsigned short reserved6 : 12 ; unsigned char reorder_code : 4 ; unsigned short exp_seq_num : 12 ; unsigned short cur_seq_num : 12 ; unsigned char fr_type_subtype ; unsigned short msdu_size ; unsigned char sub_fr_id : 4 ; unsigned char proc_order : 4 ; unsigned char reserved9 : 4 ; unsigned char aef : 1 ; unsigned char lsf : 1 ; unsigned char esf : 1 ; unsigned char asf : 1 ; }; struct wcn36xx_tx_bd { unsigned char bdt : 2 ; unsigned char ft : 1 ; unsigned char dpu_ne : 1 ; unsigned char fw_tx_comp : 1 ; unsigned char tx_comp : 1 ; unsigned char reserved1 : 1 ; unsigned char ub : 1 ; unsigned char rmf : 1 ; unsigned short reserved0 : 12 ; unsigned char dpu_sign : 3 ; unsigned char dpu_rf ; struct wcn36xx_pdu pdu ; unsigned char reserved5 : 7 ; unsigned char queue_id : 5 ; unsigned char bd_rate : 2 ; unsigned char ack_policy : 2 ; unsigned char sta_index ; unsigned char dpu_desc_idx ; u32 tx_bd_sign ; u32 reserved6 ; u32 dxe_start_time ; u32 dxe_end_time ; }; enum hrtimer_restart; enum driver_type { DRIVER_TYPE_PRODUCTION = 0, DRIVER_TYPE_MFG = 1, DRIVER_TYPE_DVT = 2, DRIVER_TYPE_MAX = 2147483647 } ; enum wcn36xx_hal_stop_type { HAL_STOP_TYPE_SYS_RESET = 0, HAL_STOP_TYPE_SYS_DEEP_SLEEP = 1, HAL_STOP_TYPE_RF_KILL = 2, HAL_STOP_TYPE_MAX = 2147483647 } ; enum phy_chan_bond_state { PHY_SINGLE_CHANNEL_CENTERED = 0, PHY_DOUBLE_CHANNEL_LOW_PRIMARY = 1, PHY_DOUBLE_CHANNEL_CENTERED = 2, PHY_DOUBLE_CHANNEL_HIGH_PRIMARY = 3, PHY_QUADRUPLE_CHANNEL_20MHZ_LOW_40MHZ_CENTERED = 4, PHY_QUADRUPLE_CHANNEL_20MHZ_CENTERED_40MHZ_CENTERED = 5, PHY_QUADRUPLE_CHANNEL_20MHZ_HIGH_40MHZ_CENTERED = 6, PHY_QUADRUPLE_CHANNEL_20MHZ_LOW_40MHZ_LOW = 7, PHY_QUADRUPLE_CHANNEL_20MHZ_HIGH_40MHZ_LOW = 8, PHY_QUADRUPLE_CHANNEL_20MHZ_LOW_40MHZ_HIGH = 9, PHY_QUADRUPLE_CHANNEL_20MHZ_HIGH_40MHZ_HIGH = 10, PHY_CHANNEL_BONDING_STATE_MAX = 2147483647 } ; enum wcn36xx_hal_ht_mimo_state { WCN36XX_HAL_HT_MIMO_PS_STATIC = 0, WCN36XX_HAL_HT_MIMO_PS_DYNAMIC = 1, WCN36XX_HAL_HT_MIMO_PS_NA = 2, WCN36XX_HAL_HT_MIMO_PS_NO_LIMIT = 3, WCN36XX_HAL_HT_MIMO_PS_MAX = 2147483647 } ; enum wcn36xx_hal_bss_type { WCN36XX_HAL_INFRASTRUCTURE_MODE = 0, WCN36XX_HAL_INFRA_AP_MODE = 1, WCN36XX_HAL_IBSS_MODE = 2, WCN36XX_HAL_BTAMP_STA_MODE = 3, WCN36XX_HAL_BTAMP_AP_MODE = 4, WCN36XX_HAL_AUTO_MODE = 5, WCN36XX_HAL_DONOT_USE_BSS_TYPE = 2147483647 } ; enum wcn36xx_hal_nw_type { WCN36XX_HAL_11A_NW_TYPE = 0, WCN36XX_HAL_11B_NW_TYPE = 1, WCN36XX_HAL_11G_NW_TYPE = 2, WCN36XX_HAL_11N_NW_TYPE = 3, WCN36XX_HAL_DONOT_USE_NW_TYPE = 2147483647 } ; enum wcn36xx_hal_ht_operating_mode { WCN36XX_HAL_HT_OP_MODE_PURE = 0, WCN36XX_HAL_HT_OP_MODE_OVERLAP_LEGACY = 1, WCN36XX_HAL_HT_OP_MODE_NO_LEGACY_20MHZ_HT = 2, WCN36XX_HAL_HT_OP_MODE_MIXED = 3, WCN36XX_HAL_HT_OP_MODE_MAX = 2147483647 } ; enum ani_key_direction { WCN36XX_HAL_TX_ONLY = 0, WCN36XX_HAL_RX_ONLY = 1, WCN36XX_HAL_TX_RX = 2, WCN36XX_HAL_TX_DEFAULT = 3, WCN36XX_HAL_DONOT_USE_KEY_DIRECTION = 2147483647 } ; enum ani_wep_type { WCN36XX_HAL_WEP_STATIC = 0, WCN36XX_HAL_WEP_DYNAMIC = 1, WCN36XX_HAL_WEP_MAX = 2147483647 } ; struct wcnss_wlan_version { u8 revision ; u8 version ; u8 minor ; u8 major ; }; struct wcn36xx_hal_keys { u8 id ; u8 unicast ; enum ani_key_direction direction ; u8 rsc[16U] ; u8 pae_role ; u16 length ; u8 key[32U] ; }; struct wcn36xx_hal_set_sta_key_params { u16 sta_index ; enum ani_ed_type enc_type ; enum ani_wep_type wep_type ; u8 def_wep_idx ; struct wcn36xx_hal_keys key[4U] ; u8 single_tid_rc ; }; struct wcn36xx_hal_msg_header { unsigned short msg_type ; unsigned short msg_version ; u32 len ; }; struct wcn36xx_hal_cfg { u16 id ; u16 len ; u16 pad_bytes ; u16 reserve ; }; struct wcn36xx_hal_mac_start_parameters { enum driver_type type ; u32 len ; }; struct wcn36xx_hal_mac_start_req_msg { struct wcn36xx_hal_msg_header header ; struct wcn36xx_hal_mac_start_parameters params ; }; struct wcn36xx_hal_mac_start_rsp_params { u16 status ; u8 stations ; u8 bssids ; struct wcnss_wlan_version version ; u8 crm_version[64U] ; u8 wlan_version[64U] ; }; struct wcn36xx_hal_mac_start_rsp_msg { struct wcn36xx_hal_msg_header header ; struct wcn36xx_hal_mac_start_rsp_params start_rsp_params ; }; struct wcn36xx_hal_mac_stop_req_params { enum wcn36xx_hal_stop_type reason ; }; struct wcn36xx_hal_mac_stop_req_msg { struct wcn36xx_hal_msg_header header ; struct wcn36xx_hal_mac_stop_req_params stop_req_params ; }; struct wcn36xx_hal_update_cfg_req_msg { struct wcn36xx_hal_msg_header header ; u32 len ; }; struct wcn36xx_hal_mac_frame_ctl { unsigned char subType : 4 ; unsigned char type : 2 ; unsigned char protVer : 2 ; unsigned char order : 1 ; unsigned char wep : 1 ; unsigned char moreData : 1 ; unsigned char powerMgmt : 1 ; unsigned char retry : 1 ; unsigned char moreFrag : 1 ; unsigned char fromDS : 1 ; unsigned char toDS : 1 ; }; struct wcn36xx_hal_mac_seq_ctl { unsigned char fragNum : 4 ; unsigned char seqNumLo : 4 ; u8 seqNumHi ; }; struct wcn36xx_hal_mac_mgmt_hdr { struct wcn36xx_hal_mac_frame_ctl fc ; u8 durationLo ; u8 durationHi ; u8 da[6U] ; u8 sa[6U] ; u8 bssId[6U] ; struct wcn36xx_hal_mac_seq_ctl seqControl ; }; struct wcn36xx_hal_scan_entry { u8 bss_index[2U] ; u8 active_bss_count ; }; struct wcn36xx_hal_init_scan_req_msg { struct wcn36xx_hal_msg_header header ; enum wcn36xx_hal_sys_mode mode ; u8 bssid[6U] ; u8 notify ; u8 frame_type ; u8 frame_len ; struct wcn36xx_hal_mac_mgmt_hdr mac_mgmt_hdr ; struct wcn36xx_hal_scan_entry scan_entry ; }; struct wcn36xx_hal_start_scan_req_msg { struct wcn36xx_hal_msg_header header ; u8 scan_channel ; }; struct wcn36xx_hal_end_scan_req_msg { struct wcn36xx_hal_msg_header header ; u8 scan_channel ; }; struct wcn36xx_hal_finish_scan_req_msg { struct wcn36xx_hal_msg_header header ; enum wcn36xx_hal_sys_mode mode ; u8 oper_channel ; enum phy_chan_bond_state cb_state ; u8 bssid[6U] ; u8 notify ; u8 frame_type ; u8 frame_length ; struct wcn36xx_hal_mac_mgmt_hdr mac_mgmt_hdr ; struct wcn36xx_hal_scan_entry scan_entry ; }; struct wcn36xx_hal_config_sta_params { u8 bssid[6U] ; u16 aid ; u8 type ; u8 short_preamble_supported ; u8 mac[6U] ; u16 listen_interval ; u8 wmm_enabled ; u8 ht_capable ; u8 tx_channel_width_set ; u8 rifs_mode ; u8 lsig_txop_protection ; u8 max_ampdu_size ; u8 max_ampdu_density ; u8 max_amsdu_size ; u8 sgi_40mhz ; u8 sgi_20Mhz ; struct wcn36xx_hal_supported_rates supported_rates ; u8 rmf ; u32 encrypt_type ; u8 action ; u8 uapsd ; u8 max_sp_len ; u8 green_field_capable ; enum wcn36xx_hal_ht_mimo_state mimo_ps ; u8 delayed_ba_support ; u8 max_ampdu_duration ; u8 dsss_cck_mode_40mhz ; u8 sta_index ; u8 bssid_index ; u8 p2p ; }; struct wcn36xx_hal_config_sta_req_msg { struct wcn36xx_hal_msg_header header ; struct wcn36xx_hal_config_sta_params sta_params ; }; struct wcn36xx_hal_config_sta_params_v1 { u8 bssid[6U] ; u16 aid ; u8 type ; u8 short_preamble_supported ; u8 mac[6U] ; u16 listen_interval ; u8 wmm_enabled ; u8 ht_capable ; u8 tx_channel_width_set ; u8 rifs_mode ; u8 lsig_txop_protection ; u8 max_ampdu_size ; u8 max_ampdu_density ; u8 max_amsdu_size ; u8 sgi_40mhz ; u8 sgi_20Mhz ; u8 rmf ; u32 encrypt_type ; u8 action ; u8 uapsd ; u8 max_sp_len ; u8 green_field_capable ; enum wcn36xx_hal_ht_mimo_state mimo_ps ; u8 delayed_ba_support ; u8 max_ampdu_duration ; u8 dsss_cck_mode_40mhz ; u8 sta_index ; u8 bssid_index ; u8 p2p ; u8 reserved ; struct wcn36xx_hal_supported_rates supported_rates ; }; struct wcn36xx_hal_config_sta_req_msg_v1 { struct wcn36xx_hal_msg_header header ; struct wcn36xx_hal_config_sta_params_v1 sta_params ; }; struct config_sta_rsp_params { u32 status ; u8 sta_index ; u8 bssid_index ; u8 dpu_index ; u8 bcast_dpu_index ; u8 bcast_mgmt_dpu_idx ; u8 uc_ucast_sig ; u8 uc_bcast_sig ; u8 uc_mgmt_sig ; u8 p2p ; }; struct wcn36xx_hal_config_sta_rsp_msg { struct wcn36xx_hal_msg_header header ; struct config_sta_rsp_params params ; }; struct wcn36xx_hal_delete_sta_req_msg { struct wcn36xx_hal_msg_header header ; u8 sta_index ; }; struct wcn36xx_hal_rate_set { u8 num_rates ; u8 rate[12U] ; }; struct wcn36xx_hal_aci_aifsn { unsigned char rsvd : 1 ; unsigned char aci : 2 ; unsigned char acm : 1 ; unsigned char aifsn : 4 ; }; struct wcn36xx_hal_mac_cw { unsigned char max : 4 ; unsigned char min : 4 ; }; struct wcn36xx_hal_edca_param_record { struct wcn36xx_hal_aci_aifsn aci ; struct wcn36xx_hal_mac_cw cw ; u16 txop_limit ; }; struct wcn36xx_hal_config_bss_params { u8 bssid[6U] ; u8 self_mac_addr[6U] ; enum wcn36xx_hal_bss_type bss_type ; u8 oper_mode ; enum wcn36xx_hal_nw_type nw_type ; u8 short_slot_time_supported ; u8 lla_coexist ; u8 llb_coexist ; u8 llg_coexist ; u8 ht20_coexist ; u8 lln_non_gf_coexist ; u8 lsig_tx_op_protection_full_support ; u8 rifs_mode ; u16 beacon_interval ; u8 dtim_period ; u8 tx_channel_width_set ; u8 oper_channel ; u8 ext_channel ; u8 reserved ; struct wcn36xx_hal_config_sta_params sta ; struct wcn36xx_hal_mac_ssid ssid ; u8 action ; struct wcn36xx_hal_rate_set rateset ; u8 ht ; u8 obss_prot_enabled ; u8 rmf ; enum wcn36xx_hal_ht_operating_mode ht_oper_mode ; u8 dual_cts_protection ; u8 max_probe_resp_retry_limit ; u8 hidden_ssid ; u8 proxy_probe_resp ; u8 edca_params_valid ; struct wcn36xx_hal_edca_param_record acbe ; struct wcn36xx_hal_edca_param_record acbk ; struct wcn36xx_hal_edca_param_record acvi ; struct wcn36xx_hal_edca_param_record acvo ; u8 ext_set_sta_key_param_valid ; struct wcn36xx_hal_set_sta_key_params ext_set_sta_key_param ; u8 wcn36xx_hal_persona ; u8 spectrum_mgt_enable ; s8 tx_mgmt_power ; s8 max_tx_power ; }; struct wcn36xx_hal_config_bss_req_msg { struct wcn36xx_hal_msg_header header ; struct wcn36xx_hal_config_bss_params bss_params ; }; struct wcn36xx_hal_config_bss_params_v1 { u8 bssid[6U] ; u8 self_mac_addr[6U] ; enum wcn36xx_hal_bss_type bss_type ; u8 oper_mode ; enum wcn36xx_hal_nw_type nw_type ; u8 short_slot_time_supported ; u8 lla_coexist ; u8 llb_coexist ; u8 llg_coexist ; u8 ht20_coexist ; u8 lln_non_gf_coexist ; u8 lsig_tx_op_protection_full_support ; u8 rifs_mode ; u16 beacon_interval ; u8 dtim_period ; u8 tx_channel_width_set ; u8 oper_channel ; u8 ext_channel ; u8 reserved ; struct wcn36xx_hal_mac_ssid ssid ; u8 action ; struct wcn36xx_hal_rate_set rateset ; u8 ht ; u8 obss_prot_enabled ; u8 rmf ; enum wcn36xx_hal_ht_operating_mode ht_oper_mode ; u8 dual_cts_protection ; u8 max_probe_resp_retry_limit ; u8 hidden_ssid ; u8 proxy_probe_resp ; u8 edca_params_valid ; struct wcn36xx_hal_edca_param_record acbe ; struct wcn36xx_hal_edca_param_record acbk ; struct wcn36xx_hal_edca_param_record acvi ; struct wcn36xx_hal_edca_param_record acvo ; u8 ext_set_sta_key_param_valid ; struct wcn36xx_hal_set_sta_key_params ext_set_sta_key_param ; u8 wcn36xx_hal_persona ; u8 spectrum_mgt_enable ; s8 tx_mgmt_power ; s8 max_tx_power ; struct wcn36xx_hal_config_sta_params_v1 sta ; }; struct wcn36xx_hal_config_bss_req_msg_v1 { struct wcn36xx_hal_msg_header header ; struct wcn36xx_hal_config_bss_params_v1 bss_params ; }; struct wcn36xx_hal_config_bss_rsp_params { u32 status ; u8 bss_index ; u8 dpu_desc_index ; u8 ucast_dpu_signature ; u8 bcast_dpu_desc_indx ; u8 bcast_dpu_signature ; u8 mgmt_dpu_desc_index ; u8 mgmt_dpu_signature ; u8 bss_sta_index ; u8 bss_self_sta_index ; u8 bss_bcast_sta_idx ; u8 mac[6U] ; s8 tx_mgmt_power ; }; struct wcn36xx_hal_config_bss_rsp_msg { struct wcn36xx_hal_msg_header header ; struct wcn36xx_hal_config_bss_rsp_params bss_rsp_params ; }; struct wcn36xx_hal_delete_bss_req_msg { struct wcn36xx_hal_msg_header header ; u8 bss_index ; }; struct wcn36xx_hal_join_req_msg { struct wcn36xx_hal_msg_header header ; u8 bssid[6U] ; u8 channel ; u8 self_sta_mac_addr[6U] ; u8 local_power_constraint ; enum phy_chan_bond_state secondary_channel_offset ; enum wcn36xx_hal_link_state link_state ; s8 max_tx_power ; }; struct wcn36xx_hal_join_rsp_msg { struct wcn36xx_hal_msg_header header ; u32 status ; u8 tx_mgmt_power ; }; struct wcn36xx_hal_set_bss_key_req_msg { struct wcn36xx_hal_msg_header header ; u8 bss_idx ; enum ani_ed_type enc_type ; u8 num_keys ; struct wcn36xx_hal_keys keys[4U] ; u8 single_tid_rc ; }; struct wcn36xx_hal_set_sta_key_req_msg { struct wcn36xx_hal_msg_header header ; struct wcn36xx_hal_set_sta_key_params set_sta_key_params ; }; struct wcn36xx_hal_remove_bss_key_req_msg { struct wcn36xx_hal_msg_header header ; u8 bss_idx ; enum ani_ed_type enc_type ; u8 key_id ; enum ani_wep_type wep_type ; }; struct wcn36xx_hal_remove_sta_key_req_msg { struct wcn36xx_hal_msg_header header ; u16 sta_idx ; enum ani_ed_type enc_type ; u8 key_id ; u8 unicast ; }; struct wcn36xx_hal_switch_channel_req_msg { struct wcn36xx_hal_msg_header header ; u8 channel_number ; u8 local_power_constraint ; enum phy_chan_bond_state secondary_channel_offset ; u8 tx_mgmt_power ; u8 max_tx_power ; u8 self_sta_mac_addr[6U] ; u8 bssid[6U] ; }; struct wcn36xx_hal_switch_channel_rsp_msg { struct wcn36xx_hal_msg_header header ; u32 status ; u8 channel_number ; u8 tx_mgmt_power ; u8 bssid[6U] ; }; struct wcn36xx_hal_set_link_state_req_msg { struct wcn36xx_hal_msg_header header ; u8 bssid[6U] ; enum wcn36xx_hal_link_state state ; u8 self_mac_addr[6U] ; }; struct wcn36xx_hal_add_ba_session_req_msg { struct wcn36xx_hal_msg_header header ; u16 sta_index ; u8 mac_addr[6U] ; u8 dialog_token ; u8 tid ; u8 policy ; u16 buffer_size ; u16 timeout ; u16 ssn ; u8 direction ; }; struct wcn36xx_hal_add_ba_req_msg { struct wcn36xx_hal_msg_header header ; u8 session_id ; u8 win_size ; }; struct wcn36xx_hal_trigger_ba_req_candidate { u8 sta_index ; u8 tid_bitmap ; }; struct wcn36xx_hal_trigger_ba_req_msg { struct wcn36xx_hal_msg_header header ; u8 session_id ; u16 candidate_cnt ; }; struct wcn36xx_hal_del_ba_req_msg { struct wcn36xx_hal_msg_header header ; u16 sta_index ; u8 tid ; u8 direction ; }; struct wcn36xx_hal_nv_img_download_req_msg { struct wcn36xx_hal_msg_header header ; u16 frag_number ; u16 last_fragment ; u32 nv_img_buffer_size ; }; struct wcn36xx_hal_send_beacon_req_msg { struct wcn36xx_hal_msg_header header ; u32 beacon_length ; u8 beacon[384U] ; u8 bssid[6U] ; u32 tim_ie_offset ; u16 p2p_ie_offset ; }; struct wcn36xx_hal_send_probe_resp_req_msg { struct wcn36xx_hal_msg_header header ; u8 probe_resp_template[384U] ; u32 probe_resp_template_len ; u32 proxy_probe_req_valid_ie_bmap[8U] ; u8 bssid[6U] ; }; struct wcn36xx_hal_delete_sta_context_ind_msg { struct wcn36xx_hal_msg_header header ; u16 aid ; u16 sta_id ; u8 bssid[6U] ; u8 addr2[6U] ; u16 reason_code ; }; struct wcn36xx_hal_enter_bmps_req_msg { struct wcn36xx_hal_msg_header header ; u8 bss_index ; u64 tbtt ; u8 dtim_count ; u8 dtim_period ; u32 rssi_filter_period ; u32 num_beacon_per_rssi_average ; u8 rssi_filter_enable ; }; struct wcn36xx_hal_missed_beacon_ind_msg { struct wcn36xx_hal_msg_header header ; u8 bss_index ; }; struct wcn36xx_hal_keep_alive_req_msg { struct wcn36xx_hal_msg_header header ; u8 packet_type ; u32 time_period ; u8 host_ipv4_addr[4U] ; u8 dest_ipv4_addr[4U] ; u8 dest_addr[6U] ; u8 bss_index ; }; struct wcn36xx_hal_add_sta_self_req { struct wcn36xx_hal_msg_header header ; u8 self_addr[6U] ; u32 status ; }; struct wcn36xx_hal_add_sta_self_rsp_msg { struct wcn36xx_hal_msg_header header ; u32 status ; u8 self_sta_index ; u8 dpu_index ; u8 dpu_signature ; }; struct wcn36xx_hal_del_sta_self_req_msg { struct wcn36xx_hal_msg_header header ; u8 self_addr[6U] ; }; struct wcn36xx_hal_dump_cmd_req_msg { struct wcn36xx_hal_msg_header header ; u32 arg1 ; u32 arg2 ; u32 arg3 ; u32 arg4 ; u32 arg5 ; }; struct wcn36xx_hal_tx_compl_ind_msg { struct wcn36xx_hal_msg_header header ; u32 status ; }; struct wcn36xx_hal_update_scan_params_req { struct wcn36xx_hal_msg_header header ; u8 dot11d_enabled ; u8 dot11d_resolved ; u8 channel_count ; u8 channels[26U] ; u16 active_min_ch_time ; u16 active_max_ch_time ; u16 passive_min_ch_time ; u16 passive_max_ch_time ; enum phy_chan_bond_state state ; }; struct wcn36xx_hal_update_scan_params_resp { struct wcn36xx_hal_msg_header header ; u32 status ; }; struct wcn36xx_hal_set_power_params_req_msg { struct wcn36xx_hal_msg_header header ; u32 ignore_dtim ; u32 dtim_period ; u32 listen_interval ; u32 bcast_mcast_filter ; u32 enable_bet ; u32 bet_interval ; }; struct wcn36xx_hal_feat_caps_msg { struct wcn36xx_hal_msg_header header ; u32 feat_caps[4U] ; }; struct nv_data { int is_valid ; u8 table ; }; struct wcn36xx_fw_msg_status_rsp { u32 status ; }; struct wcn36xx_hal_ind_msg { struct list_head list ; u8 *msg ; size_t msg_len ; }; enum hrtimer_restart; enum hrtimer_restart; struct __anonstruct____missing_field_name_257 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_256 { __wsum csum ; struct __anonstruct____missing_field_name_257 __annonCompField63 ; }; union __anonunion____missing_field_name_258 { unsigned int napi_id ; dma_cookie_t dma_cookie ; }; union __anonunion____missing_field_name_259 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; struct sk_buff___0 { struct sk_buff___0 *next ; struct sk_buff___0 *prev ; union __anonunion_ldv_24882_180 __annonCompField62 ; struct sock *sk ; struct net_device *dev ; char cb[48] __attribute__((__aligned__(8))) ; unsigned long _skb_refdst ; struct sec_path *sp ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; union __anonunion____missing_field_name_256 __annonCompField64 ; __u32 priority ; __u8 ignore_df : 1 ; __u8 cloned : 1 ; __u8 ip_summed : 2 ; __u8 nohdr : 1 ; __u8 nfctinfo : 3 ; __u8 pkt_type : 3 ; __u8 fclone : 2 ; __u8 ipvs_property : 1 ; __u8 peeked : 1 ; __u8 nf_trace : 1 ; __be16 protocol ; void (*destructor)(struct sk_buff___0 *skb ) ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; int skb_iif ; __u32 hash ; __be16 vlan_proto ; __u16 vlan_tci ; __u16 tc_index ; __u16 tc_verd ; __u16 queue_mapping ; __u8 ndisc_nodetype : 2 ; __u8 pfmemalloc : 1 ; __u8 ooo_okay : 1 ; __u8 l4_hash : 1 ; __u8 wifi_acked_valid : 1 ; __u8 wifi_acked : 1 ; __u8 no_fcs : 1 ; __u8 head_frag : 1 ; __u8 encapsulation : 1 ; __u8 encap_hdr_csum : 1 ; __u8 csum_valid : 1 ; __u8 csum_complete_sw : 1 ; union __anonunion____missing_field_name_258 __annonCompField65 ; __u32 secmark ; union __anonunion____missing_field_name_259 __annonCompField66 ; __be16 inner_protocol ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; typedef void *Element; typedef Element Set; long ldv__builtin_expect(long exp , long c ) ; extern struct module __this_module ; extern int printk(char const * , ...) ; extern void print_hex_dump(char const * , char const * , int , int , int , void const * , size_t , bool ) ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void __list_add(struct list_head * , struct list_head * , struct list_head * ) ; __inline static void list_add(struct list_head *new , struct list_head *head ) { { __list_add(new, head, head->next); return; } } extern void list_del(struct list_head * ) ; extern void __bad_percpu_size(void) ; extern void *__memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern int __preempt_count ; __inline static void __preempt_count_add(int val ) { int pao_ID__ ; { pao_ID__ = 0; switch (4UL) { case 1UL: ; if (pao_ID__ == 1) { __asm__ ("incb %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decb %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addb %1, %%gs:%P0": "+m" (__preempt_count): "qi" (val)); } goto ldv_6052; case 2UL: ; if (pao_ID__ == 1) { __asm__ ("incw %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decw %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addw %1, %%gs:%P0": "+m" (__preempt_count): "ri" (val)); } goto ldv_6052; case 4UL: ; if (pao_ID__ == 1) { __asm__ ("incl %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decl %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addl %1, %%gs:%P0": "+m" (__preempt_count): "ri" (val)); } goto ldv_6052; case 8UL: ; if (pao_ID__ == 1) { __asm__ ("incq %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decq %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addq %1, %%gs:%P0": "+m" (__preempt_count): "re" (val)); } goto ldv_6052; default: __bad_percpu_size(); } ldv_6052: ; return; } } __inline static void __preempt_count_sub(int val ) { int pao_ID__ ; { pao_ID__ = 0; switch (4UL) { case 1UL: ; if (pao_ID__ == 1) { __asm__ ("incb %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decb %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addb %1, %%gs:%P0": "+m" (__preempt_count): "qi" (- val)); } goto ldv_6064; case 2UL: ; if (pao_ID__ == 1) { __asm__ ("incw %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decw %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addw %1, %%gs:%P0": "+m" (__preempt_count): "ri" (- val)); } goto ldv_6064; case 4UL: ; if (pao_ID__ == 1) { __asm__ ("incl %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decl %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addl %1, %%gs:%P0": "+m" (__preempt_count): "ri" (- val)); } goto ldv_6064; case 8UL: ; if (pao_ID__ == 1) { __asm__ ("incq %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decq %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addq %1, %%gs:%P0": "+m" (__preempt_count): "re" (- val)); } goto ldv_6064; default: __bad_percpu_size(); } ldv_6064: ; return; } } extern void lock_acquire(struct lockdep_map * , unsigned int , int , int , int , struct lockdep_map * , unsigned long ) ; extern void lock_release(struct lockdep_map * , int , unsigned long ) ; extern void lockdep_rcu_suspicious(char const * , int const , char const * ) ; extern void mutex_destroy(struct mutex * ) ; extern void __mutex_init(struct mutex * , char const * , struct lock_class_key * ) ; __inline static resource_size_t resource_size(struct resource const *res ) { { return (((unsigned long long )res->end - (unsigned long long )res->start) + 1ULL); } } extern void flush_workqueue(struct workqueue_struct * ) ; extern void *ioremap_nocache(resource_size_t , unsigned long ) ; __inline static void *ioremap(resource_size_t offset , unsigned long size ) { void *tmp ; { tmp = ioremap_nocache(offset, size); return (tmp); } } extern void iounmap(void volatile * ) ; __inline static void __rcu_read_lock(void) { { __preempt_count_add(1); __asm__ volatile ("": : : "memory"); return; } } __inline static void __rcu_read_unlock(void) { { __asm__ volatile ("": : : "memory"); __preempt_count_sub(1); return; } } extern bool rcu_is_watching(void) ; __inline static void rcu_lock_acquire(struct lockdep_map *map ) { { lock_acquire(map, 0U, 0, 2, 0, (struct lockdep_map *)0, (unsigned long )((void *)0)); return; } } __inline static void rcu_lock_release(struct lockdep_map *map ) { { lock_release(map, 1, (unsigned long )((void *)0)); return; } } extern struct lockdep_map rcu_lock_map ; extern int debug_lockdep_rcu_enabled(void) ; __inline static void rcu_read_lock(void) { bool __warned ; int tmp ; bool tmp___0 ; int tmp___1 ; { __rcu_read_lock(); rcu_lock_acquire(& rcu_lock_map); tmp = debug_lockdep_rcu_enabled(); if (tmp != 0 && ! __warned) { tmp___0 = rcu_is_watching(); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { __warned = 1; lockdep_rcu_suspicious("include/linux/rcupdate.h", 871, "rcu_read_lock() used illegally while idle"); } else { } } else { } return; } } __inline static void rcu_read_unlock(void) { bool __warned ; int tmp ; bool tmp___0 ; int tmp___1 ; { tmp = debug_lockdep_rcu_enabled(); if (tmp != 0 && ! __warned) { tmp___0 = rcu_is_watching(); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { __warned = 1; lockdep_rcu_suspicious("include/linux/rcupdate.h", 892, "rcu_read_unlock() used illegally while idle"); } else { } } else { } rcu_lock_release(& rcu_lock_map); __rcu_read_unlock(); return; } } extern void kfree(void const * ) ; extern void *__kmalloc(size_t , gfp_t ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) { void *tmp___2 ; { tmp___2 = __kmalloc(size, flags); return (tmp___2); } } __inline static void *dev_get_drvdata(struct device const *dev ) { { return ((void *)dev->driver_data); } } __inline static void dev_set_drvdata(struct device *dev , void *data ) { { dev->driver_data = data; return; } } void ldv_kfree_skb_6(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_7(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_8(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_11(struct sk_buff *ldv_func_arg1 ) ; void ldv_consume_skb_5(struct sk_buff *ldv_func_arg1 ) ; extern void ldv_skb_free(struct sk_buff___0 * ) ; extern void *malloc(size_t size ) ; extern void *calloc(size_t nmemb , size_t size ) ; extern int __VERIFIER_nondet_int(void) ; extern u32 __VERIFIER_nondet_u32(void) ; extern u16 __VERIFIER_nondet_u16(void) ; extern u8 __VERIFIER_nondet_u8(void) ; extern unsigned int __VERIFIER_nondet_uint(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; extern void __VERIFIER_assume(int expression ) ; void *ldv_malloc(size_t size ) { void *p ; void *tmp ; int tmp___0 ; { tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0) { return ((void *)0); } else { tmp = malloc(size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } } void *ldv_zalloc(size_t size ) { void *p ; void *tmp ; int tmp___0 ; { tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0) { return ((void *)0); } else { tmp = calloc(1UL, size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } } int ldv_undef_int(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { tmp = __VERIFIER_nondet_pointer(); return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { tmp = __VERIFIER_nondet_ulong(); return (tmp); } } __inline static void ldv_error(void) { { ERROR: ; __VERIFIER_error(); } } __inline static void ldv_stop(void) { { LDV_STOP: ; goto LDV_STOP; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { ldv_error(); return; } } void *ldv_irq_data_2_1 ; int ldv_irq_1_3 = 0; int ldv_irq_line_2_2 ; void *ldv_irq_data_1_1 ; int ldv_irq_1_0 = 0; struct ieee80211_hw *wcn36xx_ops_group1 ; struct file *fops_wcn36xx_bmps_group2 ; int ldv_state_variable_6 ; void *ldv_irq_data_1_0 ; int ldv_state_variable_0 ; int ldv_state_variable_5 ; int ldv_irq_line_2_1 ; int ldv_state_variable_2 ; int ldv_irq_2_0 = 0; void *ldv_irq_data_1_3 ; void *ldv_irq_data_1_2 ; struct file *fops_wcn36xx_dump_group2 ; void *ldv_irq_data_2_0 ; struct inode *fops_wcn36xx_dump_group1 ; struct platform_device *wcn36xx_driver_group0 ; struct ieee80211_vif *wcn36xx_ops_group2 ; int ldv_irq_1_2 = 0; int LDV_IN_INTERRUPT = 1; int ldv_irq_1_1 = 0; int ldv_irq_2_3 = 0; void *ldv_irq_data_2_3 ; int ldv_irq_line_1_3 ; int ldv_irq_2_2 = 0; int ldv_irq_line_2_0 ; int ldv_state_variable_3 ; int ldv_irq_line_1_0 ; int ref_cnt ; int ldv_irq_line_1_1 ; void *ldv_irq_data_2_2 ; struct ieee80211_sta *wcn36xx_ops_group0 ; int ldv_state_variable_1 ; struct inode *fops_wcn36xx_bmps_group1 ; int ldv_irq_line_1_2 ; int ldv_state_variable_4 ; int ldv_irq_line_2_3 ; int ldv_irq_2_1 = 0; void ldv_file_operations_3(void) ; void ldv_initialize_platform_driver_5(void) ; void ldv_initialize_ieee80211_ops_6(void) ; void ldv_file_operations_4(void) ; extern void release_firmware(struct firmware const * ) ; extern struct resource *platform_get_resource_byname(struct platform_device * , unsigned int , char const * ) ; extern int __platform_driver_register(struct platform_driver * , struct module * ) ; int ldv___platform_driver_register_12(struct platform_driver *ldv_func_arg1 , struct module *ldv_func_arg2 ) ; extern void platform_driver_unregister(struct platform_driver * ) ; void ldv_platform_driver_unregister_13(struct platform_driver *drv ) ; __inline static void *platform_get_drvdata(struct platform_device const *pdev ) { void *tmp ; { tmp = dev_get_drvdata(& pdev->dev); return (tmp); } } __inline static void platform_set_drvdata(struct platform_device *pdev , void *data ) { { dev_set_drvdata(& pdev->dev, data); return; } } __inline static void set_wiphy_dev(struct wiphy *wiphy , struct device *dev ) { { wiphy->dev.parent = dev; return; } } __inline static void SET_IEEE80211_DEV(struct ieee80211_hw *hw , struct device *dev ) { { set_wiphy_dev(hw->wiphy, dev); return; } } __inline static void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw , u8 *addr ) { size_t __len ; void *__ret ; { __len = 6UL; if (__len > 63UL) { __ret = __memcpy((void *)(& (hw->wiphy)->perm_addr), (void const *)addr, __len); } else { __ret = __builtin_memcpy((void *)(& (hw->wiphy)->perm_addr), (void const *)addr, __len); } return; } } extern void ieee80211_free_txskb(struct ieee80211_hw * , struct sk_buff * ) ; extern struct ieee80211_hw *ieee80211_alloc_hw(size_t , struct ieee80211_ops const * ) ; extern int ieee80211_register_hw(struct ieee80211_hw * ) ; extern void ieee80211_unregister_hw(struct ieee80211_hw * ) ; extern void ieee80211_free_hw(struct ieee80211_hw * ) ; extern struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw * , struct ieee80211_vif * , u16 * , u16 * ) ; extern struct sk_buff *ieee80211_proberesp_get(struct ieee80211_hw * , struct ieee80211_vif * ) ; extern int ieee80211_start_tx_ba_session(struct ieee80211_sta * , u16 , u16 ) ; extern void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_vif * , u8 const * , u16 ) ; extern void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_vif * , u8 const * , u16 ) ; extern struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif * , u8 const * ) ; int wcn36xx_smd_open(struct wcn36xx *wcn ) ; void wcn36xx_smd_close(struct wcn36xx *wcn ) ; int wcn36xx_smd_load_nv(struct wcn36xx *wcn ) ; int wcn36xx_smd_start(struct wcn36xx *wcn ) ; int wcn36xx_smd_stop(struct wcn36xx *wcn ) ; int wcn36xx_smd_init_scan(struct wcn36xx *wcn , enum wcn36xx_hal_sys_mode mode ) ; int wcn36xx_smd_start_scan(struct wcn36xx *wcn ) ; int wcn36xx_smd_end_scan(struct wcn36xx *wcn ) ; int wcn36xx_smd_finish_scan(struct wcn36xx *wcn , enum wcn36xx_hal_sys_mode mode ) ; int wcn36xx_smd_add_sta_self(struct wcn36xx *wcn , struct ieee80211_vif *vif ) ; int wcn36xx_smd_delete_sta_self(struct wcn36xx *wcn , u8 *addr ) ; int wcn36xx_smd_delete_sta(struct wcn36xx *wcn , u8 sta_index ) ; int wcn36xx_smd_join(struct wcn36xx *wcn , u8 const *bssid , u8 *vif , u8 ch ) ; int wcn36xx_smd_set_link_st(struct wcn36xx *wcn , u8 const *bssid , u8 const *sta_mac , enum wcn36xx_hal_link_state state ) ; int wcn36xx_smd_config_bss(struct wcn36xx *wcn , struct ieee80211_vif *vif , struct ieee80211_sta *sta , u8 const *bssid , bool update ) ; int wcn36xx_smd_delete_bss(struct wcn36xx *wcn , struct ieee80211_vif *vif ) ; int wcn36xx_smd_config_sta(struct wcn36xx *wcn , struct ieee80211_vif *vif , struct ieee80211_sta *sta ) ; int wcn36xx_smd_send_beacon(struct wcn36xx *wcn , struct ieee80211_vif *vif , struct sk_buff *skb_beacon , u16 tim_off , u16 p2p_off ) ; int wcn36xx_smd_switch_channel(struct wcn36xx *wcn , struct ieee80211_vif *vif , int ch ) ; int wcn36xx_smd_update_proberesp_tmpl(struct wcn36xx *wcn , struct ieee80211_vif *vif , struct sk_buff *skb ) ; int wcn36xx_smd_set_stakey(struct wcn36xx *wcn , enum ani_ed_type enc_type , u8 keyidx , u8 keylen , u8 *key , u8 sta_index ) ; int wcn36xx_smd_set_bsskey(struct wcn36xx *wcn , enum ani_ed_type enc_type , u8 keyidx , u8 keylen , u8 *key ) ; int wcn36xx_smd_remove_stakey(struct wcn36xx *wcn , enum ani_ed_type enc_type , u8 keyidx , u8 sta_index ) ; int wcn36xx_smd_remove_bsskey(struct wcn36xx *wcn , enum ani_ed_type enc_type , u8 keyidx ) ; int wcn36xx_smd_set_power_params(struct wcn36xx *wcn , bool ignore_dtim ) ; int wcn36xx_smd_feature_caps_exchange(struct wcn36xx *wcn ) ; int get_feat_caps(u32 *bitmap , enum place_holder_in_cap_bitmap cap ) ; int wcn36xx_smd_add_ba_session(struct wcn36xx *wcn , struct ieee80211_sta *sta , u16 tid , u16 *ssn , u8 direction , u8 sta_index ) ; int wcn36xx_smd_add_ba(struct wcn36xx *wcn ) ; int wcn36xx_smd_del_ba(struct wcn36xx *wcn , u16 tid , u8 sta_index ) ; int wcn36xx_smd_trigger_ba(struct wcn36xx *wcn , u8 sta_index ) ; int wcn36xx_smd_update_cfg(struct wcn36xx *wcn , u32 cfg_id , u32 value ) ; __inline static bool is_zero_ether_addr(u8 const *addr ) { { return (((unsigned int )*((u32 const *)addr) | (unsigned int )*((u16 const *)addr + 4U)) == 0U); } } int wcn36xx_start_tx(struct wcn36xx *wcn , struct wcn36xx_sta *sta_priv , struct sk_buff *skb ) ; int wcn36xx_dxe_allocate_mem_pools(struct wcn36xx *wcn ) ; void wcn36xx_dxe_free_mem_pools(struct wcn36xx *wcn ) ; int wcn36xx_dxe_alloc_ctl_blks(struct wcn36xx *wcn ) ; void wcn36xx_dxe_free_ctl_blks(struct wcn36xx *wcn ) ; int wcn36xx_dxe_init(struct wcn36xx *wcn ) ; void wcn36xx_dxe_deinit(struct wcn36xx *wcn ) ; int wcn36xx_pmc_enter_bmps_state(struct wcn36xx *wcn , struct ieee80211_vif *vif ) ; int wcn36xx_pmc_exit_bmps_state(struct wcn36xx *wcn , struct ieee80211_vif *vif ) ; void wcn36xx_debugfs_init(struct wcn36xx *wcn ) ; void wcn36xx_debugfs_exit(struct wcn36xx *wcn ) ; unsigned int wcn36xx_dbg_mask ; __inline static bool wcn36xx_is_fw_version(struct wcn36xx *wcn , u8 major , u8 minor , u8 version , u8 revision ) { { return ((bool )((((int )wcn->fw_major == (int )major && (int )wcn->fw_minor == (int )minor) && (int )wcn->fw_version == (int )version) && (int )wcn->fw_revision == (int )revision)); } } void wcn36xx_set_default_rates(struct wcn36xx_hal_supported_rates *rates ) ; static struct ieee80211_channel wcn_2ghz_channels[14U] = { {0, 2412U, 1U, 0U, 0, 25, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {0, 2417U, 2U, 0U, 0, 25, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {0, 2422U, 3U, 0U, 0, 25, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {0, 2427U, 4U, 0U, 0, 25, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {0, 2432U, 5U, 0U, 0, 25, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {0, 2437U, 6U, 0U, 0, 25, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {0, 2442U, 7U, 0U, 0, 25, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {0, 2447U, 8U, 0U, 0, 25, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {0, 2452U, 9U, 0U, 0, 25, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {0, 2457U, 10U, 0U, 0, 25, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {0, 2462U, 11U, 0U, 0, 25, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {0, 2467U, 12U, 0U, 0, 25, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {0, 2472U, 13U, 0U, 0, 25, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {0, 2484U, 14U, 0U, 0, 25, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}}; static struct ieee80211_channel wcn_5ghz_channels[23U] = { {1, 5180U, 36U, 0U, 0, 25, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {1, 5200U, 40U, 0U, 0, 25, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {1, 5220U, 44U, 0U, 0, 25, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {1, 5240U, 48U, 0U, 0, 25, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {1, 5260U, 52U, 0U, 0, 25, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {1, 5280U, 56U, 0U, 0, 25, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {1, 5300U, 60U, 0U, 0, 25, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {1, 5320U, 64U, 0U, 0, 25, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {1, 5500U, 100U, 0U, 0, 25, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {1, 5520U, 104U, 0U, 0, 25, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {1, 5540U, 108U, 0U, 0, 25, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {1, 5560U, 112U, 0U, 0, 25, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {1, 5580U, 116U, 0U, 0, 25, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {1, 5600U, 120U, 0U, 0, 25, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {1, 5620U, 124U, 0U, 0, 25, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {1, 5640U, 128U, 0U, 0, 25, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {1, 5660U, 132U, 0U, 0, 25, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {1, 5700U, 140U, 0U, 0, 25, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {1, 5745U, 149U, 0U, 0, 25, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {1, 5765U, 153U, 0U, 0, 25, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {1, 5785U, 157U, 0U, 0, 25, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {1, 5805U, 161U, 0U, 0, 25, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}, {1, 5825U, 165U, 0U, 0, 25, 0, (_Bool)0, 0U, 0, 0, 0, 0UL, 0U}}; static struct ieee80211_rate wcn_2ghz_rates[12U] = { {0U, 10U, 130U, 130U}, {1U, 20U, 132U, 132U}, {1U, 55U, 139U, 139U}, {1U, 110U, 150U, 150U}, {0U, 60U, 12U, 12U}, {0U, 90U, 18U, 18U}, {0U, 120U, 24U, 24U}, {0U, 180U, 36U, 36U}, {0U, 240U, 48U, 48U}, {0U, 360U, 72U, 72U}, {0U, 480U, 96U, 96U}, {0U, 540U, 108U, 108U}}; static struct ieee80211_rate wcn_5ghz_rates[8U] = { {0U, 60U, 12U, 12U}, {0U, 90U, 18U, 18U}, {0U, 120U, 24U, 24U}, {0U, 180U, 36U, 36U}, {0U, 240U, 48U, 48U}, {0U, 360U, 72U, 72U}, {0U, 480U, 96U, 96U}, {0U, 540U, 108U, 108U}}; static struct ieee80211_supported_band wcn_band_2ghz = {(struct ieee80211_channel *)(& wcn_2ghz_channels), (struct ieee80211_rate *)(& wcn_2ghz_rates), 0, 14, 12, {36912U, 1, 3U, 7U, {{255U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, 72U, 1U, {(unsigned char)0, (unsigned char)0, (unsigned char)0}}}, {(_Bool)0, 0U, {(unsigned short)0, (unsigned short)0, (unsigned short)0, (unsigned short)0}}}; static struct ieee80211_supported_band wcn_band_5ghz = {(struct ieee80211_channel *)(& wcn_5ghz_channels), (struct ieee80211_rate *)(& wcn_5ghz_rates), 0, 23, 8, {36978U, 1, 3U, 7U, {{255U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, 72U, 1U, {(unsigned char)0, (unsigned char)0, (unsigned char)0}}}, {(_Bool)0, 0U, {(unsigned short)0, (unsigned short)0, (unsigned short)0, (unsigned short)0}}}; static struct wiphy_wowlan_support const wowlan_support = {1U, 0, 0, 0, 0, 0}; __inline static u8 get_sta_index(struct ieee80211_vif *vif , struct wcn36xx_sta *sta_priv ) { { return ((unsigned int )vif->type == 2U ? sta_priv->bss_sta_index : sta_priv->sta_index); } } static char const * const wcn36xx_caps_names[23U] = { "MCC", "P2P", "DOT11AC", "SLM_SESSIONIZATION", "DOT11AC_OPMODE", "SAP32STA", "TDLS", "P2P_GO_NOA_DECOUPLE_INIT_SCAN", "WLANACTIVE_OFFLOAD", "BEACON_OFFLOAD", "SCAN_OFFLOAD", "ROAM_OFFLOAD", "BCN_MISS_OFFLOAD", "STA_POWERSAVE", "STA_ADVANCED_PWRSAVE", "AP_UAPSD", "AP_DFS", "BLOCKACK", "PHY_ERR", "BCN_FILTER", "RTT", "RATECTRL", "WOW"}; static char const *wcn36xx_get_cap_name(enum place_holder_in_cap_bitmap x ) { { if ((unsigned int )x > 22U) { return ("UNKNOWN"); } else { } return ((char const *)wcn36xx_caps_names[(unsigned int )x]); } } static void wcn36xx_feat_caps_info(struct wcn36xx *wcn ) { int i ; char const *tmp ; int tmp___0 ; { i = 0; goto ldv_49451; ldv_49450: tmp___0 = get_feat_caps((u32 *)(& wcn->fw_feat_caps), (enum place_holder_in_cap_bitmap )i); if (tmp___0 != 0) { tmp = wcn36xx_get_cap_name((enum place_holder_in_cap_bitmap )i); printk("\016wcn36xx: FW Cap %s\n", tmp); } else { } i = i + 1; ldv_49451: ; if (i <= 127) { goto ldv_49450; } else { } return; } } static void wcn36xx_detect_chip_version(struct wcn36xx *wcn ) { int tmp ; { tmp = get_feat_caps((u32 *)(& wcn->fw_feat_caps), 2); if (tmp != 0) { printk("\016wcn36xx: Chip is 3680\n"); wcn->chip_version = 1U; } else { printk("\016wcn36xx: Chip is 3660\n"); wcn->chip_version = 0U; } return; } } static int wcn36xx_start(struct ieee80211_hw *hw ) { struct wcn36xx *wcn ; int ret ; void *tmp ; bool tmp___0 ; int tmp___1 ; { wcn = (struct wcn36xx *)hw->priv; if ((wcn36xx_dbg_mask & 1024U) != 0U) { printk("\017wcn36xx: mac start\n"); } else { } ret = wcn36xx_smd_open(wcn); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR Failed to open smd channel: %d\n", ret); goto out_err; } else { } ret = wcn36xx_dxe_allocate_mem_pools(wcn); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR Failed to alloc DXE mempool: %d\n", ret); goto out_smd_close; } else { } ret = wcn36xx_dxe_alloc_ctl_blks(wcn); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR Failed to alloc DXE ctl blocks: %d\n", ret); goto out_free_dxe_pool; } else { } tmp = kmalloc(4096UL, 208U); wcn->hal_buf = (u8 *)tmp; if ((unsigned long )wcn->hal_buf == (unsigned long )((u8 *)0U)) { printk("\vwcn36xx: OLD_ERROR Failed to allocate smd buf\n"); ret = -12; goto out_free_dxe_ctl; } else { } ret = wcn36xx_smd_load_nv(wcn); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR Failed to push NV to chip\n"); goto out_free_smd_buf; } else { } ret = wcn36xx_smd_start(wcn); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR Failed to start chip\n"); goto out_free_smd_buf; } else { } tmp___0 = wcn36xx_is_fw_version(wcn, 1, 2, 2, 24); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { ret = wcn36xx_smd_feature_caps_exchange(wcn); if (ret != 0) { printk("\fwcn36xx: WARNING Exchange feature caps failed\n"); } else { wcn36xx_feat_caps_info(wcn); } } else { } wcn36xx_detect_chip_version(wcn); ret = wcn36xx_dxe_init(wcn); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR DXE init failed\n"); goto out_smd_stop; } else { } wcn36xx_debugfs_init(wcn); INIT_LIST_HEAD(& wcn->vif_list); return (0); out_smd_stop: wcn36xx_smd_stop(wcn); out_free_smd_buf: kfree((void const *)wcn->hal_buf); out_free_dxe_pool: wcn36xx_dxe_free_mem_pools(wcn); out_free_dxe_ctl: wcn36xx_dxe_free_ctl_blks(wcn); out_smd_close: wcn36xx_smd_close(wcn); out_err: ; return (ret); } } static void wcn36xx_stop(struct ieee80211_hw *hw ) { struct wcn36xx *wcn ; { wcn = (struct wcn36xx *)hw->priv; if ((wcn36xx_dbg_mask & 1024U) != 0U) { printk("\017wcn36xx: mac stop\n"); } else { } wcn36xx_debugfs_exit(wcn); wcn36xx_smd_stop(wcn); wcn36xx_dxe_deinit(wcn); wcn36xx_smd_close(wcn); wcn36xx_dxe_free_mem_pools(wcn); wcn36xx_dxe_free_ctl_blks(wcn); kfree((void const *)wcn->hal_buf); return; } } static int wcn36xx_config(struct ieee80211_hw *hw , u32 changed ) { struct wcn36xx *wcn ; struct ieee80211_vif *vif ; struct wcn36xx_vif *tmp ; int ch ; struct list_head const *__mptr ; u8 const (*__mptr___0)[0U] ; struct list_head const *__mptr___1 ; { wcn = (struct wcn36xx *)hw->priv; vif = (struct ieee80211_vif *)0; if ((wcn36xx_dbg_mask & 1024U) != 0U) { printk("\017wcn36xx: mac config changed 0x%08x\n", changed); } else { } if ((changed & 64U) != 0U) { ch = (int )((wcn->hw)->conf.chandef.chan)->hw_value; if ((wcn36xx_dbg_mask & 1024U) != 0U) { printk("\017wcn36xx: wcn36xx_config channel switch=%d\n", ch); } else { } __mptr = (struct list_head const *)wcn->vif_list.next; tmp = (struct wcn36xx_vif *)__mptr; goto ldv_49486; ldv_49485: __mptr___0 = (u8 const *)tmp; vif = (struct ieee80211_vif *)__mptr___0 + 0xfffffffffffffee8UL; wcn36xx_smd_switch_channel(wcn, vif, ch); __mptr___1 = (struct list_head const *)tmp->list.next; tmp = (struct wcn36xx_vif *)__mptr___1; ldv_49486: ; if ((unsigned long )(& tmp->list) != (unsigned long )(& wcn->vif_list)) { goto ldv_49485; } else { } } else { } return (0); } } static void wcn36xx_configure_filter(struct ieee80211_hw *hw , unsigned int changed , unsigned int *total , u64 multicast ) { { if ((wcn36xx_dbg_mask & 1024U) != 0U) { printk("\017wcn36xx: mac configure filter\n"); } else { } *total = 0U; return; } } static void wcn36xx_tx(struct ieee80211_hw *hw , struct ieee80211_tx_control *control , struct sk_buff *skb ) { struct wcn36xx *wcn ; struct wcn36xx_sta *sta_priv ; int tmp ; { wcn = (struct wcn36xx *)hw->priv; sta_priv = (struct wcn36xx_sta *)0; if ((unsigned long )control->sta != (unsigned long )((struct ieee80211_sta *)0)) { sta_priv = (struct wcn36xx_sta *)(& (control->sta)->drv_priv); } else { } tmp = wcn36xx_start_tx(wcn, sta_priv, skb); if (tmp != 0) { ieee80211_free_txskb(wcn->hw, skb); } else { } return; } } static int wcn36xx_set_key(struct ieee80211_hw *hw , enum set_key_cmd cmd , struct ieee80211_vif *vif , struct ieee80211_sta *sta , struct ieee80211_key_conf *key_conf ) { struct wcn36xx *wcn ; struct wcn36xx_vif *vif_priv ; struct wcn36xx_sta *sta_priv ; int ret ; u8 key[32U] ; size_t __len ; void *__ret ; size_t __len___0 ; void *__ret___0 ; size_t __len___1 ; void *__ret___1 ; size_t __len___2 ; void *__ret___2 ; u8 tmp ; u8 tmp___0 ; u8 tmp___1 ; { wcn = (struct wcn36xx *)hw->priv; vif_priv = (struct wcn36xx_vif *)(& vif->drv_priv); sta_priv = vif_priv->sta; ret = 0; if ((wcn36xx_dbg_mask & 1024U) != 0U) { printk("\017wcn36xx: mac80211 set key\n"); } else { } if ((wcn36xx_dbg_mask & 1024U) != 0U) { printk("\017wcn36xx: Key: cmd=0x%x algo:0x%x, id:%d, len:%d flags 0x%x\n", (unsigned int )cmd, key_conf->cipher, (int )key_conf->keyidx, (int )key_conf->keylen, (int )key_conf->flags); } else { } if ((wcn36xx_dbg_mask & 1024U) != 0U) { print_hex_dump("\017", "wcn36xx: KEY: ", 2, 32, 1, (void const *)(& key_conf->key), (size_t )key_conf->keylen, 0); } else { } switch (key_conf->cipher) { case 1027073U: vif_priv->encrypt_type = 1; goto ldv_49514; case 1027077U: vif_priv->encrypt_type = 1; goto ldv_49514; case 1027076U: vif_priv->encrypt_type = 4; goto ldv_49514; case 1027074U: vif_priv->encrypt_type = 3; goto ldv_49514; default: printk("\vwcn36xx: OLD_ERROR Unsupported key type 0x%x\n", key_conf->cipher); ret = -95; goto out; } ldv_49514: ; switch ((unsigned int )cmd) { case 0U: ; if ((unsigned int )vif_priv->encrypt_type == 3U) { __len = 16UL; if (__len > 63UL) { __ret = __memcpy((void *)(& key), (void const *)(& key_conf->key), __len); } else { __ret = __builtin_memcpy((void *)(& key), (void const *)(& key_conf->key), __len); } __len___0 = 8UL; if (__len___0 > 63UL) { __ret___0 = __memcpy((void *)(& key) + 16U, (void const *)(& key_conf->key) + 24U, __len___0); } else { __ret___0 = __builtin_memcpy((void *)(& key) + 16U, (void const *)(& key_conf->key) + 24U, __len___0); } __len___1 = 8UL; if (__len___1 > 63UL) { __ret___1 = __memcpy((void *)(& key) + 24U, (void const *)(& key_conf->key) + 16U, __len___1); } else { __ret___1 = __builtin_memcpy((void *)(& key) + 24U, (void const *)(& key_conf->key) + 16U, __len___1); } } else { __len___2 = (size_t )key_conf->keylen; __ret___2 = __builtin_memcpy((void *)(& key), (void const *)(& key_conf->key), __len___2); } if (((unsigned int )key_conf->flags & 8U) != 0U) { sta_priv->is_data_encrypted = 1; if ((unsigned int )vif->type == 2U) { wcn36xx_smd_config_bss(wcn, vif, sta, (u8 const *)(& sta->addr), 1); } else { } tmp = get_sta_index(vif, sta_priv); wcn36xx_smd_set_stakey(wcn, vif_priv->encrypt_type, (int )((u8 )key_conf->keyidx), (int )key_conf->keylen, (u8 *)(& key), (int )tmp); } else { wcn36xx_smd_set_bsskey(wcn, vif_priv->encrypt_type, (int )((u8 )key_conf->keyidx), (int )key_conf->keylen, (u8 *)(& key)); if (key_conf->cipher == 1027073U || key_conf->cipher == 1027077U) { sta_priv->is_data_encrypted = 1; tmp___0 = get_sta_index(vif, sta_priv); wcn36xx_smd_set_stakey(wcn, vif_priv->encrypt_type, (int )((u8 )key_conf->keyidx), (int )key_conf->keylen, (u8 *)(& key), (int )tmp___0); } else { } } goto ldv_49533; case 1U: ; if (((unsigned int )key_conf->flags & 8U) == 0U) { wcn36xx_smd_remove_bsskey(wcn, vif_priv->encrypt_type, (int )((u8 )key_conf->keyidx)); } else { sta_priv->is_data_encrypted = 0; if ((unsigned int )sta_priv->aid != 0U) { tmp___1 = get_sta_index(vif, sta_priv); wcn36xx_smd_remove_stakey(wcn, vif_priv->encrypt_type, (int )((u8 )key_conf->keyidx), (int )tmp___1); } else { } } goto ldv_49533; default: printk("\vwcn36xx: OLD_ERROR Unsupported key cmd 0x%x\n", (unsigned int )cmd); ret = -95; goto out; } ldv_49533: ; out: ; return (ret); } } static void wcn36xx_sw_scan_start(struct ieee80211_hw *hw ) { struct wcn36xx *wcn ; { wcn = (struct wcn36xx *)hw->priv; wcn36xx_smd_init_scan(wcn, 2); wcn36xx_smd_start_scan(wcn); return; } } static void wcn36xx_sw_scan_complete(struct ieee80211_hw *hw ) { struct wcn36xx *wcn ; { wcn = (struct wcn36xx *)hw->priv; wcn36xx_smd_end_scan(wcn); wcn36xx_smd_finish_scan(wcn, 2); return; } } static void wcn36xx_update_allowed_rates(struct ieee80211_sta *sta , enum ieee80211_band band ) { int i ; int size ; u16 *rates_table ; struct wcn36xx_sta *sta_priv ; u32 rates ; size_t __len ; void *__ret ; { sta_priv = (struct wcn36xx_sta *)(& sta->drv_priv); rates = sta->supp_rates[(unsigned int )band]; memset((void *)(& sta_priv->supported_rates), 0, 58UL); sta_priv->supported_rates.op_rate_mode = 6; size = 4; rates_table = (u16 *)(& sta_priv->supported_rates.dsss_rates); if ((unsigned int )band == 0U) { i = 0; goto ldv_49556; ldv_49555: ; if ((int )rates & 1) { *(rates_table + (unsigned long )i) = wcn_2ghz_rates[i].hw_value; rates = rates >> 1; } else { } i = i + 1; ldv_49556: ; if (i < size) { goto ldv_49555; } else { } } else { } size = 8; rates_table = (u16 *)(& sta_priv->supported_rates.ofdm_rates); i = 0; goto ldv_49561; ldv_49560: ; if ((int )rates & 1) { *(rates_table + (unsigned long )i) = wcn_5ghz_rates[i].hw_value; rates = rates >> 1; } else { } i = i + 1; ldv_49561: ; if (i < size) { goto ldv_49560; } else { } if ((int )sta->ht_cap.ht_supported) { __len = 10UL; if (__len > 63UL) { __ret = __memcpy((void *)(& sta_priv->supported_rates.supported_mcs_set), (void const *)(& sta->ht_cap.mcs.rx_mask), __len); } else { __ret = __builtin_memcpy((void *)(& sta_priv->supported_rates.supported_mcs_set), (void const *)(& sta->ht_cap.mcs.rx_mask), __len); } } else { } return; } } void wcn36xx_set_default_rates(struct wcn36xx_hal_supported_rates *rates ) { u16 ofdm_rates[8U] ; u16 dsss_rates[4U] ; size_t __len ; void *__ret ; size_t __len___0 ; void *__ret___0 ; { ofdm_rates[0] = 12U; ofdm_rates[1] = 18U; ofdm_rates[2] = 24U; ofdm_rates[3] = 36U; ofdm_rates[4] = 48U; ofdm_rates[5] = 72U; ofdm_rates[6] = 96U; ofdm_rates[7] = 108U; dsss_rates[0] = 130U; dsss_rates[1] = 132U; dsss_rates[2] = 139U; dsss_rates[3] = 150U; rates->op_rate_mode = 6; __len = 8UL; if (__len > 63UL) { __ret = __memcpy((void *)(& rates->dsss_rates), (void const *)(& dsss_rates), __len); } else { __ret = __builtin_memcpy((void *)(& rates->dsss_rates), (void const *)(& dsss_rates), __len); } __len___0 = 16UL; if (__len___0 > 63UL) { __ret___0 = __memcpy((void *)(& rates->ofdm_rates), (void const *)(& ofdm_rates), __len___0); } else { __ret___0 = __builtin_memcpy((void *)(& rates->ofdm_rates), (void const *)(& ofdm_rates), __len___0); } rates->supported_mcs_set[0] = 255U; return; } } static void wcn36xx_bss_info_changed(struct ieee80211_hw *hw , struct ieee80211_vif *vif , struct ieee80211_bss_conf *bss_conf , u32 changed ) { struct wcn36xx *wcn ; struct sk_buff *skb ; u16 tim_off ; u16 tim_len ; enum wcn36xx_hal_link_state link_state ; struct wcn36xx_vif *vif_priv ; bool tmp ; int tmp___0 ; size_t __len ; void *__ret ; struct ieee80211_sta *sta ; struct wcn36xx_sta *sta_priv ; { wcn = (struct wcn36xx *)hw->priv; skb = (struct sk_buff *)0; vif_priv = (struct wcn36xx_vif *)(& vif->drv_priv); if ((wcn36xx_dbg_mask & 1024U) != 0U) { printk("\017wcn36xx: mac bss info changed vif %p changed 0x%08x\n", vif, changed); } else { } if ((changed & 1048576U) != 0U) { if ((wcn36xx_dbg_mask & 1024U) != 0U) { printk("\017wcn36xx: mac bss changed dtim period %d\n", (int )bss_conf->dtim_period); } else { } vif_priv->dtim_period = bss_conf->dtim_period; } else { } if ((changed & 131072U) != 0U) { if ((wcn36xx_dbg_mask & 1024U) != 0U) { printk("\017wcn36xx: mac bss PS set %d\n", (int )bss_conf->ps); } else { } if ((int )bss_conf->ps) { wcn36xx_pmc_enter_bmps_state(wcn, vif); } else { wcn36xx_pmc_exit_bmps_state(wcn, vif); } } else { } if ((changed & 128U) != 0U) { if ((wcn36xx_dbg_mask & 1024U) != 0U) { printk("\017wcn36xx: mac bss changed_bssid %pM\n", bss_conf->bssid); } else { } tmp = is_zero_ether_addr(bss_conf->bssid); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { vif_priv->is_joining = 1; vif_priv->bss_index = 255U; wcn36xx_smd_join(wcn, bss_conf->bssid, (u8 *)(& vif->addr), (int )((u8 )((wcn->hw)->conf.chandef.chan)->hw_value)); wcn36xx_smd_config_bss(wcn, vif, (struct ieee80211_sta *)0, bss_conf->bssid, 0); } else { vif_priv->is_joining = 0; wcn36xx_smd_delete_bss(wcn, vif); } } else { } if ((changed & 32768U) != 0U) { if ((wcn36xx_dbg_mask & 1024U) != 0U) { printk("\017wcn36xx: mac bss changed ssid\n"); } else { } if ((wcn36xx_dbg_mask & 1024U) != 0U) { print_hex_dump("\017", "wcn36xx: ssid ", 2, 32, 1, (void const *)(& bss_conf->ssid), bss_conf->ssid_len, 0); } else { } vif_priv->ssid.length = (u8 )bss_conf->ssid_len; __len = bss_conf->ssid_len; __ret = __builtin_memcpy((void *)(& vif_priv->ssid.ssid), (void const *)(& bss_conf->ssid), __len); } else { } if ((int )changed & 1) { vif_priv->is_joining = 0; if ((int )bss_conf->assoc) { if ((wcn36xx_dbg_mask & 1024U) != 0U) { printk("\017wcn36xx: mac assoc bss %pM vif %pM AID=%d\n", bss_conf->bssid, (u8 *)(& vif->addr), (int )bss_conf->aid); } else { } rcu_read_lock(); sta = ieee80211_find_sta(vif, bss_conf->bssid); if ((unsigned long )sta == (unsigned long )((struct ieee80211_sta *)0)) { printk("\vwcn36xx: OLD_ERROR sta %pM is not found\n", bss_conf->bssid); rcu_read_unlock(); goto out; } else { } sta_priv = (struct wcn36xx_sta *)(& sta->drv_priv); wcn36xx_update_allowed_rates(sta, ((wcn->hw)->conf.chandef.chan)->band); wcn36xx_smd_set_link_st(wcn, bss_conf->bssid, (u8 const *)(& vif->addr), 2); wcn36xx_smd_config_bss(wcn, vif, sta, bss_conf->bssid, 1); sta_priv->aid = bss_conf->aid; wcn36xx_smd_config_sta(wcn, vif, sta); rcu_read_unlock(); } else { if ((wcn36xx_dbg_mask & 1024U) != 0U) { printk("\017wcn36xx: disassociated bss %pM vif %pM AID=%d\n", bss_conf->bssid, (u8 *)(& vif->addr), (int )bss_conf->aid); } else { } wcn36xx_smd_set_link_st(wcn, bss_conf->bssid, (u8 const *)(& vif->addr), 0); } } else { } if ((changed & 65536U) != 0U) { if ((wcn36xx_dbg_mask & 1024U) != 0U) { printk("\017wcn36xx: mac bss changed ap probe resp\n"); } else { } skb = ieee80211_proberesp_get(hw, vif); if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { printk("\vwcn36xx: OLD_ERROR failed to alloc probereq skb\n"); goto out; } else { } wcn36xx_smd_update_proberesp_tmpl(wcn, vif, skb); ldv_skb_free(skb); } else { } if ((changed & 512U) != 0U || (changed & 256U) != 0U) { if ((wcn36xx_dbg_mask & 1024U) != 0U) { printk("\017wcn36xx: mac bss changed beacon enabled %d\n", (int )bss_conf->enable_beacon); } else { } if ((int )bss_conf->enable_beacon) { vif_priv->dtim_period = bss_conf->dtim_period; vif_priv->bss_index = 255U; wcn36xx_smd_config_bss(wcn, vif, (struct ieee80211_sta *)0, (u8 const *)(& vif->addr), 0); skb = ieee80211_beacon_get_tim(hw, vif, & tim_off, & tim_len); if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { printk("\vwcn36xx: OLD_ERROR failed to alloc beacon skb\n"); goto out; } else { } wcn36xx_smd_send_beacon(wcn, vif, skb, (int )tim_off, 0); ldv_skb_free(skb); if ((unsigned int )vif->type == 1U || (unsigned int )vif->type == 7U) { link_state = 4; } else { link_state = 3; } wcn36xx_smd_set_link_st(wcn, (u8 const *)(& vif->addr), (u8 const *)(& vif->addr), link_state); } else { wcn36xx_smd_set_link_st(wcn, (u8 const *)(& vif->addr), (u8 const *)(& vif->addr), 0); wcn36xx_smd_delete_bss(wcn, vif); } } else { } out: ; return; } } static int wcn36xx_set_rts_threshold(struct ieee80211_hw *hw , u32 value ) { struct wcn36xx *wcn ; { wcn = (struct wcn36xx *)hw->priv; if ((wcn36xx_dbg_mask & 1024U) != 0U) { printk("\017wcn36xx: mac set RTS threshold %d\n", value); } else { } wcn36xx_smd_update_cfg(wcn, 11U, value); return (0); } } static void wcn36xx_remove_interface(struct ieee80211_hw *hw , struct ieee80211_vif *vif ) { struct wcn36xx *wcn ; struct wcn36xx_vif *vif_priv ; { wcn = (struct wcn36xx *)hw->priv; vif_priv = (struct wcn36xx_vif *)(& vif->drv_priv); if ((wcn36xx_dbg_mask & 1024U) != 0U) { printk("\017wcn36xx: mac remove interface vif %p\n", vif); } else { } list_del(& vif_priv->list); wcn36xx_smd_delete_sta_self(wcn, (u8 *)(& vif->addr)); return; } } static int wcn36xx_add_interface(struct ieee80211_hw *hw , struct ieee80211_vif *vif ) { struct wcn36xx *wcn ; struct wcn36xx_vif *vif_priv ; { wcn = (struct wcn36xx *)hw->priv; vif_priv = (struct wcn36xx_vif *)(& vif->drv_priv); if ((wcn36xx_dbg_mask & 1024U) != 0U) { printk("\017wcn36xx: mac add interface vif %p type %d\n", vif, (unsigned int )vif->type); } else { } if ((((unsigned int )vif->type != 2U && (unsigned int )vif->type != 3U) && (unsigned int )vif->type != 1U) && (unsigned int )vif->type != 7U) { printk("\fwcn36xx: WARNING Unsupported interface type requested: %d\n", (unsigned int )vif->type); return (-95); } else { } list_add(& vif_priv->list, & wcn->vif_list); wcn36xx_smd_add_sta_self(wcn, vif); return (0); } } static int wcn36xx_sta_add(struct ieee80211_hw *hw , struct ieee80211_vif *vif , struct ieee80211_sta *sta ) { struct wcn36xx *wcn ; struct wcn36xx_vif *vif_priv ; struct wcn36xx_sta *sta_priv ; { wcn = (struct wcn36xx *)hw->priv; vif_priv = (struct wcn36xx_vif *)(& vif->drv_priv); sta_priv = (struct wcn36xx_sta *)(& sta->drv_priv); if ((wcn36xx_dbg_mask & 1024U) != 0U) { printk("\017wcn36xx: mac sta add vif %p sta %pM\n", vif, (u8 *)(& sta->addr)); } else { } vif_priv->sta = sta_priv; sta_priv->vif = vif_priv; if ((unsigned int )vif->type != 2U) { wcn36xx_update_allowed_rates(sta, ((wcn->hw)->conf.chandef.chan)->band); sta_priv->aid = sta->aid; wcn36xx_smd_config_sta(wcn, vif, sta); } else { } return (0); } } static int wcn36xx_sta_remove(struct ieee80211_hw *hw , struct ieee80211_vif *vif , struct ieee80211_sta *sta ) { struct wcn36xx *wcn ; struct wcn36xx_vif *vif_priv ; struct wcn36xx_sta *sta_priv ; { wcn = (struct wcn36xx *)hw->priv; vif_priv = (struct wcn36xx_vif *)(& vif->drv_priv); sta_priv = (struct wcn36xx_sta *)(& sta->drv_priv); if ((wcn36xx_dbg_mask & 1024U) != 0U) { printk("\017wcn36xx: mac sta remove vif %p sta %pM index %d\n", vif, (u8 *)(& sta->addr), (int )sta_priv->sta_index); } else { } wcn36xx_smd_delete_sta(wcn, (int )sta_priv->sta_index); vif_priv->sta = (struct wcn36xx_sta *)0; sta_priv->vif = (struct wcn36xx_vif *)0; return (0); } } static int wcn36xx_suspend(struct ieee80211_hw *hw , struct cfg80211_wowlan *wow ) { struct wcn36xx *wcn ; { wcn = (struct wcn36xx *)hw->priv; if ((wcn36xx_dbg_mask & 1024U) != 0U) { printk("\017wcn36xx: mac suspend\n"); } else { } flush_workqueue(wcn->hal_ind_wq); wcn36xx_smd_set_power_params(wcn, 1); return (0); } } static int wcn36xx_resume(struct ieee80211_hw *hw ) { struct wcn36xx *wcn ; { wcn = (struct wcn36xx *)hw->priv; if ((wcn36xx_dbg_mask & 1024U) != 0U) { printk("\017wcn36xx: mac resume\n"); } else { } flush_workqueue(wcn->hal_ind_wq); wcn36xx_smd_set_power_params(wcn, 0); return (0); } } static int wcn36xx_ampdu_action(struct ieee80211_hw *hw , struct ieee80211_vif *vif , enum ieee80211_ampdu_mlme_action action , struct ieee80211_sta *sta , u16 tid , u16 *ssn , u8 buf_size ) { struct wcn36xx *wcn ; struct wcn36xx_sta *sta_priv ; u8 tmp ; u8 tmp___0 ; u8 tmp___1 ; u8 tmp___2 ; { wcn = (struct wcn36xx *)hw->priv; sta_priv = (struct wcn36xx_sta *)0; if ((wcn36xx_dbg_mask & 1024U) != 0U) { printk("\017wcn36xx: mac ampdu action action %d tid %d\n", (unsigned int )action, (int )tid); } else { } sta_priv = (struct wcn36xx_sta *)(& sta->drv_priv); switch ((unsigned int )action) { case 0U: sta_priv->tid = tid; tmp = get_sta_index(vif, sta_priv); wcn36xx_smd_add_ba_session(wcn, sta, (int )tid, ssn, 0, (int )tmp); wcn36xx_smd_add_ba(wcn); tmp___0 = get_sta_index(vif, sta_priv); wcn36xx_smd_trigger_ba(wcn, (int )tmp___0); ieee80211_start_tx_ba_session(sta, (int )tid, 0); goto ldv_49649; case 1U: tmp___1 = get_sta_index(vif, sta_priv); wcn36xx_smd_del_ba(wcn, (int )tid, (int )tmp___1); goto ldv_49649; case 2U: ieee80211_start_tx_ba_cb_irqsafe(vif, (u8 const *)(& sta->addr), (int )tid); goto ldv_49649; case 6U: tmp___2 = get_sta_index(vif, sta_priv); wcn36xx_smd_add_ba_session(wcn, sta, (int )tid, ssn, 1, (int )tmp___2); goto ldv_49649; case 4U: ; case 5U: ; case 3U: ieee80211_stop_tx_ba_cb_irqsafe(vif, (u8 const *)(& sta->addr), (int )tid); goto ldv_49649; default: printk("\vwcn36xx: OLD_ERROR Unknown AMPDU action\n"); } ldv_49649: ; return (0); } } static struct ieee80211_ops const wcn36xx_ops = {& wcn36xx_tx, & wcn36xx_start, & wcn36xx_stop, & wcn36xx_suspend, & wcn36xx_resume, 0, & wcn36xx_add_interface, 0, & wcn36xx_remove_interface, & wcn36xx_config, & wcn36xx_bss_info_changed, 0, 0, 0, & wcn36xx_configure_filter, 0, & wcn36xx_set_key, 0, 0, 0, 0, 0, 0, 0, & wcn36xx_sw_scan_start, & wcn36xx_sw_scan_complete, 0, 0, 0, & wcn36xx_set_rts_threshold, & wcn36xx_sta_add, & wcn36xx_sta_remove, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & wcn36xx_ampdu_action, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static int wcn36xx_init_ieee80211(struct wcn36xx *wcn ) { int ret ; u32 cipher_suites[4U] ; { ret = 0; cipher_suites[0] = 1027073U; cipher_suites[1] = 1027077U; cipher_suites[2] = 1027074U; cipher_suites[3] = 1027076U; (wcn->hw)->flags = 67634753U; ((wcn->hw)->wiphy)->interface_modes = 142U; ((wcn->hw)->wiphy)->bands[0] = & wcn_band_2ghz; ((wcn->hw)->wiphy)->bands[1] = & wcn_band_5ghz; ((wcn->hw)->wiphy)->cipher_suites = (u32 const *)(& cipher_suites); ((wcn->hw)->wiphy)->n_cipher_suites = 4; ((wcn->hw)->wiphy)->flags = ((wcn->hw)->wiphy)->flags | 524288U; ((wcn->hw)->wiphy)->wowlan = & wowlan_support; (wcn->hw)->max_listen_interval = 200U; (wcn->hw)->queues = 4U; SET_IEEE80211_DEV(wcn->hw, wcn->dev); (wcn->hw)->sta_data_size = 80; (wcn->hw)->vif_data_size = 80; return (ret); } } static int wcn36xx_platform_get_resources(struct wcn36xx *wcn , struct platform_device *pdev ) { struct resource *res ; resource_size_t tmp ; { res = platform_get_resource_byname(pdev, 1024U, "wcnss_wlantx_irq"); if ((unsigned long )res == (unsigned long )((struct resource *)0)) { printk("\vwcn36xx: OLD_ERROR failed to get tx_irq\n"); return (-2); } else { } wcn->tx_irq = (int )res->start; res = platform_get_resource_byname(pdev, 1024U, "wcnss_wlanrx_irq"); if ((unsigned long )res == (unsigned long )((struct resource *)0)) { printk("\vwcn36xx: OLD_ERROR failed to get rx_irq\n"); return (-2); } else { } wcn->rx_irq = (int )res->start; res = platform_get_resource_byname(pdev, 512U, "wcnss_mmio"); if ((unsigned long )res == (unsigned long )((struct resource *)0)) { printk("\vwcn36xx: OLD_ERROR failed to get mmio\n"); return (-2); } else { } tmp = resource_size((struct resource const *)res); wcn->mmio = ioremap(res->start, (unsigned long )tmp); if ((unsigned long )wcn->mmio == (unsigned long )((void *)0)) { printk("\vwcn36xx: OLD_ERROR failed to map io memory\n"); return (-12); } else { } return (0); } } static int wcn36xx_probe(struct platform_device *pdev ) { struct ieee80211_hw *hw ; struct wcn36xx *wcn ; int ret ; u8 addr[6U] ; struct lock_class_key __key ; int tmp ; { if ((wcn36xx_dbg_mask & 1024U) != 0U) { printk("\017wcn36xx: platform probe\n"); } else { } hw = ieee80211_alloc_hw(1240UL, & wcn36xx_ops); if ((unsigned long )hw == (unsigned long )((struct ieee80211_hw *)0)) { printk("\vwcn36xx: OLD_ERROR failed to alloc hw\n"); ret = -12; goto out_err; } else { } platform_set_drvdata(pdev, (void *)hw); wcn = (struct wcn36xx *)hw->priv; wcn->hw = hw; wcn->dev = & pdev->dev; wcn->ctrl_ops = (struct wcn36xx_platform_ctrl_ops *)pdev->dev.platform_data; __mutex_init(& wcn->hal_mutex, "&wcn->hal_mutex", & __key); tmp = (*((wcn->ctrl_ops)->get_hw_mac))((u8 *)(& addr)); if (tmp == 0) { printk("\016wcn36xx: mac address: %pM\n", (u8 *)(& addr)); SET_IEEE80211_PERM_ADDR(wcn->hw, (u8 *)(& addr)); } else { } ret = wcn36xx_platform_get_resources(wcn, pdev); if (ret != 0) { goto out_wq; } else { } wcn36xx_init_ieee80211(wcn); ret = ieee80211_register_hw(wcn->hw); if (ret != 0) { goto out_unmap; } else { } return (0); out_unmap: iounmap((void volatile *)wcn->mmio); out_wq: ieee80211_free_hw(hw); out_err: ; return (ret); } } static int wcn36xx_remove(struct platform_device *pdev ) { struct ieee80211_hw *hw ; void *tmp ; struct wcn36xx *wcn ; { tmp = platform_get_drvdata((struct platform_device const *)pdev); hw = (struct ieee80211_hw *)tmp; wcn = (struct wcn36xx *)hw->priv; if ((wcn36xx_dbg_mask & 1024U) != 0U) { printk("\017wcn36xx: platform remove\n"); } else { } release_firmware(wcn->nv); mutex_destroy(& wcn->hal_mutex); ieee80211_unregister_hw(hw); iounmap((void volatile *)wcn->mmio); ieee80211_free_hw(hw); return (0); } } static struct platform_device_id const wcn36xx_platform_id_table[2U] = { {{'w', 'c', 'n', '3', '6', 'x', 'x', '\000'}, 0UL}}; struct platform_device_id const __mod_platform__wcn36xx_platform_id_table_device_table ; static struct platform_driver wcn36xx_driver = {& wcn36xx_probe, & wcn36xx_remove, 0, 0, 0, {"wcn36xx", 0, & __this_module, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, (struct platform_device_id const *)(& wcn36xx_platform_id_table), (_Bool)0}; static int wcn36xx_init(void) { { ldv___platform_driver_register_12(& wcn36xx_driver, & __this_module); return (0); } } static void wcn36xx_exit(void) { { ldv_platform_driver_unregister_13(& wcn36xx_driver); return; } } int ldv_retval_0 ; int ldv_retval_4 ; int ldv_retval_6 ; int ldv_retval_1 ; void ldv_initialize(void) ; void ldv_check_final_state(void) ; int ldv_retval_2 ; void ldv_initialize_platform_driver_5(void) { void *tmp ; { tmp = ldv_zalloc(1464UL); wcn36xx_driver_group0 = (struct platform_device *)tmp; return; } } void ldv_initialize_ieee80211_ops_6(void) { void *tmp ; void *tmp___0 ; void *tmp___1 ; { tmp = ldv_zalloc(88UL); wcn36xx_ops_group0 = (struct ieee80211_sta *)tmp; tmp___0 = ldv_zalloc(144UL); wcn36xx_ops_group1 = (struct ieee80211_hw *)tmp___0; tmp___1 = ldv_zalloc(280UL); wcn36xx_ops_group2 = (struct ieee80211_vif *)tmp___1; return; } } void ldv_main_exported_4(void) ; void ldv_main_exported_3(void) ; int main(void) { struct ieee80211_bss_conf *ldvarg11 ; void *tmp ; u16 ldvarg7 ; u16 tmp___0 ; unsigned int ldvarg3 ; unsigned int tmp___1 ; struct cfg80211_wowlan *ldvarg12 ; void *tmp___2 ; struct sk_buff *ldvarg8 ; void *tmp___3 ; u64 ldvarg1 ; enum set_key_cmd ldvarg13 ; u32 ldvarg10 ; u32 tmp___4 ; struct ieee80211_tx_control *ldvarg9 ; void *tmp___5 ; u32 ldvarg0 ; u32 tmp___6 ; enum ieee80211_ampdu_mlme_action ldvarg5 ; u8 ldvarg6 ; u8 tmp___7 ; u32 ldvarg15 ; u32 tmp___8 ; u16 *ldvarg4 ; void *tmp___9 ; struct ieee80211_key_conf *ldvarg14 ; void *tmp___10 ; unsigned int *ldvarg2 ; void *tmp___11 ; int tmp___12 ; int tmp___13 ; int tmp___14 ; int tmp___15 ; { tmp = ldv_zalloc(232UL); ldvarg11 = (struct ieee80211_bss_conf *)tmp; tmp___0 = __VERIFIER_nondet_u16(); ldvarg7 = tmp___0; tmp___1 = __VERIFIER_nondet_uint(); ldvarg3 = tmp___1; tmp___2 = ldv_zalloc(32UL); ldvarg12 = (struct cfg80211_wowlan *)tmp___2; tmp___3 = ldv_zalloc(232UL); ldvarg8 = (struct sk_buff *)tmp___3; tmp___4 = __VERIFIER_nondet_u32(); ldvarg10 = tmp___4; tmp___5 = ldv_zalloc(8UL); ldvarg9 = (struct ieee80211_tx_control *)tmp___5; tmp___6 = __VERIFIER_nondet_u32(); ldvarg0 = tmp___6; tmp___7 = __VERIFIER_nondet_u8(); ldvarg6 = tmp___7; tmp___8 = __VERIFIER_nondet_u32(); ldvarg15 = tmp___8; tmp___9 = ldv_zalloc(2UL); ldvarg4 = (u16 *)tmp___9; tmp___10 = ldv_zalloc(12UL); ldvarg14 = (struct ieee80211_key_conf *)tmp___10; tmp___11 = ldv_zalloc(4UL); ldvarg2 = (unsigned int *)tmp___11; ldv_initialize(); memset((void *)(& ldvarg1), 0, 8UL); memset((void *)(& ldvarg13), 0, 4UL); memset((void *)(& ldvarg5), 0, 4UL); ldv_state_variable_6 = 0; ldv_state_variable_4 = 0; ldv_state_variable_1 = 1; ref_cnt = 0; ldv_state_variable_0 = 1; ldv_state_variable_3 = 0; ldv_state_variable_2 = 1; ldv_state_variable_5 = 0; ldv_49791: tmp___12 = __VERIFIER_nondet_int(); switch (tmp___12) { case 0: ; if (ldv_state_variable_6 != 0) { tmp___13 = __VERIFIER_nondet_int(); switch (tmp___13) { case 0: ; if (ldv_state_variable_6 == 1) { ldv_retval_2 = wcn36xx_start(wcn36xx_ops_group1); if (ldv_retval_2 == 0) { ldv_state_variable_6 = 2; ref_cnt = ref_cnt + 1; } else { } } else { } goto ldv_49756; case 1: ; if (ldv_state_variable_6 == 1) { wcn36xx_config(wcn36xx_ops_group1, ldvarg15); ldv_state_variable_6 = 1; } else { } if (ldv_state_variable_6 == 3) { wcn36xx_config(wcn36xx_ops_group1, ldvarg15); ldv_state_variable_6 = 3; } else { } if (ldv_state_variable_6 == 2) { wcn36xx_config(wcn36xx_ops_group1, ldvarg15); ldv_state_variable_6 = 2; } else { } goto ldv_49756; case 2: ; if (ldv_state_variable_6 == 1) { wcn36xx_set_key(wcn36xx_ops_group1, ldvarg13, wcn36xx_ops_group2, wcn36xx_ops_group0, ldvarg14); ldv_state_variable_6 = 1; } else { } if (ldv_state_variable_6 == 3) { wcn36xx_set_key(wcn36xx_ops_group1, ldvarg13, wcn36xx_ops_group2, wcn36xx_ops_group0, ldvarg14); ldv_state_variable_6 = 3; } else { } if (ldv_state_variable_6 == 2) { wcn36xx_set_key(wcn36xx_ops_group1, ldvarg13, wcn36xx_ops_group2, wcn36xx_ops_group0, ldvarg14); ldv_state_variable_6 = 2; } else { } goto ldv_49756; case 3: ; if (ldv_state_variable_6 == 2) { ldv_retval_1 = wcn36xx_suspend(wcn36xx_ops_group1, ldvarg12); if (ldv_retval_1 == 0) { ldv_state_variable_6 = 3; } else { } } else { } goto ldv_49756; case 4: ; if (ldv_state_variable_6 == 1) { wcn36xx_bss_info_changed(wcn36xx_ops_group1, wcn36xx_ops_group2, ldvarg11, ldvarg10); ldv_state_variable_6 = 1; } else { } if (ldv_state_variable_6 == 3) { wcn36xx_bss_info_changed(wcn36xx_ops_group1, wcn36xx_ops_group2, ldvarg11, ldvarg10); ldv_state_variable_6 = 3; } else { } if (ldv_state_variable_6 == 2) { wcn36xx_bss_info_changed(wcn36xx_ops_group1, wcn36xx_ops_group2, ldvarg11, ldvarg10); ldv_state_variable_6 = 2; } else { } goto ldv_49756; case 5: ; if (ldv_state_variable_6 == 1) { wcn36xx_sw_scan_complete(wcn36xx_ops_group1); ldv_state_variable_6 = 1; } else { } if (ldv_state_variable_6 == 3) { wcn36xx_sw_scan_complete(wcn36xx_ops_group1); ldv_state_variable_6 = 3; } else { } if (ldv_state_variable_6 == 2) { wcn36xx_sw_scan_complete(wcn36xx_ops_group1); ldv_state_variable_6 = 2; } else { } goto ldv_49756; case 6: ; if (ldv_state_variable_6 == 1) { wcn36xx_sta_add(wcn36xx_ops_group1, wcn36xx_ops_group2, wcn36xx_ops_group0); ldv_state_variable_6 = 1; } else { } if (ldv_state_variable_6 == 3) { wcn36xx_sta_add(wcn36xx_ops_group1, wcn36xx_ops_group2, wcn36xx_ops_group0); ldv_state_variable_6 = 3; } else { } if (ldv_state_variable_6 == 2) { wcn36xx_sta_add(wcn36xx_ops_group1, wcn36xx_ops_group2, wcn36xx_ops_group0); ldv_state_variable_6 = 2; } else { } goto ldv_49756; case 7: ; if (ldv_state_variable_6 == 3) { wcn36xx_stop(wcn36xx_ops_group1); ldv_state_variable_6 = 1; ref_cnt = ref_cnt - 1; } else { } if (ldv_state_variable_6 == 2) { wcn36xx_stop(wcn36xx_ops_group1); ldv_state_variable_6 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_49756; case 8: ; if (ldv_state_variable_6 == 1) { wcn36xx_tx(wcn36xx_ops_group1, ldvarg9, ldvarg8); ldv_state_variable_6 = 1; } else { } if (ldv_state_variable_6 == 3) { wcn36xx_tx(wcn36xx_ops_group1, ldvarg9, ldvarg8); ldv_state_variable_6 = 3; } else { } if (ldv_state_variable_6 == 2) { wcn36xx_tx(wcn36xx_ops_group1, ldvarg9, ldvarg8); ldv_state_variable_6 = 2; } else { } goto ldv_49756; case 9: ; if (ldv_state_variable_6 == 3) { ldv_retval_0 = wcn36xx_resume(wcn36xx_ops_group1); if (ldv_retval_0 == 0) { ldv_state_variable_6 = 2; } else { } } else { } goto ldv_49756; case 10: ; if (ldv_state_variable_6 == 1) { wcn36xx_ampdu_action(wcn36xx_ops_group1, wcn36xx_ops_group2, ldvarg5, wcn36xx_ops_group0, (int )ldvarg7, ldvarg4, (int )ldvarg6); ldv_state_variable_6 = 1; } else { } if (ldv_state_variable_6 == 3) { wcn36xx_ampdu_action(wcn36xx_ops_group1, wcn36xx_ops_group2, ldvarg5, wcn36xx_ops_group0, (int )ldvarg7, ldvarg4, (int )ldvarg6); ldv_state_variable_6 = 3; } else { } if (ldv_state_variable_6 == 2) { wcn36xx_ampdu_action(wcn36xx_ops_group1, wcn36xx_ops_group2, ldvarg5, wcn36xx_ops_group0, (int )ldvarg7, ldvarg4, (int )ldvarg6); ldv_state_variable_6 = 2; } else { } goto ldv_49756; case 11: ; if (ldv_state_variable_6 == 1) { wcn36xx_configure_filter(wcn36xx_ops_group1, ldvarg3, ldvarg2, ldvarg1); ldv_state_variable_6 = 1; } else { } if (ldv_state_variable_6 == 3) { wcn36xx_configure_filter(wcn36xx_ops_group1, ldvarg3, ldvarg2, ldvarg1); ldv_state_variable_6 = 3; } else { } if (ldv_state_variable_6 == 2) { wcn36xx_configure_filter(wcn36xx_ops_group1, ldvarg3, ldvarg2, ldvarg1); ldv_state_variable_6 = 2; } else { } goto ldv_49756; case 12: ; if (ldv_state_variable_6 == 1) { wcn36xx_sw_scan_start(wcn36xx_ops_group1); ldv_state_variable_6 = 1; } else { } if (ldv_state_variable_6 == 3) { wcn36xx_sw_scan_start(wcn36xx_ops_group1); ldv_state_variable_6 = 3; } else { } if (ldv_state_variable_6 == 2) { wcn36xx_sw_scan_start(wcn36xx_ops_group1); ldv_state_variable_6 = 2; } else { } goto ldv_49756; case 13: ; if (ldv_state_variable_6 == 1) { wcn36xx_set_rts_threshold(wcn36xx_ops_group1, ldvarg0); ldv_state_variable_6 = 1; } else { } if (ldv_state_variable_6 == 3) { wcn36xx_set_rts_threshold(wcn36xx_ops_group1, ldvarg0); ldv_state_variable_6 = 3; } else { } if (ldv_state_variable_6 == 2) { wcn36xx_set_rts_threshold(wcn36xx_ops_group1, ldvarg0); ldv_state_variable_6 = 2; } else { } goto ldv_49756; case 14: ; if (ldv_state_variable_6 == 1) { wcn36xx_add_interface(wcn36xx_ops_group1, wcn36xx_ops_group2); ldv_state_variable_6 = 1; } else { } if (ldv_state_variable_6 == 3) { wcn36xx_add_interface(wcn36xx_ops_group1, wcn36xx_ops_group2); ldv_state_variable_6 = 3; } else { } if (ldv_state_variable_6 == 2) { wcn36xx_add_interface(wcn36xx_ops_group1, wcn36xx_ops_group2); ldv_state_variable_6 = 2; } else { } goto ldv_49756; case 15: ; if (ldv_state_variable_6 == 1) { wcn36xx_sta_remove(wcn36xx_ops_group1, wcn36xx_ops_group2, wcn36xx_ops_group0); ldv_state_variable_6 = 1; } else { } if (ldv_state_variable_6 == 3) { wcn36xx_sta_remove(wcn36xx_ops_group1, wcn36xx_ops_group2, wcn36xx_ops_group0); ldv_state_variable_6 = 3; } else { } if (ldv_state_variable_6 == 2) { wcn36xx_sta_remove(wcn36xx_ops_group1, wcn36xx_ops_group2, wcn36xx_ops_group0); ldv_state_variable_6 = 2; } else { } goto ldv_49756; case 16: ; if (ldv_state_variable_6 == 1) { wcn36xx_remove_interface(wcn36xx_ops_group1, wcn36xx_ops_group2); ldv_state_variable_6 = 1; } else { } if (ldv_state_variable_6 == 3) { wcn36xx_remove_interface(wcn36xx_ops_group1, wcn36xx_ops_group2); ldv_state_variable_6 = 3; } else { } if (ldv_state_variable_6 == 2) { wcn36xx_remove_interface(wcn36xx_ops_group1, wcn36xx_ops_group2); ldv_state_variable_6 = 2; } else { } goto ldv_49756; default: ldv_stop(); } ldv_49756: ; } else { } goto ldv_49774; case 1: ; if (ldv_state_variable_4 != 0) { ldv_main_exported_4(); } else { } goto ldv_49774; case 2: ; goto ldv_49774; case 3: ; if (ldv_state_variable_0 != 0) { tmp___14 = __VERIFIER_nondet_int(); switch (tmp___14) { case 0: ; if (ldv_state_variable_0 == 3 && ref_cnt == 0) { wcn36xx_exit(); ldv_state_variable_0 = 2; goto ldv_final; } else { } goto ldv_49780; case 1: ; if (ldv_state_variable_0 == 1) { ldv_retval_4 = wcn36xx_init(); if (ldv_retval_4 == 0) { ldv_state_variable_0 = 3; ldv_state_variable_3 = 1; ldv_file_operations_3(); ldv_state_variable_4 = 1; ldv_file_operations_4(); ldv_state_variable_6 = 1; ldv_initialize_ieee80211_ops_6(); } else { } if (ldv_retval_4 != 0) { ldv_state_variable_0 = 2; goto ldv_final; } else { } } else { } goto ldv_49780; default: ldv_stop(); } ldv_49780: ; } else { } goto ldv_49774; case 4: ; if (ldv_state_variable_3 != 0) { ldv_main_exported_3(); } else { } goto ldv_49774; case 5: ; goto ldv_49774; case 6: ; if (ldv_state_variable_5 != 0) { tmp___15 = __VERIFIER_nondet_int(); switch (tmp___15) { case 0: ; if (ldv_state_variable_5 == 1) { ldv_retval_6 = wcn36xx_probe(wcn36xx_driver_group0); if (ldv_retval_6 == 0) { ldv_state_variable_5 = 2; ref_cnt = ref_cnt + 1; } else { } } else { } goto ldv_49787; case 1: ; if (ldv_state_variable_5 == 2) { wcn36xx_remove(wcn36xx_driver_group0); ldv_state_variable_5 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_49787; default: ldv_stop(); } ldv_49787: ; } else { } goto ldv_49774; default: ldv_stop(); } ldv_49774: ; goto ldv_49791; ldv_final: ldv_check_final_state(); return 0; } } void ldv_consume_skb_5(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_6(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_7(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_8(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_11(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } int ldv___platform_driver_register_12(struct platform_driver *ldv_func_arg1 , struct module *ldv_func_arg2 ) { ldv_func_ret_type ldv_func_res ; int tmp ; { tmp = __platform_driver_register(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; ldv_state_variable_5 = 1; ldv_initialize_platform_driver_5(); return (ldv_func_res); } } void ldv_platform_driver_unregister_13(struct platform_driver *drv ) { { platform_driver_unregister(drv); ldv_state_variable_5 = 0; return; } } extern struct pv_irq_ops pv_irq_ops ; extern void warn_slowpath_null(char const * , int const ) ; extern unsigned long __phys_addr(unsigned long ) ; __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"./arch/x86/include/asm/paravirt.h"), "i" (804), "i" (12UL)); ldv_4822: ; goto ldv_4822; } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } extern unsigned long _raw_spin_lock_irqsave(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->ldv_6338.rlock); } } __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { _raw_spin_unlock_irqrestore(& lock->ldv_6338.rlock, flags); return; } } __inline static unsigned int readl(void const volatile *addr ) { unsigned int ret ; { __asm__ volatile ("movl %1,%0": "=r" (ret): "m" (*((unsigned int volatile *)addr)): "memory"); return (ret); } } __inline static void writel(unsigned int val , void volatile *addr ) { { __asm__ volatile ("movl %0,%1": : "r" (val), "m" (*((unsigned int volatile *)addr)): "memory"); return; } } __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { tmp = kmalloc(size, flags | 32768U); return (tmp); } } __inline static int valid_dma_direction(int dma_direction ) { { return ((dma_direction == 0 || dma_direction == 1) || dma_direction == 2); } } __inline static int is_device_dma_capable(struct device *dev ) { { return ((unsigned long )dev->dma_mask != (unsigned long )((u64 *)0ULL) && *(dev->dma_mask) != 0ULL); } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern void debug_dma_alloc_coherent(struct device * , size_t , dma_addr_t , void * ) ; extern void debug_dma_free_coherent(struct device * , size_t , void * , dma_addr_t ) ; extern struct device x86_dma_fallback_dev ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static dma_addr_t dma_map_single_attrs(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); ldv_20746: ; goto ldv_20746; } else { } tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, (struct page *)-24189255811072L + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, (struct page *)-24189255811072L + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); return (addr); } } __inline static void dma_unmap_single_attrs(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (36), "i" (12UL)); ldv_20755: ; goto ldv_20755; } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { (*(ops->unmap_page))(dev, addr, size, dir, attrs); } else { } debug_dma_unmap_page(dev, addr, size, (int )dir, 1); return; } } __inline static unsigned long dma_alloc_coherent_mask(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; { dma_mask = 0UL; dma_mask = (unsigned long )dev->coherent_dma_mask; if (dma_mask == 0UL) { dma_mask = (int )gfp & 1 ? 16777215UL : 4294967295UL; } else { } return (dma_mask); } } __inline static gfp_t dma_alloc_coherent_gfp_flags(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; unsigned long tmp ; { tmp = dma_alloc_coherent_mask(dev, gfp); dma_mask = tmp; if ((unsigned long long )dma_mask <= 16777215ULL) { gfp = gfp | 1U; } else { } if ((unsigned long long )dma_mask <= 4294967295ULL && (gfp & 1U) == 0U) { gfp = gfp | 4U; } else { } return (gfp); } } __inline static void *dma_alloc_attrs(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t gfp , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; void *memory ; int tmp___0 ; gfp_t tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; gfp = gfp & 4294967288U; if ((unsigned long )dev == (unsigned long )((struct device *)0)) { dev = & x86_dma_fallback_dev; } else { } tmp___0 = is_device_dma_capable(dev); if (tmp___0 == 0) { return ((void *)0); } else { } if ((unsigned long )ops->alloc == (unsigned long )((void *(*)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ))0)) { return ((void *)0); } else { } tmp___1 = dma_alloc_coherent_gfp_flags(dev, gfp); memory = (*(ops->alloc))(dev, size, dma_handle, tmp___1, attrs); debug_dma_alloc_coherent(dev, size, *dma_handle, memory); return (memory); } } __inline static void dma_free_attrs(struct device *dev , size_t size , void *vaddr , dma_addr_t bus , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int __ret_warn_on ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; _flags = arch_local_save_flags(); tmp___0 = arch_irqs_disabled_flags(_flags); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp___1 != 0L) { warn_slowpath_null("./arch/x86/include/asm/dma-mapping.h", 166); } else { } ldv__builtin_expect(__ret_warn_on != 0, 0L); debug_dma_free_coherent(dev, size, vaddr, bus); if ((unsigned long )ops->free != (unsigned long )((void (*)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ))0)) { (*(ops->free))(dev, size, vaddr, bus, attrs); } else { } return; } } void ldv_kfree_skb_21(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_22(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_23(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_26(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_28(struct sk_buff *ldv_func_arg1 ) ; void ldv_consume_skb_20(struct sk_buff *ldv_func_arg1 ) ; __inline static struct sk_buff *ldv_alloc_skb_27(unsigned int size , gfp_t priority ) ; __inline static unsigned char *skb_tail_pointer(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->tail); } } extern struct sk_buff___0 *ldv_skb_alloc(void) ; void choose_interrupt_2(void) ; void disable_suitable_irq_2(int line , void *data ) ; void activate_suitable_irq_2(int line , void *data ) ; void disable_suitable_irq_1(int line , void *data ) ; int reg_check_1(irqreturn_t (*handler)(int , void * ) ) ; void activate_suitable_irq_1(int line , void *data ) ; int ldv_irq_1(int state , int line , void *data ) ; int ldv_irq_2(int state , int line , void *data ) ; void choose_interrupt_1(void) ; int reg_check_2(irqreturn_t (*handler)(int , void * ) ) ; extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); return (tmp); } } __inline static int ldv_request_irq_29(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; __inline static int ldv_request_irq_30(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; void ldv_free_irq_31(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; void ldv_free_irq_32(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; void ldv_free_irq_33(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; extern void disable_irq_nosync(unsigned int ) ; extern void enable_irq(unsigned int ) ; extern int irq_set_irq_wake(unsigned int , unsigned int ) ; __inline static int enable_irq_wake(unsigned int irq ) { int tmp ; { tmp = irq_set_irq_wake(irq, 1U); return (tmp); } } __inline static struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb ) { { return ((struct ieee80211_tx_info *)(& skb->cb)); } } extern void ieee80211_tx_status_irqsafe(struct ieee80211_hw * , struct sk_buff * ) ; extern void ieee80211_stop_queues(struct ieee80211_hw * ) ; extern void ieee80211_wake_queues(struct ieee80211_hw * ) ; int wcn36xx_rx_skb(struct wcn36xx *wcn , struct sk_buff *skb ) ; void wcn36xx_dxe_rx_frame(struct wcn36xx *wcn ) ; int wcn36xx_dxe_tx_frame(struct wcn36xx *wcn , struct wcn36xx_vif *vif_priv , struct sk_buff *skb , bool is_low ) ; void wcn36xx_dxe_tx_ack_ind(struct wcn36xx *wcn , u32 status ) ; void *wcn36xx_dxe_get_next_bd(struct wcn36xx *wcn , bool is_low ) ; void *wcn36xx_dxe_get_next_bd(struct wcn36xx *wcn , bool is_low ) { struct wcn36xx_dxe_ch *ch ; { ch = (int )is_low ? & wcn->dxe_tx_l_ch : & wcn->dxe_tx_h_ch; return ((ch->head_blk_ctl)->bd_cpu_addr); } } static void wcn36xx_dxe_write_register(struct wcn36xx *wcn , int addr , int data ) { { if ((int )wcn36xx_dbg_mask & 1) { printk("\017wcn36xx: wcn36xx_dxe_write_register: addr=%x, data=%x\n", addr, data); } else { } writel((unsigned int )data, (void volatile *)wcn->mmio + (unsigned long )addr); return; } } static void wcn36xx_dxe_read_register(struct wcn36xx *wcn , int addr , int *data ) { unsigned int tmp ; { tmp = readl((void const volatile *)wcn->mmio + (unsigned long )addr); *data = (int )tmp; if ((int )wcn36xx_dbg_mask & 1) { printk("\017wcn36xx: wcn36xx_dxe_read_register: addr=%x, data=%x\n", addr, *data); } else { } return; } } static void wcn36xx_dxe_free_ctl_block(struct wcn36xx_dxe_ch *ch ) { struct wcn36xx_dxe_ctl *ctl ; struct wcn36xx_dxe_ctl *next ; int i ; { ctl = ch->head_blk_ctl; i = 0; goto ldv_48306; ldv_48305: next = ctl->next; kfree((void const *)ctl); ctl = next; i = i + 1; ldv_48306: ; if ((unsigned int )i < (unsigned int )ch->desc_num && (unsigned long )ctl != (unsigned long )((struct wcn36xx_dxe_ctl *)0)) { goto ldv_48305; } else { } return; } } static int wcn36xx_dxe_allocate_ctl_block(struct wcn36xx_dxe_ch *ch ) { struct wcn36xx_dxe_ctl *prev_ctl ; struct wcn36xx_dxe_ctl *cur_ctl ; int i ; void *tmp ; { prev_ctl = (struct wcn36xx_dxe_ctl *)0; cur_ctl = (struct wcn36xx_dxe_ctl *)0; i = 0; goto ldv_48316; ldv_48315: tmp = kzalloc(120UL, 208U); cur_ctl = (struct wcn36xx_dxe_ctl *)tmp; if ((unsigned long )cur_ctl == (unsigned long )((struct wcn36xx_dxe_ctl *)0)) { goto out_fail; } else { } cur_ctl->ctl_blk_order = i; if (i == 0) { ch->head_blk_ctl = cur_ctl; ch->tail_blk_ctl = cur_ctl; } else if ((unsigned int )ch->desc_num - 1U == (unsigned int )i) { prev_ctl->next = cur_ctl; cur_ctl->next = ch->head_blk_ctl; } else { prev_ctl->next = cur_ctl; } prev_ctl = cur_ctl; i = i + 1; ldv_48316: ; if ((unsigned int )i < (unsigned int )ch->desc_num) { goto ldv_48315; } else { } return (0); out_fail: wcn36xx_dxe_free_ctl_block(ch); return (-12); } } int wcn36xx_dxe_alloc_ctl_blks(struct wcn36xx *wcn ) { int ret ; { wcn->dxe_tx_l_ch.ch_type = 0; wcn->dxe_tx_h_ch.ch_type = 1; wcn->dxe_rx_l_ch.ch_type = 2; wcn->dxe_rx_h_ch.ch_type = 3; wcn->dxe_tx_l_ch.desc_num = 128; wcn->dxe_tx_h_ch.desc_num = 10; wcn->dxe_rx_l_ch.desc_num = 512; wcn->dxe_rx_h_ch.desc_num = 40; wcn->dxe_tx_l_ch.dxe_wq = 23U; wcn->dxe_tx_h_ch.dxe_wq = 23U; wcn->dxe_tx_l_ch.ctrl_bd = 3181125U; wcn->dxe_tx_h_ch.ctrl_bd = 3198533U; wcn->dxe_tx_l_ch.ctrl_skb = 3312205U; wcn->dxe_tx_h_ch.ctrl_skb = 3329613U; wcn->dxe_tx_l_ch.reg_ctrl = 2106368U; wcn->dxe_tx_h_ch.reg_ctrl = 2106624U; wcn->dxe_tx_l_ch.def_ctrl = 2218691405U; wcn->dxe_tx_h_ch.def_ctrl = 2235486029U; ret = wcn36xx_dxe_allocate_ctl_block(& wcn->dxe_tx_l_ch); if (ret != 0) { goto out_err; } else { } ret = wcn36xx_dxe_allocate_ctl_block(& wcn->dxe_tx_h_ch); if (ret != 0) { goto out_err; } else { } ret = wcn36xx_dxe_allocate_ctl_block(& wcn->dxe_rx_l_ch); if (ret != 0) { goto out_err; } else { } ret = wcn36xx_dxe_allocate_ctl_block(& wcn->dxe_rx_h_ch); if (ret != 0) { goto out_err; } else { } ret = (*((wcn->ctrl_ops)->smsm_change_state))(1024U, 512U); return (0); out_err: printk("\vwcn36xx: OLD_ERROR Failed to allocate DXE control blocks\n"); wcn36xx_dxe_free_ctl_blks(wcn); return (-12); } } void wcn36xx_dxe_free_ctl_blks(struct wcn36xx *wcn ) { { wcn36xx_dxe_free_ctl_block(& wcn->dxe_tx_l_ch); wcn36xx_dxe_free_ctl_block(& wcn->dxe_tx_h_ch); wcn36xx_dxe_free_ctl_block(& wcn->dxe_rx_l_ch); wcn36xx_dxe_free_ctl_block(& wcn->dxe_rx_h_ch); return; } } static int wcn36xx_dxe_init_descs(struct wcn36xx_dxe_ch *wcn_ch ) { struct wcn36xx_dxe_desc *cur_dxe ; struct wcn36xx_dxe_desc *prev_dxe ; struct wcn36xx_dxe_ctl *cur_ctl ; size_t size ; int i ; { cur_dxe = (struct wcn36xx_dxe_desc *)0; prev_dxe = (struct wcn36xx_dxe_desc *)0; cur_ctl = (struct wcn36xx_dxe_ctl *)0; size = (unsigned long )wcn_ch->desc_num * 32UL; wcn_ch->cpu_addr = dma_alloc_attrs((struct device *)0, size, & wcn_ch->dma_addr, 208U, (struct dma_attrs *)0); if ((unsigned long )wcn_ch->cpu_addr == (unsigned long )((void *)0)) { return (-12); } else { } memset(wcn_ch->cpu_addr, 0, size); cur_dxe = (struct wcn36xx_dxe_desc *)wcn_ch->cpu_addr; cur_ctl = wcn_ch->head_blk_ctl; i = 0; goto ldv_48340; ldv_48339: cur_ctl->desc = cur_dxe; cur_ctl->desc_phy_addr = (unsigned int )wcn_ch->dma_addr + (unsigned int )((unsigned long )i) * 32U; switch ((unsigned int )wcn_ch->ch_type) { case 0U: cur_dxe->ctrl = 3312196U; cur_dxe->dst_addr_l = 23U; goto ldv_48335; case 1U: cur_dxe->ctrl = 3329604U; cur_dxe->dst_addr_l = 23U; goto ldv_48335; case 2U: cur_dxe->ctrl = 1223983U; cur_dxe->src_addr_l = 11U; goto ldv_48335; case 3U: cur_dxe->ctrl = 1233199U; cur_dxe->src_addr_l = 4U; goto ldv_48335; } ldv_48335: ; if (i == 0) { cur_dxe->phy_next_l = 0U; } else if (i > 0 && (unsigned int )i < (unsigned int )wcn_ch->desc_num - 1U) { prev_dxe->phy_next_l = cur_ctl->desc_phy_addr; } else if ((unsigned int )i == (unsigned int )wcn_ch->desc_num - 1U) { prev_dxe->phy_next_l = cur_ctl->desc_phy_addr; cur_dxe->phy_next_l = (wcn_ch->head_blk_ctl)->desc_phy_addr; } else { } cur_ctl = cur_ctl->next; prev_dxe = cur_dxe; cur_dxe = cur_dxe + 1; i = i + 1; ldv_48340: ; if ((unsigned int )i < (unsigned int )wcn_ch->desc_num) { goto ldv_48339; } else { } return (0); } } static void wcn36xx_dxe_init_tx_bd(struct wcn36xx_dxe_ch *ch , struct wcn36xx_dxe_mem_pool *pool ) { int i ; int chunk_size ; dma_addr_t bd_phy_addr ; void *bd_cpu_addr ; struct wcn36xx_dxe_ctl *cur ; { chunk_size = pool->chunk_size; bd_phy_addr = pool->phy_addr; bd_cpu_addr = pool->virt_addr; cur = ch->head_blk_ctl; i = 0; goto ldv_48352; ldv_48351: ; if ((i & 1) == 0) { cur->bd_phy_addr = bd_phy_addr; cur->bd_cpu_addr = bd_cpu_addr; bd_phy_addr = (dma_addr_t )chunk_size + bd_phy_addr; bd_cpu_addr = bd_cpu_addr + (unsigned long )chunk_size; } else { cur->bd_phy_addr = 0ULL; cur->bd_cpu_addr = (void *)0; } cur = cur->next; i = i + 1; ldv_48352: ; if ((unsigned int )i < (unsigned int )ch->desc_num) { goto ldv_48351; } else { } return; } } static int wcn36xx_dxe_enable_ch_int(struct wcn36xx *wcn , u16 wcn_ch ) { int reg_data ; { reg_data = 0; wcn36xx_dxe_read_register(wcn, 2105368, & reg_data); reg_data = (int )wcn_ch | reg_data; wcn36xx_dxe_write_register(wcn, 2105368, reg_data); return (0); } } static int wcn36xx_dxe_fill_skb(struct wcn36xx_dxe_ctl *ctl ) { struct wcn36xx_dxe_desc *dxe ; struct sk_buff *skb ; unsigned char *tmp ; dma_addr_t tmp___0 ; { dxe = ctl->desc; skb = ldv_alloc_skb_27(3872U, 32U); if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { return (-12); } else { } tmp = skb_tail_pointer((struct sk_buff const *)skb); tmp___0 = dma_map_single_attrs((struct device *)0, (void *)tmp, 3872UL, 2, (struct dma_attrs *)0); dxe->dst_addr_l = (u32 )tmp___0; ctl->skb = skb; return (0); } } static int wcn36xx_dxe_ch_alloc_skb(struct wcn36xx *wcn , struct wcn36xx_dxe_ch *wcn_ch ) { int i ; struct wcn36xx_dxe_ctl *cur_ctl ; { cur_ctl = (struct wcn36xx_dxe_ctl *)0; cur_ctl = wcn_ch->head_blk_ctl; i = 0; goto ldv_48371; ldv_48370: wcn36xx_dxe_fill_skb(cur_ctl); cur_ctl = cur_ctl->next; i = i + 1; ldv_48371: ; if ((unsigned int )i < (unsigned int )wcn_ch->desc_num) { goto ldv_48370; } else { } return (0); } } static void wcn36xx_dxe_ch_free_skbs(struct wcn36xx *wcn , struct wcn36xx_dxe_ch *wcn_ch ) { struct wcn36xx_dxe_ctl *cur ; int i ; { cur = wcn_ch->head_blk_ctl; i = 0; goto ldv_48380; ldv_48379: ldv_kfree_skb_28(cur->skb); cur = cur->next; i = i + 1; ldv_48380: ; if ((unsigned int )i < (unsigned int )wcn_ch->desc_num) { goto ldv_48379; } else { } return; } } void wcn36xx_dxe_tx_ack_ind(struct wcn36xx *wcn , u32 status ) { struct ieee80211_tx_info *info ; struct sk_buff *skb ; unsigned long flags ; raw_spinlock_t *tmp ; { tmp = spinlock_check(& wcn->dxe_lock); flags = _raw_spin_lock_irqsave(tmp); skb = wcn->tx_ack_skb; wcn->tx_ack_skb = (struct sk_buff *)0; spin_unlock_irqrestore(& wcn->dxe_lock, flags); if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { printk("\fwcn36xx: WARNING Spurious TX complete indication\n"); return; } else { } info = IEEE80211_SKB_CB(skb); if (status == 1U) { info->flags = info->flags | 512U; } else { } if ((int )wcn36xx_dbg_mask & 1) { printk("\017wcn36xx: dxe tx ack status: %d\n", status); } else { } ieee80211_tx_status_irqsafe(wcn->hw, skb); ieee80211_wake_queues(wcn->hw); return; } } static void reap_tx_dxes(struct wcn36xx *wcn , struct wcn36xx_dxe_ch *ch ) { struct wcn36xx_dxe_ctl *ctl ; struct ieee80211_tx_info *info ; unsigned long flags ; raw_spinlock_t *tmp ; { ctl = ch->tail_blk_ctl; ldv_48402: ; if ((unsigned long )ctl->skb != (unsigned long )((struct sk_buff *)0)) { dma_unmap_single_attrs((struct device *)0, (dma_addr_t )(ctl->desc)->src_addr_l, (size_t )(ctl->skb)->len, 1, (struct dma_attrs *)0); info = IEEE80211_SKB_CB(ctl->skb); if ((info->flags & 1U) == 0U) { ieee80211_free_txskb(wcn->hw, ctl->skb); } else { } tmp = spinlock_check(& ctl->skb_lock); flags = _raw_spin_lock_irqsave(tmp); if ((int )wcn->queues_stopped) { wcn->queues_stopped = 0; ieee80211_wake_queues(wcn->hw); } else { } spin_unlock_irqrestore(& ctl->skb_lock, flags); ctl->skb = (struct sk_buff *)0; } else { } ctl = ctl->next; if ((unsigned long )ch->head_blk_ctl != (unsigned long )ctl && ((ctl->desc)->ctrl & 1U) == 0U) { goto ldv_48402; } else { } ch->tail_blk_ctl = ctl; return; } } static irqreturn_t wcn36xx_irq_tx_complete(int irq , void *dev ) { struct wcn36xx *wcn ; int int_src ; int int_reason ; { wcn = (struct wcn36xx *)dev; wcn36xx_dxe_read_register(wcn, 2105376, & int_src); if ((int_src & 16) != 0) { wcn36xx_dxe_read_register(wcn, 2106628, & int_reason); wcn36xx_dxe_write_register(wcn, 2105392, 16); wcn36xx_dxe_write_register(wcn, 2105396, 16); if ((int )wcn36xx_dbg_mask & 1) { printk("\017wcn36xx: dxe tx ready high\n"); } else { } reap_tx_dxes(wcn, & wcn->dxe_tx_h_ch); } else { } if (int_src & 1) { wcn36xx_dxe_read_register(wcn, 2106372, & int_reason); wcn36xx_dxe_write_register(wcn, 2105392, 1); wcn36xx_dxe_write_register(wcn, 2105396, 1); if ((int )wcn36xx_dbg_mask & 1) { printk("\017wcn36xx: dxe tx ready low\n"); } else { } reap_tx_dxes(wcn, & wcn->dxe_tx_l_ch); } else { } return (1); } } static irqreturn_t wcn36xx_irq_rx_ready(int irq , void *dev ) { struct wcn36xx *wcn ; { wcn = (struct wcn36xx *)dev; disable_irq_nosync((unsigned int )wcn->rx_irq); wcn36xx_dxe_rx_frame(wcn); enable_irq((unsigned int )wcn->rx_irq); return (1); } } static int wcn36xx_dxe_request_irqs(struct wcn36xx *wcn ) { int ret ; { ret = ldv_request_irq_29((unsigned int )wcn->tx_irq, & wcn36xx_irq_tx_complete, 4UL, "wcn36xx_tx", (void *)wcn); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR failed to alloc tx irq\n"); goto out_err; } else { } ret = ldv_request_irq_30((unsigned int )wcn->rx_irq, & wcn36xx_irq_rx_ready, 4UL, "wcn36xx_rx", (void *)wcn); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR failed to alloc rx irq\n"); goto out_txirq; } else { } enable_irq_wake((unsigned int )wcn->rx_irq); return (0); out_txirq: ldv_free_irq_31((unsigned int )wcn->tx_irq, (void *)wcn); out_err: ; return (ret); } } static int wcn36xx_rx_handle_packets(struct wcn36xx *wcn , struct wcn36xx_dxe_ch *ch ) { struct wcn36xx_dxe_ctl *ctl ; struct wcn36xx_dxe_desc *dxe ; dma_addr_t dma_addr ; struct sk_buff *skb ; { ctl = ch->head_blk_ctl; dxe = ctl->desc; goto ldv_48435; ldv_48434: skb = ctl->skb; dma_addr = (dma_addr_t )dxe->dst_addr_l; wcn36xx_dxe_fill_skb(ctl); switch ((unsigned int )ch->ch_type) { case 2U: dxe->ctrl = 1223983U; wcn36xx_dxe_write_register(wcn, 2105348, 2); goto ldv_48431; case 3U: dxe->ctrl = 1233199U; wcn36xx_dxe_write_register(wcn, 2105348, 8); goto ldv_48431; default: printk("\fwcn36xx: WARNING Unknown channel\n"); } ldv_48431: dma_unmap_single_attrs((struct device *)0, dma_addr, 3872UL, 2, (struct dma_attrs *)0); wcn36xx_rx_skb(wcn, skb); ctl = ctl->next; dxe = ctl->desc; ldv_48435: ; if ((dxe->ctrl & 1U) == 0U) { goto ldv_48434; } else { } ch->head_blk_ctl = ctl; return (0); } } void wcn36xx_dxe_rx_frame(struct wcn36xx *wcn ) { int int_src ; { wcn36xx_dxe_read_register(wcn, 2105376, & int_src); if ((int_src & 2) != 0) { wcn36xx_dxe_write_register(wcn, 2105392, 2); wcn36xx_rx_handle_packets(wcn, & wcn->dxe_rx_l_ch); } else { } if ((int_src & 8) != 0) { wcn36xx_dxe_write_register(wcn, 2105392, 8); wcn36xx_rx_handle_packets(wcn, & wcn->dxe_rx_h_ch); } else { } if (int_src == 0) { printk("\fwcn36xx: WARNING No DXE interrupt pending\n"); } else { } return; } } int wcn36xx_dxe_allocate_mem_pools(struct wcn36xx *wcn ) { size_t s ; void *cpu_addr ; { wcn->mgmt_mem_pool.chunk_size = 144; s = (size_t )(wcn->mgmt_mem_pool.chunk_size * 10); cpu_addr = dma_alloc_attrs((struct device *)0, s, & wcn->mgmt_mem_pool.phy_addr, 208U, (struct dma_attrs *)0); if ((unsigned long )cpu_addr == (unsigned long )((void *)0)) { goto out_err; } else { } wcn->mgmt_mem_pool.virt_addr = cpu_addr; memset(cpu_addr, 0, s); wcn->data_mem_pool.chunk_size = 144; s = (size_t )(wcn->data_mem_pool.chunk_size * 128); cpu_addr = dma_alloc_attrs((struct device *)0, s, & wcn->data_mem_pool.phy_addr, 208U, (struct dma_attrs *)0); if ((unsigned long )cpu_addr == (unsigned long )((void *)0)) { goto out_err; } else { } wcn->data_mem_pool.virt_addr = cpu_addr; memset(cpu_addr, 0, s); return (0); out_err: wcn36xx_dxe_free_mem_pools(wcn); printk("\vwcn36xx: OLD_ERROR Failed to allocate BD mempool\n"); return (-12); } } void wcn36xx_dxe_free_mem_pools(struct wcn36xx *wcn ) { { if ((unsigned long )wcn->mgmt_mem_pool.virt_addr != (unsigned long )((void *)0)) { dma_free_attrs((struct device *)0, (size_t )(wcn->mgmt_mem_pool.chunk_size * 10), wcn->mgmt_mem_pool.virt_addr, wcn->mgmt_mem_pool.phy_addr, (struct dma_attrs *)0); } else { } if ((unsigned long )wcn->data_mem_pool.virt_addr != (unsigned long )((void *)0)) { dma_free_attrs((struct device *)0, (size_t )(wcn->data_mem_pool.chunk_size * 128), wcn->data_mem_pool.virt_addr, wcn->data_mem_pool.phy_addr, (struct dma_attrs *)0); } else { } return; } } int wcn36xx_dxe_tx_frame(struct wcn36xx *wcn , struct wcn36xx_vif *vif_priv , struct sk_buff *skb , bool is_low ) { struct wcn36xx_dxe_ctl *ctl ; struct wcn36xx_dxe_desc *desc ; struct wcn36xx_dxe_ch *ch ; unsigned long flags ; raw_spinlock_t *tmp ; dma_addr_t tmp___0 ; { ctl = (struct wcn36xx_dxe_ctl *)0; desc = (struct wcn36xx_dxe_desc *)0; ch = (struct wcn36xx_dxe_ch *)0; ch = (int )is_low ? & wcn->dxe_tx_l_ch : & wcn->dxe_tx_h_ch; ctl = ch->head_blk_ctl; tmp = spinlock_check(& (ctl->next)->skb_lock); flags = _raw_spin_lock_irqsave(tmp); if ((unsigned long )(ctl->next)->skb != (unsigned long )((struct sk_buff *)0)) { ieee80211_stop_queues(wcn->hw); wcn->queues_stopped = 1; spin_unlock_irqrestore(& (ctl->next)->skb_lock, flags); return (-16); } else { } spin_unlock_irqrestore(& (ctl->next)->skb_lock, flags); ctl->skb = (struct sk_buff *)0; desc = ctl->desc; desc->src_addr_l = (u32 )ctl->bd_phy_addr; desc->dst_addr_l = ch->dxe_wq; desc->fr_len = 40U; desc->ctrl = ch->ctrl_bd; if ((int )wcn36xx_dbg_mask & 1) { printk("\017wcn36xx: DXE TX\n"); } else { } if ((wcn36xx_dbg_mask & 2U) != 0U) { print_hex_dump("\017", "wcn36xx: DESC1 >>> ", 2, 32, 1, (void const *)desc, 32UL, 0); } else { } if ((wcn36xx_dbg_mask & 2U) != 0U) { print_hex_dump("\017", "wcn36xx: BD >>> ", 2, 32, 1, (void const *)ctl->bd_cpu_addr, 40UL, 0); } else { } ctl = ctl->next; ctl->skb = skb; desc = ctl->desc; if ((unsigned long )ctl->bd_cpu_addr != (unsigned long )((void *)0)) { printk("\vwcn36xx: OLD_ERROR bd_cpu_addr cannot be NULL for skb DXE\n"); return (-22); } else { } tmp___0 = dma_map_single_attrs((struct device *)0, (void *)(ctl->skb)->data, (size_t )(ctl->skb)->len, 1, (struct dma_attrs *)0); desc->src_addr_l = (u32 )tmp___0; desc->dst_addr_l = ch->dxe_wq; desc->fr_len = (ctl->skb)->len; desc->ctrl = ch->ctrl_skb; if ((wcn36xx_dbg_mask & 2U) != 0U) { print_hex_dump("\017", "wcn36xx: DESC2 >>> ", 2, 32, 1, (void const *)desc, 32UL, 0); } else { } if ((wcn36xx_dbg_mask & 2U) != 0U) { print_hex_dump("\017", "wcn36xx: SKB >>> ", 2, 32, 1, (void const *)(ctl->skb)->data, (size_t )(ctl->skb)->len, 0); } else { } ch->head_blk_ctl = ctl->next; if ((int )is_low && (unsigned int )vif_priv->pw_state == 1U) { (*((wcn->ctrl_ops)->smsm_change_state))(0U, 1024U); } else { wcn36xx_dxe_write_register(wcn, (int )ch->reg_ctrl, (int )ch->def_ctrl); } return (0); } } int wcn36xx_dxe_init(struct wcn36xx *wcn ) { int reg_data ; int ret ; { reg_data = 0; reg_data = 23689; wcn36xx_dxe_write_register(wcn, 2105344, reg_data); reg_data = 655377; if (wcn->chip_version == 1U) { wcn36xx_dxe_write_register(wcn, 2117852, reg_data); } else { wcn36xx_dxe_write_register(wcn, 2099984, reg_data); } wcn36xx_dxe_init_descs(& wcn->dxe_tx_l_ch); wcn36xx_dxe_init_tx_bd(& wcn->dxe_tx_l_ch, & wcn->data_mem_pool); wcn36xx_dxe_write_register(wcn, 2106396, (int )(wcn->dxe_tx_l_ch.head_blk_ctl)->desc_phy_addr); wcn36xx_dxe_write_register(wcn, 2106388, 23); wcn36xx_dxe_read_register(wcn, 2105352, & reg_data); wcn36xx_dxe_enable_ch_int(wcn, 1); wcn36xx_dxe_init_descs(& wcn->dxe_tx_h_ch); wcn36xx_dxe_init_tx_bd(& wcn->dxe_tx_h_ch, & wcn->mgmt_mem_pool); wcn36xx_dxe_write_register(wcn, 2106652, (int )(wcn->dxe_tx_h_ch.head_blk_ctl)->desc_phy_addr); wcn36xx_dxe_write_register(wcn, 2106644, 23); wcn36xx_dxe_read_register(wcn, 2105352, & reg_data); wcn36xx_dxe_enable_ch_int(wcn, 16); wcn36xx_dxe_init_descs(& wcn->dxe_rx_l_ch); wcn36xx_dxe_ch_alloc_skb(wcn, & wcn->dxe_rx_l_ch); wcn36xx_dxe_write_register(wcn, 2106460, (int )(wcn->dxe_rx_l_ch.head_blk_ctl)->desc_phy_addr); wcn36xx_dxe_write_register(wcn, 2106444, 11); wcn36xx_dxe_write_register(wcn, 2106452, (int )((wcn->dxe_rx_l_ch.head_blk_ctl)->desc)->phy_next_l); wcn36xx_dxe_write_register(wcn, 2106432, -2072072913); wcn36xx_dxe_enable_ch_int(wcn, 2); wcn36xx_dxe_init_descs(& wcn->dxe_rx_h_ch); wcn36xx_dxe_ch_alloc_skb(wcn, & wcn->dxe_rx_h_ch); wcn36xx_dxe_write_register(wcn, 2106588, (int )(wcn->dxe_rx_h_ch.head_blk_ctl)->desc_phy_addr); wcn36xx_dxe_write_register(wcn, 2106572, 4); wcn36xx_dxe_write_register(wcn, 2106580, (int )((wcn->dxe_rx_h_ch.head_blk_ctl)->desc)->phy_next_l); wcn36xx_dxe_write_register(wcn, 2106560, -2063675089); wcn36xx_dxe_enable_ch_int(wcn, 8); ret = wcn36xx_dxe_request_irqs(wcn); if (ret < 0) { goto out_err; } else { } return (0); out_err: ; return (ret); } } void wcn36xx_dxe_deinit(struct wcn36xx *wcn ) { { ldv_free_irq_32((unsigned int )wcn->tx_irq, (void *)wcn); ldv_free_irq_33((unsigned int )wcn->rx_irq, (void *)wcn); if ((unsigned long )wcn->tx_ack_skb != (unsigned long )((struct sk_buff *)0)) { ieee80211_tx_status_irqsafe(wcn->hw, wcn->tx_ack_skb); wcn->tx_ack_skb = (struct sk_buff *)0; } else { } wcn36xx_dxe_ch_free_skbs(wcn, & wcn->dxe_rx_l_ch); wcn36xx_dxe_ch_free_skbs(wcn, & wcn->dxe_rx_h_ch); return; } } void choose_interrupt_2(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ldv_irq_2_0 = ldv_irq_2(ldv_irq_2_0, ldv_irq_line_2_0, ldv_irq_data_2_0); goto ldv_48476; case 1: ldv_irq_2_0 = ldv_irq_2(ldv_irq_2_1, ldv_irq_line_2_1, ldv_irq_data_2_1); goto ldv_48476; case 2: ldv_irq_2_0 = ldv_irq_2(ldv_irq_2_2, ldv_irq_line_2_2, ldv_irq_data_2_2); goto ldv_48476; case 3: ldv_irq_2_0 = ldv_irq_2(ldv_irq_2_3, ldv_irq_line_2_3, ldv_irq_data_2_3); goto ldv_48476; default: ldv_stop(); } ldv_48476: ; return; } } void disable_suitable_irq_2(int line , void *data ) { { if (ldv_irq_2_0 != 0 && line == ldv_irq_line_2_0) { ldv_irq_2_0 = 0; return; } else { } if (ldv_irq_2_1 != 0 && line == ldv_irq_line_2_1) { ldv_irq_2_1 = 0; return; } else { } if (ldv_irq_2_2 != 0 && line == ldv_irq_line_2_2) { ldv_irq_2_2 = 0; return; } else { } if (ldv_irq_2_3 != 0 && line == ldv_irq_line_2_3) { ldv_irq_2_3 = 0; return; } else { } return; } } void activate_suitable_irq_2(int line , void *data ) { { if (ldv_irq_2_0 == 0) { ldv_irq_line_2_0 = line; ldv_irq_data_2_0 = data; ldv_irq_2_0 = 1; return; } else { } if (ldv_irq_2_1 == 0) { ldv_irq_line_2_1 = line; ldv_irq_data_2_1 = data; ldv_irq_2_1 = 1; return; } else { } if (ldv_irq_2_2 == 0) { ldv_irq_line_2_2 = line; ldv_irq_data_2_2 = data; ldv_irq_2_2 = 1; return; } else { } if (ldv_irq_2_3 == 0) { ldv_irq_line_2_3 = line; ldv_irq_data_2_3 = data; ldv_irq_2_3 = 1; return; } else { } return; } } void disable_suitable_irq_1(int line , void *data ) { { if (ldv_irq_1_0 != 0 && line == ldv_irq_line_1_0) { ldv_irq_1_0 = 0; return; } else { } if (ldv_irq_1_1 != 0 && line == ldv_irq_line_1_1) { ldv_irq_1_1 = 0; return; } else { } if (ldv_irq_1_2 != 0 && line == ldv_irq_line_1_2) { ldv_irq_1_2 = 0; return; } else { } if (ldv_irq_1_3 != 0 && line == ldv_irq_line_1_3) { ldv_irq_1_3 = 0; return; } else { } return; } } int reg_check_1(irqreturn_t (*handler)(int , void * ) ) { { if ((unsigned long )handler == (unsigned long )(& wcn36xx_irq_tx_complete)) { return (1); } else { } return (0); } } void activate_suitable_irq_1(int line , void *data ) { { if (ldv_irq_1_0 == 0) { ldv_irq_line_1_0 = line; ldv_irq_data_1_0 = data; ldv_irq_1_0 = 1; return; } else { } if (ldv_irq_1_1 == 0) { ldv_irq_line_1_1 = line; ldv_irq_data_1_1 = data; ldv_irq_1_1 = 1; return; } else { } if (ldv_irq_1_2 == 0) { ldv_irq_line_1_2 = line; ldv_irq_data_1_2 = data; ldv_irq_1_2 = 1; return; } else { } if (ldv_irq_1_3 == 0) { ldv_irq_line_1_3 = line; ldv_irq_data_1_3 = data; ldv_irq_1_3 = 1; return; } else { } return; } } int ldv_irq_1(int state , int line , void *data ) { irqreturn_t irq_retval ; int tmp ; { if (state != 0) { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ; if (state == 1) { LDV_IN_INTERRUPT = 2; irq_retval = wcn36xx_irq_tx_complete(line, data); LDV_IN_INTERRUPT = 1; return (state); } else { } goto ldv_48509; default: ldv_stop(); } ldv_48509: ; } else { } return (state); } } int ldv_irq_2(int state , int line , void *data ) { irqreturn_t irq_retval ; int tmp ; { if (state != 0) { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ; if (state == 1) { LDV_IN_INTERRUPT = 2; irq_retval = wcn36xx_irq_rx_ready(line, data); LDV_IN_INTERRUPT = 1; return (state); } else { } goto ldv_48518; default: ldv_stop(); } ldv_48518: ; } else { } return (state); } } void choose_interrupt_1(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ldv_irq_1_0 = ldv_irq_1(ldv_irq_1_0, ldv_irq_line_1_0, ldv_irq_data_1_0); goto ldv_48524; case 1: ldv_irq_1_0 = ldv_irq_1(ldv_irq_1_1, ldv_irq_line_1_1, ldv_irq_data_1_1); goto ldv_48524; case 2: ldv_irq_1_0 = ldv_irq_1(ldv_irq_1_2, ldv_irq_line_1_2, ldv_irq_data_1_2); goto ldv_48524; case 3: ldv_irq_1_0 = ldv_irq_1(ldv_irq_1_3, ldv_irq_line_1_3, ldv_irq_data_1_3); goto ldv_48524; default: ldv_stop(); } ldv_48524: ; return; } } int reg_check_2(irqreturn_t (*handler)(int , void * ) ) { { if ((unsigned long )handler == (unsigned long )(& wcn36xx_irq_rx_ready)) { return (1); } else { } return (0); } } void ldv_consume_skb_20(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_21(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_22(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_23(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_26(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } __inline static struct sk_buff *ldv_alloc_skb_27(unsigned int size , gfp_t priority ) { struct sk_buff *tmp ; { tmp = ldv_skb_alloc(); return (tmp); } } void ldv_kfree_skb_28(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } __inline static int ldv_request_irq_29(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type ldv_func_res ; int tmp ; int tmp___0 ; { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = reg_check_1(handler); if (tmp___0 != 0 && ldv_func_res == 0) { activate_suitable_irq_1((int )irq, dev); } else { } return (ldv_func_res); } } __inline static int ldv_request_irq_30(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = reg_check_1(handler); if (tmp___0 != 0 && ldv_func_res == 0) { activate_suitable_irq_1((int )irq, dev); } else { } return (ldv_func_res); } } void ldv_free_irq_31(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { free_irq(ldv_func_arg1, ldv_func_arg2); disable_suitable_irq_1((int )ldv_func_arg1, ldv_func_arg2); return; } } void ldv_free_irq_32(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { free_irq(ldv_func_arg1, ldv_func_arg2); disable_suitable_irq_1((int )ldv_func_arg1, ldv_func_arg2); return; } } void ldv_free_irq_33(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { free_irq(ldv_func_arg1, ldv_func_arg2); disable_suitable_irq_1((int )ldv_func_arg1, ldv_func_arg2); return; } } __inline static __u32 __arch_swab32(__u32 val ) { { __asm__ ("bswapl %0": "=r" (val): "0" (val)); return (val); } } __inline static __u32 __fswab32(__u32 val ) { __u32 tmp ; { tmp = __arch_swab32(val); return (tmp); } } extern int memcmp(void const * , void const * , size_t ) ; void ldv_kfree_skb_44(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_45(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_46(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_49(struct sk_buff *ldv_func_arg1 ) ; void ldv_consume_skb_43(struct sk_buff *ldv_func_arg1 ) ; extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; extern unsigned char *skb_pull(struct sk_buff * , unsigned int ) ; __inline static bool is_multicast_ether_addr(u8 const *addr ) { { return (((int )*addr & 1) != 0); } } __inline static bool is_broadcast_ether_addr(u8 const *addr ) { { return ((unsigned int )(((int )((unsigned short )*((u16 const *)addr)) & (int )((unsigned short )*((u16 const *)addr + 2U))) & (int )((unsigned short )*((u16 const *)addr + 4U))) == 65535U); } } __inline static int ieee80211_is_mgmt(__le16 fc ) { { return (((int )fc & 12) == 0); } } __inline static int ieee80211_is_ctl(__le16 fc ) { { return (((int )fc & 12) == 4); } } __inline static int ieee80211_is_data(__le16 fc ) { { return (((int )fc & 12) == 8); } } __inline static int ieee80211_is_data_qos(__le16 fc ) { { return (((int )fc & 140) == 136); } } __inline static int ieee80211_is_probe_req(__le16 fc ) { { return (((int )fc & 252) == 64); } } __inline static int ieee80211_is_beacon(__le16 fc ) { { return (((int )fc & 252) == 128); } } __inline static int ieee80211_is_nullfunc(__le16 fc ) { { return (((int )fc & 252) == 72); } } __inline static struct ieee80211_rx_status *IEEE80211_SKB_RXCB(struct sk_buff *skb ) { { return ((struct ieee80211_rx_status *)(& skb->cb)); } } extern void ieee80211_rx_irqsafe(struct ieee80211_hw * , struct sk_buff * ) ; __inline static void buff_to_be(u32 *buf , size_t len ) { int i ; __u32 tmp ; { i = 0; goto ldv_48038; ldv_48037: tmp = __fswab32(*(buf + (unsigned long )i)); *(buf + (unsigned long )i) = tmp; i = i + 1; ldv_48038: ; if ((size_t )i < len) { goto ldv_48037; } else { } return; } } __inline static int get_rssi0(struct wcn36xx_rx_bd *bd ) { { return ((int )(100U - (bd->phy_stat0 >> 24))); } } int wcn36xx_rx_skb(struct wcn36xx *wcn , struct sk_buff *skb ) { struct ieee80211_rx_status status ; struct ieee80211_hdr *hdr ; struct wcn36xx_rx_bd *bd ; u16 fc ; u16 sn ; int tmp ; size_t __len ; void *__ret ; struct ieee80211_rx_status *tmp___0 ; struct ieee80211_rx_status *tmp___1 ; int tmp___2 ; { memset((void *)(& status), 0, 40UL); bd = (struct wcn36xx_rx_bd *)skb->data; buff_to_be((u32 *)bd, 19UL); if ((wcn36xx_dbg_mask & 32U) != 0U) { print_hex_dump("\017", "wcn36xx: BD <<< ", 2, 32, 1, (void const *)bd, 76UL, 0); } else { } skb_put(skb, (unsigned int )((int )bd->pdu.mpdu_header_off + (int )bd->pdu.mpdu_len)); skb_pull(skb, (unsigned int )bd->pdu.mpdu_header_off); status.mactime = 10ULL; status.freq = ((wcn->hw)->conf.chandef.chan)->center_freq; status.band = (u8 )((wcn->hw)->conf.chandef.chan)->band; tmp = get_rssi0(bd); status.signal = (s8 )(- ((int )((unsigned char )tmp))); status.antenna = 1U; status.rate_idx = 1U; status.flag = 0U; status.rx_flags = 0U; status.flag = status.flag | 26U; if ((wcn36xx_dbg_mask & 16U) != 0U) { printk("\017wcn36xx: status.flags=%x\n", status.flag); } else { } __len = 40UL; if (__len > 63UL) { tmp___0 = IEEE80211_SKB_RXCB(skb); __ret = __memcpy((void *)tmp___0, (void const *)(& status), __len); } else { tmp___1 = IEEE80211_SKB_RXCB(skb); __ret = __builtin_memcpy((void *)tmp___1, (void const *)(& status), __len); } hdr = (struct ieee80211_hdr *)skb->data; fc = hdr->frame_control; sn = (u16 )((int )hdr->seq_ctrl >> 4); tmp___2 = ieee80211_is_beacon((int )hdr->frame_control); if (tmp___2 != 0) { if ((wcn36xx_dbg_mask & 2048U) != 0U) { printk("\017wcn36xx: beacon skb %p len %d fc %04x sn %d\n", skb, skb->len, (int )fc, (int )sn); } else { } if ((wcn36xx_dbg_mask & 4096U) != 0U) { print_hex_dump("\017", "wcn36xx: SKB <<< ", 2, 32, 1, (void const *)skb->data, (size_t )skb->len, 0); } else { } } else { if ((wcn36xx_dbg_mask & 16U) != 0U) { printk("\017wcn36xx: rx skb %p len %d fc %04x sn %d\n", skb, skb->len, (int )fc, (int )sn); } else { } if ((wcn36xx_dbg_mask & 32U) != 0U) { print_hex_dump("\017", "wcn36xx: SKB <<< ", 2, 32, 1, (void const *)skb->data, (size_t )skb->len, 0); } else { } } ieee80211_rx_irqsafe(wcn->hw, skb); return (0); } } static void wcn36xx_set_tx_pdu(struct wcn36xx_tx_bd *bd , u32 mpdu_header_len , u32 len , u16 tid ) { { bd->pdu.mpdu_header_len = (unsigned char )mpdu_header_len; bd->pdu.mpdu_header_off = 40U; bd->pdu.mpdu_data_off = (unsigned short )((int )((unsigned short )bd->pdu.mpdu_header_len) + (int )((unsigned short )bd->pdu.mpdu_header_off)); bd->pdu.mpdu_len = (unsigned short )len; bd->pdu.tid = (unsigned char )tid; return; } } __inline static struct wcn36xx_vif *get_vif_by_addr(struct wcn36xx *wcn , u8 *addr ) { struct wcn36xx_vif *vif_priv ; struct ieee80211_vif *vif ; struct list_head const *__mptr ; u8 const (*__mptr___0)[0U] ; int tmp ; struct list_head const *__mptr___1 ; { vif_priv = (struct wcn36xx_vif *)0; vif = (struct ieee80211_vif *)0; __mptr = (struct list_head const *)wcn->vif_list.next; vif_priv = (struct wcn36xx_vif *)__mptr; goto ldv_48246; ldv_48245: __mptr___0 = (u8 const *)vif_priv; vif = (struct ieee80211_vif *)__mptr___0 + 0xfffffffffffffee8UL; tmp = memcmp((void const *)(& vif->addr), (void const *)addr, 6UL); if (tmp == 0) { return (vif_priv); } else { } __mptr___1 = (struct list_head const *)vif_priv->list.next; vif_priv = (struct wcn36xx_vif *)__mptr___1; ldv_48246: ; if ((unsigned long )(& vif_priv->list) != (unsigned long )(& wcn->vif_list)) { goto ldv_48245; } else { } printk("\fwcn36xx: WARNING vif %pM not found\n", addr); return ((struct wcn36xx_vif *)0); } } static void wcn36xx_set_tx_data(struct wcn36xx_tx_bd *bd , struct wcn36xx *wcn , struct wcn36xx_vif **vif_priv , struct wcn36xx_sta *sta_priv , struct ieee80211_hdr *hdr , bool bcast ) { struct ieee80211_vif *vif ; struct wcn36xx_vif *__vif_priv ; u8 const (*__mptr)[0U] ; int tmp ; { vif = (struct ieee80211_vif *)0; __vif_priv = (struct wcn36xx_vif *)0; bd->bd_rate = 0U; if ((unsigned long )sta_priv != (unsigned long )((struct wcn36xx_sta *)0)) { __vif_priv = sta_priv->vif; __mptr = (u8 const *)__vif_priv; vif = (struct ieee80211_vif *)__mptr + 0xfffffffffffffee8UL; bd->dpu_sign = sta_priv->ucast_dpu_sign; if ((unsigned int )vif->type == 2U) { bd->sta_index = sta_priv->bss_sta_index; bd->dpu_desc_idx = sta_priv->bss_dpu_desc_index; } else if (((unsigned int )vif->type == 3U || (unsigned int )vif->type == 1U) || (unsigned int )vif->type == 7U) { bd->sta_index = sta_priv->sta_index; bd->dpu_desc_idx = sta_priv->dpu_desc_index; } else { } } else { __vif_priv = get_vif_by_addr(wcn, (u8 *)(& hdr->addr2)); bd->sta_index = __vif_priv->self_sta_index; bd->dpu_desc_idx = __vif_priv->self_dpu_desc_index; bd->dpu_sign = __vif_priv->self_ucast_dpu_sign; } tmp = ieee80211_is_nullfunc((int )hdr->frame_control); if (tmp != 0 || ((unsigned long )sta_priv != (unsigned long )((struct wcn36xx_sta *)0) && ! sta_priv->is_data_encrypted)) { bd->dpu_ne = 1U; } else { } if ((int )bcast) { bd->ub = 1U; bd->ack_policy = 1U; } else { } *vif_priv = __vif_priv; return; } } static void wcn36xx_set_tx_mgmt(struct wcn36xx_tx_bd *bd , struct wcn36xx *wcn , struct wcn36xx_vif **vif_priv , struct ieee80211_hdr *hdr , bool bcast ) { struct wcn36xx_vif *__vif_priv ; struct wcn36xx_vif *tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { tmp = get_vif_by_addr(wcn, (u8 *)(& hdr->addr2)); __vif_priv = tmp; bd->sta_index = __vif_priv->self_sta_index; bd->dpu_desc_idx = __vif_priv->self_dpu_desc_index; bd->dpu_ne = 1U; tmp___1 = ieee80211_is_mgmt((int )hdr->frame_control); if (tmp___1 != 0) { bd->bd_rate = (unsigned int )((wcn->hw)->conf.chandef.chan)->band == 1U ? 3U : 2U; } else { tmp___0 = ieee80211_is_ctl((int )hdr->frame_control); if (tmp___0 != 0) { bd->bd_rate = 3U; } else { printk("\fwcn36xx: WARNING frame control type unknown\n"); } } if ((int )__vif_priv->is_joining) { tmp___2 = ieee80211_is_probe_req((int )hdr->frame_control); if (tmp___2 != 0) { bcast = 0; } else { } } else { } if ((int )bcast) { bd->ub = 1U; bd->ack_policy = 1U; bd->queue_id = 10U; } else { bd->queue_id = 9U; } *vif_priv = __vif_priv; return; } } int wcn36xx_start_tx(struct wcn36xx *wcn , struct wcn36xx_sta *sta_priv , struct sk_buff *skb ) { struct ieee80211_hdr *hdr ; struct wcn36xx_vif *vif_priv ; struct ieee80211_tx_info *info ; struct ieee80211_tx_info *tmp ; unsigned long flags ; bool is_low ; int tmp___0 ; bool bcast ; bool tmp___1 ; bool tmp___2 ; int tmp___3 ; struct wcn36xx_tx_bd *bd ; void *tmp___4 ; raw_spinlock_t *tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; { hdr = (struct ieee80211_hdr *)skb->data; vif_priv = (struct wcn36xx_vif *)0; tmp = IEEE80211_SKB_CB(skb); info = tmp; tmp___0 = ieee80211_is_data((int )hdr->frame_control); is_low = tmp___0 != 0; tmp___1 = is_broadcast_ether_addr((u8 const *)(& hdr->addr1)); if ((int )tmp___1) { tmp___3 = 1; } else { tmp___2 = is_multicast_ether_addr((u8 const *)(& hdr->addr1)); if ((int )tmp___2) { tmp___3 = 1; } else { tmp___3 = 0; } } bcast = (bool )tmp___3; tmp___4 = wcn36xx_dxe_get_next_bd(wcn, (int )is_low); bd = (struct wcn36xx_tx_bd *)tmp___4; if ((unsigned long )bd == (unsigned long )((struct wcn36xx_tx_bd *)0)) { printk("\vwcn36xx: OLD_ERROR bd address may not be NULL for BD DXE\n"); return (-22); } else { } memset((void *)bd, 0, 40UL); if ((wcn36xx_dbg_mask & 64U) != 0U) { printk("\017wcn36xx: tx skb %p len %d fc %04x sn %d %s %s\n", skb, skb->len, (int )hdr->frame_control, (int )hdr->seq_ctrl >> 4, (int )is_low ? (char *)"low" : (char *)"high", (int )bcast ? (char *)"bcast" : (char *)"ucast"); } else { } if ((wcn36xx_dbg_mask & 128U) != 0U) { print_hex_dump("\017", "wcn36xx: ", 2, 32, 1, (void const *)skb->data, (size_t )skb->len, 0); } else { } bd->dpu_rf = 25U; bd->tx_comp = (unsigned int )((unsigned char )info->flags) & 1U; if ((unsigned int )*((unsigned char *)bd + 0UL) != 0U) { if ((int )wcn36xx_dbg_mask & 1) { printk("\017wcn36xx: TX_ACK status requested\n"); } else { } tmp___5 = spinlock_check(& wcn->dxe_lock); flags = _raw_spin_lock_irqsave(tmp___5); if ((unsigned long )wcn->tx_ack_skb != (unsigned long )((struct sk_buff *)0)) { spin_unlock_irqrestore(& wcn->dxe_lock, flags); printk("\fwcn36xx: WARNING tx_ack_skb already set\n"); return (-22); } else { } wcn->tx_ack_skb = skb; spin_unlock_irqrestore(& wcn->dxe_lock, flags); ieee80211_stop_queues(wcn->hw); } else { } if ((int )is_low) { wcn36xx_set_tx_data(bd, wcn, & vif_priv, sta_priv, hdr, (int )bcast); tmp___6 = ieee80211_is_data_qos((int )hdr->frame_control); wcn36xx_set_tx_pdu(bd, tmp___6 != 0 ? 26U : 24U, skb->len, (unsigned long )sta_priv != (unsigned long )((struct wcn36xx_sta *)0) ? (int )sta_priv->tid : 0); } else { wcn36xx_set_tx_mgmt(bd, wcn, & vif_priv, hdr, (int )bcast); tmp___7 = ieee80211_is_data_qos((int )hdr->frame_control); wcn36xx_set_tx_pdu(bd, tmp___7 != 0 ? 26U : 24U, skb->len, 7); } buff_to_be((u32 *)bd, 10UL); bd->tx_bd_sign = 3183328701U; tmp___8 = wcn36xx_dxe_tx_frame(wcn, vif_priv, skb, (int )is_low); return (tmp___8); } } void ldv_consume_skb_43(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_44(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_45(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_46(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_49(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } __inline static void list_add_tail(struct list_head *new , struct list_head *head ) { { __list_add(new, head->prev, head); return; } } extern void *kmemdup(void const * , size_t , gfp_t ) ; extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern void __init_waitqueue_head(wait_queue_head_t * , char const * , struct lock_class_key * ) ; __inline static void init_completion(struct completion *x ) { struct lock_class_key __key ; { x->done = 0U; __init_waitqueue_head(& x->wait, "&x->wait", & __key); return; } } extern unsigned long wait_for_completion_timeout(struct completion * , unsigned long ) ; extern void complete(struct completion * ) ; extern void mutex_lock_nested(struct mutex * , unsigned int ) ; extern void mutex_unlock(struct mutex * ) ; extern unsigned long volatile jiffies ; extern unsigned int jiffies_to_msecs(unsigned long const ) ; extern unsigned long msecs_to_jiffies(unsigned int const ) ; extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *__alloc_workqueue_key(char const * , unsigned int , int , struct lock_class_key * , char const * , ...) ; extern void destroy_workqueue(struct workqueue_struct * ) ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; __inline static bool queue_work(struct workqueue_struct *wq , struct work_struct *work ) { bool tmp ; { tmp = queue_work_on(8192, wq, work); return (tmp); } } void ldv_kfree_skb_55(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_56(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_57(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_60(struct sk_buff *ldv_func_arg1 ) ; void ldv_consume_skb_54(struct sk_buff *ldv_func_arg1 ) ; extern int request_firmware(struct firmware const ** , char const * , struct device * ) ; extern void ieee80211_report_low_ack(struct ieee80211_sta * , u32 ) ; extern void ieee80211_connection_loss(struct ieee80211_vif * ) ; __inline static bool conf_is_ht40_minus(struct ieee80211_conf *conf ) { { return ((bool )((unsigned int )conf->chandef.width == 2U && conf->chandef.center_freq1 < (u32 )(conf->chandef.chan)->center_freq)); } } __inline static bool conf_is_ht40_plus(struct ieee80211_conf *conf ) { { return ((bool )((unsigned int )conf->chandef.width == 2U && conf->chandef.center_freq1 > (u32 )(conf->chandef.chan)->center_freq)); } } int wcn36xx_smd_update_scan_params(struct wcn36xx *wcn ) ; int wcn36xx_smd_enter_bmps(struct wcn36xx *wcn , struct ieee80211_vif *vif ) ; int wcn36xx_smd_exit_bmps(struct wcn36xx *wcn , struct ieee80211_vif *vif ) ; int wcn36xx_smd_keep_alive_req(struct wcn36xx *wcn , struct ieee80211_vif *vif , int packet_type ) ; int wcn36xx_smd_dump_cmd_req(struct wcn36xx *wcn , u32 arg1 , u32 arg2 , u32 arg3 , u32 arg4 , u32 arg5 ) ; void set_feat_caps(u32 *bitmap , enum place_holder_in_cap_bitmap cap ) ; void clear_feat_caps(u32 *bitmap , enum place_holder_in_cap_bitmap cap ) ; static int put_cfg_tlv_u32(struct wcn36xx *wcn , size_t *len , u32 id , u32 value ) { struct wcn36xx_hal_cfg *entry ; u32 *val ; { if (*len + 12UL > 4095UL) { printk("\vwcn36xx: OLD_ERROR Not enough room for TLV entry\n"); return (-12); } else { } entry = (struct wcn36xx_hal_cfg *)(wcn->hal_buf + *len); entry->id = (u16 )id; entry->len = 4U; entry->pad_bytes = 0U; entry->reserve = 0U; val = (u32 *)entry + 1U; *val = value; *len = *len + 12UL; return (0); } } static void wcn36xx_smd_set_bss_nw_type(struct wcn36xx *wcn , struct ieee80211_sta *sta , struct wcn36xx_hal_config_bss_params *bss_params ) { { if ((unsigned int )((wcn->hw)->conf.chandef.chan)->band == 1U) { bss_params->nw_type = 0; } else if ((unsigned long )sta != (unsigned long )((struct ieee80211_sta *)0) && (int )sta->ht_cap.ht_supported) { bss_params->nw_type = 3; } else if ((unsigned long )sta != (unsigned long )((struct ieee80211_sta *)0) && (sta->supp_rates[0] & 127U) != 0U) { bss_params->nw_type = 2; } else { bss_params->nw_type = 1; } return; } } __inline static u8 is_cap_supported(unsigned long caps , unsigned long flag ) { { return ((caps & flag) != 0UL); } } static void wcn36xx_smd_set_bss_ht_params(struct ieee80211_vif *vif , struct ieee80211_sta *sta , struct wcn36xx_hal_config_bss_params *bss_params ) { unsigned long caps ; { if ((unsigned long )sta != (unsigned long )((struct ieee80211_sta *)0) && (int )sta->ht_cap.ht_supported) { caps = (unsigned long )sta->ht_cap.cap; bss_params->ht = (u8 )sta->ht_cap.ht_supported; bss_params->tx_channel_width_set = is_cap_supported(caps, 2UL); bss_params->lsig_tx_op_protection_full_support = is_cap_supported(caps, 32768UL); bss_params->ht_oper_mode = (enum wcn36xx_hal_ht_operating_mode )vif->bss_conf.ht_operation_mode; bss_params->lln_non_gf_coexist = ((int )vif->bss_conf.ht_operation_mode & 4) != 0; bss_params->dual_cts_protection = 0U; bss_params->ht20_coexist = 0U; } else { } return; } } static void wcn36xx_smd_set_sta_ht_params(struct ieee80211_sta *sta , struct wcn36xx_hal_config_sta_params *sta_params ) { unsigned long caps ; { if ((int )sta->ht_cap.ht_supported) { caps = (unsigned long )sta->ht_cap.cap; sta_params->ht_capable = (u8 )sta->ht_cap.ht_supported; sta_params->tx_channel_width_set = is_cap_supported(caps, 2UL); sta_params->lsig_txop_protection = is_cap_supported(caps, 32768UL); sta_params->max_ampdu_size = sta->ht_cap.ampdu_factor; sta_params->max_ampdu_density = sta->ht_cap.ampdu_density; sta_params->max_amsdu_size = is_cap_supported(caps, 2048UL); sta_params->sgi_20Mhz = is_cap_supported(caps, 32UL); sta_params->sgi_40mhz = is_cap_supported(caps, 64UL); sta_params->green_field_capable = is_cap_supported(caps, 16UL); sta_params->delayed_ba_support = is_cap_supported(caps, 1024UL); sta_params->dsss_cck_mode_40mhz = is_cap_supported(caps, 4096UL); } else { } return; } } static void wcn36xx_smd_set_sta_default_ht_params(struct wcn36xx_hal_config_sta_params *sta_params ) { { sta_params->ht_capable = 1U; sta_params->tx_channel_width_set = 1U; sta_params->lsig_txop_protection = 1U; sta_params->max_ampdu_size = 3U; sta_params->max_ampdu_density = 5U; sta_params->max_amsdu_size = 0U; sta_params->sgi_20Mhz = 1U; sta_params->sgi_40mhz = 1U; sta_params->green_field_capable = 1U; sta_params->delayed_ba_support = 0U; sta_params->dsss_cck_mode_40mhz = 1U; return; } } static void wcn36xx_smd_set_sta_params(struct wcn36xx *wcn , struct ieee80211_vif *vif , struct ieee80211_sta *sta , struct wcn36xx_hal_config_sta_params *sta_params ) { struct wcn36xx_vif *priv_vif ; struct wcn36xx_sta *priv_sta ; size_t __len ; void *__ret ; size_t __len___0 ; void *__ret___0 ; size_t __len___1 ; void *__ret___1 ; size_t __len___2 ; void *__ret___2 ; size_t __len___3 ; void *__ret___3 ; { priv_vif = (struct wcn36xx_vif *)(& vif->drv_priv); priv_sta = (struct wcn36xx_sta *)0; if (((unsigned int )vif->type == 1U || (unsigned int )vif->type == 3U) || (unsigned int )vif->type == 7U) { sta_params->type = 1U; sta_params->sta_index = 255U; } else { sta_params->type = 0U; sta_params->sta_index = 1U; } sta_params->listen_interval = (wcn->hw)->conf.listen_interval; if ((unsigned int )vif->type == 2U) { __len = 6UL; if (__len > 63UL) { __ret = __memcpy((void *)(& sta_params->mac), (void const *)(& vif->addr), __len); } else { __ret = __builtin_memcpy((void *)(& sta_params->mac), (void const *)(& vif->addr), __len); } } else { __len___0 = 6UL; if (__len___0 > 63UL) { __ret___0 = __memcpy((void *)(& sta_params->bssid), (void const *)(& vif->addr), __len___0); } else { __ret___0 = __builtin_memcpy((void *)(& sta_params->bssid), (void const *)(& vif->addr), __len___0); } } sta_params->encrypt_type = (u32 )priv_vif->encrypt_type; sta_params->short_preamble_supported = ((wcn->hw)->flags & 16U) == 0U; sta_params->rifs_mode = 0U; sta_params->rmf = 0U; sta_params->action = 0U; sta_params->uapsd = 0U; sta_params->mimo_ps = 0; sta_params->max_ampdu_duration = 0U; sta_params->bssid_index = priv_vif->bss_index; sta_params->p2p = 0U; if ((unsigned long )sta != (unsigned long )((struct ieee80211_sta *)0)) { priv_sta = (struct wcn36xx_sta *)(& sta->drv_priv); if ((unsigned int )vif->type == 2U) { __len___1 = 6UL; if (__len___1 > 63UL) { __ret___1 = __memcpy((void *)(& sta_params->bssid), (void const *)(& sta->addr), __len___1); } else { __ret___1 = __builtin_memcpy((void *)(& sta_params->bssid), (void const *)(& sta->addr), __len___1); } } else { __len___2 = 6UL; if (__len___2 > 63UL) { __ret___2 = __memcpy((void *)(& sta_params->mac), (void const *)(& sta->addr), __len___2); } else { __ret___2 = __builtin_memcpy((void *)(& sta_params->mac), (void const *)(& sta->addr), __len___2); } } sta_params->wmm_enabled = (u8 )sta->wme; sta_params->max_sp_len = sta->max_sp; sta_params->aid = priv_sta->aid; wcn36xx_smd_set_sta_ht_params(sta, sta_params); __len___3 = 58UL; if (__len___3 > 63UL) { __ret___3 = __memcpy((void *)(& sta_params->supported_rates), (void const *)(& priv_sta->supported_rates), __len___3); } else { __ret___3 = __builtin_memcpy((void *)(& sta_params->supported_rates), (void const *)(& priv_sta->supported_rates), __len___3); } } else { wcn36xx_set_default_rates(& sta_params->supported_rates); wcn36xx_smd_set_sta_default_ht_params(sta_params); } return; } } static int wcn36xx_smd_send_and_wait(struct wcn36xx *wcn , size_t len ) { int ret ; unsigned long start ; unsigned long tmp ; unsigned long tmp___0 ; unsigned int tmp___1 ; { ret = 0; if ((wcn36xx_dbg_mask & 8U) != 0U) { print_hex_dump("\017", "wcn36xx: HAL >>> ", 2, 32, 1, (void const *)wcn->hal_buf, len, 0); } else { } init_completion(& wcn->hal_rsp_compl); start = jiffies; ret = (*((wcn->ctrl_ops)->tx))((char *)wcn->hal_buf, len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR HAL TX failed\n"); goto out; } else { } tmp = msecs_to_jiffies(500U); tmp___0 = wait_for_completion_timeout(& wcn->hal_rsp_compl, tmp); if (tmp___0 == 0UL) { printk("\vwcn36xx: OLD_ERROR Timeout! No SMD response in %dms\n", 500); ret = -62; goto out; } else { } if ((wcn36xx_dbg_mask & 4U) != 0U) { tmp___1 = jiffies_to_msecs((unsigned long )jiffies - start); printk("\017wcn36xx: SMD command completed in %dms", tmp___1); } else { } out: ; return (ret); } } static int wcn36xx_smd_rsp_status_check(void *buf , size_t len ) { struct wcn36xx_fw_msg_status_rsp *rsp ; { if (len <= 11UL) { return (-5); } else { } rsp = (struct wcn36xx_fw_msg_status_rsp *)buf + 8U; if (rsp->status != 0U) { return ((int )rsp->status); } else { } return (0); } } int wcn36xx_smd_load_nv(struct wcn36xx *wcn ) { struct nv_data *nv_d ; struct wcn36xx_hal_nv_img_download_req_msg msg_body ; int fw_bytes_left ; int ret ; u16 fm_offset ; size_t __len ; void *__ret ; size_t __len___0 ; void *__ret___0 ; { fm_offset = 0U; if ((unsigned long )wcn->nv == (unsigned long )((struct firmware const *)0)) { ret = request_firmware(& wcn->nv, "wlan/prima/WCNSS_qcom_wlan_nv.bin", wcn->dev); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR Failed to load nv file %s: %d\n", (char *)"wlan/prima/WCNSS_qcom_wlan_nv.bin", ret); goto out; } else { } } else { } nv_d = (struct nv_data *)(wcn->nv)->data; memset((void *)(& msg_body), 0, 16UL); msg_body.header.msg_type = 55U; msg_body.header.msg_version = 0U; msg_body.header.len = 16U; msg_body.header.len = msg_body.header.len + 3072U; msg_body.frag_number = 0U; mutex_lock_nested(& wcn->hal_mutex, 0U); ldv_48322: fw_bytes_left = (int )(((unsigned int )(wcn->nv)->size - (unsigned int )fm_offset) - 4U); if (fw_bytes_left > 3072) { msg_body.last_fragment = 0U; msg_body.nv_img_buffer_size = 3072U; } else { msg_body.last_fragment = 1U; msg_body.nv_img_buffer_size = (u32 )fw_bytes_left; msg_body.header.len = (u32 )fw_bytes_left + 16U; } __len = 16UL; if (__len > 63UL) { __ret = __memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } else { __ret = __builtin_memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } __len___0 = (size_t )msg_body.nv_img_buffer_size; __ret___0 = __builtin_memcpy((void *)wcn->hal_buf + 16U, (void const *)(& nv_d->table) + (unsigned long )fm_offset, __len___0); ret = wcn36xx_smd_send_and_wait(wcn, (size_t )msg_body.header.len); if (ret != 0) { goto out_unlock; } else { } ret = wcn36xx_smd_rsp_status_check((void *)wcn->hal_buf, wcn->hal_rsp_len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR hal_load_nv response failed err=%d\n", ret); goto out_unlock; } else { } msg_body.frag_number = (u16 )((int )msg_body.frag_number + 1); fm_offset = (unsigned int )fm_offset + 3072U; if ((unsigned int )msg_body.last_fragment != 1U) { goto ldv_48322; } else { } out_unlock: mutex_unlock(& wcn->hal_mutex); out: ; return (ret); } } static int wcn36xx_smd_start_rsp(struct wcn36xx *wcn , void *buf , size_t len ) { struct wcn36xx_hal_mac_start_rsp_msg *rsp ; size_t __len ; void *__ret ; size_t __len___0 ; void *__ret___0 ; { if (len <= 143UL) { return (-5); } else { } rsp = (struct wcn36xx_hal_mac_start_rsp_msg *)buf; if ((unsigned int )rsp->start_rsp_params.status != 0U) { return (-5); } else { } __len = 64UL; if (__len > 63UL) { __ret = __memcpy((void *)(& wcn->crm_version), (void const *)(& rsp->start_rsp_params.crm_version), __len); } else { __ret = __builtin_memcpy((void *)(& wcn->crm_version), (void const *)(& rsp->start_rsp_params.crm_version), __len); } __len___0 = 64UL; if (__len___0 > 63UL) { __ret___0 = __memcpy((void *)(& wcn->wlan_version), (void const *)(& rsp->start_rsp_params.wlan_version), __len___0); } else { __ret___0 = __builtin_memcpy((void *)(& wcn->wlan_version), (void const *)(& rsp->start_rsp_params.wlan_version), __len___0); } wcn->crm_version[64] = 0U; wcn->wlan_version[64] = 0U; wcn->fw_revision = rsp->start_rsp_params.version.revision; wcn->fw_version = rsp->start_rsp_params.version.version; wcn->fw_minor = rsp->start_rsp_params.version.minor; wcn->fw_major = rsp->start_rsp_params.version.major; printk("\016wcn36xx: firmware WLAN version \'%s\' and CRM version \'%s\'\n", (u8 *)(& wcn->wlan_version), (u8 *)(& wcn->crm_version)); printk("\016wcn36xx: firmware API %u.%u.%u.%u, %u stations, %u bssids\n", (int )wcn->fw_major, (int )wcn->fw_minor, (int )wcn->fw_version, (int )wcn->fw_revision, (int )rsp->start_rsp_params.stations, (int )rsp->start_rsp_params.bssids); return (0); } } int wcn36xx_smd_start(struct wcn36xx *wcn ) { struct wcn36xx_hal_mac_start_req_msg msg_body ; int ret ; size_t __len ; void *__ret ; { ret = 0; mutex_lock_nested(& wcn->hal_mutex, 0U); memset((void *)(& msg_body), 0, 16UL); msg_body.header.msg_type = 0U; msg_body.header.msg_version = 0U; msg_body.header.len = 16U; msg_body.params.type = 0; msg_body.params.len = 0U; memset((void *)wcn->hal_buf, 0, (size_t )msg_body.header.len); __len = 16UL; if (__len > 63UL) { __ret = __memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } else { __ret = __builtin_memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } if ((wcn36xx_dbg_mask & 256U) != 0U) { printk("\017wcn36xx: hal start type %d\n", (unsigned int )msg_body.params.type); } else { } ret = wcn36xx_smd_send_and_wait(wcn, (size_t )msg_body.header.len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR Sending hal_start failed\n"); goto out; } else { } ret = wcn36xx_smd_start_rsp(wcn, (void *)wcn->hal_buf, wcn->hal_rsp_len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR hal_start response failed err=%d\n", ret); goto out; } else { } out: mutex_unlock(& wcn->hal_mutex); return (ret); } } int wcn36xx_smd_stop(struct wcn36xx *wcn ) { struct wcn36xx_hal_mac_stop_req_msg msg_body ; int ret ; size_t __len ; void *__ret ; { ret = 0; mutex_lock_nested(& wcn->hal_mutex, 0U); memset((void *)(& msg_body), 0, 12UL); msg_body.header.msg_type = 2U; msg_body.header.msg_version = 0U; msg_body.header.len = 12U; msg_body.stop_req_params.reason = 2; memset((void *)wcn->hal_buf, 0, (size_t )msg_body.header.len); __len = 12UL; if (__len > 63UL) { __ret = __memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } else { __ret = __builtin_memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } ret = wcn36xx_smd_send_and_wait(wcn, (size_t )msg_body.header.len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR Sending hal_stop failed\n"); goto out; } else { } ret = wcn36xx_smd_rsp_status_check((void *)wcn->hal_buf, wcn->hal_rsp_len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR hal_stop response failed err=%d\n", ret); goto out; } else { } out: mutex_unlock(& wcn->hal_mutex); return (ret); } } int wcn36xx_smd_init_scan(struct wcn36xx *wcn , enum wcn36xx_hal_sys_mode mode ) { struct wcn36xx_hal_init_scan_req_msg msg_body ; int ret ; size_t __len ; void *__ret ; { ret = 0; mutex_lock_nested(& wcn->hal_mutex, 0U); memset((void *)(& msg_body), 0, 48UL); msg_body.header.msg_type = 4U; msg_body.header.msg_version = 0U; msg_body.header.len = 48U; msg_body.mode = mode; memset((void *)wcn->hal_buf, 0, (size_t )msg_body.header.len); __len = 48UL; if (__len > 63UL) { __ret = __memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } else { __ret = __builtin_memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } if ((wcn36xx_dbg_mask & 256U) != 0U) { printk("\017wcn36xx: hal init scan mode %d\n", (unsigned int )msg_body.mode); } else { } ret = wcn36xx_smd_send_and_wait(wcn, (size_t )msg_body.header.len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR Sending hal_init_scan failed\n"); goto out; } else { } ret = wcn36xx_smd_rsp_status_check((void *)wcn->hal_buf, wcn->hal_rsp_len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR hal_init_scan response failed err=%d\n", ret); goto out; } else { } out: mutex_unlock(& wcn->hal_mutex); return (ret); } } int wcn36xx_smd_start_scan(struct wcn36xx *wcn ) { struct wcn36xx_hal_start_scan_req_msg msg_body ; int ret ; size_t __len ; void *__ret ; { ret = 0; mutex_lock_nested(& wcn->hal_mutex, 0U); memset((void *)(& msg_body), 0, 9UL); msg_body.header.msg_type = 6U; msg_body.header.msg_version = 0U; msg_body.header.len = 9U; msg_body.scan_channel = (u8 )((wcn->hw)->conf.chandef.chan)->hw_value; memset((void *)wcn->hal_buf, 0, (size_t )msg_body.header.len); __len = 9UL; if (__len > 63UL) { __ret = __memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } else { __ret = __builtin_memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } if ((wcn36xx_dbg_mask & 256U) != 0U) { printk("\017wcn36xx: hal start scan channel %d\n", (int )msg_body.scan_channel); } else { } ret = wcn36xx_smd_send_and_wait(wcn, (size_t )msg_body.header.len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR Sending hal_start_scan failed\n"); goto out; } else { } ret = wcn36xx_smd_rsp_status_check((void *)wcn->hal_buf, wcn->hal_rsp_len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR hal_start_scan response failed err=%d\n", ret); goto out; } else { } out: mutex_unlock(& wcn->hal_mutex); return (ret); } } int wcn36xx_smd_end_scan(struct wcn36xx *wcn ) { struct wcn36xx_hal_end_scan_req_msg msg_body ; int ret ; size_t __len ; void *__ret ; { ret = 0; mutex_lock_nested(& wcn->hal_mutex, 0U); memset((void *)(& msg_body), 0, 9UL); msg_body.header.msg_type = 8U; msg_body.header.msg_version = 0U; msg_body.header.len = 9U; msg_body.scan_channel = (u8 )((wcn->hw)->conf.chandef.chan)->hw_value; memset((void *)wcn->hal_buf, 0, (size_t )msg_body.header.len); __len = 9UL; if (__len > 63UL) { __ret = __memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } else { __ret = __builtin_memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } if ((wcn36xx_dbg_mask & 256U) != 0U) { printk("\017wcn36xx: hal end scan channel %d\n", (int )msg_body.scan_channel); } else { } ret = wcn36xx_smd_send_and_wait(wcn, (size_t )msg_body.header.len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR Sending hal_end_scan failed\n"); goto out; } else { } ret = wcn36xx_smd_rsp_status_check((void *)wcn->hal_buf, wcn->hal_rsp_len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR hal_end_scan response failed err=%d\n", ret); goto out; } else { } out: mutex_unlock(& wcn->hal_mutex); return (ret); } } int wcn36xx_smd_finish_scan(struct wcn36xx *wcn , enum wcn36xx_hal_sys_mode mode ) { struct wcn36xx_hal_finish_scan_req_msg msg_body ; int ret ; size_t __len ; void *__ret ; { ret = 0; mutex_lock_nested(& wcn->hal_mutex, 0U); memset((void *)(& msg_body), 0, 53UL); msg_body.header.msg_type = 10U; msg_body.header.msg_version = 0U; msg_body.header.len = 53U; msg_body.mode = mode; memset((void *)wcn->hal_buf, 0, (size_t )msg_body.header.len); __len = 53UL; if (__len > 63UL) { __ret = __memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } else { __ret = __builtin_memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } if ((wcn36xx_dbg_mask & 256U) != 0U) { printk("\017wcn36xx: hal finish scan mode %d\n", (unsigned int )msg_body.mode); } else { } ret = wcn36xx_smd_send_and_wait(wcn, (size_t )msg_body.header.len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR Sending hal_finish_scan failed\n"); goto out; } else { } ret = wcn36xx_smd_rsp_status_check((void *)wcn->hal_buf, wcn->hal_rsp_len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR hal_finish_scan response failed err=%d\n", ret); goto out; } else { } out: mutex_unlock(& wcn->hal_mutex); return (ret); } } static int wcn36xx_smd_switch_channel_rsp(void *buf , size_t len ) { struct wcn36xx_hal_switch_channel_rsp_msg *rsp ; int ret ; { ret = 0; ret = wcn36xx_smd_rsp_status_check(buf, len); if (ret != 0) { return (ret); } else { } rsp = (struct wcn36xx_hal_switch_channel_rsp_msg *)buf; if ((wcn36xx_dbg_mask & 256U) != 0U) { printk("\017wcn36xx: channel switched to: %d, status: %d\n", (int )rsp->channel_number, rsp->status); } else { } return (ret); } } int wcn36xx_smd_switch_channel(struct wcn36xx *wcn , struct ieee80211_vif *vif , int ch ) { struct wcn36xx_hal_switch_channel_req_msg msg_body ; int ret ; size_t __len ; void *__ret ; size_t __len___0 ; void *__ret___0 ; { ret = 0; mutex_lock_nested(& wcn->hal_mutex, 0U); memset((void *)(& msg_body), 0, 28UL); msg_body.header.msg_type = 42U; msg_body.header.msg_version = 0U; msg_body.header.len = 28U; msg_body.channel_number = (unsigned char )ch; msg_body.tx_mgmt_power = 191U; msg_body.max_tx_power = 191U; __len = 6UL; if (__len > 63UL) { __ret = __memcpy((void *)(& msg_body.self_sta_mac_addr), (void const *)(& vif->addr), __len); } else { __ret = __builtin_memcpy((void *)(& msg_body.self_sta_mac_addr), (void const *)(& vif->addr), __len); } memset((void *)wcn->hal_buf, 0, (size_t )msg_body.header.len); __len___0 = 28UL; if (__len___0 > 63UL) { __ret___0 = __memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len___0); } else { __ret___0 = __builtin_memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len___0); } ret = wcn36xx_smd_send_and_wait(wcn, (size_t )msg_body.header.len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR Sending hal_switch_channel failed\n"); goto out; } else { } ret = wcn36xx_smd_switch_channel_rsp((void *)wcn->hal_buf, wcn->hal_rsp_len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR hal_switch_channel response failed err=%d\n", ret); goto out; } else { } out: mutex_unlock(& wcn->hal_mutex); return (ret); } } static int wcn36xx_smd_update_scan_params_rsp(void *buf , size_t len ) { struct wcn36xx_hal_update_scan_params_resp *rsp ; { rsp = (struct wcn36xx_hal_update_scan_params_resp *)buf; rsp->status = rsp->status & 4294934527U; if (rsp->status != 0U) { printk("\fwcn36xx: WARNING error response from update scan\n"); return ((int )rsp->status); } else { } return (0); } } int wcn36xx_smd_update_scan_params(struct wcn36xx *wcn ) { struct wcn36xx_hal_update_scan_params_req msg_body ; int ret ; size_t __len ; void *__ret ; { ret = 0; mutex_lock_nested(& wcn->hal_mutex, 0U); memset((void *)(& msg_body), 0, 49UL); msg_body.header.msg_type = 151U; msg_body.header.msg_version = 0U; msg_body.header.len = 49U; msg_body.dot11d_enabled = 0U; msg_body.dot11d_resolved = 0U; msg_body.channel_count = 26U; msg_body.active_min_ch_time = 60U; msg_body.active_max_ch_time = 120U; msg_body.passive_min_ch_time = 60U; msg_body.passive_max_ch_time = 110U; msg_body.state = 0; memset((void *)wcn->hal_buf, 0, (size_t )msg_body.header.len); __len = 49UL; if (__len > 63UL) { __ret = __memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } else { __ret = __builtin_memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } if ((wcn36xx_dbg_mask & 256U) != 0U) { printk("\017wcn36xx: hal update scan params channel_count %d\n", (int )msg_body.channel_count); } else { } ret = wcn36xx_smd_send_and_wait(wcn, (size_t )msg_body.header.len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR Sending hal_update_scan_params failed\n"); goto out; } else { } ret = wcn36xx_smd_update_scan_params_rsp((void *)wcn->hal_buf, wcn->hal_rsp_len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR hal_update_scan_params response failed err=%d\n", ret); goto out; } else { } out: mutex_unlock(& wcn->hal_mutex); return (ret); } } static int wcn36xx_smd_add_sta_self_rsp(struct wcn36xx *wcn , struct ieee80211_vif *vif , void *buf , size_t len ) { struct wcn36xx_hal_add_sta_self_rsp_msg *rsp ; struct wcn36xx_vif *priv_vif ; { priv_vif = (struct wcn36xx_vif *)(& vif->drv_priv); if (len <= 14UL) { return (-22); } else { } rsp = (struct wcn36xx_hal_add_sta_self_rsp_msg *)buf; if (rsp->status != 0U) { printk("\fwcn36xx: WARNING hal add sta self failure: %d\n", rsp->status); return ((int )rsp->status); } else { } if ((wcn36xx_dbg_mask & 256U) != 0U) { printk("\017wcn36xx: hal add sta self status %d self_sta_index %d dpu_index %d\n", rsp->status, (int )rsp->self_sta_index, (int )rsp->dpu_index); } else { } priv_vif->self_sta_index = rsp->self_sta_index; priv_vif->self_dpu_desc_index = rsp->dpu_index; return (0); } } int wcn36xx_smd_add_sta_self(struct wcn36xx *wcn , struct ieee80211_vif *vif ) { struct wcn36xx_hal_add_sta_self_req msg_body ; int ret ; size_t __len ; void *__ret ; size_t __len___0 ; void *__ret___0 ; { ret = 0; mutex_lock_nested(& wcn->hal_mutex, 0U); memset((void *)(& msg_body), 0, 18UL); msg_body.header.msg_type = 125U; msg_body.header.msg_version = 0U; msg_body.header.len = 18U; __len = 6UL; if (__len > 63UL) { __ret = __memcpy((void *)(& msg_body.self_addr), (void const *)(& vif->addr), __len); } else { __ret = __builtin_memcpy((void *)(& msg_body.self_addr), (void const *)(& vif->addr), __len); } memset((void *)wcn->hal_buf, 0, (size_t )msg_body.header.len); __len___0 = 18UL; if (__len___0 > 63UL) { __ret___0 = __memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len___0); } else { __ret___0 = __builtin_memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len___0); } if ((wcn36xx_dbg_mask & 256U) != 0U) { printk("\017wcn36xx: hal add sta self self_addr %pM status %d\n", (u8 *)(& msg_body.self_addr), msg_body.status); } else { } ret = wcn36xx_smd_send_and_wait(wcn, (size_t )msg_body.header.len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR Sending hal_add_sta_self failed\n"); goto out; } else { } ret = wcn36xx_smd_add_sta_self_rsp(wcn, vif, (void *)wcn->hal_buf, wcn->hal_rsp_len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR hal_add_sta_self response failed err=%d\n", ret); goto out; } else { } out: mutex_unlock(& wcn->hal_mutex); return (ret); } } int wcn36xx_smd_delete_sta_self(struct wcn36xx *wcn , u8 *addr ) { struct wcn36xx_hal_del_sta_self_req_msg msg_body ; int ret ; size_t __len ; void *__ret ; size_t __len___0 ; void *__ret___0 ; { ret = 0; mutex_lock_nested(& wcn->hal_mutex, 0U); memset((void *)(& msg_body), 0, 14UL); msg_body.header.msg_type = 127U; msg_body.header.msg_version = 0U; msg_body.header.len = 14U; __len = 6UL; if (__len > 63UL) { __ret = __memcpy((void *)(& msg_body.self_addr), (void const *)addr, __len); } else { __ret = __builtin_memcpy((void *)(& msg_body.self_addr), (void const *)addr, __len); } memset((void *)wcn->hal_buf, 0, (size_t )msg_body.header.len); __len___0 = 14UL; if (__len___0 > 63UL) { __ret___0 = __memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len___0); } else { __ret___0 = __builtin_memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len___0); } ret = wcn36xx_smd_send_and_wait(wcn, (size_t )msg_body.header.len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR Sending hal_delete_sta_self failed\n"); goto out; } else { } ret = wcn36xx_smd_rsp_status_check((void *)wcn->hal_buf, wcn->hal_rsp_len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR hal_delete_sta_self response failed err=%d\n", ret); goto out; } else { } out: mutex_unlock(& wcn->hal_mutex); return (ret); } } int wcn36xx_smd_delete_sta(struct wcn36xx *wcn , u8 sta_index ) { struct wcn36xx_hal_delete_sta_req_msg msg_body ; int ret ; size_t __len ; void *__ret ; { ret = 0; mutex_lock_nested(& wcn->hal_mutex, 0U); memset((void *)(& msg_body), 0, 9UL); msg_body.header.msg_type = 14U; msg_body.header.msg_version = 0U; msg_body.header.len = 9U; msg_body.sta_index = sta_index; memset((void *)wcn->hal_buf, 0, (size_t )msg_body.header.len); __len = 9UL; if (__len > 63UL) { __ret = __memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } else { __ret = __builtin_memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } if ((wcn36xx_dbg_mask & 256U) != 0U) { printk("\017wcn36xx: hal delete sta sta_index %d\n", (int )msg_body.sta_index); } else { } ret = wcn36xx_smd_send_and_wait(wcn, (size_t )msg_body.header.len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR Sending hal_delete_sta failed\n"); goto out; } else { } ret = wcn36xx_smd_rsp_status_check((void *)wcn->hal_buf, wcn->hal_rsp_len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR hal_delete_sta response failed err=%d\n", ret); goto out; } else { } out: mutex_unlock(& wcn->hal_mutex); return (ret); } } static int wcn36xx_smd_join_rsp(void *buf , size_t len ) { struct wcn36xx_hal_join_rsp_msg *rsp ; int tmp ; { tmp = wcn36xx_smd_rsp_status_check(buf, len); if (tmp != 0) { return (-5); } else { } rsp = (struct wcn36xx_hal_join_rsp_msg *)buf; if ((wcn36xx_dbg_mask & 256U) != 0U) { printk("\017wcn36xx: hal rsp join status %d tx_mgmt_power %d\n", rsp->status, (int )rsp->tx_mgmt_power); } else { } return (0); } } int wcn36xx_smd_join(struct wcn36xx *wcn , u8 const *bssid , u8 *vif , u8 ch ) { struct wcn36xx_hal_join_req_msg msg_body ; int ret ; size_t __len ; void *__ret ; size_t __len___0 ; void *__ret___0 ; bool tmp ; bool tmp___0 ; size_t __len___1 ; void *__ret___1 ; { ret = 0; mutex_lock_nested(& wcn->hal_mutex, 0U); memset((void *)(& msg_body), 0, 31UL); msg_body.header.msg_type = 20U; msg_body.header.msg_version = 0U; msg_body.header.len = 31U; __len = 6UL; if (__len > 63UL) { __ret = __memcpy((void *)(& msg_body.bssid), (void const *)bssid, __len); } else { __ret = __builtin_memcpy((void *)(& msg_body.bssid), (void const *)bssid, __len); } __len___0 = 6UL; if (__len___0 > 63UL) { __ret___0 = __memcpy((void *)(& msg_body.self_sta_mac_addr), (void const *)vif, __len___0); } else { __ret___0 = __builtin_memcpy((void *)(& msg_body.self_sta_mac_addr), (void const *)vif, __len___0); } msg_body.channel = ch; tmp___0 = conf_is_ht40_minus(& (wcn->hw)->conf); if ((int )tmp___0) { msg_body.secondary_channel_offset = 3; } else { tmp = conf_is_ht40_plus(& (wcn->hw)->conf); if ((int )tmp) { msg_body.secondary_channel_offset = 1; } else { msg_body.secondary_channel_offset = 0; } } msg_body.link_state = 1; msg_body.max_tx_power = -65; memset((void *)wcn->hal_buf, 0, (size_t )msg_body.header.len); __len___1 = 31UL; if (__len___1 > 63UL) { __ret___1 = __memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len___1); } else { __ret___1 = __builtin_memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len___1); } if ((wcn36xx_dbg_mask & 256U) != 0U) { printk("\017wcn36xx: hal join req bssid %pM self_sta_mac_addr %pM channel %d link_state %d\n", (u8 *)(& msg_body.bssid), (u8 *)(& msg_body.self_sta_mac_addr), (int )msg_body.channel, (unsigned int )msg_body.link_state); } else { } ret = wcn36xx_smd_send_and_wait(wcn, (size_t )msg_body.header.len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR Sending hal_join failed\n"); goto out; } else { } ret = wcn36xx_smd_join_rsp((void *)wcn->hal_buf, wcn->hal_rsp_len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR hal_join response failed err=%d\n", ret); goto out; } else { } out: mutex_unlock(& wcn->hal_mutex); return (ret); } } int wcn36xx_smd_set_link_st(struct wcn36xx *wcn , u8 const *bssid , u8 const *sta_mac , enum wcn36xx_hal_link_state state ) { struct wcn36xx_hal_set_link_state_req_msg msg_body ; int ret ; size_t __len ; void *__ret ; size_t __len___0 ; void *__ret___0 ; size_t __len___1 ; void *__ret___1 ; { ret = 0; mutex_lock_nested(& wcn->hal_mutex, 0U); memset((void *)(& msg_body), 0, 24UL); msg_body.header.msg_type = 44U; msg_body.header.msg_version = 0U; msg_body.header.len = 24U; __len = 6UL; if (__len > 63UL) { __ret = __memcpy((void *)(& msg_body.bssid), (void const *)bssid, __len); } else { __ret = __builtin_memcpy((void *)(& msg_body.bssid), (void const *)bssid, __len); } __len___0 = 6UL; if (__len___0 > 63UL) { __ret___0 = __memcpy((void *)(& msg_body.self_mac_addr), (void const *)sta_mac, __len___0); } else { __ret___0 = __builtin_memcpy((void *)(& msg_body.self_mac_addr), (void const *)sta_mac, __len___0); } msg_body.state = state; memset((void *)wcn->hal_buf, 0, (size_t )msg_body.header.len); __len___1 = 24UL; if (__len___1 > 63UL) { __ret___1 = __memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len___1); } else { __ret___1 = __builtin_memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len___1); } if ((wcn36xx_dbg_mask & 256U) != 0U) { printk("\017wcn36xx: hal set link state bssid %pM self_mac_addr %pM state %d\n", (u8 *)(& msg_body.bssid), (u8 *)(& msg_body.self_mac_addr), (unsigned int )msg_body.state); } else { } ret = wcn36xx_smd_send_and_wait(wcn, (size_t )msg_body.header.len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR Sending hal_set_link_st failed\n"); goto out; } else { } ret = wcn36xx_smd_rsp_status_check((void *)wcn->hal_buf, wcn->hal_rsp_len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR hal_set_link_st response failed err=%d\n", ret); goto out; } else { } out: mutex_unlock(& wcn->hal_mutex); return (ret); } } static void wcn36xx_smd_convert_sta_to_v1(struct wcn36xx *wcn , struct wcn36xx_hal_config_sta_params const *orig , struct wcn36xx_hal_config_sta_params_v1 *v1 ) { size_t __len ; void *__ret ; size_t __len___0 ; void *__ret___0 ; size_t __len___1 ; void *__ret___1 ; { __len = 6UL; if (__len > 63UL) { __ret = __memcpy((void *)(& v1->bssid), (void const *)(& orig->bssid), __len); } else { __ret = __builtin_memcpy((void *)(& v1->bssid), (void const *)(& orig->bssid), __len); } __len___0 = 6UL; if (__len___0 > 63UL) { __ret___0 = __memcpy((void *)(& v1->mac), (void const *)(& orig->mac), __len___0); } else { __ret___0 = __builtin_memcpy((void *)(& v1->mac), (void const *)(& orig->mac), __len___0); } v1->aid = orig->aid; v1->type = orig->type; v1->listen_interval = orig->listen_interval; v1->ht_capable = orig->ht_capable; v1->max_ampdu_size = orig->max_ampdu_size; v1->max_ampdu_density = orig->max_ampdu_density; v1->sgi_40mhz = orig->sgi_40mhz; v1->sgi_20Mhz = orig->sgi_20Mhz; __len___1 = 58UL; if (__len___1 > 63UL) { __ret___1 = __memcpy((void *)(& v1->supported_rates), (void const *)(& orig->supported_rates), __len___1); } else { __ret___1 = __builtin_memcpy((void *)(& v1->supported_rates), (void const *)(& orig->supported_rates), __len___1); } v1->sta_index = orig->sta_index; return; } } static int wcn36xx_smd_config_sta_rsp(struct wcn36xx *wcn , struct ieee80211_sta *sta , void *buf , size_t len ) { struct wcn36xx_hal_config_sta_rsp_msg *rsp ; struct config_sta_rsp_params *params ; struct wcn36xx_sta *sta_priv ; { sta_priv = (struct wcn36xx_sta *)(& sta->drv_priv); if (len <= 20UL) { return (-22); } else { } rsp = (struct wcn36xx_hal_config_sta_rsp_msg *)buf; params = & rsp->params; if (params->status != 0U) { printk("\fwcn36xx: WARNING hal config sta response failure: %d\n", params->status); return (-5); } else { } sta_priv->sta_index = params->sta_index; sta_priv->dpu_desc_index = params->dpu_index; sta_priv->ucast_dpu_sign = params->uc_ucast_sig; if ((wcn36xx_dbg_mask & 256U) != 0U) { printk("\017wcn36xx: hal config sta rsp status %d sta_index %d bssid_index %d uc_ucast_sig %d p2p %d\n", params->status, (int )params->sta_index, (int )params->bssid_index, (int )params->uc_ucast_sig, (int )params->p2p); } else { } return (0); } } static int wcn36xx_smd_config_sta_v1(struct wcn36xx *wcn , struct wcn36xx_hal_config_sta_req_msg const *orig ) { struct wcn36xx_hal_config_sta_req_msg_v1 msg_body ; struct wcn36xx_hal_config_sta_params_v1 *sta ; size_t __len ; void *__ret ; int tmp ; { sta = & msg_body.sta_params; memset((void *)(& msg_body), 0, 114UL); msg_body.header.msg_type = 12U; msg_body.header.msg_version = 0U; msg_body.header.len = 114U; wcn36xx_smd_convert_sta_to_v1(wcn, & orig->sta_params, & msg_body.sta_params); memset((void *)wcn->hal_buf, 0, (size_t )msg_body.header.len); __len = 114UL; if (__len > 63UL) { __ret = __memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } else { __ret = __builtin_memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } if ((wcn36xx_dbg_mask & 256U) != 0U) { printk("\017wcn36xx: hal config sta v1 action %d sta_index %d bssid_index %d bssid %pM type %d mac %pM aid %d\n", (int )sta->action, (int )sta->sta_index, (int )sta->bssid_index, (u8 *)(& sta->bssid), (int )sta->type, (u8 *)(& sta->mac), (int )sta->aid); } else { } tmp = wcn36xx_smd_send_and_wait(wcn, (size_t )msg_body.header.len); return (tmp); } } int wcn36xx_smd_config_sta(struct wcn36xx *wcn , struct ieee80211_vif *vif , struct ieee80211_sta *sta ) { struct wcn36xx_hal_config_sta_req_msg msg ; struct wcn36xx_hal_config_sta_params *sta_params ; int ret ; size_t __len ; void *__ret ; bool tmp ; int tmp___0 ; { ret = 0; mutex_lock_nested(& wcn->hal_mutex, 0U); memset((void *)(& msg), 0, 113UL); msg.header.msg_type = 12U; msg.header.msg_version = 0U; msg.header.len = 113U; sta_params = & msg.sta_params; wcn36xx_smd_set_sta_params(wcn, vif, sta, sta_params); tmp = wcn36xx_is_fw_version(wcn, 1, 2, 2, 24); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { ret = wcn36xx_smd_config_sta_v1(wcn, (struct wcn36xx_hal_config_sta_req_msg const *)(& msg)); } else { memset((void *)wcn->hal_buf, 0, (size_t )msg.header.len); __len = 113UL; if (__len > 63UL) { __ret = __memcpy((void *)wcn->hal_buf, (void const *)(& msg), __len); } else { __ret = __builtin_memcpy((void *)wcn->hal_buf, (void const *)(& msg), __len); } if ((wcn36xx_dbg_mask & 256U) != 0U) { printk("\017wcn36xx: hal config sta action %d sta_index %d bssid_index %d bssid %pM type %d mac %pM aid %d\n", (int )sta_params->action, (int )sta_params->sta_index, (int )sta_params->bssid_index, (u8 *)(& sta_params->bssid), (int )sta_params->type, (u8 *)(& sta_params->mac), (int )sta_params->aid); } else { } ret = wcn36xx_smd_send_and_wait(wcn, (size_t )msg.header.len); } if (ret != 0) { printk("\vwcn36xx: OLD_ERROR Sending hal_config_sta failed\n"); goto out; } else { } ret = wcn36xx_smd_config_sta_rsp(wcn, sta, (void *)wcn->hal_buf, wcn->hal_rsp_len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR hal_config_sta response failed err=%d\n", ret); goto out; } else { } out: mutex_unlock(& wcn->hal_mutex); return (ret); } } static int wcn36xx_smd_config_bss_v1(struct wcn36xx *wcn , struct wcn36xx_hal_config_bss_req_msg const *orig ) { struct wcn36xx_hal_config_bss_req_msg_v1 msg_body ; struct wcn36xx_hal_config_bss_params_v1 *bss ; struct wcn36xx_hal_config_sta_params_v1 *sta ; size_t __len ; void *__ret ; size_t __len___0 ; void *__ret___0 ; size_t __len___1 ; void *__ret___1 ; size_t __len___2 ; void *__ret___2 ; size_t __len___3 ; void *__ret___3 ; size_t __len___4 ; void *__ret___4 ; size_t __len___5 ; void *__ret___5 ; size_t __len___6 ; void *__ret___6 ; size_t __len___7 ; void *__ret___7 ; int tmp ; { bss = & msg_body.bss_params; sta = & bss->sta; memset((void *)(& msg_body), 0, 470UL); msg_body.header.msg_type = 16U; msg_body.header.msg_version = 0U; msg_body.header.len = 470U; __len = 6UL; if (__len > 63UL) { __ret = __memcpy((void *)(& msg_body.bss_params.bssid), (void const *)(& orig->bss_params.bssid), __len); } else { __ret = __builtin_memcpy((void *)(& msg_body.bss_params.bssid), (void const *)(& orig->bss_params.bssid), __len); } __len___0 = 6UL; if (__len___0 > 63UL) { __ret___0 = __memcpy((void *)(& msg_body.bss_params.self_mac_addr), (void const *)(& orig->bss_params.self_mac_addr), __len___0); } else { __ret___0 = __builtin_memcpy((void *)(& msg_body.bss_params.self_mac_addr), (void const *)(& orig->bss_params.self_mac_addr), __len___0); } msg_body.bss_params.bss_type = orig->bss_params.bss_type; msg_body.bss_params.oper_mode = orig->bss_params.oper_mode; msg_body.bss_params.nw_type = orig->bss_params.nw_type; msg_body.bss_params.short_slot_time_supported = orig->bss_params.short_slot_time_supported; msg_body.bss_params.lla_coexist = orig->bss_params.lla_coexist; msg_body.bss_params.llb_coexist = orig->bss_params.llb_coexist; msg_body.bss_params.llg_coexist = orig->bss_params.llg_coexist; msg_body.bss_params.ht20_coexist = orig->bss_params.ht20_coexist; msg_body.bss_params.lln_non_gf_coexist = orig->bss_params.lln_non_gf_coexist; msg_body.bss_params.lsig_tx_op_protection_full_support = orig->bss_params.lsig_tx_op_protection_full_support; msg_body.bss_params.rifs_mode = orig->bss_params.rifs_mode; msg_body.bss_params.beacon_interval = orig->bss_params.beacon_interval; msg_body.bss_params.dtim_period = orig->bss_params.dtim_period; msg_body.bss_params.tx_channel_width_set = orig->bss_params.tx_channel_width_set; msg_body.bss_params.oper_channel = orig->bss_params.oper_channel; msg_body.bss_params.ext_channel = orig->bss_params.ext_channel; msg_body.bss_params.reserved = orig->bss_params.reserved; __len___1 = 33UL; if (__len___1 > 63UL) { __ret___1 = __memcpy((void *)(& msg_body.bss_params.ssid), (void const *)(& orig->bss_params.ssid), __len___1); } else { __ret___1 = __builtin_memcpy((void *)(& msg_body.bss_params.ssid), (void const *)(& orig->bss_params.ssid), __len___1); } msg_body.bss_params.action = orig->bss_params.action; msg_body.bss_params.rateset = orig->bss_params.rateset; msg_body.bss_params.ht = orig->bss_params.ht; msg_body.bss_params.obss_prot_enabled = orig->bss_params.obss_prot_enabled; msg_body.bss_params.rmf = orig->bss_params.rmf; msg_body.bss_params.ht_oper_mode = orig->bss_params.ht_oper_mode; msg_body.bss_params.dual_cts_protection = orig->bss_params.dual_cts_protection; msg_body.bss_params.max_probe_resp_retry_limit = orig->bss_params.max_probe_resp_retry_limit; msg_body.bss_params.hidden_ssid = orig->bss_params.hidden_ssid; msg_body.bss_params.proxy_probe_resp = orig->bss_params.proxy_probe_resp; msg_body.bss_params.edca_params_valid = orig->bss_params.edca_params_valid; __len___2 = 4UL; if (__len___2 > 63UL) { __ret___2 = __memcpy((void *)(& msg_body.bss_params.acbe), (void const *)(& orig->bss_params.acbe), __len___2); } else { __ret___2 = __builtin_memcpy((void *)(& msg_body.bss_params.acbe), (void const *)(& orig->bss_params.acbe), __len___2); } __len___3 = 4UL; if (__len___3 > 63UL) { __ret___3 = __memcpy((void *)(& msg_body.bss_params.acbk), (void const *)(& orig->bss_params.acbk), __len___3); } else { __ret___3 = __builtin_memcpy((void *)(& msg_body.bss_params.acbk), (void const *)(& orig->bss_params.acbk), __len___3); } __len___4 = 4UL; if (__len___4 > 63UL) { __ret___4 = __memcpy((void *)(& msg_body.bss_params.acvi), (void const *)(& orig->bss_params.acvi), __len___4); } else { __ret___4 = __builtin_memcpy((void *)(& msg_body.bss_params.acvi), (void const *)(& orig->bss_params.acvi), __len___4); } __len___5 = 4UL; if (__len___5 > 63UL) { __ret___5 = __memcpy((void *)(& msg_body.bss_params.acvo), (void const *)(& orig->bss_params.acvo), __len___5); } else { __ret___5 = __builtin_memcpy((void *)(& msg_body.bss_params.acvo), (void const *)(& orig->bss_params.acvo), __len___5); } msg_body.bss_params.ext_set_sta_key_param_valid = orig->bss_params.ext_set_sta_key_param_valid; __len___6 = 4UL; if (__len___6 > 63UL) { __ret___6 = __memcpy((void *)(& msg_body.bss_params.ext_set_sta_key_param), (void const *)(& orig->bss_params.ext_set_sta_key_param), __len___6); } else { __ret___6 = __builtin_memcpy((void *)(& msg_body.bss_params.ext_set_sta_key_param), (void const *)(& orig->bss_params.ext_set_sta_key_param), __len___6); } msg_body.bss_params.wcn36xx_hal_persona = orig->bss_params.wcn36xx_hal_persona; msg_body.bss_params.spectrum_mgt_enable = orig->bss_params.spectrum_mgt_enable; msg_body.bss_params.tx_mgmt_power = orig->bss_params.tx_mgmt_power; msg_body.bss_params.max_tx_power = orig->bss_params.max_tx_power; wcn36xx_smd_convert_sta_to_v1(wcn, & orig->bss_params.sta, & msg_body.bss_params.sta); memset((void *)wcn->hal_buf, 0, (size_t )msg_body.header.len); __len___7 = 470UL; if (__len___7 > 63UL) { __ret___7 = __memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len___7); } else { __ret___7 = __builtin_memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len___7); } if ((wcn36xx_dbg_mask & 256U) != 0U) { printk("\017wcn36xx: hal config bss v1 bssid %pM self_mac_addr %pM bss_type %d oper_mode %d nw_type %d\n", (u8 *)(& bss->bssid), (u8 *)(& bss->self_mac_addr), (unsigned int )bss->bss_type, (int )bss->oper_mode, (unsigned int )bss->nw_type); } else { } if ((wcn36xx_dbg_mask & 256U) != 0U) { printk("\017wcn36xx: - sta bssid %pM action %d sta_index %d bssid_index %d aid %d type %d mac %pM\n", (u8 *)(& sta->bssid), (int )sta->action, (int )sta->sta_index, (int )sta->bssid_index, (int )sta->aid, (int )sta->type, (u8 *)(& sta->mac)); } else { } tmp = wcn36xx_smd_send_and_wait(wcn, (size_t )msg_body.header.len); return (tmp); } } static int wcn36xx_smd_config_bss_rsp(struct wcn36xx *wcn , struct ieee80211_vif *vif , void *buf , size_t len ) { struct wcn36xx_hal_config_bss_rsp_msg *rsp ; struct wcn36xx_hal_config_bss_rsp_params *params ; struct wcn36xx_vif *priv_vif ; { priv_vif = (struct wcn36xx_vif *)(& vif->drv_priv); if (len <= 28UL) { return (-22); } else { } rsp = (struct wcn36xx_hal_config_bss_rsp_msg *)buf; params = & rsp->bss_rsp_params; if (params->status != 0U) { printk("\fwcn36xx: WARNING hal config bss response failure: %d\n", params->status); return (-5); } else { } if ((wcn36xx_dbg_mask & 256U) != 0U) { printk("\017wcn36xx: hal config bss rsp status %d bss_idx %d dpu_desc_index %d sta_idx %d self_idx %d bcast_idx %d mac %pM power %d ucast_dpu_signature %d\n", params->status, (int )params->bss_index, (int )params->dpu_desc_index, (int )params->bss_sta_index, (int )params->bss_self_sta_index, (int )params->bss_bcast_sta_idx, (u8 *)(& params->mac), (int )params->tx_mgmt_power, (int )params->ucast_dpu_signature); } else { } priv_vif->bss_index = params->bss_index; if ((unsigned long )priv_vif->sta != (unsigned long )((struct wcn36xx_sta *)0)) { (priv_vif->sta)->bss_sta_index = params->bss_sta_index; (priv_vif->sta)->bss_dpu_desc_index = params->dpu_desc_index; } else { } priv_vif->self_ucast_dpu_sign = params->ucast_dpu_signature; return (0); } } int wcn36xx_smd_config_bss(struct wcn36xx *wcn , struct ieee80211_vif *vif , struct ieee80211_sta *sta , u8 const *bssid , bool update ) { struct wcn36xx_hal_config_bss_req_msg msg ; struct wcn36xx_hal_config_bss_params *bss ; struct wcn36xx_hal_config_sta_params *sta_params ; struct wcn36xx_vif *vif_priv ; int ret ; int __ret_warn_on ; bool tmp ; long tmp___0 ; size_t __len ; void *__ret ; size_t __len___0 ; void *__ret___0 ; bool tmp___1 ; bool tmp___2 ; size_t __len___1 ; void *__ret___1 ; size_t __len___2 ; void *__ret___2 ; bool tmp___3 ; int tmp___4 ; { vif_priv = (struct wcn36xx_vif *)(& vif->drv_priv); ret = 0; mutex_lock_nested(& wcn->hal_mutex, 0U); memset((void *)(& msg), 0, 469UL); msg.header.msg_type = 16U; msg.header.msg_version = 0U; msg.header.len = 469U; bss = & msg.bss_params; sta_params = & bss->sta; tmp = is_zero_ether_addr(bssid); __ret_warn_on = (int )tmp; tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp___0 != 0L) { warn_slowpath_null("/work/ldvuser/mutilin/launch/work/current--X--drivers/net/--X--defaultlinux-3.16-rc1.tar.xz--X--205_9a--X--cpachecker/linux-3.16-rc1.tar.xz/csd_deg_dscv/842/dscv_tempdir/dscv/ri/205_9a/drivers/net/wireless/ath/wcn36xx/smd.o.c.prepared", 1224); } else { } ldv__builtin_expect(__ret_warn_on != 0, 0L); __len = 6UL; if (__len > 63UL) { __ret = __memcpy((void *)(& bss->bssid), (void const *)bssid, __len); } else { __ret = __builtin_memcpy((void *)(& bss->bssid), (void const *)bssid, __len); } __len___0 = 6UL; if (__len___0 > 63UL) { __ret___0 = __memcpy((void *)(& bss->self_mac_addr), (void const *)(& vif->addr), __len___0); } else { __ret___0 = __builtin_memcpy((void *)(& bss->self_mac_addr), (void const *)(& vif->addr), __len___0); } if ((unsigned int )vif->type == 2U) { bss->bss_type = 0; bss->oper_mode = 1U; bss->wcn36xx_hal_persona = 0U; } else if ((unsigned int )vif->type == 3U || (unsigned int )vif->type == 7U) { bss->bss_type = 1; bss->oper_mode = 0U; bss->wcn36xx_hal_persona = 1U; } else if ((unsigned int )vif->type == 1U) { bss->bss_type = 2; bss->oper_mode = 1U; } else { printk("\fwcn36xx: WARNING Unknown type for bss config: %d\n", (unsigned int )vif->type); } if ((unsigned int )vif->type == 2U) { wcn36xx_smd_set_bss_nw_type(wcn, sta, bss); } else { bss->nw_type = 3; } bss->short_slot_time_supported = (u8 )vif->bss_conf.use_short_slot; bss->lla_coexist = 0U; bss->llb_coexist = 0U; bss->llg_coexist = 0U; bss->rifs_mode = 0U; bss->beacon_interval = vif->bss_conf.beacon_int; bss->dtim_period = vif_priv->dtim_period; wcn36xx_smd_set_bss_ht_params(vif, sta, bss); bss->oper_channel = (u8 )((wcn->hw)->conf.chandef.chan)->hw_value; tmp___2 = conf_is_ht40_minus(& (wcn->hw)->conf); if ((int )tmp___2) { bss->ext_channel = 3U; } else { tmp___1 = conf_is_ht40_plus(& (wcn->hw)->conf); if ((int )tmp___1) { bss->ext_channel = 1U; } else { bss->ext_channel = 0U; } } bss->reserved = 0U; wcn36xx_smd_set_sta_params(wcn, vif, sta, sta_params); bss->ssid.length = vif_priv->ssid.length; __len___1 = (size_t )vif_priv->ssid.length; __ret___1 = __builtin_memcpy((void *)(& bss->ssid.ssid), (void const *)(& vif_priv->ssid.ssid), __len___1); bss->obss_prot_enabled = 0U; bss->rmf = 0U; bss->max_probe_resp_retry_limit = 0U; bss->hidden_ssid = (u8 )vif->bss_conf.hidden_ssid; bss->proxy_probe_resp = 0U; bss->edca_params_valid = 0U; bss->ext_set_sta_key_param_valid = 0U; bss->spectrum_mgt_enable = 0U; bss->tx_mgmt_power = 0; bss->max_tx_power = (s8 )((wcn->hw)->conf.chandef.chan)->max_power; bss->action = (u8 )update; if ((wcn36xx_dbg_mask & 256U) != 0U) { printk("\017wcn36xx: hal config bss bssid %pM self_mac_addr %pM bss_type %d oper_mode %d nw_type %d\n", (u8 *)(& bss->bssid), (u8 *)(& bss->self_mac_addr), (unsigned int )bss->bss_type, (int )bss->oper_mode, (unsigned int )bss->nw_type); } else { } if ((wcn36xx_dbg_mask & 256U) != 0U) { printk("\017wcn36xx: - sta bssid %pM action %d sta_index %d bssid_index %d aid %d type %d mac %pM\n", (u8 *)(& sta_params->bssid), (int )sta_params->action, (int )sta_params->sta_index, (int )sta_params->bssid_index, (int )sta_params->aid, (int )sta_params->type, (u8 *)(& sta_params->mac)); } else { } tmp___3 = wcn36xx_is_fw_version(wcn, 1, 2, 2, 24); if (tmp___3) { tmp___4 = 0; } else { tmp___4 = 1; } if (tmp___4) { ret = wcn36xx_smd_config_bss_v1(wcn, (struct wcn36xx_hal_config_bss_req_msg const *)(& msg)); } else { memset((void *)wcn->hal_buf, 0, (size_t )msg.header.len); __len___2 = 469UL; if (__len___2 > 63UL) { __ret___2 = __memcpy((void *)wcn->hal_buf, (void const *)(& msg), __len___2); } else { __ret___2 = __builtin_memcpy((void *)wcn->hal_buf, (void const *)(& msg), __len___2); } ret = wcn36xx_smd_send_and_wait(wcn, (size_t )msg.header.len); } if (ret != 0) { printk("\vwcn36xx: OLD_ERROR Sending hal_config_bss failed\n"); goto out; } else { } ret = wcn36xx_smd_config_bss_rsp(wcn, vif, (void *)wcn->hal_buf, wcn->hal_rsp_len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR hal_config_bss response failed err=%d\n", ret); goto out; } else { } out: mutex_unlock(& wcn->hal_mutex); return (ret); } } int wcn36xx_smd_delete_bss(struct wcn36xx *wcn , struct ieee80211_vif *vif ) { struct wcn36xx_hal_delete_bss_req_msg msg_body ; struct wcn36xx_vif *priv_vif ; int ret ; size_t __len ; void *__ret ; { priv_vif = (struct wcn36xx_vif *)(& vif->drv_priv); ret = 0; mutex_lock_nested(& wcn->hal_mutex, 0U); memset((void *)(& msg_body), 0, 9UL); msg_body.header.msg_type = 18U; msg_body.header.msg_version = 0U; msg_body.header.len = 9U; msg_body.bss_index = priv_vif->bss_index; memset((void *)wcn->hal_buf, 0, (size_t )msg_body.header.len); __len = 9UL; if (__len > 63UL) { __ret = __memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } else { __ret = __builtin_memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } if ((wcn36xx_dbg_mask & 256U) != 0U) { printk("\017wcn36xx: hal delete bss %d\n", (int )msg_body.bss_index); } else { } ret = wcn36xx_smd_send_and_wait(wcn, (size_t )msg_body.header.len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR Sending hal_delete_bss failed\n"); goto out; } else { } ret = wcn36xx_smd_rsp_status_check((void *)wcn->hal_buf, wcn->hal_rsp_len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR hal_delete_bss response failed err=%d\n", ret); goto out; } else { } out: mutex_unlock(& wcn->hal_mutex); return (ret); } } int wcn36xx_smd_send_beacon(struct wcn36xx *wcn , struct ieee80211_vif *vif , struct sk_buff *skb_beacon , u16 tim_off , u16 p2p_off ) { struct wcn36xx_hal_send_beacon_req_msg msg_body ; int ret ; size_t __len ; void *__ret ; size_t __len___0 ; void *__ret___0 ; size_t __len___1 ; void *__ret___1 ; size_t __len___2 ; void *__ret___2 ; { ret = 0; mutex_lock_nested(& wcn->hal_mutex, 0U); memset((void *)(& msg_body), 0, 408UL); msg_body.header.msg_type = 63U; msg_body.header.msg_version = 0U; msg_body.header.len = 408U; msg_body.beacon_length = skb_beacon->len + 6U; if (msg_body.beacon_length <= 383U) { __len = 4UL; if (__len > 63UL) { __ret = __memcpy((void *)(& msg_body.beacon), (void const *)(& skb_beacon->len), __len); } else { __ret = __builtin_memcpy((void *)(& msg_body.beacon), (void const *)(& skb_beacon->len), __len); } __len___0 = (size_t )skb_beacon->len; __ret___0 = __builtin_memcpy((void *)(& msg_body.beacon) + 4U, (void const *)skb_beacon->data, __len___0); } else { printk("\vwcn36xx: OLD_ERROR Beacon is to big: beacon size=%d\n", msg_body.beacon_length); ret = -12; goto out; } __len___1 = 6UL; if (__len___1 > 63UL) { __ret___1 = __memcpy((void *)(& msg_body.bssid), (void const *)(& vif->addr), __len___1); } else { __ret___1 = __builtin_memcpy((void *)(& msg_body.bssid), (void const *)(& vif->addr), __len___1); } if ((unsigned int )vif->type == 7U) { msg_body.tim_ie_offset = 256U; } else { msg_body.tim_ie_offset = (u32 )((int )tim_off + 4); } msg_body.p2p_ie_offset = p2p_off; memset((void *)wcn->hal_buf, 0, (size_t )msg_body.header.len); __len___2 = 408UL; if (__len___2 > 63UL) { __ret___2 = __memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len___2); } else { __ret___2 = __builtin_memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len___2); } if ((wcn36xx_dbg_mask & 256U) != 0U) { printk("\017wcn36xx: hal send beacon beacon_length %d\n", msg_body.beacon_length); } else { } ret = wcn36xx_smd_send_and_wait(wcn, (size_t )msg_body.header.len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR Sending hal_send_beacon failed\n"); goto out; } else { } ret = wcn36xx_smd_rsp_status_check((void *)wcn->hal_buf, wcn->hal_rsp_len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR hal_send_beacon response failed err=%d\n", ret); goto out; } else { } out: mutex_unlock(& wcn->hal_mutex); return (ret); } } int wcn36xx_smd_update_proberesp_tmpl(struct wcn36xx *wcn , struct ieee80211_vif *vif , struct sk_buff *skb ) { struct wcn36xx_hal_send_probe_resp_req_msg msg ; int ret ; size_t __len ; void *__ret ; size_t __len___0 ; void *__ret___0 ; size_t __len___1 ; void *__ret___1 ; { ret = 0; mutex_lock_nested(& wcn->hal_mutex, 0U); memset((void *)(& msg), 0, 436UL); msg.header.msg_type = 68U; msg.header.msg_version = 0U; msg.header.len = 436U; if (skb->len > 384U) { printk("\fwcn36xx: WARNING probe response template is too big: %d\n", skb->len); ret = -7; goto out; } else { } msg.probe_resp_template_len = skb->len; __len = (size_t )skb->len; __ret = __builtin_memcpy((void *)(& msg.probe_resp_template), (void const *)skb->data, __len); __len___0 = 6UL; if (__len___0 > 63UL) { __ret___0 = __memcpy((void *)(& msg.bssid), (void const *)(& vif->addr), __len___0); } else { __ret___0 = __builtin_memcpy((void *)(& msg.bssid), (void const *)(& vif->addr), __len___0); } memset((void *)wcn->hal_buf, 0, (size_t )msg.header.len); __len___1 = 436UL; if (__len___1 > 63UL) { __ret___1 = __memcpy((void *)wcn->hal_buf, (void const *)(& msg), __len___1); } else { __ret___1 = __builtin_memcpy((void *)wcn->hal_buf, (void const *)(& msg), __len___1); } if ((wcn36xx_dbg_mask & 256U) != 0U) { printk("\017wcn36xx: hal update probe rsp len %d bssid %pM\n", msg.probe_resp_template_len, (u8 *)(& msg.bssid)); } else { } ret = wcn36xx_smd_send_and_wait(wcn, (size_t )msg.header.len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR Sending hal_update_proberesp_tmpl failed\n"); goto out; } else { } ret = wcn36xx_smd_rsp_status_check((void *)wcn->hal_buf, wcn->hal_rsp_len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR hal_update_proberesp_tmpl response failed err=%d\n", ret); goto out; } else { } out: mutex_unlock(& wcn->hal_mutex); return (ret); } } int wcn36xx_smd_set_stakey(struct wcn36xx *wcn , enum ani_ed_type enc_type , u8 keyidx , u8 keylen , u8 *key , u8 sta_index ) { struct wcn36xx_hal_set_sta_key_req_msg msg_body ; int ret ; size_t __len ; void *__ret ; size_t __len___0 ; void *__ret___0 ; { ret = 0; mutex_lock_nested(& wcn->hal_mutex, 0U); memset((void *)(& msg_body), 0, 248UL); msg_body.header.msg_type = 26U; msg_body.header.msg_version = 0U; msg_body.header.len = 248U; msg_body.set_sta_key_params.sta_index = (u16 )sta_index; msg_body.set_sta_key_params.enc_type = enc_type; msg_body.set_sta_key_params.key[0].id = keyidx; msg_body.set_sta_key_params.key[0].unicast = 1U; msg_body.set_sta_key_params.key[0].direction = 2; msg_body.set_sta_key_params.key[0].pae_role = 0U; msg_body.set_sta_key_params.key[0].length = (u16 )keylen; __len = (size_t )keylen; __ret = __builtin_memcpy((void *)(& msg_body.set_sta_key_params.key[0].key), (void const *)key, __len); msg_body.set_sta_key_params.single_tid_rc = 1U; memset((void *)wcn->hal_buf, 0, (size_t )msg_body.header.len); __len___0 = 248UL; if (__len___0 > 63UL) { __ret___0 = __memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len___0); } else { __ret___0 = __builtin_memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len___0); } ret = wcn36xx_smd_send_and_wait(wcn, (size_t )msg_body.header.len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR Sending hal_set_stakey failed\n"); goto out; } else { } ret = wcn36xx_smd_rsp_status_check((void *)wcn->hal_buf, wcn->hal_rsp_len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR hal_set_stakey response failed err=%d\n", ret); goto out; } else { } out: mutex_unlock(& wcn->hal_mutex); return (ret); } } int wcn36xx_smd_set_bsskey(struct wcn36xx *wcn , enum ani_ed_type enc_type , u8 keyidx , u8 keylen , u8 *key ) { struct wcn36xx_hal_set_bss_key_req_msg msg_body ; int ret ; size_t __len ; void *__ret ; size_t __len___0 ; void *__ret___0 ; { ret = 0; mutex_lock_nested(& wcn->hal_mutex, 0U); memset((void *)(& msg_body), 0, 243UL); msg_body.header.msg_type = 24U; msg_body.header.msg_version = 0U; msg_body.header.len = 243U; msg_body.bss_idx = 0U; msg_body.enc_type = enc_type; msg_body.num_keys = 1U; msg_body.keys[0].id = keyidx; msg_body.keys[0].unicast = 0U; msg_body.keys[0].direction = 1; msg_body.keys[0].pae_role = 0U; msg_body.keys[0].length = (u16 )keylen; __len = (size_t )keylen; __ret = __builtin_memcpy((void *)(& msg_body.keys[0].key), (void const *)key, __len); memset((void *)wcn->hal_buf, 0, (size_t )msg_body.header.len); __len___0 = 243UL; if (__len___0 > 63UL) { __ret___0 = __memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len___0); } else { __ret___0 = __builtin_memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len___0); } ret = wcn36xx_smd_send_and_wait(wcn, (size_t )msg_body.header.len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR Sending hal_set_bsskey failed\n"); goto out; } else { } ret = wcn36xx_smd_rsp_status_check((void *)wcn->hal_buf, wcn->hal_rsp_len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR hal_set_bsskey response failed err=%d\n", ret); goto out; } else { } out: mutex_unlock(& wcn->hal_mutex); return (ret); } } int wcn36xx_smd_remove_stakey(struct wcn36xx *wcn , enum ani_ed_type enc_type , u8 keyidx , u8 sta_index ) { struct wcn36xx_hal_remove_sta_key_req_msg msg_body ; int ret ; size_t __len ; void *__ret ; { ret = 0; mutex_lock_nested(& wcn->hal_mutex, 0U); memset((void *)(& msg_body), 0, 16UL); msg_body.header.msg_type = 30U; msg_body.header.msg_version = 0U; msg_body.header.len = 16U; msg_body.sta_idx = (u16 )sta_index; msg_body.enc_type = enc_type; msg_body.key_id = keyidx; memset((void *)wcn->hal_buf, 0, (size_t )msg_body.header.len); __len = 16UL; if (__len > 63UL) { __ret = __memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } else { __ret = __builtin_memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } ret = wcn36xx_smd_send_and_wait(wcn, (size_t )msg_body.header.len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR Sending hal_remove_stakey failed\n"); goto out; } else { } ret = wcn36xx_smd_rsp_status_check((void *)wcn->hal_buf, wcn->hal_rsp_len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR hal_remove_stakey response failed err=%d\n", ret); goto out; } else { } out: mutex_unlock(& wcn->hal_mutex); return (ret); } } int wcn36xx_smd_remove_bsskey(struct wcn36xx *wcn , enum ani_ed_type enc_type , u8 keyidx ) { struct wcn36xx_hal_remove_bss_key_req_msg msg_body ; int ret ; size_t __len ; void *__ret ; { ret = 0; mutex_lock_nested(& wcn->hal_mutex, 0U); memset((void *)(& msg_body), 0, 18UL); msg_body.header.msg_type = 28U; msg_body.header.msg_version = 0U; msg_body.header.len = 18U; msg_body.bss_idx = 0U; msg_body.enc_type = enc_type; msg_body.key_id = keyidx; memset((void *)wcn->hal_buf, 0, (size_t )msg_body.header.len); __len = 18UL; if (__len > 63UL) { __ret = __memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } else { __ret = __builtin_memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } ret = wcn36xx_smd_send_and_wait(wcn, (size_t )msg_body.header.len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR Sending hal_remove_bsskey failed\n"); goto out; } else { } ret = wcn36xx_smd_rsp_status_check((void *)wcn->hal_buf, wcn->hal_rsp_len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR hal_remove_bsskey response failed err=%d\n", ret); goto out; } else { } out: mutex_unlock(& wcn->hal_mutex); return (ret); } } int wcn36xx_smd_enter_bmps(struct wcn36xx *wcn , struct ieee80211_vif *vif ) { struct wcn36xx_hal_enter_bmps_req_msg msg_body ; struct wcn36xx_vif *vif_priv ; int ret ; size_t __len ; void *__ret ; { vif_priv = (struct wcn36xx_vif *)(& vif->drv_priv); ret = 0; mutex_lock_nested(& wcn->hal_mutex, 0U); memset((void *)(& msg_body), 0, 28UL); msg_body.header.msg_type = 78U; msg_body.header.msg_version = 0U; msg_body.header.len = 28U; msg_body.bss_index = vif_priv->bss_index; msg_body.tbtt = vif->bss_conf.sync_tsf; msg_body.dtim_period = vif_priv->dtim_period; memset((void *)wcn->hal_buf, 0, (size_t )msg_body.header.len); __len = 28UL; if (__len > 63UL) { __ret = __memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } else { __ret = __builtin_memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } ret = wcn36xx_smd_send_and_wait(wcn, (size_t )msg_body.header.len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR Sending hal_enter_bmps failed\n"); goto out; } else { } ret = wcn36xx_smd_rsp_status_check((void *)wcn->hal_buf, wcn->hal_rsp_len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR hal_enter_bmps response failed err=%d\n", ret); goto out; } else { } out: mutex_unlock(& wcn->hal_mutex); return (ret); } } int wcn36xx_smd_exit_bmps(struct wcn36xx *wcn , struct ieee80211_vif *vif ) { struct wcn36xx_hal_enter_bmps_req_msg msg_body ; struct wcn36xx_vif *vif_priv ; int ret ; size_t __len ; void *__ret ; { vif_priv = (struct wcn36xx_vif *)(& vif->drv_priv); ret = 0; mutex_lock_nested(& wcn->hal_mutex, 0U); memset((void *)(& msg_body), 0, 28UL); msg_body.header.msg_type = 79U; msg_body.header.msg_version = 0U; msg_body.header.len = 28U; msg_body.bss_index = vif_priv->bss_index; memset((void *)wcn->hal_buf, 0, (size_t )msg_body.header.len); __len = 28UL; if (__len > 63UL) { __ret = __memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } else { __ret = __builtin_memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } ret = wcn36xx_smd_send_and_wait(wcn, (size_t )msg_body.header.len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR Sending hal_exit_bmps failed\n"); goto out; } else { } ret = wcn36xx_smd_rsp_status_check((void *)wcn->hal_buf, wcn->hal_rsp_len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR hal_exit_bmps response failed err=%d\n", ret); goto out; } else { } out: mutex_unlock(& wcn->hal_mutex); return (ret); } } int wcn36xx_smd_set_power_params(struct wcn36xx *wcn , bool ignore_dtim ) { struct wcn36xx_hal_set_power_params_req_msg msg_body ; int ret ; size_t __len ; void *__ret ; { ret = 0; mutex_lock_nested(& wcn->hal_mutex, 0U); memset((void *)(& msg_body), 0, 32UL); msg_body.header.msg_type = 166U; msg_body.header.msg_version = 0U; msg_body.header.len = 32U; if ((int )ignore_dtim) { msg_body.ignore_dtim = 1U; msg_body.dtim_period = 2U; } else { } msg_body.listen_interval = (u32 )(wcn->hw)->conf.listen_interval; memset((void *)wcn->hal_buf, 0, (size_t )msg_body.header.len); __len = 32UL; if (__len > 63UL) { __ret = __memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } else { __ret = __builtin_memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } ret = wcn36xx_smd_send_and_wait(wcn, (size_t )msg_body.header.len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR Sending hal_set_power_params failed\n"); goto out; } else { } out: mutex_unlock(& wcn->hal_mutex); return (ret); } } int wcn36xx_smd_keep_alive_req(struct wcn36xx *wcn , struct ieee80211_vif *vif , int packet_type ) { struct wcn36xx_hal_keep_alive_req_msg msg_body ; struct wcn36xx_vif *vif_priv ; int ret ; size_t __len ; void *__ret ; { vif_priv = (struct wcn36xx_vif *)(& vif->drv_priv); ret = 0; mutex_lock_nested(& wcn->hal_mutex, 0U); memset((void *)(& msg_body), 0, 28UL); msg_body.header.msg_type = 145U; msg_body.header.msg_version = 0U; msg_body.header.len = 28U; if (packet_type == 1) { msg_body.bss_index = vif_priv->bss_index; msg_body.packet_type = 1U; msg_body.time_period = 30U; } else if (packet_type == 2) { } else { printk("\fwcn36xx: WARNING unknow keep alive packet type %d\n", packet_type); ret = -22; goto out; } memset((void *)wcn->hal_buf, 0, (size_t )msg_body.header.len); __len = 28UL; if (__len > 63UL) { __ret = __memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } else { __ret = __builtin_memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } ret = wcn36xx_smd_send_and_wait(wcn, (size_t )msg_body.header.len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR Sending hal_keep_alive failed\n"); goto out; } else { } ret = wcn36xx_smd_rsp_status_check((void *)wcn->hal_buf, wcn->hal_rsp_len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR hal_keep_alive response failed err=%d\n", ret); goto out; } else { } out: mutex_unlock(& wcn->hal_mutex); return (ret); } } int wcn36xx_smd_dump_cmd_req(struct wcn36xx *wcn , u32 arg1 , u32 arg2 , u32 arg3 , u32 arg4 , u32 arg5 ) { struct wcn36xx_hal_dump_cmd_req_msg msg_body ; int ret ; size_t __len ; void *__ret ; { ret = 0; mutex_lock_nested(& wcn->hal_mutex, 0U); memset((void *)(& msg_body), 0, 28UL); msg_body.header.msg_type = 121U; msg_body.header.msg_version = 0U; msg_body.header.len = 28U; msg_body.arg1 = arg1; msg_body.arg2 = arg2; msg_body.arg3 = arg3; msg_body.arg4 = arg4; msg_body.arg5 = arg5; memset((void *)wcn->hal_buf, 0, (size_t )msg_body.header.len); __len = 28UL; if (__len > 63UL) { __ret = __memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } else { __ret = __builtin_memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } ret = wcn36xx_smd_send_and_wait(wcn, (size_t )msg_body.header.len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR Sending hal_dump_cmd failed\n"); goto out; } else { } ret = wcn36xx_smd_rsp_status_check((void *)wcn->hal_buf, wcn->hal_rsp_len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR hal_dump_cmd response failed err=%d\n", ret); goto out; } else { } out: mutex_unlock(& wcn->hal_mutex); return (ret); } } void set_feat_caps(u32 *bitmap , enum place_holder_in_cap_bitmap cap ) { int arr_idx ; int bit_idx ; { if ((unsigned int )cap > 127U) { printk("\fwcn36xx: WARNING error cap idx %d\n", (unsigned int )cap); return; } else { } arr_idx = (int )((unsigned int )cap / 32U); bit_idx = (int )cap & 31; *(bitmap + (unsigned long )arr_idx) = *(bitmap + (unsigned long )arr_idx) | (u32 )(1 << bit_idx); return; } } int get_feat_caps(u32 *bitmap , enum place_holder_in_cap_bitmap cap ) { int arr_idx ; int bit_idx ; int ret ; { ret = 0; if ((unsigned int )cap > 127U) { printk("\fwcn36xx: WARNING error cap idx %d\n", (unsigned int )cap); return (-22); } else { } arr_idx = (int )((unsigned int )cap / 32U); bit_idx = (int )cap & 31; ret = (*(bitmap + (unsigned long )arr_idx) & (u32 )(1 << bit_idx)) != 0U; return (ret); } } void clear_feat_caps(u32 *bitmap , enum place_holder_in_cap_bitmap cap ) { int arr_idx ; int bit_idx ; { if ((unsigned int )cap > 127U) { printk("\fwcn36xx: WARNING error cap idx %d\n", (unsigned int )cap); return; } else { } arr_idx = (int )((unsigned int )cap / 32U); bit_idx = (int )cap & 31; *(bitmap + (unsigned long )arr_idx) = *(bitmap + (unsigned long )arr_idx) & (u32 )(~ (1 << bit_idx)); return; } } int wcn36xx_smd_feature_caps_exchange(struct wcn36xx *wcn ) { struct wcn36xx_hal_feat_caps_msg msg_body ; struct wcn36xx_hal_feat_caps_msg *rsp ; int ret ; int i ; size_t __len ; void *__ret ; { ret = 0; mutex_lock_nested(& wcn->hal_mutex, 0U); memset((void *)(& msg_body), 0, 24UL); msg_body.header.msg_type = 175U; msg_body.header.msg_version = 0U; msg_body.header.len = 24U; set_feat_caps((u32 *)(& msg_body.feat_caps), 13); memset((void *)wcn->hal_buf, 0, (size_t )msg_body.header.len); __len = 24UL; if (__len > 63UL) { __ret = __memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } else { __ret = __builtin_memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } ret = wcn36xx_smd_send_and_wait(wcn, (size_t )msg_body.header.len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR Sending hal_feature_caps_exchange failed\n"); goto out; } else { } if (wcn->hal_rsp_len != 24UL) { printk("\vwcn36xx: OLD_ERROR Invalid hal_feature_caps_exchange response"); goto out; } else { } rsp = (struct wcn36xx_hal_feat_caps_msg *)wcn->hal_buf; i = 0; goto ldv_48820; ldv_48819: wcn->fw_feat_caps[i] = rsp->feat_caps[i]; i = i + 1; ldv_48820: ; if (i <= 3) { goto ldv_48819; } else { } out: mutex_unlock(& wcn->hal_mutex); return (ret); } } int wcn36xx_smd_add_ba_session(struct wcn36xx *wcn , struct ieee80211_sta *sta , u16 tid , u16 *ssn , u8 direction , u8 sta_index ) { struct wcn36xx_hal_add_ba_session_req_msg msg_body ; int ret ; size_t __len ; void *__ret ; size_t __len___0 ; void *__ret___0 ; { ret = 0; mutex_lock_nested(& wcn->hal_mutex, 0U); memset((void *)(& msg_body), 0, 26UL); msg_body.header.msg_type = 57U; msg_body.header.msg_version = 0U; msg_body.header.len = 26U; msg_body.sta_index = (u16 )sta_index; __len = 6UL; if (__len > 63UL) { __ret = __memcpy((void *)(& msg_body.mac_addr), (void const *)(& sta->addr), __len); } else { __ret = __builtin_memcpy((void *)(& msg_body.mac_addr), (void const *)(& sta->addr), __len); } msg_body.dialog_token = 16U; msg_body.tid = (u8 )tid; msg_body.policy = 1U; msg_body.buffer_size = 64U; msg_body.timeout = 0U; if ((unsigned long )ssn != (unsigned long )((u16 *)0U)) { msg_body.ssn = *ssn; } else { } msg_body.direction = direction; memset((void *)wcn->hal_buf, 0, (size_t )msg_body.header.len); __len___0 = 26UL; if (__len___0 > 63UL) { __ret___0 = __memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len___0); } else { __ret___0 = __builtin_memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len___0); } ret = wcn36xx_smd_send_and_wait(wcn, (size_t )msg_body.header.len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR Sending hal_add_ba_session failed\n"); goto out; } else { } ret = wcn36xx_smd_rsp_status_check((void *)wcn->hal_buf, wcn->hal_rsp_len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR hal_add_ba_session response failed err=%d\n", ret); goto out; } else { } out: mutex_unlock(& wcn->hal_mutex); return (ret); } } int wcn36xx_smd_add_ba(struct wcn36xx *wcn ) { struct wcn36xx_hal_add_ba_req_msg msg_body ; int ret ; size_t __len ; void *__ret ; { ret = 0; mutex_lock_nested(& wcn->hal_mutex, 0U); memset((void *)(& msg_body), 0, 10UL); msg_body.header.msg_type = 38U; msg_body.header.msg_version = 0U; msg_body.header.len = 10U; msg_body.session_id = 0U; msg_body.win_size = 64U; memset((void *)wcn->hal_buf, 0, (size_t )msg_body.header.len); __len = 10UL; if (__len > 63UL) { __ret = __memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } else { __ret = __builtin_memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } ret = wcn36xx_smd_send_and_wait(wcn, (size_t )msg_body.header.len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR Sending hal_add_ba failed\n"); goto out; } else { } ret = wcn36xx_smd_rsp_status_check((void *)wcn->hal_buf, wcn->hal_rsp_len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR hal_add_ba response failed err=%d\n", ret); goto out; } else { } out: mutex_unlock(& wcn->hal_mutex); return (ret); } } int wcn36xx_smd_del_ba(struct wcn36xx *wcn , u16 tid , u8 sta_index ) { struct wcn36xx_hal_del_ba_req_msg msg_body ; int ret ; size_t __len ; void *__ret ; { ret = 0; mutex_lock_nested(& wcn->hal_mutex, 0U); memset((void *)(& msg_body), 0, 12UL); msg_body.header.msg_type = 40U; msg_body.header.msg_version = 0U; msg_body.header.len = 12U; msg_body.sta_index = (u16 )sta_index; msg_body.tid = (u8 )tid; msg_body.direction = 0U; memset((void *)wcn->hal_buf, 0, (size_t )msg_body.header.len); __len = 12UL; if (__len > 63UL) { __ret = __memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } else { __ret = __builtin_memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } ret = wcn36xx_smd_send_and_wait(wcn, (size_t )msg_body.header.len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR Sending hal_del_ba failed\n"); goto out; } else { } ret = wcn36xx_smd_rsp_status_check((void *)wcn->hal_buf, wcn->hal_rsp_len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR hal_del_ba response failed err=%d\n", ret); goto out; } else { } out: mutex_unlock(& wcn->hal_mutex); return (ret); } } int wcn36xx_smd_trigger_ba(struct wcn36xx *wcn , u8 sta_index ) { struct wcn36xx_hal_trigger_ba_req_msg msg_body ; struct wcn36xx_hal_trigger_ba_req_candidate *candidate ; int ret ; size_t __len ; void *__ret ; { ret = 0; mutex_lock_nested(& wcn->hal_mutex, 0U); memset((void *)(& msg_body), 0, 11UL); msg_body.header.msg_type = 59U; msg_body.header.msg_version = 0U; msg_body.header.len = 11U; msg_body.session_id = 0U; msg_body.candidate_cnt = 1U; msg_body.header.len = msg_body.header.len + 2U; memset((void *)wcn->hal_buf, 0, (size_t )msg_body.header.len); __len = 11UL; if (__len > 63UL) { __ret = __memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } else { __ret = __builtin_memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } candidate = (struct wcn36xx_hal_trigger_ba_req_candidate *)wcn->hal_buf + 11U; candidate->sta_index = sta_index; candidate->tid_bitmap = 1U; ret = wcn36xx_smd_send_and_wait(wcn, (size_t )msg_body.header.len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR Sending hal_trigger_ba failed\n"); goto out; } else { } ret = wcn36xx_smd_rsp_status_check((void *)wcn->hal_buf, wcn->hal_rsp_len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR hal_trigger_ba response failed err=%d\n", ret); goto out; } else { } out: mutex_unlock(& wcn->hal_mutex); return (ret); } } static int wcn36xx_smd_tx_compl_ind(struct wcn36xx *wcn , void *buf , size_t len ) { struct wcn36xx_hal_tx_compl_ind_msg *rsp ; { rsp = (struct wcn36xx_hal_tx_compl_ind_msg *)buf; if (len != 12UL) { printk("\fwcn36xx: WARNING Bad TX complete indication\n"); return (-5); } else { } wcn36xx_dxe_tx_ack_ind(wcn, rsp->status); return (0); } } static int wcn36xx_smd_missed_beacon_ind(struct wcn36xx *wcn , void *buf , size_t len ) { struct wcn36xx_hal_missed_beacon_ind_msg *rsp ; struct ieee80211_vif *vif ; struct wcn36xx_vif *tmp ; struct list_head const *__mptr ; u8 const (*__mptr___0)[0U] ; struct list_head const *__mptr___1 ; bool tmp___0 ; struct list_head const *__mptr___2 ; u8 const (*__mptr___3)[0U] ; struct list_head const *__mptr___4 ; { rsp = (struct wcn36xx_hal_missed_beacon_ind_msg *)buf; vif = (struct ieee80211_vif *)0; tmp___0 = wcn36xx_is_fw_version(wcn, 1, 2, 2, 24); if ((int )tmp___0) { __mptr = (struct list_head const *)wcn->vif_list.next; tmp = (struct wcn36xx_vif *)__mptr; goto ldv_48891; ldv_48890: ; if ((wcn36xx_dbg_mask & 256U) != 0U) { printk("\017wcn36xx: beacon missed bss_index %d\n", (int )tmp->bss_index); } else { } __mptr___0 = (u8 const *)tmp; vif = (struct ieee80211_vif *)__mptr___0 + 0xfffffffffffffee8UL; ieee80211_connection_loss(vif); __mptr___1 = (struct list_head const *)tmp->list.next; tmp = (struct wcn36xx_vif *)__mptr___1; ldv_48891: ; if ((unsigned long )(& tmp->list) != (unsigned long )(& wcn->vif_list)) { goto ldv_48890; } else { } return (0); } else { } if (len != 9UL) { printk("\fwcn36xx: WARNING Corrupted missed beacon indication\n"); return (-5); } else { } __mptr___2 = (struct list_head const *)wcn->vif_list.next; tmp = (struct wcn36xx_vif *)__mptr___2; goto ldv_48900; ldv_48899: ; if ((int )tmp->bss_index == (int )rsp->bss_index) { if ((wcn36xx_dbg_mask & 256U) != 0U) { printk("\017wcn36xx: beacon missed bss_index %d\n", (int )rsp->bss_index); } else { } __mptr___3 = (u8 const *)tmp; vif = (struct ieee80211_vif *)__mptr___3 + 0xfffffffffffffee8UL; ieee80211_connection_loss(vif); return (0); } else { } __mptr___4 = (struct list_head const *)tmp->list.next; tmp = (struct wcn36xx_vif *)__mptr___4; ldv_48900: ; if ((unsigned long )(& tmp->list) != (unsigned long )(& wcn->vif_list)) { goto ldv_48899; } else { } printk("\fwcn36xx: WARNING BSS index %d not found\n", (int )rsp->bss_index); return (-2); } } static int wcn36xx_smd_delete_sta_context_ind(struct wcn36xx *wcn , void *buf , size_t len ) { struct wcn36xx_hal_delete_sta_context_ind_msg *rsp ; struct wcn36xx_vif *tmp ; struct ieee80211_sta *sta ; struct list_head const *__mptr ; u8 const (*__mptr___0)[0U] ; struct list_head const *__mptr___1 ; { rsp = (struct wcn36xx_hal_delete_sta_context_ind_msg *)buf; sta = (struct ieee80211_sta *)0; if (len != 26UL) { printk("\fwcn36xx: WARNING Corrupted delete sta indication\n"); return (-5); } else { } __mptr = (struct list_head const *)wcn->vif_list.next; tmp = (struct wcn36xx_vif *)__mptr; goto ldv_48917; ldv_48916: ; if ((unsigned long )sta != (unsigned long )((struct ieee80211_sta *)0) && (int )((unsigned short )(tmp->sta)->sta_index) == (int )rsp->sta_id) { __mptr___0 = (u8 const *)tmp->sta; sta = (struct ieee80211_sta *)__mptr___0 + 0xffffffffffffffa8UL; if ((wcn36xx_dbg_mask & 256U) != 0U) { printk("\017wcn36xx: delete station indication %pM index %d\n", (u8 *)(& rsp->addr2), (int )rsp->sta_id); } else { } ieee80211_report_low_ack(sta, 0U); return (0); } else { } __mptr___1 = (struct list_head const *)tmp->list.next; tmp = (struct wcn36xx_vif *)__mptr___1; ldv_48917: ; if ((unsigned long )(& tmp->list) != (unsigned long )(& wcn->vif_list)) { goto ldv_48916; } else { } printk("\fwcn36xx: WARNING STA with addr %pM and index %d not found\n", (u8 *)(& rsp->addr2), (int )rsp->sta_id); return (-2); } } int wcn36xx_smd_update_cfg(struct wcn36xx *wcn , u32 cfg_id , u32 value ) { struct wcn36xx_hal_update_cfg_req_msg msg_body ; struct wcn36xx_hal_update_cfg_req_msg *body ; size_t len ; int ret ; size_t __len ; void *__ret ; { ret = 0; mutex_lock_nested(& wcn->hal_mutex, 0U); memset((void *)(& msg_body), 0, 12UL); msg_body.header.msg_type = 48U; msg_body.header.msg_version = 0U; msg_body.header.len = 12U; memset((void *)wcn->hal_buf, 0, (size_t )msg_body.header.len); __len = 12UL; if (__len > 63UL) { __ret = __memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } else { __ret = __builtin_memcpy((void *)wcn->hal_buf, (void const *)(& msg_body), __len); } body = (struct wcn36xx_hal_update_cfg_req_msg *)wcn->hal_buf; len = (size_t )msg_body.header.len; put_cfg_tlv_u32(wcn, & len, cfg_id, value); body->header.len = (u32 )len; body->len = (u32 )len - 12U; ret = wcn36xx_smd_send_and_wait(wcn, (size_t )body->header.len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR Sending hal_update_cfg failed\n"); goto out; } else { } ret = wcn36xx_smd_rsp_status_check((void *)wcn->hal_buf, wcn->hal_rsp_len); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR hal_update_cfg response failed err=%d\n", ret); goto out; } else { } out: mutex_unlock(& wcn->hal_mutex); return (ret); } } static void wcn36xx_smd_rsp_process(struct wcn36xx *wcn , void *buf , size_t len ) { struct wcn36xx_hal_msg_header *msg_header ; struct wcn36xx_hal_ind_msg *msg_ind ; size_t __len ; void *__ret ; void *tmp ; void *tmp___0 ; { msg_header = (struct wcn36xx_hal_msg_header *)buf; if ((wcn36xx_dbg_mask & 8U) != 0U) { print_hex_dump("\017", "wcn36xx: SMD <<< ", 2, 32, 1, (void const *)buf, len, 0); } else { } switch ((int )msg_header->msg_type) { case 1: ; case 13: ; case 17: ; case 126: ; case 3: ; case 128: ; case 15: ; case 5: ; case 7: ; case 9: ; case 11: ; case 56: ; case 19: ; case 64: ; case 45: ; case 69: ; case 25: ; case 27: ; case 31: ; case 29: ; case 97: ; case 167: ; case 98: ; case 146: ; case 122: ; case 58: ; case 39: ; case 41: ; case 60: ; case 49: ; case 21: ; case 152: ; case 43: ; case 176: __len = len; __ret = __builtin_memcpy((void *)wcn->hal_buf, (void const *)buf, __len); wcn->hal_rsp_len = len; complete(& wcn->hal_rsp_compl); goto ldv_48976; case 130: ; case 50: ; case 67: tmp = kmalloc(32UL, 208U); msg_ind = (struct wcn36xx_hal_ind_msg *)tmp; if ((unsigned long )msg_ind == (unsigned long )((struct wcn36xx_hal_ind_msg *)0)) { goto nomem; } else { } msg_ind->msg_len = len; tmp___0 = kmemdup((void const *)buf, len, 208U); msg_ind->msg = (u8 *)tmp___0; if ((unsigned long )msg_ind->msg == (unsigned long )((u8 *)0U)) { kfree((void const *)msg_ind); nomem: printk("\vwcn36xx: OLD_ERROR Run out of memory while handling SMD_EVENT (%d)\n", (int )msg_header->msg_type); goto ldv_48976; } else { } mutex_lock_nested(& wcn->hal_ind_mutex, 0U); list_add_tail(& msg_ind->list, & wcn->hal_ind_queue); queue_work(wcn->hal_ind_wq, & wcn->hal_ind_work); mutex_unlock(& wcn->hal_ind_mutex); if ((wcn36xx_dbg_mask & 256U) != 0U) { printk("\017wcn36xx: indication arrived\n"); } else { } goto ldv_48976; default: printk("\vwcn36xx: OLD_ERROR SMD_EVENT (%d) not supported\n", (int )msg_header->msg_type); } ldv_48976: ; return; } } static void wcn36xx_ind_smd_work(struct work_struct *work ) { struct wcn36xx *wcn ; struct work_struct const *__mptr ; struct wcn36xx_hal_msg_header *msg_header ; struct wcn36xx_hal_ind_msg *hal_ind_msg ; struct list_head const *__mptr___0 ; { __mptr = (struct work_struct const *)work; wcn = (struct wcn36xx *)__mptr + 0xfffffffffffffe00UL; mutex_lock_nested(& wcn->hal_ind_mutex, 0U); __mptr___0 = (struct list_head const *)wcn->hal_ind_queue.next; hal_ind_msg = (struct wcn36xx_hal_ind_msg *)__mptr___0; msg_header = (struct wcn36xx_hal_msg_header *)hal_ind_msg->msg; switch ((int )msg_header->msg_type) { case 130: wcn36xx_smd_tx_compl_ind(wcn, (void *)hal_ind_msg->msg, hal_ind_msg->msg_len); goto ldv_48993; case 50: wcn36xx_smd_missed_beacon_ind(wcn, (void *)hal_ind_msg->msg, hal_ind_msg->msg_len); goto ldv_48993; case 67: wcn36xx_smd_delete_sta_context_ind(wcn, (void *)hal_ind_msg->msg, hal_ind_msg->msg_len); goto ldv_48993; default: printk("\vwcn36xx: OLD_ERROR SMD_EVENT (%d) not supported\n", (int )msg_header->msg_type); } ldv_48993: list_del(wcn->hal_ind_queue.next); kfree((void const *)hal_ind_msg->msg); kfree((void const *)hal_ind_msg); mutex_unlock(& wcn->hal_ind_mutex); return; } } int wcn36xx_smd_open(struct wcn36xx *wcn ) { int ret ; struct lock_class_key __key ; char const *__lock_name ; struct workqueue_struct *tmp ; struct lock_class_key __key___0 ; atomic_long_t __constr_expr_0 ; struct lock_class_key __key___1 ; { ret = 0; __lock_name = "\"%s\"(\"wcn36xx_smd_ind\")"; tmp = __alloc_workqueue_key("%s", 14U, 1, & __key, __lock_name, (char *)"wcn36xx_smd_ind"); wcn->hal_ind_wq = tmp; if ((unsigned long )wcn->hal_ind_wq == (unsigned long )((struct workqueue_struct *)0)) { printk("\vwcn36xx: OLD_ERROR failed to allocate wq\n"); ret = -12; goto out; } else { } __init_work(& wcn->hal_ind_work, 0); __constr_expr_0.counter = 137438953408L; wcn->hal_ind_work.data = __constr_expr_0; lockdep_init_map(& wcn->hal_ind_work.lockdep_map, "(&wcn->hal_ind_work)", & __key___0, 0); INIT_LIST_HEAD(& wcn->hal_ind_work.entry); wcn->hal_ind_work.func = & wcn36xx_ind_smd_work; INIT_LIST_HEAD(& wcn->hal_ind_queue); __mutex_init(& wcn->hal_ind_mutex, "&wcn->hal_ind_mutex", & __key___1); ret = (*((wcn->ctrl_ops)->open))((void *)wcn, (void *)(& wcn36xx_smd_rsp_process)); if (ret != 0) { printk("\vwcn36xx: OLD_ERROR failed to open control channel\n"); goto free_wq; } else { } return (ret); free_wq: destroy_workqueue(wcn->hal_ind_wq); out: ; return (ret); } } void wcn36xx_smd_close(struct wcn36xx *wcn ) { { (*((wcn->ctrl_ops)->close))(); destroy_workqueue(wcn->hal_ind_wq); mutex_destroy(& wcn->hal_ind_mutex); return; } } void ldv_consume_skb_54(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_55(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_56(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_57(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_60(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_66(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_67(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_68(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_71(struct sk_buff *ldv_func_arg1 ) ; void ldv_consume_skb_65(struct sk_buff *ldv_func_arg1 ) ; int wcn36xx_enable_keep_alive_null_packet(struct wcn36xx *wcn , struct ieee80211_vif *vif ) ; int wcn36xx_pmc_enter_bmps_state(struct wcn36xx *wcn , struct ieee80211_vif *vif ) { int ret ; struct wcn36xx_vif *vif_priv ; { ret = 0; vif_priv = (struct wcn36xx_vif *)(& vif->drv_priv); ret = wcn36xx_smd_enter_bmps(wcn, vif); if (ret == 0) { if ((wcn36xx_dbg_mask & 8192U) != 0U) { printk("\017wcn36xx: Entered BMPS\n"); } else { } vif_priv->pw_state = 1; } else { printk("\vwcn36xx: OLD_ERROR Can not enter BMPS!\n"); } return (ret); } } int wcn36xx_pmc_exit_bmps_state(struct wcn36xx *wcn , struct ieee80211_vif *vif ) { struct wcn36xx_vif *vif_priv ; { vif_priv = (struct wcn36xx_vif *)(& vif->drv_priv); if ((unsigned int )vif_priv->pw_state != 1U) { printk("\vwcn36xx: OLD_ERROR Not in BMPS mode, no need to exit from BMPS mode!\n"); return (-22); } else { } wcn36xx_smd_exit_bmps(wcn, vif); vif_priv->pw_state = 0; return (0); } } int wcn36xx_enable_keep_alive_null_packet(struct wcn36xx *wcn , struct ieee80211_vif *vif ) { int tmp ; { if ((wcn36xx_dbg_mask & 8192U) != 0U) { printk("\017wcn36xx: %s\n", "wcn36xx_enable_keep_alive_null_packet"); } else { } tmp = wcn36xx_smd_keep_alive_req(wcn, vif, 1); return (tmp); } } void ldv_consume_skb_65(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_66(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_67(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_68(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_71(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } extern void might_fault(void) ; extern int kstrtouint(char const * , unsigned int , unsigned int * ) ; __inline static int kstrtou32(char const *s , unsigned int base , u32 *res ) { int tmp ; { tmp = kstrtouint(s, base, res); return (tmp); } } bool ldv_is_err(void const *ptr ) ; extern char *strsep(char ** , char const * ) ; __inline static bool IS_ERR(void const *ptr ) ; extern unsigned long _copy_from_user(void * , void const * , unsigned int ) ; extern void __copy_from_user_overflow(void) ; __inline static unsigned long copy_from_user(void *to , void const *from , unsigned long n ) { int sz ; unsigned long tmp ; long tmp___0 ; long tmp___1 ; { tmp = __builtin_object_size((void const *)to, 0); sz = (int )tmp; might_fault(); tmp___0 = ldv__builtin_expect(sz < 0, 1L); if (tmp___0 != 0L) { n = _copy_from_user(to, from, (unsigned int )n); } else { tmp___1 = ldv__builtin_expect((unsigned long )sz >= n, 1L); if (tmp___1 != 0L) { n = _copy_from_user(to, from, (unsigned int )n); } else { __copy_from_user_overflow(); } } return (n); } } void ldv_kfree_skb_77(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_78(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_79(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_82(struct sk_buff *ldv_func_arg1 ) ; void ldv_consume_skb_76(struct sk_buff *ldv_func_arg1 ) ; extern size_t __VERIFIER_nondet_size_t(void) ; extern int simple_open(struct inode * , struct file * ) ; extern ssize_t simple_read_from_buffer(void * , size_t , loff_t * , void const * , size_t ) ; extern struct dentry *debugfs_create_file(char const * , umode_t , struct dentry * , void * , struct file_operations const * ) ; extern struct dentry *debugfs_create_dir(char const * , struct dentry * ) ; extern void debugfs_remove_recursive(struct dentry * ) ; static ssize_t read_file_bool_bmps(struct file *file , char *user_buf , size_t count , loff_t *ppos ) { struct wcn36xx *wcn ; struct wcn36xx_vif *vif_priv ; struct ieee80211_vif *vif ; char buf[3U] ; struct list_head const *__mptr ; u8 const (*__mptr___0)[0U] ; struct list_head const *__mptr___1 ; ssize_t tmp ; { wcn = (struct wcn36xx *)file->private_data; vif_priv = (struct wcn36xx_vif *)0; vif = (struct ieee80211_vif *)0; __mptr = (struct list_head const *)wcn->vif_list.next; vif_priv = (struct wcn36xx_vif *)__mptr; goto ldv_48252; ldv_48251: __mptr___0 = (u8 const *)vif_priv; vif = (struct ieee80211_vif *)__mptr___0 + 0xfffffffffffffee8UL; if ((unsigned int )vif->type == 2U) { if ((unsigned int )vif_priv->pw_state == 1U) { buf[0] = 49; } else { buf[0] = 48; } goto ldv_48250; } else { } __mptr___1 = (struct list_head const *)vif_priv->list.next; vif_priv = (struct wcn36xx_vif *)__mptr___1; ldv_48252: ; if ((unsigned long )(& vif_priv->list) != (unsigned long )(& wcn->vif_list)) { goto ldv_48251; } else { } ldv_48250: buf[1] = 10; buf[2] = 0; tmp = simple_read_from_buffer((void *)user_buf, count, ppos, (void const *)(& buf), 2UL); return (tmp); } } static ssize_t write_file_bool_bmps(struct file *file , char const *user_buf , size_t count , loff_t *ppos ) { struct wcn36xx *wcn ; struct wcn36xx_vif *vif_priv ; struct ieee80211_vif *vif ; char buf[32U] ; int buf_size ; size_t _min1 ; unsigned long _min2 ; unsigned long tmp ; struct list_head const *__mptr ; u8 const (*__mptr___0)[0U] ; struct list_head const *__mptr___1 ; struct list_head const *__mptr___2 ; u8 const (*__mptr___3)[0U] ; struct list_head const *__mptr___4 ; { wcn = (struct wcn36xx *)file->private_data; vif_priv = (struct wcn36xx_vif *)0; vif = (struct ieee80211_vif *)0; _min1 = count; _min2 = 31UL; buf_size = (int )(_min1 < _min2 ? _min1 : _min2); tmp = copy_from_user((void *)(& buf), (void const *)user_buf, (unsigned long )buf_size); if (tmp != 0UL) { return (-14L); } else { } switch ((int )buf[0]) { case 121: ; case 89: ; case 49: __mptr = (struct list_head const *)wcn->vif_list.next; vif_priv = (struct wcn36xx_vif *)__mptr; goto ldv_48277; ldv_48276: __mptr___0 = (u8 const *)vif_priv; vif = (struct ieee80211_vif *)__mptr___0 + 0xfffffffffffffee8UL; if ((unsigned int )vif->type == 2U) { wcn36xx_enable_keep_alive_null_packet(wcn, vif); wcn36xx_pmc_enter_bmps_state(wcn, vif); } else { } __mptr___1 = (struct list_head const *)vif_priv->list.next; vif_priv = (struct wcn36xx_vif *)__mptr___1; ldv_48277: ; if ((unsigned long )(& vif_priv->list) != (unsigned long )(& wcn->vif_list)) { goto ldv_48276; } else { } goto ldv_48279; case 110: ; case 78: ; case 48: __mptr___2 = (struct list_head const *)wcn->vif_list.next; vif_priv = (struct wcn36xx_vif *)__mptr___2; goto ldv_48290; ldv_48289: __mptr___3 = (u8 const *)vif_priv; vif = (struct ieee80211_vif *)__mptr___3 + 0xfffffffffffffee8UL; if ((unsigned int )vif->type == 2U) { wcn36xx_pmc_exit_bmps_state(wcn, vif); } else { } __mptr___4 = (struct list_head const *)vif_priv->list.next; vif_priv = (struct wcn36xx_vif *)__mptr___4; ldv_48290: ; if ((unsigned long )(& vif_priv->list) != (unsigned long )(& wcn->vif_list)) { goto ldv_48289; } else { } goto ldv_48279; } ldv_48279: ; return ((ssize_t )count); } } static struct file_operations const fops_wcn36xx_bmps = {0, 0, & read_file_bool_bmps, & write_file_bool_bmps, 0, 0, 0, 0, 0, 0, 0, 0, 0, & simple_open, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static ssize_t write_file_dump(struct file *file , char const *user_buf , size_t count , loff_t *ppos ) { struct wcn36xx *wcn ; char buf[255U] ; char *tmp ; int buf_size ; u32 arg[5U] ; int i ; size_t _min1 ; unsigned long _min2 ; unsigned long tmp___0 ; char *begin ; int tmp___1 ; { wcn = (struct wcn36xx *)file->private_data; memset((void *)(& buf), 0, 255UL); memset((void *)(& arg), 0, 20UL); _min1 = count; _min2 = 254UL; buf_size = (int )(_min1 < _min2 ? _min1 : _min2); tmp___0 = copy_from_user((void *)(& buf), (void const *)user_buf, (unsigned long )buf_size); if (tmp___0 != 0UL) { return (-14L); } else { } tmp = (char *)(& buf); i = 0; goto ldv_48311; ldv_48310: begin = strsep(& tmp, " "); if ((unsigned long )begin == (unsigned long )((char *)0)) { goto ldv_48309; } else { } tmp___1 = kstrtou32((char const *)begin, 0U, (u32 *)(& arg) + (unsigned long )i); if (tmp___1 != 0) { goto ldv_48309; } else { } i = i + 1; ldv_48311: ; if (i <= 4) { goto ldv_48310; } else { } ldv_48309: printk("\016wcn36xx: DUMP args is %d %d %d %d %d\n", arg[0], arg[1], arg[2], arg[3], arg[4]); wcn36xx_smd_dump_cmd_req(wcn, arg[0], arg[1], arg[2], arg[3], arg[4]); return ((ssize_t )count); } } static struct file_operations const fops_wcn36xx_dump = {0, 0, 0, & write_file_dump, 0, 0, 0, 0, 0, 0, 0, 0, 0, & simple_open, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; void wcn36xx_debugfs_init(struct wcn36xx *wcn ) { struct wcn36xx_dfs_entry *dfs ; bool tmp ; struct dentry *d ; bool tmp___0 ; struct dentry *d___0 ; bool tmp___1 ; { dfs = & wcn->dfs; dfs->rootdir = debugfs_create_dir("wcn36xx", ((wcn->hw)->wiphy)->debugfsdir); tmp = IS_ERR((void const *)dfs->rootdir); if ((int )tmp) { printk("\fwcn36xx: WARNING Create the debugfs failed\n"); dfs->rootdir = (struct dentry *)0; } else { } d = debugfs_create_file("bmps_switcher", 384, dfs->rootdir, (void *)wcn, & fops_wcn36xx_bmps); dfs->file_bmps_switcher.dentry = d; tmp___0 = IS_ERR((void const *)d); if ((int )tmp___0) { printk("\fwcn36xx: WARNING Create the debugfs entry failed"); dfs->file_bmps_switcher.dentry = (struct dentry *)0; } else { } d___0 = debugfs_create_file("dump", 128, dfs->rootdir, (void *)wcn, & fops_wcn36xx_dump); dfs->file_dump.dentry = d___0; tmp___1 = IS_ERR((void const *)d___0); if ((int )tmp___1) { printk("\fwcn36xx: WARNING Create the debugfs entry failed"); dfs->file_dump.dentry = (struct dentry *)0; } else { } return; } } void wcn36xx_debugfs_exit(struct wcn36xx *wcn ) { struct wcn36xx_dfs_entry *dfs ; { dfs = & wcn->dfs; debugfs_remove_recursive(dfs->rootdir); return; } } extern int ldv_release_4(void) ; int ldv_retval_5 ; extern int ldv_release_3(void) ; int ldv_retval_3 ; void ldv_file_operations_3(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_zalloc(1032UL); fops_wcn36xx_dump_group1 = (struct inode *)tmp; tmp___0 = ldv_zalloc(512UL); fops_wcn36xx_dump_group2 = (struct file *)tmp___0; return; } } void ldv_file_operations_4(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_zalloc(1032UL); fops_wcn36xx_bmps_group1 = (struct inode *)tmp; tmp___0 = ldv_zalloc(512UL); fops_wcn36xx_bmps_group2 = (struct file *)tmp___0; return; } } void ldv_main_exported_4(void) { loff_t *ldvarg16 ; void *tmp ; loff_t *ldvarg19 ; void *tmp___0 ; size_t ldvarg17 ; size_t tmp___1 ; size_t ldvarg20 ; size_t tmp___2 ; char *ldvarg18 ; void *tmp___3 ; char *ldvarg21 ; void *tmp___4 ; int tmp___5 ; { tmp = ldv_zalloc(8UL); ldvarg16 = (loff_t *)tmp; tmp___0 = ldv_zalloc(8UL); ldvarg19 = (loff_t *)tmp___0; tmp___1 = __VERIFIER_nondet_size_t(); ldvarg17 = tmp___1; tmp___2 = __VERIFIER_nondet_size_t(); ldvarg20 = tmp___2; tmp___3 = ldv_zalloc(1UL); ldvarg18 = (char *)tmp___3; tmp___4 = ldv_zalloc(1UL); ldvarg21 = (char *)tmp___4; tmp___5 = __VERIFIER_nondet_int(); switch (tmp___5) { case 0: ; if (ldv_state_variable_4 == 1) { ldv_retval_3 = simple_open(fops_wcn36xx_bmps_group1, fops_wcn36xx_bmps_group2); if (ldv_retval_3 == 0) { ldv_state_variable_4 = 2; ref_cnt = ref_cnt + 1; } else { } } else { } goto ldv_48345; case 1: ; if (ldv_state_variable_4 == 1) { write_file_bool_bmps(fops_wcn36xx_bmps_group2, (char const *)ldvarg21, ldvarg20, ldvarg19); ldv_state_variable_4 = 1; } else { } if (ldv_state_variable_4 == 2) { write_file_bool_bmps(fops_wcn36xx_bmps_group2, (char const *)ldvarg21, ldvarg20, ldvarg19); ldv_state_variable_4 = 2; } else { } goto ldv_48345; case 2: ; if (ldv_state_variable_4 == 2) { read_file_bool_bmps(fops_wcn36xx_bmps_group2, ldvarg18, ldvarg17, ldvarg16); ldv_state_variable_4 = 2; } else { } goto ldv_48345; case 3: ; if (ldv_state_variable_4 == 2) { ldv_release_4(); ldv_state_variable_4 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_48345; default: ldv_stop(); } ldv_48345: ; return; } } void ldv_main_exported_3(void) { loff_t *ldvarg22 ; void *tmp ; size_t ldvarg23 ; size_t tmp___0 ; char *ldvarg24 ; void *tmp___1 ; int tmp___2 ; { tmp = ldv_zalloc(8UL); ldvarg22 = (loff_t *)tmp; tmp___0 = __VERIFIER_nondet_size_t(); ldvarg23 = tmp___0; tmp___1 = ldv_zalloc(1UL); ldvarg24 = (char *)tmp___1; tmp___2 = __VERIFIER_nondet_int(); switch (tmp___2) { case 0: ; if (ldv_state_variable_3 == 1) { ldv_retval_5 = simple_open(fops_wcn36xx_dump_group1, fops_wcn36xx_dump_group2); if (ldv_retval_5 == 0) { ldv_state_variable_3 = 2; ref_cnt = ref_cnt + 1; } else { } } else { } goto ldv_48357; case 1: ; if (ldv_state_variable_3 == 1) { write_file_dump(fops_wcn36xx_dump_group2, (char const *)ldvarg24, ldvarg23, ldvarg22); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { write_file_dump(fops_wcn36xx_dump_group2, (char const *)ldvarg24, ldvarg23, ldvarg22); ldv_state_variable_3 = 2; } else { } goto ldv_48357; case 2: ; if (ldv_state_variable_3 == 2) { ldv_release_3(); ldv_state_variable_3 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_48357; default: ldv_stop(); } ldv_48357: ; return; } } __inline static bool IS_ERR(void const *ptr ) { bool tmp ; { tmp = ldv_is_err(ptr); return (tmp); } } void ldv_consume_skb_76(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_77(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_78(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_79(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_82(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } __inline static void ldv_error(void); Element set_impl[15] ; int last_index = 0; __inline static void ldv_set_init(Set set ) __attribute__((__no_instrument_function__)) ; __inline static void ldv_set_init(Set set ) { { set = set_impl; last_index = 0; return; } } __inline static void ldv_set_add(Set set , Element e ) __attribute__((__no_instrument_function__)) ; __inline static void ldv_set_add(Set set , Element e ) { int i ; { i = 0; while (1) { if (i < last_index) { } else { break; } if ((unsigned long )set_impl[i] == (unsigned long )e) { return; } else { } i = i + 1; } if (last_index < 15) { set_impl[last_index] = e; last_index = last_index + 1; } else { } return; } } __inline static void ldv_set_remove(Set set , Element e ) __attribute__((__no_instrument_function__)) ; __inline static void ldv_set_remove(Set set , Element e ) { int i ; int deleted_index ; { deleted_index = -1; i = 0; while (1) { if (i < last_index) { } else { break; } if ((unsigned long )set_impl[i] == (unsigned long )e) { deleted_index = i; break; } else { } i = i + 1; } if (deleted_index != -1) { i = deleted_index + 1; while (1) { if (i < last_index) { } else { break; } set_impl[i - 1] = set_impl[i]; i = i + 1; } last_index = last_index - 1; } else { } return; } } __inline static int ldv_set_contains(Set set , Element e ) __attribute__((__no_instrument_function__)) ; __inline static int ldv_set_contains(Set set , Element e ) { int i ; { i = 0; while (1) { if (i < last_index) { } else { break; } if ((unsigned long )set_impl[i] == (unsigned long )e) { return (1); } else { } i = i + 1; } return (0); } } __inline static int ldv_set_is_empty(Set set ) __attribute__((__no_instrument_function__)) ; __inline static int ldv_set_is_empty(Set set ) { { return (last_index == 0); } } bool ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 2012UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(2012L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(2012UL - (unsigned long )ptr)); } } bool ldv_is_err_or_null(void const *ptr ) { bool tmp___7 ; int tmp___8 ; { if (! ptr) { tmp___8 = 1; } else { tmp___7 = ldv_is_err((unsigned long )ptr); if (tmp___7) { tmp___8 = 1; } else { tmp___8 = 0; } } return (tmp___8); } } Set LDV_SKBS ; struct sk_buff___0 *ldv_skb_alloc(void) { void *skb ; void *tmp___7 ; { tmp___7 = ldv_zalloc(sizeof(struct sk_buff___0 )); skb = (struct sk_buff___0 *)tmp___7; if (! skb) { return ((void *)0); } else { ldv_set_add(LDV_SKBS, skb); return (skb); } } } void ldv_initialize(void) { { ldv_set_init(LDV_SKBS); return; } } void ldv_skb_free(struct sk_buff___0 *skb ) { { ldv_set_remove(LDV_SKBS, skb); return; } } int ldv_skb_free_int(struct sk_buff___0 *skb ) { { ldv_set_remove(LDV_SKBS, skb); return (0); } } struct sk_buff___0 *ldv_netdev_alloc_skb(void) ; struct sk_buff___0 *ldv_dev_alloc_skb(void) { void *skb ; int tmp___7 ; { tmp___7 = (int )ldv_netdev_alloc_skb(); skb = tmp___7; return (skb); } } struct sk_buff___0 *ldv_netdev_alloc_skb(void) { struct sk_buff___0 *tmp___7 ; { tmp___7 = ldv_skb_alloc(); return (tmp___7); } } int ldv_skb_current(struct sk_buff___0 *skb ) { int tmp___7 ; { tmp___7 = ldv_set_contains(LDV_SKBS, skb); if (tmp___7) { return (1); } else { return (0); } } } void ldv_check_final_state(void) { int tmp___7 ; { tmp___7 = ldv_set_is_empty(LDV_SKBS); if (tmp___7) { } else { ldv_error(); } return; } }