extern void __VERIFIER_error() __attribute__ ((__noreturn__)); /* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ struct module; typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __le16; typedef __u16 __be16; typedef __u32 __le32; typedef __u32 __be32; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s16 int16_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct_ldv_1016_9 { unsigned int a ; unsigned int b ; }; struct __anonstruct_ldv_1031_10 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion_ldv_1032_8 { struct __anonstruct_ldv_1016_9 ldv_1016 ; struct __anonstruct_ldv_1031_10 ldv_1031 ; }; struct desc_struct { union __anonunion_ldv_1032_8 ldv_1032 ; }; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_11 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_11 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_12 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_12 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct task_struct; struct cpumask; struct arch_spinlock; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion_ldv_1452_15 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion_ldv_1452_15 ldv_1452 ; }; typedef struct arch_spinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; struct device; struct net_device; struct file_operations; struct completion; struct pid; struct timespec; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion_ldv_2969_20 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion_ldv_2969_20 ldv_2969 ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct_ldv_5280_25 { u64 rip ; u64 rdp ; }; struct __anonstruct_ldv_5286_26 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion_ldv_5287_24 { struct __anonstruct_ldv_5280_25 ldv_5280 ; struct __anonstruct_ldv_5286_26 ldv_5286 ; }; union __anonunion_ldv_5296_27 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion_ldv_5287_24 ldv_5287 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion_ldv_5296_27 ldv_5296 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndregs_struct { u64 bndregs[8U] ; }; struct bndcsr_struct { u64 cfg_reg_u ; u64 status_reg ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndregs_struct bndregs ; struct bndcsr_struct bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; typedef int pao_T__; typedef int pao_T_____0; struct lockdep_map; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct_ldv_6337_31 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion_ldv_6338_30 { struct raw_spinlock rlock ; struct __anonstruct_ldv_6337_31 ldv_6337 ; }; struct spinlock { union __anonunion_ldv_6338_30 ldv_6338 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_32 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_32 rwlock_t; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct optimistic_spin_queue; struct rw_semaphore; struct rw_semaphore { long count ; raw_spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; struct optimistic_spin_queue *osq ; struct lockdep_map dep_map ; }; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct vm_area_struct; struct inode; struct notifier_block; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_33 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_33 seqlock_t; struct llist_node; struct llist_node { struct llist_node *next ; }; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; }; struct __anonstruct_nodemask_t_98 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_98 nodemask_t; struct __anonstruct_mm_context_t_99 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_99 mm_context_t; struct bio_vec; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct_ldv_12049_131 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct_ldv_12053_132 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion_ldv_12054_130 { struct __anonstruct_ldv_12049_131 ldv_12049 ; struct __anonstruct_ldv_12053_132 ldv_12053 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion_ldv_12054_130 ldv_12054 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; union __anonunion_ldv_12163_133 { struct address_space *mapping ; void *s_mem ; }; union __anonunion_ldv_12169_135 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct_ldv_12179_139 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion_ldv_12181_138 { atomic_t _mapcount ; struct __anonstruct_ldv_12179_139 ldv_12179 ; int units ; }; struct __anonstruct_ldv_12183_137 { union __anonunion_ldv_12181_138 ldv_12181 ; atomic_t _count ; }; union __anonunion_ldv_12185_136 { unsigned long counters ; struct __anonstruct_ldv_12183_137 ldv_12183 ; unsigned int active ; }; struct __anonstruct_ldv_12186_134 { union __anonunion_ldv_12169_135 ldv_12169 ; union __anonunion_ldv_12185_136 ldv_12185 ; }; struct __anonstruct_ldv_12193_141 { struct page *next ; int pages ; int pobjects ; }; struct slab; union __anonunion_ldv_12198_140 { struct list_head lru ; struct __anonstruct_ldv_12193_141 ldv_12193 ; struct slab *slab_page ; struct callback_head callback_head ; pgtable_t pmd_huge_pte ; }; union __anonunion_ldv_12204_142 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion_ldv_12163_133 ldv_12163 ; struct __anonstruct_ldv_12186_134 ldv_12186 ; union __anonunion_ldv_12198_140 ldv_12198 ; union __anonunion_ldv_12204_142 ldv_12204 ; unsigned long debug_flags ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_linear_144 { struct rb_node rb ; unsigned long rb_subtree_last ; }; union __anonunion_shared_143 { struct __anonstruct_linear_144 linear ; struct list_head nonlinear ; }; struct anon_vma; struct vm_operations_struct; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; union __anonunion_shared_143 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; union __anonunion_ldv_12534_145 { struct iovec const *iov ; struct bio_vec const *bvec ; }; struct iov_iter { int type ; size_t iov_offset ; size_t count ; union __anonunion_ldv_12534_145 ldv_12534 ; unsigned long nr_segs ; }; typedef unsigned short __kernel_sa_family_t; struct cred; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct msghdr { void *msg_name ; int msg_namelen ; struct iovec *msg_iov ; __kernel_size_t msg_iovlen ; void *msg_control ; __kernel_size_t msg_controllen ; unsigned int msg_flags ; }; enum ldv_13278 { SS_FREE = 0, SS_UNCONNECTED = 1, SS_CONNECTING = 2, SS_CONNECTED = 3, SS_DISCONNECTING = 4 } ; typedef enum ldv_13278 socket_state; struct poll_table_struct; struct pipe_inode_info; struct net; struct fasync_struct; struct socket_wq { wait_queue_head_t wait ; struct fasync_struct *fasync_list ; struct callback_head rcu ; }; struct sock; struct proto_ops; struct socket { socket_state state ; short type ; unsigned long flags ; struct socket_wq *wq ; struct file *file ; struct sock *sk ; struct proto_ops const *ops ; }; struct kiocb; struct proto_ops { int family ; struct module *owner ; int (*release)(struct socket * ) ; int (*bind)(struct socket * , struct sockaddr * , int ) ; int (*connect)(struct socket * , struct sockaddr * , int , int ) ; int (*socketpair)(struct socket * , struct socket * ) ; int (*accept)(struct socket * , struct socket * , int ) ; int (*getname)(struct socket * , struct sockaddr * , int * , int ) ; unsigned int (*poll)(struct file * , struct socket * , struct poll_table_struct * ) ; int (*ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*listen)(struct socket * , int ) ; int (*shutdown)(struct socket * , int ) ; int (*setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct socket * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct socket * , int , int , char * , int * ) ; int (*sendmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t , int ) ; int (*mmap)(struct file * , struct socket * , struct vm_area_struct * ) ; ssize_t (*sendpage)(struct socket * , struct page * , int , size_t , int ) ; ssize_t (*splice_read)(struct socket * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*set_peek_off)(struct sock * , int ) ; }; struct ctl_table; struct mem_cgroup; union __anonunion_ldv_13917_146 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion_ldv_13917_146 ldv_13917 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct dentry; struct iattr; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; }; union __anonunion_ldv_14061_147 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion_ldv_14061_147 ldv_14061 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct user_namespace; struct __anonstruct_kuid_t_148 { uid_t val ; }; typedef struct __anonstruct_kuid_t_148 kuid_t; struct __anonstruct_kgid_t_149 { gid_t val ; }; typedef struct __anonstruct_kgid_t_149 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; struct page *partial ; unsigned int stat[26U] ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct memcg_cache_params; struct kmem_cache_node; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int object_size ; int offset ; int cpu_partial ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; struct memcg_cache_params *memcg_params ; int max_attr_size ; struct kset *memcg_kset ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; struct __anonstruct_ldv_14953_151 { struct callback_head callback_head ; struct kmem_cache *memcg_caches[0U] ; }; struct __anonstruct_ldv_14959_152 { struct mem_cgroup *memcg ; struct list_head list ; struct kmem_cache *root_cache ; atomic_t nr_pages ; }; union __anonunion_ldv_14960_150 { struct __anonstruct_ldv_14953_151 ldv_14953 ; struct __anonstruct_ldv_14959_152 ldv_14959 ; }; struct memcg_cache_params { bool is_root_cache ; union __anonunion_ldv_14960_150 ldv_14960 ; }; struct sk_buff; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct path; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct device_node; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; nodemask_t nodes_to_scan ; int nid ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct user_struct; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; int (*migrate)(struct vm_area_struct * , nodemask_t const * , nodemask_t const * , unsigned long ) ; int (*remap_pages)(struct vm_area_struct * , unsigned long , unsigned long , unsigned long ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; typedef s32 dma_cookie_t; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; typedef u64 netdev_features_t; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; typedef unsigned long cputime_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct __anonstruct_sigset_t_155 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_155 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_157 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_158 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_159 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_160 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_161 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_162 { long _band ; int _fd ; }; struct __anonstruct__sigsys_163 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_156 { int _pad[28U] ; struct __anonstruct__kill_157 _kill ; struct __anonstruct__timer_158 _timer ; struct __anonstruct__rt_159 _rt ; struct __anonstruct__sigchld_160 _sigchld ; struct __anonstruct__sigfault_161 _sigfault ; struct __anonstruct__sigpoll_162 _sigpoll ; struct __anonstruct__sigsys_163 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_156 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct_ldv_22930_167 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion_ldv_22932_166 { struct __anonstruct_ldv_22930_167 ldv_22930 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion_ldv_22932_166 ldv_22932 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion_ldv_23076_168 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion_ldv_23084_169 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct_ldv_23097_171 { struct key_type *type ; char *description ; }; union __anonunion_ldv_23098_170 { struct keyring_index_key index_key ; struct __anonstruct_ldv_23097_171 ldv_23097 ; }; union __anonunion_type_data_172 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_174 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion_ldv_23113_173 { union __anonunion_payload_174 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion_ldv_23076_168 ldv_23076 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion_ldv_23084_169 ldv_23084 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion_ldv_23098_170 ldv_23098 ; union __anonunion_type_data_172 type_data ; union __anonunion_ldv_23113_173 ldv_23113 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct io_context; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned char brk_randomized : 1 ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char no_new_privs : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct task_struct *pi_top_task ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults_memory ; unsigned long total_numa_faults ; unsigned long *numa_faults_buffer_memory ; unsigned long *numa_faults_cpu ; unsigned long *numa_faults_buffer_cpu ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; unsigned int memcg_kmem_skip_account ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; }; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; typedef unsigned int sk_buff_data_t; struct __anonstruct_ldv_24862_179 { u32 stamp_us ; u32 stamp_jiffies ; }; union __anonunion_ldv_24863_178 { u64 v64 ; struct __anonstruct_ldv_24862_179 ldv_24862 ; }; struct skb_mstamp { union __anonunion_ldv_24863_178 ldv_24863 ; }; union __anonunion_ldv_24882_180 { ktime_t tstamp ; struct skb_mstamp skb_mstamp ; }; struct sec_path; struct __anonstruct_ldv_24898_182 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion_ldv_24899_181 { __wsum csum ; struct __anonstruct_ldv_24898_182 ldv_24898 ; }; union __anonunion_ldv_24938_183 { unsigned int napi_id ; dma_cookie_t dma_cookie ; }; union __anonunion_ldv_24944_184 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; struct sk_buff { struct sk_buff *next ; struct sk_buff *prev ; union __anonunion_ldv_24882_180 ldv_24882 ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; struct sec_path *sp ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; union __anonunion_ldv_24899_181 ldv_24899 ; __u32 priority ; unsigned char ignore_df : 1 ; unsigned char cloned : 1 ; unsigned char ip_summed : 2 ; unsigned char nohdr : 1 ; unsigned char nfctinfo : 3 ; unsigned char pkt_type : 3 ; unsigned char fclone : 2 ; unsigned char ipvs_property : 1 ; unsigned char peeked : 1 ; unsigned char nf_trace : 1 ; __be16 protocol ; void (*destructor)(struct sk_buff * ) ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; int skb_iif ; __u32 hash ; __be16 vlan_proto ; __u16 vlan_tci ; __u16 tc_index ; __u16 tc_verd ; __u16 queue_mapping ; unsigned char ndisc_nodetype : 2 ; unsigned char pfmemalloc : 1 ; unsigned char ooo_okay : 1 ; unsigned char l4_hash : 1 ; unsigned char wifi_acked_valid : 1 ; unsigned char wifi_acked : 1 ; unsigned char no_fcs : 1 ; unsigned char head_frag : 1 ; unsigned char encapsulation : 1 ; unsigned char encap_hdr_csum : 1 ; unsigned char csum_valid : 1 ; unsigned char csum_complete_sw : 1 ; union __anonunion_ldv_24938_183 ldv_24938 ; __u32 secmark ; union __anonunion_ldv_24944_184 ldv_24944 ; __be16 inner_protocol ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct ieee80211_hw; struct ieee80211_sta; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct pm_qos_flags_request { struct list_head node ; s32 flags ; }; enum dev_pm_qos_req_type { DEV_PM_QOS_RESUME_LATENCY = 1, DEV_PM_QOS_LATENCY_TOLERANCE = 2, DEV_PM_QOS_FLAGS = 3 } ; union __anonunion_data_185 { struct plist_node pnode ; struct pm_qos_flags_request flr ; }; struct dev_pm_qos_request { enum dev_pm_qos_req_type type ; union __anonunion_data_185 data ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; s32 no_constraint_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct pm_qos_flags { struct list_head list ; s32 effective_flags ; }; struct dev_pm_qos { struct pm_qos_constraints resume_latency ; struct pm_qos_constraints latency_tolerance ; struct pm_qos_flags flags ; struct dev_pm_qos_request *resume_latency_req ; struct dev_pm_qos_request *latency_tolerance_req ; struct dev_pm_qos_request *flags_req ; }; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; struct __anonstruct_sync_serial_settings_186 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_186 sync_serial_settings; struct __anonstruct_te1_settings_187 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_187 te1_settings; struct __anonstruct_raw_hdlc_proto_188 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_188 raw_hdlc_proto; struct __anonstruct_fr_proto_189 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_189 fr_proto; struct __anonstruct_fr_proto_pvc_190 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_190 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_191 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_191 fr_proto_pvc_info; struct __anonstruct_cisco_proto_192 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_192 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_193 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_193 ifs_ifsu ; }; union __anonunion_ifr_ifrn_194 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_195 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_194 ifr_ifrn ; union __anonunion_ifr_ifru_195 ifr_ifru ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct_ldv_26761_198 { spinlock_t lock ; unsigned int count ; }; union __anonunion_ldv_26762_197 { struct __anonstruct_ldv_26761_198 ldv_26761 ; }; struct lockref { union __anonunion_ldv_26762_197 ldv_26762 ; }; struct nameidata; struct vfsmount; struct __anonstruct_ldv_26785_200 { u32 hash ; u32 len ; }; union __anonunion_ldv_26787_199 { struct __anonstruct_ldv_26785_200 ldv_26785 ; u64 hash_len ; }; struct qstr { union __anonunion_ldv_26787_199 ldv_26787 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_201 { struct list_head d_child ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; union __anonunion_d_u_201 d_u ; struct list_head d_subdirs ; struct hlist_node d_alias ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_node { spinlock_t lock ; struct list_head list ; long nr_items ; }; struct list_lru { struct list_lru_node *node ; nodemask_t active_nodes ; }; struct __anonstruct_ldv_27148_203 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion_ldv_27150_202 { struct __anonstruct_ldv_27148_203 ldv_27148 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion_ldv_27150_202 ldv_27150 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct cgroup_subsys_state; struct bio_vec { struct page *bv_page ; unsigned int bv_len ; unsigned int bv_offset ; }; struct export_operations; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_204 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_204 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion_ldv_27675_205 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion_ldv_27675_205 ldv_27675 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_on_meta)(struct super_block * , int , int ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iov_iter * , loff_t ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct rb_root i_mmap ; struct list_head i_mmap_nonlinear ; struct mutex i_mmap_mutex ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion_ldv_28089_208 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion_ldv_28109_209 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock; struct cdev; union __anonunion_ldv_28126_210 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion_ldv_28089_208 ldv_28089 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion_ldv_28109_209 ldv_28109 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock *i_flock ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion_ldv_28126_210 ldv_28126 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_211 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_211 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , struct file_lock * , int ) ; void (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock ** , int ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct __anonstruct_afs_213 { struct list_head link ; int state ; }; union __anonunion_fl_u_212 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_213 afs ; }; struct file_lock { struct file_lock *fl_next ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_212 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context { int (*actor)(void * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; int (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , int ) ; long (*free_cached_objects)(struct super_block * , long , int ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char reserved1[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_key_size)(struct net_device * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh)(struct net_device * , u32 * , u8 * ) ; int (*set_rxfh)(struct net_device * , u32 const * , u8 const * ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[8U] ; }; struct linux_mib { unsigned long mibs[103U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct proc_dir_entry; struct netns_mib { struct tcp_mib *tcp_statistics ; struct ipstats_mib *ip_statistics ; struct linux_mib *net_statistics ; struct udp_mib *udp_statistics ; struct udp_mib *udplite_statistics ; struct icmp_mib *icmp_statistics ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6 ; struct udp_mib *udplite_stats_in6 ; struct ipstats_mib *ipv6_statistics ; struct icmpv6_mib *icmpv6_statistics ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { int nqueues ; struct list_head lru_list ; spinlock_t lru_lock ; struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct tcpm_hash_bucket; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; }; struct ping_group_range { seqlock_t lock ; kgid_t range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct inet_peer_base *peers ; struct tcpm_hash_bucket *tcp_metrics_hash ; unsigned int tcp_metrics_hash_log ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports ip_local_ports ; int sysctl_tcp_ecn ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; int sysctl_fwmark_reflect ; int sysctl_tcp_fwmark_accept ; struct ping_group_range ping_group_range ; atomic_t dev_addr_genid ; unsigned long *sysctl_local_reserved_ports ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int icmpv6_time ; int anycast_src_echo_reply ; int fwmark_reflect ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t rt_genid ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct netns_sysctl_lowpan { struct ctl_table_header *frags_hdr ; }; struct netns_ieee802154_lowpan { struct netns_sysctl_lowpan sysctl ; struct netns_frags frags ; u16 max_dsize ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; struct nlattr; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; bool ulog_warn_deprecated ; bool ebt_ulog_warn_deprecated ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ct_pcpu { spinlock_t lock ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; unsigned int sysctl_events_retry_timeout ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; seqcount_t generation ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct ct_pcpu *pcpu_lists ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; u8 gencursor ; u8 genctr ; }; struct tasklet_struct { struct tasklet_struct *next ; unsigned long state ; atomic_t count ; void (*func)(unsigned long ) ; unsigned long data ; }; struct flow_cache_percpu { struct hlist_head *hash_table ; int hash_count ; u32 hash_rnd ; int hash_rnd_recalc ; struct tasklet_struct flush_tasklet ; }; struct flow_cache { u32 hash_shift ; struct flow_cache_percpu *percpu ; struct notifier_block hotcpu_notifier ; int low_watermark ; int high_watermark ; struct timer_list rnd_timer ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[6U] ; struct xfrm_policy_hash policy_bydst[6U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; struct flow_cache flow_cache_global ; atomic_t flow_cache_genid ; struct list_head flow_cache_gc_list ; spinlock_t flow_cache_gc_lock ; struct work_struct flow_cache_gc_work ; struct work_struct flow_cache_flush_work ; struct mutex flow_flush_sem ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; unsigned int proc_inum ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_ieee802154_lowpan ieee802154_lowpan ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; struct dsa_chip_data { struct device *mii_bus ; int sw_addr ; char *port_names[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; __be16 tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct mii_bus; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct mii_bus *master_mii_bus ; u32 dsa_port_mask ; u32 phys_port_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; __be16 tag_protocol ; int priv_size ; char *(*probe)(struct mii_bus * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; u8 (*setapp)(struct net_device * , u8 , u16 , u8 ) ; u8 (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_t count ; unsigned int *pcpu_count ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_kill ; struct callback_head rcu ; }; struct cgroup_root; struct cgroup_subsys; struct cgroup; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; struct list_head sibling ; struct list_head children ; int id ; unsigned int flags ; u64 serial_nr ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct cgroup { struct cgroup_subsys_state self ; unsigned long flags ; int id ; int populated_cnt ; struct kernfs_node *kn ; struct kernfs_node *populated_kn ; unsigned int child_subsys_mask ; struct cgroup_subsys_state *subsys[12U] ; struct cgroup_root *root ; struct list_head cset_links ; struct list_head e_csets[12U] ; struct list_head release_list ; struct list_head pidlists ; struct mutex pidlist_mutex ; wait_queue_head_t offline_waitq ; }; struct cgroup_root { struct kernfs_root *kf_root ; unsigned int subsys_mask ; int hierarchy_id ; struct cgroup cgrp ; atomic_t nr_cgrps ; struct list_head root_list ; unsigned int flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head mg_tasks ; struct list_head cgrp_links ; struct cgroup *dfl_cgrp ; struct cgroup_subsys_state *subsys[12U] ; struct list_head mg_preload_node ; struct list_head mg_node ; struct cgroup *mg_src_cgrp ; struct css_set *mg_dst_cset ; struct list_head e_cset_node[12U] ; struct callback_head callback_head ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; struct list_head node ; struct kernfs_ops *kf_ops ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; struct lock_class_key lockdep_key ; }; struct cgroup_taskset; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; int id ; char const *name ; struct cgroup_root *root ; struct idr css_idr ; struct list_head cfts ; struct cftype *base_cftypes ; }; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 spoofchk ; __u32 linkstate ; __u32 min_tx_rate ; __u32 max_tx_rate ; }; struct netpoll_info; struct phy_device; struct wireless_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_port_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_rate)(struct net_device * , int , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_port_id * ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; int (*ndo_get_lock_subclass)(struct net_device * ) ; }; struct __anonstruct_adj_list_241 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_242 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct forwarding_accel_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion_ldv_39229_243 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct __anonstruct_adj_list_241 adj_list ; struct __anonstruct_all_adj_list_242 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; atomic_long_t tx_dropped ; atomic_t carrier_changes ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct forwarding_accel_ops const *fwd_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; unsigned short dev_port ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; bool uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; unsigned char broadcast[32U] ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; struct cpu_rmap *rx_cpu_rmap ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; unsigned char reg_state ; bool dismantle ; unsigned short rtnl_link_state ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion_ldv_39229_243 ldv_39229 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; int group ; struct pm_qos_request pm_qos_req ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; typedef unsigned long kernel_ulong_t; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct usb_device_descriptor { __u8 bLength ; __u8 bDescriptorType ; __le16 bcdUSB ; __u8 bDeviceClass ; __u8 bDeviceSubClass ; __u8 bDeviceProtocol ; __u8 bMaxPacketSize0 ; __le16 idVendor ; __le16 idProduct ; __le16 bcdDevice ; __u8 iManufacturer ; __u8 iProduct ; __u8 iSerialNumber ; __u8 bNumConfigurations ; }; struct usb_config_descriptor { __u8 bLength ; __u8 bDescriptorType ; __le16 wTotalLength ; __u8 bNumInterfaces ; __u8 bConfigurationValue ; __u8 iConfiguration ; __u8 bmAttributes ; __u8 bMaxPower ; }; struct usb_interface_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bInterfaceNumber ; __u8 bAlternateSetting ; __u8 bNumEndpoints ; __u8 bInterfaceClass ; __u8 bInterfaceSubClass ; __u8 bInterfaceProtocol ; __u8 iInterface ; }; struct usb_endpoint_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bEndpointAddress ; __u8 bmAttributes ; __le16 wMaxPacketSize ; __u8 bInterval ; __u8 bRefresh ; __u8 bSynchAddress ; }; struct usb_ss_ep_comp_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bMaxBurst ; __u8 bmAttributes ; __le16 wBytesPerInterval ; }; struct usb_interface_assoc_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bFirstInterface ; __u8 bInterfaceCount ; __u8 bFunctionClass ; __u8 bFunctionSubClass ; __u8 bFunctionProtocol ; __u8 iFunction ; }; struct usb_bos_descriptor { __u8 bLength ; __u8 bDescriptorType ; __le16 wTotalLength ; __u8 bNumDeviceCaps ; }; struct usb_ext_cap_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bDevCapabilityType ; __le32 bmAttributes ; }; struct usb_ss_cap_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bDevCapabilityType ; __u8 bmAttributes ; __le16 wSpeedSupported ; __u8 bFunctionalitySupport ; __u8 bU1devExitLat ; __le16 bU2DevExitLat ; }; struct usb_ss_container_id_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bDevCapabilityType ; __u8 bReserved ; __u8 ContainerID[16U] ; }; enum usb_device_speed { USB_SPEED_UNKNOWN = 0, USB_SPEED_LOW = 1, USB_SPEED_FULL = 2, USB_SPEED_HIGH = 3, USB_SPEED_WIRELESS = 4, USB_SPEED_SUPER = 5 } ; enum usb_device_state { USB_STATE_NOTATTACHED = 0, USB_STATE_ATTACHED = 1, USB_STATE_POWERED = 2, USB_STATE_RECONNECTING = 3, USB_STATE_UNAUTHENTICATED = 4, USB_STATE_DEFAULT = 5, USB_STATE_ADDRESS = 6, USB_STATE_CONFIGURED = 7, USB_STATE_SUSPENDED = 8 } ; struct usb_device; struct wusb_dev; struct ep_device; struct usb_host_endpoint { struct usb_endpoint_descriptor desc ; struct usb_ss_ep_comp_descriptor ss_ep_comp ; struct list_head urb_list ; void *hcpriv ; struct ep_device *ep_dev ; unsigned char *extra ; int extralen ; int enabled ; int streams ; }; struct usb_host_interface { struct usb_interface_descriptor desc ; int extralen ; unsigned char *extra ; struct usb_host_endpoint *endpoint ; char *string ; }; enum usb_interface_condition { USB_INTERFACE_UNBOUND = 0, USB_INTERFACE_BINDING = 1, USB_INTERFACE_BOUND = 2, USB_INTERFACE_UNBINDING = 3 } ; struct usb_interface { struct usb_host_interface *altsetting ; struct usb_host_interface *cur_altsetting ; unsigned int num_altsetting ; struct usb_interface_assoc_descriptor *intf_assoc ; int minor ; enum usb_interface_condition condition ; unsigned char sysfs_files_created : 1 ; unsigned char ep_devs_created : 1 ; unsigned char unregistering : 1 ; unsigned char needs_remote_wakeup : 1 ; unsigned char needs_altsetting0 : 1 ; unsigned char needs_binding : 1 ; unsigned char reset_running : 1 ; unsigned char resetting_device : 1 ; struct device dev ; struct device *usb_dev ; atomic_t pm_usage_cnt ; struct work_struct reset_ws ; }; struct usb_interface_cache { unsigned int num_altsetting ; struct kref ref ; struct usb_host_interface altsetting[0U] ; }; struct usb_host_config { struct usb_config_descriptor desc ; char *string ; struct usb_interface_assoc_descriptor *intf_assoc[16U] ; struct usb_interface *interface[32U] ; struct usb_interface_cache *intf_cache[32U] ; unsigned char *extra ; int extralen ; }; struct usb_host_bos { struct usb_bos_descriptor *desc ; struct usb_ext_cap_descriptor *ext_cap ; struct usb_ss_cap_descriptor *ss_cap ; struct usb_ss_container_id_descriptor *ss_id ; }; struct usb_devmap { unsigned long devicemap[2U] ; }; struct mon_bus; struct usb_bus { struct device *controller ; int busnum ; char const *bus_name ; u8 uses_dma ; u8 uses_pio_for_control ; u8 otg_port ; unsigned char is_b_host : 1 ; unsigned char b_hnp_enable : 1 ; unsigned char no_stop_on_short : 1 ; unsigned char no_sg_constraint : 1 ; unsigned int sg_tablesize ; int devnum_next ; struct usb_devmap devmap ; struct usb_device *root_hub ; struct usb_bus *hs_companion ; struct list_head bus_list ; struct mutex usb_address0_mutex ; int bandwidth_allocated ; int bandwidth_int_reqs ; int bandwidth_isoc_reqs ; unsigned int resuming_ports ; struct mon_bus *mon_bus ; int monitored ; }; struct usb_tt; enum usb_device_removable { USB_DEVICE_REMOVABLE_UNKNOWN = 0, USB_DEVICE_REMOVABLE = 1, USB_DEVICE_FIXED = 2 } ; struct usb2_lpm_parameters { unsigned int besl ; int timeout ; }; struct usb3_lpm_parameters { unsigned int mel ; unsigned int pel ; unsigned int sel ; int timeout ; }; struct usb_device { int devnum ; char devpath[16U] ; u32 route ; enum usb_device_state state ; enum usb_device_speed speed ; struct usb_tt *tt ; int ttport ; unsigned int toggle[2U] ; struct usb_device *parent ; struct usb_bus *bus ; struct usb_host_endpoint ep0 ; struct device dev ; struct usb_device_descriptor descriptor ; struct usb_host_bos *bos ; struct usb_host_config *config ; struct usb_host_config *actconfig ; struct usb_host_endpoint *ep_in[16U] ; struct usb_host_endpoint *ep_out[16U] ; char **rawdescriptors ; unsigned short bus_mA ; u8 portnum ; u8 level ; unsigned char can_submit : 1 ; unsigned char persist_enabled : 1 ; unsigned char have_langid : 1 ; unsigned char authorized : 1 ; unsigned char authenticated : 1 ; unsigned char wusb : 1 ; unsigned char lpm_capable : 1 ; unsigned char usb2_hw_lpm_capable : 1 ; unsigned char usb2_hw_lpm_besl_capable : 1 ; unsigned char usb2_hw_lpm_enabled : 1 ; unsigned char usb2_hw_lpm_allowed : 1 ; unsigned char usb3_lpm_enabled : 1 ; int string_langid ; char *product ; char *manufacturer ; char *serial ; struct list_head filelist ; int maxchild ; u32 quirks ; atomic_t urbnum ; unsigned long active_duration ; unsigned long connect_time ; unsigned char do_remote_wakeup : 1 ; unsigned char reset_resume : 1 ; unsigned char port_is_suspended : 1 ; struct wusb_dev *wusb_dev ; int slot_id ; enum usb_device_removable removable ; struct usb2_lpm_parameters l1_params ; struct usb3_lpm_parameters u1_params ; struct usb3_lpm_parameters u2_params ; unsigned int lpm_disable_count ; }; struct usb_iso_packet_descriptor { unsigned int offset ; unsigned int length ; unsigned int actual_length ; int status ; }; struct urb; struct usb_anchor { struct list_head urb_list ; wait_queue_head_t wait ; spinlock_t lock ; atomic_t suspend_wakeups ; unsigned char poisoned : 1 ; }; struct urb { struct kref kref ; void *hcpriv ; atomic_t use_count ; atomic_t reject ; int unlinked ; struct list_head urb_list ; struct list_head anchor_list ; struct usb_anchor *anchor ; struct usb_device *dev ; struct usb_host_endpoint *ep ; unsigned int pipe ; unsigned int stream_id ; int status ; unsigned int transfer_flags ; void *transfer_buffer ; dma_addr_t transfer_dma ; struct scatterlist *sg ; int num_mapped_sgs ; int num_sgs ; u32 transfer_buffer_length ; u32 actual_length ; unsigned char *setup_packet ; dma_addr_t setup_dma ; int start_frame ; int number_of_packets ; int interval ; int error_count ; void *context ; void (*complete)(struct urb * ) ; struct usb_iso_packet_descriptor iso_frame_desc[0U] ; }; struct ieee80211_hdr { __le16 frame_control ; __le16 duration_id ; u8 addr1[6U] ; u8 addr2[6U] ; u8 addr3[6U] ; __le16 seq_ctrl ; u8 addr4[6U] ; }; struct ieee80211_p2p_noa_desc { u8 count ; __le32 duration ; __le32 interval ; __le32 start_time ; }; struct ieee80211_p2p_noa_attr { u8 index ; u8 oppps_ctwindow ; struct ieee80211_p2p_noa_desc desc[4U] ; }; struct ieee80211_mcs_info { u8 rx_mask[10U] ; __le16 rx_highest ; u8 tx_params ; u8 reserved[3U] ; }; struct ieee80211_ht_cap { __le16 cap_info ; u8 ampdu_params_info ; struct ieee80211_mcs_info mcs ; __le16 extended_ht_cap_info ; __le32 tx_BF_cap_info ; u8 antenna_selection_info ; }; struct ieee80211_vht_mcs_info { __le16 rx_mcs_map ; __le16 rx_highest ; __le16 tx_mcs_map ; __le16 tx_highest ; }; struct ieee80211_vht_cap { __le32 vht_cap_info ; struct ieee80211_vht_mcs_info supp_mcs ; }; enum nl80211_iftype { NL80211_IFTYPE_UNSPECIFIED = 0, NL80211_IFTYPE_ADHOC = 1, NL80211_IFTYPE_STATION = 2, NL80211_IFTYPE_AP = 3, NL80211_IFTYPE_AP_VLAN = 4, NL80211_IFTYPE_WDS = 5, NL80211_IFTYPE_MONITOR = 6, NL80211_IFTYPE_MESH_POINT = 7, NL80211_IFTYPE_P2P_CLIENT = 8, NL80211_IFTYPE_P2P_GO = 9, NL80211_IFTYPE_P2P_DEVICE = 10, NUM_NL80211_IFTYPES = 11, NL80211_IFTYPE_MAX = 10 } ; enum nl80211_reg_initiator { NL80211_REGDOM_SET_BY_CORE = 0, NL80211_REGDOM_SET_BY_USER = 1, NL80211_REGDOM_SET_BY_DRIVER = 2, NL80211_REGDOM_SET_BY_COUNTRY_IE = 3 } ; enum nl80211_dfs_regions { NL80211_DFS_UNSET = 0, NL80211_DFS_FCC = 1, NL80211_DFS_ETSI = 2, NL80211_DFS_JP = 3 } ; enum nl80211_user_reg_hint_type { NL80211_USER_REG_HINT_USER = 0, NL80211_USER_REG_HINT_CELL_BASE = 1, NL80211_USER_REG_HINT_INDOOR = 2 } ; enum nl80211_channel_type { NL80211_CHAN_NO_HT = 0, NL80211_CHAN_HT20 = 1, NL80211_CHAN_HT40MINUS = 2, NL80211_CHAN_HT40PLUS = 3 } ; enum nl80211_chan_width { NL80211_CHAN_WIDTH_20_NOHT = 0, NL80211_CHAN_WIDTH_20 = 1, NL80211_CHAN_WIDTH_40 = 2, NL80211_CHAN_WIDTH_80 = 3, NL80211_CHAN_WIDTH_80P80 = 4, NL80211_CHAN_WIDTH_160 = 5, NL80211_CHAN_WIDTH_5 = 6, NL80211_CHAN_WIDTH_10 = 7 } ; enum nl80211_auth_type { NL80211_AUTHTYPE_OPEN_SYSTEM = 0, NL80211_AUTHTYPE_SHARED_KEY = 1, NL80211_AUTHTYPE_FT = 2, NL80211_AUTHTYPE_NETWORK_EAP = 3, NL80211_AUTHTYPE_SAE = 4, __NL80211_AUTHTYPE_NUM = 5, NL80211_AUTHTYPE_MAX = 4, NL80211_AUTHTYPE_AUTOMATIC = 5 } ; enum nl80211_mfp { NL80211_MFP_NO = 0, NL80211_MFP_REQUIRED = 1 } ; struct nl80211_wowlan_tcp_data_seq { __u32 start ; __u32 offset ; __u32 len ; }; struct nl80211_wowlan_tcp_data_token { __u32 offset ; __u32 len ; __u8 token_stream[] ; }; struct nl80211_wowlan_tcp_data_token_feature { __u32 min_len ; __u32 max_len ; __u32 bufsize ; }; enum nl80211_dfs_state { NL80211_DFS_USABLE = 0, NL80211_DFS_UNAVAILABLE = 1, NL80211_DFS_AVAILABLE = 2 } ; struct nl80211_vendor_cmd_info { __u32 vendor_id ; __u32 subcmd ; }; enum environment_cap { ENVIRON_ANY = 0, ENVIRON_INDOOR = 1, ENVIRON_OUTDOOR = 2 } ; struct regulatory_request { struct callback_head callback_head ; int wiphy_idx ; enum nl80211_reg_initiator initiator ; enum nl80211_user_reg_hint_type user_reg_hint_type ; char alpha2[2U] ; enum nl80211_dfs_regions dfs_region ; bool intersect ; bool processed ; enum environment_cap country_ie_env ; struct list_head list ; }; struct ieee80211_freq_range { u32 start_freq_khz ; u32 end_freq_khz ; u32 max_bandwidth_khz ; }; struct ieee80211_power_rule { u32 max_antenna_gain ; u32 max_eirp ; }; struct ieee80211_reg_rule { struct ieee80211_freq_range freq_range ; struct ieee80211_power_rule power_rule ; u32 flags ; u32 dfs_cac_ms ; }; struct ieee80211_regdomain { struct callback_head callback_head ; u32 n_reg_rules ; char alpha2[2U] ; enum nl80211_dfs_regions dfs_region ; struct ieee80211_reg_rule reg_rules[] ; }; struct wiphy; enum ieee80211_band { IEEE80211_BAND_2GHZ = 0, IEEE80211_BAND_5GHZ = 1, IEEE80211_BAND_60GHZ = 2, IEEE80211_NUM_BANDS = 3 } ; struct ieee80211_channel { enum ieee80211_band band ; u16 center_freq ; u16 hw_value ; u32 flags ; int max_antenna_gain ; int max_power ; int max_reg_power ; bool beacon_found ; u32 orig_flags ; int orig_mag ; int orig_mpwr ; enum nl80211_dfs_state dfs_state ; unsigned long dfs_state_entered ; unsigned int dfs_cac_ms ; }; struct ieee80211_rate { u32 flags ; u16 bitrate ; u16 hw_value ; u16 hw_value_short ; }; struct ieee80211_sta_ht_cap { u16 cap ; bool ht_supported ; u8 ampdu_factor ; u8 ampdu_density ; struct ieee80211_mcs_info mcs ; }; struct ieee80211_sta_vht_cap { bool vht_supported ; u32 cap ; struct ieee80211_vht_mcs_info vht_mcs ; }; struct ieee80211_supported_band { struct ieee80211_channel *channels ; struct ieee80211_rate *bitrates ; enum ieee80211_band band ; int n_channels ; int n_bitrates ; struct ieee80211_sta_ht_cap ht_cap ; struct ieee80211_sta_vht_cap vht_cap ; }; struct cfg80211_chan_def { struct ieee80211_channel *chan ; enum nl80211_chan_width width ; u32 center_freq1 ; u32 center_freq2 ; }; struct cfg80211_crypto_settings { u32 wpa_versions ; u32 cipher_group ; int n_ciphers_pairwise ; u32 ciphers_pairwise[5U] ; int n_akm_suites ; u32 akm_suites[2U] ; bool control_port ; __be16 control_port_ethertype ; bool control_port_no_encrypt ; }; struct mac_address { u8 addr[6U] ; }; enum cfg80211_signal_type { CFG80211_SIGNAL_TYPE_NONE = 0, CFG80211_SIGNAL_TYPE_MBM = 1, CFG80211_SIGNAL_TYPE_UNSPEC = 2 } ; struct cfg80211_ibss_params { u8 const *ssid ; u8 const *bssid ; struct cfg80211_chan_def chandef ; u8 const *ie ; u8 ssid_len ; u8 ie_len ; u16 beacon_interval ; u32 basic_rates ; bool channel_fixed ; bool privacy ; bool control_port ; bool userspace_handles_dfs ; int mcast_rate[3U] ; struct ieee80211_ht_cap ht_capa ; struct ieee80211_ht_cap ht_capa_mask ; }; struct cfg80211_connect_params { struct ieee80211_channel *channel ; struct ieee80211_channel *channel_hint ; u8 const *bssid ; u8 const *bssid_hint ; u8 const *ssid ; size_t ssid_len ; enum nl80211_auth_type auth_type ; u8 const *ie ; size_t ie_len ; bool privacy ; enum nl80211_mfp mfp ; struct cfg80211_crypto_settings crypto ; u8 const *key ; u8 key_len ; u8 key_idx ; u32 flags ; int bg_scan_period ; struct ieee80211_ht_cap ht_capa ; struct ieee80211_ht_cap ht_capa_mask ; struct ieee80211_vht_cap vht_capa ; struct ieee80211_vht_cap vht_capa_mask ; }; struct cfg80211_pkt_pattern { u8 const *mask ; u8 const *pattern ; int pattern_len ; int pkt_offset ; }; struct cfg80211_wowlan_tcp { struct socket *sock ; __be32 src ; __be32 dst ; u16 src_port ; u16 dst_port ; u8 dst_mac[6U] ; int payload_len ; u8 const *payload ; struct nl80211_wowlan_tcp_data_seq payload_seq ; u32 data_interval ; u32 wake_len ; u8 const *wake_data ; u8 const *wake_mask ; u32 tokens_size ; struct nl80211_wowlan_tcp_data_token payload_tok ; }; struct cfg80211_wowlan { bool any ; bool disconnect ; bool magic_pkt ; bool gtk_rekey_failure ; bool eap_identity_req ; bool four_way_handshake ; bool rfkill_release ; struct cfg80211_pkt_pattern *patterns ; struct cfg80211_wowlan_tcp *tcp ; int n_patterns ; }; struct ieee80211_iface_limit { u16 max ; u16 types ; }; struct ieee80211_iface_combination { struct ieee80211_iface_limit const *limits ; u32 num_different_channels ; u16 max_interfaces ; u8 n_limits ; bool beacon_int_infra_match ; u8 radar_detect_widths ; u8 radar_detect_regions ; }; struct ieee80211_txrx_stypes { u16 tx ; u16 rx ; }; struct wiphy_wowlan_tcp_support { struct nl80211_wowlan_tcp_data_token_feature const *tok ; u32 data_payload_max ; u32 data_interval_max ; u32 wake_payload_max ; bool seq ; }; struct wiphy_wowlan_support { u32 flags ; int n_patterns ; int pattern_max_len ; int pattern_min_len ; int max_pkt_offset ; struct wiphy_wowlan_tcp_support const *tcp ; }; struct wiphy_coalesce_support { int n_rules ; int max_delay ; int n_patterns ; int pattern_max_len ; int pattern_min_len ; int max_pkt_offset ; }; struct wiphy_vendor_command { struct nl80211_vendor_cmd_info info ; u32 flags ; int (*doit)(struct wiphy * , struct wireless_dev * , void const * , int ) ; }; struct wiphy { u8 perm_addr[6U] ; u8 addr_mask[6U] ; struct mac_address *addresses ; struct ieee80211_txrx_stypes const *mgmt_stypes ; struct ieee80211_iface_combination const *iface_combinations ; int n_iface_combinations ; u16 software_iftypes ; u16 n_addresses ; u16 interface_modes ; u16 max_acl_mac_addrs ; u32 flags ; u32 regulatory_flags ; u32 features ; u32 ap_sme_capa ; enum cfg80211_signal_type signal_type ; int bss_priv_size ; u8 max_scan_ssids ; u8 max_sched_scan_ssids ; u8 max_match_sets ; u16 max_scan_ie_len ; u16 max_sched_scan_ie_len ; int n_cipher_suites ; u32 const *cipher_suites ; u8 retry_short ; u8 retry_long ; u32 frag_threshold ; u32 rts_threshold ; u8 coverage_class ; char fw_version[32U] ; u32 hw_version ; struct wiphy_wowlan_support const *wowlan ; struct cfg80211_wowlan *wowlan_config ; u16 max_remain_on_channel_duration ; u8 max_num_pmkids ; u32 available_antennas_tx ; u32 available_antennas_rx ; u32 probe_resp_offload ; u8 const *extended_capabilities ; u8 const *extended_capabilities_mask ; u8 extended_capabilities_len ; void const *privid ; struct ieee80211_supported_band *bands[3U] ; void (*reg_notifier)(struct wiphy * , struct regulatory_request * ) ; struct ieee80211_regdomain const *regd ; struct device dev ; bool registered ; struct dentry *debugfsdir ; struct ieee80211_ht_cap const *ht_capa_mod_mask ; struct ieee80211_vht_cap const *vht_capa_mod_mask ; struct net *_net ; struct iw_handler_def const *wext ; struct wiphy_coalesce_support const *coalesce ; struct wiphy_vendor_command const *vendor_commands ; struct nl80211_vendor_cmd_info const *vendor_events ; int n_vendor_commands ; int n_vendor_events ; u16 max_ap_assoc_sta ; u8 max_num_csa_counters ; u8 max_adj_channel_rssi_comp ; char priv[0U] ; }; struct cfg80211_conn; struct cfg80211_internal_bss; struct cfg80211_cached_keys; struct __anonstruct_wext_284 { struct cfg80211_ibss_params ibss ; struct cfg80211_connect_params connect ; struct cfg80211_cached_keys *keys ; u8 const *ie ; size_t ie_len ; u8 bssid[6U] ; u8 prev_bssid[6U] ; u8 ssid[32U] ; s8 default_key ; s8 default_mgmt_key ; bool prev_bssid_valid ; }; struct wireless_dev { struct wiphy *wiphy ; enum nl80211_iftype iftype ; struct list_head list ; struct net_device *netdev ; u32 identifier ; struct list_head mgmt_registrations ; spinlock_t mgmt_registrations_lock ; struct mutex mtx ; bool use_4addr ; bool p2p_started ; u8 address[6U] ; u8 ssid[32U] ; u8 ssid_len ; u8 mesh_id_len ; u8 mesh_id_up_len ; struct cfg80211_conn *conn ; struct cfg80211_cached_keys *connect_keys ; struct list_head event_list ; spinlock_t event_lock ; struct cfg80211_internal_bss *current_bss ; struct cfg80211_chan_def preset_chandef ; struct cfg80211_chan_def chandef ; bool ibss_fixed ; bool ibss_dfs_possible ; bool ps ; int ps_timeout ; int beacon_interval ; u32 ap_unexpected_nlportid ; bool cac_started ; unsigned long cac_start_time ; unsigned int cac_time_ms ; u32 owner_nlportid ; struct __anonstruct_wext_284 wext ; }; struct ieee80211_tx_queue_params { u16 txop ; u16 cw_min ; u16 cw_max ; u8 aifs ; bool acm ; bool uapsd ; }; struct ieee80211_chanctx_conf { struct cfg80211_chan_def def ; struct cfg80211_chan_def min_def ; u8 rx_chains_static ; u8 rx_chains_dynamic ; bool radar_enabled ; u8 drv_priv[0U] ; }; struct ieee80211_vif; struct ieee80211_bss_conf { u8 const *bssid ; bool assoc ; bool ibss_joined ; bool ibss_creator ; u16 aid ; bool use_cts_prot ; bool use_short_preamble ; bool use_short_slot ; bool enable_beacon ; u8 dtim_period ; u16 beacon_int ; u16 assoc_capability ; u64 sync_tsf ; u32 sync_device_ts ; u8 sync_dtim_count ; u32 basic_rates ; struct ieee80211_rate *beacon_rate ; int mcast_rate[3U] ; u16 ht_operation_mode ; s32 cqm_rssi_thold ; u32 cqm_rssi_hyst ; struct cfg80211_chan_def chandef ; __be32 arp_addr_list[4U] ; int arp_addr_cnt ; bool qos ; bool idle ; bool ps ; u8 ssid[32U] ; size_t ssid_len ; bool hidden_ssid ; int txpower ; struct ieee80211_p2p_noa_attr p2p_noa_attr ; }; struct ieee80211_tx_rate { s8 idx ; unsigned char count : 5 ; unsigned short flags : 11 ; }; struct __anonstruct_ldv_46032_288 { struct ieee80211_tx_rate rates[4U] ; s8 rts_cts_rate_idx ; unsigned char use_rts : 1 ; unsigned char use_cts_prot : 1 ; unsigned char short_preamble : 1 ; unsigned char skip_table : 1 ; }; union __anonunion_ldv_46034_287 { struct __anonstruct_ldv_46032_288 ldv_46032 ; unsigned long jiffies ; }; struct ieee80211_key_conf; struct __anonstruct_control_286 { union __anonunion_ldv_46034_287 ldv_46034 ; struct ieee80211_vif *vif ; struct ieee80211_key_conf *hw_key ; u32 flags ; }; struct __anonstruct_status_289 { struct ieee80211_tx_rate rates[4U] ; s32 ack_signal ; u8 ampdu_ack_len ; u8 ampdu_len ; u8 antenna ; void *status_driver_data[2U] ; }; struct __anonstruct_ldv_46052_290 { struct ieee80211_tx_rate driver_rates[4U] ; u8 pad[4U] ; void *rate_driver_data[3U] ; }; union __anonunion_ldv_46054_285 { struct __anonstruct_control_286 control ; struct __anonstruct_status_289 status ; struct __anonstruct_ldv_46052_290 ldv_46052 ; void *driver_data[5U] ; }; struct ieee80211_tx_info { u32 flags ; u8 band ; u8 hw_queue ; u16 ack_frame_id ; union __anonunion_ldv_46054_285 ldv_46054 ; }; struct ieee80211_rx_status; struct ieee80211_rx_status { u64 mactime ; u32 device_timestamp ; u32 ampdu_reference ; u32 flag ; u16 freq ; u8 vht_flag ; u8 rate_idx ; u8 vht_nss ; u8 rx_flags ; u8 band ; u8 antenna ; s8 signal ; u8 chains ; s8 chain_signal[4U] ; u8 ampdu_delimiter_crc ; }; enum ieee80211_smps_mode { IEEE80211_SMPS_AUTOMATIC = 0, IEEE80211_SMPS_OFF = 1, IEEE80211_SMPS_STATIC = 2, IEEE80211_SMPS_DYNAMIC = 3, IEEE80211_SMPS_NUM_MODES = 4 } ; struct ieee80211_conf { u32 flags ; int power_level ; int dynamic_ps_timeout ; int max_sleep_period ; u16 listen_interval ; u8 ps_dtim_period ; u8 long_frame_max_tx_count ; u8 short_frame_max_tx_count ; struct cfg80211_chan_def chandef ; bool radar_enabled ; enum ieee80211_smps_mode smps_mode ; }; struct ieee80211_vif { enum nl80211_iftype type ; struct ieee80211_bss_conf bss_conf ; u8 addr[6U] ; bool p2p ; bool csa_active ; u8 cab_queue ; u8 hw_queue[4U] ; struct ieee80211_chanctx_conf *chanctx_conf ; u32 driver_flags ; struct dentry *debugfs_dir ; u8 drv_priv[0U] ; }; struct ieee80211_key_conf { u32 cipher ; u8 icv_len ; u8 iv_len ; u8 hw_key_idx ; u8 flags ; s8 keyidx ; u8 keylen ; u8 key[0U] ; }; struct ieee80211_cipher_scheme { u32 cipher ; u16 iftype ; u8 hdr_len ; u8 pn_len ; u8 pn_off ; u8 key_idx_off ; u8 key_idx_mask ; u8 key_idx_shift ; u8 mic_len ; }; enum ieee80211_sta_rx_bandwidth { IEEE80211_STA_RX_BW_20 = 0, IEEE80211_STA_RX_BW_40 = 1, IEEE80211_STA_RX_BW_80 = 2, IEEE80211_STA_RX_BW_160 = 3 } ; struct __anonstruct_rate_291 { s8 idx ; u8 count ; u8 count_cts ; u8 count_rts ; u16 flags ; }; struct ieee80211_sta_rates { struct callback_head callback_head ; struct __anonstruct_rate_291 rate[4U] ; }; struct ieee80211_sta { u32 supp_rates[3U] ; u8 addr[6U] ; u16 aid ; struct ieee80211_sta_ht_cap ht_cap ; struct ieee80211_sta_vht_cap vht_cap ; bool wme ; u8 uapsd_queues ; u8 max_sp ; u8 rx_nss ; enum ieee80211_sta_rx_bandwidth bandwidth ; enum ieee80211_smps_mode smps_mode ; struct ieee80211_sta_rates *rates ; bool tdls ; u8 drv_priv[0U] ; }; struct ieee80211_hw { struct ieee80211_conf conf ; struct wiphy *wiphy ; char const *rate_control_algorithm ; void *priv ; u32 flags ; unsigned int extra_tx_headroom ; unsigned int extra_beacon_tailroom ; int vif_data_size ; int sta_data_size ; int chanctx_data_size ; u16 queues ; u16 max_listen_interval ; s8 max_signal ; u8 max_rates ; u8 max_report_rates ; u8 max_rate_tries ; u8 max_rx_aggregation_subframes ; u8 max_tx_aggregation_subframes ; u8 offchannel_tx_hw_queue ; u8 radiotap_mcs_details ; u16 radiotap_vht_details ; netdev_features_t netdev_features ; u8 uapsd_queues ; u8 uapsd_max_sp_len ; u8 n_cipher_schemes ; struct ieee80211_cipher_scheme const *cipher_schemes ; }; enum intf_type { INTF_PCI = 0, INTF_USB = 1 } ; enum radio_path { RF90_PATH_A = 0, RF90_PATH_B = 1, RF90_PATH_C = 2, RF90_PATH_D = 3 } ; enum rf_pwrstate { ERFON = 0, ERFSLEEP = 1, ERFOFF = 2 } ; struct bb_reg_def { u32 rfintfs ; u32 rfintfi ; u32 rfintfo ; u32 rfintfe ; u32 rf3wire_offset ; u32 rflssi_select ; u32 rftxgain_stage ; u32 rfhssi_para1 ; u32 rfhssi_para2 ; u32 rfsw_ctrl ; u32 rfagc_control1 ; u32 rfagc_control2 ; u32 rfrxiq_imbal ; u32 rfrx_afe ; u32 rftxiq_imbal ; u32 rftx_afe ; u32 rf_rb ; u32 rf_rbpi ; }; enum io_type { IO_CMD_PAUSE_DM_BY_SCAN = 0, IO_CMD_PAUSE_BAND0_DM_BY_SCAN = 0, IO_CMD_PAUSE_BAND1_DM_BY_SCAN = 1, IO_CMD_RESUME_DM_BY_SCAN = 2 } ; enum _RT_MEDIA_STATUS { RT_MEDIA_DISCONNECT = 0, RT_MEDIA_CONNECT = 1 } ; enum rt_enc_alg { NO_ENCRYPTION = 0, WEP40_ENCRYPTION = 1, TKIP_ENCRYPTION = 2, RSERVED_ENCRYPTION = 3, AESCCMP_ENCRYPTION = 4, WEP104_ENCRYPTION = 5, AESCMAC_ENCRYPTION = 6 } ; enum rt_psmode { EACTIVE = 0, EMAXPS = 1, EFASTPS = 2, EAUTOPS = 3 } ; enum led_ctl_mode { LED_CTL_POWER_ON = 1, LED_CTL_LINK = 2, LED_CTL_NO_LINK = 3, LED_CTL_TX = 4, LED_CTL_RX = 5, LED_CTL_SITE_SURVEY = 6, LED_CTL_POWER_OFF = 7, LED_CTL_START_TO_LINK = 8, LED_CTL_START_WPS = 9, LED_CTL_STOP_WPS = 10 } ; enum macphy_mode { SINGLEMAC_SINGLEPHY = 0, DUALMAC_DUALPHY = 1, DUALMAC_SINGLEPHY = 2 } ; enum band_type { BAND_ON_2_4G = 0, BAND_ON_5G = 1, BAND_ON_BOTH = 2, BANDMAX = 3 } ; enum rtl_link_state { MAC80211_NOLINK = 0, MAC80211_LINKING = 1, MAC80211_LINKED = 2, MAC80211_LINKED_SCANNING = 3 } ; enum rt_polarity_ctl { RT_POLARITY_LOW_ACT = 0, RT_POLARITY_HIGH_ACT = 1 } ; struct rtl_qos_parameters { __le16 cw_min ; __le16 cw_max ; u8 aifs ; u8 flag ; __le16 tx_op ; }; struct rt_smooth_data { u32 elements[100U] ; u32 index ; u32 total_num ; u32 total_val ; }; struct false_alarm_statistics { u32 cnt_parity_fail ; u32 cnt_rate_illegal ; u32 cnt_crc8_fail ; u32 cnt_mcs_fail ; u32 cnt_fast_fsync_fail ; u32 cnt_sb_search_fail ; u32 cnt_ofdm_fail ; u32 cnt_cck_fail ; u32 cnt_all ; u32 cnt_ofdm_cca ; u32 cnt_cck_cca ; u32 cnt_cca_all ; u32 cnt_bw_usc ; u32 cnt_bw_lsc ; }; struct init_gain { u8 xaagccore1 ; u8 xbagccore1 ; u8 xcagccore1 ; u8 xdagccore1 ; u8 cca ; }; struct wireless_stats { unsigned long txbytesunicast ; unsigned long txbytesmulticast ; unsigned long txbytesbroadcast ; unsigned long rxbytesunicast ; long rx_snr_db[4U] ; long recv_signal_power ; long signal_quality ; long last_sigstrength_inpercent ; u32 rssi_calculate_cnt ; long signal_strength ; u8 rx_rssi_percentage[4U] ; u8 rx_evm_dbm[4U] ; u8 rx_evm_percentage[2U] ; u16 rx_cfo_short[4U] ; u16 rx_cfo_tail[4U] ; struct rt_smooth_data ui_rssi ; struct rt_smooth_data ui_link_quality ; }; struct rate_adaptive { u8 rate_adaptive_disabled ; u8 ratr_state ; u16 reserve ; u32 high_rssi_thresh_for_ra ; u32 high2low_rssi_thresh_for_ra ; u8 low2high_rssi_thresh_for_ra40m ; u32 low_rssi_thresh_for_ra40m ; u8 low2high_rssi_thresh_for_ra20m ; u32 low_rssi_thresh_for_ra20m ; u32 upper_rssi_threshold_ratr ; u32 middleupper_rssi_threshold_ratr ; u32 middle_rssi_threshold_ratr ; u32 middlelow_rssi_threshold_ratr ; u32 low_rssi_threshold_ratr ; u32 ultralow_rssi_threshold_ratr ; u32 low_rssi_threshold_ratr_40m ; u32 low_rssi_threshold_ratr_20m ; u8 ping_rssi_enable ; u32 ping_rssi_ratr ; u32 ping_rssi_thresh_for_ra ; u32 last_ratr ; u8 pre_ratr_state ; u8 ldpc_thres ; bool use_ldpc ; bool lower_rts_rate ; bool is_special_data ; }; struct regd_pair_mapping { u16 reg_dmnenum ; u16 reg_5ghz_ctl ; u16 reg_2ghz_ctl ; }; struct dynamic_primary_cca { u8 pricca_flag ; u8 intf_flag ; u8 intf_type ; u8 dup_rts_flag ; u8 monitor_flag ; u8 ch_offset ; u8 mf_state ; }; struct rtl_regulatory { char alpha2[2U] ; u16 country_code ; u16 max_power_level ; u32 tp_scale ; u16 current_rd ; u16 current_rd_ext ; int16_t power_limit ; struct regd_pair_mapping *regpair ; }; struct rtl_rfkill { bool rfkill_state ; }; enum p2p_ps_state { P2P_PS_DISABLE = 0, P2P_PS_ENABLE = 1, P2P_PS_SCAN = 2, P2P_PS_SCAN_DONE = 3, P2P_PS_ALLSTASLEEP = 4 } ; enum p2p_ps_mode { P2P_PS_NONE = 0, P2P_PS_CTWINDOW = 1, P2P_PS_NOA = 2, P2P_PS_MIX = 3 } ; struct rtl_p2p_ps_info { enum p2p_ps_mode p2p_ps_mode ; enum p2p_ps_state p2p_ps_state ; u8 noa_index ; u8 ctwindow ; u8 opp_ps ; u8 noa_num ; u8 noa_count_type[2U] ; u32 noa_duration[2U] ; u32 noa_interval[2U] ; u32 noa_start_time[2U] ; }; struct p2p_ps_offload_t { unsigned char offload_en : 1 ; unsigned char role : 1 ; unsigned char ctwindow_en : 1 ; unsigned char noa0_en : 1 ; unsigned char noa1_en : 1 ; unsigned char allstasleep : 1 ; unsigned char discovery : 1 ; unsigned char reserved : 1 ; }; struct iqk_matrix_regs { bool iqk_done ; long value[1U][8U] ; }; struct phy_parameters { u16 length ; u32 *pdata ; }; struct rtl_phy { struct bb_reg_def phyreg_def[4U] ; struct init_gain initgain_backup ; enum io_type current_io_type ; u8 rf_mode ; u8 rf_type ; u8 current_chan_bw ; u8 set_bwmode_inprogress ; u8 sw_chnl_inprogress ; u8 sw_chnl_stage ; u8 sw_chnl_step ; u8 current_channel ; u8 h2c_box_num ; u8 set_io_inprogress ; u8 lck_inprogress ; s32 reg_e94 ; s32 reg_e9c ; s32 reg_ea4 ; s32 reg_eac ; s32 reg_eb4 ; s32 reg_ebc ; s32 reg_ec4 ; s32 reg_ecc ; u8 rfpienable ; u8 reserve_0 ; u16 reserve_1 ; u32 reg_c04 ; u32 reg_c08 ; u32 reg_874 ; u32 adda_backup[16U] ; u32 iqk_mac_backup[4U] ; u32 iqk_bb_backup[10U] ; bool iqk_initialized ; bool rfpath_rx_enable[4U] ; u8 reg_837 ; bool need_iqk ; struct iqk_matrix_regs iqk_matrix[46U] ; bool rfpi_enable ; bool iqk_in_progress ; u8 pwrgroup_cnt ; u8 cck_high_power ; u32 mcs_offset[13U][16U] ; u32 tx_power_by_rate_offset[2U][4U][4U][12U] ; u8 txpwr_by_rate_base_24g[4U][4U][6U] ; u8 txpwr_by_rate_base_5g[4U][4U][5U] ; u8 default_initialgain[4U] ; u8 cur_cck_txpwridx ; u8 cur_ofdm24g_txpwridx ; u8 cur_bw20_txpwridx ; u8 cur_bw40_txpwridx ; u32 rfreg_chnlval[2U] ; bool apk_done ; u32 reg_rf3c[2U] ; u32 backup_rf_0x1a ; u8 framesync ; u32 framesync_c34 ; u8 num_total_rfpath ; struct phy_parameters hwparam_tables[10U] ; u16 rf_pathmap ; u8 hw_rof_enable ; enum rt_polarity_ctl polarity_ctl ; }; struct rtl_ht_agg { u16 txq_id ; u16 wait_for_ba ; u16 start_idx ; u64 bitmap ; u32 rate_n_flags ; u8 agg_state ; u8 rx_agg_state ; }; struct rssi_sta { long undec_sm_pwdb ; long undec_sm_cck ; }; struct rtl_tid_data { u16 seq_number ; struct rtl_ht_agg agg ; }; struct rtl_sta_info { struct list_head list ; u8 ratr_index ; u8 wireless_mode ; u8 mimo_ps ; u8 mac_addr[6U] ; struct rtl_tid_data tids[9U] ; struct rssi_sta rssi_stat ; }; struct rtl_priv; struct rtl_io { struct device *dev ; struct mutex bb_mutex ; unsigned long pci_mem_end ; unsigned long pci_mem_start ; unsigned long pci_base_addr ; void (*write8_async)(struct rtl_priv * , u32 , u8 ) ; void (*write16_async)(struct rtl_priv * , u32 , u16 ) ; void (*write32_async)(struct rtl_priv * , u32 , u32 ) ; void (*writeN_sync)(struct rtl_priv * , u32 , void * , u16 ) ; u8 (*read8_sync)(struct rtl_priv * , u32 ) ; u16 (*read16_sync)(struct rtl_priv * , u32 ) ; u32 (*read32_sync)(struct rtl_priv * , u32 ) ; }; struct rtl_mac { u8 mac_addr[6U] ; u8 mac80211_registered ; u8 beacon_enabled ; u32 tx_ss_num ; u32 rx_ss_num ; struct ieee80211_supported_band bands[3U] ; struct ieee80211_hw *hw ; struct ieee80211_vif *vif ; enum nl80211_iftype opmode ; struct rtl_tid_data tids[9U] ; enum rtl_link_state link_state ; int n_channels ; int n_bitrates ; bool offchan_delay ; u8 p2p ; bool p2p_in_use ; u32 rx_conf ; u16 rx_mgt_filter ; u16 rx_ctrl_filter ; u16 rx_data_filter ; bool act_scanning ; u8 cnt_after_linked ; bool skip_scan ; struct sk_buff_head skb_waitq[9U] ; bool rdg_en ; u8 bssid[6U] ; u32 vendor ; u8 mcs[16U] ; u32 basic_rates ; u8 ht_enable ; u8 sgi_40 ; u8 sgi_20 ; u8 bw_40 ; u8 mode ; u8 slot_time ; u8 short_preamble ; u8 use_cts_protect ; u8 cur_40_prime_sc ; u8 cur_40_prime_sc_bk ; u8 cur_80_prime_sc ; u64 tsf ; u8 retry_short ; u8 retry_long ; u16 assoc_id ; bool hiddenssid ; int beacon_interval ; u8 min_space_cfg ; u8 max_mss_density ; u8 current_ampdu_factor ; u8 current_ampdu_density ; struct ieee80211_tx_queue_params edca_param[5U] ; struct rtl_qos_parameters ac[4U] ; u64 last_txok_cnt ; u64 last_rxok_cnt ; u32 last_bt_edca_ul ; u32 last_bt_edca_dl ; }; struct btdm_8723 { bool all_off ; bool agc_table_en ; bool adc_back_off_on ; bool b2_ant_hid_en ; bool low_penalty_rate_adaptive ; bool rf_rx_lpf_shrink ; bool reject_aggre_pkt ; bool tra_tdma_on ; u8 tra_tdma_nav ; u8 tra_tdma_ant ; bool tdma_on ; u8 tdma_ant ; u8 tdma_nav ; u8 tdma_dac_swing ; u8 fw_dac_swing_lvl ; bool ps_tdma_on ; u8 ps_tdma_byte[5U] ; bool pta_on ; u32 val_0x6c0 ; u32 val_0x6c8 ; u32 val_0x6cc ; bool sw_dac_swing_on ; u32 sw_dac_swing_lvl ; u32 wlan_act_hi ; u32 wlan_act_lo ; u32 bt_retry_index ; bool dec_bt_pwr ; bool ignore_wlan_act ; }; struct bt_coexist_8723 { u32 high_priority_tx ; u32 high_priority_rx ; u32 low_priority_tx ; u32 low_priority_rx ; u8 c2h_bt_info ; bool c2h_bt_info_req_sent ; bool c2h_bt_inquiry_page ; u32 bt_inq_page_start_time ; u8 bt_retry_cnt ; u8 c2h_bt_info_original ; u8 bt_inquiry_page_cnt ; struct btdm_8723 btdm ; }; struct rtl_hal { struct ieee80211_hw *hw ; bool driver_is_goingto_unload ; bool up_first_time ; bool first_init ; bool being_init_adapter ; bool bbrf_ready ; bool mac_func_enable ; bool pre_edcca_enable ; struct bt_coexist_8723 hal_coex_8723 ; enum intf_type interface ; u16 hw_type ; u8 ic_class ; u8 oem_id ; u32 version ; u8 state ; u8 board_type ; u32 fwsize ; u8 *pfirmware ; u16 fw_version ; u16 fw_subversion ; bool h2c_setinprogress ; u8 last_hmeboxnum ; bool fw_ready ; u8 fw_rsvdpage_startoffset ; u8 h2c_txcmd_seq ; u8 current_ra_rate ; u16 fwcmd_iomap ; u32 fwcmd_ioparam ; bool set_fwcmd_inprogress ; u8 current_fwcmd_io ; struct p2p_ps_offload_t p2p_ps_offload ; bool fw_clk_change_in_progress ; bool allow_sw_to_change_hwclc ; u8 fw_ps_state ; bool driver_going2unload ; u8 minspace_cfg ; enum macphy_mode macphymode ; enum band_type current_bandtype ; enum band_type current_bandtypebackup ; enum band_type bandset ; u32 interfaceindex ; u8 macphyctl_reg ; bool earlymode_enable ; u8 max_earlymode_num ; bool during_mac0init_radiob ; bool during_mac1init_radioa ; bool reloadtxpowerindex ; bool load_imrandiqk_setting_for2g ; bool disable_amsdu_8k ; bool master_of_dmsp ; bool slave_of_dmsp ; u16 rx_tag ; u8 rts_en ; }; struct rtl_security { bool use_sw_sec ; bool being_setkey ; bool use_defaultkey ; enum rt_enc_alg pairwise_enc_algorithm ; enum rt_enc_alg group_enc_algorithm ; u32 hwsec_cam_bitmap ; u8 hwsec_cam_sta_addr[32U][6U] ; u8 key_buf[5U][61U] ; u8 key_len[5U] ; u8 *pairwise_key ; }; struct fast_ant_training { u8 bssid[6U] ; u8 antsel_rx_keep_0 ; u8 antsel_rx_keep_1 ; u8 antsel_rx_keep_2 ; u32 ant_sum[7U] ; u32 ant_cnt[7U] ; u32 ant_ave[7U] ; u8 fat_state ; u32 train_idx ; u8 antsel_a[33U] ; u8 antsel_b[33U] ; u8 antsel_c[33U] ; u32 main_ant_sum[33U] ; u32 aux_ant_sum[33U] ; u32 main_ant_cnt[33U] ; u32 aux_ant_cnt[33U] ; u8 rx_idle_ant ; bool becomelinked ; }; struct dm_phy_dbg_info { char rx_snrdb[4U] ; u64 num_qry_phy_status ; u64 num_qry_phy_status_cck ; u64 num_qry_phy_status_ofdm ; u16 num_qry_beacon_pkt ; u16 num_non_be_pkt ; s32 rx_evm[4U] ; }; struct rtl_dm { long entry_min_undec_sm_pwdb ; long undec_sm_cck ; long undec_sm_pwdb ; long entry_max_undec_sm_pwdb ; s32 ofdm_pkt_cnt ; bool dm_initialgain_enable ; bool dynamic_txpower_enable ; bool current_turbo_edca ; bool is_any_nonbepkts ; bool is_cur_rdlstate ; bool txpower_trackinginit ; bool disable_framebursting ; bool cck_inch14 ; bool txpower_tracking ; bool useramask ; bool rfpath_rxenable[4U] ; bool inform_fw_driverctrldm ; bool current_mrc_switch ; u8 txpowercount ; u8 powerindex_backup[6U] ; u8 thermalvalue_rxgain ; u8 thermalvalue_iqk ; u8 thermalvalue_lck ; u8 thermalvalue ; u8 last_dtp_lvl ; u8 thermalvalue_avg[8U] ; u8 thermalvalue_avg_index ; bool done_txpower ; u8 dynamic_txhighpower_lvl ; u8 dm_flag ; u8 dm_flag_tmp ; u8 dm_type ; u8 dm_rssi_sel ; u8 txpower_track_control ; bool interrupt_migration ; bool disable_tx_int ; char ofdm_index[4U] ; u8 default_ofdm_index ; u8 default_cck_index ; char cck_index ; char delta_power_index[4U] ; char delta_power_index_last[4U] ; char power_index_offset[4U] ; char absolute_ofdm_swing_idx[4U] ; char remnant_ofdm_swing_idx[4U] ; char remnant_cck_idx ; bool modify_txagc_flag_path_a ; bool modify_txagc_flag_path_b ; bool one_entry_only ; struct dm_phy_dbg_info dbginfo ; bool atc_status ; bool large_cfo_hit ; bool is_freeze ; int cfo_tail[2U] ; int cfo_ave_pre ; int crystal_cap ; u8 cfo_threshold ; u32 packet_count ; u32 packet_count_pre ; u8 tx_rate ; u8 swing_idx_ofdm[4U] ; u8 swing_idx_ofdm_cur ; u8 swing_idx_ofdm_base[4U] ; bool swing_flag_ofdm ; u8 swing_idx_cck ; u8 swing_idx_cck_cur ; u8 swing_idx_cck_base ; bool swing_flag_cck ; char swing_diff_2g ; char swing_diff_5g ; u8 delta_swing_table_idx_24gccka_p[30U] ; u8 delta_swing_table_idx_24gccka_n[30U] ; u8 delta_swing_table_idx_24gcckb_p[30U] ; u8 delta_swing_table_idx_24gcckb_n[30U] ; u8 delta_swing_table_idx_24ga_p[30U] ; u8 delta_swing_table_idx_24ga_n[30U] ; u8 delta_swing_table_idx_24gb_p[30U] ; u8 delta_swing_table_idx_24gb_n[30U] ; u8 delta_swing_table_idx_5ga_p[3U][30U] ; u8 delta_swing_table_idx_5ga_n[3U][30U] ; u8 delta_swing_table_idx_5gb_p[3U][30U] ; u8 delta_swing_table_idx_5gb_n[3U][30U] ; u8 delta_swing_table_idx_24ga_p_8188e[30U] ; u8 delta_swing_table_idx_24ga_n_8188e[30U] ; bool supp_phymode_switch ; struct fast_ant_training fat_table ; u8 resp_tx_path ; u8 path_sel ; u32 patha_sum ; u32 pathb_sum ; u32 patha_cnt ; u32 pathb_cnt ; u8 pre_channel ; u8 *p_channel ; u8 linked_interval ; u64 last_tx_ok_cnt ; u64 last_rx_ok_cnt ; }; struct rtl_efuse { bool autoLoad_ok ; bool bootfromefuse ; u16 max_physical_size ; u8 efuse_map[2U][512U] ; u16 efuse_usedbytes ; u8 efuse_usedpercentage ; u8 autoload_failflag ; u8 autoload_status ; short epromtype ; u16 eeprom_vid ; u16 eeprom_did ; u16 eeprom_svid ; u16 eeprom_smid ; u8 eeprom_oemid ; u16 eeprom_channelplan ; u8 eeprom_version ; u8 board_type ; u8 external_pa ; u8 dev_addr[6U] ; u8 wowlan_enable ; u8 antenna_div_cfg ; u8 antenna_div_type ; bool txpwr_fromeprom ; u8 eeprom_crystalcap ; u8 eeprom_tssi[2U] ; u8 eeprom_tssi_5g[3U][2U] ; u8 eeprom_pwrlimit_ht20[12U] ; u8 eeprom_pwrlimit_ht40[12U] ; u8 eeprom_chnlarea_txpwr_cck[4U][3U] ; u8 eeprom_chnlarea_txpwr_ht40_1s[4U][12U] ; u8 eprom_chnl_txpwr_ht40_2sdf[4U][12U] ; u8 internal_pa_5g[2U] ; u8 eeprom_c9 ; u8 eeprom_cc ; u8 eeprom_pwrgroup[2U][3U] ; u8 pwrgroup_ht20[2U][59U] ; u8 pwrgroup_ht40[2U][59U] ; u8 txpwrlevel_cck[4U][14U] ; u8 txpwrlevel_ht40_1s[4U][59U] ; u8 txpwrlevel_ht40_2s[4U][59U] ; char txpwr_cckdiff[4U][59U] ; char txpwr_ht20diff[4U][59U] ; char txpwr_ht40diff[4U][59U] ; char txpwr_legacyhtdiff[4U][59U] ; u8 txpwr_5g_bw40base[4U][59U] ; u8 txpwr_5g_bw80base[4U][7U] ; char txpwr_5g_ofdmdiff[4U][4U] ; char txpwr_5g_bw20diff[4U][4U] ; char txpwr_5g_bw40diff[4U][4U] ; char txpwr_5g_bw80diff[4U][4U] ; u8 txpwr_safetyflag ; u16 eeprom_txpowerdiff ; u8 legacy_httxpowerdiff ; u8 antenna_txpwdiff[3U] ; u8 eeprom_regulatory ; u8 eeprom_thermalmeter ; u8 thermalmeter[2U] ; u16 tssi_13dbm ; u8 crystalcap ; u8 delta_iqk ; u8 delta_lck ; u8 legacy_ht_txpowerdiff ; bool apk_thermalmeterignore ; bool b1x1_recvcombine ; bool b1ss_support ; u8 channel_plan ; }; struct rtl_ps_ctl { bool pwrdomain_protect ; bool in_powersavemode ; bool rfchange_inprogress ; bool swrf_processing ; bool hwradiooff ; bool support_aspm ; bool support_backdoor ; enum rt_psmode dot11_psmode ; bool swctrl_lps ; bool leisure_ps ; bool fwctrl_lps ; u8 fwctrl_psmode ; u8 reg_fwctrl_lps ; bool fw_current_inpsmode ; u8 reg_max_lps_awakeintvl ; bool report_linked ; bool low_power_enable ; bool inactiveps ; u32 rfoff_reason ; u32 cur_ps_level ; u32 reg_rfps_level ; u8 const_amdpci_aspm ; bool pwrdown_mode ; enum rf_pwrstate inactive_pwrstate ; enum rf_pwrstate rfpwr_state ; bool sw_ps_enabled ; bool state ; bool state_inap ; bool multi_buffered ; u16 nullfunc_seq ; unsigned int dtim_counter ; unsigned int sleep_ms ; unsigned long last_sleep_jiffies ; unsigned long last_awake_jiffies ; unsigned long last_delaylps_stamp_jiffies ; unsigned long last_dtim ; unsigned long last_beacon ; unsigned long last_action ; unsigned long last_slept ; struct rtl_p2p_ps_info p2p_ps_info ; u8 pwr_mode ; u8 smart_ps ; }; struct rtl_stats { u8 psaddr[6U] ; u32 mac_time[2U] ; s8 rssi ; u8 signal ; u8 noise ; u8 rate ; u8 received_channel ; u8 control ; u8 mask ; u8 freq ; u16 len ; u64 tsf ; u32 beacon_time ; u8 nic_type ; u16 length ; u8 signalquality ; s32 recvsignalpower ; s8 rxpower ; u8 signalstrength ; unsigned char hwerror : 1 ; unsigned char crc : 1 ; unsigned char icv : 1 ; unsigned char shortpreamble : 1 ; unsigned char antenna : 1 ; unsigned char decrypted : 1 ; unsigned char wakeup : 1 ; u32 timestamp_low ; u32 timestamp_high ; u8 rx_drvinfo_size ; u8 rx_bufshift ; bool isampdu ; bool isfirst_ampdu ; bool rx_is40Mhzpacket ; u32 rx_pwdb_all ; u8 rx_mimo_signalstrength[4U] ; s8 rx_mimo_sig_qual[4U] ; u8 rx_pwr[4U] ; u8 rx_snr[4U] ; bool packet_matchbssid ; bool is_cck ; bool is_ht ; bool packet_toself ; bool packet_beacon ; char cck_adc_pwdb[4U] ; u8 packet_report_type ; u32 macid ; u8 wake_match ; u32 bt_rx_rssi_percentage ; u32 macid_valid_entry[2U] ; }; struct rt_link_detect { u32 bcn_rx_inperiod ; u32 roam_times ; u32 num_tx_in4period[4U] ; u32 num_rx_in4period[4U] ; u32 num_tx_inperiod ; u32 num_rx_inperiod ; bool busytraffic ; bool tx_busy_traffic ; bool rx_busy_traffic ; bool higher_busytraffic ; bool higher_busyrxtraffic ; u32 tidtx_in4period[9U][4U] ; u32 tidtx_inperiod[9U] ; bool higher_busytxtraffic[9U] ; }; struct rtl_tcb_desc { unsigned char packet_bw : 1 ; unsigned char multicast : 1 ; unsigned char broadcast : 1 ; unsigned char rts_stbc : 1 ; unsigned char rts_enable : 1 ; unsigned char cts_enable : 1 ; unsigned char rts_use_shortpreamble : 1 ; unsigned char rts_use_shortgi : 1 ; unsigned char rts_sc : 1 ; unsigned char rts_bw : 1 ; u8 rts_rate ; unsigned char use_shortgi : 1 ; unsigned char use_shortpreamble : 1 ; unsigned char use_driver_rate : 1 ; unsigned char disable_ratefallback : 1 ; u8 ratr_index ; u8 mac_id ; u8 hw_rate ; unsigned char last_inipkt : 1 ; unsigned char cmd_or_init : 1 ; u8 queue_index ; u8 empkt_num ; u32 empkt_len[10U] ; bool btx_enable_sw_calc_duration ; }; struct rtl92c_firmware_header; struct rtl_hal_ops { int (*init_sw_vars)(struct ieee80211_hw * ) ; void (*deinit_sw_vars)(struct ieee80211_hw * ) ; void (*read_chip_version)(struct ieee80211_hw * ) ; void (*read_eeprom_info)(struct ieee80211_hw * ) ; void (*interrupt_recognized)(struct ieee80211_hw * , u32 * , u32 * ) ; int (*hw_init)(struct ieee80211_hw * ) ; void (*hw_disable)(struct ieee80211_hw * ) ; void (*hw_suspend)(struct ieee80211_hw * ) ; void (*hw_resume)(struct ieee80211_hw * ) ; void (*enable_interrupt)(struct ieee80211_hw * ) ; void (*disable_interrupt)(struct ieee80211_hw * ) ; int (*set_network_type)(struct ieee80211_hw * , enum nl80211_iftype ) ; void (*set_chk_bssid)(struct ieee80211_hw * , bool ) ; void (*set_bw_mode)(struct ieee80211_hw * , enum nl80211_channel_type ) ; u8 (*switch_channel)(struct ieee80211_hw * ) ; void (*set_qos)(struct ieee80211_hw * , int ) ; void (*set_bcn_reg)(struct ieee80211_hw * ) ; void (*set_bcn_intv)(struct ieee80211_hw * ) ; void (*update_interrupt_mask)(struct ieee80211_hw * , u32 , u32 ) ; void (*get_hw_reg)(struct ieee80211_hw * , u8 , u8 * ) ; void (*set_hw_reg)(struct ieee80211_hw * , u8 , u8 * ) ; void (*update_rate_tbl)(struct ieee80211_hw * , struct ieee80211_sta * , u8 ) ; void (*pre_fill_tx_bd_desc)(struct ieee80211_hw * , u8 * , u8 * , u8 , struct sk_buff * , dma_addr_t ) ; void (*update_rate_mask)(struct ieee80211_hw * , u8 ) ; u16 (*rx_desc_buff_remained_cnt)(struct ieee80211_hw * , u8 ) ; void (*rx_check_dma_ok)(struct ieee80211_hw * , u8 * , u8 ) ; void (*fill_tx_desc)(struct ieee80211_hw * , struct ieee80211_hdr * , u8 * , u8 * , struct ieee80211_tx_info * , struct ieee80211_sta * , struct sk_buff * , u8 , struct rtl_tcb_desc * ) ; void (*fill_fake_txdesc)(struct ieee80211_hw * , u8 * , u32 , bool ) ; void (*fill_tx_cmddesc)(struct ieee80211_hw * , u8 * , bool , bool , struct sk_buff * ) ; bool (*cmd_send_packet)(struct ieee80211_hw * , struct sk_buff * ) ; bool (*query_rx_desc)(struct ieee80211_hw * , struct rtl_stats * , struct ieee80211_rx_status * , u8 * , struct sk_buff * ) ; void (*set_channel_access)(struct ieee80211_hw * ) ; bool (*radio_onoff_checking)(struct ieee80211_hw * , u8 * ) ; void (*dm_watchdog)(struct ieee80211_hw * ) ; void (*scan_operation_backup)(struct ieee80211_hw * , u8 ) ; bool (*set_rf_power_state)(struct ieee80211_hw * , enum rf_pwrstate ) ; void (*led_control)(struct ieee80211_hw * , enum led_ctl_mode ) ; void (*set_desc)(struct ieee80211_hw * , u8 * , bool , u8 , u8 * ) ; u32 (*get_desc)(u8 * , bool , u8 ) ; bool (*is_tx_desc_closed)(struct ieee80211_hw * , u8 , u16 ) ; void (*tx_polling)(struct ieee80211_hw * , u8 ) ; void (*enable_hw_sec)(struct ieee80211_hw * ) ; void (*set_key)(struct ieee80211_hw * , u32 , u8 * , bool , u8 , bool , bool ) ; void (*init_sw_leds)(struct ieee80211_hw * ) ; void (*deinit_sw_leds)(struct ieee80211_hw * ) ; u32 (*get_bbreg)(struct ieee80211_hw * , u32 , u32 ) ; void (*set_bbreg)(struct ieee80211_hw * , u32 , u32 , u32 ) ; u32 (*get_rfreg)(struct ieee80211_hw * , enum radio_path , u32 , u32 ) ; void (*set_rfreg)(struct ieee80211_hw * , enum radio_path , u32 , u32 , u32 ) ; void (*linked_set_reg)(struct ieee80211_hw * ) ; void (*chk_switch_dmdp)(struct ieee80211_hw * ) ; void (*dualmac_easy_concurrent)(struct ieee80211_hw * ) ; void (*dualmac_switch_to_dmdp)(struct ieee80211_hw * ) ; bool (*phy_rf6052_config)(struct ieee80211_hw * ) ; void (*phy_rf6052_set_cck_txpower)(struct ieee80211_hw * , u8 * ) ; void (*phy_rf6052_set_ofdm_txpower)(struct ieee80211_hw * , u8 * , u8 ) ; bool (*config_bb_with_headerfile)(struct ieee80211_hw * , u8 ) ; bool (*config_bb_with_pgheaderfile)(struct ieee80211_hw * , u8 ) ; void (*phy_lc_calibrate)(struct ieee80211_hw * , bool ) ; void (*phy_set_bw_mode_callback)(struct ieee80211_hw * ) ; void (*dm_dynamic_txpower)(struct ieee80211_hw * ) ; void (*c2h_command_handle)(struct ieee80211_hw * ) ; void (*bt_wifi_media_status_notify)(struct ieee80211_hw * , bool ) ; void (*bt_coex_off_before_lps)(struct ieee80211_hw * ) ; void (*fill_h2c_cmd)(struct ieee80211_hw * , u8 , u32 , u8 * ) ; bool (*get_btc_status)(void) ; bool (*is_fw_header)(struct rtl92c_firmware_header * ) ; u32 (*rx_command_packet)(struct ieee80211_hw * , struct rtl_stats , struct sk_buff * ) ; }; struct rtl_intf_ops { void (*read_efuse_byte)(struct ieee80211_hw * , u16 , u8 * ) ; int (*adapter_start)(struct ieee80211_hw * ) ; void (*adapter_stop)(struct ieee80211_hw * ) ; bool (*check_buddy_priv)(struct ieee80211_hw * , struct rtl_priv ** ) ; int (*adapter_tx)(struct ieee80211_hw * , struct ieee80211_sta * , struct sk_buff * , struct rtl_tcb_desc * ) ; void (*flush)(struct ieee80211_hw * , bool ) ; int (*reset_trx_ring)(struct ieee80211_hw * ) ; bool (*waitq_insert)(struct ieee80211_hw * , struct ieee80211_sta * , struct sk_buff * ) ; void (*disable_aspm)(struct ieee80211_hw * ) ; void (*enable_aspm)(struct ieee80211_hw * ) ; }; struct rtl_mod_params { bool sw_crypto ; int debug ; bool inactiveps ; bool swctrl_lps ; bool fwctrl_lps ; bool msi_support ; }; struct rtl_hal_usbint_cfg { u32 in_ep_num ; u32 rx_urb_num ; u32 rx_max_size ; void (*usb_rx_hdl)(struct ieee80211_hw * , struct sk_buff * ) ; void (*usb_rx_segregate_hdl)(struct ieee80211_hw * , struct sk_buff * , struct sk_buff_head * ) ; void (*usb_tx_cleanup)(struct ieee80211_hw * , struct sk_buff * ) ; int (*usb_tx_post_hdl)(struct ieee80211_hw * , struct urb * , struct sk_buff * ) ; struct sk_buff *(*usb_tx_aggregate_hdl)(struct ieee80211_hw * , struct sk_buff_head * ) ; int (*usb_endpoint_mapping)(struct ieee80211_hw * ) ; u16 (*usb_mq_to_hwq)(__le16 , u16 ) ; }; struct rtl_hal_cfg { u8 bar_id ; bool write_readback ; char *name ; char *fw_name ; char *alt_fw_name ; struct rtl_hal_ops *ops ; struct rtl_mod_params *mod_params ; struct rtl_hal_usbint_cfg *usb_interface_cfg ; u32 maps[83U] ; }; struct rtl_locks { struct mutex conf_mutex ; struct mutex ps_mutex ; spinlock_t ips_lock ; spinlock_t irq_th_lock ; spinlock_t irq_pci_lock ; spinlock_t tx_lock ; spinlock_t h2c_lock ; spinlock_t rf_ps_lock ; spinlock_t rf_lock ; spinlock_t lps_lock ; spinlock_t waitq_lock ; spinlock_t entry_list_lock ; spinlock_t usb_lock ; spinlock_t fw_ps_lock ; spinlock_t cck_and_rw_pagea_lock ; spinlock_t check_sendpkt_lock ; spinlock_t iqk_lock ; }; struct rtl_works { struct ieee80211_hw *hw ; struct timer_list watchdog_timer ; struct timer_list dualmac_easyconcurrent_retrytimer ; struct timer_list fw_clockoff_timer ; struct timer_list fast_antenna_training_timer ; struct tasklet_struct irq_tasklet ; struct tasklet_struct irq_prepare_bcn_tasklet ; struct workqueue_struct *rtl_wq ; struct delayed_work watchdog_wq ; struct delayed_work ips_nic_off_wq ; struct delayed_work ps_work ; struct delayed_work ps_rfon_wq ; struct delayed_work fwevt_wq ; struct work_struct lps_change_work ; struct work_struct fill_h2c_cmd ; }; struct rtl_debug { u32 dbgp_type[19U] ; int global_debuglevel ; u64 global_debugcomponents ; struct proc_dir_entry *proc_dir ; char proc_name[20U] ; }; struct rtl_dualmac_easy_concurrent_ctl { enum band_type currentbandtype_backfordmdp ; bool close_bbandrf_for_dmsp ; bool change_to_dmdp ; bool change_to_dmsp ; bool switch_in_process ; }; struct rtl_dmsp_ctl { bool activescan_for_slaveofdmsp ; bool scan_for_anothermac_fordmsp ; bool scan_for_itself_fordmsp ; bool writedig_for_anothermacofdmsp ; u32 curdigvalue_for_anothermacofdmsp ; bool changecckpdstate_for_anothermacofdmsp ; u8 curcckpdstate_for_anothermacofdmsp ; bool changetxhighpowerlvl_for_anothermacofdmsp ; u8 curtxhighlvl_for_anothermacofdmsp ; long rssivalmin_for_anothermacofdmsp ; }; struct ps_t { u8 pre_ccastate ; u8 cur_ccasate ; u8 pre_rfstate ; u8 cur_rfstate ; u8 initialize ; long rssi_val_min ; }; struct dig_t { u32 rssi_lowthresh ; u32 rssi_highthresh ; u32 fa_lowthresh ; u32 fa_highthresh ; long last_min_undec_pwdb_for_dm ; long rssi_highpower_lowthresh ; long rssi_highpower_highthresh ; u32 recover_cnt ; u32 pre_igvalue ; u32 cur_igvalue ; long rssi_val ; u8 dig_enable_flag ; u8 dig_ext_port_stage ; u8 dig_algorithm ; u8 dig_twoport_algorithm ; u8 dig_dbgmode ; u8 dig_slgorithm_switch ; u8 cursta_cstate ; u8 presta_cstate ; u8 curmultista_cstate ; u8 stop_dig ; char back_val ; char back_range_max ; char back_range_min ; u8 rx_gain_max ; u8 rx_gain_min ; u8 min_undec_pwdb_for_dm ; u8 rssi_val_min ; u8 pre_cck_cca_thres ; u8 cur_cck_cca_thres ; u8 pre_cck_pd_state ; u8 cur_cck_pd_state ; u8 pre_cck_fa_state ; u8 cur_cck_fa_state ; u8 pre_ccastate ; u8 cur_ccasate ; u8 large_fa_hit ; u8 dig_dynamic_min ; u8 dig_dynamic_min_1 ; u8 forbidden_igi ; u8 dig_state ; u8 dig_highpwrstate ; u8 cur_sta_cstate ; u8 pre_sta_cstate ; u8 cur_ap_cstate ; u8 pre_ap_cstate ; u8 cur_pd_thstate ; u8 pre_pd_thstate ; u8 cur_cs_ratiostate ; u8 pre_cs_ratiostate ; u8 backoff_enable_flag ; char backoffval_range_max ; char backoffval_range_min ; u8 dig_min_0 ; u8 dig_min_1 ; u8 bt30_cur_igi ; bool media_connect_0 ; bool media_connect_1 ; u32 antdiv_rssi_max ; u32 rssi_max ; }; struct rtl_global_var { struct list_head glb_priv_list ; spinlock_t glb_list_lock ; }; struct rtl_btc_info { u8 bt_type ; u8 btcoexist ; u8 ant_num ; }; struct rtl_btc_ops; struct bt_coexist_info { struct rtl_btc_ops *btc_ops ; struct rtl_btc_info btc_info ; u8 eeprom_bt_coexist ; u8 eeprom_bt_type ; u8 eeprom_bt_ant_num ; u8 eeprom_bt_ant_isol ; u8 eeprom_bt_radio_shared ; u8 bt_coexistence ; u8 bt_ant_num ; u8 bt_coexist_type ; u8 bt_state ; u8 bt_cur_state ; u8 bt_ant_isolation ; u8 bt_pape_ctrl ; u8 bt_service ; u8 bt_radio_shared_type ; u8 bt_rfreg_origin_1e ; u8 bt_rfreg_origin_1f ; u8 bt_rssi_state ; u32 ratio_tx ; u32 ratio_pri ; u32 bt_edca_ul ; u32 bt_edca_dl ; bool init_set ; bool bt_busy_traffic ; bool bt_traffic_mode_set ; bool bt_non_traffic_mode_set ; bool fw_coexist_all_off ; bool sw_coexist_all_off ; bool hw_coexist_all_off ; u32 cstate ; u32 previous_state ; u32 cstate_h ; u32 previous_state_h ; u8 bt_pre_rssi_state ; u8 bt_pre_rssi_state1 ; u8 reg_bt_iso ; u8 reg_bt_sco ; bool balance_on ; u8 bt_active_zero_cnt ; bool cur_bt_disabled ; bool pre_bt_disabled ; u8 bt_profile_case ; u8 bt_profile_action ; bool bt_busy ; bool hold_for_bt_operation ; u8 lps_counter ; }; struct rtl_btc_ops { void (*btc_init_variables)(struct rtl_priv * ) ; void (*btc_init_hal_vars)(struct rtl_priv * ) ; void (*btc_init_hw_config)(struct rtl_priv * ) ; void (*btc_ips_notify)(struct rtl_priv * , u8 ) ; void (*btc_scan_notify)(struct rtl_priv * , u8 ) ; void (*btc_connect_notify)(struct rtl_priv * , u8 ) ; void (*btc_mediastatus_notify)(struct rtl_priv * , enum _RT_MEDIA_STATUS ) ; void (*btc_periodical)(struct rtl_priv * ) ; void (*btc_halt_notify)(void) ; void (*btc_btinfo_notify)(struct rtl_priv * , u8 * , u8 ) ; bool (*btc_is_limited_dig)(struct rtl_priv * ) ; bool (*btc_is_disable_edca_turbo)(struct rtl_priv * ) ; bool (*btc_is_bt_disabled)(struct rtl_priv * ) ; }; struct proxim { bool proxim_on ; void *proximity_priv ; int (*proxim_rx)(struct ieee80211_hw * , struct rtl_stats * , struct sk_buff * ) ; u8 (*proxim_get_var)(struct ieee80211_hw * , u8 ) ; }; struct rtl_rate_priv; struct rtl_priv { struct ieee80211_hw *hw ; struct completion firmware_loading_complete ; struct list_head list ; struct rtl_priv *buddy_priv ; struct rtl_global_var *glb_var ; struct rtl_dualmac_easy_concurrent_ctl easy_concurrent_ctl ; struct rtl_dmsp_ctl dmsp_ctl ; struct rtl_locks locks ; struct rtl_works works ; struct rtl_mac mac80211 ; struct rtl_hal rtlhal ; struct rtl_regulatory regd ; struct rtl_rfkill rfkill ; struct rtl_io io ; struct rtl_phy phy ; struct rtl_dm dm ; struct rtl_security sec ; struct rtl_efuse efuse ; struct rtl_ps_ctl psc ; struct rate_adaptive ra ; struct dynamic_primary_cca primarycca ; struct wireless_stats stats ; struct rt_link_detect link_info ; struct false_alarm_statistics falsealm_cnt ; struct rtl_rate_priv *rate_priv ; struct list_head entry_list ; struct rtl_debug dbg ; int max_fw_size ; struct rtl_hal_cfg *cfg ; struct rtl_intf_ops *intf_ops ; unsigned long status ; struct dig_t dm_digtable ; struct ps_t dm_pstable ; u32 reg_874 ; u32 reg_c70 ; u32 reg_85c ; u32 reg_a74 ; bool reg_init ; bool bt_operation_on ; __le32 *usb_data ; int usb_data_index ; bool initialized ; bool enter_ps ; u8 rate_mask[5U] ; struct proxim proximity ; struct bt_coexist_info btcoexist ; bool use_new_trx_flow ; u8 priv[0U] ; }; enum pwr_track_control_method { BBSWING = 0, TXAGC = 1 } ; struct rtl92c_firmware_header { u16 signature ; u8 category ; u8 function ; u16 version ; u8 subversion ; u8 rsvd1 ; u8 month ; u8 date ; u8 hour ; u8 minute ; u16 ramcodesize ; u16 rsvd2 ; u32 svnindex ; u32 rsvd3 ; u32 rsvd4 ; u32 rsvd5 ; }; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned char flags ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct pci_dev; enum hrtimer_restart; struct pci_bus; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; enum rtl_led_pin { LED_PIN_GPIO0 = 0, LED_PIN_LED0 = 1, LED_PIN_LED1 = 2, LED_PIN_LED2 = 3 } ; enum acm_method { eAcmWay0_SwAndHw = 0, eAcmWay1_HW = 1, EACMWAY2_SW = 2 } ; struct rtl_led { void *hw ; enum rtl_led_pin ledpin ; bool ledon ; }; struct rtl_led_ctl { bool led_opendrain ; struct rtl_led sw_led0 ; struct rtl_led sw_led1 ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct pci_driver; union __anonunion_ldv_49412_298 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; unsigned char pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; u8 dma_alias_devfn ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned char pme_support : 5 ; unsigned char pme_interrupt : 1 ; unsigned char pme_poll : 1 ; unsigned char d1_support : 1 ; unsigned char d2_support : 1 ; unsigned char no_d1d2 : 1 ; unsigned char no_d3cold : 1 ; unsigned char d3cold_allowed : 1 ; unsigned char mmio_always_on : 1 ; unsigned char wakeup_prepared : 1 ; unsigned char runtime_d3cold : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned char transparent : 1 ; unsigned char multifunction : 1 ; unsigned char is_added : 1 ; unsigned char is_busmaster : 1 ; unsigned char no_msi : 1 ; unsigned char block_cfg_access : 1 ; unsigned char broken_parity_status : 1 ; unsigned char irq_reroute_variant : 2 ; unsigned char msi_enabled : 1 ; unsigned char msix_enabled : 1 ; unsigned char ari_enabled : 1 ; unsigned char is_managed : 1 ; unsigned char needs_freset : 1 ; unsigned char state_saved : 1 ; unsigned char is_physfn : 1 ; unsigned char is_virtfn : 1 ; unsigned char reset_fn : 1 ; unsigned char is_hotplug_bridge : 1 ; unsigned char __aer_firmware_first_valid : 1 ; unsigned char __aer_firmware_first : 1 ; unsigned char broken_intx_masking : 1 ; unsigned char io_window_1k : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion_ldv_49412_298 ldv_49412 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; char *driver_override ; }; struct pci_ops; struct msi_chip; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_chip *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned char is_added : 1 ; }; struct pci_ops { int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*reset_notify)(struct pci_dev * , bool ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct rtl_rx_desc { u32 dword[8U] ; }; struct rtl_tx_desc { u32 dword[16U] ; }; struct rtl_tx_buffer_desc { u32 dword[8U] ; }; struct rtl8192_tx_ring { struct rtl_tx_desc *desc ; dma_addr_t dma ; unsigned int idx ; unsigned int entries ; struct sk_buff_head queue ; struct rtl_tx_buffer_desc *buffer_desc ; }; struct rtl8192_rx_ring { struct rtl_rx_desc *desc ; dma_addr_t dma ; unsigned int idx ; struct sk_buff *rx_buf[64U] ; }; struct rtl_pci { struct pci_dev *pdev ; bool irq_enabled ; bool driver_is_goingto_unload ; bool up_first_time ; bool first_init ; bool being_init_adapter ; bool init_ready ; struct rtl8192_tx_ring tx_ring[9U] ; int txringcount[9U] ; u32 transmit_config ; struct rtl8192_rx_ring rx_ring[2U] ; int rxringcount ; u16 rxbuffersize ; u32 receive_config ; u8 irq_alloc ; u32 irq_mask[2U] ; u32 sys_irq_mask ; u32 reg_bcn_ctrl_val ; u8 const_pci_aspm ; u8 const_amdpci_aspm ; u8 const_hwsw_rfoff_d3 ; u8 const_support_pciaspm ; u8 const_hostpci_aspm_setting ; u8 const_devicepci_aspm_setting ; bool support_aspm ; bool support_backdoor ; enum acm_method acm_method ; u16 shortretry_limit ; u16 longretry_limit ; bool msi_support ; bool using_msi ; }; struct mp_adapter { u8 linkctrl_reg ; u8 busnumber ; u8 devnumber ; u8 funcnumber ; u8 pcibridge_busnum ; u8 pcibridge_devnum ; u8 pcibridge_funcnum ; u8 pcibridge_vendor ; u16 pcibridge_vendorid ; u16 pcibridge_deviceid ; u8 num4bytes ; u8 pcibridge_pciehdr_offset ; u8 pcibridge_linkctrlreg ; bool amd_l1_patch ; }; struct rtl_pci_priv { struct rtl_pci dev ; struct mp_adapter ndis_adapter ; struct rtl_led_ctl ledctl ; struct bt_coexist_info bt_coexist ; }; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; enum hrtimer_restart; struct txpower_info_2g { u8 index_cck_base[4U][6U] ; u8 index_bw40_base[4U][6U] ; u8 cck_diff[4U][4U] ; u8 ofdm_diff[4U][4U] ; u8 bw20_diff[4U][4U] ; u8 bw40_diff[4U][4U] ; u8 bw80_diff[4U][4U] ; u8 bw160_diff[4U][4U] ; }; struct txpower_info_5g { u8 index_bw40_base[4U][14U] ; u8 ofdm_diff[4U][4U] ; u8 bw20_diff[4U][4U] ; u8 bw40_diff[4U][4U] ; u8 bw80_diff[4U][4U] ; u8 bw160_diff[4U][4U] ; }; struct __anonstruct_f_297 { unsigned char aifsn : 4 ; unsigned char acm : 1 ; unsigned char aci : 2 ; unsigned char reserved : 1 ; }; union aci_aifsn { u8 char_data ; struct __anonstruct_f_297 f ; }; enum wireless_mode { WIRELESS_MODE_UNKNOWN = 0, WIRELESS_MODE_A = 1, WIRELESS_MODE_B = 2, WIRELESS_MODE_G = 4, WIRELESS_MODE_AUTO = 8, WIRELESS_MODE_N_24G = 16, WIRELESS_MODE_N_5G = 32, WIRELESS_MODE_AC_5G = 64, WIRELESS_MODE_AC_24G = 128 } ; struct wlan_pwr_cfg { u16 offset ; u8 cut_msk ; unsigned char fab_msk : 4 ; unsigned char interface_msk : 4 ; unsigned char base : 4 ; unsigned char cmd : 4 ; u8 msk ; u8 value ; }; enum version_8723e { VERSION_TEST_UMC_CHIP_8723 = 129, VERSION_NORMAL_UMC_CHIP_8723_1T1R_A_CUT = 137, VERSION_NORMAL_UMC_CHIP_8723_1T1R_B_CUT = 4233, VERSION_TEST_CHIP_1T1R_8723B = 262, VERSION_NORMAL_SMIC_CHIP_1T1R_8723B = 270, VERSION_UNKNOWN = 255 } ; enum hrtimer_restart; enum hrtimer_restart; enum swchnlcmd_id { CMDID_END = 0, CMDID_SET_TXPOWEROWER_LEVEL = 1, CMDID_BBREGWRITE10 = 2, CMDID_WRITEPORT_ULONG = 3, CMDID_WRITEPORT_USHORT = 4, CMDID_WRITEPORT_UCHAR = 5, CMDID_RF_WRITEREG = 6 } ; struct swchnlcmd { enum swchnlcmd_id cmdid ; u32 para1 ; u32 para2 ; u32 msdelay ; }; enum hrtimer_restart; enum hrtimer_restart; struct kernel_symbol { unsigned long value ; char const *name ; }; typedef short s16; typedef void (*ctor_fn_t)(void); struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; enum hrtimer_restart; struct exception_table_entry { int insn ; int fixup ; }; struct firmware { size_t size ; u8 const *data ; struct page **pages ; void *priv ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion_ldv_52900_303 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s16 level ; union __anonunion_ldv_52900_303 ldv_52900 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_ref { unsigned long incs ; unsigned long decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; enum hrtimer_restart; struct phy_sts_cck_8723e_t { u8 adc_pwdb_X[4U] ; u8 sq_rpt ; u8 cck_agc_rpt ; }; struct phy_rx_agc_info_t { unsigned char gain : 7 ; unsigned char trsw : 1 ; }; struct phy_status_rpt { struct phy_rx_agc_info_t path_agc[2U] ; u8 ch_corr[2U] ; u8 cck_sig_qual_ofdm_pwdb_all ; u8 cck_agc_rpt_ofdm_cfosho_a ; u8 cck_rpt_b_ofdm_cfosho_b ; u8 rsvd_1 ; u8 noise_power_db_msb ; char path_cfotail[2U] ; u8 pcts_mask[2U] ; char stream_rxevm[2U] ; u8 path_rxsnr[2U] ; u8 noise_power_db_lsb ; u8 rsvd_2[3U] ; u8 stream_csi[2U] ; u8 stream_target_csi[2U] ; u8 sig_evm ; u8 rsvd_3 ; unsigned char antsel_rx_keep_2 : 1 ; unsigned char sgi_en : 1 ; unsigned char rxsc : 2 ; unsigned char idle_long : 1 ; unsigned char r_ant_train_en : 1 ; unsigned char ant_sel_b : 1 ; unsigned char ant_sel : 1 ; }; struct rx_fwinfo_8723be { u8 gain_trsw[4U] ; u8 pwdb_all ; u8 cfosho[4U] ; u8 cfotail[4U] ; char rxevm[2U] ; char rxsnr[4U] ; u8 pdsnr[2U] ; u8 csi_current[2U] ; u8 csi_target[2U] ; u8 sigevm ; u8 max_ex_pwr ; unsigned char ex_intf_flag : 1 ; unsigned char sgi_en : 1 ; unsigned char rxsc : 2 ; unsigned char reserve : 4 ; }; struct __anonstruct____missing_field_name_257 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_256 { __wsum csum ; struct __anonstruct____missing_field_name_257 __annonCompField63 ; }; union __anonunion____missing_field_name_258 { unsigned int napi_id ; dma_cookie_t dma_cookie ; }; union __anonunion____missing_field_name_259 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; struct sk_buff___0 { struct sk_buff___0 *next ; struct sk_buff___0 *prev ; union __anonunion_ldv_24882_180 __annonCompField62 ; struct sock *sk ; struct net_device *dev ; char cb[48] __attribute__((__aligned__(8))) ; unsigned long _skb_refdst ; struct sec_path *sp ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; union __anonunion____missing_field_name_256 __annonCompField64 ; __u32 priority ; __u8 ignore_df : 1 ; __u8 cloned : 1 ; __u8 ip_summed : 2 ; __u8 nohdr : 1 ; __u8 nfctinfo : 3 ; __u8 pkt_type : 3 ; __u8 fclone : 2 ; __u8 ipvs_property : 1 ; __u8 peeked : 1 ; __u8 nf_trace : 1 ; __be16 protocol ; void (*destructor)(struct sk_buff___0 *skb ) ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; int skb_iif ; __u32 hash ; __be16 vlan_proto ; __u16 vlan_tci ; __u16 tc_index ; __u16 tc_verd ; __u16 queue_mapping ; __u8 ndisc_nodetype : 2 ; __u8 pfmemalloc : 1 ; __u8 ooo_okay : 1 ; __u8 l4_hash : 1 ; __u8 wifi_acked_valid : 1 ; __u8 wifi_acked : 1 ; __u8 no_fcs : 1 ; __u8 head_frag : 1 ; __u8 encapsulation : 1 ; __u8 encap_hdr_csum : 1 ; __u8 csum_valid : 1 ; __u8 csum_complete_sw : 1 ; union __anonunion____missing_field_name_258 __annonCompField65 ; __u32 secmark ; union __anonunion____missing_field_name_259 __annonCompField66 ; __be16 inner_protocol ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; typedef void *Element; typedef Element Set; long ldv__builtin_expect(long exp , long c ) ; extern int printk(char const * , ...) ; extern void __bad_percpu_size(void) ; extern int __preempt_count ; __inline static int preempt_count(void) { int pfo_ret__ ; { switch (4UL) { case 1UL: __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "m" (__preempt_count)); goto ldv_5995; case 2UL: __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_5995; case 4UL: __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_5995; case 8UL: __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_5995; default: __bad_percpu_size(); } ldv_5995: ; return (pfo_ret__ & 2147483647); } } __inline static void __preempt_count_add(int val ) { int pao_ID__ ; { pao_ID__ = 0; switch (4UL) { case 1UL: ; if (pao_ID__ == 1) { __asm__ ("incb %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decb %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addb %1, %%gs:%P0": "+m" (__preempt_count): "qi" (val)); } goto ldv_6052; case 2UL: ; if (pao_ID__ == 1) { __asm__ ("incw %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decw %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addw %1, %%gs:%P0": "+m" (__preempt_count): "ri" (val)); } goto ldv_6052; case 4UL: ; if (pao_ID__ == 1) { __asm__ ("incl %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decl %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addl %1, %%gs:%P0": "+m" (__preempt_count): "ri" (val)); } goto ldv_6052; case 8UL: ; if (pao_ID__ == 1) { __asm__ ("incq %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decq %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addq %1, %%gs:%P0": "+m" (__preempt_count): "re" (val)); } goto ldv_6052; default: __bad_percpu_size(); } ldv_6052: ; return; } } __inline static void __preempt_count_sub(int val ) { int pao_ID__ ; { pao_ID__ = 0; switch (4UL) { case 1UL: ; if (pao_ID__ == 1) { __asm__ ("incb %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decb %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addb %1, %%gs:%P0": "+m" (__preempt_count): "qi" (- val)); } goto ldv_6064; case 2UL: ; if (pao_ID__ == 1) { __asm__ ("incw %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decw %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addw %1, %%gs:%P0": "+m" (__preempt_count): "ri" (- val)); } goto ldv_6064; case 4UL: ; if (pao_ID__ == 1) { __asm__ ("incl %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decl %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addl %1, %%gs:%P0": "+m" (__preempt_count): "ri" (- val)); } goto ldv_6064; case 8UL: ; if (pao_ID__ == 1) { __asm__ ("incq %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decq %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addq %1, %%gs:%P0": "+m" (__preempt_count): "re" (- val)); } goto ldv_6064; default: __bad_percpu_size(); } ldv_6064: ; return; } } extern void lock_acquire(struct lockdep_map * , unsigned int , int , int , int , struct lockdep_map * , unsigned long ) ; extern void lock_release(struct lockdep_map * , int , unsigned long ) ; extern void lockdep_rcu_suspicious(char const * , int const , char const * ) ; extern void _raw_spin_lock_bh(raw_spinlock_t * ) ; extern void _raw_spin_unlock_bh(raw_spinlock_t * ) ; __inline static void spin_lock_bh(spinlock_t *lock ) { { _raw_spin_lock_bh(& lock->ldv_6338.rlock); return; } } __inline static void spin_unlock_bh(spinlock_t *lock ) { { _raw_spin_unlock_bh(& lock->ldv_6338.rlock); return; } } __inline static void __rcu_read_lock(void) { { __preempt_count_add(1); __asm__ volatile ("": : : "memory"); return; } } __inline static void __rcu_read_unlock(void) { { __asm__ volatile ("": : : "memory"); __preempt_count_sub(1); return; } } extern bool rcu_is_watching(void) ; __inline static void rcu_lock_acquire(struct lockdep_map *map ) { { lock_acquire(map, 0U, 0, 2, 0, (struct lockdep_map *)0, (unsigned long )((void *)0)); return; } } __inline static void rcu_lock_release(struct lockdep_map *map ) { { lock_release(map, 1, (unsigned long )((void *)0)); return; } } extern struct lockdep_map rcu_lock_map ; extern int debug_lockdep_rcu_enabled(void) ; __inline static void rcu_read_lock(void) { bool __warned ; int tmp ; bool tmp___0 ; int tmp___1 ; { __rcu_read_lock(); rcu_lock_acquire(& rcu_lock_map); tmp = debug_lockdep_rcu_enabled(); if (tmp != 0 && ! __warned) { tmp___0 = rcu_is_watching(); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { __warned = 1; lockdep_rcu_suspicious("include/linux/rcupdate.h", 871, "rcu_read_lock() used illegally while idle"); } else { } } else { } return; } } __inline static void rcu_read_unlock(void) { bool __warned ; int tmp ; bool tmp___0 ; int tmp___1 ; { tmp = debug_lockdep_rcu_enabled(); if (tmp != 0 && ! __warned) { tmp___0 = rcu_is_watching(); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { __warned = 1; lockdep_rcu_suspicious("include/linux/rcupdate.h", 892, "rcu_read_unlock() used illegally while idle"); } else { } } else { } rcu_lock_release(& rcu_lock_map); __rcu_read_unlock(); return; } } void ldv_kfree_skb_6(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_7(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_8(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_11(struct sk_buff *ldv_func_arg1 ) ; void ldv_consume_skb_5(struct sk_buff *ldv_func_arg1 ) ; extern void ldv_skb_free(struct sk_buff___0 * ) ; extern void *malloc(size_t size ) ; extern void *calloc(size_t nmemb , size_t size ) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; extern void __VERIFIER_assume(int expression ) ; void *ldv_malloc(size_t size ) { void *p ; void *tmp ; int tmp___0 ; { tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0) { return ((void *)0); } else { tmp = malloc(size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } } void *ldv_zalloc(size_t size ) { void *p ; void *tmp ; int tmp___0 ; { tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0) { return ((void *)0); } else { tmp = calloc(1UL, size); p = tmp; __VERIFIER_assume((unsigned long )p != (unsigned long )((void *)0)); return (p); } } } int ldv_undef_int(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { tmp = __VERIFIER_nondet_pointer(); return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { tmp = __VERIFIER_nondet_ulong(); return (tmp); } } __inline static void ldv_error(void) { { ERROR: ; __VERIFIER_error(); } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { ldv_error(); return; } } int LDV_IN_INTERRUPT = 1; extern struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif * , u8 const * ) ; __inline static void rtl_write_byte(struct rtl_priv *rtlpriv , u32 addr , u8 val8 ) { { (*(rtlpriv->io.write8_async))(rtlpriv, addr, (int )val8); if ((int )(rtlpriv->cfg)->write_readback) { (*(rtlpriv->io.read8_sync))(rtlpriv, addr); } else { } return; } } __inline static void rtl_write_dword(struct rtl_priv *rtlpriv , u32 addr , u32 val32 ) { { (*(rtlpriv->io.write32_async))(rtlpriv, addr, val32); if ((int )(rtlpriv->cfg)->write_readback) { (*(rtlpriv->io.read32_sync))(rtlpriv, addr); } else { } return; } } __inline static u32 rtl_get_bbreg(struct ieee80211_hw *hw , u32 regaddr , u32 bitmask ) { struct rtl_priv *rtlpriv ; u32 tmp ; { rtlpriv = (struct rtl_priv *)hw->priv; tmp = (*(((rtlpriv->cfg)->ops)->get_bbreg))(hw, regaddr, bitmask); return (tmp); } } __inline static void rtl_set_bbreg(struct ieee80211_hw *hw , u32 regaddr , u32 bitmask , u32 data ) { struct rtl_priv *rtlpriv ; { rtlpriv = (struct rtl_priv *)hw->priv; (*(((rtlpriv->cfg)->ops)->set_bbreg))(hw, regaddr, bitmask, data); return; } } __inline static u32 rtl_get_rfreg(struct ieee80211_hw *hw , enum radio_path rfpath , u32 regaddr , u32 bitmask ) { struct rtl_priv *rtlpriv ; u32 tmp ; { rtlpriv = (struct rtl_priv *)hw->priv; tmp = (*(((rtlpriv->cfg)->ops)->get_rfreg))(hw, rfpath, regaddr, bitmask); return (tmp); } } __inline static void rtl_set_rfreg(struct ieee80211_hw *hw , enum radio_path rfpath , u32 regaddr , u32 bitmask , u32 data ) { struct rtl_priv *rtlpriv ; { rtlpriv = (struct rtl_priv *)hw->priv; (*(((rtlpriv->cfg)->ops)->set_rfreg))(hw, rfpath, regaddr, bitmask, data); return; } } __inline static bool is_hal_stop(struct rtl_hal *rtlhal ) { { return ((unsigned int )rtlhal->state == 0U); } } __inline static struct ieee80211_sta *rtl_find_sta(struct ieee80211_hw *hw , u8 *mac_addr ) { struct rtl_mac *mac ; struct ieee80211_sta *tmp ; { mac = & ((struct rtl_priv *)hw->priv)->mac80211; tmp = ieee80211_find_sta(mac->vif, (u8 const *)mac_addr); return (tmp); } } void rtl8723be_phy_set_txpower_level(struct ieee80211_hw *hw , u8 channel ) ; void rtl8723be_phy_iq_calibrate(struct ieee80211_hw *hw , bool recovery ) ; void rtl8723be_phy_lc_calibrate(struct ieee80211_hw *hw ) ; void rtl8723be_dm_init(struct ieee80211_hw *hw ) ; void rtl8723be_dm_watchdog(struct ieee80211_hw *hw ) ; void rtl8723be_dm_write_dig(struct ieee80211_hw *hw , u8 current_igi ) ; void rtl8723be_dm_check_txpower_tracking(struct ieee80211_hw *hw ) ; void rtl8723be_dm_init_rate_adaptive_mask(struct ieee80211_hw *hw ) ; void rtl8723be_dm_txpower_track_adjust(struct ieee80211_hw *hw , u8 type , u8 *pdirection , u32 *poutwrite_val ) ; extern void rtl8723_dm_init_dynamic_txpower(struct ieee80211_hw * ) ; extern void rtl8723_dm_init_edca_turbo(struct ieee80211_hw * ) ; extern void rtl8723_dm_init_dynamic_bb_powersaving(struct ieee80211_hw * ) ; void rtl8723be_fill_h2c_cmd(struct ieee80211_hw *hw , u8 element_id , u32 cmd_len , u8 *p_cmdbuffer ) ; static u32 const ofdmswing_table[43U] = { 188743725U, 201326640U, 213909555U, 226492470U, 239075385U, 251658300U, 268435520U, 285212740U, 301989960U, 318767180U, 339738705U, 360710230U, 381681755U, 402653280U, 427819110U, 452984940U, 478150770U, 507510905U, 536871040U, 570425480U, 603979920U, 637534360U, 679477410U, 717226155U, 759169205U, 805306560U, 851443915U, 901775575U, 956301540U, 1015021810U, 1073742080U, 1136656655U, 1203765535U, 1275068720U, 1350566210U, 1430258005U, 1514144105U, 1606418815U, 1698693525U, 1803551150U, 1908408775U, 2021655010U, 2139095550U}; static u8 const cckswing_table_ch1ch13[33U][8U] = { { 9U, 8U, 7U, 6U, 4U, 3U, 1U, 1U}, { 9U, 9U, 8U, 6U, 5U, 3U, 1U, 1U}, { 10U, 9U, 8U, 7U, 5U, 3U, 2U, 1U}, { 10U, 10U, 9U, 7U, 5U, 3U, 2U, 1U}, { 11U, 10U, 9U, 8U, 6U, 4U, 2U, 1U}, { 11U, 11U, 10U, 8U, 6U, 4U, 2U, 1U}, { 12U, 12U, 10U, 9U, 6U, 4U, 2U, 1U}, { 13U, 12U, 11U, 9U, 7U, 4U, 2U, 1U}, { 13U, 13U, 12U, 10U, 7U, 5U, 2U, 1U}, { 14U, 14U, 12U, 10U, 8U, 5U, 2U, 1U}, { 15U, 15U, 13U, 11U, 8U, 5U, 3U, 1U}, { 16U, 16U, 14U, 11U, 8U, 5U, 3U, 1U}, { 17U, 17U, 15U, 12U, 9U, 6U, 3U, 1U}, { 18U, 18U, 15U, 12U, 9U, 6U, 3U, 1U}, { 19U, 19U, 16U, 13U, 10U, 6U, 3U, 1U}, { 20U, 20U, 17U, 14U, 11U, 7U, 3U, 2U}, { 22U, 21U, 18U, 15U, 11U, 7U, 4U, 1U}, { 23U, 22U, 19U, 16U, 12U, 8U, 4U, 2U}, { 24U, 23U, 21U, 17U, 12U, 8U, 4U, 2U}, { 26U, 25U, 22U, 18U, 13U, 9U, 4U, 2U}, { 27U, 26U, 23U, 19U, 14U, 9U, 4U, 2U}, { 29U, 28U, 24U, 20U, 15U, 10U, 5U, 2U}, { 31U, 30U, 26U, 21U, 16U, 10U, 5U, 2U}, { 32U, 32U, 27U, 22U, 17U, 8U, 5U, 2U}, { 34U, 33U, 29U, 24U, 17U, 11U, 6U, 2U}, { 36U, 35U, 31U, 25U, 19U, 12U, 6U, 3U}, { 38U, 37U, 33U, 27U, 20U, 13U, 6U, 3U}, { 40U, 40U, 34U, 28U, 21U, 13U, 7U, 3U}, { 43U, 42U, 37U, 30U, 22U, 14U, 7U, 3U}, { 45U, 45U, 39U, 31U, 24U, 15U, 8U, 3U}, { 48U, 47U, 41U, 33U, 25U, 16U, 8U, 3U}, { 51U, 50U, 43U, 35U, 26U, 17U, 8U, 4U}, { 54U, 53U, 46U, 37U, 28U, 18U, 9U, 4U}}; static u8 const cckswing_table_ch14[33U][8U] = { { 9U, 8U, 7U, 4U, 0U, 0U, 0U, 0U}, { 9U, 9U, 8U, 5U, 0U, 0U, 0U, 0U}, { 10U, 9U, 8U, 5U, 0U, 0U, 0U, 0U}, { 10U, 10U, 9U, 5U, 0U, 0U, 0U, 0U}, { 11U, 10U, 9U, 5U, 0U, 0U, 0U, 0U}, { 11U, 11U, 10U, 6U, 0U, 0U, 0U, 0U}, { 12U, 12U, 10U, 6U, 0U, 0U, 0U, 0U}, { 13U, 12U, 11U, 6U, 0U, 0U, 0U, 0U}, { 13U, 13U, 12U, 7U, 0U, 0U, 0U, 0U}, { 14U, 14U, 12U, 7U, 0U, 0U, 0U, 0U}, { 15U, 15U, 13U, 8U, 0U, 0U, 0U, 0U}, { 16U, 16U, 14U, 8U, 0U, 0U, 0U, 0U}, { 17U, 17U, 15U, 9U, 0U, 0U, 0U, 0U}, { 18U, 18U, 15U, 9U, 0U, 0U, 0U, 0U}, { 19U, 19U, 16U, 10U, 0U, 0U, 0U, 0U}, { 20U, 20U, 17U, 10U, 0U, 0U, 0U, 0U}, { 22U, 21U, 18U, 11U, 0U, 0U, 0U, 0U}, { 23U, 22U, 19U, 11U, 0U, 0U, 0U, 0U}, { 24U, 23U, 21U, 12U, 0U, 0U, 0U, 0U}, { 26U, 25U, 22U, 13U, 0U, 0U, 0U, 0U}, { 27U, 26U, 23U, 14U, 0U, 0U, 0U, 0U}, { 29U, 28U, 24U, 14U, 0U, 0U, 0U, 0U}, { 31U, 30U, 26U, 15U, 0U, 0U, 0U, 0U}, { 32U, 32U, 27U, 16U, 0U, 0U, 0U, 0U}, { 34U, 33U, 29U, 17U, 0U, 0U, 0U, 0U}, { 36U, 35U, 31U, 18U, 0U, 0U, 0U, 0U}, { 38U, 37U, 33U, 19U, 0U, 0U, 0U, 0U}, { 40U, 40U, 36U, 20U, 0U, 0U, 0U, 0U}, { 43U, 42U, 37U, 21U, 0U, 0U, 0U, 0U}, { 45U, 45U, 23U, 23U, 0U, 0U, 0U, 0U}, { 48U, 47U, 41U, 24U, 0U, 0U, 0U, 0U}, { 51U, 50U, 43U, 25U, 0U, 0U, 0U, 0U}, { 54U, 53U, 46U, 27U, 0U, 0U, 0U, 0U}}; static u32 const edca_setting_dl[10U] = { 42063U, 6202447U, 6177570U, 6202411U, 42063U, 42544U, 6202928U, 6202411U}; static u32 const edca_setting_ul[10U] = { 6177570U, 42063U, 6202447U, 6202155U, 6202402U, 6202146U, 4105264U, 6202447U}; void rtl8723be_dm_txpower_track_adjust(struct ieee80211_hw *hw , u8 type , u8 *pdirection , u32 *poutwrite_val ) { struct rtl_priv *rtlpriv ; struct rtl_dm *rtldm ; u8 pwr_val ; u8 ofdm_base ; u8 ofdm_val ; u8 cck_base ; u8 cck_val ; { rtlpriv = (struct rtl_priv *)hw->priv; rtldm = & ((struct rtl_priv *)hw->priv)->dm; pwr_val = 0U; ofdm_base = rtlpriv->dm.swing_idx_ofdm_base[0]; ofdm_val = rtlpriv->dm.swing_idx_ofdm[0]; cck_base = rtldm->swing_idx_cck_base; cck_val = rtldm->swing_idx_cck; if ((unsigned int )type == 0U) { if ((int )ofdm_val <= (int )ofdm_base) { *pdirection = 1U; pwr_val = (int )ofdm_base - (int )ofdm_val; } else { *pdirection = 2U; pwr_val = (int )ofdm_val - (int )ofdm_base; } } else if ((unsigned int )type == 1U) { if ((int )cck_val <= (int )cck_base) { *pdirection = 1U; pwr_val = (int )cck_base - (int )cck_val; } else { *pdirection = 2U; pwr_val = (int )cck_val - (int )cck_base; } } else { } if ((unsigned int )pwr_val > 5U && (unsigned int )*pdirection == 1U) { pwr_val = 6U; } else { } *poutwrite_val = (u32 )((((int )pwr_val | ((int )pwr_val << 8)) | ((int )pwr_val << 16)) | ((int )pwr_val << 24)); return; } } static void rtl8723be_dm_diginit(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct dig_t *dm_digtable ; { rtlpriv = (struct rtl_priv *)hw->priv; dm_digtable = & rtlpriv->dm_digtable; dm_digtable->dig_enable_flag = 1U; dm_digtable->cur_igvalue = rtl_get_bbreg(hw, 3152U, 127U); dm_digtable->rssi_lowthresh = 35U; dm_digtable->rssi_highthresh = 40U; dm_digtable->fa_lowthresh = 400U; dm_digtable->fa_highthresh = 1000U; dm_digtable->rx_gain_max = 62U; dm_digtable->rx_gain_min = 30U; dm_digtable->back_val = 10; dm_digtable->back_range_max = 12; dm_digtable->back_range_min = -4; dm_digtable->pre_cck_cca_thres = 255U; dm_digtable->cur_cck_cca_thres = 131U; dm_digtable->forbidden_igi = 30U; dm_digtable->large_fa_hit = 0U; dm_digtable->recover_cnt = 0U; dm_digtable->dig_min_0 = 30U; dm_digtable->dig_min_1 = 30U; dm_digtable->media_connect_0 = 0; dm_digtable->media_connect_1 = 0; rtlpriv->dm.dm_initialgain_enable = 1; dm_digtable->bt30_cur_igi = 50U; return; } } void rtl8723be_dm_init_rate_adaptive_mask(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rate_adaptive *ra ; { rtlpriv = (struct rtl_priv *)hw->priv; ra = & rtlpriv->ra; ra->ratr_state = 0U; ra->pre_ratr_state = 0U; if ((unsigned int )rtlpriv->dm.dm_type == 1U) { rtlpriv->dm.useramask = 1; } else { rtlpriv->dm.useramask = 0; } ra->high_rssi_thresh_for_ra = 50U; ra->low_rssi_thresh_for_ra40m = 20U; return; } } static void rtl8723be_dm_init_txpower_tracking(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlpriv->dm.txpower_tracking = 1; rtlpriv->dm.txpower_track_control = 1U; rtlpriv->dm.thermalvalue = 0U; rtlpriv->dm.ofdm_index[0] = 30; rtlpriv->dm.cck_index = 20; rtlpriv->dm.swing_idx_cck_base = (u8 )rtlpriv->dm.cck_index; rtlpriv->dm.swing_idx_ofdm_base[0] = (u8 )rtlpriv->dm.ofdm_index[0]; rtlpriv->dm.delta_power_index[0] = 0; rtlpriv->dm.delta_power_index_last[0] = 0; rtlpriv->dm.power_index_offset[0] = 0; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> rtlpriv->dm.txpower_tracking = %d\n", "rtl8723be_dm_init_txpower_tracking", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )rtlpriv->dm.txpower_tracking); } else { } } else { } return; } } static void rtl8723be_dm_init_dynamic_atc_switch(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; u32 tmp ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlpriv->dm.crystal_cap = (int )rtlpriv->efuse.crystalcap; tmp = rtl_get_bbreg(hw, 3372U, 2048U); rtlpriv->dm.atc_status = tmp != 0U; rtlpriv->dm.cfo_threshold = 10U; return; } } void rtl8723be_dm_init(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlpriv->dm.dm_type = 1U; rtl8723be_dm_diginit(hw); rtl8723be_dm_init_rate_adaptive_mask(hw); rtl8723_dm_init_edca_turbo(hw); rtl8723_dm_init_dynamic_bb_powersaving(hw); rtl8723_dm_init_dynamic_txpower(hw); rtl8723be_dm_init_txpower_tracking(hw); rtl8723be_dm_init_dynamic_atc_switch(hw); return; } } static void rtl8723be_dm_find_minimum_rssi(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct dig_t *rtl_dm_dig ; struct rtl_mac *mac ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; int tmp___11 ; int tmp___12 ; long tmp___13 ; long tmp___14 ; int tmp___15 ; int tmp___16 ; long tmp___17 ; long tmp___18 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtl_dm_dig = & rtlpriv->dm_digtable; mac = & rtlpriv->mac80211; if ((unsigned int )mac->link_state <= 1U && rtlpriv->dm.entry_min_undec_sm_pwdb == 0L) { rtl_dm_dig->min_undec_pwdb_for_dm = 0U; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 262144ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Not connected to any\n", "rtl8723be_dm_find_minimum_rssi", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } } else { } if ((unsigned int )mac->link_state > 1U) { if ((unsigned int )mac->opmode == 3U || (unsigned int )mac->opmode == 1U) { rtl_dm_dig->min_undec_pwdb_for_dm = (u8 )rtlpriv->dm.entry_min_undec_sm_pwdb; tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 262144ULL) != 0ULL, 0L); if (tmp___5 != 0L) { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___6 != 0L) { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> AP Client PWDB = 0x%lx\n", "rtl8723be_dm_find_minimum_rssi", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, rtlpriv->dm.entry_min_undec_sm_pwdb); } else { } } else { } } else { rtl_dm_dig->min_undec_pwdb_for_dm = (u8 )rtlpriv->dm.undec_sm_pwdb; tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 262144ULL) != 0ULL, 0L); if (tmp___9 != 0L) { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___10 != 0L) { tmp___7 = preempt_count(); tmp___8 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> STA Default Port PWDB = 0x%x\n", "rtl8723be_dm_find_minimum_rssi", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL, (int )rtl_dm_dig->min_undec_pwdb_for_dm); } else { } } else { } } } else { rtl_dm_dig->min_undec_pwdb_for_dm = (u8 )rtlpriv->dm.entry_min_undec_sm_pwdb; tmp___13 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 262144ULL) != 0ULL, 0L); if (tmp___13 != 0L) { tmp___14 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___14 != 0L) { tmp___11 = preempt_count(); tmp___12 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> AP Ext Port or disconnet PWDB = 0x%x\n", "rtl8723be_dm_find_minimum_rssi", (unsigned long )tmp___12 & 2096896UL, ((unsigned long )tmp___11 & 0xffffffffffdfffffUL) != 0UL, (int )rtl_dm_dig->min_undec_pwdb_for_dm); } else { } } else { } } tmp___17 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8192ULL) != 0ULL, 0L); if (tmp___17 != 0L) { tmp___18 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___18 != 0L) { tmp___15 = preempt_count(); tmp___16 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> MinUndecoratedPWDBForDM =%d\n", "rtl8723be_dm_find_minimum_rssi", (unsigned long )tmp___16 & 2096896UL, ((unsigned long )tmp___15 & 0xffffffffffdfffffUL) != 0UL, (int )rtl_dm_dig->min_undec_pwdb_for_dm); } else { } } else { } return; } } static void rtl8723be_dm_check_rssi_monitor(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_sta_info *drv_priv ; u8 h2c_parameter[3U] ; unsigned int tmp ; long tmp_entry_max_pwdb ; long tmp_entry_min_pwdb ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; int tmp___0 ; int tmp___1 ; long tmp___2 ; long tmp___3 ; int tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; { rtlpriv = (struct rtl_priv *)hw->priv; h2c_parameter[0] = 0U; tmp = 1U; while (1) { if (tmp >= 3U) { break; } else { } h2c_parameter[tmp] = (unsigned char)0; tmp = tmp + 1U; } tmp_entry_max_pwdb = 0L; tmp_entry_min_pwdb = 255L; spin_lock_bh(& rtlpriv->locks.entry_list_lock); __mptr = (struct list_head const *)rtlpriv->entry_list.next; drv_priv = (struct rtl_sta_info *)__mptr; goto ldv_52399; ldv_52398: ; if (drv_priv->rssi_stat.undec_sm_pwdb < tmp_entry_min_pwdb) { tmp_entry_min_pwdb = drv_priv->rssi_stat.undec_sm_pwdb; } else { } if (drv_priv->rssi_stat.undec_sm_pwdb > tmp_entry_max_pwdb) { tmp_entry_max_pwdb = drv_priv->rssi_stat.undec_sm_pwdb; } else { } __mptr___0 = (struct list_head const *)drv_priv->list.next; drv_priv = (struct rtl_sta_info *)__mptr___0; ldv_52399: ; if ((unsigned long )(& drv_priv->list) != (unsigned long )(& rtlpriv->entry_list)) { goto ldv_52398; } else { } spin_unlock_bh(& rtlpriv->locks.entry_list_lock); if (tmp_entry_max_pwdb != 0L) { rtlpriv->dm.entry_max_undec_sm_pwdb = tmp_entry_max_pwdb; tmp___2 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); if (tmp___2 != 0L) { tmp___3 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___3 != 0L) { tmp___0 = preempt_count(); tmp___1 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> EntryMaxPWDB = 0x%lx(%ld)\n", "rtl8723be_dm_check_rssi_monitor", (unsigned long )tmp___1 & 2096896UL, ((unsigned long )tmp___0 & 0xffffffffffdfffffUL) != 0UL, tmp_entry_max_pwdb, tmp_entry_max_pwdb); } else { } } else { } } else { rtlpriv->dm.entry_max_undec_sm_pwdb = 0L; } if (tmp_entry_min_pwdb != 255L) { rtlpriv->dm.entry_min_undec_sm_pwdb = tmp_entry_min_pwdb; tmp___6 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); if (tmp___6 != 0L) { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___7 != 0L) { tmp___4 = preempt_count(); tmp___5 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> EntryMinPWDB = 0x%lx(%ld)\n", "rtl8723be_dm_check_rssi_monitor", (unsigned long )tmp___5 & 2096896UL, ((unsigned long )tmp___4 & 0xffffffffffdfffffUL) != 0UL, tmp_entry_min_pwdb, tmp_entry_min_pwdb); } else { } } else { } } else { rtlpriv->dm.entry_min_undec_sm_pwdb = 0L; } if ((int )rtlpriv->dm.useramask) { h2c_parameter[2] = (unsigned char )rtlpriv->dm.undec_sm_pwdb; h2c_parameter[1] = 32U; h2c_parameter[0] = 0U; rtl8723be_fill_h2c_cmd(hw, 4, 3U, (u8 *)(& h2c_parameter)); } else { rtl_write_byte(rtlpriv, 1278U, (int )((u8 )rtlpriv->dm.undec_sm_pwdb)); } rtl8723be_dm_find_minimum_rssi(hw); rtlpriv->dm_digtable.rssi_val_min = rtlpriv->dm_digtable.min_undec_pwdb_for_dm; return; } } void rtl8723be_dm_write_dig(struct ieee80211_hw *hw , u8 current_igi ) { struct rtl_priv *rtlpriv ; { rtlpriv = (struct rtl_priv *)hw->priv; if (rtlpriv->dm_digtable.cur_igvalue != (u32 )current_igi) { rtl_set_bbreg(hw, 3152U, 127U, (u32 )current_igi); if ((unsigned int )rtlpriv->phy.rf_type != 0U) { rtl_set_bbreg(hw, 3160U, 127U, (u32 )current_igi); } else { } } else { } rtlpriv->dm_digtable.pre_igvalue = rtlpriv->dm_digtable.cur_igvalue; rtlpriv->dm_digtable.cur_igvalue = (u32 )current_igi; return; } } static void rtl8723be_dm_dig(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_mac *mac ; struct dig_t *dm_digtable ; u8 dig_dynamic_min ; u8 dig_maxofmin ; bool firstconnect ; bool firstdisconnect ; u8 dm_dig_max ; u8 dm_dig_min ; u8 current_igi ; u8 offset ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { rtlpriv = (struct rtl_priv *)hw->priv; mac = & ((struct rtl_priv *)hw->priv)->mac80211; dm_digtable = & rtlpriv->dm_digtable; current_igi = (u8 )dm_digtable->cur_igvalue; if ((int )mac->act_scanning) { return; } else { } dig_dynamic_min = dm_digtable->dig_min_0; firstconnect = (bool )((unsigned int )mac->link_state > 1U && ! dm_digtable->media_connect_0); firstdisconnect = (bool )((unsigned int )mac->link_state <= 1U && (int )dm_digtable->media_connect_0); dm_dig_max = 90U; dm_dig_min = 30U; dig_maxofmin = 50U; if ((unsigned int )mac->link_state > 1U) { if ((int )dm_digtable->rssi_val_min + 10 > (int )dm_dig_max) { dm_digtable->rx_gain_max = dm_dig_max; } else if ((int )dm_digtable->rssi_val_min + 10 < (int )dm_dig_min) { dm_digtable->rx_gain_max = dm_dig_min; } else { dm_digtable->rx_gain_max = (unsigned int )dm_digtable->rssi_val_min + 10U; } if ((int )rtlpriv->dm.one_entry_only) { offset = 12U; if ((int )dm_digtable->rssi_val_min - (int )offset < (int )dm_dig_min) { dig_dynamic_min = dm_dig_min; } else if ((int )dm_digtable->rssi_val_min - (int )offset > (int )dig_maxofmin) { dig_dynamic_min = dig_maxofmin; } else { dig_dynamic_min = (int )dm_digtable->rssi_val_min - (int )offset; } } else { dig_dynamic_min = dm_dig_min; } } else { dm_digtable->rx_gain_max = dm_dig_max; dig_dynamic_min = dm_dig_min; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8192ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> no link\n", "rtl8723be_dm_dig", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } } if (rtlpriv->falsealm_cnt.cnt_all > 10000U) { if ((unsigned int )dm_digtable->large_fa_hit != 3U) { dm_digtable->large_fa_hit = (u8 )((int )dm_digtable->large_fa_hit + 1); } else { } if ((int )dm_digtable->forbidden_igi < (int )current_igi) { dm_digtable->forbidden_igi = current_igi; dm_digtable->large_fa_hit = 1U; } else { } if ((unsigned int )dm_digtable->large_fa_hit > 2U) { if ((int )dm_digtable->forbidden_igi + 1 > (int )dm_digtable->rx_gain_max) { dm_digtable->rx_gain_min = dm_digtable->rx_gain_max; } else { dm_digtable->rx_gain_min = (unsigned int )dm_digtable->forbidden_igi + 1U; } dm_digtable->recover_cnt = 3600U; } else { } } else if (dm_digtable->recover_cnt != 0U) { dm_digtable->recover_cnt = dm_digtable->recover_cnt - 1U; } else if ((unsigned int )dm_digtable->large_fa_hit <= 2U) { if ((int )dm_digtable->forbidden_igi + -1 < (int )dig_dynamic_min) { dm_digtable->forbidden_igi = dig_dynamic_min; dm_digtable->rx_gain_min = dig_dynamic_min; } else { dm_digtable->forbidden_igi = (u8 )((int )dm_digtable->forbidden_igi - 1); dm_digtable->rx_gain_min = (unsigned int )dm_digtable->forbidden_igi + 1U; } } else { dm_digtable->large_fa_hit = 0U; } if ((int )dm_digtable->rx_gain_min > (int )dm_digtable->rx_gain_max) { dm_digtable->rx_gain_min = dm_digtable->rx_gain_max; } else { } if ((unsigned int )mac->link_state > 1U) { if ((int )firstconnect) { if ((int )dm_digtable->rssi_val_min <= (int )dig_maxofmin) { current_igi = dm_digtable->rssi_val_min; } else { current_igi = dig_maxofmin; } dm_digtable->large_fa_hit = 0U; } else if (rtlpriv->falsealm_cnt.cnt_all > 1024U) { current_igi = (unsigned int )current_igi + 4U; } else if (rtlpriv->falsealm_cnt.cnt_all > 768U) { current_igi = (unsigned int )current_igi + 2U; } else if (rtlpriv->falsealm_cnt.cnt_all <= 511U) { current_igi = (unsigned int )current_igi + 254U; } else { } } else if ((int )firstdisconnect) { current_igi = dm_digtable->rx_gain_min; } else if (rtlpriv->falsealm_cnt.cnt_all > 10000U) { current_igi = (unsigned int )current_igi + 4U; } else if (rtlpriv->falsealm_cnt.cnt_all > 8000U) { current_igi = (unsigned int )current_igi + 2U; } else if (rtlpriv->falsealm_cnt.cnt_all <= 499U) { current_igi = (unsigned int )current_igi + 254U; } else { } if ((int )dm_digtable->rx_gain_max < (int )current_igi) { current_igi = dm_digtable->rx_gain_max; } else if ((int )dm_digtable->rx_gain_min > (int )current_igi) { current_igi = dm_digtable->rx_gain_min; } else { } rtl8723be_dm_write_dig(hw, (int )current_igi); dm_digtable->media_connect_0 = (unsigned int )mac->link_state > 1U; dm_digtable->dig_min_0 = dig_dynamic_min; return; } } static void rtl8723be_dm_false_alarm_counter_statistics(struct ieee80211_hw *hw ) { u32 ret_value ; struct rtl_priv *rtlpriv ; struct false_alarm_statistics *falsealm_cnt ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { rtlpriv = (struct rtl_priv *)hw->priv; falsealm_cnt = & rtlpriv->falsealm_cnt; rtl_set_bbreg(hw, 3072U, 2147483648U, 1U); rtl_set_bbreg(hw, 3328U, 2147483648U, 1U); ret_value = rtl_get_bbreg(hw, 3312U, 4294967295U); falsealm_cnt->cnt_fast_fsync_fail = ret_value & 65535U; falsealm_cnt->cnt_sb_search_fail = ret_value >> 16; ret_value = rtl_get_bbreg(hw, 3488U, 4294967295U); falsealm_cnt->cnt_ofdm_cca = ret_value & 65535U; falsealm_cnt->cnt_parity_fail = ret_value >> 16; ret_value = rtl_get_bbreg(hw, 3492U, 4294967295U); falsealm_cnt->cnt_rate_illegal = ret_value & 65535U; falsealm_cnt->cnt_crc8_fail = ret_value >> 16; ret_value = rtl_get_bbreg(hw, 3496U, 4294967295U); falsealm_cnt->cnt_mcs_fail = ret_value & 65535U; falsealm_cnt->cnt_ofdm_fail = ((((falsealm_cnt->cnt_parity_fail + falsealm_cnt->cnt_rate_illegal) + falsealm_cnt->cnt_crc8_fail) + falsealm_cnt->cnt_mcs_fail) + falsealm_cnt->cnt_fast_fsync_fail) + falsealm_cnt->cnt_sb_search_fail; rtl_set_bbreg(hw, 2604U, 4096U, 1U); rtl_set_bbreg(hw, 2604U, 16384U, 1U); ret_value = rtl_get_bbreg(hw, 2604U, 255U); falsealm_cnt->cnt_cck_fail = ret_value; ret_value = rtl_get_bbreg(hw, 2648U, 4278190080U); falsealm_cnt->cnt_cck_fail = falsealm_cnt->cnt_cck_fail + ((ret_value << 8) & 65535U); ret_value = rtl_get_bbreg(hw, 2656U, 4294967295U); falsealm_cnt->cnt_cck_cca = ((ret_value << 8) & 65535U) | ((ret_value & 65280U) >> 8); falsealm_cnt->cnt_all = (((((falsealm_cnt->cnt_fast_fsync_fail + falsealm_cnt->cnt_sb_search_fail) + falsealm_cnt->cnt_parity_fail) + falsealm_cnt->cnt_rate_illegal) + falsealm_cnt->cnt_crc8_fail) + falsealm_cnt->cnt_mcs_fail) + falsealm_cnt->cnt_cck_fail; falsealm_cnt->cnt_cca_all = falsealm_cnt->cnt_ofdm_cca + falsealm_cnt->cnt_cck_cca; rtl_set_bbreg(hw, 3084U, 2147483648U, 1U); rtl_set_bbreg(hw, 3084U, 2147483648U, 0U); rtl_set_bbreg(hw, 3328U, 134217728U, 1U); rtl_set_bbreg(hw, 3328U, 134217728U, 0U); rtl_set_bbreg(hw, 3072U, 2147483648U, 0U); rtl_set_bbreg(hw, 3328U, 2147483648U, 0U); rtl_set_bbreg(hw, 2604U, 12288U, 0U); rtl_set_bbreg(hw, 2604U, 12288U, 2U); rtl_set_bbreg(hw, 2604U, 49152U, 0U); rtl_set_bbreg(hw, 2604U, 49152U, 2U); tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8192ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> cnt_parity_fail = %d, cnt_rate_illegal = %d, cnt_crc8_fail = %d, cnt_mcs_fail = %d\n", "rtl8723be_dm_false_alarm_counter_statistics", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, falsealm_cnt->cnt_parity_fail, falsealm_cnt->cnt_rate_illegal, falsealm_cnt->cnt_crc8_fail, falsealm_cnt->cnt_mcs_fail); } else { } } else { } tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8192ULL) != 0ULL, 0L); if (tmp___5 != 0L) { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); if (tmp___6 != 0L) { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> cnt_ofdm_fail = %x, cnt_cck_fail = %x, cnt_all = %x\n", "rtl8723be_dm_false_alarm_counter_statistics", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, falsealm_cnt->cnt_ofdm_fail, falsealm_cnt->cnt_cck_fail, falsealm_cnt->cnt_all); } else { } } else { } return; } } static void rtl8723be_dm_dynamic_txpower(struct ieee80211_hw *hw ) { { return; } } static void rtl8723be_set_iqk_matrix(struct ieee80211_hw *hw , u8 ofdm_index , u8 rfpath , long iqk_result_x , long iqk_result_y ) { long ele_a ; long ele_d ; long ele_c ; long value32 ; { ele_a = 0L; ele_c = 0L; if ((unsigned int )ofdm_index > 42U) { ofdm_index = 42U; } else { } ele_d = (long )((unsigned int )ofdmswing_table[(int )ofdm_index] >> 22); if (iqk_result_x != 0L) { if ((iqk_result_x & 512L) != 0L) { iqk_result_x = iqk_result_x | 4294966272L; } else { } ele_a = (iqk_result_x * ele_d >> 8) & 1023L; if ((iqk_result_y & 512L) != 0L) { iqk_result_y = iqk_result_y | 4294966272L; } else { } ele_c = (iqk_result_y * ele_d >> 8) & 1023L; switch ((int )rfpath) { case 0: value32 = ((ele_d << 22) | ((ele_c & 63L) << 16)) | ele_a; rtl_set_bbreg(hw, 3200U, 4294967295U, (u32 )value32); value32 = (ele_c & 960L) >> 6; rtl_set_bbreg(hw, 3220U, 4026531840U, (u32 )value32); value32 = (iqk_result_x * ele_d >> 7) & 1L; rtl_set_bbreg(hw, 3148U, 16777216U, (u32 )value32); goto ldv_52444; default: ; goto ldv_52444; } ldv_52444: ; } else { switch ((int )rfpath) { case 0: rtl_set_bbreg(hw, 3200U, 4294967295U, ofdmswing_table[(int )ofdm_index]); rtl_set_bbreg(hw, 3220U, 4026531840U, 0U); rtl_set_bbreg(hw, 3148U, 16777216U, 0U); goto ldv_52447; default: ; goto ldv_52447; } ldv_52447: ; } return; } } static void rtl8723be_dm_tx_power_track_set_power(struct ieee80211_hw *hw , enum pwr_track_control_method method , u8 rfpath , u8 idx ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct rtl_dm *rtldm ; u8 swing_idx_ofdm_limit ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; rtldm = & ((struct rtl_priv *)hw->priv)->dm; swing_idx_ofdm_limit = 36U; if ((unsigned int )method == 1U) { rtl8723be_phy_set_txpower_level(hw, (int )rtlphy->current_channel); } else if ((unsigned int )method == 0U) { if ((unsigned int )rtldm->swing_idx_cck > 32U) { rtldm->swing_idx_cck = 32U; } else { } if (! rtldm->cck_inch14) { rtl_write_byte(rtlpriv, 2594U, (int )cckswing_table_ch1ch13[(int )rtldm->swing_idx_cck][0]); rtl_write_byte(rtlpriv, 2595U, (int )cckswing_table_ch1ch13[(int )rtldm->swing_idx_cck][1]); rtl_write_byte(rtlpriv, 2596U, (int )cckswing_table_ch1ch13[(int )rtldm->swing_idx_cck][2]); rtl_write_byte(rtlpriv, 2597U, (int )cckswing_table_ch1ch13[(int )rtldm->swing_idx_cck][3]); rtl_write_byte(rtlpriv, 2598U, (int )cckswing_table_ch1ch13[(int )rtldm->swing_idx_cck][4]); rtl_write_byte(rtlpriv, 2599U, (int )cckswing_table_ch1ch13[(int )rtldm->swing_idx_cck][5]); rtl_write_byte(rtlpriv, 2600U, (int )cckswing_table_ch1ch13[(int )rtldm->swing_idx_cck][6]); rtl_write_byte(rtlpriv, 2601U, (int )cckswing_table_ch1ch13[(int )rtldm->swing_idx_cck][7]); } else { rtl_write_byte(rtlpriv, 2594U, (int )cckswing_table_ch14[(int )rtldm->swing_idx_cck][0]); rtl_write_byte(rtlpriv, 2595U, (int )cckswing_table_ch14[(int )rtldm->swing_idx_cck][1]); rtl_write_byte(rtlpriv, 2596U, (int )cckswing_table_ch14[(int )rtldm->swing_idx_cck][2]); rtl_write_byte(rtlpriv, 2597U, (int )cckswing_table_ch14[(int )rtldm->swing_idx_cck][3]); rtl_write_byte(rtlpriv, 2598U, (int )cckswing_table_ch14[(int )rtldm->swing_idx_cck][4]); rtl_write_byte(rtlpriv, 2599U, (int )cckswing_table_ch14[(int )rtldm->swing_idx_cck][5]); rtl_write_byte(rtlpriv, 2600U, (int )cckswing_table_ch14[(int )rtldm->swing_idx_cck][6]); rtl_write_byte(rtlpriv, 2601U, (int )cckswing_table_ch14[(int )rtldm->swing_idx_cck][7]); } if ((unsigned int )rfpath == 0U) { if ((int )rtldm->swing_idx_ofdm[0] < (int )swing_idx_ofdm_limit) { swing_idx_ofdm_limit = rtldm->swing_idx_ofdm[0]; } else { } rtl8723be_set_iqk_matrix(hw, (int )rtldm->swing_idx_ofdm[(int )rfpath], (int )rfpath, rtlphy->iqk_matrix[(int )idx].value[0][0], rtlphy->iqk_matrix[(int )idx].value[0][1]); } else if ((unsigned int )rfpath == 1U) { if ((int )rtldm->swing_idx_ofdm[1] < (int )swing_idx_ofdm_limit) { swing_idx_ofdm_limit = rtldm->swing_idx_ofdm[1]; } else { } rtl8723be_set_iqk_matrix(hw, (int )rtldm->swing_idx_ofdm[(int )rfpath], (int )rfpath, rtlphy->iqk_matrix[(int )idx].value[0][4], rtlphy->iqk_matrix[(int )idx].value[0][5]); } else { } } else { return; } return; } } static void txpwr_track_cb_therm(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_efuse *rtlefuse ; struct rtl_dm *rtldm ; u8 thermalvalue ; u8 delta ; u8 delta_lck ; u8 delta_iqk ; u8 thermalvalue_avg_count ; u32 thermalvalue_avg ; int i ; u8 ofdm_min_index ; u8 index ; char delta_swing_table_idx_tup_a[30U] ; char delta_swing_table_idx_tdown_a[30U] ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; u32 tmp___3 ; int tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; int tmp___8 ; int tmp___9 ; long tmp___10 ; long tmp___11 ; int tmp___12 ; int tmp___13 ; long tmp___14 ; long tmp___15 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; rtldm = & ((struct rtl_priv *)hw->priv)->dm; thermalvalue = 0U; thermalvalue_avg_count = 0U; thermalvalue_avg = 0U; i = 0; ofdm_min_index = 6U; index = 0U; delta_swing_table_idx_tup_a[0] = 0; delta_swing_table_idx_tup_a[1] = 0; delta_swing_table_idx_tup_a[2] = 1; delta_swing_table_idx_tup_a[3] = 2; delta_swing_table_idx_tup_a[4] = 2; delta_swing_table_idx_tup_a[5] = 2; delta_swing_table_idx_tup_a[6] = 3; delta_swing_table_idx_tup_a[7] = 3; delta_swing_table_idx_tup_a[8] = 3; delta_swing_table_idx_tup_a[9] = 4; delta_swing_table_idx_tup_a[10] = 5; delta_swing_table_idx_tup_a[11] = 5; delta_swing_table_idx_tup_a[12] = 6; delta_swing_table_idx_tup_a[13] = 6; delta_swing_table_idx_tup_a[14] = 7; delta_swing_table_idx_tup_a[15] = 7; delta_swing_table_idx_tup_a[16] = 8; delta_swing_table_idx_tup_a[17] = 8; delta_swing_table_idx_tup_a[18] = 9; delta_swing_table_idx_tup_a[19] = 9; delta_swing_table_idx_tup_a[20] = 9; delta_swing_table_idx_tup_a[21] = 10; delta_swing_table_idx_tup_a[22] = 10; delta_swing_table_idx_tup_a[23] = 11; delta_swing_table_idx_tup_a[24] = 11; delta_swing_table_idx_tup_a[25] = 12; delta_swing_table_idx_tup_a[26] = 12; delta_swing_table_idx_tup_a[27] = 13; delta_swing_table_idx_tup_a[28] = 14; delta_swing_table_idx_tup_a[29] = 15; delta_swing_table_idx_tdown_a[0] = 0; delta_swing_table_idx_tdown_a[1] = 0; delta_swing_table_idx_tdown_a[2] = 1; delta_swing_table_idx_tdown_a[3] = 2; delta_swing_table_idx_tdown_a[4] = 2; delta_swing_table_idx_tdown_a[5] = 2; delta_swing_table_idx_tdown_a[6] = 3; delta_swing_table_idx_tdown_a[7] = 3; delta_swing_table_idx_tdown_a[8] = 3; delta_swing_table_idx_tdown_a[9] = 4; delta_swing_table_idx_tdown_a[10] = 5; delta_swing_table_idx_tdown_a[11] = 5; delta_swing_table_idx_tdown_a[12] = 6; delta_swing_table_idx_tdown_a[13] = 6; delta_swing_table_idx_tdown_a[14] = 6; delta_swing_table_idx_tdown_a[15] = 6; delta_swing_table_idx_tdown_a[16] = 7; delta_swing_table_idx_tdown_a[17] = 7; delta_swing_table_idx_tdown_a[18] = 7; delta_swing_table_idx_tdown_a[19] = 8; delta_swing_table_idx_tdown_a[20] = 8; delta_swing_table_idx_tdown_a[21] = 9; delta_swing_table_idx_tdown_a[22] = 9; delta_swing_table_idx_tdown_a[23] = 10; delta_swing_table_idx_tdown_a[24] = 10; delta_swing_table_idx_tdown_a[25] = 11; delta_swing_table_idx_tdown_a[26] = 12; delta_swing_table_idx_tdown_a[27] = 13; delta_swing_table_idx_tdown_a[28] = 14; delta_swing_table_idx_tdown_a[29] = 15; rtlpriv->dm.txpower_trackinginit = 1; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> rtl8723be_dm_txpower_tracking_callback_thermalmeter\n", "txpwr_track_cb_therm", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } tmp___3 = rtl_get_rfreg(hw, 0, 66U, 64512U); thermalvalue = (unsigned char )tmp___3; if (((unsigned int )rtlpriv->dm.txpower_track_control == 0U || (unsigned int )thermalvalue == 0U) || (unsigned int )rtlefuse->eeprom_thermalmeter == 255U) { return; } else { } tmp___6 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); if (tmp___6 != 0L) { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___7 != 0L) { tmp___4 = preempt_count(); tmp___5 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Readback Thermal Meter = 0x%x pre thermal meter 0x%x eeprom_thermalmeter 0x%x\n", "txpwr_track_cb_therm", (unsigned long )tmp___5 & 2096896UL, ((unsigned long )tmp___4 & 0xffffffffffdfffffUL) != 0UL, (int )thermalvalue, (int )rtldm->thermalvalue, (int )rtlefuse->eeprom_thermalmeter); } else { } } else { } if ((unsigned int )rtldm->thermalvalue == 0U) { rtlpriv->dm.thermalvalue_lck = thermalvalue; rtlpriv->dm.thermalvalue_iqk = thermalvalue; } else { } rtldm->thermalvalue_avg[(int )rtldm->thermalvalue_avg_index] = thermalvalue; rtldm->thermalvalue_avg_index = (u8 )((int )rtldm->thermalvalue_avg_index + 1); if ((unsigned int )rtldm->thermalvalue_avg_index == 4U) { rtldm->thermalvalue_avg_index = 0U; } else { } i = 0; goto ldv_52478; ldv_52477: ; if ((unsigned int )rtldm->thermalvalue_avg[i] != 0U) { thermalvalue_avg = (u32 )rtldm->thermalvalue_avg[i] + thermalvalue_avg; thermalvalue_avg_count = (u8 )((int )thermalvalue_avg_count + 1); } else { } i = i + 1; ldv_52478: ; if (i <= 3) { goto ldv_52477; } else { } if ((unsigned int )thermalvalue_avg_count != 0U) { thermalvalue = (unsigned char )(thermalvalue_avg / (u32 )thermalvalue_avg_count); } else { } delta = (int )rtlpriv->dm.thermalvalue < (int )thermalvalue ? (int )thermalvalue - (int )rtlpriv->dm.thermalvalue : (int )rtlpriv->dm.thermalvalue - (int )thermalvalue; delta_lck = (int )rtlpriv->dm.thermalvalue_lck < (int )thermalvalue ? (int )thermalvalue - (int )rtlpriv->dm.thermalvalue_lck : (int )rtlpriv->dm.thermalvalue_lck - (int )thermalvalue; delta_iqk = (int )rtlpriv->dm.thermalvalue_iqk < (int )thermalvalue ? (int )thermalvalue - (int )rtlpriv->dm.thermalvalue_iqk : (int )rtlpriv->dm.thermalvalue_iqk - (int )thermalvalue; tmp___10 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); if (tmp___10 != 0L) { tmp___11 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___11 != 0L) { tmp___8 = preempt_count(); tmp___9 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Readback Thermal Meter = 0x%x pre thermal meter 0x%x eeprom_thermalmeter 0x%x delta 0x%x delta_lck 0x%x delta_iqk 0x%x\n", "txpwr_track_cb_therm", (unsigned long )tmp___9 & 2096896UL, ((unsigned long )tmp___8 & 0xffffffffffdfffffUL) != 0UL, (int )thermalvalue, (int )rtlpriv->dm.thermalvalue, (int )rtlefuse->eeprom_thermalmeter, (int )delta, (int )delta_lck, (int )delta_iqk); } else { } } else { } if ((unsigned int )delta_lck > 7U) { rtlpriv->dm.thermalvalue_lck = thermalvalue; rtl8723be_phy_lc_calibrate(hw); } else { } if ((unsigned int )delta != 0U && (unsigned int )rtlpriv->dm.txpower_track_control != 0U) { delta = (int )rtlefuse->eeprom_thermalmeter < (int )thermalvalue ? (int )thermalvalue - (int )rtlefuse->eeprom_thermalmeter : (int )rtlefuse->eeprom_thermalmeter - (int )thermalvalue; if ((unsigned int )delta > 29U) { delta = 29U; } else { } if ((int )rtlefuse->eeprom_thermalmeter < (int )thermalvalue) { rtldm->delta_power_index_last[0] = rtldm->delta_power_index[0]; rtldm->delta_power_index[0] = delta_swing_table_idx_tup_a[(int )delta]; } else { rtldm->delta_power_index_last[0] = rtldm->delta_power_index[0]; rtldm->delta_power_index[0] = (char )(- ((int )((unsigned char )delta_swing_table_idx_tdown_a[(int )delta]))); } if ((int )((signed char )rtldm->delta_power_index[0]) == (int )((signed char )rtldm->delta_power_index_last[0])) { rtldm->power_index_offset[0] = 0; } else { rtldm->power_index_offset[0] = (char )((int )((unsigned char )rtldm->delta_power_index[0]) - (int )((unsigned char )rtldm->delta_power_index_last[0])); } rtldm->ofdm_index[0] = (char )((int )rtldm->swing_idx_ofdm_base[0] + (int )((unsigned char )rtldm->power_index_offset[0])); rtldm->cck_index = (char )((int )rtldm->swing_idx_cck_base + (int )((unsigned char )rtldm->power_index_offset[0])); rtldm->swing_idx_cck = (u8 )rtldm->cck_index; rtldm->swing_idx_ofdm[0] = (u8 )rtldm->ofdm_index[0]; if ((int )((signed char )rtldm->ofdm_index[0]) > 36) { rtldm->ofdm_index[0] = 36; } else if ((int )rtldm->ofdm_index[0] < (int )ofdm_min_index) { rtldm->ofdm_index[0] = (char )ofdm_min_index; } else { } if ((int )((signed char )rtldm->cck_index) > 32) { rtldm->cck_index = 32; } else if ((int )((signed char )rtldm->cck_index) < 0) { rtldm->cck_index = 0; } else { } } else { rtldm->power_index_offset[0] = 0; } if ((int )((signed char )rtldm->power_index_offset[0]) != 0 && (unsigned int )rtldm->txpower_track_control != 0U) { rtldm->done_txpower = 1; if ((int )rtlefuse->eeprom_thermalmeter < (int )thermalvalue) { rtl8723be_dm_tx_power_track_set_power(hw, 0, 0, (int )index); } else { rtl8723be_dm_tx_power_track_set_power(hw, 0, 0, (int )index); } rtldm->swing_idx_cck_base = rtldm->swing_idx_cck; rtldm->swing_idx_ofdm_base[0] = rtldm->swing_idx_ofdm[0]; rtldm->thermalvalue = thermalvalue; } else { } if ((unsigned int )delta_iqk > 7U) { rtldm->thermalvalue_iqk = thermalvalue; rtl8723be_phy_iq_calibrate(hw, 0); } else { } rtldm->txpowercount = 0U; tmp___14 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); if (tmp___14 != 0L) { tmp___15 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___15 != 0L) { tmp___12 = preempt_count(); tmp___13 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> end\n", "txpwr_track_cb_therm", (unsigned long )tmp___13 & 2096896UL, ((unsigned long )tmp___12 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } return; } } void rtl8723be_dm_check_txpower_tracking(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; u8 tm_trigger ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { rtlpriv = (struct rtl_priv *)hw->priv; if (! rtlpriv->dm.txpower_tracking) { return; } else { } if ((unsigned int )tm_trigger == 0U) { rtl_set_rfreg(hw, 0, 66U, 196608U, 3U); tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Trigger 8723be Thermal Meter!!\n", "rtl8723be_dm_check_txpower_tracking", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } tm_trigger = 1U; return; } else { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); if (tmp___5 != 0L) { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___6 != 0L) { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Schedule TxPowerTracking !!\n", "rtl8723be_dm_check_txpower_tracking", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } txpwr_track_cb_therm(hw); tm_trigger = 0U; } return; } } static void rtl8723be_dm_refresh_rate_adaptive_mask(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; struct rtl_mac *mac ; struct rate_adaptive *ra ; struct ieee80211_sta *sta ; u32 low_rssithresh_for_ra ; u32 high_rssithresh_for_ra ; u8 go_up_gap ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; bool tmp___3 ; int tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; int tmp___8 ; int tmp___9 ; long tmp___10 ; long tmp___11 ; int tmp___12 ; int tmp___13 ; long tmp___14 ; long tmp___15 ; int tmp___16 ; int tmp___17 ; long tmp___18 ; long tmp___19 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; mac = & ((struct rtl_priv *)hw->priv)->mac80211; ra = & rtlpriv->ra; sta = (struct ieee80211_sta *)0; low_rssithresh_for_ra = (u32 )ra->low2high_rssi_thresh_for_ra40m; high_rssithresh_for_ra = ra->high_rssi_thresh_for_ra; go_up_gap = 5U; tmp___3 = is_hal_stop(rtlhal); if ((int )tmp___3) { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 2048ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> driver is going to unload\n", "rtl8723be_dm_refresh_rate_adaptive_mask", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } return; } else { } if (! rtlpriv->dm.useramask) { tmp___6 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 2048ULL) != 0ULL, 0L); if (tmp___6 != 0L) { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___7 != 0L) { tmp___4 = preempt_count(); tmp___5 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> driver does not control rate adaptive mask\n", "rtl8723be_dm_refresh_rate_adaptive_mask", (unsigned long )tmp___5 & 2096896UL, ((unsigned long )tmp___4 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } return; } else { } if ((unsigned int )mac->link_state == 2U && (unsigned int )mac->opmode == 2U) { switch ((int )ra->pre_ratr_state) { case 2: high_rssithresh_for_ra = (u32 )go_up_gap + high_rssithresh_for_ra; goto ldv_52499; case 3: high_rssithresh_for_ra = (u32 )go_up_gap + high_rssithresh_for_ra; low_rssithresh_for_ra = (u32 )go_up_gap + low_rssithresh_for_ra; goto ldv_52499; default: ; goto ldv_52499; } ldv_52499: ; if (rtlpriv->dm.undec_sm_pwdb > (long )high_rssithresh_for_ra) { ra->ratr_state = 1U; } else if (rtlpriv->dm.undec_sm_pwdb > (long )low_rssithresh_for_ra) { ra->ratr_state = 2U; } else { ra->ratr_state = 3U; } if ((int )ra->pre_ratr_state != (int )ra->ratr_state) { tmp___10 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 2048ULL) != 0ULL, 0L); if (tmp___10 != 0L) { tmp___11 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___11 != 0L) { tmp___8 = preempt_count(); tmp___9 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> RSSI = %ld\n", "rtl8723be_dm_refresh_rate_adaptive_mask", (unsigned long )tmp___9 & 2096896UL, ((unsigned long )tmp___8 & 0xffffffffffdfffffUL) != 0UL, rtlpriv->dm.undec_sm_pwdb); } else { } } else { } tmp___14 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 2048ULL) != 0ULL, 0L); if (tmp___14 != 0L) { tmp___15 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___15 != 0L) { tmp___12 = preempt_count(); tmp___13 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> RSSI_LEVEL = %d\n", "rtl8723be_dm_refresh_rate_adaptive_mask", (unsigned long )tmp___13 & 2096896UL, ((unsigned long )tmp___12 & 0xffffffffffdfffffUL) != 0UL, (int )ra->ratr_state); } else { } } else { } tmp___18 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 2048ULL) != 0ULL, 0L); if (tmp___18 != 0L) { tmp___19 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___19 != 0L) { tmp___16 = preempt_count(); tmp___17 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> PreState = %d, CurState = %d\n", "rtl8723be_dm_refresh_rate_adaptive_mask", (unsigned long )tmp___17 & 2096896UL, ((unsigned long )tmp___16 & 0xffffffffffdfffffUL) != 0UL, (int )ra->pre_ratr_state, (int )ra->ratr_state); } else { } } else { } rcu_read_lock(); sta = rtl_find_sta(hw, (u8 *)(& mac->bssid)); if ((unsigned long )sta != (unsigned long )((struct ieee80211_sta *)0)) { (*(((rtlpriv->cfg)->ops)->update_rate_tbl))(hw, sta, (int )ra->ratr_state); } else { } rcu_read_unlock(); ra->pre_ratr_state = ra->ratr_state; } else { } } else { } return; } } static bool rtl8723be_dm_is_edca_turbo_disable(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; bool tmp ; bool tmp___0 ; { rtlpriv = (struct rtl_priv *)hw->priv; tmp___0 = (*(((rtlpriv->cfg)->ops)->get_btc_status))(); if ((int )tmp___0) { tmp = (*((rtlpriv->btcoexist.btc_ops)->btc_is_disable_edca_turbo))(rtlpriv); if ((int )tmp) { return (1); } else { } } else { } if ((unsigned int )rtlpriv->mac80211.mode == 2U) { return (1); } else { } return (0); } } static void rtl8723be_dm_check_edca_turbo(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_mac *mac ; u64 last_txok_cnt ; u64 last_rxok_cnt ; u64 cur_txok_cnt ; u64 cur_rxok_cnt ; u32 edca_be_ul ; u32 edca_be_dl ; u32 edca_be ; u32 iot_peer ; bool is_cur_rdlstate ; bool last_is_cur_rdlstate ; bool bias_on_rx ; bool edca_turbo_on ; bool tmp ; u8 tmp___0 ; { rtlpriv = (struct rtl_priv *)hw->priv; mac = & ((struct rtl_priv *)hw->priv)->mac80211; cur_txok_cnt = 0ULL; cur_rxok_cnt = 0ULL; edca_be_ul = 7250987U; edca_be_dl = 7250987U; edca_be = 6202411U; iot_peer = 0U; last_is_cur_rdlstate = 0; bias_on_rx = 0; edca_turbo_on = 0; last_is_cur_rdlstate = rtlpriv->dm.is_cur_rdlstate; cur_txok_cnt = (unsigned long long )rtlpriv->stats.txbytesunicast - last_txok_cnt; cur_rxok_cnt = (unsigned long long )rtlpriv->stats.rxbytesunicast - last_rxok_cnt; iot_peer = rtlpriv->mac80211.vendor; bias_on_rx = (bool )(iot_peer == 4U || iot_peer == 5U); edca_turbo_on = (bool )(! rtlpriv->dm.is_any_nonbepkts && ! rtlpriv->dm.disable_framebursting); if (iot_peer == 6U && (unsigned int )mac->mode == 16U) { edca_be_dl = edca_setting_dl[iot_peer]; edca_be_ul = edca_setting_ul[iot_peer]; } else { } tmp = rtl8723be_dm_is_edca_turbo_disable(hw); if ((int )tmp) { goto exit; } else { } if ((int )edca_turbo_on) { if ((int )bias_on_rx) { is_cur_rdlstate = cur_rxok_cnt * 4ULL >= cur_txok_cnt; } else { is_cur_rdlstate = cur_txok_cnt * 4ULL < cur_rxok_cnt; } edca_be = (int )is_cur_rdlstate ? edca_be_dl : edca_be_ul; rtl_write_dword(rtlpriv, 1288U, edca_be); rtlpriv->dm.is_cur_rdlstate = is_cur_rdlstate; rtlpriv->dm.current_turbo_edca = 1; } else { if ((int )rtlpriv->dm.current_turbo_edca) { tmp___0 = 0U; (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 31, & tmp___0); } else { } rtlpriv->dm.current_turbo_edca = 0; } exit: rtlpriv->dm.is_any_nonbepkts = 0; last_txok_cnt = (u64 )rtlpriv->stats.txbytesunicast; last_rxok_cnt = (u64 )rtlpriv->stats.rxbytesunicast; return; } } static void rtl8723be_dm_cck_packet_detection_thresh(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; u8 cur_cck_cca_thresh ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { rtlpriv = (struct rtl_priv *)hw->priv; if ((unsigned int )rtlpriv->mac80211.link_state > 1U) { if ((unsigned int )rtlpriv->dm_digtable.rssi_val_min > 25U) { cur_cck_cca_thresh = 205U; } else if ((unsigned int )rtlpriv->dm_digtable.rssi_val_min <= 25U && (unsigned int )rtlpriv->dm_digtable.rssi_val_min > 10U) { cur_cck_cca_thresh = 131U; } else if (rtlpriv->falsealm_cnt.cnt_cck_fail > 1000U) { cur_cck_cca_thresh = 131U; } else { cur_cck_cca_thresh = 64U; } } else if (rtlpriv->falsealm_cnt.cnt_cck_fail > 1000U) { cur_cck_cca_thresh = 131U; } else { cur_cck_cca_thresh = 64U; } if ((int )rtlpriv->dm_digtable.cur_cck_cca_thres != (int )cur_cck_cca_thresh) { rtl_set_bbreg(hw, 2568U, 16711680U, (u32 )cur_cck_cca_thresh); } else { } rtlpriv->dm_digtable.pre_cck_cca_thres = rtlpriv->dm_digtable.cur_cck_cca_thres; rtlpriv->dm_digtable.cur_cck_cca_thres = cur_cck_cca_thresh; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8192ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> CCK cca thresh hold =%x\n", "rtl8723be_dm_cck_packet_detection_thresh", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )rtlpriv->dm_digtable.cur_cck_cca_thres); } else { } } else { } return; } } static void rtl8723be_dm_dynamic_edcca(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; u8 reg_c50 ; u8 reg_c58 ; bool fw_current_in_ps_mode ; u32 tmp ; u32 tmp___0 ; { rtlpriv = (struct rtl_priv *)hw->priv; fw_current_in_ps_mode = 0; (*(((rtlpriv->cfg)->ops)->get_hw_reg))(hw, 64, (u8 *)(& fw_current_in_ps_mode)); if ((int )fw_current_in_ps_mode) { return; } else { } tmp = rtl_get_bbreg(hw, 3152U, 255U); reg_c50 = (u8 )tmp; tmp___0 = rtl_get_bbreg(hw, 3160U, 255U); reg_c58 = (u8 )tmp___0; if ((unsigned int )reg_c50 > 40U && (unsigned int )reg_c58 > 40U) { if (! rtlpriv->rtlhal.pre_edcca_enable) { rtl_write_byte(rtlpriv, 3148U, 3); rtl_write_byte(rtlpriv, 3150U, 0); } else { } } else if ((unsigned int )reg_c50 <= 36U && (unsigned int )reg_c58 <= 36U) { if ((int )rtlpriv->rtlhal.pre_edcca_enable) { rtl_write_byte(rtlpriv, 3148U, 127); rtl_write_byte(rtlpriv, 3150U, 127); } else { } } else { } return; } } static void rtl8723be_dm_dynamic_atc_switch(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_dm *rtldm ; u8 crystal_cap ; u32 packet_count ; int cfo_khz_a ; int cfo_khz_b ; int cfo_ave ; int adjust_xtal ; int cfo_ave_diff ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; bool tmp___3 ; int tmp___4 ; bool tmp___5 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtldm = & ((struct rtl_priv *)hw->priv)->dm; cfo_ave = 0; adjust_xtal = 0; if ((unsigned int )rtlpriv->mac80211.link_state <= 1U) { if (! rtldm->atc_status) { rtl_set_bbreg(hw, 3372U, 2048U, 1U); rtldm->atc_status = 1; } else { } tmp___5 = (*(((rtlpriv->cfg)->ops)->get_btc_status))(); if ((int )tmp___5) { tmp___3 = (*((rtlpriv->btcoexist.btc_ops)->btc_is_bt_disabled))(rtlpriv); if (tmp___3) { tmp___4 = 0; } else { tmp___4 = 1; } if (tmp___4) { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1073741824ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> odm_DynamicATCSwitch(): Disable CFO tracking for BT!!\n", "rtl8723be_dm_dynamic_atc_switch", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } return; } else { } } else { } if (rtldm->crystal_cap != (int )rtlpriv->efuse.crystalcap) { rtldm->crystal_cap = (int )rtlpriv->efuse.crystalcap; crystal_cap = (unsigned int )((u8 )rtldm->crystal_cap) & 63U; rtl_set_bbreg(hw, 44U, 16773120U, (u32 )((int )crystal_cap | ((int )crystal_cap << 6))); } else { } } else { cfo_khz_a = (rtldm->cfo_tail[0] * 3125) / 1280; cfo_khz_b = (rtldm->cfo_tail[1] * 3125) / 1280; packet_count = rtldm->packet_count; if (rtldm->packet_count_pre == packet_count) { return; } else { } rtldm->packet_count_pre = packet_count; if ((unsigned int )rtlpriv->phy.rf_type == 0U) { cfo_ave = cfo_khz_a; } else { cfo_ave = (cfo_khz_a + cfo_khz_b) >> 1; } cfo_ave_diff = rtldm->cfo_ave_pre >= cfo_ave ? rtldm->cfo_ave_pre - cfo_ave : cfo_ave - rtldm->cfo_ave_pre; if (cfo_ave_diff > 20 && ! rtldm->large_cfo_hit) { rtldm->large_cfo_hit = 1; return; } else { rtldm->large_cfo_hit = 0; } rtldm->cfo_ave_pre = cfo_ave; if ((- ((int )rtldm->cfo_threshold) <= cfo_ave && (int )rtldm->cfo_threshold >= cfo_ave) && ! rtldm->is_freeze) { if ((unsigned int )rtldm->cfo_threshold == 10U) { rtldm->cfo_threshold = 20U; rtldm->is_freeze = 1; } else { rtldm->cfo_threshold = 10U; } } else { } if ((int )rtldm->cfo_threshold < cfo_ave && rtldm->crystal_cap <= 62) { adjust_xtal = ((cfo_ave + -10) >> 1) + 1; } else if (- ((int )rtlpriv->dm.cfo_threshold) > cfo_ave && rtlpriv->dm.crystal_cap > 0) { adjust_xtal = ((cfo_ave + 10) >> 1) + -1; } else { } if (adjust_xtal != 0) { rtldm->is_freeze = 0; rtldm->crystal_cap = rtldm->crystal_cap + adjust_xtal; if (rtldm->crystal_cap > 63) { rtldm->crystal_cap = 63; } else if (rtldm->crystal_cap < 0) { rtldm->crystal_cap = 0; } else { } crystal_cap = (unsigned int )((u8 )rtldm->crystal_cap) & 63U; rtl_set_bbreg(hw, 44U, 16773120U, (u32 )((int )crystal_cap | ((int )crystal_cap << 6))); } else { } if (cfo_ave <= 79 && cfo_ave >= -79) { if ((int )rtldm->atc_status) { rtl_set_bbreg(hw, 3372U, 2048U, 0U); rtldm->atc_status = 0; } else { } } else if (! rtldm->atc_status) { rtl_set_bbreg(hw, 3372U, 2048U, 1U); rtldm->atc_status = 1; } else { } } return; } } static void rtl8723be_dm_common_info_self_update(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_sta_info *drv_priv ; u8 cnt ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { rtlpriv = (struct rtl_priv *)hw->priv; cnt = 0U; rtlpriv->dm.one_entry_only = 0; if ((unsigned int )rtlpriv->mac80211.opmode == 2U && (unsigned int )rtlpriv->mac80211.link_state > 1U) { rtlpriv->dm.one_entry_only = 1; return; } else { } if (((unsigned int )rtlpriv->mac80211.opmode == 3U || (unsigned int )rtlpriv->mac80211.opmode == 1U) || (unsigned int )rtlpriv->mac80211.opmode == 7U) { spin_lock_bh(& rtlpriv->locks.entry_list_lock); __mptr = (struct list_head const *)rtlpriv->entry_list.next; drv_priv = (struct rtl_sta_info *)__mptr; goto ldv_52562; ldv_52561: cnt = (u8 )((int )cnt + 1); __mptr___0 = (struct list_head const *)drv_priv->list.next; drv_priv = (struct rtl_sta_info *)__mptr___0; ldv_52562: ; if ((unsigned long )(& drv_priv->list) != (unsigned long )(& rtlpriv->entry_list)) { goto ldv_52561; } else { } spin_unlock_bh(& rtlpriv->locks.entry_list_lock); if ((unsigned int )cnt == 1U) { rtlpriv->dm.one_entry_only = 1; } else { } } else { } return; } } void rtl8723be_dm_watchdog(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_ps_ctl *ppsc ; bool fw_current_inpsmode ; bool fw_ps_awake ; bool tmp ; { rtlpriv = (struct rtl_priv *)hw->priv; ppsc = & ((struct rtl_priv *)hw->priv)->psc; fw_current_inpsmode = 0; fw_ps_awake = 1; (*(((rtlpriv->cfg)->ops)->get_hw_reg))(hw, 64, (u8 *)(& fw_current_inpsmode)); (*(((rtlpriv->cfg)->ops)->get_hw_reg))(hw, 84, (u8 *)(& fw_ps_awake)); if ((unsigned int )ppsc->p2p_ps_info.p2p_ps_mode != 0U) { fw_ps_awake = 0; } else { } if (((unsigned int )ppsc->rfpwr_state == 0U && (! fw_current_inpsmode && (int )fw_ps_awake)) && ! ppsc->rfchange_inprogress) { rtl8723be_dm_common_info_self_update(hw); rtl8723be_dm_false_alarm_counter_statistics(hw); rtl8723be_dm_check_rssi_monitor(hw); rtl8723be_dm_dig(hw); rtl8723be_dm_dynamic_edcca(hw); rtl8723be_dm_cck_packet_detection_thresh(hw); rtl8723be_dm_refresh_rate_adaptive_mask(hw); rtl8723be_dm_check_edca_turbo(hw); rtl8723be_dm_dynamic_atc_switch(hw); rtl8723be_dm_check_txpower_tracking(hw); rtl8723be_dm_dynamic_txpower(hw); tmp = (*(((rtlpriv->cfg)->ops)->get_btc_status))(); if ((int )tmp) { (*((rtlpriv->btcoexist.btc_ops)->btc_periodical))(rtlpriv); } else { } } else { } rtlpriv->dm.dbginfo.num_qry_beacon_pkt = 0U; return; } } void ldv_consume_skb_5(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_6(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_7(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_8(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_11(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } extern void print_hex_dump(char const * , char const * , int , int , int , void const * , size_t , bool ) ; extern struct task_struct *current_task ; __inline static struct task_struct *get_current(void) { struct task_struct *pfo_ret__ ; { switch (8UL) { case 1UL: __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "p" (& current_task)); goto ldv_3038; case 2UL: __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_3038; case 4UL: __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_3038; case 8UL: __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_3038; default: __bad_percpu_size(); } ldv_3038: ; return (pfo_ret__); } } extern void *__memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern unsigned long _raw_spin_lock_irqsave(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->ldv_6338.rlock); } } __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { _raw_spin_unlock_irqrestore(& lock->ldv_6338.rlock, flags); return; } } void ldv_kfree_skb_17(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_18(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_19(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_22(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_24(struct sk_buff *ldv_func_arg1 ) ; void ldv_consume_skb_16(struct sk_buff *ldv_func_arg1 ) ; __inline static void __skb_insert(struct sk_buff *newsk , struct sk_buff *prev , struct sk_buff *next , struct sk_buff_head *list ) { struct sk_buff *tmp ; { newsk->next = next; newsk->prev = prev; tmp = newsk; prev->next = tmp; next->prev = tmp; list->qlen = list->qlen + 1U; return; } } __inline static void __skb_queue_before(struct sk_buff_head *list , struct sk_buff *next , struct sk_buff *newsk ) { { __skb_insert(newsk, next->prev, next, list); return; } } __inline static void __skb_queue_tail(struct sk_buff_head *list , struct sk_buff *newsk ) { { __skb_queue_before(list, (struct sk_buff *)list, newsk); return; } } __inline static struct sk_buff *ldv___skb_dequeue_23(struct sk_buff_head *list ) ; extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; __inline static struct sk_buff *ldv_dev_alloc_skb_25(unsigned int length ) ; extern struct sk_buff___0 *ldv_skb_alloc(void) ; extern void __const_udelay(unsigned long ) ; __inline static u8 rtl_read_byte(struct rtl_priv *rtlpriv , u32 addr ) { u8 tmp ; { tmp = (*(rtlpriv->io.read8_sync))(rtlpriv, addr); return (tmp); } } __inline static u32 rtl_read_dword(struct rtl_priv *rtlpriv , u32 addr ) { u32 tmp ; { tmp = (*(rtlpriv->io.read32_sync))(rtlpriv, addr); return (tmp); } } void rtl8723be_set_fw_pwrmode_cmd(struct ieee80211_hw *hw , u8 mode ) ; void rtl8723be_set_fw_ap_off_load_cmd(struct ieee80211_hw *hw , u8 ap_offload_enable ) ; void rtl8723be_set_fw_rsvdpagepkt(struct ieee80211_hw *hw , bool dl_finished ) ; void rtl8723be_set_fw_joinbss_report_cmd(struct ieee80211_hw *hw , u8 mstatus ) ; void rtl8723be_set_p2p_ps_offload_cmd(struct ieee80211_hw *hw , u8 p2p_ps_state ) ; static bool _rtl8723be_check_fw_read_last_h2c(struct ieee80211_hw *hw , u8 boxnum ) { struct rtl_priv *rtlpriv ; u8 val_hmetfr ; bool result ; { rtlpriv = (struct rtl_priv *)hw->priv; result = 0; val_hmetfr = rtl_read_byte(rtlpriv, 460U); if (((unsigned long )((int )val_hmetfr >> (int )boxnum) & 1UL) == 0UL) { result = 1; } else { } return (result); } } static void _rtl8723be_fill_h2c_command(struct ieee80211_hw *hw , u8 element_id , u32 cmd_len , u8 *p_cmdbuffer ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; u8 boxnum ; u16 box_reg ; u16 box_extreg ; u8 u1b_tmp ; bool isfw_read ; u8 buf_index ; bool bwrite_sucess ; u8 wait_h2c_limit ; u8 wait_writeh2c_limit ; u8 boxcontent[4U] ; u8 boxextcontent[4U] ; u32 h2c_waitcounter ; unsigned long flag ; u8 idx ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; raw_spinlock_t *tmp___3 ; int tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; int tmp___8 ; int tmp___9 ; long tmp___10 ; long tmp___11 ; raw_spinlock_t *tmp___12 ; int tmp___13 ; int tmp___14 ; long tmp___15 ; long tmp___16 ; int tmp___17 ; int tmp___18 ; long tmp___19 ; long tmp___20 ; int tmp___21 ; int tmp___22 ; long tmp___23 ; long tmp___24 ; int tmp___25 ; int tmp___26 ; long tmp___27 ; long tmp___28 ; int tmp___29 ; int tmp___30 ; long tmp___31 ; long tmp___32 ; int tmp___33 ; int tmp___34 ; long tmp___35 ; long tmp___36 ; size_t __len ; void *__ret ; size_t __len___0 ; void *__ret___0 ; size_t __len___1 ; void *__ret___1 ; int tmp___37 ; int tmp___38 ; long tmp___39 ; long tmp___40 ; int tmp___41 ; int tmp___42 ; long tmp___43 ; long tmp___44 ; raw_spinlock_t *tmp___45 ; int tmp___46 ; int tmp___47 ; long tmp___48 ; long tmp___49 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; box_reg = 0U; box_extreg = 0U; isfw_read = 0; buf_index = 0U; bwrite_sucess = 0; wait_h2c_limit = 100U; wait_writeh2c_limit = 100U; h2c_waitcounter = 0U; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> come in\n", "_rtl8723be_fill_h2c_command", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } ldv_51205: tmp___3 = spinlock_check(& rtlpriv->locks.h2c_lock); flag = _raw_spin_lock_irqsave(tmp___3); if ((int )rtlhal->h2c_setinprogress) { tmp___6 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); if (tmp___6 != 0L) { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___7 != 0L) { tmp___4 = preempt_count(); tmp___5 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> H2C set in progress! Wait to set..element_id(%d).\n", "_rtl8723be_fill_h2c_command", (unsigned long )tmp___5 & 2096896UL, ((unsigned long )tmp___4 & 0xffffffffffdfffffUL) != 0UL, (int )element_id); } else { } } else { } goto ldv_51202; ldv_51201: spin_unlock_irqrestore(& rtlpriv->locks.h2c_lock, flag); h2c_waitcounter = h2c_waitcounter + 1U; tmp___10 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); if (tmp___10 != 0L) { tmp___11 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___11 != 0L) { tmp___8 = preempt_count(); tmp___9 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Wait 100 us (%d times)...\n", "_rtl8723be_fill_h2c_command", (unsigned long )tmp___9 & 2096896UL, ((unsigned long )tmp___8 & 0xffffffffffdfffffUL) != 0UL, h2c_waitcounter); } else { } } else { } __const_udelay(429500UL); if (h2c_waitcounter > 1000U) { return; } else { } tmp___12 = spinlock_check(& rtlpriv->locks.h2c_lock); flag = _raw_spin_lock_irqsave(tmp___12); ldv_51202: ; if ((int )rtlhal->h2c_setinprogress) { goto ldv_51201; } else { } spin_unlock_irqrestore(& rtlpriv->locks.h2c_lock, flag); } else { rtlhal->h2c_setinprogress = 1; spin_unlock_irqrestore(& rtlpriv->locks.h2c_lock, flag); goto ldv_51204; } goto ldv_51205; ldv_51204: ; goto ldv_51244; ldv_51243: wait_writeh2c_limit = (u8 )((int )wait_writeh2c_limit - 1); if ((unsigned int )wait_writeh2c_limit == 0U) { tmp___15 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); if (tmp___15 != 0L) { tmp___16 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); if (tmp___16 != 0L) { tmp___13 = preempt_count(); tmp___14 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Write H2C fail because no trigger for FW INT!\n", "_rtl8723be_fill_h2c_command", (unsigned long )tmp___14 & 2096896UL, ((unsigned long )tmp___13 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } goto ldv_51206; } else { } boxnum = rtlhal->last_hmeboxnum; switch ((int )boxnum) { case 0: box_reg = 464U; box_extreg = 496U; goto ldv_51208; case 1: box_reg = 468U; box_extreg = 500U; goto ldv_51208; case 2: box_reg = 472U; box_extreg = 504U; goto ldv_51208; case 3: box_reg = 476U; box_extreg = 508U; goto ldv_51208; default: tmp___19 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); if (tmp___19 != 0L) { tmp___20 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); if (tmp___20 != 0L) { tmp___17 = preempt_count(); tmp___18 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> switch case not processed\n", "_rtl8723be_fill_h2c_command", (unsigned long )tmp___18 & 2096896UL, ((unsigned long )tmp___17 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } goto ldv_51208; } ldv_51208: isfw_read = _rtl8723be_check_fw_read_last_h2c(hw, (int )boxnum); goto ldv_51215; ldv_51214: wait_h2c_limit = (u8 )((int )wait_h2c_limit - 1); if ((unsigned int )wait_h2c_limit == 0U) { tmp___23 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); if (tmp___23 != 0L) { tmp___24 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___24 != 0L) { tmp___21 = preempt_count(); tmp___22 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Wating too long for FW read clear HMEBox(%d)!\n", "_rtl8723be_fill_h2c_command", (unsigned long )tmp___22 & 2096896UL, ((unsigned long )tmp___21 & 0xffffffffffdfffffUL) != 0UL, (int )boxnum); } else { } } else { } goto ldv_51213; } else { } __const_udelay(42950UL); isfw_read = _rtl8723be_check_fw_read_last_h2c(hw, (int )boxnum); u1b_tmp = rtl_read_byte(rtlpriv, 304U); tmp___27 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); if (tmp___27 != 0L) { tmp___28 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___28 != 0L) { tmp___25 = preempt_count(); tmp___26 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Wating for FW read clear HMEBox(%d)!!! 0x130 = %2x\n", "_rtl8723be_fill_h2c_command", (unsigned long )tmp___26 & 2096896UL, ((unsigned long )tmp___25 & 0xffffffffffdfffffUL) != 0UL, (int )boxnum, (int )u1b_tmp); } else { } } else { } ldv_51215: ; if (! isfw_read) { goto ldv_51214; } else { } ldv_51213: ; if (! isfw_read) { tmp___31 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); if (tmp___31 != 0L) { tmp___32 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___32 != 0L) { tmp___29 = preempt_count(); tmp___30 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Write H2C register BOX[%d] fail!!!!! Fw do not read.\n", "_rtl8723be_fill_h2c_command", (unsigned long )tmp___30 & 2096896UL, ((unsigned long )tmp___29 & 0xffffffffffdfffffUL) != 0UL, (int )boxnum); } else { } } else { } goto ldv_51206; } else { } memset((void *)(& boxcontent), 0, 4UL); memset((void *)(& boxextcontent), 0, 4UL); boxcontent[0] = element_id; tmp___35 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); if (tmp___35 != 0L) { tmp___36 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___36 != 0L) { tmp___33 = preempt_count(); tmp___34 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Write element_id box_reg(%4x) = %2x\n", "_rtl8723be_fill_h2c_command", (unsigned long )tmp___34 & 2096896UL, ((unsigned long )tmp___33 & 0xffffffffffdfffffUL) != 0UL, (int )box_reg, (int )element_id); } else { } } else { } switch (cmd_len) { case 1U: ; case 2U: ; case 3U: __len = (size_t )cmd_len; __ret = __builtin_memcpy((void *)(& boxcontent) + 1U, (void const *)p_cmdbuffer + (unsigned long )buf_index, __len); idx = 0U; goto ldv_51223; ldv_51222: rtl_write_byte(rtlpriv, (u32 )((int )box_reg + (int )idx), (int )boxcontent[(int )idx]); idx = (u8 )((int )idx + 1); ldv_51223: ; if ((unsigned int )idx <= 3U) { goto ldv_51222; } else { } goto ldv_51225; case 4U: ; case 5U: ; case 6U: ; case 7U: __len___0 = (size_t )(cmd_len - 3U); __ret___0 = __builtin_memcpy((void *)(& boxextcontent), (void const *)(p_cmdbuffer + ((unsigned long )buf_index + 3UL)), __len___0); __len___1 = 3UL; if (__len___1 > 63UL) { __ret___1 = __memcpy((void *)(& boxcontent) + 1U, (void const *)p_cmdbuffer + (unsigned long )buf_index, __len___1); } else { __ret___1 = __builtin_memcpy((void *)(& boxcontent) + 1U, (void const *)p_cmdbuffer + (unsigned long )buf_index, __len___1); } idx = 0U; goto ldv_51237; ldv_51236: rtl_write_byte(rtlpriv, (u32 )((int )box_extreg + (int )idx), (int )boxextcontent[(int )idx]); idx = (u8 )((int )idx + 1); ldv_51237: ; if ((unsigned int )idx <= 3U) { goto ldv_51236; } else { } idx = 0U; goto ldv_51240; ldv_51239: rtl_write_byte(rtlpriv, (u32 )((int )box_reg + (int )idx), (int )boxcontent[(int )idx]); idx = (u8 )((int )idx + 1); ldv_51240: ; if ((unsigned int )idx <= 3U) { goto ldv_51239; } else { } goto ldv_51225; default: tmp___39 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); if (tmp___39 != 0L) { tmp___40 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); if (tmp___40 != 0L) { tmp___37 = preempt_count(); tmp___38 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> switch case not process\n", "_rtl8723be_fill_h2c_command", (unsigned long )tmp___38 & 2096896UL, ((unsigned long )tmp___37 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } goto ldv_51225; } ldv_51225: bwrite_sucess = 1; rtlhal->last_hmeboxnum = (unsigned int )boxnum + 1U; if ((unsigned int )rtlhal->last_hmeboxnum == 4U) { rtlhal->last_hmeboxnum = 0U; } else { } tmp___43 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); if (tmp___43 != 0L) { tmp___44 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___44 != 0L) { tmp___41 = preempt_count(); tmp___42 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> pHalData->last_hmeboxnum = %d\n", "_rtl8723be_fill_h2c_command", (unsigned long )tmp___42 & 2096896UL, ((unsigned long )tmp___41 & 0xffffffffffdfffffUL) != 0UL, (int )rtlhal->last_hmeboxnum); } else { } } else { } ldv_51244: ; if (! bwrite_sucess) { goto ldv_51243; } else { } ldv_51206: tmp___45 = spinlock_check(& rtlpriv->locks.h2c_lock); flag = _raw_spin_lock_irqsave(tmp___45); rtlhal->h2c_setinprogress = 0; spin_unlock_irqrestore(& rtlpriv->locks.h2c_lock, flag); tmp___48 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); if (tmp___48 != 0L) { tmp___49 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___49 != 0L) { tmp___46 = preempt_count(); tmp___47 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> go out\n", "_rtl8723be_fill_h2c_command", (unsigned long )tmp___47 & 2096896UL, ((unsigned long )tmp___46 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } return; } } void rtl8723be_fill_h2c_cmd(struct ieee80211_hw *hw , u8 element_id , u32 cmd_len , u8 *p_cmdbuffer ) { struct rtl_hal *rtlhal ; u32 tmp_cmdbuf[2U] ; size_t __len ; void *__ret ; { rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; if (! rtlhal->fw_ready) { printk("\017rtl8723be:%s(): return H2C cmd because of Fw download fail!!!\n", "rtl8723be_fill_h2c_cmd"); return; } else { } memset((void *)(& tmp_cmdbuf), 0, 8UL); __len = (size_t )cmd_len; __ret = __builtin_memcpy((void *)(& tmp_cmdbuf), (void const *)p_cmdbuffer, __len); _rtl8723be_fill_h2c_command(hw, (int )element_id, cmd_len, (u8 *)(& tmp_cmdbuf)); return; } } void rtl8723be_set_fw_pwrmode_cmd(struct ieee80211_hw *hw , u8 mode ) { struct rtl_priv *rtlpriv ; u8 u1_h2c_set_pwrmode[5U] ; unsigned int tmp ; struct rtl_ps_ctl *ppsc ; u8 rlbm ; u8 power_state ; int tmp___0 ; int tmp___1 ; long tmp___2 ; long tmp___3 ; struct task_struct *tmp___4 ; struct task_struct *tmp___5 ; struct _ddebug descriptor ; long tmp___6 ; long tmp___7 ; long tmp___8 ; { rtlpriv = (struct rtl_priv *)hw->priv; u1_h2c_set_pwrmode[0] = 0U; tmp = 1U; while (1) { if (tmp >= 5U) { break; } else { } u1_h2c_set_pwrmode[tmp] = (unsigned char)0; tmp = tmp + 1U; } ppsc = & ((struct rtl_priv *)hw->priv)->psc; power_state = 0U; tmp___2 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); if (tmp___2 != 0L) { tmp___3 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___3 != 0L) { tmp___0 = preempt_count(); tmp___1 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> FW LPS mode = %d\n", "rtl8723be_set_fw_pwrmode_cmd", (unsigned long )tmp___1 & 2096896UL, ((unsigned long )tmp___0 & 0xffffffffffdfffffUL) != 0UL, (int )mode); } else { } } else { } *((u8 *)(& u1_h2c_set_pwrmode)) = (unsigned int )mode != 0U; rlbm = 0U; *((u8 *)(& u1_h2c_set_pwrmode) + 1UL) = (unsigned char )(((int )((signed char )*((u8 *)(& u1_h2c_set_pwrmode) + 1UL)) & -16) | ((int )((signed char )rlbm) & 15)); *((u8 *)(& u1_h2c_set_pwrmode) + 1UL) = (unsigned char )(((int )((signed char )*((u8 *)(& u1_h2c_set_pwrmode) + 1UL)) & 15) | ((unsigned int )rtlpriv->mac80211.p2p != 0U ? (signed char )((int )ppsc->smart_ps << 4) : 16)); *((u8 *)(& u1_h2c_set_pwrmode) + 2UL) = ppsc->reg_max_lps_awakeintvl; *((u8 *)(& u1_h2c_set_pwrmode) + 3UL) = 0U; if ((unsigned int )mode == 0U) { power_state = (u8 )((unsigned int )power_state | 12U); } else { power_state = power_state; } *((u8 *)(& u1_h2c_set_pwrmode) + 4UL) = power_state; tmp___7 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); if (tmp___7 != 0L) { tmp___8 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); if (tmp___8 != 0L) { tmp___4 = get_current(); tmp___5 = get_current(); printk("\017%s: In process \"%s\" (pid %i): %s\n", (char *)"rtl8723be", (char *)(& tmp___5->comm), tmp___4->pid, (char *)"rtl92c_set_fw_pwrmode(): u1_h2c_set_pwrmode\n"); descriptor.modname = "rtl8723be"; descriptor.function = "rtl8723be_set_fw_pwrmode_cmd"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/net/--X--defaultlinux-3.16-rc1.tar.xz--X--205_9a--X--cpachecker/linux-3.16-rc1.tar.xz/csd_deg_dscv/623/dscv_tempdir/dscv/ri/205_9a/drivers/net/wireless/rtlwifi/rtl8723be/fw.o.c.prepared"; descriptor.format = ""; descriptor.lineno = 290U; descriptor.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___6 != 0L) { print_hex_dump("\017", "", 0, 16, 1, (void const *)(& u1_h2c_set_pwrmode), 5UL, 1); } else { } } else { } } else { } rtl8723be_fill_h2c_cmd(hw, 32, 5U, (u8 *)(& u1_h2c_set_pwrmode)); return; } } static bool _rtl8723be_cmd_send_packet(struct ieee80211_hw *hw , struct sk_buff *skb ) { struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; struct rtl8192_tx_ring *ring ; struct rtl_tx_desc *pdesc ; struct sk_buff *pskb ; u8 own ; unsigned long flags ; raw_spinlock_t *tmp ; u32 tmp___0 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; pskb = (struct sk_buff *)0; ring = (struct rtl8192_tx_ring *)(& rtlpci->tx_ring) + 4UL; pskb = ldv___skb_dequeue_23(& ring->queue); if ((unsigned long )pskb != (unsigned long )((struct sk_buff *)0)) { ldv_kfree_skb_24(pskb); } else { } tmp = spinlock_check(& rtlpriv->locks.irq_th_lock); flags = _raw_spin_lock_irqsave(tmp); pdesc = ring->desc; tmp___0 = (*(((rtlpriv->cfg)->ops)->get_desc))((u8 *)pdesc, 1, 0); own = (unsigned char )tmp___0; (*(((rtlpriv->cfg)->ops)->fill_tx_cmddesc))(hw, (u8 *)pdesc, 1, 1, skb); __skb_queue_tail(& ring->queue, skb); spin_unlock_irqrestore(& rtlpriv->locks.irq_th_lock, flags); (*(((rtlpriv->cfg)->ops)->tx_polling))(hw, 4); return (1); } } static u8 reserved_page_packet[768U] = { 128U, 0U, 0U, 0U, 255U, 255U, 255U, 255U, 255U, 255U, 0U, 224U, 76U, 2U, 177U, 120U, 236U, 26U, 89U, 11U, 173U, 212U, 32U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 100U, 0U, 16U, 4U, 0U, 5U, 84U, 101U, 115U, 116U, 50U, 1U, 8U, 130U, 132U, 11U, 22U, 36U, 48U, 72U, 108U, 3U, 1U, 6U, 6U, 2U, 0U, 0U, 42U, 1U, 2U, 50U, 4U, 12U, 18U, 24U, 96U, 45U, 26U, 108U, 9U, 3U, 255U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 61U, 0U, 221U, 7U, 0U, 224U, 76U, 2U, 2U, 0U, 0U, 221U, 24U, 0U, 80U, 242U, 1U, 1U, 0U, 0U, 80U, 242U, 4U, 1U, 0U, 0U, 80U, 242U, 4U, 1U, 0U, 0U, 80U, 242U, 2U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 16U, 0U, 40U, 140U, 0U, 18U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 129U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 164U, 16U, 1U, 192U, 236U, 26U, 89U, 11U, 173U, 212U, 0U, 224U, 76U, 2U, 177U, 120U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 24U, 0U, 40U, 140U, 0U, 18U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 1U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 128U, 0U, 0U, 0U, 0U, 0U, 0U, 72U, 1U, 0U, 0U, 236U, 26U, 89U, 11U, 173U, 212U, 0U, 224U, 76U, 2U, 177U, 120U, 236U, 26U, 89U, 11U, 173U, 212U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 114U, 0U, 40U, 140U, 0U, 18U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 1U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 128U, 0U, 0U, 0U, 0U, 0U, 0U, 80U, 0U, 0U, 0U, 0U, 64U, 16U, 16U, 0U, 3U, 0U, 224U, 76U, 118U, 0U, 66U, 0U, 64U, 16U, 16U, 0U, 3U, 0U, 0U, 158U, 70U, 21U, 50U, 39U, 242U, 45U, 0U, 100U, 0U, 0U, 4U, 0U, 12U, 108U, 105U, 110U, 107U, 115U, 121U, 115U, 95U, 119U, 108U, 97U, 110U, 1U, 4U, 130U, 132U, 139U, 150U, 3U, 1U, 1U, 6U, 2U, 0U, 0U, 42U, 1U, 0U, 50U, 8U, 36U, 48U, 72U, 108U, 12U, 18U, 24U, 96U, 45U, 26U, 108U, 24U, 3U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 61U, 0U, 221U, 6U, 0U, 224U, 76U, 2U, 1U, 112U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}; void rtl8723be_set_fw_rsvdpagepkt(struct ieee80211_hw *hw , bool dl_finished ) { struct rtl_priv *rtlpriv ; struct rtl_mac *mac ; struct sk_buff *skb ; u32 totalpacketlen ; bool rtstatus ; u8 u1rsvdpageloc[5U] ; unsigned int tmp ; bool dlok ; u8 *beacon ; u8 *p_pspoll ; u8 *nullfunc ; u8 *p_probersp ; size_t __len ; void *__ret ; size_t __len___0 ; void *__ret___0 ; struct task_struct *tmp___0 ; struct task_struct *tmp___1 ; struct _ddebug descriptor ; long tmp___2 ; long tmp___3 ; long tmp___4 ; struct task_struct *tmp___5 ; struct task_struct *tmp___6 ; struct _ddebug descriptor___0 ; long tmp___7 ; long tmp___8 ; long tmp___9 ; size_t __len___1 ; void *__ret___1 ; unsigned char *tmp___11 ; int tmp___12 ; int tmp___13 ; long tmp___14 ; long tmp___15 ; struct task_struct *tmp___16 ; struct task_struct *tmp___17 ; struct _ddebug descriptor___1 ; long tmp___18 ; long tmp___19 ; long tmp___20 ; int tmp___21 ; int tmp___22 ; long tmp___23 ; long tmp___24 ; { rtlpriv = (struct rtl_priv *)hw->priv; mac = & ((struct rtl_priv *)hw->priv)->mac80211; skb = (struct sk_buff *)0; u1rsvdpageloc[0] = 0U; tmp = 1U; while (1) { if (tmp >= 5U) { break; } else { } u1rsvdpageloc[tmp] = (unsigned char)0; tmp = tmp + 1U; } dlok = 0; beacon = (u8 *)(& reserved_page_packet); *(beacon + 10UL) = *((u8 *)(& mac->mac_addr)); *(beacon + 11U) = *((u8 *)(& mac->mac_addr) + 1UL); *(beacon + 12U) = *((u8 *)(& mac->mac_addr) + 2UL); *(beacon + 13U) = *((u8 *)(& mac->mac_addr) + 3UL); *(beacon + 14U) = *((u8 *)(& mac->mac_addr) + 4UL); *(beacon + 15U) = *((u8 *)(& mac->mac_addr) + 5UL); *(beacon + 16UL) = *((u8 *)(& mac->bssid)); *(beacon + 17U) = *((u8 *)(& mac->bssid) + 1UL); *(beacon + 18U) = *((u8 *)(& mac->bssid) + 2UL); *(beacon + 19U) = *((u8 *)(& mac->bssid) + 3UL); *(beacon + 20U) = *((u8 *)(& mac->bssid) + 4UL); *(beacon + 21U) = *((u8 *)(& mac->bssid) + 5UL); p_pspoll = (u8 *)(& reserved_page_packet) + 256UL; *((u16 *)p_pspoll + 2U) = (u16 )((unsigned int )mac->assoc_id | 49152U); __len = 6UL; if (__len > 63UL) { __ret = __memcpy((void *)p_pspoll + 4U, (void const *)(& mac->bssid), __len); } else { __ret = __builtin_memcpy((void *)p_pspoll + 4U, (void const *)(& mac->bssid), __len); } __len___0 = 6UL; if (__len___0 > 63UL) { __ret___0 = __memcpy((void *)p_pspoll + 10U, (void const *)(& mac->mac_addr), __len___0); } else { __ret___0 = __builtin_memcpy((void *)p_pspoll + 10U, (void const *)(& mac->mac_addr), __len___0); } *((u8 *)(& u1rsvdpageloc) + 1UL) = 2U; nullfunc = (u8 *)(& reserved_page_packet) + 384UL; *(nullfunc + 4UL) = *((u8 *)(& mac->bssid)); *(nullfunc + 5U) = *((u8 *)(& mac->bssid) + 1UL); *(nullfunc + 6U) = *((u8 *)(& mac->bssid) + 2UL); *(nullfunc + 7U) = *((u8 *)(& mac->bssid) + 3UL); *(nullfunc + 8U) = *((u8 *)(& mac->bssid) + 4UL); *(nullfunc + 9U) = *((u8 *)(& mac->bssid) + 5UL); *(nullfunc + 10UL) = *((u8 *)(& mac->mac_addr)); *(nullfunc + 11U) = *((u8 *)(& mac->mac_addr) + 1UL); *(nullfunc + 12U) = *((u8 *)(& mac->mac_addr) + 2UL); *(nullfunc + 13U) = *((u8 *)(& mac->mac_addr) + 3UL); *(nullfunc + 14U) = *((u8 *)(& mac->mac_addr) + 4UL); *(nullfunc + 15U) = *((u8 *)(& mac->mac_addr) + 5UL); *(nullfunc + 16UL) = *((u8 *)(& mac->bssid)); *(nullfunc + 17U) = *((u8 *)(& mac->bssid) + 1UL); *(nullfunc + 18U) = *((u8 *)(& mac->bssid) + 2UL); *(nullfunc + 19U) = *((u8 *)(& mac->bssid) + 3UL); *(nullfunc + 20U) = *((u8 *)(& mac->bssid) + 4UL); *(nullfunc + 21U) = *((u8 *)(& mac->bssid) + 5UL); *((u8 *)(& u1rsvdpageloc) + 2UL) = 3U; p_probersp = (u8 *)(& reserved_page_packet) + 512UL; *(p_probersp + 4UL) = *((u8 *)(& mac->bssid)); *(p_probersp + 5U) = *((u8 *)(& mac->bssid) + 1UL); *(p_probersp + 6U) = *((u8 *)(& mac->bssid) + 2UL); *(p_probersp + 7U) = *((u8 *)(& mac->bssid) + 3UL); *(p_probersp + 8U) = *((u8 *)(& mac->bssid) + 4UL); *(p_probersp + 9U) = *((u8 *)(& mac->bssid) + 5UL); *(p_probersp + 10UL) = *((u8 *)(& mac->mac_addr)); *(p_probersp + 11U) = *((u8 *)(& mac->mac_addr) + 1UL); *(p_probersp + 12U) = *((u8 *)(& mac->mac_addr) + 2UL); *(p_probersp + 13U) = *((u8 *)(& mac->mac_addr) + 3UL); *(p_probersp + 14U) = *((u8 *)(& mac->mac_addr) + 4UL); *(p_probersp + 15U) = *((u8 *)(& mac->mac_addr) + 5UL); *(p_probersp + 16UL) = *((u8 *)(& mac->bssid)); *(p_probersp + 17U) = *((u8 *)(& mac->bssid) + 1UL); *(p_probersp + 18U) = *((u8 *)(& mac->bssid) + 2UL); *(p_probersp + 19U) = *((u8 *)(& mac->bssid) + 3UL); *(p_probersp + 20U) = *((u8 *)(& mac->bssid) + 4UL); *(p_probersp + 21U) = *((u8 *)(& mac->bssid) + 5UL); *((u8 *)(& u1rsvdpageloc)) = 4U; totalpacketlen = 768U; tmp___3 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); if (tmp___3 != 0L) { tmp___4 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___4 != 0L) { tmp___0 = get_current(); tmp___1 = get_current(); printk("\017%s: In process \"%s\" (pid %i): %s\n", (char *)"rtl8723be", (char *)(& tmp___1->comm), tmp___0->pid, (char *)"rtl8723be_set_fw_rsvdpagepkt(): HW_VAR_SET_TX_CMD: ALL\n"); descriptor.modname = "rtl8723be"; descriptor.function = "rtl8723be_set_fw_rsvdpagepkt"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/net/--X--defaultlinux-3.16-rc1.tar.xz--X--205_9a--X--cpachecker/linux-3.16-rc1.tar.xz/csd_deg_dscv/623/dscv_tempdir/dscv/ri/205_9a/drivers/net/wireless/rtlwifi/rtl8723be/fw.o.c.prepared"; descriptor.format = ""; descriptor.lineno = 507U; descriptor.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___2 != 0L) { print_hex_dump("\017", "", 0, 16, 1, (void const *)(& reserved_page_packet), (size_t )totalpacketlen, 1); } else { } } else { } } else { } tmp___8 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); if (tmp___8 != 0L) { tmp___9 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); if (tmp___9 != 0L) { tmp___5 = get_current(); tmp___6 = get_current(); printk("\017%s: In process \"%s\" (pid %i): %s\n", (char *)"rtl8723be", (char *)(& tmp___6->comm), tmp___5->pid, (char *)"rtl8723be_set_fw_rsvdpagepkt(): HW_VAR_SET_TX_CMD: ALL\n"); descriptor___0.modname = "rtl8723be"; descriptor___0.function = "rtl8723be_set_fw_rsvdpagepkt"; descriptor___0.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/net/--X--defaultlinux-3.16-rc1.tar.xz--X--205_9a--X--cpachecker/linux-3.16-rc1.tar.xz/csd_deg_dscv/623/dscv_tempdir/dscv/ri/205_9a/drivers/net/wireless/rtlwifi/rtl8723be/fw.o.c.prepared"; descriptor___0.format = ""; descriptor___0.lineno = 510U; descriptor___0.flags = 0U; tmp___7 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___7 != 0L) { print_hex_dump("\017", "", 0, 16, 1, (void const *)(& u1rsvdpageloc), 3UL, 1); } else { } } else { } } else { } skb = ldv_dev_alloc_skb_25(totalpacketlen); __len___1 = (size_t )totalpacketlen; tmp___11 = skb_put(skb, totalpacketlen); __ret___1 = __builtin_memcpy((void *)tmp___11, (void const *)(& reserved_page_packet), __len___1); rtstatus = _rtl8723be_cmd_send_packet(hw, skb); if ((int )rtstatus) { dlok = 1; } else { } if ((int )dlok) { tmp___14 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); if (tmp___14 != 0L) { tmp___15 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___15 != 0L) { tmp___12 = preempt_count(); tmp___13 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Set RSVD page location to Fw.\n", "rtl8723be_set_fw_rsvdpagepkt", (unsigned long )tmp___13 & 2096896UL, ((unsigned long )tmp___12 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } tmp___19 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); if (tmp___19 != 0L) { tmp___20 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); if (tmp___20 != 0L) { tmp___16 = get_current(); tmp___17 = get_current(); printk("\017%s: In process \"%s\" (pid %i): %s\n", (char *)"rtl8723be", (char *)(& tmp___17->comm), tmp___16->pid, (char *)"H2C_RSVDPAGE:\n"); descriptor___1.modname = "rtl8723be"; descriptor___1.function = "rtl8723be_set_fw_rsvdpagepkt"; descriptor___1.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/net/--X--defaultlinux-3.16-rc1.tar.xz--X--205_9a--X--cpachecker/linux-3.16-rc1.tar.xz/csd_deg_dscv/623/dscv_tempdir/dscv/ri/205_9a/drivers/net/wireless/rtlwifi/rtl8723be/fw.o.c.prepared"; descriptor___1.format = ""; descriptor___1.lineno = 526U; descriptor___1.flags = 0U; tmp___18 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___18 != 0L) { print_hex_dump("\017", "", 0, 16, 1, (void const *)(& u1rsvdpageloc), 3UL, 1); } else { } } else { } } else { } rtl8723be_fill_h2c_cmd(hw, 0, 5U, (u8 *)(& u1rsvdpageloc)); } else { tmp___23 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); if (tmp___23 != 0L) { tmp___24 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 1, 0L); if (tmp___24 != 0L) { tmp___21 = preempt_count(); tmp___22 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Set RSVD page location to Fw FAIL!!!!!!.\n", "rtl8723be_set_fw_rsvdpagepkt", (unsigned long )tmp___22 & 2096896UL, ((unsigned long )tmp___21 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } } return; } } static void rtl8723be_set_p2p_ctw_period_cmd(struct ieee80211_hw *hw , u8 ctwindow ) { u8 u1_ctwindow_period[1U] ; { u1_ctwindow_period[0] = ctwindow; rtl8723be_fill_h2c_cmd(hw, 68, 1U, (u8 *)(& u1_ctwindow_period)); return; } } void rtl8723be_set_p2p_ps_offload_cmd(struct ieee80211_hw *hw , u8 p2p_ps_state ) { struct rtl_priv *rtlpriv ; struct rtl_ps_ctl *rtlps ; struct rtl_hal *rtlhal ; struct rtl_p2p_ps_info *p2pinfo ; struct p2p_ps_offload_t *p2p_ps_offload ; u8 i ; u16 ctwindow ; u32 start_time ; u32 tsf_low ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; int tmp___11 ; int tmp___12 ; long tmp___13 ; long tmp___14 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlps = & ((struct rtl_priv *)hw->priv)->psc; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; p2pinfo = & rtlps->p2p_ps_info; p2p_ps_offload = & rtlhal->p2p_ps_offload; switch ((int )p2p_ps_state) { case 0: tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 2ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> P2P_PS_DISABLE\n", "rtl8723be_set_p2p_ps_offload_cmd", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } memset((void *)p2p_ps_offload, 0, 1UL); goto ldv_51334; case 1: tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 2ULL) != 0ULL, 0L); if (tmp___5 != 0L) { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___6 != 0L) { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> P2P_PS_ENABLE\n", "rtl8723be_set_p2p_ps_offload_cmd", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } if ((unsigned int )p2pinfo->ctwindow != 0U) { p2p_ps_offload->ctwindow_en = 1U; ctwindow = (u16 )p2pinfo->ctwindow; rtl8723be_set_p2p_ctw_period_cmd(hw, (int )((u8 )ctwindow)); } else { } i = 0U; goto ldv_51340; ldv_51339: rtl_write_byte(rtlpriv, 1487U, (int )i << 4U); if ((unsigned int )i == 0U) { p2p_ps_offload->noa0_en = 1U; } else { p2p_ps_offload->noa1_en = 1U; } rtl_write_dword(rtlpriv, 1504U, p2pinfo->noa_duration[(int )i]); rtl_write_dword(rtlpriv, 1508U, p2pinfo->noa_interval[(int )i]); tsf_low = rtl_read_dword(rtlpriv, 1376U); start_time = p2pinfo->noa_start_time[(int )i]; if ((unsigned int )p2pinfo->noa_count_type[(int )i] != 1U) { goto ldv_51337; ldv_51336: start_time = p2pinfo->noa_interval[(int )i] + start_time; if ((unsigned int )p2pinfo->noa_count_type[(int )i] != 255U) { p2pinfo->noa_count_type[(int )i] = (u8 )((int )p2pinfo->noa_count_type[(int )i] - 1); } else { } ldv_51337: ; if (tsf_low + 51200U >= start_time) { goto ldv_51336; } else { } } else { } rtl_write_dword(rtlpriv, 1512U, start_time); rtl_write_dword(rtlpriv, 1516U, (u32 )p2pinfo->noa_count_type[(int )i]); i = (u8 )((int )i + 1); ldv_51340: ; if ((int )p2pinfo->noa_num > (int )i) { goto ldv_51339; } else { } if ((unsigned int )p2pinfo->opp_ps == 1U || (unsigned int )p2pinfo->noa_num != 0U) { rtl_write_byte(rtlpriv, 1363U, 16); p2p_ps_offload->offload_en = 1U; if ((unsigned int )rtlpriv->mac80211.p2p == 3U) { p2p_ps_offload->role = 1U; p2p_ps_offload->allstasleep = 0U; } else { p2p_ps_offload->role = 0U; } p2p_ps_offload->discovery = 0U; } else { } goto ldv_51334; case 2: tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 2ULL) != 0ULL, 0L); if (tmp___9 != 0L) { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___10 != 0L) { tmp___7 = preempt_count(); tmp___8 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> P2P_PS_SCAN\n", "rtl8723be_set_p2p_ps_offload_cmd", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } p2p_ps_offload->discovery = 1U; goto ldv_51334; case 3: tmp___13 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 2ULL) != 0ULL, 0L); if (tmp___13 != 0L) { tmp___14 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___14 != 0L) { tmp___11 = preempt_count(); tmp___12 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> P2P_PS_SCAN_DONE\n", "rtl8723be_set_p2p_ps_offload_cmd", (unsigned long )tmp___12 & 2096896UL, ((unsigned long )tmp___11 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } p2p_ps_offload->discovery = 0U; p2pinfo->p2p_ps_state = 1; goto ldv_51334; default: ; goto ldv_51334; } ldv_51334: rtl8723be_fill_h2c_cmd(hw, 36, 1U, (u8 *)p2p_ps_offload); return; } } void rtl8723be_set_fw_joinbss_report_cmd(struct ieee80211_hw *hw , u8 mstatus ) { u8 u1_joinbssrpt_parm[1U] ; { u1_joinbssrpt_parm[0] = 0U; *((u8 *)(& u1_joinbssrpt_parm)) = mstatus; rtl8723be_fill_h2c_cmd(hw, 1, 1U, (u8 *)(& u1_joinbssrpt_parm)); return; } } void rtl8723be_set_fw_ap_off_load_cmd(struct ieee80211_hw *hw , u8 ap_offload_enable ) { struct rtl_mac *mac ; u8 u1_apoffload_parm[3U] ; unsigned int tmp ; { mac = & ((struct rtl_priv *)hw->priv)->mac80211; u1_apoffload_parm[0] = 0U; tmp = 1U; while (1) { if (tmp >= 3U) { break; } else { } u1_apoffload_parm[tmp] = (unsigned char)0; tmp = tmp + 1U; } *((u8 *)(& u1_apoffload_parm)) = ap_offload_enable; *((u8 *)(& u1_apoffload_parm) + 1UL) = (unsigned char )mac->hiddenssid; *((u8 *)(& u1_apoffload_parm) + 2UL) = 0U; rtl8723be_fill_h2c_cmd(hw, 8, 3U, (u8 *)(& u1_apoffload_parm)); return; } } void ldv_consume_skb_16(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_17(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_18(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_19(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_22(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } __inline static struct sk_buff *ldv___skb_dequeue_23(struct sk_buff_head *list ) { struct sk_buff *tmp ; { tmp = ldv_skb_alloc(); return (tmp); } } void ldv_kfree_skb_24(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } __inline static struct sk_buff *ldv_dev_alloc_skb_25(unsigned int length ) { struct sk_buff *tmp ; { tmp = ldv_skb_alloc(); return (tmp); } } extern struct pv_irq_ops pv_irq_ops ; __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"./arch/x86/include/asm/paravirt.h"), "i" (804), "i" (12UL)); ldv_4822: ; goto ldv_4822; } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static void arch_local_irq_restore(unsigned long f ) { unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.restore_fl.func == (unsigned long )((void *)0), 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"./arch/x86/include/asm/paravirt.h"), "i" (809), "i" (12UL)); ldv_4832: ; goto ldv_4832; } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (45UL), [paravirt_opptr] "i" (& pv_irq_ops.restore_fl.func), [paravirt_clobber] "i" (1), "D" (f): "memory", "cc"); return; } } __inline static void arch_local_irq_enable(void) { unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.irq_enable.func == (unsigned long )((void *)0), 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"./arch/x86/include/asm/paravirt.h"), "i" (819), "i" (12UL)); ldv_4850: ; goto ldv_4850; } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (47UL), [paravirt_opptr] "i" (& pv_irq_ops.irq_enable.func), [paravirt_clobber] "i" (1): "memory", "cc"); return; } } __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } extern void trace_hardirqs_on(void) ; extern void trace_hardirqs_off(void) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; __inline static void spin_lock(spinlock_t *lock ) { { _raw_spin_lock(& lock->ldv_6338.rlock); return; } } __inline static void spin_unlock(spinlock_t *lock ) { { _raw_spin_unlock(& lock->ldv_6338.rlock); return; } } extern unsigned long volatile jiffies ; extern unsigned long msecs_to_jiffies(unsigned int const ) ; extern int mod_timer(struct timer_list * , unsigned long ) ; __inline static int valid_dma_direction(int dma_direction ) { { return ((dma_direction == 0 || dma_direction == 1) || dma_direction == 2); } } extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static void dma_unmap_single_attrs(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (36), "i" (12UL)); ldv_20755: ; goto ldv_20755; } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { (*(ops->unmap_page))(dev, addr, size, dir, attrs); } else { } debug_dma_unmap_page(dev, addr, size, (int )dir, 1); return; } } void ldv_kfree_skb_31(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_32(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_33(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_36(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_38(struct sk_buff *ldv_func_arg1 ) ; void ldv_consume_skb_30(struct sk_buff *ldv_func_arg1 ) ; __inline static __u32 skb_queue_len(struct sk_buff_head const *list_ ) { { return ((__u32 )list_->qlen); } } __inline static struct sk_buff *ldv___skb_dequeue_23(struct sk_buff_head *list ) ; extern void synchronize_irq(unsigned int ) ; __inline static u16 rtl_read_word(struct rtl_priv *rtlpriv , u32 addr ) { u16 tmp ; { tmp = (*(rtlpriv->io.read16_sync))(rtlpriv, addr); return (tmp); } } __inline static void rtl_write_word(struct rtl_priv *rtlpriv , u32 addr , u16 val16 ) { { (*(rtlpriv->io.write16_async))(rtlpriv, addr, (int )val16); if ((int )(rtlpriv->cfg)->write_readback) { (*(rtlpriv->io.read16_sync))(rtlpriv, addr); } else { } return; } } __inline static u8 get_rf_type(struct rtl_phy *rtlphy ) { { return (rtlphy->rf_type); } } extern u8 efuse_read_1byte(struct ieee80211_hw * , u16 ) ; extern void rtl_efuse_shadow_map_update(struct ieee80211_hw * ) ; extern void rtl_cam_reset_all_entry(struct ieee80211_hw * ) ; extern u8 rtl_cam_add_one_entry(struct ieee80211_hw * , u8 * , u32 , u32 , u32 , u32 , u8 * ) ; extern int rtl_cam_delete_one_entry(struct ieee80211_hw * , u8 * , u32 ) ; extern void rtl_cam_mark_invalid(struct ieee80211_hw * , u8 ) ; extern void rtl_cam_empty_entry(struct ieee80211_hw * , u8 ) ; extern u8 rtl_cam_get_free_entry(struct ieee80211_hw * , u8 * ) ; extern void rtl_cam_del_entry(struct ieee80211_hw * , u8 * ) ; extern bool rtl_hal_pwrseqcmdparsing(struct rtl_priv * , u8 , u8 , u8 , struct wlan_pwr_cfg * ) ; __inline static void pci_unmap_single(struct pci_dev *hwdev , dma_addr_t dma_addr , size_t size , int direction ) { { dma_unmap_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_addr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); return; } } bool rtl8723be_phy_mac_config(struct ieee80211_hw *hw ) ; bool rtl8723be_phy_bb_config(struct ieee80211_hw *hw ) ; bool rtl8723be_phy_rf_config(struct ieee80211_hw *hw ) ; bool rtl8723be_phy_set_io_cmd(struct ieee80211_hw *hw , enum io_type iotype ) ; extern void rtl8723be_firmware_selfreset(struct ieee80211_hw * ) ; extern int rtl8723_download_fw(struct ieee80211_hw * , bool ) ; void rtl8723be_sw_led_on(struct ieee80211_hw *hw , struct rtl_led *pled ) ; void rtl8723be_sw_led_off(struct ieee80211_hw *hw , struct rtl_led *pled ) ; void rtl8723be_get_hw_reg(struct ieee80211_hw *hw , u8 variable , u8 *val ) ; void rtl8723be_read_eeprom_info(struct ieee80211_hw *hw ) ; void rtl8723be_interrupt_recognized(struct ieee80211_hw *hw , u32 *p_inta , u32 *p_intb ) ; int rtl8723be_hw_init(struct ieee80211_hw *hw ) ; void rtl8723be_card_disable(struct ieee80211_hw *hw ) ; void rtl8723be_enable_interrupt(struct ieee80211_hw *hw ) ; void rtl8723be_disable_interrupt(struct ieee80211_hw *hw ) ; int rtl8723be_set_network_type(struct ieee80211_hw *hw , enum nl80211_iftype type ) ; void rtl8723be_set_check_bssid(struct ieee80211_hw *hw , bool check_bssid ) ; void rtl8723be_set_qos(struct ieee80211_hw *hw , int aci ) ; void rtl8723be_set_beacon_related_registers(struct ieee80211_hw *hw ) ; void rtl8723be_set_beacon_interval(struct ieee80211_hw *hw ) ; void rtl8723be_update_interrupt_mask(struct ieee80211_hw *hw , u32 add_msr , u32 rm_msr ) ; void rtl8723be_set_hw_reg(struct ieee80211_hw *hw , u8 variable , u8 *val ) ; void rtl8723be_update_hal_rate_tbl(struct ieee80211_hw *hw , struct ieee80211_sta *sta , u8 rssi_level ) ; void rtl8723be_update_channel_access_setting(struct ieee80211_hw *hw ) ; bool rtl8723be_gpio_radio_on_off_checking(struct ieee80211_hw *hw , u8 *valid ) ; void rtl8723be_enable_hw_security_config(struct ieee80211_hw *hw ) ; void rtl8723be_set_key(struct ieee80211_hw *hw , u32 key_index , u8 *p_macaddr , bool is_group , u8 enc_algo , bool is_wepkey , bool clear_all ) ; void rtl8723be_read_bt_coexist_info_from_hwpg(struct ieee80211_hw *hw , bool auto_load_fail , u8 *hwinfo ) ; void rtl8723be_bt_reg_init(struct ieee80211_hw *hw ) ; void rtl8723be_bt_hw_init(struct ieee80211_hw *hw ) ; void rtl8723be_suspend(struct ieee80211_hw *hw ) ; void rtl8723be_resume(struct ieee80211_hw *hw ) ; struct wlan_pwr_cfg rtl8723B_card_disable_flow[31U] ; struct wlan_pwr_cfg rtl8723B_card_enable_flow[31U] ; struct wlan_pwr_cfg rtl8723B_enter_lps_flow[16U] ; static void _rtl8723be_return_beacon_queue_skb(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; struct rtl8192_tx_ring *ring ; struct rtl_tx_desc *entry ; struct sk_buff *skb ; struct sk_buff *tmp ; u32 tmp___0 ; __u32 tmp___1 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; ring = (struct rtl8192_tx_ring *)(& rtlpci->tx_ring) + 4UL; goto ldv_52219; ldv_52218: entry = ring->desc + (unsigned long )ring->idx; tmp = ldv___skb_dequeue_23(& ring->queue); skb = tmp; tmp___0 = (*(((rtlpriv->cfg)->ops)->get_desc))((u8 *)entry, 1, 3); pci_unmap_single(rtlpci->pdev, (dma_addr_t )tmp___0, (size_t )skb->len, 1); ldv_kfree_skb_38(skb); ring->idx = (ring->idx + 1U) % ring->entries; ldv_52219: tmp___1 = skb_queue_len((struct sk_buff_head const *)(& ring->queue)); if (tmp___1 != 0U) { goto ldv_52218; } else { } return; } } static void _rtl8723be_set_bcn_ctrl_reg(struct ieee80211_hw *hw , u8 set_bits , u8 clear_bits ) { struct rtl_pci *rtlpci ; struct rtl_priv *rtlpriv ; { rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; rtlpriv = (struct rtl_priv *)hw->priv; rtlpci->reg_bcn_ctrl_val = rtlpci->reg_bcn_ctrl_val | (u32 )set_bits; rtlpci->reg_bcn_ctrl_val = rtlpci->reg_bcn_ctrl_val & (u32 )(~ ((int )clear_bits)); rtl_write_byte(rtlpriv, 1360U, (int )((unsigned char )rtlpci->reg_bcn_ctrl_val)); return; } } static void _rtl8723be_stop_tx_beacon(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; u8 tmp1byte ; { rtlpriv = (struct rtl_priv *)hw->priv; tmp1byte = rtl_read_byte(rtlpriv, 1058U); rtl_write_byte(rtlpriv, 1058U, (int )tmp1byte & 191); rtl_write_byte(rtlpriv, 1345U, 100); tmp1byte = rtl_read_byte(rtlpriv, 1346U); tmp1byte = (unsigned int )tmp1byte & 254U; rtl_write_byte(rtlpriv, 1346U, (int )tmp1byte); return; } } static void _rtl8723be_resume_tx_beacon(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; u8 tmp1byte ; { rtlpriv = (struct rtl_priv *)hw->priv; tmp1byte = rtl_read_byte(rtlpriv, 1058U); rtl_write_byte(rtlpriv, 1058U, (int )((unsigned int )tmp1byte | 64U)); rtl_write_byte(rtlpriv, 1345U, 255); tmp1byte = rtl_read_byte(rtlpriv, 1346U); tmp1byte = (u8 )((unsigned int )tmp1byte | 2U); rtl_write_byte(rtlpriv, 1346U, (int )tmp1byte); return; } } static void _rtl8723be_enable_bcn_sub_func(struct ieee80211_hw *hw ) { { _rtl8723be_set_bcn_ctrl_reg(hw, 0, 2); return; } } static void _rtl8723be_disable_bcn_sub_func(struct ieee80211_hw *hw ) { { _rtl8723be_set_bcn_ctrl_reg(hw, 2, 0); return; } } static void _rtl8723be_set_fw_clock_on(struct ieee80211_hw *hw , u8 rpwm_val , bool need_turn_off_ckk ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; bool support_remote_wake_up ; u32 count ; u32 isr_regaddr ; u32 content ; bool schedule_timer ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; unsigned long tmp___3 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; count = 0U; schedule_timer = need_turn_off_ckk; (*(((rtlpriv->cfg)->ops)->get_hw_reg))(hw, 90, (u8 *)(& support_remote_wake_up)); if (! rtlhal->fw_ready) { return; } else { } if (! rtlpriv->psc.fw_current_inpsmode) { return; } else { } ldv_52260: spin_lock_bh(& rtlpriv->locks.fw_ps_lock); if ((int )rtlhal->fw_clk_change_in_progress) { goto ldv_52257; ldv_52256: spin_unlock_bh(& rtlpriv->locks.fw_ps_lock); count = count + 1U; __const_udelay(429500UL); if (count > 1000U) { return; } else { } spin_lock_bh(& rtlpriv->locks.fw_ps_lock); ldv_52257: ; if ((int )rtlhal->fw_clk_change_in_progress) { goto ldv_52256; } else { } spin_unlock_bh(& rtlpriv->locks.fw_ps_lock); } else { rtlhal->fw_clk_change_in_progress = 0; spin_unlock_bh(& rtlpriv->locks.fw_ps_lock); goto ldv_52259; } goto ldv_52260; ldv_52259: ; if (((unsigned int )rtlhal->fw_ps_state & 15U) == 1U) { (*(((rtlpriv->cfg)->ops)->get_hw_reg))(hw, 59, & rpwm_val); if (((unsigned long )rpwm_val & 64UL) != 0UL) { isr_regaddr = 180U; content = rtl_read_dword(rtlpriv, isr_regaddr); goto ldv_52262; ldv_52261: __const_udelay(214750UL); count = count + 1U; content = rtl_read_dword(rtlpriv, isr_regaddr); ldv_52262: ; if (((unsigned long )content & 256UL) == 0UL && count <= 499U) { goto ldv_52261; } else { } if (((unsigned long )content & 256UL) != 0UL) { rtl_write_word(rtlpriv, isr_regaddr, 256); rtlhal->fw_ps_state = 0U; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Receive CPWM INT!!! Set pHalData->FwPSState = %X\n", "_rtl8723be_set_fw_clock_on", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )rtlhal->fw_ps_state); } else { } } else { } } else { } } else { } spin_lock_bh(& rtlpriv->locks.fw_ps_lock); rtlhal->fw_clk_change_in_progress = 0; spin_unlock_bh(& rtlpriv->locks.fw_ps_lock); if ((int )schedule_timer) { tmp___3 = msecs_to_jiffies(10U); mod_timer(& rtlpriv->works.fw_clockoff_timer, tmp___3 + (unsigned long )jiffies); } else { } } else { spin_lock_bh(& rtlpriv->locks.fw_ps_lock); rtlhal->fw_clk_change_in_progress = 0; spin_unlock_bh(& rtlpriv->locks.fw_ps_lock); } return; } } static void _rtl8723be_set_fw_clock_off(struct ieee80211_hw *hw , u8 rpwm_val ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; struct rtl_pci *rtlpci ; struct rtl8192_tx_ring *ring ; enum rf_pwrstate rtstate ; bool schedule_timer ; u8 queue ; __u32 tmp ; unsigned long tmp___0 ; unsigned long tmp___1 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; schedule_timer = 0; if (! rtlhal->fw_ready) { return; } else { } if (! rtlpriv->psc.fw_current_inpsmode) { return; } else { } if (! rtlhal->allow_sw_to_change_hwclc) { return; } else { } (*(((rtlpriv->cfg)->ops)->get_hw_reg))(hw, 39, (u8 *)(& rtstate)); if ((unsigned int )rtstate == 2U || (unsigned int )rtlpriv->psc.inactive_pwrstate == 2U) { return; } else { } queue = 0U; goto ldv_52278; ldv_52277: ring = (struct rtl8192_tx_ring *)(& rtlpci->tx_ring) + (unsigned long )queue; tmp = skb_queue_len((struct sk_buff_head const *)(& ring->queue)); if (tmp != 0U) { schedule_timer = 1; goto ldv_52276; } else { } queue = (u8 )((int )queue + 1); ldv_52278: ; if ((unsigned int )queue <= 8U) { goto ldv_52277; } else { } ldv_52276: ; if ((int )schedule_timer) { tmp___0 = msecs_to_jiffies(10U); mod_timer(& rtlpriv->works.fw_clockoff_timer, tmp___0 + (unsigned long )jiffies); return; } else { } if (((unsigned int )rtlhal->fw_ps_state & 15U) != 1U) { spin_lock_bh(& rtlpriv->locks.fw_ps_lock); if (! rtlhal->fw_clk_change_in_progress) { rtlhal->fw_clk_change_in_progress = 1; spin_unlock_bh(& rtlpriv->locks.fw_ps_lock); rtlhal->fw_ps_state = (unsigned int )rpwm_val & 15U; rtl_write_word(rtlpriv, 180U, 256); (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 59, & rpwm_val); spin_lock_bh(& rtlpriv->locks.fw_ps_lock); rtlhal->fw_clk_change_in_progress = 0; spin_unlock_bh(& rtlpriv->locks.fw_ps_lock); } else { spin_unlock_bh(& rtlpriv->locks.fw_ps_lock); tmp___1 = msecs_to_jiffies(10U); mod_timer(& rtlpriv->works.fw_clockoff_timer, tmp___1 + (unsigned long )jiffies); } } else { } return; } } static void _rtl8723be_set_fw_ps_rf_on(struct ieee80211_hw *hw ) { u8 rpwm_val ; { rpwm_val = 0U; rpwm_val = (u8 )((unsigned int )rpwm_val | 64U); _rtl8723be_set_fw_clock_on(hw, (int )rpwm_val, 1); return; } } static void _rtl8723be_fwlps_leave(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_ps_ctl *ppsc ; struct rtl_hal *rtlhal ; bool fw_current_inps ; u8 rpwm_val ; u8 fw_pwrmode ; { rtlpriv = (struct rtl_priv *)hw->priv; ppsc = & ((struct rtl_priv *)hw->priv)->psc; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; fw_current_inps = 0; rpwm_val = 0U; fw_pwrmode = 0U; if ((int )ppsc->low_power_enable) { rpwm_val = 64U; _rtl8723be_set_fw_clock_on(hw, (int )rpwm_val, 0); rtlhal->allow_sw_to_change_hwclc = 0; (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 60, & fw_pwrmode); (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 64, (u8 *)(& fw_current_inps)); } else { rpwm_val = 0U; (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 59, & rpwm_val); (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 60, & fw_pwrmode); (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 64, (u8 *)(& fw_current_inps)); } return; } } static void _rtl8723be_fwlps_enter(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_ps_ctl *ppsc ; struct rtl_hal *rtlhal ; bool fw_current_inps ; u8 rpwm_val ; { rtlpriv = (struct rtl_priv *)hw->priv; ppsc = & ((struct rtl_priv *)hw->priv)->psc; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; fw_current_inps = 1; if ((int )ppsc->low_power_enable) { rpwm_val = 1U; (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 64, (u8 *)(& fw_current_inps)); (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 60, & ppsc->fwctrl_psmode); rtlhal->allow_sw_to_change_hwclc = 1; _rtl8723be_set_fw_clock_off(hw, (int )rpwm_val); } else { rpwm_val = 0U; (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 64, (u8 *)(& fw_current_inps)); (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 60, & ppsc->fwctrl_psmode); (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 59, & rpwm_val); } return; } } void rtl8723be_get_hw_reg(struct ieee80211_hw *hw , u8 variable , u8 *val ) { struct rtl_priv *rtlpriv ; struct rtl_ps_ctl *ppsc ; struct rtl_pci *rtlpci ; enum rf_pwrstate rfstate ; u32 val_rcr ; u64 tsf ; u32 *ptsf_low ; u32 *ptsf_high ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { rtlpriv = (struct rtl_priv *)hw->priv; ppsc = & ((struct rtl_priv *)hw->priv)->psc; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; switch ((int )variable) { case 43: *((u32 *)val) = rtlpci->receive_config; goto ldv_52309; case 39: *((enum rf_pwrstate *)val) = ppsc->rfpwr_state; goto ldv_52309; case 84: (*(((rtlpriv->cfg)->ops)->get_hw_reg))(hw, 39, (u8 *)(& rfstate)); if ((unsigned int )rfstate == 2U) { *((bool *)val) = 1; } else { val_rcr = rtl_read_dword(rtlpriv, 1544U); val_rcr = val_rcr & 458752U; if (val_rcr != 0U) { *((bool *)val) = 0; } else { *((bool *)val) = 1; } } goto ldv_52309; case 64: *((bool *)val) = ppsc->fw_current_inpsmode; goto ldv_52309; case 82: ptsf_low = (u32 *)(& tsf); ptsf_high = (u32 *)(& tsf) + 1UL; *ptsf_high = rtl_read_dword(rtlpriv, 1380U); *ptsf_low = rtl_read_dword(rtlpriv, 1376U); *((u64 *)val) = tsf; goto ldv_52309; default: tmp___1 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> switch case not process %x\n", "rtl8723be_get_hw_reg", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )variable); } else { } } else { } goto ldv_52309; } ldv_52309: ; return; } } void rtl8723be_set_hw_reg(struct ieee80211_hw *hw , u8 variable , u8 *val ) { struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; struct rtl_mac *mac ; struct rtl_efuse *rtlefuse ; struct rtl_ps_ctl *ppsc ; u8 idx ; u16 rate_cfg ; u8 rate_index ; u8 e_aci ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; u8 reg_tmp ; u8 short_preamble ; u8 min_spacing_to_set ; u8 sec_min_space ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; u8 density_to_set ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; u8 regtoset_normal[4U] ; u8 factor_toset ; u8 *p_regtoset ; u8 index ; int tmp___11 ; int tmp___12 ; long tmp___13 ; long tmp___14 ; u8 e_aci___0 ; u8 e_aci___1 ; union aci_aifsn *p_aci_aifsn ; u8 acm ; u8 acm_ctrl ; u8 tmp___15 ; int tmp___16 ; int tmp___17 ; long tmp___18 ; long tmp___19 ; int tmp___20 ; int tmp___21 ; long tmp___22 ; long tmp___23 ; int tmp___24 ; int tmp___25 ; long tmp___26 ; long tmp___27 ; u8 retry_limit ; u8 rpwm_val ; bool enter_fwlps ; u8 mstatus ; u8 tmp_regcr ; u8 tmp_reg422 ; u8 bcnvalid_reg ; u8 count ; u8 dlbcn_count ; bool recover ; u16 u2btmp ; u8 btype_ibss ; u8 array[2U] ; int tmp___28 ; int tmp___29 ; long tmp___30 ; long tmp___31 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; mac = & ((struct rtl_priv *)hw->priv)->mac80211; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; ppsc = & ((struct rtl_priv *)hw->priv)->psc; switch ((int )variable) { case 0: idx = 0U; goto ldv_52334; ldv_52333: rtl_write_byte(rtlpriv, (u32 )((int )idx + 1552), (int )*(val + (unsigned long )idx)); idx = (u8 )((int )idx + 1); ldv_52334: ; if ((unsigned int )idx <= 5U) { goto ldv_52333; } else { } goto ldv_52336; case 2: rate_cfg = *((u16 *)val); rate_index = 0U; rate_cfg = (unsigned int )rate_cfg & 351U; rate_cfg = (u16 )((unsigned int )rate_cfg | 1U); rtl_write_byte(rtlpriv, 1088U, (int )((u8 )rate_cfg)); rtl_write_byte(rtlpriv, 1089U, (int )((u8 )((int )rate_cfg >> 8))); goto ldv_52341; ldv_52340: rate_cfg = (u16 )((int )rate_cfg >> 1); rate_index = (u8 )((int )rate_index + 1); ldv_52341: ; if ((unsigned int )rate_cfg > 1U) { goto ldv_52340; } else { } rtl_write_byte(rtlpriv, 1152U, (int )rate_index); goto ldv_52336; case 3: idx = 0U; goto ldv_52345; ldv_52344: rtl_write_byte(rtlpriv, (u32 )((int )idx + 1560), (int )*(val + (unsigned long )idx)); idx = (u8 )((int )idx + 1); ldv_52345: ; if ((unsigned int )idx <= 5U) { goto ldv_52344; } else { } goto ldv_52336; case 14: rtl_write_byte(rtlpriv, 1301U, (int )*val); rtl_write_byte(rtlpriv, 1303U, (int )*(val + 1UL)); rtl_write_byte(rtlpriv, 1065U, (int )*val); rtl_write_byte(rtlpriv, 1595U, (int )*val); if ((unsigned int )mac->ht_enable == 0U) { rtl_write_word(rtlpriv, 1598U, 3598); } else { rtl_write_word(rtlpriv, 1598U, (int )*((u16 *)val)); } goto ldv_52336; case 17: tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 32ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> HW_VAR_SLOT_TIME %x\n", "rtl8723be_set_hw_reg", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )*val); } else { } } else { } rtl_write_byte(rtlpriv, 1307U, (int )*val); e_aci = 0U; goto ldv_52352; ldv_52351: (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 31, & e_aci); e_aci = (u8 )((int )e_aci + 1); ldv_52352: ; if ((unsigned int )e_aci <= 3U) { goto ldv_52351; } else { } goto ldv_52336; case 18: short_preamble = (unsigned int )*val != 0U; reg_tmp = rtl_read_byte(rtlpriv, 1642U); if ((unsigned int )short_preamble != 0U) { reg_tmp = (u8 )((unsigned int )reg_tmp | 2U); rtl_write_byte(rtlpriv, 1642U, (int )reg_tmp); } else { reg_tmp = (unsigned int )reg_tmp & 253U; rtl_write_byte(rtlpriv, 1642U, (int )reg_tmp); } goto ldv_52336; case 26: rtl_write_byte(rtlpriv, 1664U, (int )*val); goto ldv_52336; case 27: min_spacing_to_set = *val; if ((unsigned int )min_spacing_to_set <= 7U) { sec_min_space = 0U; if ((int )min_spacing_to_set < (int )sec_min_space) { min_spacing_to_set = sec_min_space; } else { } mac->min_space_cfg = (u8 )(((int )((signed char )mac->min_space_cfg) & -8) | (int )((signed char )min_spacing_to_set)); *val = min_spacing_to_set; tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 32ULL) != 0ULL, 0L); if (tmp___5 != 0L) { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___6 != 0L) { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Set HW_VAR_AMPDU_MIN_SPACE: %#x\n", "rtl8723be_set_hw_reg", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, (int )mac->min_space_cfg); } else { } } else { } rtl_write_byte(rtlpriv, 1116U, (int )mac->min_space_cfg); } else { } goto ldv_52336; case 28: density_to_set = *val; mac->min_space_cfg = (u8 )((int )((signed char )mac->min_space_cfg) | (int )((signed char )((int )density_to_set << 3))); tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 32ULL) != 0ULL, 0L); if (tmp___9 != 0L) { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___10 != 0L) { tmp___7 = preempt_count(); tmp___8 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Set HW_VAR_SHORTGI_DENSITY: %#x\n", "rtl8723be_set_hw_reg", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL, (int )mac->min_space_cfg); } else { } } else { } rtl_write_byte(rtlpriv, 1116U, (int )mac->min_space_cfg); goto ldv_52336; case 29: regtoset_normal[0] = 65U; regtoset_normal[1] = 168U; regtoset_normal[2] = 114U; regtoset_normal[3] = 185U; p_regtoset = (u8 *)0U; index = 0U; p_regtoset = (u8 *)(& regtoset_normal); factor_toset = *val; if ((unsigned int )factor_toset <= 3U) { factor_toset = (u8 )(1 << ((int )factor_toset + 2)); if ((unsigned int )factor_toset > 15U) { factor_toset = 15U; } else { } index = 0U; goto ldv_52369; ldv_52368: ; if (((int )*(p_regtoset + (unsigned long )index) & 240) > (int )factor_toset << 4) { *(p_regtoset + (unsigned long )index) = (u8 )(((int )((signed char )*(p_regtoset + (unsigned long )index)) & 15) | (int )((signed char )((int )factor_toset << 4))); } else { } if (((int )*(p_regtoset + (unsigned long )index) & 15) > (int )factor_toset) { *(p_regtoset + (unsigned long )index) = (u8 )(((int )((signed char )*(p_regtoset + (unsigned long )index)) & -16) | (int )((signed char )factor_toset)); } else { } rtl_write_byte(rtlpriv, (u32 )((int )index + 1112), (int )*(p_regtoset + (unsigned long )index)); index = (u8 )((int )index + 1); ldv_52369: ; if ((unsigned int )index <= 3U) { goto ldv_52368; } else { } tmp___13 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 32ULL) != 0ULL, 0L); if (tmp___13 != 0L) { tmp___14 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___14 != 0L) { tmp___11 = preempt_count(); tmp___12 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Set HW_VAR_AMPDU_FACTOR: %#x\n", "rtl8723be_set_hw_reg", (unsigned long )tmp___12 & 2096896UL, ((unsigned long )tmp___11 & 0xffffffffffdfffffUL) != 0UL, (int )factor_toset); } else { } } else { } } else { } goto ldv_52336; case 31: e_aci___0 = *val; rtl8723_dm_init_edca_turbo(hw); if ((unsigned int )rtlpci->acm_method != 2U) { (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 32, & e_aci___0); } else { } goto ldv_52336; case 32: e_aci___1 = *val; p_aci_aifsn = (union aci_aifsn *)(& mac->ac[0].aifs); acm = p_aci_aifsn->f.acm; tmp___15 = rtl_read_byte(rtlpriv, 1472U); acm_ctrl = tmp___15; acm_ctrl = (u8 )(((unsigned int )rtlpci->acm_method != 2U) | (int )((signed char )acm_ctrl)); if ((unsigned int )acm != 0U) { switch ((int )e_aci___1) { case 0: acm_ctrl = (u8 )((unsigned int )acm_ctrl | 2U); goto ldv_52379; case 2: acm_ctrl = (u8 )((unsigned int )acm_ctrl | 4U); goto ldv_52379; case 3: acm_ctrl = (u8 )((unsigned int )acm_ctrl | 8U); goto ldv_52379; default: tmp___18 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); if (tmp___18 != 0L) { tmp___19 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 1, 0L); if (tmp___19 != 0L) { tmp___16 = preempt_count(); tmp___17 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> HW_VAR_ACM_CTRL acm set failed: eACI is %d\n", "rtl8723be_set_hw_reg", (unsigned long )tmp___17 & 2096896UL, ((unsigned long )tmp___16 & 0xffffffffffdfffffUL) != 0UL, (int )acm); } else { } } else { } goto ldv_52379; } ldv_52379: ; } else { switch ((int )e_aci___1) { case 0: acm_ctrl = (unsigned int )acm_ctrl & 253U; goto ldv_52384; case 2: acm_ctrl = (unsigned int )acm_ctrl & 251U; goto ldv_52384; case 3: acm_ctrl = (unsigned int )acm_ctrl & 253U; goto ldv_52384; default: tmp___22 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); if (tmp___22 != 0L) { tmp___23 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); if (tmp___23 != 0L) { tmp___20 = preempt_count(); tmp___21 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> switch case not process\n", "rtl8723be_set_hw_reg", (unsigned long )tmp___21 & 2096896UL, ((unsigned long )tmp___20 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } goto ldv_52384; } ldv_52384: ; } tmp___26 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 33554432ULL) != 0ULL, 0L); if (tmp___26 != 0L) { tmp___27 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); if (tmp___27 != 0L) { tmp___24 = preempt_count(); tmp___25 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n", "rtl8723be_set_hw_reg", (unsigned long )tmp___25 & 2096896UL, ((unsigned long )tmp___24 & 0xffffffffffdfffffUL) != 0UL, (int )acm_ctrl); } else { } } else { } rtl_write_byte(rtlpriv, 1472U, (int )acm_ctrl); goto ldv_52336; case 43: rtl_write_dword(rtlpriv, 1544U, *((u32 *)val)); rtlpci->receive_config = *((u32 *)val); goto ldv_52336; case 52: retry_limit = *val; rtl_write_word(rtlpriv, 1066U, (int )((u16 )((int )((short )((int )retry_limit << 8)) | (int )((short )retry_limit)))); goto ldv_52336; case 85: rtl_write_byte(rtlpriv, 1363U, 3); goto ldv_52336; case 56: rtlefuse->efuse_usedbytes = *((u16 *)val); goto ldv_52336; case 55: rtlefuse->efuse_usedpercentage = *val; goto ldv_52336; case 70: rtl8723be_phy_set_io_cmd(hw, *((enum io_type *)val)); goto ldv_52336; case 59: rpwm_val = rtl_read_byte(rtlpriv, 865U); __const_udelay(4295UL); if ((int )((signed char )rpwm_val) < 0) { rtl_write_byte(rtlpriv, 865U, (int )*val); } else { rtl_write_byte(rtlpriv, 865U, (int )((unsigned int )*val | 128U)); } goto ldv_52336; case 60: rtl8723be_set_fw_pwrmode_cmd(hw, (int )*val); goto ldv_52336; case 64: ppsc->fw_current_inpsmode = *((bool *)val); goto ldv_52336; case 65: _rtl8723be_set_fw_ps_rf_on(hw); goto ldv_52336; case 66: enter_fwlps = *((bool *)val); if ((int )enter_fwlps) { _rtl8723be_fwlps_enter(hw); } else { _rtl8723be_fwlps_leave(hw); } goto ldv_52336; case 61: mstatus = *val; count = 0U; dlbcn_count = 0U; recover = 0; if ((unsigned int )mstatus == 1U) { (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 80, (u8 *)0U); tmp_regcr = rtl_read_byte(rtlpriv, 257U); rtl_write_byte(rtlpriv, 257U, (int )((unsigned int )tmp_regcr | 1U)); _rtl8723be_set_bcn_ctrl_reg(hw, 0, 8); _rtl8723be_set_bcn_ctrl_reg(hw, 16, 0); tmp_reg422 = rtl_read_byte(rtlpriv, 1058U); rtl_write_byte(rtlpriv, 1058U, (int )tmp_reg422 & 191); if (((unsigned long )tmp_reg422 & 64UL) != 0UL) { recover = 1; } else { } ldv_52413: bcnvalid_reg = rtl_read_byte(rtlpriv, 522U); rtl_write_byte(rtlpriv, 522U, (int )((unsigned int )bcnvalid_reg | 1U)); _rtl8723be_return_beacon_queue_skb(hw); rtl8723be_set_fw_rsvdpagepkt(hw, 0); bcnvalid_reg = rtl_read_byte(rtlpriv, 522U); count = 0U; goto ldv_52411; ldv_52410: count = (u8 )((int )count + 1); __const_udelay(42950UL); bcnvalid_reg = rtl_read_byte(rtlpriv, 522U); ldv_52411: ; if (((unsigned long )bcnvalid_reg & 1UL) == 0UL && (unsigned int )count <= 19U) { goto ldv_52410; } else { } dlbcn_count = (u8 )((int )dlbcn_count + 1); if (((unsigned long )bcnvalid_reg & 1UL) == 0UL && (unsigned int )dlbcn_count <= 4U) { goto ldv_52413; } else { } if ((int )bcnvalid_reg & 1) { rtl_write_byte(rtlpriv, 522U, 1); } else { } _rtl8723be_set_bcn_ctrl_reg(hw, 8, 0); _rtl8723be_set_bcn_ctrl_reg(hw, 0, 16); if ((int )recover) { rtl_write_byte(rtlpriv, 1058U, (int )tmp_reg422); } else { } rtl_write_byte(rtlpriv, 257U, (int )tmp_regcr & 254); } else { } rtl8723be_set_fw_joinbss_report_cmd(hw, (int )*val); goto ldv_52336; case 63: rtl8723be_set_p2p_ps_offload_cmd(hw, (int )*val); goto ldv_52336; case 80: u2btmp = rtl_read_word(rtlpriv, 1704U); u2btmp = (unsigned int )u2btmp & 49152U; rtl_write_word(rtlpriv, 1704U, (int )mac->assoc_id | (int )u2btmp); goto ldv_52336; case 82: btype_ibss = *val; if ((unsigned int )btype_ibss != 0U) { _rtl8723be_stop_tx_beacon(hw); } else { } _rtl8723be_set_bcn_ctrl_reg(hw, 0, 8); rtl_write_dword(rtlpriv, 1376U, (unsigned int )mac->tsf); rtl_write_dword(rtlpriv, 1380U, (unsigned int )(mac->tsf >> 32)); _rtl8723be_set_bcn_ctrl_reg(hw, 8, 0); if ((unsigned int )btype_ibss != 0U) { _rtl8723be_resume_tx_beacon(hw); } else { } goto ldv_52336; case 92: array[0] = 255U; array[1] = *val; rtl8723be_fill_h2c_cmd(hw, 3, 2U, (u8 *)(& array)); goto ldv_52336; default: tmp___30 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); if (tmp___30 != 0L) { tmp___31 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); if (tmp___31 != 0L) { tmp___28 = preempt_count(); tmp___29 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> switch case not process %x\n", "rtl8723be_set_hw_reg", (unsigned long )tmp___29 & 2096896UL, ((unsigned long )tmp___28 & 0xffffffffffdfffffUL) != 0UL, (int )variable); } else { } } else { } goto ldv_52336; } ldv_52336: ; return; } } static bool _rtl8723be_llt_write(struct ieee80211_hw *hw , u32 address , u32 data ) { struct rtl_priv *rtlpriv ; bool status ; int count ; u32 value ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { rtlpriv = (struct rtl_priv *)hw->priv; status = 1; count = 0; value = (((address << 8) & 65535U) | (data & 255U)) | 1073741824U; rtl_write_dword(rtlpriv, 480U, value); ldv_52434: value = rtl_read_dword(rtlpriv, 480U); if (value >> 30 == 0U) { goto ldv_52432; } else { } if (count > 20) { tmp___1 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Failed to polling write LLT done at address %d!\n", "_rtl8723be_llt_write", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, address); } else { } } else { } status = 0; goto ldv_52432; } else { } count = count + 1; if (count != 0) { goto ldv_52434; } else { } ldv_52432: ; return (status); } } static bool _rtl8723be_llt_table_init(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; unsigned short i ; u8 txpktbuf_bndy ; u8 maxpage ; bool status ; { rtlpriv = (struct rtl_priv *)hw->priv; maxpage = 255U; txpktbuf_bndy = 245U; rtl_write_dword(rtlpriv, 276U, (u32 )((int )txpktbuf_bndy | 671023104)); rtl_write_byte(rtlpriv, 521U, (int )txpktbuf_bndy); rtl_write_byte(rtlpriv, 1060U, (int )txpktbuf_bndy); rtl_write_byte(rtlpriv, 1061U, (int )txpktbuf_bndy); rtl_write_byte(rtlpriv, 1117U, (int )txpktbuf_bndy); rtl_write_byte(rtlpriv, 260U, 49); rtl_write_byte(rtlpriv, 1551U, 4); i = 0U; goto ldv_52444; ldv_52443: status = _rtl8723be_llt_write(hw, (u32 )i, (u32 )((int )i + 1)); if (! status) { return (status); } else { } i = (unsigned short )((int )i + 1); ldv_52444: ; if ((int )i < (int )txpktbuf_bndy + -1) { goto ldv_52443; } else { } status = _rtl8723be_llt_write(hw, (u32 )((int )txpktbuf_bndy + -1), 255U); if (! status) { return (status); } else { } i = (unsigned short )txpktbuf_bndy; goto ldv_52447; ldv_52446: status = _rtl8723be_llt_write(hw, (u32 )i, (u32 )((int )i + 1)); if (! status) { return (status); } else { } i = (unsigned short )((int )i + 1); ldv_52447: ; if ((int )((unsigned short )maxpage) > (int )i) { goto ldv_52446; } else { } status = _rtl8723be_llt_write(hw, (u32 )maxpage, (u32 )txpktbuf_bndy); if (! status) { return (status); } else { } rtl_write_dword(rtlpriv, 512U, 2162427912U); rtl_write_byte(rtlpriv, 532U, 0); return (1); } } static void _rtl8723be_gen_refresh_led_state(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_pci_priv *pcipriv ; struct rtl_ps_ctl *ppsc ; struct rtl_led *pled0 ; { rtlpriv = (struct rtl_priv *)hw->priv; pcipriv = (struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv); ppsc = & ((struct rtl_priv *)hw->priv)->psc; pled0 = & pcipriv->ledctl.sw_led0; if ((int )rtlpriv->rtlhal.up_first_time) { return; } else { } if (ppsc->rfoff_reason == 268435456U) { rtl8723be_sw_led_on(hw, pled0); } else if (ppsc->rfoff_reason == 0U) { rtl8723be_sw_led_on(hw, pled0); } else { rtl8723be_sw_led_off(hw, pled0); } return; } } static bool _rtl8723be_init_mac(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; unsigned char bytetmp ; unsigned short wordtmp ; u16 retry ; bool mac_func_enable ; u8 tmp ; int tmp___0 ; int tmp___1 ; long tmp___2 ; long tmp___3 ; bool tmp___4 ; int tmp___5 ; u8 tmp___6 ; unsigned long __ms ; unsigned long tmp___7 ; unsigned long __ms___0 ; unsigned long tmp___8 ; bool tmp___9 ; int tmp___10 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; retry = 0U; rtl_write_byte(rtlpriv, 28U, 0); tmp = rtl_read_byte(rtlpriv, 5U); bytetmp = (unsigned int )tmp & 127U; rtl_write_byte(rtlpriv, 5U, (int )bytetmp); bytetmp = rtl_read_byte(rtlpriv, 256U); if ((unsigned int )bytetmp == 255U) { mac_func_enable = 1; } else { mac_func_enable = 0; } tmp___4 = rtl_hal_pwrseqcmdparsing(rtlpriv, 255, 15, 4, (struct wlan_pwr_cfg *)(& rtl8723B_card_enable_flow)); if (tmp___4) { tmp___5 = 0; } else { tmp___5 = 1; } if (tmp___5) { tmp___2 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___2 != 0L) { tmp___3 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___3 != 0L) { tmp___0 = preempt_count(); tmp___1 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> init MAC Fail as power on failure\n", "_rtl8723be_init_mac", (unsigned long )tmp___1 & 2096896UL, ((unsigned long )tmp___0 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } return (0); } else { } tmp___6 = rtl_read_byte(rtlpriv, 4U); bytetmp = (unsigned int )tmp___6 | 16U; rtl_write_byte(rtlpriv, 4U, (int )bytetmp); bytetmp = rtl_read_byte(rtlpriv, 256U); bytetmp = 255U; rtl_write_byte(rtlpriv, 256U, (int )bytetmp); if (1) { __const_udelay(8590000UL); } else { __ms = 2UL; goto ldv_52468; ldv_52467: __const_udelay(4295000UL); ldv_52468: tmp___7 = __ms; __ms = __ms - 1UL; if (tmp___7 != 0UL) { goto ldv_52467; } else { } } bytetmp = rtl_read_byte(rtlpriv, 1059U); bytetmp = (unsigned int )bytetmp | 127U; rtl_write_byte(rtlpriv, 1059U, (int )bytetmp); if (1) { __const_udelay(8590000UL); } else { __ms___0 = 2UL; goto ldv_52472; ldv_52471: __const_udelay(4295000UL); ldv_52472: tmp___8 = __ms___0; __ms___0 = __ms___0 - 1UL; if (tmp___8 != 0UL) { goto ldv_52471; } else { } } bytetmp = rtl_read_byte(rtlpriv, 243U); if ((int )bytetmp & 1) { bytetmp = rtl_read_byte(rtlpriv, 124U); bytetmp = (unsigned int )bytetmp | 64U; rtl_write_byte(rtlpriv, 124U, (int )bytetmp); } else { } bytetmp = rtl_read_byte(rtlpriv, 8U); bytetmp = (unsigned int )bytetmp | 8U; rtl_write_byte(rtlpriv, 8U, (int )bytetmp); bytetmp = rtl_read_byte(rtlpriv, 65U); bytetmp = (unsigned int )bytetmp & 239U; rtl_write_byte(rtlpriv, 65U, (int )bytetmp); bytetmp = rtl_read_byte(rtlpriv, 771U); rtl_write_byte(rtlpriv, 771U, (int )((unsigned int )bytetmp | 119U)); rtl_write_word(rtlpriv, 256U, 767); if (! mac_func_enable) { tmp___9 = _rtl8723be_llt_table_init(hw); if (tmp___9) { tmp___10 = 0; } else { tmp___10 = 1; } if (tmp___10) { return (0); } else { } } else { } rtl_write_dword(rtlpriv, 180U, 4294967295U); rtl_write_dword(rtlpriv, 188U, 4294967295U); bytetmp = rtl_read_byte(rtlpriv, 307U); rtl_write_byte(rtlpriv, 307U, (int )((unsigned int )bytetmp | 64U)); wordtmp = rtl_read_word(rtlpriv, 268U); wordtmp = (unsigned int )wordtmp & 15U; wordtmp = (unsigned int )wordtmp | 62897U; rtl_write_word(rtlpriv, 268U, (int )wordtmp); rtl_write_byte(rtlpriv, 1057U, 31); rtl_write_dword(rtlpriv, 1544U, rtlpci->receive_config); rtl_write_word(rtlpriv, 1700U, 65535); rtl_write_dword(rtlpriv, 1540U, rtlpci->transmit_config); rtl_write_byte(rtlpriv, 1232U, 0); rtl_write_dword(rtlpriv, 776U, (u32 )rtlpci->tx_ring[4].dma); rtl_write_dword(rtlpriv, 792U, (u32 )rtlpci->tx_ring[6].dma); rtl_write_dword(rtlpriv, 800U, (u32 )rtlpci->tx_ring[3].dma); rtl_write_dword(rtlpriv, 808U, (u32 )rtlpci->tx_ring[2].dma); rtl_write_dword(rtlpriv, 816U, (u32 )rtlpci->tx_ring[1].dma); rtl_write_dword(rtlpriv, 824U, (u32 )rtlpci->tx_ring[0].dma); rtl_write_dword(rtlpriv, 784U, (u32 )rtlpci->tx_ring[7].dma); rtl_write_dword(rtlpriv, 832U, (u32 )rtlpci->rx_ring[0].dma); bytetmp = rtl_read_byte(rtlpriv, 771U); rtl_write_byte(rtlpriv, 771U, (int )((unsigned int )bytetmp | 119U)); rtl_write_dword(rtlpriv, 772U, 0U); bytetmp = rtl_read_byte(rtlpriv, 1536U); rtl_write_byte(rtlpriv, 1536U, (int )bytetmp & 191); rtl_write_byte(rtlpriv, 1399U, 3); ldv_52474: retry = (u16 )((int )retry + 1); bytetmp = rtl_read_byte(rtlpriv, 1536U); if ((unsigned int )retry <= 199U && (int )((signed char )bytetmp) < 0) { goto ldv_52474; } else { } _rtl8723be_gen_refresh_led_state(hw); rtl_write_dword(rtlpriv, 448U, 0U); bytetmp = rtl_read_byte(rtlpriv, 646U); rtl_write_byte(rtlpriv, 646U, (int )bytetmp & 251); return (1); } } static void _rtl8723be_hw_configure(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; u8 reg_bw_opmode ; u32 reg_ratr ; u32 reg_prsr ; { rtlpriv = (struct rtl_priv *)hw->priv; reg_bw_opmode = 4U; reg_ratr = 268435455U; reg_prsr = 4095U; rtl_write_dword(rtlpriv, 1088U, reg_prsr); rtl_write_byte(rtlpriv, 1059U, 255); return; } } static void _rtl8723be_enable_aspm_back_door(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_ps_ctl *ppsc ; { rtlpriv = (struct rtl_priv *)hw->priv; ppsc = & ((struct rtl_priv *)hw->priv)->psc; rtl_write_byte(rtlpriv, 843U, 147); rtl_write_word(rtlpriv, 848U, 34572); rtl_write_byte(rtlpriv, 850U, 1); if ((int )ppsc->support_backdoor) { rtl_write_byte(rtlpriv, 841U, 27); } else { rtl_write_byte(rtlpriv, 841U, 3); } rtl_write_word(rtlpriv, 848U, 10008); rtl_write_byte(rtlpriv, 850U, 1); return; } } void rtl8723be_enable_hw_security_config(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; u8 sec_reg_value ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; { rtlpriv = (struct rtl_priv *)hw->priv; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n", "rtl8723be_enable_hw_security_config", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (unsigned int )rtlpriv->sec.pairwise_enc_algorithm, (unsigned int )rtlpriv->sec.group_enc_algorithm); } else { } } else { } if ((int )((rtlpriv->cfg)->mod_params)->sw_crypto || (int )rtlpriv->sec.use_sw_sec) { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 512ULL) != 0ULL, 0L); if (tmp___5 != 0L) { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); if (tmp___6 != 0L) { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> not open hw encryption\n", "rtl8723be_enable_hw_security_config", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } return; } else { } sec_reg_value = 12U; if ((int )rtlpriv->sec.use_defaultkey) { sec_reg_value = (u8 )((unsigned int )sec_reg_value | 1U); sec_reg_value = (u8 )((unsigned int )sec_reg_value | 2U); } else { } sec_reg_value = (u8 )((unsigned int )sec_reg_value | 192U); rtl_write_byte(rtlpriv, 257U, 2); tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 512ULL) != 0ULL, 0L); if (tmp___9 != 0L) { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); if (tmp___10 != 0L) { tmp___7 = preempt_count(); tmp___8 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> The SECR-value %x\n", "rtl8723be_enable_hw_security_config", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL, (int )sec_reg_value); } else { } } else { } (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 26, & sec_reg_value); return; } } int rtl8723be_hw_init(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; struct rtl_mac *mac ; struct rtl_phy *rtlphy ; struct rtl_ps_ctl *ppsc ; struct rtl_pci *rtlpci ; bool rtstatus ; int err ; u8 tmp_u1b ; unsigned long flags ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; int tmp___11 ; int tmp___12 ; long tmp___13 ; long tmp___14 ; int tmp___15 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; mac = & ((struct rtl_priv *)hw->priv)->mac80211; rtlphy = & rtlpriv->phy; ppsc = & ((struct rtl_priv *)hw->priv)->psc; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; rtstatus = 1; flags = arch_local_save_flags(); trace_hardirqs_on(); arch_local_irq_enable(); rtlpriv->rtlhal.being_init_adapter = 1; (*((rtlpriv->intf_ops)->disable_aspm))(hw); rtstatus = _rtl8723be_init_mac(hw); if (! rtstatus) { tmp___1 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Init MAC failed\n", "rtl8723be_hw_init", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } err = 1; goto exit; } else { } tmp_u1b = rtl_read_byte(rtlpriv, 240U); tmp_u1b = (unsigned int )tmp_u1b & 127U; rtl_write_byte(rtlpriv, 240U, (int )tmp_u1b); err = rtl8723_download_fw(hw, 1); if (err != 0) { tmp___5 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); if (tmp___5 != 0L) { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 1, 0L); if (tmp___6 != 0L) { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Failed to download FW. Init HW without FW now..\n", "rtl8723be_hw_init", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } err = 1; rtlhal->fw_ready = 0; goto exit; } else { rtlhal->fw_ready = 1; } rtlhal->last_hmeboxnum = 0U; rtl8723be_phy_mac_config(hw); rtlpci->receive_config = rtl_read_dword(rtlpriv, 1544U); rtlpci->receive_config = rtlpci->receive_config & 4294966527U; rtl_write_dword(rtlpriv, 1544U, rtlpci->receive_config); rtl8723be_phy_bb_config(hw); rtlphy->rf_mode = 0U; rtl8723be_phy_rf_config(hw); rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, 0, 24U, 1048575U); rtlphy->rfreg_chnlval[1] = rtl_get_rfreg(hw, 1, 24U, 1048575U); rtlphy->rfreg_chnlval[0] = rtlphy->rfreg_chnlval[0] & 268370943U; rtlphy->rfreg_chnlval[0] = rtlphy->rfreg_chnlval[0] | 3072U; rtl_set_bbreg(hw, 2048U, 16777216U, 1U); rtl_set_bbreg(hw, 2048U, 33554432U, 1U); rtl_set_bbreg(hw, 2180U, 1024U, 1U); _rtl8723be_hw_configure(hw); rtl_cam_reset_all_entry(hw); rtl8723be_enable_hw_security_config(hw); ppsc->rfpwr_state = 0; (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 0, (u8 *)(& mac->mac_addr)); _rtl8723be_enable_aspm_back_door(hw); (*((rtlpriv->intf_ops)->enable_aspm))(hw); rtl8723be_bt_hw_init(hw); rtl_set_bbreg(hw, 100U, 1048576U, 0U); rtl_set_bbreg(hw, 100U, 16777216U, 0U); rtl_set_bbreg(hw, 64U, 16U, 0U); rtl_set_bbreg(hw, 64U, 8U, 1U); rtl_set_bbreg(hw, 2372U, 3U, 3U); rtl_set_bbreg(hw, 2352U, 255U, 119U); rtl_set_bbreg(hw, 56U, 2048U, 1U); rtl_set_bbreg(hw, 2860U, 4294967295U, 2147483648U); if ((unsigned int )ppsc->rfpwr_state == 0U) { rtl8723be_dm_check_txpower_tracking(hw); rtl8723be_phy_lc_calibrate(hw); } else { } tmp_u1b = efuse_read_1byte(hw, 506); if (((unsigned long )tmp_u1b & 1UL) == 0UL) { rtl_set_rfreg(hw, 0, 21U, 15U, 5U); tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___9 != 0L) { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); if (tmp___10 != 0L) { tmp___7 = preempt_count(); tmp___8 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> PA BIAS path A\n", "rtl8723be_hw_init", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } } else { } if (((unsigned long )tmp_u1b & 16UL) == 0UL) { tmp_u1b = rtl_read_byte(rtlpriv, 22U); tmp_u1b = (unsigned int )tmp_u1b & 15U; rtl_write_byte(rtlpriv, 22U, (int )((unsigned int )tmp_u1b | 128U)); __const_udelay(42950UL); rtl_write_byte(rtlpriv, 22U, (int )((unsigned int )tmp_u1b | 144U)); tmp___13 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___13 != 0L) { tmp___14 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); if (tmp___14 != 0L) { tmp___11 = preempt_count(); tmp___12 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> under 1.5V\n", "rtl8723be_hw_init", (unsigned long )tmp___12 & 2096896UL, ((unsigned long )tmp___11 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } } else { } rtl8723be_dm_init(hw); exit: tmp___15 = arch_irqs_disabled_flags(flags); if (tmp___15 != 0) { arch_local_irq_restore(flags); trace_hardirqs_off(); } else { trace_hardirqs_on(); arch_local_irq_restore(flags); } rtlpriv->rtlhal.being_init_adapter = 0; return (err); } } static enum version_8723e _rtl8723be_read_chip_version(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; enum version_8723e version ; u8 count ; u8 value8 ; u32 value32 ; u8 tmp ; unsigned long __ms ; unsigned long tmp___0 ; u8 tmp___1 ; int tmp___2 ; int tmp___3 ; long tmp___4 ; long tmp___5 ; int tmp___6 ; int tmp___7 ; long tmp___8 ; long tmp___9 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; version = 255; count = 0U; rtl_write_byte(rtlpriv, 28U, 0); value8 = rtl_read_byte(rtlpriv, 6U); rtl_write_byte(rtlpriv, 6U, (int )((unsigned int )value8 | 1U)); value8 = rtl_read_byte(rtlpriv, 5U); rtl_write_byte(rtlpriv, 5U, (int )((unsigned int )value8 | 1U)); value8 = rtl_read_byte(rtlpriv, 5U); goto ldv_52532; ldv_52531: __const_udelay(42950UL); value8 = rtl_read_byte(rtlpriv, 5U); ldv_52532: ; if ((int )value8 & 1) { tmp = count; count = (u8 )((int )count + 1); if ((unsigned int )tmp <= 99U) { goto ldv_52531; } else { goto ldv_52533; } } else { } ldv_52533: count = 0U; value8 = rtl_read_byte(rtlpriv, 253U); goto ldv_52539; ldv_52538: value8 = rtl_read_byte(rtlpriv, 253U); if (1) { __const_udelay(4295000UL); } else { __ms = 1UL; goto ldv_52536; ldv_52535: __const_udelay(4295000UL); ldv_52536: tmp___0 = __ms; __ms = __ms - 1UL; if (tmp___0 != 0UL) { goto ldv_52535; } else { } } ldv_52539: ; if ((unsigned int )value8 == 0U) { tmp___1 = count; count = (u8 )((int )count + 1); if ((unsigned int )tmp___1 <= 49U) { goto ldv_52538; } else { goto ldv_52540; } } else { } ldv_52540: value32 = rtl_read_dword(rtlpriv, 240U); if (((unsigned long )value32 & 6UL) != 6UL) { tmp___4 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___4 != 0L) { tmp___5 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___5 != 0L) { tmp___2 = preempt_count(); tmp___3 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> unkown chip version\n", "_rtl8723be_read_chip_version", (unsigned long )tmp___3 & 2096896UL, ((unsigned long )tmp___2 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } } else { version = 262; } rtlphy->rf_type = 0U; value8 = rtl_read_byte(rtlpriv, 253U); if ((unsigned int )value8 > 1U) { version = (unsigned int )version | 8U; } else { } tmp___8 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___8 != 0L) { tmp___9 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___9 != 0L) { tmp___6 = preempt_count(); tmp___7 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Chip RF Type: %s\n", "_rtl8723be_read_chip_version", (unsigned long )tmp___7 & 2096896UL, ((unsigned long )tmp___6 & 0xffffffffffdfffffUL) != 0UL, (unsigned int )rtlphy->rf_type == 2U ? (char *)"RF_2T2R" : (char *)"RF_1T1R"); } else { } } else { } return (version); } } static int _rtl8723be_set_media_status(struct ieee80211_hw *hw , enum nl80211_iftype type ) { struct rtl_priv *rtlpriv ; u8 bt_msr ; u8 tmp ; enum led_ctl_mode ledaction ; int tmp___0 ; int tmp___1 ; long tmp___2 ; long tmp___3 ; int tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; int tmp___8 ; int tmp___9 ; long tmp___10 ; long tmp___11 ; int tmp___12 ; int tmp___13 ; long tmp___14 ; long tmp___15 ; int tmp___16 ; int tmp___17 ; long tmp___18 ; long tmp___19 ; int tmp___20 ; int tmp___21 ; long tmp___22 ; long tmp___23 ; int tmp___24 ; int tmp___25 ; long tmp___26 ; long tmp___27 ; { rtlpriv = (struct rtl_priv *)hw->priv; tmp = rtl_read_byte(rtlpriv, 258U); bt_msr = (unsigned int )tmp & 252U; ledaction = 3; rtl_write_dword(rtlpriv, 1360U, 0U); tmp___2 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1024ULL) != 0ULL, 0L); if (tmp___2 != 0L) { tmp___3 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___3 != 0L) { tmp___0 = preempt_count(); tmp___1 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> clear 0x550 when set HW_VAR_MEDIA_STATUS\n", "_rtl8723be_set_media_status", (unsigned long )tmp___1 & 2096896UL, ((unsigned long )tmp___0 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } if ((unsigned int )type == 0U || (unsigned int )type == 2U) { _rtl8723be_stop_tx_beacon(hw); _rtl8723be_enable_bcn_sub_func(hw); } else if ((unsigned int )type == 1U || (unsigned int )type == 3U) { _rtl8723be_resume_tx_beacon(hw); _rtl8723be_disable_bcn_sub_func(hw); } else { tmp___6 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); if (tmp___6 != 0L) { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 1, 0L); if (tmp___7 != 0L) { tmp___4 = preempt_count(); tmp___5 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Set HW_VAR_MEDIA_STATUS: No such media status(%x).\n", "_rtl8723be_set_media_status", (unsigned long )tmp___5 & 2096896UL, ((unsigned long )tmp___4 & 0xffffffffffdfffffUL) != 0UL, (unsigned int )type); } else { } } else { } } switch ((unsigned int )type) { case 0U: bt_msr = bt_msr; ledaction = 2; tmp___10 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___10 != 0L) { tmp___11 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); if (tmp___11 != 0L) { tmp___8 = preempt_count(); tmp___9 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Set Network type to NO LINK!\n", "_rtl8723be_set_media_status", (unsigned long )tmp___9 & 2096896UL, ((unsigned long )tmp___8 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } goto ldv_52551; case 1U: bt_msr = (u8 )((unsigned int )bt_msr | 1U); tmp___14 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___14 != 0L) { tmp___15 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); if (tmp___15 != 0L) { tmp___12 = preempt_count(); tmp___13 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Set Network type to Ad Hoc!\n", "_rtl8723be_set_media_status", (unsigned long )tmp___13 & 2096896UL, ((unsigned long )tmp___12 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } goto ldv_52551; case 2U: bt_msr = (u8 )((unsigned int )bt_msr | 2U); ledaction = 2; tmp___18 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___18 != 0L) { tmp___19 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); if (tmp___19 != 0L) { tmp___16 = preempt_count(); tmp___17 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Set Network type to STA!\n", "_rtl8723be_set_media_status", (unsigned long )tmp___17 & 2096896UL, ((unsigned long )tmp___16 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } goto ldv_52551; case 3U: bt_msr = (u8 )((unsigned int )bt_msr | 3U); tmp___22 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___22 != 0L) { tmp___23 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); if (tmp___23 != 0L) { tmp___20 = preempt_count(); tmp___21 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Set Network type to AP!\n", "_rtl8723be_set_media_status", (unsigned long )tmp___21 & 2096896UL, ((unsigned long )tmp___20 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } goto ldv_52551; default: tmp___26 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); if (tmp___26 != 0L) { tmp___27 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); if (tmp___27 != 0L) { tmp___24 = preempt_count(); tmp___25 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Network type %d not support!\n", "_rtl8723be_set_media_status", (unsigned long )tmp___25 & 2096896UL, ((unsigned long )tmp___24 & 0xffffffffffdfffffUL) != 0UL, (unsigned int )type); } else { } } else { } return (1); } ldv_52551: rtl_write_byte(rtlpriv, 258U, (int )bt_msr); (*(((rtlpriv->cfg)->ops)->led_control))(hw, ledaction); if (((int )bt_msr & 3) == 3) { rtl_write_byte(rtlpriv, 1297U, 0); } else { rtl_write_byte(rtlpriv, 1297U, 102); } return (0); } } void rtl8723be_set_check_bssid(struct ieee80211_hw *hw , bool check_bssid ) { struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; u32 reg_rcr ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; reg_rcr = rtlpci->receive_config; if ((unsigned int )rtlpriv->psc.rfpwr_state != 0U) { return; } else { } if ((int )check_bssid) { reg_rcr = reg_rcr | 192U; (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 43, (u8 *)(& reg_rcr)); _rtl8723be_set_bcn_ctrl_reg(hw, 0, 16); } else if (! check_bssid) { reg_rcr = reg_rcr & 4294967103U; _rtl8723be_set_bcn_ctrl_reg(hw, 16, 0); (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 43, (u8 *)(& reg_rcr)); } else { } return; } } int rtl8723be_set_network_type(struct ieee80211_hw *hw , enum nl80211_iftype type ) { struct rtl_priv *rtlpriv ; int tmp ; { rtlpriv = (struct rtl_priv *)hw->priv; tmp = _rtl8723be_set_media_status(hw, type); if (tmp != 0) { return (-95); } else { } if ((unsigned int )rtlpriv->mac80211.link_state == 2U) { if ((unsigned int )type != 3U) { rtl8723be_set_check_bssid(hw, 1); } else { } } else { rtl8723be_set_check_bssid(hw, 0); } return (0); } } void rtl8723be_set_qos(struct ieee80211_hw *hw , int aci ) { struct rtl_priv *rtlpriv ; { rtlpriv = (struct rtl_priv *)hw->priv; rtl8723_dm_init_edca_turbo(hw); switch (aci) { case 1: rtl_write_dword(rtlpriv, 1292U, 42063U); goto ldv_52574; case 0: ; goto ldv_52574; case 2: rtl_write_dword(rtlpriv, 1284U, 6177570U); goto ldv_52574; case 3: rtl_write_dword(rtlpriv, 1280U, 3093026U); goto ldv_52574; default: printk("\017rtl8723be:%s(): invalid aci: %d !\n", "rtl8723be_set_qos", aci); goto ldv_52574; } ldv_52574: ; return; } } void rtl8723be_enable_interrupt(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; rtl_write_dword(rtlpriv, 176U, rtlpci->irq_mask[0]); rtl_write_dword(rtlpriv, 184U, rtlpci->irq_mask[1]); rtlpci->irq_enabled = 1; rtl_write_byte(rtlpriv, 431U, 0); rtl_write_dword(rtlpriv, 88U, rtlpci->sys_irq_mask); return; } } void rtl8723be_disable_interrupt(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; rtl_write_dword(rtlpriv, 176U, 0U); rtl_write_dword(rtlpriv, 184U, 0U); rtlpci->irq_enabled = 0; synchronize_irq((rtlpci->pdev)->irq); return; } } static void _rtl8723be_poweroff_adapter(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; u8 u1b_tmp ; u8 tmp ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; rtl_hal_pwrseqcmdparsing(rtlpriv, 255, 15, 4, (struct wlan_pwr_cfg *)(& rtl8723B_enter_lps_flow)); rtl_write_byte(rtlpriv, 31U, 0); tmp = rtl_read_byte(rtlpriv, 128U); if ((int )((signed char )tmp) < 0 && (int )rtlhal->fw_ready) { rtl8723be_firmware_selfreset(hw); } else { } u1b_tmp = rtl_read_byte(rtlpriv, 3U); rtl_write_byte(rtlpriv, 3U, (int )u1b_tmp & 251); rtl_write_byte(rtlpriv, 128U, 0); rtl_hal_pwrseqcmdparsing(rtlpriv, 255, 15, 4, (struct wlan_pwr_cfg *)(& rtl8723B_card_disable_flow)); u1b_tmp = rtl_read_byte(rtlpriv, 29U); rtl_write_byte(rtlpriv, 29U, (int )u1b_tmp & 254); u1b_tmp = rtl_read_byte(rtlpriv, 29U); rtl_write_byte(rtlpriv, 29U, (int )((unsigned int )u1b_tmp | 1U)); rtl_write_byte(rtlpriv, 28U, 14); return; } } void rtl8723be_card_disable(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_ps_ctl *ppsc ; struct rtl_mac *mac ; enum nl80211_iftype opmode ; { rtlpriv = (struct rtl_priv *)hw->priv; ppsc = & ((struct rtl_priv *)hw->priv)->psc; mac = & ((struct rtl_priv *)hw->priv)->mac80211; mac->link_state = 0; opmode = 0; _rtl8723be_set_media_status(hw, opmode); if ((int )rtlpriv->rtlhal.driver_is_goingto_unload || ppsc->rfoff_reason > 536870912U) { (*(((rtlpriv->cfg)->ops)->led_control))(hw, 7); } else { } ppsc->cur_ps_level = ppsc->cur_ps_level | 8U; _rtl8723be_poweroff_adapter(hw); rtlpriv->phy.iqk_initialized = 0; return; } } void rtl8723be_interrupt_recognized(struct ieee80211_hw *hw , u32 *p_inta , u32 *p_intb ) { struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; u32 tmp ; u32 tmp___0 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; tmp = rtl_read_dword(rtlpriv, 180U); *p_inta = tmp & rtlpci->irq_mask[0]; rtl_write_dword(rtlpriv, 180U, *p_inta); tmp___0 = rtl_read_dword(rtlpriv, 188U); *p_intb = tmp___0 & rtlpci->irq_mask[1]; rtl_write_dword(rtlpriv, 188U, *p_intb); return; } } void rtl8723be_set_beacon_related_registers(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_mac *mac ; u16 bcn_interval ; u16 atim_window ; { rtlpriv = (struct rtl_priv *)hw->priv; mac = & ((struct rtl_priv *)hw->priv)->mac80211; bcn_interval = (u16 )mac->beacon_interval; atim_window = 2U; rtl8723be_disable_interrupt(hw); rtl_write_word(rtlpriv, 1370U, (int )atim_window); rtl_write_word(rtlpriv, 1364U, (int )bcn_interval); rtl_write_word(rtlpriv, 1296U, 26127); rtl_write_byte(rtlpriv, 1374U, 24); rtl_write_byte(rtlpriv, 1375U, 24); rtl_write_byte(rtlpriv, 1542U, 48); rtl8723be_enable_interrupt(hw); return; } } void rtl8723be_set_beacon_interval(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_mac *mac ; u16 bcn_interval ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { rtlpriv = (struct rtl_priv *)hw->priv; mac = & ((struct rtl_priv *)hw->priv)->mac80211; bcn_interval = (u16 )mac->beacon_interval; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1024ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> beacon_interval:%d\n", "rtl8723be_set_beacon_interval", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )bcn_interval); } else { } } else { } rtl8723be_disable_interrupt(hw); rtl_write_word(rtlpriv, 1364U, (int )bcn_interval); rtl8723be_enable_interrupt(hw); return; } } void rtl8723be_update_interrupt_mask(struct ieee80211_hw *hw , u32 add_msr , u32 rm_msr ) { struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 128ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> add_msr:%x, rm_msr:%x\n", "rtl8723be_update_interrupt_mask", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, add_msr, rm_msr); } else { } } else { } if (add_msr != 0U) { rtlpci->irq_mask[0] = rtlpci->irq_mask[0] | add_msr; } else { } if (rm_msr != 0U) { rtlpci->irq_mask[0] = rtlpci->irq_mask[0] & ~ rm_msr; } else { } rtl8723be_disable_interrupt(hw); rtl8723be_enable_interrupt(hw); return; } } static u8 _rtl8723be_get_chnl_group(u8 chnl ) { u8 group ; { if ((unsigned int )chnl <= 2U) { group = 0U; } else if ((unsigned int )chnl <= 8U) { group = 1U; } else { group = 2U; } return (group); } } static void _rtl8723be_read_power_value_fromprom(struct ieee80211_hw *hw , struct txpower_info_2g *pw2g , struct txpower_info_5g *pw5g , bool autoload_fail , u8 *hwinfo ) { struct rtl_priv *rtlpriv ; u32 path ; u32 addr ; u32 group ; u32 cnt ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; u32 tmp___7 ; u32 tmp___8 ; u32 tmp___9 ; { rtlpriv = (struct rtl_priv *)hw->priv; addr = 16U; cnt = 0U; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> hal_ReadPowerValueFromPROM8723BE(): PROMContent[0x%x]= 0x%x\n", "_rtl8723be_read_power_value_fromprom", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, addr + 1U, (int )*(hwinfo + (unsigned long )(addr + 1U))); } else { } } else { } if ((unsigned int )*(hwinfo + (unsigned long )(addr + 1U)) == 255U) { autoload_fail = 1; } else { } if ((int )autoload_fail) { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___5 != 0L) { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___6 != 0L) { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> auto load fail : Use Default value!\n", "_rtl8723be_read_power_value_fromprom", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } path = 0U; goto ldv_52656; ldv_52655: group = 0U; goto ldv_52650; ldv_52649: pw2g->index_cck_base[path][group] = 45U; pw2g->index_bw40_base[path][group] = 45U; group = group + 1U; ldv_52650: ; if (group <= 5U) { goto ldv_52649; } else { } cnt = 0U; goto ldv_52653; ldv_52652: ; if (cnt == 0U) { pw2g->bw20_diff[path][0] = 2U; pw2g->ofdm_diff[path][0] = 4U; } else { pw2g->bw20_diff[path][cnt] = 254U; pw2g->bw40_diff[path][cnt] = 254U; pw2g->cck_diff[path][cnt] = 254U; pw2g->ofdm_diff[path][cnt] = 254U; } cnt = cnt + 1U; ldv_52653: ; if (cnt <= 3U) { goto ldv_52652; } else { } path = path + 1U; ldv_52656: ; if (path <= 3U) { goto ldv_52655; } else { } return; } else { } path = 0U; goto ldv_52677; ldv_52676: group = 0U; goto ldv_52659; ldv_52658: tmp___7 = addr; addr = addr + 1U; pw2g->index_cck_base[path][group] = *(hwinfo + (unsigned long )tmp___7); if ((unsigned int )pw2g->index_cck_base[path][group] == 255U) { pw2g->index_cck_base[path][group] = 45U; } else { } group = group + 1U; ldv_52659: ; if (group <= 5U) { goto ldv_52658; } else { } group = 0U; goto ldv_52662; ldv_52661: tmp___8 = addr; addr = addr + 1U; pw2g->index_bw40_base[path][group] = *(hwinfo + (unsigned long )tmp___8); if ((unsigned int )pw2g->index_bw40_base[path][group] == 255U) { pw2g->index_bw40_base[path][group] = 45U; } else { } group = group + 1U; ldv_52662: ; if (group <= 4U) { goto ldv_52661; } else { } cnt = 0U; goto ldv_52665; ldv_52664: ; if (cnt == 0U) { pw2g->bw40_diff[path][cnt] = 0U; if ((unsigned int )*(hwinfo + (unsigned long )addr) == 255U) { pw2g->bw20_diff[path][cnt] = 2U; } else { pw2g->bw20_diff[path][cnt] = (int )*(hwinfo + (unsigned long )addr) >> 4; if (((unsigned long )pw2g->bw20_diff[path][cnt] & 8UL) != 0UL) { pw2g->bw20_diff[path][cnt] = (u8 )((unsigned int )pw2g->bw20_diff[path][cnt] | 240U); } else { } } if ((unsigned int )*(hwinfo + (unsigned long )addr) == 255U) { pw2g->ofdm_diff[path][cnt] = 4U; } else { pw2g->ofdm_diff[path][cnt] = (unsigned int )*(hwinfo + (unsigned long )addr) & 15U; if (((unsigned long )pw2g->ofdm_diff[path][cnt] & 8UL) != 0UL) { pw2g->ofdm_diff[path][cnt] = (u8 )((unsigned int )pw2g->ofdm_diff[path][cnt] | 240U); } else { } } pw2g->cck_diff[path][cnt] = 0U; addr = addr + 1U; } else { if ((unsigned int )*(hwinfo + (unsigned long )addr) == 255U) { pw2g->bw40_diff[path][cnt] = 254U; } else { pw2g->bw40_diff[path][cnt] = (int )*(hwinfo + (unsigned long )addr) >> 4; if (((unsigned long )pw2g->bw40_diff[path][cnt] & 8UL) != 0UL) { pw2g->bw40_diff[path][cnt] = (u8 )((unsigned int )pw2g->bw40_diff[path][cnt] | 240U); } else { } } if ((unsigned int )*(hwinfo + (unsigned long )addr) == 255U) { pw2g->bw20_diff[path][cnt] = 254U; } else { pw2g->bw20_diff[path][cnt] = (unsigned int )*(hwinfo + (unsigned long )addr) & 15U; if (((unsigned long )pw2g->bw20_diff[path][cnt] & 8UL) != 0UL) { pw2g->bw20_diff[path][cnt] = (u8 )((unsigned int )pw2g->bw20_diff[path][cnt] | 240U); } else { } } addr = addr + 1U; if ((unsigned int )*(hwinfo + (unsigned long )addr) == 255U) { pw2g->ofdm_diff[path][cnt] = 254U; } else { pw2g->ofdm_diff[path][cnt] = (int )*(hwinfo + (unsigned long )addr) >> 4; if (((unsigned long )pw2g->ofdm_diff[path][cnt] & 8UL) != 0UL) { pw2g->ofdm_diff[path][cnt] = (u8 )((unsigned int )pw2g->ofdm_diff[path][cnt] | 240U); } else { } } if ((unsigned int )*(hwinfo + (unsigned long )addr) == 255U) { pw2g->cck_diff[path][cnt] = 254U; } else { pw2g->cck_diff[path][cnt] = (unsigned int )*(hwinfo + (unsigned long )addr) & 15U; if (((unsigned long )pw2g->cck_diff[path][cnt] & 8UL) != 0UL) { pw2g->cck_diff[path][cnt] = (u8 )((unsigned int )pw2g->cck_diff[path][cnt] | 240U); } else { } } addr = addr + 1U; } cnt = cnt + 1U; ldv_52665: ; if (cnt <= 3U) { goto ldv_52664; } else { } group = 0U; goto ldv_52668; ldv_52667: tmp___9 = addr; addr = addr + 1U; pw5g->index_bw40_base[path][group] = *(hwinfo + (unsigned long )tmp___9); if ((unsigned int )pw5g->index_bw40_base[path][group] == 255U) { pw5g->index_bw40_base[path][group] = 254U; } else { } group = group + 1U; ldv_52668: ; if (group <= 13U) { goto ldv_52667; } else { } cnt = 0U; goto ldv_52671; ldv_52670: ; if (cnt == 0U) { pw5g->bw40_diff[path][cnt] = 0U; if ((unsigned int )*(hwinfo + (unsigned long )addr) == 255U) { pw5g->bw20_diff[path][cnt] = 0U; } else { pw5g->bw20_diff[path][0] = (int )*(hwinfo + (unsigned long )addr) >> 4; if (((unsigned long )pw5g->bw20_diff[path][cnt] & 8UL) != 0UL) { pw5g->bw20_diff[path][cnt] = (u8 )((unsigned int )pw5g->bw20_diff[path][cnt] | 240U); } else { } } if ((unsigned int )*(hwinfo + (unsigned long )addr) == 255U) { pw5g->ofdm_diff[path][cnt] = 4U; } else { pw5g->ofdm_diff[path][0] = (unsigned int )*(hwinfo + (unsigned long )addr) & 15U; if (((unsigned long )pw5g->ofdm_diff[path][cnt] & 8UL) != 0UL) { pw5g->ofdm_diff[path][cnt] = (u8 )((unsigned int )pw5g->ofdm_diff[path][cnt] | 240U); } else { } } addr = addr + 1U; } else { if ((unsigned int )*(hwinfo + (unsigned long )addr) == 255U) { pw5g->bw40_diff[path][cnt] = 254U; } else { pw5g->bw40_diff[path][cnt] = (int )*(hwinfo + (unsigned long )addr) >> 4; if (((unsigned long )pw5g->bw40_diff[path][cnt] & 8UL) != 0UL) { pw5g->bw40_diff[path][cnt] = (u8 )((unsigned int )pw5g->bw40_diff[path][cnt] | 240U); } else { } } if ((unsigned int )*(hwinfo + (unsigned long )addr) == 255U) { pw5g->bw20_diff[path][cnt] = 254U; } else { pw5g->bw20_diff[path][cnt] = (unsigned int )*(hwinfo + (unsigned long )addr) & 15U; if (((unsigned long )pw5g->bw20_diff[path][cnt] & 8UL) != 0UL) { pw5g->bw20_diff[path][cnt] = (u8 )((unsigned int )pw5g->bw20_diff[path][cnt] | 240U); } else { } } addr = addr + 1U; } cnt = cnt + 1U; ldv_52671: ; if (cnt <= 3U) { goto ldv_52670; } else { } if ((unsigned int )*(hwinfo + (unsigned long )addr) == 255U) { pw5g->ofdm_diff[path][1] = 254U; pw5g->ofdm_diff[path][2] = 254U; } else { pw5g->ofdm_diff[path][1] = (int )*(hwinfo + (unsigned long )addr) >> 4; pw5g->ofdm_diff[path][2] = (unsigned int )*(hwinfo + (unsigned long )addr) & 15U; } addr = addr + 1U; if ((unsigned int )*(hwinfo + (unsigned long )addr) == 255U) { pw5g->ofdm_diff[path][3] = 254U; } else { pw5g->ofdm_diff[path][3] = (unsigned int )*(hwinfo + (unsigned long )addr) & 15U; } addr = addr + 1U; cnt = 1U; goto ldv_52674; ldv_52673: ; if ((unsigned int )pw5g->ofdm_diff[path][cnt] == 255U) { pw5g->ofdm_diff[path][cnt] = 254U; } else if (((unsigned long )pw5g->ofdm_diff[path][cnt] & 8UL) != 0UL) { pw5g->ofdm_diff[path][cnt] = (u8 )((unsigned int )pw5g->ofdm_diff[path][cnt] | 240U); } else { } cnt = cnt + 1U; ldv_52674: ; if (cnt <= 3U) { goto ldv_52673; } else { } path = path + 1U; ldv_52677: ; if (path <= 3U) { goto ldv_52676; } else { } return; } } static void _rtl8723be_read_txpower_info_from_hwpg(struct ieee80211_hw *hw , bool autoload_fail , u8 *hwinfo ) { struct rtl_priv *rtlpriv ; struct rtl_efuse *rtlefuse ; struct txpower_info_2g pw2g ; struct txpower_info_5g pw5g ; u8 rf_path ; u8 index ; u8 i ; long tmp ; long tmp___0 ; long tmp___1 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; _rtl8723be_read_power_value_fromprom(hw, & pw2g, & pw5g, (int )autoload_fail, hwinfo); rf_path = 0U; goto ldv_52701; ldv_52700: i = 0U; goto ldv_52692; ldv_52691: index = _rtl8723be_get_chnl_group((int )((unsigned int )i + 1U)); rtlefuse->txpwrlevel_cck[(int )rf_path][(int )i] = pw2g.index_cck_base[(int )rf_path][(int )index]; rtlefuse->txpwrlevel_ht40_1s[(int )rf_path][(int )i] = pw2g.index_bw40_base[(int )rf_path][(int )index]; i = (u8 )((int )i + 1); ldv_52692: ; if ((unsigned int )i <= 13U) { goto ldv_52691; } else { } i = 0U; goto ldv_52695; ldv_52694: rtlefuse->txpwr_ht20diff[(int )rf_path][(int )i] = (char )pw2g.bw20_diff[(int )rf_path][(int )i]; rtlefuse->txpwr_ht40diff[(int )rf_path][(int )i] = (char )pw2g.bw40_diff[(int )rf_path][(int )i]; rtlefuse->txpwr_legacyhtdiff[(int )rf_path][(int )i] = (char )pw2g.ofdm_diff[(int )rf_path][(int )i]; i = (u8 )((int )i + 1); ldv_52695: ; if ((unsigned int )i <= 3U) { goto ldv_52694; } else { } i = 0U; goto ldv_52698; ldv_52697: tmp = ldv__builtin_expect((long )((int )rtlpriv->dbg.dbgp_type[17]) & 1L, 0L); if (tmp != 0L) { printk("\017rtl8723be: RF(%d)-Ch(%d) [CCK / HT40_1S ] = [0x%x / 0x%x ]\n", (int )rf_path, (int )i, (int )rtlefuse->txpwrlevel_cck[(int )rf_path][(int )i], (int )rtlefuse->txpwrlevel_ht40_1s[(int )rf_path][(int )i]); } else { } i = (u8 )((int )i + 1); ldv_52698: ; if ((unsigned int )i <= 13U) { goto ldv_52697; } else { } rf_path = (u8 )((int )rf_path + 1); ldv_52701: ; if ((unsigned int )rf_path <= 1U) { goto ldv_52700; } else { } if (! autoload_fail) { rtlefuse->eeprom_thermalmeter = *(hwinfo + 186UL); } else { rtlefuse->eeprom_thermalmeter = 24U; } if ((unsigned int )rtlefuse->eeprom_thermalmeter == 255U || (int )autoload_fail) { rtlefuse->apk_thermalmeterignore = 1; rtlefuse->eeprom_thermalmeter = 24U; } else { } rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter; tmp___0 = ldv__builtin_expect((long )((int )rtlpriv->dbg.dbgp_type[17]) & 1L, 0L); if (tmp___0 != 0L) { printk("\017rtl8723be: thermalmeter = 0x%x\n", (int )rtlefuse->eeprom_thermalmeter); } else { } if (! autoload_fail) { rtlefuse->eeprom_regulatory = (unsigned int )*(hwinfo + 193UL) & 7U; if ((unsigned int )*(hwinfo + 193UL) == 255U) { rtlefuse->eeprom_regulatory = 0U; } else { } } else { rtlefuse->eeprom_regulatory = 0U; } tmp___1 = ldv__builtin_expect((long )((int )rtlpriv->dbg.dbgp_type[17]) & 1L, 0L); if (tmp___1 != 0L) { printk("\017rtl8723be: eeprom_regulatory = 0x%x\n", (int )rtlefuse->eeprom_regulatory); } else { } return; } } static void _rtl8723be_read_adapter_info(struct ieee80211_hw *hw , bool pseudo_test ) { struct rtl_priv *rtlpriv ; struct rtl_efuse *rtlefuse ; struct rtl_hal *rtlhal ; u16 i ; u16 usvalue ; u8 hwinfo[512U] ; u16 eeprom_id ; bool is_toshiba_smid1 ; bool is_toshiba_smid2 ; bool is_samsung_smid ; bool is_lenovo_smid ; u16 toshiba_smid1[32U] ; u16 toshiba_smid2[15U] ; u16 samsung_smid[12U] ; u16 lenovo_smid[8U] ; size_t __len ; void *__ret ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; struct task_struct *tmp___3 ; struct task_struct *tmp___4 ; struct _ddebug descriptor ; long tmp___5 ; long tmp___6 ; long tmp___7 ; int tmp___8 ; int tmp___9 ; long tmp___10 ; long tmp___11 ; int tmp___12 ; int tmp___13 ; long tmp___14 ; long tmp___15 ; int tmp___16 ; int tmp___17 ; long tmp___18 ; long tmp___19 ; int tmp___20 ; int tmp___21 ; long tmp___22 ; long tmp___23 ; int tmp___24 ; int tmp___25 ; long tmp___26 ; long tmp___27 ; int tmp___28 ; int tmp___29 ; long tmp___30 ; long tmp___31 ; int tmp___32 ; int tmp___33 ; long tmp___34 ; long tmp___35 ; int tmp___36 ; int tmp___37 ; long tmp___38 ; long tmp___39 ; int tmp___40 ; int tmp___41 ; long tmp___42 ; long tmp___43 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; is_toshiba_smid1 = 0; is_toshiba_smid2 = 0; is_samsung_smid = 0; is_lenovo_smid = 0; toshiba_smid1[0] = 24913U; toshiba_smid1[1] = 24914U; toshiba_smid1[2] = 24916U; toshiba_smid1[3] = 24917U; toshiba_smid1[4] = 24951U; toshiba_smid1[5] = 24952U; toshiba_smid1[6] = 24953U; toshiba_smid1[7] = 24960U; toshiba_smid1[8] = 29009U; toshiba_smid1[9] = 29010U; toshiba_smid1[10] = 29012U; toshiba_smid1[11] = 29013U; toshiba_smid1[12] = 29047U; toshiba_smid1[13] = 29048U; toshiba_smid1[14] = 29049U; toshiba_smid1[15] = 29056U; toshiba_smid1[16] = 33105U; toshiba_smid1[17] = 33106U; toshiba_smid1[18] = 33108U; toshiba_smid1[19] = 33109U; toshiba_smid1[20] = 33153U; toshiba_smid1[21] = 33154U; toshiba_smid1[22] = 33156U; toshiba_smid1[23] = 33157U; toshiba_smid1[24] = 37201U; toshiba_smid1[25] = 37202U; toshiba_smid1[26] = 37204U; toshiba_smid1[27] = 37205U; toshiba_smid1[28] = 37249U; toshiba_smid1[29] = 37250U; toshiba_smid1[30] = 37252U; toshiba_smid1[31] = 37253U; toshiba_smid2[0] = 24961U; toshiba_smid2[1] = 24964U; toshiba_smid2[2] = 24965U; toshiba_smid2[3] = 29057U; toshiba_smid2[4] = 29058U; toshiba_smid2[5] = 29060U; toshiba_smid2[6] = 29061U; toshiba_smid2[7] = 33153U; toshiba_smid2[8] = 33154U; toshiba_smid2[9] = 33156U; toshiba_smid2[10] = 33157U; toshiba_smid2[11] = 37249U; toshiba_smid2[12] = 37250U; toshiba_smid2[13] = 37252U; toshiba_smid2[14] = 37253U; samsung_smid[0] = 24977U; samsung_smid[1] = 24978U; samsung_smid[2] = 24979U; samsung_smid[3] = 29073U; samsung_smid[4] = 29074U; samsung_smid[5] = 29075U; samsung_smid[6] = 33169U; samsung_smid[7] = 33170U; samsung_smid[8] = 33171U; samsung_smid[9] = 37265U; samsung_smid[10] = 37266U; samsung_smid[11] = 37267U; lenovo_smid[0] = 33173U; lenovo_smid[1] = 37269U; lenovo_smid[2] = 29076U; lenovo_smid[3] = 33280U; lenovo_smid[4] = 33281U; lenovo_smid[5] = 33282U; lenovo_smid[6] = 37273U; lenovo_smid[7] = 37376U; if ((int )pseudo_test) { return; } else { } if ((int )rtlefuse->epromtype == 2) { rtl_efuse_shadow_map_update(hw); __len = 512UL; if (__len > 63UL) { __ret = __memcpy((void *)(& hwinfo), (void const *)(& rtlefuse->efuse_map), __len); } else { __ret = __builtin_memcpy((void *)(& hwinfo), (void const *)(& rtlefuse->efuse_map), __len); } } else if ((int )rtlefuse->epromtype == 0) { tmp___1 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> RTL819X Not boot from eeprom, check it !!", "_rtl8723be_read_adapter_info", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } } else { } tmp___6 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___6 != 0L) { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); if (tmp___7 != 0L) { tmp___3 = get_current(); tmp___4 = get_current(); printk("\017%s: In process \"%s\" (pid %i): %s\n", (char *)"rtl8723be", (char *)(& tmp___4->comm), tmp___3->pid, (char *)"MAP\n"); descriptor.modname = "rtl8723be"; descriptor.function = "_rtl8723be_read_adapter_info"; descriptor.filename = "/work/ldvuser/mutilin/launch/work/current--X--drivers/net/--X--defaultlinux-3.16-rc1.tar.xz--X--205_9a--X--cpachecker/linux-3.16-rc1.tar.xz/csd_deg_dscv/623/dscv_tempdir/dscv/ri/205_9a/drivers/net/wireless/rtlwifi/rtl8723be/hw.o.c.prepared"; descriptor.format = ""; descriptor.lineno = 1771U; descriptor.flags = 0U; tmp___5 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___5 != 0L) { print_hex_dump("\017", "", 0, 16, 1, (void const *)(& hwinfo), 512UL, 1); } else { } } else { } } else { } eeprom_id = *((u16 *)(& hwinfo)); if ((unsigned int )eeprom_id != 33065U) { tmp___10 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); if (tmp___10 != 0L) { tmp___11 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 1, 0L); if (tmp___11 != 0L) { tmp___8 = preempt_count(); tmp___9 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> EEPROM ID(%#x) is invalid!!\n", "_rtl8723be_read_adapter_info", (unsigned long )tmp___9 & 2096896UL, ((unsigned long )tmp___8 & 0xffffffffffdfffffUL) != 0UL, (int )eeprom_id); } else { } } else { } rtlefuse->autoload_failflag = 1U; } else { tmp___14 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___14 != 0L) { tmp___15 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___15 != 0L) { tmp___12 = preempt_count(); tmp___13 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Autoload OK\n", "_rtl8723be_read_adapter_info", (unsigned long )tmp___13 & 2096896UL, ((unsigned long )tmp___12 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } rtlefuse->autoload_failflag = 0U; } if ((unsigned int )rtlefuse->autoload_failflag != 0U) { return; } else { } rtlefuse->eeprom_vid = *((u16 *)(& hwinfo) + 214U); rtlefuse->eeprom_did = *((u16 *)(& hwinfo) + 216U); rtlefuse->eeprom_svid = *((u16 *)(& hwinfo) + 218U); rtlefuse->eeprom_smid = *((u16 *)(& hwinfo) + 220U); tmp___18 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___18 != 0L) { tmp___19 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___19 != 0L) { tmp___16 = preempt_count(); tmp___17 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> EEPROMId = 0x%4x\n", "_rtl8723be_read_adapter_info", (unsigned long )tmp___17 & 2096896UL, ((unsigned long )tmp___16 & 0xffffffffffdfffffUL) != 0UL, (int )eeprom_id); } else { } } else { } tmp___22 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___22 != 0L) { tmp___23 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___23 != 0L) { tmp___20 = preempt_count(); tmp___21 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> EEPROM VID = 0x%4x\n", "_rtl8723be_read_adapter_info", (unsigned long )tmp___21 & 2096896UL, ((unsigned long )tmp___20 & 0xffffffffffdfffffUL) != 0UL, (int )rtlefuse->eeprom_vid); } else { } } else { } tmp___26 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___26 != 0L) { tmp___27 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___27 != 0L) { tmp___24 = preempt_count(); tmp___25 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> EEPROM DID = 0x%4x\n", "_rtl8723be_read_adapter_info", (unsigned long )tmp___25 & 2096896UL, ((unsigned long )tmp___24 & 0xffffffffffdfffffUL) != 0UL, (int )rtlefuse->eeprom_did); } else { } } else { } tmp___30 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___30 != 0L) { tmp___31 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___31 != 0L) { tmp___28 = preempt_count(); tmp___29 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> EEPROM SVID = 0x%4x\n", "_rtl8723be_read_adapter_info", (unsigned long )tmp___29 & 2096896UL, ((unsigned long )tmp___28 & 0xffffffffffdfffffUL) != 0UL, (int )rtlefuse->eeprom_svid); } else { } } else { } tmp___34 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___34 != 0L) { tmp___35 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___35 != 0L) { tmp___32 = preempt_count(); tmp___33 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> EEPROM SMID = 0x%4x\n", "_rtl8723be_read_adapter_info", (unsigned long )tmp___33 & 2096896UL, ((unsigned long )tmp___32 & 0xffffffffffdfffffUL) != 0UL, (int )rtlefuse->eeprom_smid); } else { } } else { } i = 0U; goto ldv_52728; ldv_52727: usvalue = *((u16 *)(& hwinfo) + (unsigned long )((int )i + 208)); *((u16 *)(& rtlefuse->dev_addr) + (unsigned long )i) = usvalue; i = (unsigned int )i + 2U; ldv_52728: ; if ((unsigned int )i <= 5U) { goto ldv_52727; } else { } tmp___38 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___38 != 0L) { tmp___39 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); if (tmp___39 != 0L) { tmp___36 = preempt_count(); tmp___37 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> dev_addr: %pM\n", "_rtl8723be_read_adapter_info", (unsigned long )tmp___37 & 2096896UL, ((unsigned long )tmp___36 & 0xffffffffffdfffffUL) != 0UL, (u8 *)(& rtlefuse->dev_addr)); } else { } } else { } rtlefuse->crystalcap = hwinfo[185]; if ((unsigned int )rtlefuse->crystalcap == 255U) { rtlefuse->crystalcap = 32U; } else { } _rtl8723be_read_txpower_info_from_hwpg(hw, (unsigned int )rtlefuse->autoload_failflag != 0U, (u8 *)(& hwinfo)); rtl8723be_read_bt_coexist_info_from_hwpg(hw, (unsigned int )rtlefuse->autoload_failflag != 0U, (u8 *)(& hwinfo)); rtlefuse->eeprom_channelplan = (u16 )hwinfo[184]; rtlefuse->eeprom_version = (u8 )*((u16 *)(& hwinfo) + 196U); rtlefuse->txpwr_fromeprom = 1; rtlefuse->eeprom_oemid = hwinfo[197]; tmp___42 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___42 != 0L) { tmp___43 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___43 != 0L) { tmp___40 = preempt_count(); tmp___41 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> EEPROM Customer ID: 0x%2x\n", "_rtl8723be_read_adapter_info", (unsigned long )tmp___41 & 2096896UL, ((unsigned long )tmp___40 & 0xffffffffffdfffffUL) != 0UL, (int )rtlefuse->eeprom_oemid); } else { } } else { } rtlefuse->channel_plan = 11U; if ((unsigned int )rtlhal->oem_id == 0U) { i = 0U; goto ldv_52732; ldv_52731: ; if ((int )rtlefuse->eeprom_smid == (int )toshiba_smid1[(int )i]) { is_toshiba_smid1 = 1; goto ldv_52730; } else { } i = (u16 )((int )i + 1); ldv_52732: ; if ((unsigned int )i <= 31U) { goto ldv_52731; } else { } ldv_52730: i = 0U; goto ldv_52735; ldv_52734: ; if ((int )rtlefuse->eeprom_smid == (int )toshiba_smid2[(int )i]) { is_toshiba_smid2 = 1; goto ldv_52733; } else { } i = (u16 )((int )i + 1); ldv_52735: ; if ((unsigned int )i <= 14U) { goto ldv_52734; } else { } ldv_52733: i = 0U; goto ldv_52738; ldv_52737: ; if ((int )rtlefuse->eeprom_smid == (int )samsung_smid[(int )i]) { is_samsung_smid = 1; goto ldv_52736; } else { } i = (u16 )((int )i + 1); ldv_52738: ; if ((unsigned int )i <= 11U) { goto ldv_52737; } else { } ldv_52736: i = 0U; goto ldv_52741; ldv_52740: ; if ((int )rtlefuse->eeprom_smid == (int )lenovo_smid[(int )i]) { is_lenovo_smid = 1; goto ldv_52739; } else { } i = (u16 )((int )i + 1); ldv_52741: ; if ((unsigned int )i <= 7U) { goto ldv_52740; } else { } ldv_52739: ; switch ((int )rtlefuse->eeprom_oemid) { case 0: ; if ((unsigned int )rtlefuse->eeprom_did == 33142U) { if ((unsigned int )rtlefuse->eeprom_svid == 4332U && (int )is_toshiba_smid1) { rtlhal->oem_id = 9U; } else if ((unsigned int )rtlefuse->eeprom_svid == 4133U) { rtlhal->oem_id = 24U; } else if ((unsigned int )rtlefuse->eeprom_svid == 4332U && (int )is_samsung_smid) { rtlhal->oem_id = 30U; } else if ((unsigned int )rtlefuse->eeprom_svid == 4332U && (int )is_lenovo_smid) { rtlhal->oem_id = 18U; } else if (((unsigned int )rtlefuse->eeprom_svid == 4332U && (unsigned int )rtlefuse->eeprom_smid == 33175U) || ((unsigned int )rtlefuse->eeprom_svid == 4332U && (unsigned int )rtlefuse->eeprom_smid == 37270U)) { rtlhal->oem_id = 28U; } else if (((((unsigned int )rtlefuse->eeprom_svid == 4136U && (unsigned int )rtlefuse->eeprom_smid == 33172U) || ((unsigned int )rtlefuse->eeprom_svid == 4136U && (unsigned int )rtlefuse->eeprom_smid == 33176U)) || ((unsigned int )rtlefuse->eeprom_svid == 4136U && (unsigned int )rtlefuse->eeprom_smid == 37271U)) || ((unsigned int )rtlefuse->eeprom_svid == 4136U && (unsigned int )rtlefuse->eeprom_smid == 37272U)) { rtlhal->oem_id = 33U; } else if ((unsigned int )rtlefuse->eeprom_svid == 4156U && (unsigned int )rtlefuse->eeprom_smid == 5673U) { rtlhal->oem_id = 27U; } else if ((unsigned int )rtlefuse->eeprom_svid == 6706U && (unsigned int )rtlefuse->eeprom_smid == 8981U) { rtlhal->oem_id = 19U; } else if ((unsigned int )rtlefuse->eeprom_svid == 4332U && (unsigned int )rtlefuse->eeprom_smid == 33283U) { rtlhal->oem_id = 34U; } else if ((unsigned int )rtlefuse->eeprom_svid == 4163U && (unsigned int )rtlefuse->eeprom_smid == 33973U) { rtlhal->oem_id = 35U; } else { rtlhal->oem_id = 0U; } } else if ((unsigned int )rtlefuse->eeprom_did == 33144U) { if ((unsigned int )rtlefuse->eeprom_svid == 4332U && (int )is_toshiba_smid2) { rtlhal->oem_id = 9U; } else if ((unsigned int )rtlefuse->eeprom_svid == 4133U) { rtlhal->oem_id = 24U; } else if ((unsigned int )rtlefuse->eeprom_svid == 4332U && (unsigned int )rtlefuse->eeprom_smid == 33158U) { rtlhal->oem_id = 34U; } else if ((unsigned int )rtlefuse->eeprom_svid == 4163U && (unsigned int )rtlefuse->eeprom_smid == 33974U) { rtlhal->oem_id = 35U; } else { rtlhal->oem_id = 0U; } } else { rtlhal->oem_id = 0U; } goto ldv_52743; case 4: rtlhal->oem_id = 9U; goto ldv_52743; case 16: rtlhal->oem_id = 17U; goto ldv_52743; case 13: rtlhal->oem_id = 19U; goto ldv_52743; case 254: ; goto ldv_52743; default: rtlhal->oem_id = 0U; goto ldv_52743; } ldv_52743: ; } else { } return; } } static void _rtl8723be_hal_customized_behavior(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_pci_priv *pcipriv ; struct rtl_hal *rtlhal ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { rtlpriv = (struct rtl_priv *)hw->priv; pcipriv = (struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv); rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; pcipriv->ledctl.led_opendrain = 1; switch ((int )rtlhal->oem_id) { case 27: pcipriv->ledctl.led_opendrain = 1; goto ldv_52756; case 18: ; case 0: ; case 9: ; case 17: ; case 24: ; case 5: ; default: ; goto ldv_52756; } ldv_52756: tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> RT Customized ID: 0x%02X\n", "_rtl8723be_hal_customized_behavior", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )rtlhal->oem_id); } else { } } else { } return; } } void rtl8723be_read_eeprom_info(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_efuse *rtlefuse ; struct rtl_phy *rtlphy ; struct rtl_hal *rtlhal ; u8 tmp_u1b ; enum version_8723e tmp ; bool tmp___0 ; u8 tmp___1 ; int tmp___2 ; int tmp___3 ; long tmp___4 ; long tmp___5 ; int tmp___6 ; int tmp___7 ; long tmp___8 ; long tmp___9 ; int tmp___10 ; int tmp___11 ; long tmp___12 ; long tmp___13 ; int tmp___14 ; int tmp___15 ; long tmp___16 ; long tmp___17 ; int tmp___18 ; int tmp___19 ; long tmp___20 ; long tmp___21 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; rtlphy = & rtlpriv->phy; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; tmp = _rtl8723be_read_chip_version(hw); rtlhal->version = (u32 )tmp; tmp___1 = get_rf_type(rtlphy); if ((unsigned int )tmp___1 == 0U) { rtlpriv->dm.rfpath_rxenable[0] = 1; } else { tmp___0 = 1; rtlpriv->dm.rfpath_rxenable[1] = tmp___0; rtlpriv->dm.rfpath_rxenable[0] = tmp___0; } tmp___4 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___4 != 0L) { tmp___5 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___5 != 0L) { tmp___2 = preempt_count(); tmp___3 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> VersionID = 0x%4x\n", "rtl8723be_read_eeprom_info", (unsigned long )tmp___3 & 2096896UL, ((unsigned long )tmp___2 & 0xffffffffffdfffffUL) != 0UL, rtlhal->version); } else { } } else { } tmp_u1b = rtl_read_byte(rtlpriv, 10U); if (((unsigned long )tmp_u1b & 16UL) != 0UL) { tmp___8 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___8 != 0L) { tmp___9 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); if (tmp___9 != 0L) { tmp___6 = preempt_count(); tmp___7 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Boot from EEPROM\n", "rtl8723be_read_eeprom_info", (unsigned long )tmp___7 & 2096896UL, ((unsigned long )tmp___6 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } rtlefuse->epromtype = 0; } else { tmp___12 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___12 != 0L) { tmp___13 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); if (tmp___13 != 0L) { tmp___10 = preempt_count(); tmp___11 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Boot from EFUSE\n", "rtl8723be_read_eeprom_info", (unsigned long )tmp___11 & 2096896UL, ((unsigned long )tmp___10 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } rtlefuse->epromtype = 2; } if (((unsigned long )tmp_u1b & 32UL) != 0UL) { tmp___16 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___16 != 0L) { tmp___17 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___17 != 0L) { tmp___14 = preempt_count(); tmp___15 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Autoload OK\n", "rtl8723be_read_eeprom_info", (unsigned long )tmp___15 & 2096896UL, ((unsigned long )tmp___14 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } rtlefuse->autoload_failflag = 0U; _rtl8723be_read_adapter_info(hw, 0); } else { tmp___20 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); if (tmp___20 != 0L) { tmp___21 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); if (tmp___21 != 0L) { tmp___18 = preempt_count(); tmp___19 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Autoload ERR!!\n", "rtl8723be_read_eeprom_info", (unsigned long )tmp___19 & 2096896UL, ((unsigned long )tmp___18 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } } _rtl8723be_hal_customized_behavior(hw); return; } } static void rtl8723be_update_hal_rate_table(struct ieee80211_hw *hw , struct ieee80211_sta *sta ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct rtl_mac *mac ; struct rtl_hal *rtlhal ; u32 ratr_value ; u8 ratr_index ; u8 nmode ; u8 mimo_ps ; u16 shortgi_rate ; u32 tmp_ratr_value ; u8 curtxbw_40mhz ; u8 curshortgi_40mhz ; u8 curshortgi_20mhz ; enum wireless_mode wirelessmode ; u32 ratr_mask ; u8 tmp ; u8 tmp___0 ; u32 tmp___1 ; int tmp___2 ; int tmp___3 ; long tmp___4 ; long tmp___5 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; mac = & ((struct rtl_priv *)hw->priv)->mac80211; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; ratr_index = 0U; nmode = mac->ht_enable; mimo_ps = 1U; curtxbw_40mhz = mac->bw_40; curshortgi_40mhz = ((int )sta->ht_cap.cap & 64) != 0; curshortgi_20mhz = ((int )sta->ht_cap.cap & 32) != 0; wirelessmode = (enum wireless_mode )mac->mode; if ((unsigned int )rtlhal->current_bandtype == 1U) { ratr_value = sta->supp_rates[1] << 4; } else { ratr_value = sta->supp_rates[0]; } if ((unsigned int )mac->opmode == 1U) { ratr_value = 4095U; } else { } ratr_value = (u32 )(((int )sta->ht_cap.mcs.rx_mask[1] << 20) | ((int )sta->ht_cap.mcs.rx_mask[0] << 12)) | ratr_value; switch ((unsigned int )wirelessmode) { case 2U: ; if ((ratr_value & 12U) != 0U) { ratr_value = ratr_value & 13U; } else { ratr_value = ratr_value & 15U; } goto ldv_52793; case 4U: ratr_value = ratr_value & 4085U; goto ldv_52793; case 16U: ; case 32U: nmode = 1U; if ((unsigned int )mimo_ps == 2U) { ratr_value = ratr_value & 520197U; } else { tmp = get_rf_type(rtlphy); if ((unsigned int )tmp == 1U) { ratr_mask = 1044485U; } else { tmp___0 = get_rf_type(rtlphy); if ((unsigned int )tmp___0 == 0U) { ratr_mask = 1044485U; } else { ratr_mask = 252702725U; } } ratr_value = ratr_value & ratr_mask; } goto ldv_52793; default: ; if ((unsigned int )rtlphy->rf_type == 1U) { ratr_value = ratr_value & 1044735U; } else { ratr_value = ratr_value & 252702975U; } goto ldv_52793; } ldv_52793: ; if (((((unsigned int )rtlpriv->btcoexist.bt_coexistence != 0U && (unsigned int )rtlpriv->btcoexist.bt_coexist_type == 3U) && (unsigned int )rtlpriv->btcoexist.bt_cur_state != 0U) && (unsigned int )rtlpriv->btcoexist.bt_ant_isolation != 0U) && ((unsigned int )rtlpriv->btcoexist.bt_service == 0U || (unsigned int )rtlpriv->btcoexist.bt_service == 7U)) { ratr_value = ratr_value & 268423104U; } else { ratr_value = ratr_value & 268435455U; } if ((unsigned int )nmode != 0U && (((unsigned int )curtxbw_40mhz != 0U && (unsigned int )curshortgi_40mhz != 0U) || ((unsigned int )curtxbw_40mhz == 0U && (unsigned int )curshortgi_20mhz != 0U))) { ratr_value = ratr_value | 268435456U; tmp_ratr_value = ratr_value >> 12; shortgi_rate = 15U; goto ldv_52801; ldv_52800: ; if (((u32 )(1 << (int )shortgi_rate) & tmp_ratr_value) != 0U) { goto ldv_52799; } else { } shortgi_rate = (u16 )((int )shortgi_rate - 1); ldv_52801: ; if ((unsigned int )shortgi_rate != 0U) { goto ldv_52800; } else { } ldv_52799: shortgi_rate = (u16 )((((int )((short )((int )shortgi_rate << 12)) | (int )((short )((int )shortgi_rate << 8))) | (int )((short )((int )shortgi_rate << 4))) | (int )((short )shortgi_rate)); } else { } rtl_write_dword(rtlpriv, (u32 )(((int )ratr_index + 273) * 4), ratr_value); tmp___4 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4194304ULL) != 0ULL, 0L); if (tmp___4 != 0L) { tmp___5 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); if (tmp___5 != 0L) { tmp___1 = rtl_read_dword(rtlpriv, 1092U); tmp___2 = preempt_count(); tmp___3 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> %x\n", "rtl8723be_update_hal_rate_table", (unsigned long )tmp___3 & 2096896UL, ((unsigned long )tmp___2 & 0xffffffffffdfffffUL) != 0UL, tmp___1); } else { } } else { } return; } } static u8 _rtl8723be_mrate_idx_to_arfr_id(struct ieee80211_hw *hw , u8 rate_index ) { u8 ret ; { ret = 0U; switch ((int )rate_index) { case 0: ret = 1U; goto ldv_52809; case 3: ; case 1: ret = 5U; goto ldv_52809; case 2: ret = 3U; goto ldv_52809; case 4: ret = 6U; goto ldv_52809; case 5: ret = 7U; goto ldv_52809; case 6: ret = 8U; goto ldv_52809; default: ret = 0U; goto ldv_52809; } ldv_52809: ; return (ret); } } static void rtl8723be_update_hal_rate_mask(struct ieee80211_hw *hw , struct ieee80211_sta *sta , u8 rssi_level ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct rtl_mac *mac ; struct rtl_sta_info *sta_entry ; u32 ratr_bitmap ; u8 ratr_index ; u8 curtxbw_40mhz ; u8 curshortgi_40mhz ; u8 curshortgi_20mhz ; enum wireless_mode wirelessmode ; bool shortgi ; u8 rate_mask[7U] ; u8 macid ; u8 mimo_ps ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; u8 tmp___3 ; int tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; mac = & ((struct rtl_priv *)hw->priv)->mac80211; sta_entry = (struct rtl_sta_info *)0; curtxbw_40mhz = ((int )sta->ht_cap.cap & 2) != 0; curshortgi_40mhz = ((int )sta->ht_cap.cap & 64) != 0; curshortgi_20mhz = ((int )sta->ht_cap.cap & 32) != 0; wirelessmode = 0; shortgi = 0; macid = 0U; mimo_ps = 1U; sta_entry = (struct rtl_sta_info *)(& sta->drv_priv); wirelessmode = (enum wireless_mode )sta_entry->wireless_mode; if ((unsigned int )mac->opmode == 2U || (unsigned int )mac->opmode == 7U) { curtxbw_40mhz = mac->bw_40; } else if ((unsigned int )mac->opmode == 3U || (unsigned int )mac->opmode == 1U) { macid = (unsigned int )((u8 )sta->aid) + 1U; } else { } ratr_bitmap = sta->supp_rates[0]; if ((unsigned int )mac->opmode == 1U) { ratr_bitmap = 4095U; } else { } ratr_bitmap = (u32 )(((int )sta->ht_cap.mcs.rx_mask[1] << 20) | ((int )sta->ht_cap.mcs.rx_mask[0] << 12)) | ratr_bitmap; switch ((unsigned int )wirelessmode) { case 2U: ratr_index = 6U; if ((ratr_bitmap & 12U) != 0U) { ratr_bitmap = ratr_bitmap & 13U; } else { ratr_bitmap = ratr_bitmap & 15U; } goto ldv_52837; case 4U: ratr_index = 4U; if ((unsigned int )rssi_level == 1U) { ratr_bitmap = ratr_bitmap & 3840U; } else if ((unsigned int )rssi_level == 2U) { ratr_bitmap = ratr_bitmap & 4080U; } else { ratr_bitmap = ratr_bitmap & 4085U; } goto ldv_52837; case 1U: ratr_index = 8U; ratr_bitmap = ratr_bitmap & 4080U; goto ldv_52837; case 16U: ; case 32U: ratr_index = 0U; if ((unsigned int )mimo_ps == 2U || (unsigned int )mimo_ps == 3U) { if ((unsigned int )rssi_level == 1U) { ratr_bitmap = ratr_bitmap & 458752U; } else if ((unsigned int )rssi_level == 2U) { ratr_bitmap = ratr_bitmap & 520192U; } else { ratr_bitmap = ratr_bitmap & 520197U; } } else if ((unsigned int )rtlphy->rf_type == 0U) { if ((unsigned int )curtxbw_40mhz != 0U) { if ((unsigned int )rssi_level == 1U) { ratr_bitmap = ratr_bitmap & 983040U; } else if ((unsigned int )rssi_level == 2U) { ratr_bitmap = ratr_bitmap & 1044480U; } else { ratr_bitmap = ratr_bitmap & 1044501U; } } else if ((unsigned int )rssi_level == 1U) { ratr_bitmap = ratr_bitmap & 983040U; } else if ((unsigned int )rssi_level == 2U) { ratr_bitmap = ratr_bitmap & 1044480U; } else { ratr_bitmap = ratr_bitmap & 1044485U; } } else if ((unsigned int )curtxbw_40mhz != 0U) { if ((unsigned int )rssi_level == 1U) { ratr_bitmap = ratr_bitmap & 261029888U; } else if ((unsigned int )rssi_level == 2U) { ratr_bitmap = ratr_bitmap & 261091328U; } else { ratr_bitmap = ratr_bitmap & 261091349U; } } else if ((unsigned int )rssi_level == 1U) { ratr_bitmap = ratr_bitmap & 261029888U; } else if ((unsigned int )rssi_level == 2U) { ratr_bitmap = ratr_bitmap & 261091328U; } else { ratr_bitmap = ratr_bitmap & 261091333U; } if (((unsigned int )curtxbw_40mhz != 0U && (unsigned int )curshortgi_40mhz != 0U) || ((unsigned int )curtxbw_40mhz == 0U && (unsigned int )curshortgi_20mhz != 0U)) { if ((unsigned int )macid == 0U) { shortgi = 1; } else if ((unsigned int )macid == 1U) { shortgi = 0; } else { } } else { } goto ldv_52837; default: ratr_index = 0U; if ((unsigned int )rtlphy->rf_type == 1U) { ratr_bitmap = ratr_bitmap & 1044735U; } else { ratr_bitmap = ratr_bitmap & 252702975U; } goto ldv_52837; } ldv_52837: sta_entry->ratr_index = ratr_index; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4194304ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> ratr_bitmap :%x\n", "rtl8723be_update_hal_rate_mask", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, ratr_bitmap); } else { } } else { } *((u32 *)(& rate_mask)) = (ratr_bitmap & 268435455U) | (u32 )((int )ratr_index << 28); rate_mask[0] = macid; tmp___3 = _rtl8723be_mrate_idx_to_arfr_id(hw, (int )ratr_index); rate_mask[1] = (u8 )((int )((signed char )tmp___3) | ((int )shortgi ? -128 : 0)); rate_mask[2] = curtxbw_40mhz; rate_mask[3] = (unsigned char )ratr_bitmap; rate_mask[4] = (unsigned char )((ratr_bitmap & 65280U) >> 8); rate_mask[5] = (unsigned char )((ratr_bitmap & 16711680U) >> 16); rate_mask[6] = (unsigned char )(ratr_bitmap >> 24); tmp___6 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4194304ULL) != 0ULL, 0L); if (tmp___6 != 0L) { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); if (tmp___7 != 0L) { tmp___4 = preempt_count(); tmp___5 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Rate_index:%x, ratr_val:%x, %x:%x:%x:%x:%x:%x:%x\n", "rtl8723be_update_hal_rate_mask", (unsigned long )tmp___5 & 2096896UL, ((unsigned long )tmp___4 & 0xffffffffffdfffffUL) != 0UL, (int )ratr_index, ratr_bitmap, (int )rate_mask[0], (int )rate_mask[1], (int )rate_mask[2], (int )rate_mask[3], (int )rate_mask[4], (int )rate_mask[5], (int )rate_mask[6]); } else { } } else { } rtl8723be_fill_h2c_cmd(hw, 64, 7U, (u8 *)(& rate_mask)); _rtl8723be_set_bcn_ctrl_reg(hw, 8, 0); return; } } void rtl8723be_update_hal_rate_tbl(struct ieee80211_hw *hw , struct ieee80211_sta *sta , u8 rssi_level ) { struct rtl_priv *rtlpriv ; { rtlpriv = (struct rtl_priv *)hw->priv; if ((int )rtlpriv->dm.useramask) { rtl8723be_update_hal_rate_mask(hw, sta, (int )rssi_level); } else { rtl8723be_update_hal_rate_table(hw, sta); } return; } } void rtl8723be_update_channel_access_setting(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_mac *mac ; u16 sifs_timer ; { rtlpriv = (struct rtl_priv *)hw->priv; mac = & ((struct rtl_priv *)hw->priv)->mac80211; (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 17, & mac->slot_time); if ((unsigned int )mac->ht_enable == 0U) { sifs_timer = 2570U; } else { sifs_timer = 3598U; } (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 14, (u8 *)(& sifs_timer)); return; } } bool rtl8723be_gpio_radio_on_off_checking(struct ieee80211_hw *hw , u8 *valid ) { struct rtl_priv *rtlpriv ; struct rtl_ps_ctl *ppsc ; struct rtl_phy *rtlphy ; enum rf_pwrstate e_rfpowerstate_toset ; enum rf_pwrstate cur_rfstate ; u8 u1tmp ; bool actuallyset ; u8 tmp ; int tmp___0 ; int tmp___1 ; long tmp___2 ; long tmp___3 ; int tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; { rtlpriv = (struct rtl_priv *)hw->priv; ppsc = & ((struct rtl_priv *)hw->priv)->psc; rtlphy = & rtlpriv->phy; actuallyset = 0; if ((int )rtlpriv->rtlhal.being_init_adapter) { return (0); } else { } if ((int )ppsc->swrf_processing) { return (0); } else { } spin_lock(& rtlpriv->locks.rf_ps_lock); if ((int )ppsc->rfchange_inprogress) { spin_unlock(& rtlpriv->locks.rf_ps_lock); return (0); } else { ppsc->rfchange_inprogress = 1; spin_unlock(& rtlpriv->locks.rf_ps_lock); } cur_rfstate = ppsc->rfpwr_state; tmp = rtl_read_byte(rtlpriv, 98U); rtl_write_byte(rtlpriv, 98U, (int )tmp & 253); u1tmp = rtl_read_byte(rtlpriv, 96U); if ((unsigned int )rtlphy->polarity_ctl != 0U) { e_rfpowerstate_toset = (enum rf_pwrstate )((int )u1tmp & 2); } else { e_rfpowerstate_toset = ((unsigned long )u1tmp & 2UL) != 0UL ? 0 : 2; } if ((int )ppsc->hwradiooff && (unsigned int )e_rfpowerstate_toset == 0U) { tmp___2 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); if (tmp___2 != 0L) { tmp___3 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); if (tmp___3 != 0L) { tmp___0 = preempt_count(); tmp___1 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> GPIOChangeRF - HW Radio ON, RF ON\n", "rtl8723be_gpio_radio_on_off_checking", (unsigned long )tmp___1 & 2096896UL, ((unsigned long )tmp___0 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } e_rfpowerstate_toset = 0; ppsc->hwradiooff = 0; actuallyset = 1; } else if (! ppsc->hwradiooff && (unsigned int )e_rfpowerstate_toset == 2U) { tmp___6 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); if (tmp___6 != 0L) { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); if (tmp___7 != 0L) { tmp___4 = preempt_count(); tmp___5 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> GPIOChangeRF - HW Radio OFF, RF OFF\n", "rtl8723be_gpio_radio_on_off_checking", (unsigned long )tmp___5 & 2096896UL, ((unsigned long )tmp___4 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } e_rfpowerstate_toset = 2; ppsc->hwradiooff = 1; actuallyset = 1; } else { } if ((int )actuallyset) { spin_lock(& rtlpriv->locks.rf_ps_lock); ppsc->rfchange_inprogress = 0; spin_unlock(& rtlpriv->locks.rf_ps_lock); } else { if (((unsigned long )ppsc->reg_rfps_level & 8UL) != 0UL) { ppsc->cur_ps_level = ppsc->cur_ps_level | 8U; } else { } spin_lock(& rtlpriv->locks.rf_ps_lock); ppsc->rfchange_inprogress = 0; spin_unlock(& rtlpriv->locks.rf_ps_lock); } *valid = 1U; return ((bool )(! ((int )ppsc->hwradiooff != 0))); } } void rtl8723be_set_key(struct ieee80211_hw *hw , u32 key_index , u8 *p_macaddr , bool is_group , u8 enc_algo , bool is_wepkey , bool clear_all ) { struct rtl_priv *rtlpriv ; struct rtl_mac *mac ; struct rtl_efuse *rtlefuse ; u8 *macaddr ; u32 entry_id ; bool is_pairwise ; u8 cam_const_addr[4U][6U] ; u8 cam_const_broad[6U] ; u8 idx ; u8 cam_offset ; u8 clear_number ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; u8 tmp___7 ; int tmp___8 ; int tmp___9 ; long tmp___10 ; long tmp___11 ; int tmp___12 ; int tmp___13 ; long tmp___14 ; long tmp___15 ; int tmp___16 ; int tmp___17 ; long tmp___18 ; long tmp___19 ; int tmp___20 ; int tmp___21 ; long tmp___22 ; long tmp___23 ; int tmp___24 ; int tmp___25 ; long tmp___26 ; long tmp___27 ; { rtlpriv = (struct rtl_priv *)hw->priv; mac = & ((struct rtl_priv *)hw->priv)->mac80211; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; macaddr = p_macaddr; entry_id = 0U; is_pairwise = 0; cam_const_addr[0][0] = 0U; cam_const_addr[0][1] = 0U; cam_const_addr[0][2] = 0U; cam_const_addr[0][3] = 0U; cam_const_addr[0][4] = 0U; cam_const_addr[0][5] = 0U; cam_const_addr[1][0] = 0U; cam_const_addr[1][1] = 0U; cam_const_addr[1][2] = 0U; cam_const_addr[1][3] = 0U; cam_const_addr[1][4] = 0U; cam_const_addr[1][5] = 1U; cam_const_addr[2][0] = 0U; cam_const_addr[2][1] = 0U; cam_const_addr[2][2] = 0U; cam_const_addr[2][3] = 0U; cam_const_addr[2][4] = 0U; cam_const_addr[2][5] = 2U; cam_const_addr[3][0] = 0U; cam_const_addr[3][1] = 0U; cam_const_addr[3][2] = 0U; cam_const_addr[3][3] = 0U; cam_const_addr[3][4] = 0U; cam_const_addr[3][5] = 3U; cam_const_broad[0] = 255U; cam_const_broad[1] = 255U; cam_const_broad[2] = 255U; cam_const_broad[3] = 255U; cam_const_broad[4] = 255U; cam_const_broad[5] = 255U; if ((int )clear_all) { idx = 0U; cam_offset = 0U; clear_number = 5U; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 512ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> clear_all\n", "rtl8723be_set_key", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } idx = 0U; goto ldv_52890; ldv_52889: rtl_cam_mark_invalid(hw, (int )cam_offset + (int )idx); rtl_cam_empty_entry(hw, (int )cam_offset + (int )idx); if ((unsigned int )idx <= 4U) { memset((void *)(& rtlpriv->sec.key_buf) + (unsigned long )idx, 0, 61UL); rtlpriv->sec.key_len[(int )idx] = 0U; } else { } idx = (u8 )((int )idx + 1); ldv_52890: ; if ((int )idx < (int )clear_number) { goto ldv_52889; } else { } } else { switch ((int )enc_algo) { case 1: enc_algo = 1U; goto ldv_52893; case 5: enc_algo = 5U; goto ldv_52893; case 2: enc_algo = 2U; goto ldv_52893; case 4: enc_algo = 4U; goto ldv_52893; default: tmp___5 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); if (tmp___5 != 0L) { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); if (tmp___6 != 0L) { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> switch case not process\n", "rtl8723be_set_key", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } enc_algo = 2U; goto ldv_52893; } ldv_52893: ; if ((int )is_wepkey || (int )rtlpriv->sec.use_defaultkey) { macaddr = (u8 *)(& cam_const_addr) + (unsigned long )key_index; entry_id = key_index; } else if ((int )is_group) { macaddr = (u8 *)(& cam_const_broad); entry_id = key_index; } else { if ((unsigned int )mac->opmode == 3U) { tmp___7 = rtl_cam_get_free_entry(hw, p_macaddr); entry_id = (u32 )tmp___7; if (entry_id > 31U) { tmp___10 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 512ULL) != 0ULL, 0L); if (tmp___10 != 0L) { tmp___11 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); if (tmp___11 != 0L) { tmp___8 = preempt_count(); tmp___9 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Can not find free hw security cam entry\n", "rtl8723be_set_key", (unsigned long )tmp___9 & 2096896UL, ((unsigned long )tmp___8 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } return; } else { } } else { entry_id = 4U; } key_index = 0U; is_pairwise = 1; } if ((unsigned int )rtlpriv->sec.key_len[key_index] == 0U) { tmp___14 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 512ULL) != 0ULL, 0L); if (tmp___14 != 0L) { tmp___15 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); if (tmp___15 != 0L) { tmp___12 = preempt_count(); tmp___13 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> delete one entry, entry_id is %d\n", "rtl8723be_set_key", (unsigned long )tmp___13 & 2096896UL, ((unsigned long )tmp___12 & 0xffffffffffdfffffUL) != 0UL, entry_id); } else { } } else { } if ((unsigned int )mac->opmode == 3U) { rtl_cam_del_entry(hw, p_macaddr); } else { } rtl_cam_delete_one_entry(hw, p_macaddr, entry_id); } else { tmp___18 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 512ULL) != 0ULL, 0L); if (tmp___18 != 0L) { tmp___19 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); if (tmp___19 != 0L) { tmp___16 = preempt_count(); tmp___17 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> add one entry\n", "rtl8723be_set_key", (unsigned long )tmp___17 & 2096896UL, ((unsigned long )tmp___16 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } if ((int )is_pairwise) { tmp___22 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 512ULL) != 0ULL, 0L); if (tmp___22 != 0L) { tmp___23 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); if (tmp___23 != 0L) { tmp___20 = preempt_count(); tmp___21 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> set Pairwise key\n", "rtl8723be_set_key", (unsigned long )tmp___21 & 2096896UL, ((unsigned long )tmp___20 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } rtl_cam_add_one_entry(hw, macaddr, key_index, entry_id, (u32 )enc_algo, 0U, (u8 *)(& rtlpriv->sec.key_buf) + (unsigned long )key_index); } else { tmp___26 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 512ULL) != 0ULL, 0L); if (tmp___26 != 0L) { tmp___27 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); if (tmp___27 != 0L) { tmp___24 = preempt_count(); tmp___25 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> set group key\n", "rtl8723be_set_key", (unsigned long )tmp___25 & 2096896UL, ((unsigned long )tmp___24 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } if ((unsigned int )mac->opmode == 1U) { rtl_cam_add_one_entry(hw, (u8 *)(& rtlefuse->dev_addr), 0U, 4U, (u32 )enc_algo, 0U, (u8 *)(& rtlpriv->sec.key_buf) + (unsigned long )entry_id); } else { } rtl_cam_add_one_entry(hw, macaddr, key_index, entry_id, (u32 )enc_algo, 0U, (u8 *)(& rtlpriv->sec.key_buf) + (unsigned long )entry_id); } } } return; } } void rtl8723be_read_bt_coexist_info_from_hwpg(struct ieee80211_hw *hw , bool auto_load_fail , u8 *hwinfo ) { struct rtl_priv *rtlpriv ; u8 value ; u32 tmpu_32 ; { rtlpriv = (struct rtl_priv *)hw->priv; if (! auto_load_fail) { tmpu_32 = rtl_read_dword(rtlpriv, 104U); if (((unsigned long )tmpu_32 & 262144UL) != 0UL) { rtlpriv->btcoexist.btc_info.btcoexist = 1U; } else { rtlpriv->btcoexist.btc_info.btcoexist = 0U; } value = *(hwinfo + 195UL); rtlpriv->btcoexist.btc_info.bt_type = 8U; rtlpriv->btcoexist.btc_info.ant_num = (unsigned int )value & 1U; } else { rtlpriv->btcoexist.btc_info.btcoexist = 0U; rtlpriv->btcoexist.btc_info.bt_type = 8U; rtlpriv->btcoexist.btc_info.ant_num = 0U; } return; } } void rtl8723be_bt_reg_init(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlpriv->btcoexist.reg_bt_iso = 2U; rtlpriv->btcoexist.reg_bt_sco = 3U; rtlpriv->btcoexist.reg_bt_sco = 0U; return; } } void rtl8723be_bt_hw_init(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; bool tmp ; { rtlpriv = (struct rtl_priv *)hw->priv; tmp = (*(((rtlpriv->cfg)->ops)->get_btc_status))(); if ((int )tmp) { (*((rtlpriv->btcoexist.btc_ops)->btc_init_hw_config))(rtlpriv); } else { } return; } } void rtl8723be_suspend(struct ieee80211_hw *hw ) { { return; } } void rtl8723be_resume(struct ieee80211_hw *hw ) { { return; } } void ldv_consume_skb_30(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_31(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_32(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_33(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_36(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_38(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_44(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_45(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_46(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_49(struct sk_buff *ldv_func_arg1 ) ; void ldv_consume_skb_43(struct sk_buff *ldv_func_arg1 ) ; void rtl8723be_init_sw_leds(struct ieee80211_hw *hw ) ; void rtl8723be_led_control(struct ieee80211_hw *hw , enum led_ctl_mode ledaction ) ; static void _rtl8723be_init_led(struct ieee80211_hw *hw , struct rtl_led *pled , enum rtl_led_pin ledpin ) { { pled->hw = (void *)hw; pled->ledpin = ledpin; pled->ledon = 0; return; } } void rtl8723be_sw_led_on(struct ieee80211_hw *hw , struct rtl_led *pled ) { u8 ledcfg ; struct rtl_priv *rtlpriv ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { rtlpriv = (struct rtl_priv *)hw->priv; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 256ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> LedAddr:%X ledpin =%d\n", "rtl8723be_sw_led_on", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, 78, (unsigned int )pled->ledpin); } else { } } else { } switch ((unsigned int )pled->ledpin) { case 0U: ; goto ldv_50888; case 1U: ledcfg = rtl_read_byte(rtlpriv, 78U); ledcfg = (unsigned int )ledcfg & 191U; rtl_write_byte(rtlpriv, 78U, (int )(((unsigned int )ledcfg & 208U) | 32U)); goto ldv_50888; case 2U: ledcfg = rtl_read_byte(rtlpriv, 77U); rtl_write_byte(rtlpriv, 77U, (int )ledcfg & 16); goto ldv_50888; default: tmp___5 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); if (tmp___5 != 0L) { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); if (tmp___6 != 0L) { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> switch case not process\n", "rtl8723be_sw_led_on", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } goto ldv_50888; } ldv_50888: pled->ledon = 1; return; } } void rtl8723be_sw_led_off(struct ieee80211_hw *hw , struct rtl_led *pled ) { struct rtl_priv *rtlpriv ; struct rtl_pci_priv *pcipriv ; u8 ledcfg ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { rtlpriv = (struct rtl_priv *)hw->priv; pcipriv = (struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv); tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 256ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> LedAddr:%X ledpin =%d\n", "rtl8723be_sw_led_off", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, 78, (unsigned int )pled->ledpin); } else { } } else { } ledcfg = rtl_read_byte(rtlpriv, 78U); switch ((unsigned int )pled->ledpin) { case 0U: ; goto ldv_50901; case 1U: ledcfg = (unsigned int )ledcfg & 240U; if ((int )pcipriv->ledctl.led_opendrain) { ledcfg = (unsigned int )ledcfg & 144U; rtl_write_byte(rtlpriv, 78U, (int )((unsigned int )ledcfg | 8U)); ledcfg = rtl_read_byte(rtlpriv, 67U); ledcfg = (unsigned int )ledcfg & 254U; rtl_write_byte(rtlpriv, 67U, (int )ledcfg); } else { ledcfg = (unsigned int )ledcfg & 191U; rtl_write_byte(rtlpriv, 78U, (int )((unsigned int )ledcfg | 40U)); } goto ldv_50901; case 2U: ledcfg = rtl_read_byte(rtlpriv, 77U); ledcfg = (unsigned int )ledcfg & 16U; rtl_write_byte(rtlpriv, 77U, (int )((unsigned int )ledcfg | 8U)); goto ldv_50901; default: tmp___5 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); if (tmp___5 != 0L) { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); if (tmp___6 != 0L) { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> switch case not processed\n", "rtl8723be_sw_led_off", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } goto ldv_50901; } ldv_50901: pled->ledon = 0; return; } } void rtl8723be_init_sw_leds(struct ieee80211_hw *hw ) { struct rtl_pci_priv *pcipriv ; { pcipriv = (struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv); _rtl8723be_init_led(hw, & pcipriv->ledctl.sw_led0, 1); _rtl8723be_init_led(hw, & pcipriv->ledctl.sw_led1, 2); return; } } static void _rtl8723be_sw_led_control(struct ieee80211_hw *hw , enum led_ctl_mode ledaction ) { struct rtl_pci_priv *pcipriv ; struct rtl_led *pled0 ; { pcipriv = (struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv); pled0 = & pcipriv->ledctl.sw_led0; switch ((unsigned int )ledaction) { case 1U: ; case 2U: ; case 3U: rtl8723be_sw_led_on(hw, pled0); goto ldv_50918; case 7U: rtl8723be_sw_led_off(hw, pled0); goto ldv_50918; default: ; goto ldv_50918; } ldv_50918: ; return; } } void rtl8723be_led_control(struct ieee80211_hw *hw , enum led_ctl_mode ledaction ) { struct rtl_priv *rtlpriv ; struct rtl_ps_ctl *ppsc ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { rtlpriv = (struct rtl_priv *)hw->priv; ppsc = & ((struct rtl_priv *)hw->priv)->psc; if (ppsc->rfoff_reason > 536870912U && (((((((unsigned int )ledaction == 4U || (unsigned int )ledaction == 5U) || (unsigned int )ledaction == 6U) || (unsigned int )ledaction == 2U) || (unsigned int )ledaction == 3U) || (unsigned int )ledaction == 8U) || (unsigned int )ledaction == 1U)) { return; } else { } tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 256ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> ledaction %d,\n", "rtl8723be_led_control", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (unsigned int )ledaction); } else { } } else { } _rtl8723be_sw_led_control(hw, ledaction); return; } } void ldv_consume_skb_43(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_44(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_45(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_46(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_49(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } extern unsigned int jiffies_to_msecs(unsigned long const ) ; void ldv_kfree_skb_55(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_56(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_57(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_60(struct sk_buff *ldv_func_arg1 ) ; void ldv_consume_skb_54(struct sk_buff *ldv_func_arg1 ) ; extern bool rtl_ps_enable_nic(struct ieee80211_hw * ) ; extern bool rtl_ps_disable_nic(struct ieee80211_hw * ) ; extern void rtl_bb_delay(struct ieee80211_hw * , u32 , u32 ) ; u32 rtl8723be_phy_query_rf_reg(struct ieee80211_hw *hw , enum radio_path rfpath , u32 regaddr , u32 bitmask ) ; void rtl8723be_phy_set_rf_reg(struct ieee80211_hw *hw , enum radio_path path , u32 regaddr , u32 bitmask , u32 data ) ; void rtl8723be_phy_get_hw_reg_originalvalue(struct ieee80211_hw *hw ) ; void rtl8723be_phy_get_txpower_level(struct ieee80211_hw *hw , long *powerlevel ) ; void rtl8723be_phy_scan_operation_backup(struct ieee80211_hw *hw , u8 operation ) ; void rtl8723be_phy_set_bw_mode_callback(struct ieee80211_hw *hw ) ; void rtl8723be_phy_set_bw_mode(struct ieee80211_hw *hw , enum nl80211_channel_type ch_type ) ; void rtl8723be_phy_sw_chnl_callback(struct ieee80211_hw *hw ) ; u8 rtl8723be_phy_sw_chnl(struct ieee80211_hw *hw ) ; void rtl23b_phy_ap_calibrate(struct ieee80211_hw *hw , char delta ) ; void rtl8723be_phy_set_rfpath_switch(struct ieee80211_hw *hw , bool bmain ) ; bool rtl8723be_phy_config_rf_with_headerfile(struct ieee80211_hw *hw , enum radio_path rfpath ) ; bool rtl8723be_phy_set_rf_power_state(struct ieee80211_hw *hw , enum rf_pwrstate rfpwr_state ) ; extern void rtl8723_phy_set_bb_reg(struct ieee80211_hw * , u32 , u32 , u32 ) ; extern u32 rtl8723_phy_calculate_bit_shift(u32 ) ; extern u32 rtl8723_phy_rf_serial_read(struct ieee80211_hw * , enum radio_path , u32 ) ; extern void rtl8723_phy_rf_serial_write(struct ieee80211_hw * , enum radio_path , u32 , u32 ) ; extern long rtl8723_phy_txpwr_idx_to_dbm(struct ieee80211_hw * , enum wireless_mode , u8 ) ; extern void rtl8723_phy_init_bb_rf_reg_def(struct ieee80211_hw * ) ; extern bool rtl8723_phy_set_sw_chnl_cmdarray(struct swchnlcmd * , u32 , u32 , enum swchnlcmd_id , u32 , u32 , u32 ) ; extern void rtl8723_phy_path_a_fill_iqk_matrix(struct ieee80211_hw * , bool , long (*)[8] , u8 , bool ) ; extern void rtl8723_save_adda_registers(struct ieee80211_hw * , u32 * , u32 * , u32 ) ; extern void rtl8723_phy_save_mac_registers(struct ieee80211_hw * , u32 * , u32 * ) ; extern void rtl8723_phy_reload_adda_registers(struct ieee80211_hw * , u32 * , u32 * , u32 ) ; extern void rtl8723_phy_reload_mac_registers(struct ieee80211_hw * , u32 * , u32 * ) ; extern void rtl8723_phy_path_adda_on(struct ieee80211_hw * , u32 * , bool , bool ) ; extern void rtl8723_phy_mac_setting_calibration(struct ieee80211_hw * , u32 * , u32 * ) ; extern void rtl8723_phy_path_a_standby(struct ieee80211_hw * ) ; extern void rtl8723_phy_pi_mode_switch(struct ieee80211_hw * , bool ) ; void rtl8723be_phy_rf6052_set_bandwidth(struct ieee80211_hw *hw , u8 bandwidth ) ; bool rtl8723be_phy_rf6052_config(struct ieee80211_hw *hw ) ; u32 RTL8723BEPHY_REG_1TARRAY[388U] ; u32 RTL8723BEPHY_REG_ARRAY_PG[36U] ; u32 RTL8723BE_RADIOA_1TARRAY[206U] ; u32 RTL8723BEMAC_1T_ARRAY[194U] ; u32 RTL8723BEAGCTAB_1TARRAY[260U] ; static bool _rtl8723be_phy_bb8723b_config_parafile(struct ieee80211_hw *hw ) ; static bool _rtl8723be_phy_config_bb_with_pgheaderfile(struct ieee80211_hw *hw , u8 configtype ) ; static bool rtl8723be_phy_sw_chn_step_by_step(struct ieee80211_hw *hw , u8 channel , u8 *stage , u8 *step , u32 *delay ) ; static bool _rtl8723be_check_condition(struct ieee80211_hw *hw , u32 const condition ) { struct rtl_hal *rtlhal ; struct rtl_efuse *rtlefuse ; u32 _board ; u32 _interface ; u32 _platform ; u32 cond ; { rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; _board = (u32 )rtlefuse->board_type; _interface = rtlhal->interface; _platform = 8U; cond = condition; if ((unsigned int )condition == 3452816845U) { return (1); } else { } cond = (unsigned int )condition & 255U; if ((_board & cond) == 0U && cond != 31U) { return (0); } else { } cond = (unsigned int )condition & 65280U; cond = cond >> 8; if ((_interface & cond) == 0U && cond != 7U) { return (0); } else { } cond = (unsigned int )condition & 16711680U; cond = cond >> 16; if ((_platform & cond) == 0U && cond != 15U) { return (0); } else { } return (1); } } static bool _rtl8723be_phy_config_mac_with_headerfile(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; u32 i ; u32 arraylength ; u32 *ptrarray ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { rtlpriv = (struct rtl_priv *)hw->priv; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Read rtl8723beMACPHY_Array\n", "_rtl8723be_phy_config_mac_with_headerfile", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } arraylength = 194U; ptrarray = (u32 *)(& RTL8723BEMAC_1T_ARRAY); tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___5 != 0L) { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___6 != 0L) { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Img:RTL8723bEMAC_1T_ARRAY LEN %d\n", "_rtl8723be_phy_config_mac_with_headerfile", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, arraylength); } else { } } else { } i = 0U; goto ldv_51580; ldv_51579: rtl_write_byte(rtlpriv, *(ptrarray + (unsigned long )i), (int )((unsigned char )*(ptrarray + (unsigned long )(i + 1U)))); i = i + 2U; ldv_51580: ; if (i < arraylength) { goto ldv_51579; } else { } return (1); } } static bool _rtl8723be_phy_config_bb_with_headerfile(struct ieee80211_hw *hw , u8 configtype ) { int i ; u32 *array_table ; u16 arraylen ; struct rtl_priv *rtlpriv ; u32 v1 ; u32 v2 ; bool tmp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { rtlpriv = (struct rtl_priv *)hw->priv; v1 = 0U; v2 = 0U; if ((unsigned int )configtype == 0U) { arraylen = 388U; array_table = (u32 *)(& RTL8723BEPHY_REG_1TARRAY); i = 0; goto ldv_51602; ldv_51601: v1 = *(array_table + (unsigned long )i); v2 = *(array_table + ((unsigned long )i + 1UL)); if (v1 <= 3452816844U) { rtl_bb_delay(hw, v1, v2); } else { tmp = _rtl8723be_check_condition(hw, *(array_table + (unsigned long )i)); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { i = i + 2; v1 = *(array_table + (unsigned long )i); v2 = *(array_table + ((unsigned long )i + 1UL)); goto ldv_51593; ldv_51592: i = i + 2; v1 = *(array_table + (unsigned long )i); v2 = *(array_table + ((unsigned long )i + 1UL)); ldv_51593: ; if (((v2 != 57005U && v2 != 52719U) && v2 != 52685U) && (int )arraylen + -2 > i) { goto ldv_51592; } else { } i = i + -2; } else { i = i + 2; v1 = *(array_table + (unsigned long )i); v2 = *(array_table + ((unsigned long )i + 1UL)); goto ldv_51596; ldv_51595: rtl_bb_delay(hw, v1, v2); i = i + 2; v1 = *(array_table + (unsigned long )i); v2 = *(array_table + ((unsigned long )i + 1UL)); ldv_51596: ; if (((v2 != 57005U && v2 != 52719U) && v2 != 52685U) && (int )arraylen + -2 > i) { goto ldv_51595; } else { } goto ldv_51599; ldv_51598: i = i + 2; v1 = *(array_table + (unsigned long )i); v2 = *(array_table + ((unsigned long )i + 1UL)); ldv_51599: ; if (v2 != 57005U && (int )arraylen + -2 > i) { goto ldv_51598; } else { } } } i = i + 2; ldv_51602: ; if ((int )arraylen > i) { goto ldv_51601; } else { } } else if ((unsigned int )configtype == 1U) { arraylen = 260U; array_table = (u32 *)(& RTL8723BEAGCTAB_1TARRAY); i = 0; goto ldv_51616; ldv_51615: v1 = *(array_table + (unsigned long )i); v2 = *(array_table + ((unsigned long )i + 1UL)); if (v1 <= 3452816844U) { rtl_set_bbreg(hw, *(array_table + (unsigned long )i), 4294967295U, *(array_table + ((unsigned long )i + 1UL))); __const_udelay(4295UL); goto ldv_51604; } else { tmp___1 = _rtl8723be_check_condition(hw, *(array_table + (unsigned long )i)); if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { i = i + 2; v1 = *(array_table + (unsigned long )i); v2 = *(array_table + ((unsigned long )i + 1UL)); goto ldv_51606; ldv_51605: i = i + 2; v1 = *(array_table + (unsigned long )i); v2 = *(array_table + ((unsigned long )i + 1UL)); ldv_51606: ; if (((v2 != 57005U && v2 != 52719U) && v2 != 52685U) && (int )arraylen + -2 > i) { goto ldv_51605; } else { } i = i + -2; } else { i = i + 2; v1 = *(array_table + (unsigned long )i); v2 = *(array_table + ((unsigned long )i + 1UL)); goto ldv_51609; ldv_51608: rtl_set_bbreg(hw, *(array_table + (unsigned long )i), 4294967295U, *(array_table + ((unsigned long )i + 1UL))); __const_udelay(4295UL); i = i + 2; v1 = *(array_table + (unsigned long )i); v2 = *(array_table + ((unsigned long )i + 1UL)); ldv_51609: ; if (((v2 != 57005U && v2 != 52719U) && v2 != 52685U) && (int )arraylen + -2 > i) { goto ldv_51608; } else { } goto ldv_51612; ldv_51611: i = i + 2; v1 = *(array_table + (unsigned long )i); v2 = *(array_table + ((unsigned long )i + 1UL)); ldv_51612: ; if (v2 != 57005U && (int )arraylen + -2 > i) { goto ldv_51611; } else { } } } tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___5 != 0L) { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); if (tmp___6 != 0L) { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> The agctab_array_table[0] is %x Rtl818EEPHY_REGArray[1] is %x\n", "_rtl8723be_phy_config_bb_with_headerfile", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, *(array_table + (unsigned long )i), *(array_table + ((unsigned long )i + 1UL))); } else { } } else { } ldv_51604: i = i + 2; ldv_51616: ; if ((int )arraylen > i) { goto ldv_51615; } else { } } else { } return (1); } } static u8 _rtl8723be_get_rate_section_index(u32 regaddr ) { u8 index ; { index = 0U; switch (regaddr) { case 3584U: ; case 2096U: index = 0U; goto ldv_51624; case 3588U: ; case 2100U: index = 1U; goto ldv_51624; case 3592U: ; case 2104U: index = 2U; goto ldv_51624; case 2156U: index = 3U; goto ldv_51624; case 3600U: ; case 2108U: index = 4U; goto ldv_51624; case 3604U: ; case 2120U: index = 5U; goto ldv_51624; case 3608U: ; case 2124U: index = 6U; goto ldv_51624; case 3612U: ; case 2152U: index = 7U; goto ldv_51624; default: regaddr = regaddr & 4095U; if (regaddr > 3103U && regaddr <= 3148U) { index = (unsigned char )((regaddr - 3104U) / 4U); } else if (regaddr > 3615U && regaddr <= 3660U) { index = (unsigned char )((regaddr - 3616U) / 4U); } else { } goto ldv_51624; } ldv_51624: ; return (index); } } u32 rtl8723be_phy_query_rf_reg(struct ieee80211_hw *hw , enum radio_path rfpath , u32 regaddr , u32 bitmask ) { struct rtl_priv *rtlpriv ; u32 original_value ; u32 readback_value ; u32 bitshift ; unsigned long flags ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; raw_spinlock_t *tmp___3 ; int tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; { rtlpriv = (struct rtl_priv *)hw->priv; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> regaddr(%#x), rfpath(%#x), bitmask(%#x)\n", "rtl8723be_phy_query_rf_reg", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, regaddr, (unsigned int )rfpath, bitmask); } else { } } else { } tmp___3 = spinlock_check(& rtlpriv->locks.rf_lock); flags = _raw_spin_lock_irqsave(tmp___3); original_value = rtl8723_phy_rf_serial_read(hw, rfpath, regaddr); bitshift = rtl8723_phy_calculate_bit_shift(bitmask); readback_value = (original_value & bitmask) >> (int )bitshift; spin_unlock_irqrestore(& rtlpriv->locks.rf_lock, flags); tmp___6 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); if (tmp___6 != 0L) { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); if (tmp___7 != 0L) { tmp___4 = preempt_count(); tmp___5 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> regaddr(%#x), rfpath(%#x), bitmask(%#x), original_value(%#x)\n", "rtl8723be_phy_query_rf_reg", (unsigned long )tmp___5 & 2096896UL, ((unsigned long )tmp___4 & 0xffffffffffdfffffUL) != 0UL, regaddr, (unsigned int )rfpath, bitmask, original_value); } else { } } else { } return (readback_value); } } void rtl8723be_phy_set_rf_reg(struct ieee80211_hw *hw , enum radio_path path , u32 regaddr , u32 bitmask , u32 data ) { struct rtl_priv *rtlpriv ; u32 original_value ; u32 bitshift ; unsigned long flags ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; raw_spinlock_t *tmp___3 ; int tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; { rtlpriv = (struct rtl_priv *)hw->priv; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n", "rtl8723be_phy_set_rf_reg", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, regaddr, bitmask, data, (unsigned int )path); } else { } } else { } tmp___3 = spinlock_check(& rtlpriv->locks.rf_lock); flags = _raw_spin_lock_irqsave(tmp___3); if (bitmask != 1048575U) { original_value = rtl8723_phy_rf_serial_read(hw, path, regaddr); bitshift = rtl8723_phy_calculate_bit_shift(bitmask); data = (~ bitmask & original_value) | (data << (int )bitshift); } else { } rtl8723_phy_rf_serial_write(hw, path, regaddr, data); spin_unlock_irqrestore(& rtlpriv->locks.rf_lock, flags); tmp___6 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); if (tmp___6 != 0L) { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); if (tmp___7 != 0L) { tmp___4 = preempt_count(); tmp___5 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n", "rtl8723be_phy_set_rf_reg", (unsigned long )tmp___5 & 2096896UL, ((unsigned long )tmp___4 & 0xffffffffffdfffffUL) != 0UL, regaddr, bitmask, data, (unsigned int )path); } else { } } else { } return; } } bool rtl8723be_phy_mac_config(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; bool rtstatus ; bool tmp ; { rtlpriv = (struct rtl_priv *)hw->priv; tmp = _rtl8723be_phy_config_mac_with_headerfile(hw); rtstatus = tmp; rtl_write_byte(rtlpriv, 1226U, 11); return (rtstatus); } } bool rtl8723be_phy_bb_config(struct ieee80211_hw *hw ) { bool rtstatus ; struct rtl_priv *rtlpriv ; u16 regval ; u8 reg_hwparafile ; u32 tmp ; u8 crystalcap ; { rtstatus = 1; rtlpriv = (struct rtl_priv *)hw->priv; reg_hwparafile = 1U; crystalcap = rtlpriv->efuse.crystalcap; rtl8723_phy_init_bb_rf_reg_def(hw); regval = rtl_read_word(rtlpriv, 2U); rtl_write_word(rtlpriv, 2U, (int )((unsigned int )regval | 8195U)); rtl_write_byte(rtlpriv, 31U, 7); rtl_write_byte(rtlpriv, 2U, 227); tmp = rtl_read_dword(rtlpriv, 76U); rtl_write_dword(rtlpriv, 76U, tmp | 8388608U); rtl_write_byte(rtlpriv, 37U, 128); if ((unsigned int )reg_hwparafile == 1U) { rtstatus = _rtl8723be_phy_bb8723b_config_parafile(hw); } else { } crystalcap = (unsigned int )crystalcap & 63U; rtl_set_bbreg(hw, 44U, 16773120U, (u32 )((int )crystalcap | ((int )crystalcap << 6))); return (rtstatus); } } bool rtl8723be_phy_rf_config(struct ieee80211_hw *hw ) { bool tmp ; { tmp = rtl8723be_phy_rf6052_config(hw); return (tmp); } } static void _rtl8723be_config_rf_reg(struct ieee80211_hw *hw , u32 addr , u32 data , enum radio_path rfpath , u32 regaddr ) { unsigned long __ms ; unsigned long tmp ; { if (addr == 254U || addr == 4094U) { __ms = 50UL; goto ldv_51695; ldv_51694: __const_udelay(4295000UL); ldv_51695: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_51694; } else { } } else { rtl_set_rfreg(hw, rfpath, regaddr, 1048575U, data); __const_udelay(4295UL); } return; } } static void _rtl8723be_config_rf_radio_a(struct ieee80211_hw *hw , u32 addr , u32 data ) { u32 content ; u32 maskforphyset ; { content = 4096U; maskforphyset = content & 57344U; _rtl8723be_config_rf_reg(hw, addr, data, 0, addr | maskforphyset); return; } } static void _rtl8723be_phy_init_tx_power_by_rate(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; u8 band ; u8 path ; u8 txnum ; u8 section ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; band = 0U; goto ldv_51723; ldv_51722: path = 0U; goto ldv_51720; ldv_51719: txnum = 0U; goto ldv_51717; ldv_51716: section = 0U; goto ldv_51714; ldv_51713: rtlphy->tx_power_by_rate_offset[(int )band][(int )path][(int )txnum][(int )section] = 0U; section = (u8 )((int )section + 1); ldv_51714: ; if ((unsigned int )section <= 11U) { goto ldv_51713; } else { } txnum = (u8 )((int )txnum + 1); ldv_51717: ; if ((unsigned int )txnum <= 3U) { goto ldv_51716; } else { } path = (u8 )((int )path + 1); ldv_51720: ; if ((unsigned int )path <= 3U) { goto ldv_51719; } else { } band = (u8 )((int )band + 1); ldv_51723: ; if ((unsigned int )band <= 1U) { goto ldv_51722; } else { } return; } } static void phy_set_txpwr_by_rate_base(struct ieee80211_hw *hw , u8 band , u8 path , u8 rate_section , u8 txnum , u8 value ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; if ((unsigned int )path > 3U) { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Invalid Rf Path %d in phy_SetTxPowerByRatBase()\n", "phy_set_txpwr_by_rate_base", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )path); } else { } } else { } return; } else { } if ((unsigned int )band == 0U) { switch ((int )rate_section) { case 0: rtlphy->txpwr_by_rate_base_24g[(int )path][(int )txnum][0] = value; goto ldv_51737; case 1: rtlphy->txpwr_by_rate_base_24g[(int )path][(int )txnum][1] = value; goto ldv_51737; case 2: rtlphy->txpwr_by_rate_base_24g[(int )path][(int )txnum][2] = value; goto ldv_51737; case 3: rtlphy->txpwr_by_rate_base_24g[(int )path][(int )txnum][3] = value; goto ldv_51737; default: tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___5 != 0L) { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___6 != 0L) { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Invalid RateSection %d in Band 2.4G, Rf Path %d, %dTx in PHY_SetTxPowerByRateBase()\n", "phy_set_txpwr_by_rate_base", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, (int )rate_section, (int )path, (int )txnum); } else { } } else { } goto ldv_51737; } ldv_51737: ; } else { tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___9 != 0L) { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___10 != 0L) { tmp___7 = preempt_count(); tmp___8 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Invalid Band %d in PHY_SetTxPowerByRateBase()\n", "phy_set_txpwr_by_rate_base", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL, (int )band); } else { } } else { } } return; } } static u8 phy_get_txpwr_by_rate_base(struct ieee80211_hw *hw , u8 band , u8 path , u8 txnum , u8 rate_section ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; u8 value ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; value = 0U; if ((unsigned int )path > 3U) { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Invalid Rf Path %d in PHY_GetTxPowerByRateBase()\n", "phy_get_txpwr_by_rate_base", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )path); } else { } } else { } return (0U); } else { } if ((unsigned int )band == 0U) { switch ((int )rate_section) { case 0: value = rtlphy->txpwr_by_rate_base_24g[(int )path][(int )txnum][0]; goto ldv_51754; case 1: value = rtlphy->txpwr_by_rate_base_24g[(int )path][(int )txnum][1]; goto ldv_51754; case 2: value = rtlphy->txpwr_by_rate_base_24g[(int )path][(int )txnum][2]; goto ldv_51754; case 3: value = rtlphy->txpwr_by_rate_base_24g[(int )path][(int )txnum][3]; goto ldv_51754; default: tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___5 != 0L) { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___6 != 0L) { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Invalid RateSection %d in Band 2.4G, Rf Path %d, %dTx in PHY_GetTxPowerByRateBase()\n", "phy_get_txpwr_by_rate_base", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, (int )rate_section, (int )path, (int )txnum); } else { } } else { } goto ldv_51754; } ldv_51754: ; } else { tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___9 != 0L) { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___10 != 0L) { tmp___7 = preempt_count(); tmp___8 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Invalid Band %d in PHY_GetTxPowerByRateBase()\n", "phy_get_txpwr_by_rate_base", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL, (int )band); } else { } } else { } } return (value); } } static void _rtl8723be_phy_store_txpower_by_rate_base(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; u16 raw_value ; u8 base ; u8 path ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; raw_value = 0U; base = 0U; path = 0U; path = 0U; goto ldv_51768; ldv_51767: ; if ((unsigned int )path == 0U) { raw_value = (unsigned int )((u16 )(rtlphy->tx_power_by_rate_offset[0][(int )path][0][3] >> 24)) & 255U; base = (unsigned int )((u8 )((int )raw_value >> 4)) * 10U + ((unsigned int )((u8 )raw_value) & 15U); phy_set_txpwr_by_rate_base(hw, 0, (int )path, 0, 0, (int )base); } else if ((unsigned int )path == 1U) { raw_value = (unsigned int )((u16 )rtlphy->tx_power_by_rate_offset[0][(int )path][0][3]) & 255U; base = (unsigned int )((u8 )((int )raw_value >> 4)) * 10U + ((unsigned int )((u8 )raw_value) & 15U); phy_set_txpwr_by_rate_base(hw, 0, (int )path, 0, 0, (int )base); } else { } raw_value = (unsigned int )((u16 )(rtlphy->tx_power_by_rate_offset[0][(int )path][0][1] >> 24)) & 255U; base = (unsigned int )((u8 )((int )raw_value >> 4)) * 10U + ((unsigned int )((u8 )raw_value) & 15U); phy_set_txpwr_by_rate_base(hw, 0, (int )path, 1, 0, (int )base); raw_value = (unsigned int )((u16 )(rtlphy->tx_power_by_rate_offset[0][(int )path][0][5] >> 24)) & 255U; base = (unsigned int )((u8 )((int )raw_value >> 4)) * 10U + ((unsigned int )((u8 )raw_value) & 15U); phy_set_txpwr_by_rate_base(hw, 0, (int )path, 2, 0, (int )base); raw_value = (unsigned int )((u16 )(rtlphy->tx_power_by_rate_offset[0][(int )path][1][7] >> 24)) & 255U; base = (unsigned int )((u8 )((int )raw_value >> 4)) * 10U + ((unsigned int )((u8 )raw_value) & 15U); phy_set_txpwr_by_rate_base(hw, 0, (int )path, 3, 1, (int )base); path = (u8 )((int )path + 1); ldv_51768: ; if ((unsigned int )path <= 1U) { goto ldv_51767; } else { } return; } } static void phy_conv_dbm_to_rel(u32 *data , u8 start , u8 end , u8 base_val ) { char i ; u8 temp_value ; u32 temp_data ; { i = 0; temp_value = 0U; temp_data = 0U; i = 3; goto ldv_51780; ldv_51779: ; if ((int )i >= (int )start && (int )i <= (int )end) { temp_value = (unsigned int )((u8 )(*data >> (int )i * 8)) & 15U; temp_value = ((unsigned int )((u8 )(*data >> ((int )i * 8 + 4))) & 15U) * 10U + (unsigned int )temp_value; temp_value = (int )temp_value > (int )base_val ? (int )temp_value - (int )base_val : (int )base_val - (int )temp_value; } else { temp_value = (u8 )(*data >> (int )i * 8); } temp_data = temp_data << 8; temp_data = (u32 )temp_value | temp_data; i = (char )((int )i - 1); ldv_51780: ; if ((int )((signed char )i) >= 0) { goto ldv_51779; } else { } *data = temp_data; return; } } static void conv_dbm_to_rel(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; u8 base ; u8 rfpath ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; base = 0U; rfpath = 0U; base = phy_get_txpwr_by_rate_base(hw, 0, (int )rfpath, 0, 0); phy_conv_dbm_to_rel((u32 *)(& rtlphy->tx_power_by_rate_offset) + ((unsigned long )rfpath + 2UL), 1, 1, (int )base); phy_conv_dbm_to_rel((u32 *)(& rtlphy->tx_power_by_rate_offset) + ((unsigned long )rfpath + 3UL), 1, 3, (int )base); base = phy_get_txpwr_by_rate_base(hw, 0, (int )rfpath, 0, 1); phy_conv_dbm_to_rel((u32 *)(& rtlphy->tx_power_by_rate_offset) + (unsigned long )rfpath, 0, 3, (int )base); phy_conv_dbm_to_rel((u32 *)(& rtlphy->tx_power_by_rate_offset) + ((unsigned long )rfpath + 1UL), 0, 3, (int )base); base = phy_get_txpwr_by_rate_base(hw, 0, (int )rfpath, 0, 2); phy_conv_dbm_to_rel((u32 *)(& rtlphy->tx_power_by_rate_offset) + ((unsigned long )rfpath + 4UL), 0, 3, (int )base); phy_conv_dbm_to_rel((u32 *)(& rtlphy->tx_power_by_rate_offset) + ((unsigned long )rfpath + 5UL), 0, 3, (int )base); base = phy_get_txpwr_by_rate_base(hw, 0, (int )rfpath, 1, 3); phy_conv_dbm_to_rel((u32 *)(& rtlphy->tx_power_by_rate_offset) + ((unsigned long )rfpath + 7UL), 0, 3, (int )base); phy_conv_dbm_to_rel((u32 *)(& rtlphy->tx_power_by_rate_offset) + ((unsigned long )rfpath + 8UL), 0, 3, (int )base); tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> <=== conv_dbm_to_rel()\n", "conv_dbm_to_rel", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } return; } } static void _rtl8723be_phy_txpower_by_rate_configuration(struct ieee80211_hw *hw ) { { _rtl8723be_phy_store_txpower_by_rate_base(hw); conv_dbm_to_rel(hw); return; } } static bool _rtl8723be_phy_bb8723b_config_parafile(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct rtl_efuse *rtlefuse ; bool rtstatus ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; u32 tmp___11 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; rtstatus = _rtl8723be_phy_config_bb_with_headerfile(hw, 0); if (! rtstatus) { tmp___1 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Write BB Reg Fail!!", "_rtl8723be_phy_bb8723b_config_parafile", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } return (0); } else { } _rtl8723be_phy_init_tx_power_by_rate(hw); if ((unsigned int )rtlefuse->autoload_failflag == 0U) { rtlphy->pwrgroup_cnt = 0U; rtstatus = _rtl8723be_phy_config_bb_with_pgheaderfile(hw, 0); } else { } _rtl8723be_phy_txpower_by_rate_configuration(hw); if (! rtstatus) { tmp___5 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); if (tmp___5 != 0L) { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); if (tmp___6 != 0L) { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> BB_PG Reg Fail!!", "_rtl8723be_phy_bb8723b_config_parafile", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } return (0); } else { } rtstatus = _rtl8723be_phy_config_bb_with_headerfile(hw, 1); if (! rtstatus) { tmp___9 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); if (tmp___9 != 0L) { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); if (tmp___10 != 0L) { tmp___7 = preempt_count(); tmp___8 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> AGC Table Fail\n", "_rtl8723be_phy_bb8723b_config_parafile", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } return (0); } else { } tmp___11 = rtl_get_bbreg(hw, 2084U, 512U); rtlphy->cck_high_power = tmp___11 != 0U; return (1); } } static void _rtl8723be_store_tx_power_by_rate(struct ieee80211_hw *hw , u32 band , u32 rfpath , u32 txnum , u32 regaddr , u32 bitmask , u32 data ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; u8 rate_section ; u8 tmp ; int tmp___0 ; int tmp___1 ; long tmp___2 ; long tmp___3 ; int tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; int tmp___8 ; int tmp___9 ; long tmp___10 ; long tmp___11 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; tmp = _rtl8723be_get_rate_section_index(regaddr); rate_section = tmp; if (band != 0U && band != 1U) { tmp___2 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); if (tmp___2 != 0L) { tmp___3 = ldv__builtin_expect((unsigned int )rtlpriv->dbg.global_debuglevel > 255U, 0L); if (tmp___3 != 0L) { tmp___0 = preempt_count(); tmp___1 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Invalid Band %d\n", "_rtl8723be_store_tx_power_by_rate", (unsigned long )tmp___1 & 2096896UL, ((unsigned long )tmp___0 & 0xffffffffffdfffffUL) != 0UL, band); } else { } } else { } return; } else { } if (rfpath > 4U) { tmp___6 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); if (tmp___6 != 0L) { tmp___7 = ldv__builtin_expect((unsigned int )rtlpriv->dbg.global_debuglevel > 255U, 0L); if (tmp___7 != 0L) { tmp___4 = preempt_count(); tmp___5 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Invalid RfPath %d\n", "_rtl8723be_store_tx_power_by_rate", (unsigned long )tmp___5 & 2096896UL, ((unsigned long )tmp___4 & 0xffffffffffdfffffUL) != 0UL, rfpath); } else { } } else { } return; } else { } if (txnum > 4U) { tmp___10 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); if (tmp___10 != 0L) { tmp___11 = ldv__builtin_expect((unsigned int )rtlpriv->dbg.global_debuglevel > 255U, 0L); if (tmp___11 != 0L) { tmp___8 = preempt_count(); tmp___9 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Invalid TxNum %d\n", "_rtl8723be_store_tx_power_by_rate", (unsigned long )tmp___9 & 2096896UL, ((unsigned long )tmp___8 & 0xffffffffffdfffffUL) != 0UL, txnum); } else { } } else { } return; } else { } rtlphy->tx_power_by_rate_offset[band][rfpath][txnum][(int )rate_section] = data; return; } } static bool _rtl8723be_phy_config_bb_with_pgheaderfile(struct ieee80211_hw *hw , u8 configtype ) { struct rtl_priv *rtlpriv ; int i ; u32 *phy_regarray_table_pg ; u16 phy_regarray_pg_len ; u32 v1 ; u32 v2 ; u32 v3 ; u32 v4 ; u32 v5 ; u32 v6 ; unsigned long __ms ; unsigned long tmp ; bool tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; long tmp___4 ; long tmp___5 ; { rtlpriv = (struct rtl_priv *)hw->priv; v1 = 0U; v2 = 0U; v3 = 0U; v4 = 0U; v5 = 0U; v6 = 0U; phy_regarray_pg_len = 36U; phy_regarray_table_pg = (u32 *)(& RTL8723BEPHY_REG_ARRAY_PG); if ((unsigned int )configtype == 0U) { i = 0; goto ldv_51837; ldv_51836: v1 = *(phy_regarray_table_pg + (unsigned long )i); v2 = *(phy_regarray_table_pg + ((unsigned long )i + 1UL)); v3 = *(phy_regarray_table_pg + ((unsigned long )i + 2UL)); v4 = *(phy_regarray_table_pg + ((unsigned long )i + 3UL)); v5 = *(phy_regarray_table_pg + ((unsigned long )i + 4UL)); v6 = *(phy_regarray_table_pg + ((unsigned long )i + 5UL)); if (v1 <= 3452816844U) { if (*(phy_regarray_table_pg + (unsigned long )i) == 254U || *(phy_regarray_table_pg + (unsigned long )i) == 4094U) { __ms = 50UL; goto ldv_51830; ldv_51829: __const_udelay(4295000UL); ldv_51830: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_51829; } else { } } else { _rtl8723be_store_tx_power_by_rate(hw, v1, v2, v3, v4, v5, v6); } goto ldv_51832; } else { tmp___0 = _rtl8723be_check_condition(hw, *(phy_regarray_table_pg + (unsigned long )i)); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { i = i + 2; v1 = *(phy_regarray_table_pg + (unsigned long )i); v2 = *(phy_regarray_table_pg + ((unsigned long )i + 1UL)); v3 = *(phy_regarray_table_pg + ((unsigned long )i + 2UL)); goto ldv_51834; ldv_51833: i = i + 3; v1 = *(phy_regarray_table_pg + (unsigned long )i); v2 = *(phy_regarray_table_pg + ((unsigned long )i + 1UL)); v3 = *(phy_regarray_table_pg + ((unsigned long )i + 2UL)); ldv_51834: ; if (v2 != 57005U) { goto ldv_51833; } else { } } else { } } ldv_51832: i = i + 6; ldv_51837: ; if ((int )phy_regarray_pg_len > i) { goto ldv_51836; } else { } } else { tmp___4 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 16ULL) != 0ULL, 0L); if (tmp___4 != 0L) { tmp___5 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); if (tmp___5 != 0L) { tmp___2 = preempt_count(); tmp___3 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> configtype != BaseBand_Config_PHY_REG\n", "_rtl8723be_phy_config_bb_with_pgheaderfile", (unsigned long )tmp___3 & 2096896UL, ((unsigned long )tmp___2 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } } return (1); } } bool rtl8723be_phy_config_rf_with_headerfile(struct ieee80211_hw *hw , enum radio_path rfpath ) { int i ; bool rtstatus ; u32 *radioa_array_table ; u16 radioa_arraylen ; struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; u32 v1 ; u32 v2 ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; bool tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; long tmp___11 ; long tmp___12 ; int tmp___13 ; int tmp___14 ; long tmp___15 ; long tmp___16 ; int tmp___17 ; int tmp___18 ; long tmp___19 ; long tmp___20 ; { rtstatus = 1; rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; v1 = 0U; v2 = 0U; radioa_arraylen = 206U; radioa_array_table = (u32 *)(& RTL8723BE_RADIOA_1TARRAY); tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Radio_A:RTL8723BE_RADIOA_1TARRAY %d\n", "rtl8723be_phy_config_rf_with_headerfile", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )radioa_arraylen); } else { } } else { } tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___5 != 0L) { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___6 != 0L) { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Radio No %x\n", "rtl8723be_phy_config_rf_with_headerfile", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, (unsigned int )rfpath); } else { } } else { } rtstatus = 1; switch ((unsigned int )rfpath) { case 0U: i = 0; goto ldv_51864; ldv_51863: v1 = *(radioa_array_table + (unsigned long )i); v2 = *(radioa_array_table + ((unsigned long )i + 1UL)); if (v1 <= 3452816844U) { _rtl8723be_config_rf_radio_a(hw, v1, v2); } else { tmp___7 = _rtl8723be_check_condition(hw, *(radioa_array_table + (unsigned long )i)); if (tmp___7) { tmp___8 = 0; } else { tmp___8 = 1; } if (tmp___8) { i = i + 2; v1 = *(radioa_array_table + (unsigned long )i); v2 = *(radioa_array_table + ((unsigned long )i + 1UL)); goto ldv_51855; ldv_51854: i = i + 2; v1 = *(radioa_array_table + (unsigned long )i); v2 = *(radioa_array_table + ((unsigned long )i + 1UL)); ldv_51855: ; if (((v2 != 57005U && v2 != 52719U) && v2 != 52685U) && (int )radioa_arraylen + -2 > i) { goto ldv_51854; } else { } i = i + -2; } else { i = i + 2; v1 = *(radioa_array_table + (unsigned long )i); v2 = *(radioa_array_table + ((unsigned long )i + 1UL)); goto ldv_51858; ldv_51857: _rtl8723be_config_rf_radio_a(hw, v1, v2); i = i + 2; v1 = *(radioa_array_table + (unsigned long )i); v2 = *(radioa_array_table + ((unsigned long )i + 1UL)); ldv_51858: ; if (((v2 != 57005U && v2 != 52719U) && v2 != 52685U) && (int )radioa_arraylen + -2 > i) { goto ldv_51857; } else { } goto ldv_51861; ldv_51860: i = i + 2; v1 = *(radioa_array_table + (unsigned long )i); v2 = *(radioa_array_table + ((unsigned long )i + 1UL)); ldv_51861: ; if (v2 != 57005U && (int )radioa_arraylen + -2 > i) { goto ldv_51860; } else { } } } i = i + 2; ldv_51864: ; if ((int )radioa_arraylen > i) { goto ldv_51863; } else { } if ((unsigned int )rtlhal->oem_id == 27U) { _rtl8723be_config_rf_radio_a(hw, 82U, 517309U); } else { } goto ldv_51866; case 1U: tmp___11 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); if (tmp___11 != 0L) { tmp___12 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); if (tmp___12 != 0L) { tmp___9 = preempt_count(); tmp___10 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> switch case not process\n", "rtl8723be_phy_config_rf_with_headerfile", (unsigned long )tmp___10 & 2096896UL, ((unsigned long )tmp___9 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } goto ldv_51866; case 2U: tmp___15 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); if (tmp___15 != 0L) { tmp___16 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); if (tmp___16 != 0L) { tmp___13 = preempt_count(); tmp___14 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> switch case not process\n", "rtl8723be_phy_config_rf_with_headerfile", (unsigned long )tmp___14 & 2096896UL, ((unsigned long )tmp___13 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } goto ldv_51866; case 3U: tmp___19 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); if (tmp___19 != 0L) { tmp___20 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); if (tmp___20 != 0L) { tmp___17 = preempt_count(); tmp___18 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> switch case not process\n", "rtl8723be_phy_config_rf_with_headerfile", (unsigned long )tmp___18 & 2096896UL, ((unsigned long )tmp___17 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } goto ldv_51866; } ldv_51866: ; return (1); } } void rtl8723be_phy_get_hw_reg_originalvalue(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; u32 tmp ; u32 tmp___0 ; u32 tmp___1 ; u32 tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; u32 tmp___7 ; int tmp___8 ; int tmp___9 ; long tmp___10 ; long tmp___11 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; tmp = rtl_get_bbreg(hw, 3152U, 255U); rtlphy->default_initialgain[0] = (unsigned char )tmp; tmp___0 = rtl_get_bbreg(hw, 3160U, 255U); rtlphy->default_initialgain[1] = (unsigned char )tmp___0; tmp___1 = rtl_get_bbreg(hw, 3168U, 255U); rtlphy->default_initialgain[2] = (unsigned char )tmp___1; tmp___2 = rtl_get_bbreg(hw, 3176U, 255U); rtlphy->default_initialgain[3] = (unsigned char )tmp___2; tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___5 != 0L) { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); if (tmp___6 != 0L) { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Default initial gain (c50 = 0x%x, c58 = 0x%x, c60 = 0x%x, c68 = 0x%x\n", "rtl8723be_phy_get_hw_reg_originalvalue", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, (int )rtlphy->default_initialgain[0], (int )rtlphy->default_initialgain[1], (int )rtlphy->default_initialgain[2], (int )rtlphy->default_initialgain[3]); } else { } } else { } tmp___7 = rtl_get_bbreg(hw, 3128U, 255U); rtlphy->framesync = (unsigned char )tmp___7; rtlphy->framesync_c34 = rtl_get_bbreg(hw, 3124U, 4294967295U); tmp___10 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___10 != 0L) { tmp___11 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); if (tmp___11 != 0L) { tmp___8 = preempt_count(); tmp___9 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Default framesync (0x%x) = 0x%x\n", "rtl8723be_phy_get_hw_reg_originalvalue", (unsigned long )tmp___9 & 2096896UL, ((unsigned long )tmp___8 & 0xffffffffffdfffffUL) != 0UL, 3128, (int )rtlphy->framesync); } else { } } else { } return; } } void rtl8723be_phy_get_txpower_level(struct ieee80211_hw *hw , long *powerlevel ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; u8 txpwr_level ; long txpwr_dbm ; long tmp ; long tmp___0 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; txpwr_level = rtlphy->cur_cck_txpwridx; txpwr_dbm = rtl8723_phy_txpwr_idx_to_dbm(hw, 2, (int )txpwr_level); txpwr_level = rtlphy->cur_ofdm24g_txpwridx; tmp = rtl8723_phy_txpwr_idx_to_dbm(hw, 4, (int )txpwr_level); if (tmp > txpwr_dbm) { txpwr_dbm = rtl8723_phy_txpwr_idx_to_dbm(hw, 4, (int )txpwr_level); } else { } txpwr_level = rtlphy->cur_ofdm24g_txpwridx; tmp___0 = rtl8723_phy_txpwr_idx_to_dbm(hw, 16, (int )txpwr_level); if (tmp___0 > txpwr_dbm) { txpwr_dbm = rtl8723_phy_txpwr_idx_to_dbm(hw, 16, (int )txpwr_level); } else { } *powerlevel = txpwr_dbm; return; } } static u8 _rtl8723be_phy_get_ratesection_intxpower_byrate(enum radio_path path , u8 rate ) { u8 rate_section ; { rate_section = 0U; switch ((int )rate) { case 0: rate_section = 2U; goto ldv_51890; case 1: ; case 2: ; if ((unsigned int )path == 0U) { rate_section = 3U; } else if ((unsigned int )path == 1U) { rate_section = 2U; } else { } goto ldv_51890; case 3: rate_section = 3U; goto ldv_51890; case 4: ; case 5: ; case 6: ; case 7: rate_section = 0U; goto ldv_51890; case 8: ; case 9: ; case 10: ; case 11: rate_section = 1U; goto ldv_51890; case 12: ; case 13: ; case 14: ; case 15: rate_section = 4U; goto ldv_51890; case 16: ; case 17: ; case 18: ; case 19: rate_section = 5U; goto ldv_51890; case 20: ; case 21: ; case 22: ; case 23: rate_section = 6U; goto ldv_51890; case 24: ; case 25: ; case 26: ; case 27: rate_section = 7U; goto ldv_51890; default: ; goto ldv_51890; } ldv_51890: ; return (rate_section); } } static u8 _rtl8723be_get_txpower_by_rate(struct ieee80211_hw *hw , enum band_type band , enum radio_path rfpath , u8 rate ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; u8 shift ; u8 rate_section ; u8 tx_num ; char tx_pwr_diff ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; shift = 0U; tx_pwr_diff = 0; rate_section = _rtl8723be_phy_get_ratesection_intxpower_byrate(rfpath, (int )rate); tx_num = 3U; if ((unsigned int )tx_num == 3U) { if ((unsigned int )rate > 19U && (unsigned int )rate <= 27U) { tx_num = 1U; } else { tx_num = 0U; } } else { } switch ((int )rate) { case 4: ; case 8: ; case 12: ; case 16: ; case 20: ; case 24: shift = 0U; goto ldv_51938; case 0: ; case 1: ; case 5: ; case 9: ; case 13: ; case 17: ; case 21: ; case 25: shift = 8U; goto ldv_51938; case 2: ; case 6: ; case 10: ; case 14: ; case 18: ; case 22: ; case 26: shift = 16U; goto ldv_51938; case 3: ; case 7: ; case 11: ; case 15: ; case 19: ; case 23: ; case 27: shift = 24U; goto ldv_51938; default: ; goto ldv_51938; } ldv_51938: tx_pwr_diff = (char )(rtlphy->tx_power_by_rate_offset[(unsigned int )band][(unsigned int )rfpath][(int )tx_num][(int )rate_section] >> (int )shift); return ((u8 )tx_pwr_diff); } } static u8 _rtl8723be_get_txpower_index(struct ieee80211_hw *hw , u8 path , u8 rate , u8 bandwidth , u8 channel ) { struct rtl_priv *rtlpriv ; struct rtl_efuse *rtlefuse ; u8 index ; u8 txpower ; u8 power_diff_byrate ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; index = (unsigned int )channel + 255U; power_diff_byrate = 0U; if ((unsigned int )channel > 14U || (unsigned int )channel == 0U) { index = 0U; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Illegal channel!\n", "_rtl8723be_get_txpower_index", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } } else { } if ((((unsigned int )rate == 0U || (unsigned int )rate == 1U) || (unsigned int )rate == 2U) || (unsigned int )rate == 3U) { txpower = rtlefuse->txpwrlevel_cck[(int )path][(int )index]; } else if ((unsigned int )rate > 3U) { txpower = rtlefuse->txpwrlevel_ht40_1s[(int )path][(int )index]; } else { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 131072ULL) != 0ULL, 0L); if (tmp___5 != 0L) { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___6 != 0L) { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> invalid rate\n", "_rtl8723be_get_txpower_index", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } } if (((unsigned int )rate > 3U && (unsigned int )rate <= 11U) && ((((unsigned int )rate != 0U && (unsigned int )rate != 1U) && (unsigned int )rate != 2U) && (unsigned int )rate != 3U)) { txpower = (int )((u8 )rtlefuse->txpwr_legacyhtdiff[0][0]) + (int )txpower; } else { } if ((unsigned int )bandwidth == 0U) { if ((unsigned int )rate > 11U && (unsigned int )rate <= 27U) { txpower = (int )((u8 )rtlefuse->txpwr_ht20diff[0][0]) + (int )txpower; } else { } if ((unsigned int )rate > 19U && (unsigned int )rate <= 27U) { txpower = (int )((u8 )rtlefuse->txpwr_ht20diff[0][1]) + (int )txpower; } else { } } else if ((unsigned int )bandwidth == 1U) { if ((unsigned int )rate > 11U && (unsigned int )rate <= 27U) { txpower = (int )((u8 )rtlefuse->txpwr_ht40diff[0][0]) + (int )txpower; } else { } if ((unsigned int )rate > 19U && (unsigned int )rate <= 27U) { txpower = (int )((u8 )rtlefuse->txpwr_ht40diff[0][1]) + (int )txpower; } else { } } else { } if ((unsigned int )rtlefuse->eeprom_regulatory != 2U) { power_diff_byrate = _rtl8723be_get_txpower_by_rate(hw, 0, (enum radio_path )path, (int )rate); } else { } txpower = (int )txpower + (int )power_diff_byrate; if ((unsigned int )txpower > 63U) { txpower = 63U; } else { } return (txpower); } } static void _rtl8723be_phy_set_txpower_index(struct ieee80211_hw *hw , u8 power_index , u8 path , u8 rate ) { struct rtl_priv *rtlpriv ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { rtlpriv = (struct rtl_priv *)hw->priv; if ((unsigned int )path == 0U) { switch ((int )rate) { case 0: rtl8723_phy_set_bb_reg(hw, 3592U, 65280U, (u32 )power_index); goto ldv_51984; case 1: rtl8723_phy_set_bb_reg(hw, 2156U, 65280U, (u32 )power_index); goto ldv_51984; case 2: rtl8723_phy_set_bb_reg(hw, 2156U, 16711680U, (u32 )power_index); goto ldv_51984; case 3: rtl8723_phy_set_bb_reg(hw, 2156U, 4278190080U, (u32 )power_index); goto ldv_51984; case 4: rtl8723_phy_set_bb_reg(hw, 3584U, 255U, (u32 )power_index); goto ldv_51984; case 5: rtl8723_phy_set_bb_reg(hw, 3584U, 65280U, (u32 )power_index); goto ldv_51984; case 6: rtl8723_phy_set_bb_reg(hw, 3584U, 16711680U, (u32 )power_index); goto ldv_51984; case 7: rtl8723_phy_set_bb_reg(hw, 3584U, 4278190080U, (u32 )power_index); goto ldv_51984; case 8: rtl8723_phy_set_bb_reg(hw, 3588U, 255U, (u32 )power_index); goto ldv_51984; case 9: rtl8723_phy_set_bb_reg(hw, 3588U, 65280U, (u32 )power_index); goto ldv_51984; case 10: rtl8723_phy_set_bb_reg(hw, 3588U, 16711680U, (u32 )power_index); goto ldv_51984; case 11: rtl8723_phy_set_bb_reg(hw, 3588U, 4278190080U, (u32 )power_index); goto ldv_51984; case 12: rtl8723_phy_set_bb_reg(hw, 3600U, 255U, (u32 )power_index); goto ldv_51984; case 13: rtl8723_phy_set_bb_reg(hw, 3600U, 65280U, (u32 )power_index); goto ldv_51984; case 14: rtl8723_phy_set_bb_reg(hw, 3600U, 16711680U, (u32 )power_index); goto ldv_51984; case 15: rtl8723_phy_set_bb_reg(hw, 3600U, 4278190080U, (u32 )power_index); goto ldv_51984; case 16: rtl8723_phy_set_bb_reg(hw, 3604U, 255U, (u32 )power_index); goto ldv_51984; case 17: rtl8723_phy_set_bb_reg(hw, 3604U, 65280U, (u32 )power_index); goto ldv_51984; case 18: rtl8723_phy_set_bb_reg(hw, 3604U, 16711680U, (u32 )power_index); goto ldv_51984; case 19: rtl8723_phy_set_bb_reg(hw, 3604U, 4278190080U, (u32 )power_index); goto ldv_51984; case 20: rtl8723_phy_set_bb_reg(hw, 3608U, 255U, (u32 )power_index); goto ldv_51984; case 21: rtl8723_phy_set_bb_reg(hw, 3608U, 65280U, (u32 )power_index); goto ldv_51984; case 22: rtl8723_phy_set_bb_reg(hw, 3608U, 16711680U, (u32 )power_index); goto ldv_51984; case 23: rtl8723_phy_set_bb_reg(hw, 3608U, 4278190080U, (u32 )power_index); goto ldv_51984; default: tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Invalid Rate!!\n", "_rtl8723be_phy_set_txpower_index", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } goto ldv_51984; } ldv_51984: ; } else { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 65536ULL) != 0ULL, 0L); if (tmp___5 != 0L) { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___6 != 0L) { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Invalid RFPath!!\n", "_rtl8723be_phy_set_txpower_index", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } } return; } } void rtl8723be_phy_set_txpower_level(struct ieee80211_hw *hw , u8 channel ) { struct rtl_efuse *rtlefuse ; u8 cck_rates[4U] ; u8 ofdm_rates[8U] ; u8 ht_rates_1t[8U] ; u8 i ; u8 size ; u8 power_index ; { rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; cck_rates[0] = 0U; cck_rates[1] = 1U; cck_rates[2] = 2U; cck_rates[3] = 3U; ofdm_rates[0] = 4U; ofdm_rates[1] = 5U; ofdm_rates[2] = 6U; ofdm_rates[3] = 7U; ofdm_rates[4] = 8U; ofdm_rates[5] = 9U; ofdm_rates[6] = 10U; ofdm_rates[7] = 11U; ht_rates_1t[0] = 12U; ht_rates_1t[1] = 13U; ht_rates_1t[2] = 14U; ht_rates_1t[3] = 15U; ht_rates_1t[4] = 16U; ht_rates_1t[5] = 17U; ht_rates_1t[6] = 18U; ht_rates_1t[7] = 19U; if (! rtlefuse->txpwr_fromeprom) { return; } else { } size = 4U; i = 0U; goto ldv_52022; ldv_52021: power_index = _rtl8723be_get_txpower_index(hw, 0, (int )cck_rates[(int )i], (int )((struct rtl_priv *)hw->priv)->phy.current_chan_bw, (int )channel); _rtl8723be_phy_set_txpower_index(hw, (int )power_index, 0, (int )cck_rates[(int )i]); i = (u8 )((int )i + 1); ldv_52022: ; if ((int )i < (int )size) { goto ldv_52021; } else { } size = 8U; i = 0U; goto ldv_52025; ldv_52024: power_index = _rtl8723be_get_txpower_index(hw, 0, (int )ofdm_rates[(int )i], (int )((struct rtl_priv *)hw->priv)->phy.current_chan_bw, (int )channel); _rtl8723be_phy_set_txpower_index(hw, (int )power_index, 0, (int )ofdm_rates[(int )i]); i = (u8 )((int )i + 1); ldv_52025: ; if ((int )i < (int )size) { goto ldv_52024; } else { } size = 8U; i = 0U; goto ldv_52028; ldv_52027: power_index = _rtl8723be_get_txpower_index(hw, 0, (int )ht_rates_1t[(int )i], (int )((struct rtl_priv *)hw->priv)->phy.current_chan_bw, (int )channel); _rtl8723be_phy_set_txpower_index(hw, (int )power_index, 0, (int )ht_rates_1t[(int )i]); i = (u8 )((int )i + 1); ldv_52028: ; if ((int )i < (int )size) { goto ldv_52027; } else { } return; } } void rtl8723be_phy_scan_operation_backup(struct ieee80211_hw *hw , u8 operation ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; enum io_type iotype ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; bool tmp___3 ; int tmp___4 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; tmp___3 = is_hal_stop(rtlhal); if (tmp___3) { tmp___4 = 0; } else { tmp___4 = 1; } if (tmp___4) { switch ((int )operation) { case 0: iotype = 0; (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 70, (u8 *)(& iotype)); goto ldv_52038; case 2: iotype = 2; (*(((rtlpriv->cfg)->ops)->set_hw_reg))(hw, 70, (u8 *)(& iotype)); goto ldv_52038; default: tmp___1 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Unknown Scan Backup operation.\n", "rtl8723be_phy_scan_operation_backup", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } goto ldv_52038; } ldv_52038: ; } else { } return; } } void rtl8723be_phy_set_bw_mode_callback(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; struct rtl_phy *rtlphy ; struct rtl_mac *mac ; u8 reg_bw_opmode ; u8 reg_prsr_rsc ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; bool tmp___3 ; int tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; int tmp___8 ; int tmp___9 ; long tmp___10 ; long tmp___11 ; int tmp___12 ; int tmp___13 ; long tmp___14 ; long tmp___15 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; rtlphy = & rtlpriv->phy; mac = & ((struct rtl_priv *)hw->priv)->mac80211; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 64ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Switch to %s bandwidth\n", "rtl8723be_phy_set_bw_mode_callback", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (unsigned int )rtlphy->current_chan_bw == 0U ? (char *)"20MHz" : (char *)"40MHz"); } else { } } else { } tmp___3 = is_hal_stop(rtlhal); if ((int )tmp___3) { rtlphy->set_bwmode_inprogress = 0U; return; } else { } reg_bw_opmode = rtl_read_byte(rtlpriv, 1539U); reg_prsr_rsc = rtl_read_byte(rtlpriv, 1090U); switch ((int )rtlphy->current_chan_bw) { case 0: reg_bw_opmode = (u8 )((unsigned int )reg_bw_opmode | 4U); rtl_write_byte(rtlpriv, 1539U, (int )reg_bw_opmode); goto ldv_52053; case 1: reg_bw_opmode = (unsigned int )reg_bw_opmode & 251U; rtl_write_byte(rtlpriv, 1539U, (int )reg_bw_opmode); reg_prsr_rsc = (u8 )(((int )((signed char )reg_prsr_rsc) & -112) | (int )((signed char )((int )mac->cur_40_prime_sc << 5))); rtl_write_byte(rtlpriv, 1090U, (int )reg_prsr_rsc); goto ldv_52053; default: tmp___6 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); if (tmp___6 != 0L) { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); if (tmp___7 != 0L) { tmp___4 = preempt_count(); tmp___5 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> unknown bandwidth: %#X\n", "rtl8723be_phy_set_bw_mode_callback", (unsigned long )tmp___5 & 2096896UL, ((unsigned long )tmp___4 & 0xffffffffffdfffffUL) != 0UL, (int )rtlphy->current_chan_bw); } else { } } else { } goto ldv_52053; } ldv_52053: ; switch ((int )rtlphy->current_chan_bw) { case 0: rtl_set_bbreg(hw, 2048U, 1U, 0U); rtl_set_bbreg(hw, 2304U, 1U, 0U); goto ldv_52057; case 1: rtl_set_bbreg(hw, 2048U, 1U, 1U); rtl_set_bbreg(hw, 2304U, 1U, 1U); rtl_set_bbreg(hw, 2560U, 16U, (u32 )((int )mac->cur_40_prime_sc >> 1)); rtl_set_bbreg(hw, 3328U, 3072U, (u32 )mac->cur_40_prime_sc); rtl_set_bbreg(hw, 2072U, 201326592U, (unsigned int )mac->cur_40_prime_sc == 1U ? 2U : 1U); goto ldv_52057; default: tmp___10 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); if (tmp___10 != 0L) { tmp___11 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); if (tmp___11 != 0L) { tmp___8 = preempt_count(); tmp___9 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> unknown bandwidth: %#X\n", "rtl8723be_phy_set_bw_mode_callback", (unsigned long )tmp___9 & 2096896UL, ((unsigned long )tmp___8 & 0xffffffffffdfffffUL) != 0UL, (int )rtlphy->current_chan_bw); } else { } } else { } goto ldv_52057; } ldv_52057: rtl8723be_phy_rf6052_set_bandwidth(hw, (int )rtlphy->current_chan_bw); rtlphy->set_bwmode_inprogress = 0U; tmp___14 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 64ULL) != 0ULL, 0L); if (tmp___14 != 0L) { tmp___15 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___15 != 0L) { tmp___12 = preempt_count(); tmp___13 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> \n", "rtl8723be_phy_set_bw_mode_callback", (unsigned long )tmp___13 & 2096896UL, ((unsigned long )tmp___12 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } return; } } void rtl8723be_phy_set_bw_mode(struct ieee80211_hw *hw , enum nl80211_channel_type ch_type ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct rtl_hal *rtlhal ; u8 tmp_bw ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; bool tmp___3 ; int tmp___4 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; tmp_bw = rtlphy->current_chan_bw; if ((unsigned int )rtlphy->set_bwmode_inprogress != 0U) { return; } else { } rtlphy->set_bwmode_inprogress = 1U; tmp___3 = is_hal_stop(rtlhal); if (tmp___3) { tmp___4 = 0; } else { tmp___4 = 1; } if (tmp___4 && 1) { rtl8723be_phy_set_bw_mode_callback(hw); } else { tmp___1 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 1, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> false driver sleep or unload\n", "rtl8723be_phy_set_bw_mode", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } rtlphy->set_bwmode_inprogress = 0U; rtlphy->current_chan_bw = tmp_bw; } return; } } void rtl8723be_phy_sw_chnl_callback(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; struct rtl_phy *rtlphy ; u32 delay ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; bool tmp___3 ; unsigned long __ms ; unsigned long tmp___4 ; bool tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; rtlphy = & rtlpriv->phy; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 64ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> switch to channel%d\n", "rtl8723be_phy_sw_chnl_callback", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )rtlphy->current_channel); } else { } } else { } tmp___3 = is_hal_stop(rtlhal); if ((int )tmp___3) { return; } else { } ldv_52083: ; if ((unsigned int )rtlphy->sw_chnl_inprogress == 0U) { goto ldv_52077; } else { } tmp___5 = rtl8723be_phy_sw_chn_step_by_step(hw, (int )rtlphy->current_channel, & rtlphy->sw_chnl_stage, & rtlphy->sw_chnl_step, & delay); if (tmp___5) { tmp___6 = 0; } else { tmp___6 = 1; } if (tmp___6) { if (delay != 0U) { __ms = (unsigned long )delay; goto ldv_52080; ldv_52079: __const_udelay(4295000UL); ldv_52080: tmp___4 = __ms; __ms = __ms - 1UL; if (tmp___4 != 0UL) { goto ldv_52079; } else { } } else { goto ldv_52082; } } else { rtlphy->sw_chnl_inprogress = 0U; } goto ldv_52077; ldv_52082: ; goto ldv_52083; ldv_52077: tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 64ULL) != 0ULL, 0L); if (tmp___9 != 0L) { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); if (tmp___10 != 0L) { tmp___7 = preempt_count(); tmp___8 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> \n", "rtl8723be_phy_sw_chnl_callback", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } return; } } u8 rtl8723be_phy_sw_chnl(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct rtl_hal *rtlhal ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; bool tmp___7 ; int tmp___8 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; if ((unsigned int )rtlphy->sw_chnl_inprogress != 0U) { return (0U); } else { } if ((unsigned int )rtlphy->set_bwmode_inprogress != 0U) { return (0U); } else { } if ((unsigned int )rtlphy->current_channel > 14U) { printk("\017rtl8723be:%s(): WIRELESS_MODE_G but channel>14", "rtl8723be_phy_sw_chnl"); } else { } rtlphy->sw_chnl_inprogress = 1U; rtlphy->sw_chnl_stage = 0U; rtlphy->sw_chnl_step = 0U; tmp___7 = is_hal_stop(rtlhal); if (tmp___7) { tmp___8 = 0; } else { tmp___8 = 1; } if (tmp___8 && 1) { rtl8723be_phy_sw_chnl_callback(hw); tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 268435456ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> sw_chnl_inprogress false schdule workitem current channel %d\n", "rtl8723be_phy_sw_chnl", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )rtlphy->current_channel); } else { } } else { } rtlphy->sw_chnl_inprogress = 0U; } else { tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 268435456ULL) != 0ULL, 0L); if (tmp___5 != 0L) { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___6 != 0L) { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> sw_chnl_inprogress false driver sleep or unload\n", "rtl8723be_phy_sw_chnl", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } rtlphy->sw_chnl_inprogress = 0U; } return (1U); } } static bool rtl8723be_phy_sw_chn_step_by_step(struct ieee80211_hw *hw , u8 channel , u8 *stage , u8 *step , u32 *delay ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct swchnlcmd precommoncmd[16U] ; u32 precommoncmdcnt ; struct swchnlcmd postcommoncmd[16U] ; u32 postcommoncmdcnt ; struct swchnlcmd rfdependcmd[16U] ; u32 rfdependcmdcnt ; struct swchnlcmd *currentcmd ; u8 rfpath ; u8 num_total_rfpath ; u32 tmp ; u32 tmp___0 ; u32 tmp___1 ; u32 tmp___2 ; u32 tmp___3 ; int tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; currentcmd = (struct swchnlcmd *)0; num_total_rfpath = rtlphy->num_total_rfpath; precommoncmdcnt = 0U; tmp = precommoncmdcnt; precommoncmdcnt = precommoncmdcnt + 1U; rtl8723_phy_set_sw_chnl_cmdarray((struct swchnlcmd *)(& precommoncmd), tmp, 16U, 1, 0U, 0U, 0U); tmp___0 = precommoncmdcnt; precommoncmdcnt = precommoncmdcnt + 1U; rtl8723_phy_set_sw_chnl_cmdarray((struct swchnlcmd *)(& precommoncmd), tmp___0, 16U, 0, 0U, 0U, 0U); postcommoncmdcnt = 0U; tmp___1 = postcommoncmdcnt; postcommoncmdcnt = postcommoncmdcnt + 1U; rtl8723_phy_set_sw_chnl_cmdarray((struct swchnlcmd *)(& postcommoncmd), tmp___1, 16U, 0, 0U, 0U, 0U); rfdependcmdcnt = 0U; if ((unsigned int )channel == 0U || (unsigned int )channel > 14U) { printk("\017rtl8723be:%s(): illegal channel for Zebra: %d\n", "rtl8723be_phy_sw_chn_step_by_step", (int )channel); } else { } tmp___2 = rfdependcmdcnt; rfdependcmdcnt = rfdependcmdcnt + 1U; rtl8723_phy_set_sw_chnl_cmdarray((struct swchnlcmd *)(& rfdependcmd), tmp___2, 16U, 6, 24U, (u32 )channel, 10U); tmp___3 = rfdependcmdcnt; rfdependcmdcnt = rfdependcmdcnt + 1U; rtl8723_phy_set_sw_chnl_cmdarray((struct swchnlcmd *)(& rfdependcmd), tmp___3, 16U, 0, 0U, 0U, 0U); ldv_52126: ; switch ((int )*stage) { case 0: currentcmd = (struct swchnlcmd *)(& precommoncmd) + (unsigned long )*step; goto ldv_52111; case 1: currentcmd = (struct swchnlcmd *)(& rfdependcmd) + (unsigned long )*step; goto ldv_52111; case 2: currentcmd = (struct swchnlcmd *)(& postcommoncmd) + (unsigned long )*step; goto ldv_52111; } ldv_52111: ; if ((unsigned int )currentcmd->cmdid == 0U) { if ((unsigned int )*stage == 2U) { return (1); } else { *stage = (u8 )((int )*stage + 1); *step = 0U; goto ldv_52114; } } else { } switch ((unsigned int )currentcmd->cmdid) { case 1U: rtl8723be_phy_set_txpower_level(hw, (int )channel); goto ldv_52116; case 3U: rtl_write_dword(rtlpriv, currentcmd->para1, currentcmd->para2); goto ldv_52116; case 4U: rtl_write_word(rtlpriv, currentcmd->para1, (int )((unsigned short )currentcmd->para2)); goto ldv_52116; case 5U: rtl_write_byte(rtlpriv, currentcmd->para1, (int )((unsigned char )currentcmd->para2)); goto ldv_52116; case 6U: rfpath = 0U; goto ldv_52122; ldv_52121: rtlphy->rfreg_chnlval[(int )rfpath] = (rtlphy->rfreg_chnlval[(int )rfpath] & 4294966272U) | currentcmd->para2; rtl_set_rfreg(hw, (enum radio_path )rfpath, currentcmd->para1, 1048575U, rtlphy->rfreg_chnlval[(int )rfpath]); rfpath = (u8 )((int )rfpath + 1); ldv_52122: ; if ((int )rfpath < (int )num_total_rfpath) { goto ldv_52121; } else { } goto ldv_52116; default: tmp___6 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); if (tmp___6 != 0L) { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); if (tmp___7 != 0L) { tmp___4 = preempt_count(); tmp___5 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> switch case not process\n", "rtl8723be_phy_sw_chn_step_by_step", (unsigned long )tmp___5 & 2096896UL, ((unsigned long )tmp___4 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } goto ldv_52116; } ldv_52116: ; goto ldv_52125; ldv_52114: ; goto ldv_52126; ldv_52125: *delay = currentcmd->msdelay; *step = (u8 )((int )*step + 1); return (0); } } static u8 _rtl8723be_phy_path_a_iqk(struct ieee80211_hw *hw , bool config_pathb ) { u32 reg_eac ; u32 reg_e94 ; u32 reg_e9c ; u32 reg_ea4 ; u8 result ; unsigned long __ms ; unsigned long tmp ; { result = 0U; rtl_set_bbreg(hw, 3632U, 4294967295U, 268471324U); rtl_set_bbreg(hw, 3636U, 4294967295U, 805342236U); rtl_set_bbreg(hw, 3640U, 4294967295U, 2182349610U); rtl_set_bbreg(hw, 3644U, 4294967295U, 672530432U); rtl_set_bbreg(hw, 3660U, 4294967295U, 4598033U); rtl_set_bbreg(hw, 3656U, 4294967295U, 4177526784U); rtl_set_bbreg(hw, 3656U, 4294967295U, 4160749568U); __ms = 10UL; goto ldv_52138; ldv_52137: __const_udelay(4295000UL); ldv_52138: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_52137; } else { } reg_eac = rtl_get_bbreg(hw, 3756U, 4294967295U); reg_e94 = rtl_get_bbreg(hw, 3732U, 4294967295U); reg_e9c = rtl_get_bbreg(hw, 3740U, 4294967295U); reg_ea4 = rtl_get_bbreg(hw, 3748U, 4294967295U); if ((((unsigned long )reg_eac & 268435456UL) == 0UL && (reg_e94 & 67043328U) >> 16 != 322U) && (reg_e9c & 67043328U) >> 16 != 66U) { result = (u8 )((unsigned int )result | 1U); } else { } return (result); } } static bool phy_similarity_cmp(struct ieee80211_hw *hw , long (*result)[8U] , u8 c1 , u8 c2 ) { u32 i ; u32 j ; u32 diff ; u32 simularity_bitmap ; u32 bound ; struct rtl_hal *rtlhal ; u8 final_candidate[2U] ; bool bresult ; bool is2t ; { rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; final_candidate[0] = 255U; final_candidate[1] = 255U; bresult = 1; is2t = (bool )(((unsigned long )rtlhal->version & 7UL) == 0UL && ((unsigned long )rtlhal->version & 112UL) == 32UL); if ((int )is2t) { bound = 8U; } else { bound = 4U; } simularity_bitmap = 0U; i = 0U; goto ldv_52156; ldv_52155: diff = (*(result + (unsigned long )c1))[i] > (*(result + (unsigned long )c2))[i] ? (u32 )(*(result + (unsigned long )c1))[i] - (u32 )(*(result + (unsigned long )c2))[i] : (u32 )(*(result + (unsigned long )c2))[i] - (u32 )(*(result + (unsigned long )c1))[i]; if (diff > 5U) { if ((i == 2U || i == 6U) && simularity_bitmap == 0U) { if ((*(result + (unsigned long )c1))[i] + (*(result + (unsigned long )c1))[i + 1U] == 0L) { final_candidate[i / 4U] = c2; } else if ((*(result + (unsigned long )c2))[i] + (*(result + (unsigned long )c2))[i + 1U] == 0L) { final_candidate[i / 4U] = c1; } else { simularity_bitmap = (u32 )(1 << (int )i) | simularity_bitmap; } } else { simularity_bitmap = (u32 )(1 << (int )i) | simularity_bitmap; } } else { } i = i + 1U; ldv_52156: ; if (i < bound) { goto ldv_52155; } else { } if (simularity_bitmap == 0U) { i = 0U; goto ldv_52162; ldv_52161: ; if ((unsigned int )final_candidate[i] != 255U) { j = i * 4U; goto ldv_52159; ldv_52158: (*(result + 3UL))[j] = (*(result + (unsigned long )final_candidate[i]))[j]; j = j + 1U; ldv_52159: ; if ((i + 1U) * 4U - 2U > j) { goto ldv_52158; } else { } bresult = 0; } else { } i = i + 1U; ldv_52162: ; if (bound / 4U > i) { goto ldv_52161; } else { } return (bresult); } else if ((simularity_bitmap & 15U) == 0U) { i = 0U; goto ldv_52165; ldv_52164: (*(result + 3UL))[i] = (*(result + (unsigned long )c1))[i]; i = i + 1U; ldv_52165: ; if (i <= 3U) { goto ldv_52164; } else { } return (0); } else if ((simularity_bitmap & 240U) == 0U && (int )is2t) { i = 4U; goto ldv_52168; ldv_52167: (*(result + 3UL))[i] = (*(result + (unsigned long )c1))[i]; i = i + 1U; ldv_52168: ; if (i <= 7U) { goto ldv_52167; } else { } return (0); } else { return (0); } } } static void _rtl8723be_phy_iq_calibrate(struct ieee80211_hw *hw , long (*result)[8U] , u8 t , bool is2t ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; u32 i ; u8 patha_ok ; u32 adda_reg[16U] ; u32 iqk_mac_reg[4U] ; u32 iqk_bb_reg[9U] ; u32 retrycount ; u32 path_sel_bb ; u32 path_sel_rf ; u8 tmp_reg_c50 ; u8 tmp_reg_c58 ; u32 tmp ; u32 tmp___0 ; u32 tmp___1 ; int tmp___2 ; int tmp___3 ; long tmp___4 ; long tmp___5 ; u32 tmp___6 ; u32 tmp___7 ; int tmp___8 ; int tmp___9 ; long tmp___10 ; long tmp___11 ; int tmp___12 ; int tmp___13 ; long tmp___14 ; long tmp___15 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; adda_reg[0] = 2140U; adda_reg[1] = 3692U; adda_reg[2] = 3696U; adda_reg[3] = 3700U; adda_reg[4] = 3704U; adda_reg[5] = 3708U; adda_reg[6] = 3712U; adda_reg[7] = 3716U; adda_reg[8] = 3720U; adda_reg[9] = 3724U; adda_reg[10] = 3792U; adda_reg[11] = 3796U; adda_reg[12] = 3800U; adda_reg[13] = 3804U; adda_reg[14] = 3808U; adda_reg[15] = 3820U; iqk_mac_reg[0] = 1314U; iqk_mac_reg[1] = 1360U; iqk_mac_reg[2] = 1361U; iqk_mac_reg[3] = 64U; iqk_bb_reg[0] = 3076U; iqk_bb_reg[1] = 3080U; iqk_bb_reg[2] = 2164U; iqk_bb_reg[3] = 2920U; iqk_bb_reg[4] = 2924U; iqk_bb_reg[5] = 2160U; iqk_bb_reg[6] = 2144U; iqk_bb_reg[7] = 2148U; iqk_bb_reg[8] = 2048U; retrycount = 2U; tmp = rtl_get_bbreg(hw, 3152U, 255U); tmp_reg_c50 = (u8 )tmp; tmp___0 = rtl_get_bbreg(hw, 3160U, 255U); tmp_reg_c58 = (u8 )tmp___0; if ((unsigned int )t == 0U) { rtl8723_save_adda_registers(hw, (u32 *)(& adda_reg), (u32 *)(& rtlphy->adda_backup), 16U); rtl8723_phy_save_mac_registers(hw, (u32 *)(& iqk_mac_reg), (u32 *)(& rtlphy->iqk_mac_backup)); rtl8723_save_adda_registers(hw, (u32 *)(& iqk_bb_reg), (u32 *)(& rtlphy->iqk_bb_backup), 9U); } else { } rtl8723_phy_path_adda_on(hw, (u32 *)(& adda_reg), 1, (int )is2t); if ((unsigned int )t == 0U) { tmp___1 = rtl_get_bbreg(hw, 2080U, 256U); rtlphy->rfpi_enable = (unsigned int )((unsigned char )tmp___1) != 0U; } else { } if (! rtlphy->rfpi_enable) { rtl8723_phy_pi_mode_switch(hw, 1); } else { } path_sel_bb = rtl_get_bbreg(hw, 2376U, 4294967295U); path_sel_rf = rtl_get_rfreg(hw, 0, 176U, 1048575U); rtl_set_bbreg(hw, 2048U, 16777216U, 0U); rtl_set_bbreg(hw, 3076U, 4294967295U, 60839424U); rtl_set_bbreg(hw, 3080U, 4294967295U, 524516U); rtl_set_bbreg(hw, 2164U, 4294967295U, 572538880U); rtl_set_bbreg(hw, 2160U, 1024U, 1U); rtl_set_bbreg(hw, 2160U, 67108864U, 1U); rtl_set_bbreg(hw, 2144U, 1024U, 0U); rtl_set_bbreg(hw, 2148U, 1024U, 0U); if ((int )is2t) { rtl_set_rfreg(hw, 1, 0U, 4294967295U, 65536U); } else { } rtl8723_phy_mac_setting_calibration(hw, (u32 *)(& iqk_mac_reg), (u32 *)(& rtlphy->iqk_mac_backup)); rtl_set_bbreg(hw, 2920U, 4294967295U, 257949696U); rtl_set_bbreg(hw, 3624U, 4294967295U, 2155872256U); rtl_set_bbreg(hw, 3648U, 4294967295U, 16808960U); rtl_set_bbreg(hw, 3652U, 4294967295U, 2164279296U); i = 0U; goto ldv_52191; ldv_52190: patha_ok = _rtl8723be_phy_path_a_iqk(hw, (int )is2t); if ((unsigned int )patha_ok == 1U) { tmp___4 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___4 != 0L) { tmp___5 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___5 != 0L) { tmp___2 = preempt_count(); tmp___3 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Path A Tx IQK Success!!\n", "_rtl8723be_phy_iq_calibrate", (unsigned long )tmp___3 & 2096896UL, ((unsigned long )tmp___2 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } tmp___6 = rtl_get_bbreg(hw, 3732U, 4294967295U); (*(result + (unsigned long )t))[0] = (long )((tmp___6 & 67043328U) >> 16); tmp___7 = rtl_get_bbreg(hw, 3740U, 4294967295U); (*(result + (unsigned long )t))[1] = (long )((tmp___7 & 67043328U) >> 16); goto ldv_52189; } else { } i = i + 1U; ldv_52191: ; if (i < retrycount) { goto ldv_52190; } else { } ldv_52189: ; if ((unsigned int )patha_ok == 0U) { tmp___10 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___10 != 0L) { tmp___11 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___11 != 0L) { tmp___8 = preempt_count(); tmp___9 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Path A IQK Success!!\n", "_rtl8723be_phy_iq_calibrate", (unsigned long )tmp___9 & 2096896UL, ((unsigned long )tmp___8 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } } else { } if ((int )is2t) { rtl8723_phy_path_a_standby(hw); rtl8723_phy_path_adda_on(hw, (u32 *)(& adda_reg), 0, (int )is2t); } else { } rtl_set_bbreg(hw, 3624U, 4294967295U, 0U); if ((unsigned int )t != 0U) { if (! rtlphy->rfpi_enable) { rtl8723_phy_pi_mode_switch(hw, 0); } else { } rtl8723_phy_reload_adda_registers(hw, (u32 *)(& adda_reg), (u32 *)(& rtlphy->adda_backup), 16U); rtl8723_phy_reload_mac_registers(hw, (u32 *)(& iqk_mac_reg), (u32 *)(& rtlphy->iqk_mac_backup)); rtl8723_phy_reload_adda_registers(hw, (u32 *)(& iqk_bb_reg), (u32 *)(& rtlphy->iqk_bb_backup), 9U); rtl_set_bbreg(hw, 2376U, 4294967295U, path_sel_bb); rtl_set_rfreg(hw, 1, 176U, 1048575U, path_sel_rf); rtl_set_bbreg(hw, 3152U, 255U, 80U); rtl_set_bbreg(hw, 3152U, 255U, (u32 )tmp_reg_c50); if ((int )is2t) { rtl_set_bbreg(hw, 3160U, 255U, 80U); rtl_set_bbreg(hw, 3160U, 255U, (u32 )tmp_reg_c58); } else { } rtl_set_bbreg(hw, 3632U, 4294967295U, 16813056U); rtl_set_bbreg(hw, 3636U, 4294967295U, 16813056U); } else { } tmp___14 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___14 != 0L) { tmp___15 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___15 != 0L) { tmp___12 = preempt_count(); tmp___13 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> 8723be IQK Finish!!\n", "_rtl8723be_phy_iq_calibrate", (unsigned long )tmp___13 & 2096896UL, ((unsigned long )tmp___12 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } return; } } static void _rtl8723be_phy_lc_calibrate(struct ieee80211_hw *hw , bool is2t ) { struct rtl_priv *rtlpriv ; u8 tmpreg ; u32 rf_a_mode ; u32 rf_b_mode ; u32 lc_cal ; unsigned long __ms ; unsigned long tmp ; int tmp___0 ; int tmp___1 ; long tmp___2 ; long tmp___3 ; { rtlpriv = (struct rtl_priv *)hw->priv; rf_a_mode = 0U; rf_b_mode = 0U; tmpreg = rtl_read_byte(rtlpriv, 3331U); if (((int )tmpreg & 112) != 0) { rtl_write_byte(rtlpriv, 3331U, (int )tmpreg & 143); } else { rtl_write_byte(rtlpriv, 1314U, 255); } if (((int )tmpreg & 112) != 0) { rf_a_mode = rtl_get_rfreg(hw, 0, 0U, 4095U); if ((int )is2t) { rf_b_mode = rtl_get_rfreg(hw, 1, 0U, 4095U); } else { } rtl_set_rfreg(hw, 0, 0U, 4095U, (rf_a_mode & 589823U) | 65536U); if ((int )is2t) { rtl_set_rfreg(hw, 1, 0U, 4095U, (rf_b_mode & 589823U) | 65536U); } else { } } else { } lc_cal = rtl_get_rfreg(hw, 0, 24U, 4095U); rtl_set_rfreg(hw, 0, 176U, 1048575U, 916448U); rtl_set_rfreg(hw, 0, 24U, 4095U, 35850U); __ms = 100UL; goto ldv_52203; ldv_52202: __const_udelay(4295000UL); ldv_52203: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_52202; } else { } rtl_set_rfreg(hw, 0, 176U, 1048575U, 917472U); if (((int )tmpreg & 112) != 0) { rtl_write_byte(rtlpriv, 3331U, (int )tmpreg); rtl_set_rfreg(hw, 0, 0U, 4095U, rf_a_mode); if ((int )is2t) { rtl_set_rfreg(hw, 1, 0U, 4095U, rf_b_mode); } else { } } else { rtl_write_byte(rtlpriv, 1314U, 0); } tmp___2 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___2 != 0L) { tmp___3 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___3 != 0L) { tmp___0 = preempt_count(); tmp___1 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> \n", "_rtl8723be_phy_lc_calibrate", (unsigned long )tmp___1 & 2096896UL, ((unsigned long )tmp___0 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } return; } } static void _rtl8723be_phy_set_rfpath_switch(struct ieee80211_hw *hw , bool bmain , bool is2t ) { struct rtl_priv *rtlpriv ; struct rtl_hal *rtlhal ; struct rtl_efuse *rtlefuse ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; u8 u1btmp ; bool tmp___3 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlhal = & ((struct rtl_priv *)hw->priv)->rtlhal; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> \n", "_rtl8723be_phy_set_rfpath_switch", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } tmp___3 = is_hal_stop(rtlhal); if ((int )tmp___3) { u1btmp = rtl_read_byte(rtlpriv, 76U); rtl_write_byte(rtlpriv, 76U, (int )((unsigned int )u1btmp | 128U)); rtl_set_bbreg(hw, 2168U, 8192U, 1U); } else { } if ((int )is2t) { if ((int )bmain) { rtl_set_bbreg(hw, 2148U, 96U, 1U); } else { rtl_set_bbreg(hw, 2148U, 96U, 2U); } } else { rtl_set_bbreg(hw, 2160U, 768U, 0U); rtl_set_bbreg(hw, 2324U, 65535U, 513U); if ((int )bmain) { rtl_set_bbreg(hw, 2144U, 28672U, 0U); rtl_set_bbreg(hw, 2148U, 56U, 0U); if ((unsigned int )rtlefuse->antenna_div_type == 2U) { rtl_set_bbreg(hw, 2860U, 2147483648U, 0U); } else { } } else { rtl_set_bbreg(hw, 2144U, 28672U, 1U); rtl_set_bbreg(hw, 2148U, 56U, 1U); if ((unsigned int )rtlefuse->antenna_div_type == 2U) { rtl_set_bbreg(hw, 2860U, 2147483648U, 1U); } else { } } } return; } } void rtl8723be_phy_iq_calibrate(struct ieee80211_hw *hw , bool recovery ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; long result[4U][8U] ; u8 i ; u8 final_candidate ; bool patha_ok ; bool pathb_ok ; long reg_e94 ; long reg_e9c ; long reg_ea4 ; long reg_eac ; long reg_eb4 ; long reg_ebc ; long reg_ec4 ; long reg_ecc ; long reg_tmp ; bool is12simular ; bool is13simular ; bool is23simular ; u32 iqk_bb_reg[9U] ; u8 tmp ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; reg_tmp = 0L; iqk_bb_reg[0] = 3092U; iqk_bb_reg[1] = 3100U; iqk_bb_reg[2] = 3148U; iqk_bb_reg[3] = 3192U; iqk_bb_reg[4] = 3200U; iqk_bb_reg[5] = 3208U; iqk_bb_reg[6] = 3220U; iqk_bb_reg[7] = 3228U; iqk_bb_reg[8] = 3232U; if ((int )recovery) { rtl8723_phy_reload_adda_registers(hw, (u32 *)(& iqk_bb_reg), (u32 *)(& rtlphy->iqk_bb_backup), 9U); return; } else { } i = 0U; goto ldv_52241; ldv_52240: result[0][(int )i] = 0L; result[1][(int )i] = 0L; result[2][(int )i] = 0L; result[3][(int )i] = 0L; i = (u8 )((int )i + 1); ldv_52241: ; if ((unsigned int )i <= 7U) { goto ldv_52240; } else { } final_candidate = 255U; patha_ok = 0; pathb_ok = 0; is12simular = 0; is23simular = 0; is13simular = 0; i = 0U; goto ldv_52248; ldv_52247: tmp = get_rf_type(rtlphy); if ((unsigned int )tmp == 2U) { _rtl8723be_phy_iq_calibrate(hw, (long (*)[8])(& result), (int )i, 1); } else { _rtl8723be_phy_iq_calibrate(hw, (long (*)[8])(& result), (int )i, 0); } if ((unsigned int )i == 1U) { is12simular = phy_similarity_cmp(hw, (long (*)[8])(& result), 0, 1); if ((int )is12simular) { final_candidate = 0U; goto ldv_52243; } else { } } else { } if ((unsigned int )i == 2U) { is13simular = phy_similarity_cmp(hw, (long (*)[8])(& result), 0, 2); if ((int )is13simular) { final_candidate = 0U; goto ldv_52243; } else { } is23simular = phy_similarity_cmp(hw, (long (*)[8])(& result), 1, 2); if ((int )is23simular) { final_candidate = 1U; } else { i = 0U; goto ldv_52245; ldv_52244: reg_tmp = result[3][(int )i] + reg_tmp; i = (u8 )((int )i + 1); ldv_52245: ; if ((unsigned int )i <= 7U) { goto ldv_52244; } else { } if (reg_tmp != 0L) { final_candidate = 3U; } else { final_candidate = 255U; } } } else { } i = (u8 )((int )i + 1); ldv_52248: ; if ((unsigned int )i <= 2U) { goto ldv_52247; } else { } ldv_52243: i = 0U; goto ldv_52250; ldv_52249: reg_e94 = result[(int )i][0]; reg_e9c = result[(int )i][1]; reg_ea4 = result[(int )i][2]; reg_eac = result[(int )i][3]; reg_eb4 = result[(int )i][4]; reg_ebc = result[(int )i][5]; reg_ec4 = result[(int )i][6]; reg_ecc = result[(int )i][7]; i = (u8 )((int )i + 1); ldv_52250: ; if ((unsigned int )i <= 3U) { goto ldv_52249; } else { } if ((unsigned int )final_candidate != 255U) { reg_e94 = result[(int )final_candidate][0]; rtlphy->reg_e94 = (s32 )reg_e94; reg_e9c = result[(int )final_candidate][1]; rtlphy->reg_e9c = (s32 )reg_e9c; reg_ea4 = result[(int )final_candidate][2]; reg_eac = result[(int )final_candidate][3]; reg_eb4 = result[(int )final_candidate][4]; rtlphy->reg_eb4 = (s32 )reg_eb4; reg_ebc = result[(int )final_candidate][5]; rtlphy->reg_ebc = (s32 )reg_ebc; reg_ec4 = result[(int )final_candidate][6]; reg_ecc = result[(int )final_candidate][7]; patha_ok = 1; pathb_ok = 1; } else { rtlphy->reg_e94 = 256; rtlphy->reg_eb4 = 256; rtlphy->reg_e9c = 0; rtlphy->reg_ebc = 0; } if (reg_e94 != 0L) { rtl8723_phy_path_a_fill_iqk_matrix(hw, (int )patha_ok, (long (*)[8])(& result), (int )final_candidate, reg_ea4 == 0L); } else { } if ((unsigned int )final_candidate != 255U) { i = 0U; goto ldv_52253; ldv_52252: rtlphy->iqk_matrix[0].value[0][(int )i] = result[(int )final_candidate][(int )i]; i = (u8 )((int )i + 1); ldv_52253: ; if ((unsigned int )i <= 7U) { goto ldv_52252; } else { } rtlphy->iqk_matrix[0].iqk_done = 1; } else { } rtl8723_save_adda_registers(hw, (u32 *)(& iqk_bb_reg), (u32 *)(& rtlphy->iqk_bb_backup), 9U); return; } } void rtl8723be_phy_lc_calibrate(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct rtl_hal *rtlhal ; u32 timeout ; u32 timecount ; long tmp ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; rtlhal = & rtlpriv->rtlhal; timeout = 2000U; timecount = 0U; goto ldv_52264; ldv_52263: __const_udelay(214750UL); timecount = timecount + 50U; ldv_52264: ; if ((int )rtlpriv->mac80211.act_scanning && timecount < timeout) { goto ldv_52263; } else { } rtlphy->lck_inprogress = 1U; tmp = ldv__builtin_expect((long )((int )rtlpriv->dbg.dbgp_type[17]) & 1L, 0L); if (tmp != 0L) { printk("\017rtl8723be: LCK:Start!!! currentband %x delay %d ms\n", (unsigned int )rtlhal->current_bandtype, timecount); } else { } _rtl8723be_phy_lc_calibrate(hw, 0); rtlphy->lck_inprogress = 0U; return; } } void rtl23b_phy_ap_calibrate(struct ieee80211_hw *hw , char delta ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; if ((int )rtlphy->apk_done) { return; } else { } return; } } void rtl8723be_phy_set_rfpath_switch(struct ieee80211_hw *hw , bool bmain ) { { _rtl8723be_phy_set_rfpath_switch(hw, (int )bmain, 0); return; } } static void rtl8723be_phy_set_io(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> --->Cmd(%#x), set_io_inprogress(%d)\n", "rtl8723be_phy_set_io", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (unsigned int )rtlphy->current_io_type, (int )rtlphy->set_io_inprogress); } else { } } else { } switch ((unsigned int )rtlphy->current_io_type) { case 2U: rtlpriv->dm_digtable.cur_igvalue = (u32 )rtlphy->initgain_backup.xaagccore1; rtl8723be_phy_set_txpower_level(hw, (int )rtlphy->current_channel); rtl_set_bbreg(hw, 2568U, 16711680U, 131U); goto ldv_52283; case 0U: rtlphy->initgain_backup.xaagccore1 = (u8 )rtlpriv->dm_digtable.cur_igvalue; rtlpriv->dm_digtable.cur_igvalue = 23U; rtl_set_bbreg(hw, 2568U, 16711680U, 64U); goto ldv_52283; default: tmp___5 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); if (tmp___5 != 0L) { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); if (tmp___6 != 0L) { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> switch case not process\n", "rtl8723be_phy_set_io", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } goto ldv_52283; } ldv_52283: rtlphy->set_io_inprogress = 0U; tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); if (tmp___9 != 0L) { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); if (tmp___10 != 0L) { tmp___7 = preempt_count(); tmp___8 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> (%#x)\n", "rtl8723be_phy_set_io", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL, (unsigned int )rtlphy->current_io_type); } else { } } else { } return; } } bool rtl8723be_phy_set_io_cmd(struct ieee80211_hw *hw , enum io_type iotype ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; bool postprocessing ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; int tmp___11 ; int tmp___12 ; long tmp___13 ; long tmp___14 ; int tmp___15 ; int tmp___16 ; long tmp___17 ; long tmp___18 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; postprocessing = 0; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> -->IO Cmd(%#x), set_io_inprogress(%d)\n", "rtl8723be_phy_set_io_cmd", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (unsigned int )iotype, (int )rtlphy->set_io_inprogress); } else { } } else { } switch ((unsigned int )iotype) { case 2U: tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); if (tmp___5 != 0L) { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); if (tmp___6 != 0L) { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> [IO CMD] Resume DM after scan.\n", "rtl8723be_phy_set_io_cmd", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } postprocessing = 1; goto ldv_52295; case 0U: tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); if (tmp___9 != 0L) { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); if (tmp___10 != 0L) { tmp___7 = preempt_count(); tmp___8 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> [IO CMD] Pause DM before scan.\n", "rtl8723be_phy_set_io_cmd", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } postprocessing = 1; goto ldv_52295; default: tmp___13 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); if (tmp___13 != 0L) { tmp___14 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); if (tmp___14 != 0L) { tmp___11 = preempt_count(); tmp___12 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> switch case not process\n", "rtl8723be_phy_set_io_cmd", (unsigned long )tmp___12 & 2096896UL, ((unsigned long )tmp___11 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } goto ldv_52295; } ldv_52295: ; if ((int )postprocessing && (unsigned int )rtlphy->set_io_inprogress == 0U) { rtlphy->set_io_inprogress = 1U; rtlphy->current_io_type = iotype; } else { return (0); } rtl8723be_phy_set_io(hw); tmp___17 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 8388608ULL) != 0ULL, 0L); if (tmp___17 != 0L) { tmp___18 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); if (tmp___18 != 0L) { tmp___15 = preempt_count(); tmp___16 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> IO Type(%#x)\n", "rtl8723be_phy_set_io_cmd", (unsigned long )tmp___16 & 2096896UL, ((unsigned long )tmp___15 & 0xffffffffffdfffffUL) != 0UL, (unsigned int )iotype); } else { } } else { } return (1); } } static void rtl8723be_phy_set_rf_on(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; { rtlpriv = (struct rtl_priv *)hw->priv; rtl_write_byte(rtlpriv, 17U, 43); rtl_write_byte(rtlpriv, 2U, 227); rtl_write_byte(rtlpriv, 2U, 226); rtl_write_byte(rtlpriv, 2U, 227); rtl_write_byte(rtlpriv, 1314U, 0); return; } } static void _rtl8723be_phy_set_rf_sleep(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; { rtlpriv = (struct rtl_priv *)hw->priv; rtl_write_byte(rtlpriv, 1314U, 255); rtl_set_rfreg(hw, 0, 0U, 1048575U, 0U); rtl_write_byte(rtlpriv, 2U, 226); rtl_write_byte(rtlpriv, 17U, 34); return; } } static bool _rtl8723be_phy_set_rf_power_state(struct ieee80211_hw *hw , enum rf_pwrstate rfpwr_state ) { struct rtl_priv *rtlpriv ; struct rtl_pci_priv *pcipriv ; struct rtl_mac *mac ; struct rtl_ps_ctl *ppsc ; bool bresult ; u8 i ; u8 queue_id ; struct rtl8192_tx_ring *ring ; bool rtstatus ; u32 initialize_count ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; unsigned int tmp___3 ; int tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; __u32 tmp___8 ; int tmp___9 ; int tmp___10 ; long tmp___11 ; long tmp___12 ; __u32 tmp___13 ; __u32 tmp___14 ; int tmp___15 ; int tmp___16 ; long tmp___17 ; long tmp___18 ; int tmp___19 ; int tmp___20 ; long tmp___21 ; long tmp___22 ; __u32 tmp___23 ; int tmp___24 ; int tmp___25 ; long tmp___26 ; long tmp___27 ; __u32 tmp___28 ; __u32 tmp___29 ; int tmp___30 ; int tmp___31 ; long tmp___32 ; long tmp___33 ; unsigned int tmp___34 ; int tmp___35 ; int tmp___36 ; long tmp___37 ; long tmp___38 ; int tmp___39 ; int tmp___40 ; long tmp___41 ; long tmp___42 ; { rtlpriv = (struct rtl_priv *)hw->priv; pcipriv = (struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv); mac = & ((struct rtl_priv *)hw->priv)->mac80211; ppsc = & ((struct rtl_priv *)hw->priv)->psc; bresult = 1; ring = (struct rtl8192_tx_ring *)0; switch ((unsigned int )rfpwr_state) { case 0U: ; if ((unsigned int )ppsc->rfpwr_state == 2U && ((unsigned long )ppsc->cur_ps_level & 8UL) != 0UL) { initialize_count = 0U; ldv_52322: initialize_count = initialize_count + 1U; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> IPS Set eRf nic enable\n", "_rtl8723be_phy_set_rf_power_state", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } rtstatus = rtl_ps_enable_nic(hw); if (! rtstatus && initialize_count <= 9U) { goto ldv_52322; } else { } ppsc->cur_ps_level = ppsc->cur_ps_level & 4294967287U; } else { tmp___6 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); if (tmp___6 != 0L) { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); if (tmp___7 != 0L) { tmp___3 = jiffies_to_msecs((unsigned long )jiffies - ppsc->last_sleep_jiffies); tmp___4 = preempt_count(); tmp___5 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Set ERFON sleeped:%d ms\n", "_rtl8723be_phy_set_rf_power_state", (unsigned long )tmp___5 & 2096896UL, ((unsigned long )tmp___4 & 0xffffffffffdfffffUL) != 0UL, tmp___3); } else { } } else { } ppsc->last_awake_jiffies = jiffies; rtl8723be_phy_set_rf_on(hw); } if ((unsigned int )mac->link_state == 2U) { (*(((rtlpriv->cfg)->ops)->led_control))(hw, 2); } else { (*(((rtlpriv->cfg)->ops)->led_control))(hw, 3); } goto ldv_52324; case 2U: queue_id = 0U; i = 0U; goto ldv_52326; ldv_52328: ring = (struct rtl8192_tx_ring *)(& pcipriv->dev.tx_ring) + (unsigned long )queue_id; tmp___13 = skb_queue_len((struct sk_buff_head const *)(& ring->queue)); if (tmp___13 == 0U) { queue_id = (u8 )((int )queue_id + 1); goto ldv_52326; } else { tmp___11 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); if (tmp___11 != 0L) { tmp___12 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 1, 0L); if (tmp___12 != 0L) { tmp___8 = skb_queue_len((struct sk_buff_head const *)(& ring->queue)); tmp___9 = preempt_count(); tmp___10 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> eRf Off/Sleep: %d times TcbBusyQueue[%d] =%d before doze!\n", "_rtl8723be_phy_set_rf_power_state", (unsigned long )tmp___10 & 2096896UL, ((unsigned long )tmp___9 & 0xffffffffffdfffffUL) != 0UL, (int )i + 1, (int )queue_id, tmp___8); } else { } } else { } __const_udelay(42950UL); i = (u8 )((int )i + 1); } if ((unsigned int )i > 63U) { tmp___17 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); if (tmp___17 != 0L) { tmp___18 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 1, 0L); if (tmp___18 != 0L) { tmp___14 = skb_queue_len((struct sk_buff_head const *)(& ring->queue)); tmp___15 = preempt_count(); tmp___16 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> \n ERFSLEEP: %d times TcbBusyQueue[%d] = %d !\n", "_rtl8723be_phy_set_rf_power_state", (unsigned long )tmp___16 & 2096896UL, ((unsigned long )tmp___15 & 0xffffffffffdfffffUL) != 0UL, 64, (int )queue_id, tmp___14); } else { } } else { } goto ldv_52327; } else { } ldv_52326: ; if ((unsigned int )queue_id <= 8U) { goto ldv_52328; } else { } ldv_52327: ; if (((unsigned long )ppsc->reg_rfps_level & 8UL) != 0UL) { tmp___21 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); if (tmp___21 != 0L) { tmp___22 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); if (tmp___22 != 0L) { tmp___19 = preempt_count(); tmp___20 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> IPS Set eRf nic disable\n", "_rtl8723be_phy_set_rf_power_state", (unsigned long )tmp___20 & 2096896UL, ((unsigned long )tmp___19 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } rtl_ps_disable_nic(hw); ppsc->cur_ps_level = ppsc->cur_ps_level | 8U; } else if (ppsc->rfoff_reason == 268435456U) { (*(((rtlpriv->cfg)->ops)->led_control))(hw, 3); } else { (*(((rtlpriv->cfg)->ops)->led_control))(hw, 7); } goto ldv_52324; case 1U: ; if ((unsigned int )ppsc->rfpwr_state == 2U) { goto ldv_52324; } else { } queue_id = 0U; i = 0U; goto ldv_52330; ldv_52332: ring = (struct rtl8192_tx_ring *)(& pcipriv->dev.tx_ring) + (unsigned long )queue_id; tmp___28 = skb_queue_len((struct sk_buff_head const *)(& ring->queue)); if (tmp___28 == 0U) { queue_id = (u8 )((int )queue_id + 1); goto ldv_52330; } else { tmp___26 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); if (tmp___26 != 0L) { tmp___27 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 1, 0L); if (tmp___27 != 0L) { tmp___23 = skb_queue_len((struct sk_buff_head const *)(& ring->queue)); tmp___24 = preempt_count(); tmp___25 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> eRf Off/Sleep: %d times TcbBusyQueue[%d] =%d before doze!\n", "_rtl8723be_phy_set_rf_power_state", (unsigned long )tmp___25 & 2096896UL, ((unsigned long )tmp___24 & 0xffffffffffdfffffUL) != 0UL, (int )i + 1, (int )queue_id, tmp___23); } else { } } else { } __const_udelay(42950UL); i = (u8 )((int )i + 1); } if ((unsigned int )i > 63U) { tmp___32 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); if (tmp___32 != 0L) { tmp___33 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 1, 0L); if (tmp___33 != 0L) { tmp___29 = skb_queue_len((struct sk_buff_head const *)(& ring->queue)); tmp___30 = preempt_count(); tmp___31 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> \n ERFSLEEP: %d times TcbBusyQueue[%d] = %d !\n", "_rtl8723be_phy_set_rf_power_state", (unsigned long )tmp___31 & 2096896UL, ((unsigned long )tmp___30 & 0xffffffffffdfffffUL) != 0UL, 64, (int )queue_id, tmp___29); } else { } } else { } goto ldv_52331; } else { } ldv_52330: ; if ((unsigned int )queue_id <= 8U) { goto ldv_52332; } else { } ldv_52331: tmp___37 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 1048576ULL) != 0ULL, 0L); if (tmp___37 != 0L) { tmp___38 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 2, 0L); if (tmp___38 != 0L) { tmp___34 = jiffies_to_msecs((unsigned long )jiffies - ppsc->last_awake_jiffies); tmp___35 = preempt_count(); tmp___36 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Set ERFSLEEP awaked:%d ms\n", "_rtl8723be_phy_set_rf_power_state", (unsigned long )tmp___36 & 2096896UL, ((unsigned long )tmp___35 & 0xffffffffffdfffffUL) != 0UL, tmp___34); } else { } } else { } ppsc->last_sleep_jiffies = jiffies; _rtl8723be_phy_set_rf_sleep(hw); goto ldv_52324; default: tmp___41 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); if (tmp___41 != 0L) { tmp___42 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); if (tmp___42 != 0L) { tmp___39 = preempt_count(); tmp___40 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> switch case not process\n", "_rtl8723be_phy_set_rf_power_state", (unsigned long )tmp___40 & 2096896UL, ((unsigned long )tmp___39 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } bresult = 0; goto ldv_52324; } ldv_52324: ; if ((int )bresult) { ppsc->rfpwr_state = rfpwr_state; } else { } return (bresult); } } bool rtl8723be_phy_set_rf_power_state(struct ieee80211_hw *hw , enum rf_pwrstate rfpwr_state ) { struct rtl_ps_ctl *ppsc ; bool bresult ; { ppsc = & ((struct rtl_priv *)hw->priv)->psc; bresult = 0; if ((unsigned int )ppsc->rfpwr_state == (unsigned int )rfpwr_state) { return (bresult); } else { } bresult = _rtl8723be_phy_set_rf_power_state(hw, rfpwr_state); return (bresult); } } void ldv_consume_skb_54(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_55(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_56(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_57(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_60(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_66(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_67(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_68(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_71(struct sk_buff *ldv_func_arg1 ) ; void ldv_consume_skb_65(struct sk_buff *ldv_func_arg1 ) ; struct wlan_pwr_cfg rtl8723B_power_on_flow[24U] ; struct wlan_pwr_cfg rtl8723B_radio_off_flow[16U] ; struct wlan_pwr_cfg rtl8723B_suspend_flow[31U] ; struct wlan_pwr_cfg rtl8723B_resume_flow[31U] ; struct wlan_pwr_cfg rtl8723B_hwpdn_flow[31U] ; struct wlan_pwr_cfg rtl8723B_leave_lps_flow[16U] ; struct wlan_pwr_cfg rtl8723B_power_on_flow[24U] = { {32U, 255U, 15U, 3U, 0U, 1U, 1U, 1U}, {103U, 255U, 15U, 3U, 0U, 1U, 16U, 0U}, {1U, 255U, 15U, 3U, 0U, 3U, 1U, 1U}, {0U, 255U, 15U, 3U, 0U, 1U, 32U, 0U}, {5U, 255U, 15U, 15U, 0U, 1U, 28U, 0U}, {117U, 255U, 15U, 4U, 0U, 1U, 1U, 0U}, {6U, 255U, 15U, 15U, 0U, 2U, 2U, 2U}, {117U, 255U, 15U, 4U, 0U, 1U, 1U, 1U}, {6U, 255U, 15U, 15U, 0U, 1U, 1U, 1U}, {5U, 255U, 15U, 15U, 0U, 1U, 128U, 0U}, {5U, 255U, 15U, 15U, 0U, 1U, 24U, 0U}, {5U, 255U, 15U, 15U, 0U, 1U, 1U, 1U}, {5U, 255U, 15U, 15U, 0U, 2U, 1U, 0U}, {16U, 255U, 15U, 15U, 0U, 1U, 64U, 64U}, {73U, 255U, 15U, 15U, 0U, 1U, 2U, 2U}, {99U, 255U, 15U, 15U, 0U, 1U, 2U, 2U}, {98U, 255U, 15U, 15U, 0U, 1U, 2U, 0U}, {88U, 255U, 15U, 15U, 0U, 1U, 1U, 1U}, {90U, 255U, 15U, 15U, 0U, 1U, 2U, 2U}, {104U, 1U, 15U, 15U, 0U, 1U, 8U, 8U}, {105U, 255U, 15U, 15U, 0U, 1U, 64U, 64U}, {65535U, 255U, 15U, 15U, 0U, 4U, 0U, 0U}}; struct wlan_pwr_cfg rtl8723B_radio_off_flow[16U] = { {31U, 255U, 15U, 15U, 0U, 1U, 255U, 0U}, {79U, 255U, 15U, 15U, 0U, 1U, 1U, 0U}, {73U, 255U, 15U, 15U, 0U, 1U, 2U, 0U}, {5U, 255U, 15U, 15U, 0U, 1U, 2U, 2U}, {5U, 255U, 15U, 15U, 0U, 2U, 2U, 0U}, {16U, 255U, 15U, 15U, 0U, 1U, 64U, 0U}, {0U, 255U, 15U, 3U, 0U, 1U, 32U, 32U}, {32U, 255U, 15U, 3U, 0U, 1U, 1U, 0U}, {65535U, 255U, 15U, 15U, 0U, 4U, 0U, 0U}}; struct wlan_pwr_cfg rtl8723B_card_disable_flow[31U] = { {31U, 255U, 15U, 15U, 0U, 1U, 255U, 0U}, {79U, 255U, 15U, 15U, 0U, 1U, 1U, 0U}, {73U, 255U, 15U, 15U, 0U, 1U, 2U, 0U}, {5U, 255U, 15U, 15U, 0U, 1U, 2U, 2U}, {5U, 255U, 15U, 15U, 0U, 2U, 2U, 0U}, {16U, 255U, 15U, 15U, 0U, 1U, 64U, 0U}, {0U, 255U, 15U, 3U, 0U, 1U, 32U, 32U}, {32U, 255U, 15U, 3U, 0U, 1U, 1U, 0U}, {7U, 255U, 15U, 1U, 0U, 1U, 255U, 32U}, {5U, 255U, 15U, 3U, 0U, 1U, 24U, 8U}, {5U, 255U, 15U, 4U, 0U, 1U, 4U, 4U}, {74U, 255U, 15U, 2U, 0U, 1U, 1U, 1U}, {35U, 255U, 15U, 1U, 0U, 1U, 16U, 16U}, {134U, 255U, 15U, 1U, 3U, 1U, 1U, 1U}, {134U, 255U, 15U, 1U, 3U, 2U, 2U, 0U}, {65535U, 255U, 15U, 15U, 0U, 4U, 0U, 0U}}; struct wlan_pwr_cfg rtl8723B_card_enable_flow[31U] = { {5U, 255U, 15U, 15U, 0U, 1U, 136U, 0U}, {134U, 255U, 15U, 1U, 3U, 1U, 1U, 0U}, {134U, 255U, 15U, 1U, 3U, 2U, 2U, 2U}, {74U, 255U, 15U, 2U, 0U, 1U, 1U, 0U}, {5U, 255U, 15U, 15U, 0U, 1U, 24U, 0U}, {35U, 255U, 15U, 1U, 0U, 1U, 16U, 0U}, {769U, 255U, 15U, 4U, 0U, 1U, 255U, 0U}, {32U, 255U, 15U, 3U, 0U, 1U, 1U, 1U}, {103U, 255U, 15U, 3U, 0U, 1U, 16U, 0U}, {1U, 255U, 15U, 3U, 0U, 3U, 1U, 1U}, {0U, 255U, 15U, 3U, 0U, 1U, 32U, 0U}, {5U, 255U, 15U, 15U, 0U, 1U, 28U, 0U}, {117U, 255U, 15U, 4U, 0U, 1U, 1U, 0U}, {6U, 255U, 15U, 15U, 0U, 2U, 2U, 2U}, {117U, 255U, 15U, 4U, 0U, 1U, 1U, 1U}, {6U, 255U, 15U, 15U, 0U, 1U, 1U, 1U}, {5U, 255U, 15U, 15U, 0U, 1U, 128U, 0U}, {5U, 255U, 15U, 15U, 0U, 1U, 24U, 0U}, {5U, 255U, 15U, 15U, 0U, 1U, 1U, 1U}, {5U, 255U, 15U, 15U, 0U, 2U, 1U, 0U}, {16U, 255U, 15U, 15U, 0U, 1U, 64U, 64U}, {73U, 255U, 15U, 15U, 0U, 1U, 2U, 2U}, {99U, 255U, 15U, 15U, 0U, 1U, 2U, 2U}, {98U, 255U, 15U, 15U, 0U, 1U, 2U, 0U}, {88U, 255U, 15U, 15U, 0U, 1U, 1U, 1U}, {90U, 255U, 15U, 15U, 0U, 1U, 2U, 2U}, {104U, 1U, 15U, 15U, 0U, 1U, 8U, 8U}, {105U, 255U, 15U, 15U, 0U, 1U, 64U, 64U}, {65535U, 255U, 15U, 15U, 0U, 4U, 0U, 0U}}; struct wlan_pwr_cfg rtl8723B_suspend_flow[31U] = { {31U, 255U, 15U, 15U, 0U, 1U, 255U, 0U}, {79U, 255U, 15U, 15U, 0U, 1U, 1U, 0U}, {73U, 255U, 15U, 15U, 0U, 1U, 2U, 0U}, {5U, 255U, 15U, 15U, 0U, 1U, 2U, 2U}, {5U, 255U, 15U, 15U, 0U, 2U, 2U, 0U}, {16U, 255U, 15U, 15U, 0U, 1U, 64U, 0U}, {0U, 255U, 15U, 3U, 0U, 1U, 32U, 32U}, {32U, 255U, 15U, 3U, 0U, 1U, 1U, 0U}, {5U, 255U, 15U, 4U, 0U, 1U, 24U, 24U}, {5U, 255U, 15U, 3U, 0U, 1U, 24U, 8U}, {35U, 255U, 15U, 1U, 0U, 1U, 16U, 16U}, {7U, 255U, 15U, 1U, 0U, 1U, 255U, 32U}, {5U, 255U, 15U, 4U, 0U, 1U, 24U, 24U}, {134U, 255U, 15U, 1U, 3U, 1U, 1U, 1U}, {134U, 255U, 15U, 1U, 3U, 2U, 2U, 0U}, {65535U, 255U, 15U, 15U, 0U, 4U, 0U, 0U}}; struct wlan_pwr_cfg rtl8723B_resume_flow[31U] = { {5U, 255U, 15U, 15U, 0U, 1U, 136U, 0U}, {134U, 255U, 15U, 1U, 3U, 1U, 1U, 0U}, {134U, 255U, 15U, 1U, 3U, 2U, 2U, 2U}, {35U, 255U, 15U, 1U, 0U, 1U, 16U, 0U}, {5U, 255U, 15U, 15U, 0U, 1U, 24U, 0U}, {32U, 255U, 15U, 3U, 0U, 1U, 1U, 1U}, {103U, 255U, 15U, 3U, 0U, 1U, 16U, 0U}, {1U, 255U, 15U, 3U, 0U, 3U, 1U, 1U}, {0U, 255U, 15U, 3U, 0U, 1U, 32U, 0U}, {5U, 255U, 15U, 15U, 0U, 1U, 28U, 0U}, {117U, 255U, 15U, 4U, 0U, 1U, 1U, 0U}, {6U, 255U, 15U, 15U, 0U, 2U, 2U, 2U}, {117U, 255U, 15U, 4U, 0U, 1U, 1U, 1U}, {6U, 255U, 15U, 15U, 0U, 1U, 1U, 1U}, {5U, 255U, 15U, 15U, 0U, 1U, 128U, 0U}, {5U, 255U, 15U, 15U, 0U, 1U, 24U, 0U}, {5U, 255U, 15U, 15U, 0U, 1U, 1U, 1U}, {5U, 255U, 15U, 15U, 0U, 2U, 1U, 0U}, {16U, 255U, 15U, 15U, 0U, 1U, 64U, 64U}, {73U, 255U, 15U, 15U, 0U, 1U, 2U, 2U}, {99U, 255U, 15U, 15U, 0U, 1U, 2U, 2U}, {98U, 255U, 15U, 15U, 0U, 1U, 2U, 0U}, {88U, 255U, 15U, 15U, 0U, 1U, 1U, 1U}, {90U, 255U, 15U, 15U, 0U, 1U, 2U, 2U}, {104U, 1U, 15U, 15U, 0U, 1U, 8U, 8U}, {105U, 255U, 15U, 15U, 0U, 1U, 64U, 64U}, {65535U, 255U, 15U, 15U, 0U, 4U, 0U, 0U}}; struct wlan_pwr_cfg rtl8723B_hwpdn_flow[31U] = { {31U, 255U, 15U, 15U, 0U, 1U, 255U, 0U}, {79U, 255U, 15U, 15U, 0U, 1U, 1U, 0U}, {73U, 255U, 15U, 15U, 0U, 1U, 2U, 0U}, {5U, 255U, 15U, 15U, 0U, 1U, 2U, 2U}, {5U, 255U, 15U, 15U, 0U, 2U, 2U, 0U}, {16U, 255U, 15U, 15U, 0U, 1U, 64U, 0U}, {0U, 255U, 15U, 3U, 0U, 1U, 32U, 32U}, {32U, 255U, 15U, 3U, 0U, 1U, 1U, 0U}, {35U, 255U, 15U, 1U, 0U, 1U, 16U, 16U}, {7U, 255U, 15U, 3U, 0U, 1U, 255U, 32U}, {6U, 255U, 15U, 15U, 0U, 1U, 1U, 0U}, {5U, 255U, 15U, 15U, 0U, 1U, 128U, 128U}, {65535U, 255U, 15U, 15U, 0U, 4U, 0U, 0U}}; struct wlan_pwr_cfg rtl8723B_enter_lps_flow[16U] = { {769U, 255U, 15U, 4U, 0U, 1U, 255U, 255U}, {1314U, 255U, 15U, 15U, 0U, 1U, 255U, 255U}, {1528U, 255U, 15U, 15U, 0U, 2U, 255U, 0U}, {1529U, 255U, 15U, 15U, 0U, 2U, 255U, 0U}, {1530U, 255U, 15U, 15U, 0U, 2U, 255U, 0U}, {1531U, 255U, 15U, 15U, 0U, 2U, 255U, 0U}, {2U, 255U, 15U, 15U, 0U, 1U, 1U, 0U}, {2U, 255U, 15U, 15U, 0U, 3U, 0U, 0U}, {2U, 255U, 15U, 15U, 0U, 1U, 2U, 0U}, {256U, 255U, 15U, 15U, 0U, 1U, 255U, 3U}, {257U, 255U, 15U, 15U, 0U, 1U, 2U, 0U}, {147U, 255U, 15U, 1U, 0U, 1U, 255U, 0U}, {1363U, 255U, 15U, 15U, 0U, 1U, 32U, 32U}, {65535U, 255U, 15U, 15U, 0U, 4U, 0U, 0U}}; struct wlan_pwr_cfg rtl8723B_leave_lps_flow[16U] = { {128U, 255U, 15U, 1U, 3U, 1U, 255U, 132U}, {65112U, 255U, 15U, 2U, 0U, 1U, 255U, 132U}, {865U, 255U, 15U, 4U, 0U, 1U, 255U, 132U}, {2U, 255U, 15U, 15U, 0U, 3U, 0U, 1U}, {8U, 255U, 15U, 15U, 0U, 1U, 16U, 0U}, {265U, 255U, 15U, 15U, 0U, 2U, 128U, 0U}, {41U, 255U, 15U, 15U, 0U, 1U, 192U, 0U}, {257U, 255U, 15U, 15U, 0U, 1U, 2U, 2U}, {256U, 255U, 15U, 15U, 0U, 1U, 255U, 255U}, {2U, 255U, 15U, 15U, 0U, 1U, 3U, 3U}, {1314U, 255U, 15U, 15U, 0U, 1U, 255U, 0U}, {65535U, 255U, 15U, 15U, 0U, 4U, 0U, 0U}}; void ldv_consume_skb_65(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_66(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_67(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_68(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_71(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_77(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_78(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_79(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_82(struct sk_buff *ldv_func_arg1 ) ; void ldv_consume_skb_76(struct sk_buff *ldv_func_arg1 ) ; void rtl8723be_phy_rf6052_set_cck_txpower(struct ieee80211_hw *hw , u8 *ppowerlevel ) ; void rtl8723be_phy_rf6052_set_ofdm_txpower(struct ieee80211_hw *hw , u8 *ppowerlevel_ofdm , u8 *ppowerlevel_bw20 , u8 *ppowerlevel_bw40 , u8 channel ) ; static bool _rtl8723be_phy_rf6052_config_parafile(struct ieee80211_hw *hw ) ; void rtl8723be_phy_rf6052_set_bandwidth(struct ieee80211_hw *hw , u8 bandwidth ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; switch ((int )bandwidth) { case 0: rtlphy->rfreg_chnlval[0] = rtlphy->rfreg_chnlval[0] | 3072U; rtl_set_rfreg(hw, 0, 24U, 1048575U, rtlphy->rfreg_chnlval[0]); goto ldv_49482; case 1: rtlphy->rfreg_chnlval[0] = (rtlphy->rfreg_chnlval[0] & 4294964223U) | 1024U; rtl_set_rfreg(hw, 0, 24U, 1048575U, rtlphy->rfreg_chnlval[0]); goto ldv_49482; default: tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> unknown bandwidth: %#X\n", "rtl8723be_phy_rf6052_set_bandwidth", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )bandwidth); } else { } } else { } goto ldv_49482; } ldv_49482: ; return; } } void rtl8723be_phy_rf6052_set_cck_txpower(struct ieee80211_hw *hw , u8 *ppowerlevel ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct rtl_mac *mac ; struct rtl_efuse *rtlefuse ; u32 tx_agc[2U] ; u32 tmpval ; bool turbo_scanoff ; u8 idx1 ; u8 idx2 ; u8 *ptr ; u8 direction ; u32 pwrtrac_value ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; int tmp___11 ; int tmp___12 ; long tmp___13 ; long tmp___14 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; mac = & ((struct rtl_priv *)hw->priv)->mac80211; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; tx_agc[0] = 0U; tx_agc[1] = 0U; turbo_scanoff = 0; if ((unsigned int )rtlefuse->eeprom_regulatory != 0U) { turbo_scanoff = 1; } else { } if ((int )mac->act_scanning) { tx_agc[0] = 1061109567U; tx_agc[1] = 1061109567U; if ((int )turbo_scanoff) { idx1 = 0U; goto ldv_49503; ldv_49502: tx_agc[(int )idx1] = (u32 )((((int )*(ppowerlevel + (unsigned long )idx1) | ((int )*(ppowerlevel + (unsigned long )idx1) << 8)) | ((int )*(ppowerlevel + (unsigned long )idx1) << 16)) | ((int )*(ppowerlevel + (unsigned long )idx1) << 24)); idx1 = (u8 )((int )idx1 + 1); ldv_49503: ; if ((unsigned int )idx1 <= 1U) { goto ldv_49502; } else { } } else { } } else { idx1 = 0U; goto ldv_49506; ldv_49505: tx_agc[(int )idx1] = (u32 )((((int )*(ppowerlevel + (unsigned long )idx1) | ((int )*(ppowerlevel + (unsigned long )idx1) << 8)) | ((int )*(ppowerlevel + (unsigned long )idx1) << 16)) | ((int )*(ppowerlevel + (unsigned long )idx1) << 24)); idx1 = (u8 )((int )idx1 + 1); ldv_49506: ; if ((unsigned int )idx1 <= 1U) { goto ldv_49505; } else { } if ((unsigned int )rtlefuse->eeprom_regulatory == 0U) { tmpval = rtlphy->mcs_offset[0][6] + (rtlphy->mcs_offset[0][7] << 8); tx_agc[0] = tx_agc[0] + tmpval; tmpval = rtlphy->mcs_offset[0][14] + (rtlphy->mcs_offset[0][15] << 24); tx_agc[1] = tx_agc[1] + tmpval; } else { } } idx1 = 0U; goto ldv_49512; ldv_49511: ptr = (u8 *)(& tx_agc) + (unsigned long )idx1; idx2 = 0U; goto ldv_49509; ldv_49508: ; if ((unsigned int )*ptr > 63U) { *ptr = 63U; } else { } ptr = ptr + 1; idx2 = (u8 )((int )idx2 + 1); ldv_49509: ; if ((unsigned int )idx2 <= 3U) { goto ldv_49508; } else { } idx1 = (u8 )((int )idx1 + 1); ldv_49512: ; if ((unsigned int )idx1 <= 1U) { goto ldv_49511; } else { } rtl8723be_dm_txpower_track_adjust(hw, 1, & direction, & pwrtrac_value); if ((unsigned int )direction == 1U) { tx_agc[0] = tx_agc[0] + pwrtrac_value; tx_agc[1] = tx_agc[1] + pwrtrac_value; } else if ((unsigned int )direction == 2U) { tx_agc[0] = tx_agc[0] - pwrtrac_value; tx_agc[1] = tx_agc[1] - pwrtrac_value; } else { } tmpval = tx_agc[0] & 255U; rtl_set_bbreg(hw, 3592U, 65280U, tmpval); tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> CCK PWR 1M (rf-A) = 0x%x (reg 0x%x)\n", "rtl8723be_phy_rf6052_set_cck_txpower", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, tmpval, 3592); } else { } } else { } tmpval = tx_agc[0] >> 8; rtl_set_bbreg(hw, 2156U, 4294967040U, tmpval); tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___5 != 0L) { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___6 != 0L) { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> CCK PWR 2~11M (rf-A) = 0x%x (reg 0x%x)\n", "rtl8723be_phy_rf6052_set_cck_txpower", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, tmpval, 2156); } else { } } else { } tmpval = tx_agc[1] >> 24; rtl_set_bbreg(hw, 2156U, 255U, tmpval); tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___9 != 0L) { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___10 != 0L) { tmp___7 = preempt_count(); tmp___8 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> CCK PWR 11M (rf-B) = 0x%x (reg 0x%x)\n", "rtl8723be_phy_rf6052_set_cck_txpower", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL, tmpval, 2156); } else { } } else { } tmpval = tx_agc[1] & 16777215U; rtl_set_bbreg(hw, 2104U, 4294967040U, tmpval); tmp___13 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___13 != 0L) { tmp___14 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___14 != 0L) { tmp___11 = preempt_count(); tmp___12 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> CCK PWR 1~5.5M (rf-B) = 0x%x (reg 0x%x)\n", "rtl8723be_phy_rf6052_set_cck_txpower", (unsigned long )tmp___12 & 2096896UL, ((unsigned long )tmp___11 & 0xffffffffffdfffffUL) != 0UL, tmpval, 2104); } else { } } else { } return; } } static void rtl8723be_phy_get_power_base(struct ieee80211_hw *hw , u8 *ppowerlevel_ofdm , u8 *ppowerlevel_bw20 , u8 *ppowerlevel_bw40 , u8 channel , u32 *ofdmbase , u32 *mcsbase ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; u32 powerbase0 ; u32 powerbase1 ; u8 i ; u8 powerlevel[2U] ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; i = 0U; goto ldv_49532; ldv_49531: powerbase0 = (u32 )*(ppowerlevel_ofdm + (unsigned long )i); powerbase0 = (((powerbase0 << 24) | (powerbase0 << 16)) | (powerbase0 << 8)) | powerbase0; *(ofdmbase + (unsigned long )i) = powerbase0; tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> [OFDM power base index rf(%c) = 0x%x]\n", "rtl8723be_phy_get_power_base", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (unsigned int )i == 0U ? 65 : 66, *(ofdmbase + (unsigned long )i)); } else { } } else { } i = (u8 )((int )i + 1); ldv_49532: ; if ((unsigned int )i <= 1U) { goto ldv_49531; } else { } i = 0U; goto ldv_49535; ldv_49534: ; if ((unsigned int )rtlphy->current_chan_bw == 0U) { powerlevel[(int )i] = *(ppowerlevel_bw20 + (unsigned long )i); } else { powerlevel[(int )i] = *(ppowerlevel_bw40 + (unsigned long )i); } powerbase1 = (u32 )powerlevel[(int )i]; powerbase1 = (((powerbase1 << 24) | (powerbase1 << 16)) | (powerbase1 << 8)) | powerbase1; *(mcsbase + (unsigned long )i) = powerbase1; tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___5 != 0L) { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___6 != 0L) { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> [MCS power base index rf(%c) = 0x%x]\n", "rtl8723be_phy_get_power_base", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, (unsigned int )i == 0U ? 65 : 66, *(mcsbase + (unsigned long )i)); } else { } } else { } i = (u8 )((int )i + 1); ldv_49535: ; if ((unsigned int )i <= 1U) { goto ldv_49534; } else { } return; } } static void txpwr_by_regulatory(struct ieee80211_hw *hw , u8 channel , u8 index , u32 *powerbase0 , u32 *powerbase1 , u32 *p_outwriteval ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct rtl_efuse *rtlefuse ; u8 i ; u8 chnlgroup ; u8 pwr_diff_limit[4U] ; u8 pwr_diff ; u8 customer_pwr_diff ; u32 writeval ; u32 customer_limit ; u32 rf ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; int tmp___11 ; int tmp___12 ; long tmp___13 ; long tmp___14 ; int tmp___15 ; int tmp___16 ; long tmp___17 ; long tmp___18 ; int tmp___19 ; int tmp___20 ; long tmp___21 ; long tmp___22 ; int tmp___23 ; int tmp___24 ; long tmp___25 ; long tmp___26 ; int tmp___27 ; int tmp___28 ; long tmp___29 ; long tmp___30 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; chnlgroup = 0U; pwr_diff = 0U; rf = 0U; goto ldv_49567; ldv_49566: ; switch ((int )rtlefuse->eeprom_regulatory) { case 0: chnlgroup = 0U; writeval = rtlphy->mcs_offset[(int )chnlgroup][(int )index + (rf != 0U ? 8 : 0)] + ((unsigned int )index <= 1U ? *(powerbase0 + (unsigned long )rf) : *(powerbase1 + (unsigned long )rf)); tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> RTK better performance, writeval(%c) = 0x%x\n", "txpwr_by_regulatory", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, rf == 0U ? 65 : 66, writeval); } else { } } else { } goto ldv_49558; case 1: ; if ((unsigned int )rtlphy->pwrgroup_cnt == 1U) { chnlgroup = 0U; } else if ((unsigned int )channel <= 2U) { chnlgroup = 0U; } else if ((unsigned int )channel <= 5U) { chnlgroup = 1U; } else if ((unsigned int )channel <= 8U) { chnlgroup = 2U; } else if ((unsigned int )channel <= 11U) { chnlgroup = 3U; } else if ((unsigned int )channel <= 13U) { chnlgroup = 4U; } else if ((unsigned int )channel == 14U) { chnlgroup = 5U; } else { } writeval = rtlphy->mcs_offset[(int )chnlgroup][(int )index + (rf != 0U ? 8 : 0)] + ((unsigned int )index <= 1U ? *(powerbase0 + (unsigned long )rf) : *(powerbase1 + (unsigned long )rf)); tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___5 != 0L) { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___6 != 0L) { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Realtek regulatory, 20MHz, writeval(%c) = 0x%x\n", "txpwr_by_regulatory", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL, rf == 0U ? 65 : 66, writeval); } else { } } else { } goto ldv_49558; case 2: writeval = (unsigned int )index <= 1U ? *(powerbase0 + (unsigned long )rf) : *(powerbase1 + (unsigned long )rf); tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___9 != 0L) { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___10 != 0L) { tmp___7 = preempt_count(); tmp___8 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Better regulatory, writeval(%c) = 0x%x\n", "txpwr_by_regulatory", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL, rf == 0U ? 65 : 66, writeval); } else { } } else { } goto ldv_49558; case 3: chnlgroup = 0U; if ((unsigned int )rtlphy->current_chan_bw == 1U) { tmp___13 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___13 != 0L) { tmp___14 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___14 != 0L) { tmp___11 = preempt_count(); tmp___12 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> customer\'s limit, 40MHz rf(%c) = 0x%x\n", "txpwr_by_regulatory", (unsigned long )tmp___12 & 2096896UL, ((unsigned long )tmp___11 & 0xffffffffffdfffffUL) != 0UL, rf == 0U ? 65 : 66, (int )rtlefuse->pwrgroup_ht40[rf][(int )channel + -1]); } else { } } else { } } else { tmp___17 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___17 != 0L) { tmp___18 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___18 != 0L) { tmp___15 = preempt_count(); tmp___16 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> customer\'s limit, 20MHz rf(%c) = 0x%x\n", "txpwr_by_regulatory", (unsigned long )tmp___16 & 2096896UL, ((unsigned long )tmp___15 & 0xffffffffffdfffffUL) != 0UL, rf == 0U ? 65 : 66, (int )rtlefuse->pwrgroup_ht20[rf][(int )channel + -1]); } else { } } else { } } if ((unsigned int )index <= 1U) { pwr_diff = (u8 )rtlefuse->txpwr_legacyhtdiff[rf][(int )channel + -1]; } else if ((unsigned int )rtlphy->current_chan_bw == 0U) { pwr_diff = (u8 )rtlefuse->txpwr_ht20diff[rf][(int )channel + -1]; } else { } if ((unsigned int )rtlphy->current_chan_bw == 1U) { customer_pwr_diff = rtlefuse->pwrgroup_ht40[rf][(int )channel + -1]; } else { customer_pwr_diff = rtlefuse->pwrgroup_ht20[rf][(int )channel + -1]; } if ((int )pwr_diff > (int )customer_pwr_diff) { pwr_diff = 0U; } else { pwr_diff = (int )customer_pwr_diff - (int )pwr_diff; } i = 0U; goto ldv_49563; ldv_49562: pwr_diff_limit[(int )i] = (unsigned char )((rtlphy->mcs_offset[(int )chnlgroup][(int )index + (rf != 0U ? 8 : 0)] & (u32 )(127 << (int )i * 8)) >> (int )i * 8); if ((int )pwr_diff_limit[(int )i] > (int )pwr_diff) { pwr_diff_limit[(int )i] = pwr_diff; } else { } i = (u8 )((int )i + 1); ldv_49563: ; if ((unsigned int )i <= 3U) { goto ldv_49562; } else { } customer_limit = (u32 )(((((int )pwr_diff_limit[3] << 24) | ((int )pwr_diff_limit[2] << 16)) | ((int )pwr_diff_limit[1] << 8)) | (int )pwr_diff_limit[0]); tmp___21 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___21 != 0L) { tmp___22 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___22 != 0L) { tmp___19 = preempt_count(); tmp___20 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Customer\'s limit rf(%c) = 0x%x\n", "txpwr_by_regulatory", (unsigned long )tmp___20 & 2096896UL, ((unsigned long )tmp___19 & 0xffffffffffdfffffUL) != 0UL, rf == 0U ? 65 : 66, customer_limit); } else { } } else { } writeval = ((unsigned int )index <= 1U ? *(powerbase0 + (unsigned long )rf) : *(powerbase1 + (unsigned long )rf)) + customer_limit; tmp___25 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___25 != 0L) { tmp___26 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___26 != 0L) { tmp___23 = preempt_count(); tmp___24 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Customer, writeval rf(%c)= 0x%x\n", "txpwr_by_regulatory", (unsigned long )tmp___24 & 2096896UL, ((unsigned long )tmp___23 & 0xffffffffffdfffffUL) != 0UL, rf == 0U ? 65 : 66, writeval); } else { } } else { } goto ldv_49558; default: chnlgroup = 0U; writeval = rtlphy->mcs_offset[(int )chnlgroup][(int )index + (rf != 0U ? 8 : 0)] + ((unsigned int )index <= 1U ? *(powerbase0 + (unsigned long )rf) : *(powerbase1 + (unsigned long )rf)); tmp___29 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___29 != 0L) { tmp___30 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___30 != 0L) { tmp___27 = preempt_count(); tmp___28 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> RTK better performance, writeval rf(%c) = 0x%x\n", "txpwr_by_regulatory", (unsigned long )tmp___28 & 2096896UL, ((unsigned long )tmp___27 & 0xffffffffffdfffffUL) != 0UL, rf == 0U ? 65 : 66, writeval); } else { } } else { } goto ldv_49558; } ldv_49558: ; if ((unsigned int )rtlpriv->dm.dynamic_txhighpower_lvl == 3U) { writeval = writeval - 101058054U; } else if ((unsigned int )rtlpriv->dm.dynamic_txhighpower_lvl == 4U) { writeval = writeval - 202116108U; } else { } *(p_outwriteval + (unsigned long )rf) = writeval; rf = rf + 1U; ldv_49567: ; if (rf <= 1U) { goto ldv_49566; } else { } return; } } static void _rtl8723be_write_ofdm_power_reg(struct ieee80211_hw *hw , u8 index , u32 *value ) { struct rtl_priv *rtlpriv ; u16 regoffset_a[6U] ; u16 regoffset_b[6U] ; u8 i ; u8 rf ; u8 pwr_val[4U] ; u32 writeval ; u16 regoffset ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { rtlpriv = (struct rtl_priv *)hw->priv; regoffset_a[0] = 3584U; regoffset_a[1] = 3588U; regoffset_a[2] = 3600U; regoffset_a[3] = 3604U; regoffset_a[4] = 3608U; regoffset_a[5] = 3612U; regoffset_b[0] = 2096U; regoffset_b[1] = 2100U; regoffset_b[2] = 2108U; regoffset_b[3] = 2120U; regoffset_b[4] = 2124U; regoffset_b[5] = 2152U; rf = 0U; goto ldv_49587; ldv_49586: writeval = *(value + (unsigned long )rf); i = 0U; goto ldv_49583; ldv_49582: pwr_val[(int )i] = (unsigned char )(((u32 )(127 << (int )i * 8) & writeval) >> (int )i * 8); if ((unsigned int )pwr_val[(int )i] > 63U) { pwr_val[(int )i] = 63U; } else { } i = (u8 )((int )i + 1); ldv_49583: ; if ((unsigned int )i <= 3U) { goto ldv_49582; } else { } writeval = (u32 )(((((int )pwr_val[3] << 24) | ((int )pwr_val[2] << 16)) | ((int )pwr_val[1] << 8)) | (int )pwr_val[0]); if ((unsigned int )rf == 0U) { regoffset = regoffset_a[(int )index]; } else { regoffset = regoffset_b[(int )index]; } rtl_set_bbreg(hw, (u32 )regoffset, 4294967295U, writeval); tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Set 0x%x = %08x\n", "_rtl8723be_write_ofdm_power_reg", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )regoffset, writeval); } else { } } else { } rf = (u8 )((int )rf + 1); ldv_49587: ; if ((unsigned int )rf <= 1U) { goto ldv_49586; } else { } return; } } void rtl8723be_phy_rf6052_set_ofdm_txpower(struct ieee80211_hw *hw , u8 *ppowerlevel_ofdm , u8 *ppowerlevel_bw20 , u8 *ppowerlevel_bw40 , u8 channel ) { u32 writeval[2U] ; u32 powerbase0[2U] ; u32 powerbase1[2U] ; u8 index ; u8 direction ; u32 pwrtrac_value ; { rtl8723be_phy_get_power_base(hw, ppowerlevel_ofdm, ppowerlevel_bw20, ppowerlevel_bw40, (int )channel, (u32 *)(& powerbase0), (u32 *)(& powerbase1)); rtl8723be_dm_txpower_track_adjust(hw, 1, & direction, & pwrtrac_value); index = 0U; goto ldv_49603; ldv_49602: txpwr_by_regulatory(hw, (int )channel, (int )index, (u32 *)(& powerbase0), (u32 *)(& powerbase1), (u32 *)(& writeval)); if ((unsigned int )direction == 1U) { writeval[0] = writeval[0] + pwrtrac_value; writeval[1] = writeval[1] + pwrtrac_value; } else if ((unsigned int )direction == 2U) { writeval[0] = writeval[0] - pwrtrac_value; writeval[1] = writeval[1] - pwrtrac_value; } else { } _rtl8723be_write_ofdm_power_reg(hw, (int )index, (u32 *)(& writeval)); index = (u8 )((int )index + 1); ldv_49603: ; if ((unsigned int )index <= 5U) { goto ldv_49602; } else { } return; } } bool rtl8723be_phy_rf6052_config(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; bool tmp ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; if ((unsigned int )rtlphy->rf_type == 0U) { rtlphy->num_total_rfpath = 1U; } else { rtlphy->num_total_rfpath = 2U; } tmp = _rtl8723be_phy_rf6052_config_parafile(hw); return (tmp); } } static bool _rtl8723be_phy_rf6052_config_parafile(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; struct rtl_phy *rtlphy ; struct bb_reg_def *pphyreg ; u32 u4_regvalue ; u8 rfpath ; bool rtstatus ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlphy = & rtlpriv->phy; u4_regvalue = 0U; rtstatus = 1; rfpath = 0U; goto ldv_49636; ldv_49635: pphyreg = (struct bb_reg_def *)(& rtlphy->phyreg_def) + (unsigned long )rfpath; switch ((int )rfpath) { case 0: ; case 2: u4_regvalue = rtl_get_bbreg(hw, pphyreg->rfintfs, 16U); goto ldv_49621; case 1: ; case 3: u4_regvalue = rtl_get_bbreg(hw, pphyreg->rfintfs, 1048576U); goto ldv_49621; } ldv_49621: rtl_set_bbreg(hw, pphyreg->rfintfe, 1048576U, 1U); __const_udelay(4295UL); rtl_set_bbreg(hw, pphyreg->rfintfo, 16U, 1U); __const_udelay(4295UL); rtl_set_bbreg(hw, pphyreg->rfhssi_para2, 1024U, 0U); __const_udelay(4295UL); rtl_set_bbreg(hw, pphyreg->rfhssi_para2, 2048U, 0U); __const_udelay(4295UL); switch ((int )rfpath) { case 0: rtstatus = rtl8723be_phy_config_rf_with_headerfile(hw, (enum radio_path )rfpath); goto ldv_49625; case 1: rtstatus = rtl8723be_phy_config_rf_with_headerfile(hw, (enum radio_path )rfpath); goto ldv_49625; case 2: ; goto ldv_49625; case 3: ; goto ldv_49625; } ldv_49625: ; switch ((int )rfpath) { case 0: ; case 2: rtl_set_bbreg(hw, pphyreg->rfintfs, 16U, u4_regvalue); goto ldv_49631; case 1: ; case 3: rtl_set_bbreg(hw, pphyreg->rfintfs, 1048576U, u4_regvalue); goto ldv_49631; } ldv_49631: ; if (! rtstatus) { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Radio[%d] Fail!!", "_rtl8723be_phy_rf6052_config_parafile", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )rfpath); } else { } } else { } return (0); } else { } rfpath = (u8 )((int )rfpath + 1); ldv_49636: ; if ((int )rtlphy->num_total_rfpath > (int )rfpath) { goto ldv_49635; } else { } tmp___5 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4ULL) != 0ULL, 0L); if (tmp___5 != 0L) { tmp___6 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); if (tmp___6 != 0L) { tmp___3 = preempt_count(); tmp___4 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> \n", "_rtl8723be_phy_rf6052_config_parafile", (unsigned long )tmp___4 & 2096896UL, ((unsigned long )tmp___3 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } return (rtstatus); } } void ldv_consume_skb_76(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_77(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_78(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_79(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_82(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } extern struct module __this_module ; extern void *vzalloc(unsigned long ) ; extern void vfree(void const * ) ; void ldv_kfree_skb_88(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_89(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_90(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_93(struct sk_buff *ldv_func_arg1 ) ; void ldv_consume_skb_87(struct sk_buff *ldv_func_arg1 ) ; extern u32 __VERIFIER_nondet_u32(void) ; extern u16 __VERIFIER_nondet_u16(void) ; extern u8 __VERIFIER_nondet_u8(void) ; __inline static void ldv_stop(void) { { LDV_STOP: ; goto LDV_STOP; } } int ldv_state_variable_3 ; int ldv_state_variable_2 ; struct sk_buff *rtl8723be_hal_ops_group2 ; int ref_cnt ; struct device *rtlwifi_pm_ops_group1 ; struct ieee80211_hw *rtl8723be_hal_ops_group1 ; struct pci_dev *rtl8723be_driver_group0 ; struct ieee80211_sta *rtl8723be_hal_ops_group0 ; int ldv_state_variable_1 ; int ldv_state_variable_0 ; void ldv_dev_pm_ops_2(void) ; void ldv_initialize_pci_driver_1(void) ; void ldv_initialize_rtl_hal_ops_3(void) ; extern int request_firmware_nowait(struct module * , bool , char const * , struct device * , gfp_t , void * , void (*)(struct firmware const * , void * ) ) ; extern void rtl_fw_cb(struct firmware const * , void * ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; extern void pci_unregister_driver(struct pci_driver * ) ; extern int rtl_pci_probe(struct pci_dev * , struct pci_device_id const * ) ; extern void rtl_pci_disconnect(struct pci_dev * ) ; extern int rtl_pci_suspend(struct device * ) ; extern int rtl_pci_resume(struct device * ) ; extern u32 rtl8723_phy_query_bb_reg(struct ieee80211_hw * , u32 , u32 ) ; int rtl8723be_init_sw_vars(struct ieee80211_hw *hw ) ; void rtl8723be_deinit_sw_vars(struct ieee80211_hw *hw ) ; bool rtl8723be_get_btc_status(void) ; void rtl8723be_tx_fill_desc(struct ieee80211_hw *hw , struct ieee80211_hdr *hdr , u8 *pdesc_tx , u8 *pbd_desc_tx , struct ieee80211_tx_info *info , struct ieee80211_sta *sta , struct sk_buff *skb , u8 hw_queue , struct rtl_tcb_desc *ptcb_desc ) ; bool rtl8723be_rx_query_desc(struct ieee80211_hw *hw , struct rtl_stats *status , struct ieee80211_rx_status *rx_status , u8 *pdesc , struct sk_buff *skb ) ; void rtl8723be_set_desc(struct ieee80211_hw *hw , u8 *pdesc , bool istx , u8 desc_name , u8 *val ) ; u32 rtl8723be_get_desc(u8 *pdesc , bool istx , u8 desc_name ) ; bool rtl8723be_is_tx_desc_closed(struct ieee80211_hw *hw , u8 hw_queue , u16 index ) ; void rtl8723be_tx_polling(struct ieee80211_hw *hw , u8 hw_queue ) ; void rtl8723be_tx_fill_cmddesc(struct ieee80211_hw *hw , u8 *pdesc , bool b_firstseg , bool b_lastseg , struct sk_buff *skb ) ; extern struct rtl_btc_ops *rtl_btc_get_ops_pointer(void) ; static void rtl8723be_init_aspm_vars(struct ieee80211_hw *hw ) { struct rtl_pci *rtlpci ; { rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; rtlpci->const_amdpci_aspm = 0U; rtlpci->const_pci_aspm = 3U; rtlpci->const_devicepci_aspm_setting = 3U; rtlpci->const_hostpci_aspm_setting = 2U; rtlpci->const_hwsw_rfoff_d3 = 0U; rtlpci->const_support_pciaspm = 1U; return; } } int rtl8723be_init_sw_vars(struct ieee80211_hw *hw ) { int err ; struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; struct rtl_mac *mac ; void *tmp ; int tmp___0 ; int tmp___1 ; long tmp___2 ; long tmp___3 ; int tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; { err = 0; rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; mac = & ((struct rtl_priv *)hw->priv)->mac80211; rtl8723be_bt_reg_init(hw); rtlpci->msi_support = ((rtlpriv->cfg)->mod_params)->msi_support; rtlpriv->btcoexist.btc_ops = rtl_btc_get_ops_pointer(); rtlpriv->dm.dm_initialgain_enable = 1; rtlpriv->dm.dm_flag = 0U; rtlpriv->dm.disable_framebursting = 0; rtlpriv->dm.thermalvalue = 0U; rtlpci->transmit_config = 50364928U; mac->ht_enable = 1U; rtlpriv->rtlhal.current_bandtype = 0; rtlpriv->rtlhal.bandset = 0; rtlpriv->rtlhal.macphymode = 0; rtlpci->receive_config = 4026563086U; rtlpci->irq_mask[0] = 536904959U; rtlpci->irq_mask[1] = 256U; rtlpriv->dbg.global_debuglevel = ((rtlpriv->cfg)->mod_params)->debug; rtlpriv->psc.inactiveps = ((rtlpriv->cfg)->mod_params)->inactiveps; rtlpriv->psc.swctrl_lps = ((rtlpriv->cfg)->mod_params)->swctrl_lps; rtlpriv->psc.fwctrl_lps = ((rtlpriv->cfg)->mod_params)->fwctrl_lps; rtlpriv->psc.reg_fwctrl_lps = 3U; rtlpriv->psc.reg_max_lps_awakeintvl = 5U; rtl8723be_init_aspm_vars(hw); if ((unsigned int )rtlpriv->psc.reg_fwctrl_lps == 1U) { rtlpriv->psc.fwctrl_psmode = 1U; } else if ((unsigned int )rtlpriv->psc.reg_fwctrl_lps == 2U) { rtlpriv->psc.fwctrl_psmode = 2U; } else if ((unsigned int )rtlpriv->psc.reg_fwctrl_lps == 3U) { rtlpriv->psc.fwctrl_psmode = 3U; } else { } tmp = vzalloc(32768UL); rtlpriv->rtlhal.pfirmware = (u8 *)tmp; if ((unsigned long )rtlpriv->rtlhal.pfirmware == (unsigned long )((u8 *)0U)) { tmp___2 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); if (tmp___2 != 0L) { tmp___3 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); if (tmp___3 != 0L) { tmp___0 = preempt_count(); tmp___1 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Can\'t alloc buffer for fw.\n", "rtl8723be_init_sw_vars", (unsigned long )tmp___1 & 2096896UL, ((unsigned long )tmp___0 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } return (1); } else { } rtlpriv->max_fw_size = 32768; printk("\016rtl8723be: Using firmware %s\n", (rtlpriv->cfg)->fw_name); err = request_firmware_nowait(& __this_module, 1, (char const *)(rtlpriv->cfg)->fw_name, rtlpriv->io.dev, 208U, (void *)hw, & rtl_fw_cb); if (err != 0) { tmp___6 = ldv__builtin_expect((long )((int )rtlpriv->dbg.global_debugcomponents) & 1L, 0L); if (tmp___6 != 0L) { tmp___7 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel >= 0, 0L); if (tmp___7 != 0L) { tmp___4 = preempt_count(); tmp___5 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Failed to request firmware!\n", "rtl8723be_init_sw_vars", (unsigned long )tmp___5 & 2096896UL, ((unsigned long )tmp___4 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } return (1); } else { } return (0); } } void rtl8723be_deinit_sw_vars(struct ieee80211_hw *hw ) { struct rtl_priv *rtlpriv ; bool tmp ; { rtlpriv = (struct rtl_priv *)hw->priv; tmp = (*(((rtlpriv->cfg)->ops)->get_btc_status))(); if ((int )tmp) { (*((rtlpriv->btcoexist.btc_ops)->btc_halt_notify))(); } else { } if ((unsigned long )rtlpriv->rtlhal.pfirmware != (unsigned long )((u8 *)0U)) { vfree((void const *)rtlpriv->rtlhal.pfirmware); rtlpriv->rtlhal.pfirmware = (u8 *)0U; } else { } return; } } bool rtl8723be_get_btc_status(void) { { return (1); } } static bool is_fw_header(struct rtl92c_firmware_header *hdr ) { { return (((int )hdr->signature & 65520) == 21248); } } static struct rtl_hal_ops rtl8723be_hal_ops = {& rtl8723be_init_sw_vars, & rtl8723be_deinit_sw_vars, 0, & rtl8723be_read_eeprom_info, & rtl8723be_interrupt_recognized, & rtl8723be_hw_init, & rtl8723be_card_disable, & rtl8723be_suspend, & rtl8723be_resume, & rtl8723be_enable_interrupt, & rtl8723be_disable_interrupt, & rtl8723be_set_network_type, & rtl8723be_set_check_bssid, & rtl8723be_phy_set_bw_mode, & rtl8723be_phy_sw_chnl, & rtl8723be_set_qos, & rtl8723be_set_beacon_related_registers, & rtl8723be_set_beacon_interval, & rtl8723be_update_interrupt_mask, & rtl8723be_get_hw_reg, & rtl8723be_set_hw_reg, & rtl8723be_update_hal_rate_tbl, 0, 0, 0, 0, & rtl8723be_tx_fill_desc, 0, & rtl8723be_tx_fill_cmddesc, 0, & rtl8723be_rx_query_desc, & rtl8723be_update_channel_access_setting, & rtl8723be_gpio_radio_on_off_checking, & rtl8723be_dm_watchdog, & rtl8723be_phy_scan_operation_backup, & rtl8723be_phy_set_rf_power_state, & rtl8723be_led_control, & rtl8723be_set_desc, & rtl8723be_get_desc, & rtl8723be_is_tx_desc_closed, & rtl8723be_tx_polling, & rtl8723be_enable_hw_security_config, & rtl8723be_set_key, & rtl8723be_init_sw_leds, 0, & rtl8723_phy_query_bb_reg, & rtl8723_phy_set_bb_reg, & rtl8723be_phy_query_rf_reg, & rtl8723be_phy_set_rf_reg, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & rtl8723be_fill_h2c_cmd, & rtl8723be_get_btc_status, & is_fw_header, 0}; static struct rtl_mod_params rtl8723be_mod_params = {0, 0, 1, 0, 1, 0}; static struct rtl_hal_cfg rtl8723be_hal_cfg = {2U, 1, (char *)"rtl8723be_pci", (char *)"rtlwifi/rtl8723befw.bin", 0, & rtl8723be_hal_ops, & rtl8723be_mod_params, 0, {0U, 2U, 8U, 4U, 8U, 256U, 4096U, 1U, 0U, 0U, 0U, 52U, 48U, 0U, 48U, 32768U, 4096U, 32U, 2U, 512U, 64U, 256U, 18U, 207U, 1648U, 1652U, 1656U, 1660U, 1664U, 0U, 1U, 2U, 4U, 5U, 67108864U, 33554432U, 16777216U, 8388608U, 4194304U, 2097152U, 0U, 1048576U, 524288U, 262144U, 131072U, 65536U, 32768U, 16384U, 0U, 0U, 512U, 536870912U, 1048576U, 256U, 2U, 4096U, 65536U, 128U, 0U, 33554432U, 64U, 67108864U, 32U, 16U, 8U, 4U, 1U, 101711872U, 0U, 0U, 1U, 2U, 3U, 4U, 5U, 6U, 7U, 8U, 9U, 10U, 11U, 19U, 27U}}; static struct pci_device_id const rtl8723be_pci_id[2U] = { {4332U, 46883U, 4294967295U, 4294967295U, 0U, 0U, (unsigned long )(& rtl8723be_hal_cfg)}}; struct pci_device_id const __mod_pci__rtl8723be_pci_id_device_table ; static struct dev_pm_ops const rtlwifi_pm_ops = {0, 0, & rtl_pci_suspend, & rtl_pci_resume, & rtl_pci_suspend, & rtl_pci_resume, & rtl_pci_suspend, & rtl_pci_resume, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct pci_driver rtl8723be_driver = {{0, 0}, "rtl8723be", (struct pci_device_id const *)(& rtl8723be_pci_id), & rtl_pci_probe, & rtl_pci_disconnect, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, & rtlwifi_pm_ops, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int rtl8723be_driver_init(void) { int tmp ; { tmp = __pci_register_driver(& rtl8723be_driver, & __this_module, "rtl8723be"); return (tmp); } } static void rtl8723be_driver_exit(void) { { pci_unregister_driver(& rtl8723be_driver); return; } } int ldv_retval_20 ; extern int ldv_suspend_late_2(void) ; extern int ldv_restore_noirq_2(void) ; int ldv_retval_18 ; int ldv_retval_2 ; int ldv_retval_5 ; int ldv_retval_0 ; int ldv_retval_11 ; int ldv_retval_1 ; int ldv_retval_15 ; int ldv_retval_16 ; extern int ldv_freeze_late_2(void) ; extern int ldv_complete_2(void) ; void ldv_check_final_state(void) ; int ldv_retval_8 ; extern int ldv_probe_3(void) ; extern int ldv_release_3(void) ; int ldv_retval_7 ; extern int ldv_thaw_early_2(void) ; int ldv_retval_19 ; extern int ldv_poweroff_noirq_2(void) ; extern int ldv_resume_noirq_2(void) ; extern int ldv_resume_early_2(void) ; int ldv_retval_14 ; int ldv_retval_17 ; extern int ldv_prepare_2(void) ; int ldv_retval_12 ; void ldv_initialize(void) ; int ldv_retval_6 ; extern int ldv_restore_early_2(void) ; extern int ldv_suspend_noirq_2(void) ; extern int ldv_poweroff_late_2(void) ; int ldv_retval_13 ; extern int ldv_thaw_noirq_2(void) ; int ldv_retval_9 ; int ldv_retval_10 ; extern int ldv_freeze_noirq_2(void) ; int ldv_retval_4 ; int ldv_retval_3 ; void ldv_dev_pm_ops_2(void) { void *tmp ; { tmp = ldv_zalloc(1416UL); rtlwifi_pm_ops_group1 = (struct device *)tmp; return; } } void ldv_initialize_pci_driver_1(void) { void *tmp ; { tmp = ldv_zalloc(2976UL); rtl8723be_driver_group0 = (struct pci_dev *)tmp; return; } } void ldv_initialize_rtl_hal_ops_3(void) { void *tmp ; void *tmp___0 ; void *tmp___1 ; { tmp = ldv_zalloc(88UL); rtl8723be_hal_ops_group0 = (struct ieee80211_sta *)tmp; tmp___0 = ldv_zalloc(144UL); rtl8723be_hal_ops_group1 = (struct ieee80211_hw *)tmp___0; tmp___1 = ldv_zalloc(232UL); rtl8723be_hal_ops_group2 = (struct sk_buff *)tmp___1; return; } } int main(void) { struct pci_device_id *ldvarg0 ; void *tmp ; u8 ldvarg18 ; u8 tmp___0 ; u32 ldvarg11 ; u32 tmp___1 ; bool ldvarg51 ; struct ieee80211_hdr *ldvarg32 ; void *tmp___2 ; u32 ldvarg7 ; u32 tmp___3 ; bool ldvarg23 ; u8 ldvarg43 ; u8 tmp___4 ; u8 *ldvarg42 ; void *tmp___5 ; enum radio_path ldvarg12 ; u8 ldvarg56 ; u8 tmp___6 ; u8 ldvarg50 ; u8 tmp___7 ; enum nl80211_iftype ldvarg46 ; u8 *ldvarg1 ; void *tmp___8 ; u32 ldvarg58 ; u32 tmp___9 ; bool ldvarg37 ; bool ldvarg53 ; u8 *ldvarg29 ; void *tmp___10 ; u8 *ldvarg44 ; void *tmp___11 ; bool ldvarg24 ; struct ieee80211_tx_info *ldvarg35 ; void *tmp___12 ; u8 *ldvarg38 ; void *tmp___13 ; u16 ldvarg5 ; u16 tmp___14 ; u8 ldvarg33 ; u8 tmp___15 ; u8 ldvarg6 ; u8 tmp___16 ; enum rf_pwrstate ldvarg16 ; u32 *ldvarg48 ; void *tmp___17 ; u8 ldvarg4 ; u8 tmp___18 ; u8 ldvarg14 ; u8 tmp___19 ; u8 *ldvarg34 ; void *tmp___20 ; u32 ldvarg28 ; u32 tmp___21 ; struct ieee80211_rx_status *ldvarg2 ; void *tmp___22 ; u32 *ldvarg47 ; void *tmp___23 ; u32 ldvarg39 ; u32 tmp___24 ; u32 ldvarg20 ; u32 tmp___25 ; struct rtl_tcb_desc *ldvarg31 ; void *tmp___26 ; u8 *ldvarg60 ; void *tmp___27 ; bool ldvarg41 ; struct rtl_stats *ldvarg3 ; void *tmp___28 ; u32 ldvarg59 ; u32 tmp___29 ; bool ldvarg49 ; u32 ldvarg57 ; u32 tmp___30 ; u32 ldvarg8 ; u32 tmp___31 ; u32 ldvarg13 ; u32 tmp___32 ; bool ldvarg55 ; u8 ldvarg36 ; u8 tmp___33 ; u32 ldvarg10 ; u32 tmp___34 ; u32 ldvarg40 ; u32 tmp___35 ; enum radio_path ldvarg9 ; enum led_ctl_mode ldvarg45 ; struct rtl92c_firmware_header *ldvarg26 ; void *tmp___36 ; u32 ldvarg27 ; u32 tmp___37 ; enum nl80211_channel_type ldvarg15 ; u8 *ldvarg30 ; void *tmp___38 ; u8 ldvarg21 ; u8 tmp___39 ; u32 ldvarg54 ; u32 tmp___40 ; u8 ldvarg61 ; u8 tmp___41 ; u8 *ldvarg17 ; void *tmp___42 ; u8 *ldvarg25 ; void *tmp___43 ; int ldvarg22 ; int tmp___44 ; u8 *ldvarg19 ; void *tmp___45 ; u8 *ldvarg52 ; void *tmp___46 ; int tmp___47 ; int tmp___48 ; int tmp___49 ; int tmp___50 ; int tmp___51 ; { tmp = ldv_zalloc(32UL); ldvarg0 = (struct pci_device_id *)tmp; tmp___0 = __VERIFIER_nondet_u8(); ldvarg18 = tmp___0; tmp___1 = __VERIFIER_nondet_u32(); ldvarg11 = tmp___1; tmp___2 = ldv_zalloc(30UL); ldvarg32 = (struct ieee80211_hdr *)tmp___2; tmp___3 = __VERIFIER_nondet_u32(); ldvarg7 = tmp___3; tmp___4 = __VERIFIER_nondet_u8(); ldvarg43 = tmp___4; tmp___5 = ldv_zalloc(1UL); ldvarg42 = (u8 *)tmp___5; tmp___6 = __VERIFIER_nondet_u8(); ldvarg56 = tmp___6; tmp___7 = __VERIFIER_nondet_u8(); ldvarg50 = tmp___7; tmp___8 = ldv_zalloc(1UL); ldvarg1 = (u8 *)tmp___8; tmp___9 = __VERIFIER_nondet_u32(); ldvarg58 = tmp___9; tmp___10 = ldv_zalloc(1UL); ldvarg29 = (u8 *)tmp___10; tmp___11 = ldv_zalloc(1UL); ldvarg44 = (u8 *)tmp___11; tmp___12 = ldv_zalloc(48UL); ldvarg35 = (struct ieee80211_tx_info *)tmp___12; tmp___13 = ldv_zalloc(1UL); ldvarg38 = (u8 *)tmp___13; tmp___14 = __VERIFIER_nondet_u16(); ldvarg5 = tmp___14; tmp___15 = __VERIFIER_nondet_u8(); ldvarg33 = tmp___15; tmp___16 = __VERIFIER_nondet_u8(); ldvarg6 = tmp___16; tmp___17 = ldv_zalloc(4UL); ldvarg48 = (u32 *)tmp___17; tmp___18 = __VERIFIER_nondet_u8(); ldvarg4 = tmp___18; tmp___19 = __VERIFIER_nondet_u8(); ldvarg14 = tmp___19; tmp___20 = ldv_zalloc(1UL); ldvarg34 = (u8 *)tmp___20; tmp___21 = __VERIFIER_nondet_u32(); ldvarg28 = tmp___21; tmp___22 = ldv_zalloc(40UL); ldvarg2 = (struct ieee80211_rx_status *)tmp___22; tmp___23 = ldv_zalloc(4UL); ldvarg47 = (u32 *)tmp___23; tmp___24 = __VERIFIER_nondet_u32(); ldvarg39 = tmp___24; tmp___25 = __VERIFIER_nondet_u32(); ldvarg20 = tmp___25; tmp___26 = ldv_zalloc(56UL); ldvarg31 = (struct rtl_tcb_desc *)tmp___26; tmp___27 = ldv_zalloc(1UL); ldvarg60 = (u8 *)tmp___27; tmp___28 = ldv_zalloc(128UL); ldvarg3 = (struct rtl_stats *)tmp___28; tmp___29 = __VERIFIER_nondet_u32(); ldvarg59 = tmp___29; tmp___30 = __VERIFIER_nondet_u32(); ldvarg57 = tmp___30; tmp___31 = __VERIFIER_nondet_u32(); ldvarg8 = tmp___31; tmp___32 = __VERIFIER_nondet_u32(); ldvarg13 = tmp___32; tmp___33 = __VERIFIER_nondet_u8(); ldvarg36 = tmp___33; tmp___34 = __VERIFIER_nondet_u32(); ldvarg10 = tmp___34; tmp___35 = __VERIFIER_nondet_u32(); ldvarg40 = tmp___35; tmp___36 = ldv_zalloc(32UL); ldvarg26 = (struct rtl92c_firmware_header *)tmp___36; tmp___37 = __VERIFIER_nondet_u32(); ldvarg27 = tmp___37; tmp___38 = ldv_zalloc(1UL); ldvarg30 = (u8 *)tmp___38; tmp___39 = __VERIFIER_nondet_u8(); ldvarg21 = tmp___39; tmp___40 = __VERIFIER_nondet_u32(); ldvarg54 = tmp___40; tmp___41 = __VERIFIER_nondet_u8(); ldvarg61 = tmp___41; tmp___42 = ldv_zalloc(1UL); ldvarg17 = (u8 *)tmp___42; tmp___43 = ldv_zalloc(1UL); ldvarg25 = (u8 *)tmp___43; tmp___44 = __VERIFIER_nondet_int(); ldvarg22 = tmp___44; tmp___45 = ldv_zalloc(1UL); ldvarg19 = (u8 *)tmp___45; tmp___46 = ldv_zalloc(1UL); ldvarg52 = (u8 *)tmp___46; ldv_initialize(); memset((void *)(& ldvarg51), 0, 1UL); memset((void *)(& ldvarg23), 0, 1UL); memset((void *)(& ldvarg12), 0, 4UL); memset((void *)(& ldvarg46), 0, 4UL); memset((void *)(& ldvarg37), 0, 1UL); memset((void *)(& ldvarg53), 0, 1UL); memset((void *)(& ldvarg24), 0, 1UL); memset((void *)(& ldvarg16), 0, 4UL); memset((void *)(& ldvarg41), 0, 1UL); memset((void *)(& ldvarg49), 0, 1UL); memset((void *)(& ldvarg55), 0, 1UL); memset((void *)(& ldvarg9), 0, 4UL); memset((void *)(& ldvarg45), 0, 4UL); memset((void *)(& ldvarg15), 0, 4UL); ldv_state_variable_1 = 0; ref_cnt = 0; ldv_state_variable_0 = 1; ldv_state_variable_3 = 0; ldv_state_variable_2 = 0; ldv_53653: tmp___47 = __VERIFIER_nondet_int(); switch (tmp___47) { case 0: ; if (ldv_state_variable_1 != 0) { tmp___48 = __VERIFIER_nondet_int(); switch (tmp___48) { case 0: ; if (ldv_state_variable_1 == 1) { ldv_retval_0 = rtl_pci_probe(rtl8723be_driver_group0, (struct pci_device_id const *)ldvarg0); if (ldv_retval_0 == 0) { ldv_state_variable_1 = 2; ref_cnt = ref_cnt + 1; } else { } } else { } goto ldv_53570; case 1: ; if (ldv_state_variable_1 == 2) { rtl_pci_disconnect(rtl8723be_driver_group0); ldv_state_variable_1 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_53570; default: ldv_stop(); } ldv_53570: ; } else { } goto ldv_53573; case 1: ; if (ldv_state_variable_0 != 0) { tmp___49 = __VERIFIER_nondet_int(); switch (tmp___49) { case 0: ; if (ldv_state_variable_0 == 3 && ref_cnt == 0) { rtl8723be_driver_exit(); ldv_state_variable_0 = 2; goto ldv_final; } else { } goto ldv_53577; case 1: ; if (ldv_state_variable_0 == 1) { ldv_retval_1 = rtl8723be_driver_init(); if (ldv_retval_1 == 0) { ldv_state_variable_0 = 3; ldv_state_variable_2 = 1; ldv_dev_pm_ops_2(); ldv_state_variable_3 = 1; ldv_initialize_rtl_hal_ops_3(); ldv_state_variable_1 = 1; ldv_initialize_pci_driver_1(); } else { } if (ldv_retval_1 != 0) { ldv_state_variable_0 = 2; goto ldv_final; } else { } } else { } goto ldv_53577; default: ldv_stop(); } ldv_53577: ; } else { } goto ldv_53573; case 2: ; if (ldv_state_variable_3 != 0) { tmp___50 = __VERIFIER_nondet_int(); switch (tmp___50) { case 0: ; if (ldv_state_variable_3 == 1) { rtl8723be_get_hw_reg(rtl8723be_hal_ops_group1, (int )ldvarg61, ldvarg60); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { rtl8723be_get_hw_reg(rtl8723be_hal_ops_group1, (int )ldvarg61, ldvarg60); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 1: ; if (ldv_state_variable_3 == 1) { rtl8723_phy_set_bb_reg(rtl8723be_hal_ops_group1, ldvarg58, ldvarg57, ldvarg59); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { rtl8723_phy_set_bb_reg(rtl8723be_hal_ops_group1, ldvarg58, ldvarg57, ldvarg59); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 2: ; if (ldv_state_variable_3 == 1) { rtl8723be_set_key(rtl8723be_hal_ops_group1, ldvarg54, ldvarg52, (int )ldvarg55, (int )ldvarg56, (int )ldvarg51, (int )ldvarg53); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { rtl8723be_set_key(rtl8723be_hal_ops_group1, ldvarg54, ldvarg52, (int )ldvarg55, (int )ldvarg56, (int )ldvarg51, (int )ldvarg53); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 3: ; if (ldv_state_variable_3 == 1) { rtl8723be_disable_interrupt(rtl8723be_hal_ops_group1); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { rtl8723be_disable_interrupt(rtl8723be_hal_ops_group1); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 4: ; if (ldv_state_variable_3 == 1) { rtl8723be_update_hal_rate_tbl(rtl8723be_hal_ops_group1, rtl8723be_hal_ops_group0, (int )ldvarg50); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { rtl8723be_update_hal_rate_tbl(rtl8723be_hal_ops_group1, rtl8723be_hal_ops_group0, (int )ldvarg50); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 5: ; if (ldv_state_variable_3 == 2) { rtl8723be_read_eeprom_info(rtl8723be_hal_ops_group1); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 6: ; if (ldv_state_variable_3 == 1) { rtl8723be_set_check_bssid(rtl8723be_hal_ops_group1, (int )ldvarg49); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { rtl8723be_set_check_bssid(rtl8723be_hal_ops_group1, (int )ldvarg49); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 7: ; if (ldv_state_variable_3 == 1) { rtl8723be_interrupt_recognized(rtl8723be_hal_ops_group1, ldvarg48, ldvarg47); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { rtl8723be_interrupt_recognized(rtl8723be_hal_ops_group1, ldvarg48, ldvarg47); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 8: ; if (ldv_state_variable_3 == 1) { rtl8723be_set_network_type(rtl8723be_hal_ops_group1, ldvarg46); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { rtl8723be_set_network_type(rtl8723be_hal_ops_group1, ldvarg46); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 9: ; if (ldv_state_variable_3 == 1) { rtl8723be_update_channel_access_setting(rtl8723be_hal_ops_group1); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { rtl8723be_update_channel_access_setting(rtl8723be_hal_ops_group1); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 10: ; if (ldv_state_variable_3 == 1) { rtl8723be_resume(rtl8723be_hal_ops_group1); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { rtl8723be_resume(rtl8723be_hal_ops_group1); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 11: ; if (ldv_state_variable_3 == 1) { rtl8723be_hw_init(rtl8723be_hal_ops_group1); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { rtl8723be_hw_init(rtl8723be_hal_ops_group1); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 12: ; if (ldv_state_variable_3 == 1) { rtl8723be_card_disable(rtl8723be_hal_ops_group1); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { rtl8723be_card_disable(rtl8723be_hal_ops_group1); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 13: ; if (ldv_state_variable_3 == 1) { rtl8723be_led_control(rtl8723be_hal_ops_group1, ldvarg45); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { rtl8723be_led_control(rtl8723be_hal_ops_group1, ldvarg45); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 14: ; if (ldv_state_variable_3 == 1) { rtl8723be_set_desc(rtl8723be_hal_ops_group1, ldvarg42, (int )ldvarg41, (int )ldvarg43, ldvarg44); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { rtl8723be_set_desc(rtl8723be_hal_ops_group1, ldvarg42, (int )ldvarg41, (int )ldvarg43, ldvarg44); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 15: ; if (ldv_state_variable_3 == 1) { rtl8723be_update_interrupt_mask(rtl8723be_hal_ops_group1, ldvarg40, ldvarg39); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { rtl8723be_update_interrupt_mask(rtl8723be_hal_ops_group1, ldvarg40, ldvarg39); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 16: ; if (ldv_state_variable_3 == 1) { rtl8723be_get_desc(ldvarg38, (int )ldvarg37, (int )ldvarg36); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { rtl8723be_get_desc(ldvarg38, (int )ldvarg37, (int )ldvarg36); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 17: ; if (ldv_state_variable_3 == 1) { rtl8723be_tx_fill_desc(rtl8723be_hal_ops_group1, ldvarg32, ldvarg30, ldvarg34, ldvarg35, rtl8723be_hal_ops_group0, rtl8723be_hal_ops_group2, (int )ldvarg33, ldvarg31); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { rtl8723be_tx_fill_desc(rtl8723be_hal_ops_group1, ldvarg32, ldvarg30, ldvarg34, ldvarg35, rtl8723be_hal_ops_group0, rtl8723be_hal_ops_group2, (int )ldvarg33, ldvarg31); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 18: ; if (ldv_state_variable_3 == 1) { rtl8723be_deinit_sw_vars(rtl8723be_hal_ops_group1); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { rtl8723be_deinit_sw_vars(rtl8723be_hal_ops_group1); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 19: ; if (ldv_state_variable_3 == 1) { rtl8723be_gpio_radio_on_off_checking(rtl8723be_hal_ops_group1, ldvarg29); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { rtl8723be_gpio_radio_on_off_checking(rtl8723be_hal_ops_group1, ldvarg29); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 20: ; if (ldv_state_variable_3 == 1) { rtl8723_phy_query_bb_reg(rtl8723be_hal_ops_group1, ldvarg28, ldvarg27); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { rtl8723_phy_query_bb_reg(rtl8723be_hal_ops_group1, ldvarg28, ldvarg27); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 21: ; if (ldv_state_variable_3 == 1) { is_fw_header(ldvarg26); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { is_fw_header(ldvarg26); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 22: ; if (ldv_state_variable_3 == 1) { rtl8723be_tx_fill_cmddesc(rtl8723be_hal_ops_group1, ldvarg25, (int )ldvarg24, (int )ldvarg23, rtl8723be_hal_ops_group2); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { rtl8723be_tx_fill_cmddesc(rtl8723be_hal_ops_group1, ldvarg25, (int )ldvarg24, (int )ldvarg23, rtl8723be_hal_ops_group2); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 23: ; if (ldv_state_variable_3 == 1) { rtl8723be_set_qos(rtl8723be_hal_ops_group1, ldvarg22); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { rtl8723be_set_qos(rtl8723be_hal_ops_group1, ldvarg22); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 24: ; if (ldv_state_variable_3 == 1) { rtl8723be_fill_h2c_cmd(rtl8723be_hal_ops_group1, (int )ldvarg21, ldvarg20, ldvarg19); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { rtl8723be_fill_h2c_cmd(rtl8723be_hal_ops_group1, (int )ldvarg21, ldvarg20, ldvarg19); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 25: ; if (ldv_state_variable_3 == 1) { rtl8723be_set_hw_reg(rtl8723be_hal_ops_group1, (int )ldvarg18, ldvarg17); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { rtl8723be_set_hw_reg(rtl8723be_hal_ops_group1, (int )ldvarg18, ldvarg17); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 26: ; if (ldv_state_variable_3 == 1) { rtl8723be_phy_set_rf_power_state(rtl8723be_hal_ops_group1, ldvarg16); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { rtl8723be_phy_set_rf_power_state(rtl8723be_hal_ops_group1, ldvarg16); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 27: ; if (ldv_state_variable_3 == 1) { rtl8723be_phy_set_bw_mode(rtl8723be_hal_ops_group1, ldvarg15); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { rtl8723be_phy_set_bw_mode(rtl8723be_hal_ops_group1, ldvarg15); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 28: ; if (ldv_state_variable_3 == 1) { rtl8723be_init_sw_leds(rtl8723be_hal_ops_group1); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { rtl8723be_init_sw_leds(rtl8723be_hal_ops_group1); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 29: ; if (ldv_state_variable_3 == 1) { rtl8723be_enable_interrupt(rtl8723be_hal_ops_group1); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { rtl8723be_enable_interrupt(rtl8723be_hal_ops_group1); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 30: ; if (ldv_state_variable_3 == 1) { rtl8723be_tx_polling(rtl8723be_hal_ops_group1, (int )ldvarg14); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { rtl8723be_tx_polling(rtl8723be_hal_ops_group1, (int )ldvarg14); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 31: ; if (ldv_state_variable_3 == 1) { rtl8723be_set_beacon_related_registers(rtl8723be_hal_ops_group1); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { rtl8723be_set_beacon_related_registers(rtl8723be_hal_ops_group1); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 32: ; if (ldv_state_variable_3 == 1) { rtl8723be_dm_watchdog(rtl8723be_hal_ops_group1); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { rtl8723be_dm_watchdog(rtl8723be_hal_ops_group1); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 33: ; if (ldv_state_variable_3 == 1) { rtl8723be_phy_sw_chnl(rtl8723be_hal_ops_group1); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { rtl8723be_phy_sw_chnl(rtl8723be_hal_ops_group1); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 34: ; if (ldv_state_variable_3 == 1) { rtl8723be_phy_set_rf_reg(rtl8723be_hal_ops_group1, ldvarg12, ldvarg11, ldvarg10, ldvarg13); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { rtl8723be_phy_set_rf_reg(rtl8723be_hal_ops_group1, ldvarg12, ldvarg11, ldvarg10, ldvarg13); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 35: ; if (ldv_state_variable_3 == 1) { rtl8723be_enable_hw_security_config(rtl8723be_hal_ops_group1); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { rtl8723be_enable_hw_security_config(rtl8723be_hal_ops_group1); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 36: ; if (ldv_state_variable_3 == 1) { rtl8723be_get_btc_status(); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { rtl8723be_get_btc_status(); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 37: ; if (ldv_state_variable_3 == 1) { rtl8723be_init_sw_vars(rtl8723be_hal_ops_group1); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { rtl8723be_init_sw_vars(rtl8723be_hal_ops_group1); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 38: ; if (ldv_state_variable_3 == 1) { rtl8723be_suspend(rtl8723be_hal_ops_group1); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { rtl8723be_suspend(rtl8723be_hal_ops_group1); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 39: ; if (ldv_state_variable_3 == 1) { rtl8723be_phy_query_rf_reg(rtl8723be_hal_ops_group1, ldvarg9, ldvarg8, ldvarg7); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { rtl8723be_phy_query_rf_reg(rtl8723be_hal_ops_group1, ldvarg9, ldvarg8, ldvarg7); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 40: ; if (ldv_state_variable_3 == 1) { rtl8723be_set_beacon_interval(rtl8723be_hal_ops_group1); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { rtl8723be_set_beacon_interval(rtl8723be_hal_ops_group1); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 41: ; if (ldv_state_variable_3 == 1) { rtl8723be_is_tx_desc_closed(rtl8723be_hal_ops_group1, (int )ldvarg6, (int )ldvarg5); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { rtl8723be_is_tx_desc_closed(rtl8723be_hal_ops_group1, (int )ldvarg6, (int )ldvarg5); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 42: ; if (ldv_state_variable_3 == 1) { rtl8723be_phy_scan_operation_backup(rtl8723be_hal_ops_group1, (int )ldvarg4); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { rtl8723be_phy_scan_operation_backup(rtl8723be_hal_ops_group1, (int )ldvarg4); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 43: ; if (ldv_state_variable_3 == 1) { rtl8723be_rx_query_desc(rtl8723be_hal_ops_group1, ldvarg3, ldvarg2, ldvarg1, rtl8723be_hal_ops_group2); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 2) { rtl8723be_rx_query_desc(rtl8723be_hal_ops_group1, ldvarg3, ldvarg2, ldvarg1, rtl8723be_hal_ops_group2); ldv_state_variable_3 = 2; } else { } goto ldv_53582; case 44: ; if (ldv_state_variable_3 == 2) { ldv_release_3(); ldv_state_variable_3 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_53582; case 45: ; if (ldv_state_variable_3 == 1) { ldv_probe_3(); ldv_state_variable_3 = 2; ref_cnt = ref_cnt + 1; } else { } goto ldv_53582; default: ldv_stop(); } ldv_53582: ; } else { } goto ldv_53573; case 3: ; if (ldv_state_variable_2 != 0) { tmp___51 = __VERIFIER_nondet_int(); switch (tmp___51) { case 0: ; if (ldv_state_variable_2 == 2) { ldv_retval_20 = rtl_pci_suspend(rtlwifi_pm_ops_group1); if (ldv_retval_20 == 0) { ldv_state_variable_2 = 3; } else { } } else { } goto ldv_53631; case 1: ; if (ldv_state_variable_2 == 2) { ldv_retval_19 = rtl_pci_suspend(rtlwifi_pm_ops_group1); if (ldv_retval_19 == 0) { ldv_state_variable_2 = 4; } else { } } else { } goto ldv_53631; case 2: ; if (ldv_state_variable_2 == 12) { ldv_retval_18 = rtl_pci_resume(rtlwifi_pm_ops_group1); if (ldv_retval_18 == 0) { ldv_state_variable_2 = 15; } else { } } else { } goto ldv_53631; case 3: ; if (ldv_state_variable_2 == 14) { ldv_retval_17 = rtl_pci_resume(rtlwifi_pm_ops_group1); if (ldv_retval_17 == 0) { ldv_state_variable_2 = 15; } else { } } else { } goto ldv_53631; case 4: ; if (ldv_state_variable_2 == 2) { ldv_retval_16 = rtl_pci_suspend(rtlwifi_pm_ops_group1); if (ldv_retval_16 == 0) { ldv_state_variable_2 = 5; } else { } } else { } goto ldv_53631; case 5: ; if (ldv_state_variable_2 == 13) { ldv_retval_15 = rtl_pci_resume(rtlwifi_pm_ops_group1); if (ldv_retval_15 == 0) { ldv_state_variable_2 = 15; } else { } } else { } goto ldv_53631; case 6: ; if (ldv_state_variable_2 == 3) { ldv_retval_14 = ldv_suspend_late_2(); if (ldv_retval_14 == 0) { ldv_state_variable_2 = 6; } else { } } else { } goto ldv_53631; case 7: ; if (ldv_state_variable_2 == 9) { ldv_retval_13 = ldv_restore_early_2(); if (ldv_retval_13 == 0) { ldv_state_variable_2 = 13; } else { } } else { } goto ldv_53631; case 8: ; if (ldv_state_variable_2 == 6) { ldv_retval_12 = ldv_resume_early_2(); if (ldv_retval_12 == 0) { ldv_state_variable_2 = 12; } else { } } else { } goto ldv_53631; case 9: ; if (ldv_state_variable_2 == 11) { ldv_retval_11 = ldv_thaw_early_2(); if (ldv_retval_11 == 0) { ldv_state_variable_2 = 14; } else { } } else { } goto ldv_53631; case 10: ; if (ldv_state_variable_2 == 7) { ldv_retval_10 = ldv_resume_noirq_2(); if (ldv_retval_10 == 0) { ldv_state_variable_2 = 12; } else { } } else { } goto ldv_53631; case 11: ; if (ldv_state_variable_2 == 5) { ldv_retval_9 = ldv_freeze_noirq_2(); if (ldv_retval_9 == 0) { ldv_state_variable_2 = 10; } else { } } else { } goto ldv_53631; case 12: ; if (ldv_state_variable_2 == 1) { ldv_retval_8 = ldv_prepare_2(); if (ldv_retval_8 == 0) { ldv_state_variable_2 = 2; ref_cnt = ref_cnt + 1; } else { } } else { } goto ldv_53631; case 13: ; if (ldv_state_variable_2 == 5) { ldv_retval_7 = ldv_freeze_late_2(); if (ldv_retval_7 == 0) { ldv_state_variable_2 = 11; } else { } } else { } goto ldv_53631; case 14: ; if (ldv_state_variable_2 == 10) { ldv_retval_6 = ldv_thaw_noirq_2(); if (ldv_retval_6 == 0) { ldv_state_variable_2 = 14; } else { } } else { } goto ldv_53631; case 15: ; if (ldv_state_variable_2 == 4) { ldv_retval_5 = ldv_poweroff_noirq_2(); if (ldv_retval_5 == 0) { ldv_state_variable_2 = 8; } else { } } else { } goto ldv_53631; case 16: ; if (ldv_state_variable_2 == 4) { ldv_retval_4 = ldv_poweroff_late_2(); if (ldv_retval_4 == 0) { ldv_state_variable_2 = 9; } else { } } else { } goto ldv_53631; case 17: ; if (ldv_state_variable_2 == 8) { ldv_retval_3 = ldv_restore_noirq_2(); if (ldv_retval_3 == 0) { ldv_state_variable_2 = 13; } else { } } else { } goto ldv_53631; case 18: ; if (ldv_state_variable_2 == 3) { ldv_retval_2 = ldv_suspend_noirq_2(); if (ldv_retval_2 == 0) { ldv_state_variable_2 = 7; } else { } } else { } goto ldv_53631; case 19: ; if (ldv_state_variable_2 == 15) { ldv_complete_2(); ldv_state_variable_2 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_53631; default: ldv_stop(); } ldv_53631: ; } else { } goto ldv_53573; default: ldv_stop(); } ldv_53573: ; goto ldv_53653; ldv_final: ldv_check_final_state(); return 0; } } void ldv_consume_skb_87(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_88(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_89(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_90(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_93(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_99(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_100(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_101(struct sk_buff *ldv_func_arg1 ) ; void ldv_consume_skb_98(struct sk_buff *ldv_func_arg1 ) ; u32 RTL8723BEPHY_REG_1TARRAY[388U] = { 2048U, 2147745792U, 2052U, 3U, 2056U, 64512U, 2060U, 10U, 2064U, 268440369U, 2068U, 34356496U, 2072U, 35652485U, 2076U, 0U, 2080U, 16777472U, 2084U, 3736068U, 2088U, 0U, 2092U, 0U, 2096U, 0U, 2100U, 0U, 2104U, 0U, 2108U, 0U, 2112U, 65536U, 2116U, 0U, 2120U, 0U, 2124U, 0U, 2128U, 0U, 2132U, 0U, 2136U, 1452937641U, 2140U, 16777236U, 2144U, 1727398160U, 2148U, 102696521U, 2152U, 0U, 2156U, 656877312U, 2160U, 117442400U, 2164U, 620773376U, 2168U, 2056U, 2172U, 0U, 2176U, 2952793116U, 2180U, 1U, 2184U, 0U, 2188U, 3435135168U, 2192U, 2048U, 2196U, 4294967294U, 2200U, 1076895760U, 2204U, 7364688U, 2304U, 0U, 2308U, 35U, 2312U, 0U, 2316U, 2165444881U, 2320U, 2U, 2324U, 513U, 2376U, 0U, 2560U, 13649864U, 2564U, 2164195340U, 2568U, 2357428992U, 2572U, 780079631U, 2576U, 2499853176U, 2580U, 286576680U, 2584U, 8917271U, 2588U, 2299793152U, 2592U, 437977088U, 2596U, 151917335U, 2600U, 516U, 2604U, 13828096U, 2672U, 270515968U, 2676U, 7U, 2680U, 2304U, 2684U, 576390662U, 2688U, 562062480U, 2860U, 0U, 3072U, 1208425792U, 3076U, 60839441U, 3080U, 228U, 3084U, 1819044972U, 3088U, 142606336U, 3092U, 1073742080U, 3096U, 142606336U, 3100U, 1073742080U, 3104U, 0U, 3108U, 0U, 3112U, 0U, 3116U, 0U, 3120U, 1776921668U, 3124U, 1184256687U, 3128U, 1232689556U, 3132U, 177706780U, 3136U, 528236607U, 3140U, 65719U, 3144U, 3959554311U, 3148U, 8323967U, 3152U, 1767191584U, 3156U, 1136394388U, 3160U, 143721U, 3164U, 2426002U, 3168U, 0U, 3172U, 1897038987U, 3176U, 1203768319U, 3180U, 54U, 3184U, 746520589U, 3188U, 33951963U, 3192U, 31U, 3196U, 12129810U, 3200U, 956301540U, 3204U, 552992768U, 3208U, 1073742080U, 3212U, 538968064U, 3216U, 134682U, 3220U, 0U, 3224U, 134682U, 3228U, 32639U, 3232U, 0U, 3236U, 196768U, 3240U, 0U, 3244U, 0U, 3248U, 0U, 3252U, 0U, 3256U, 0U, 3260U, 671088640U, 3264U, 0U, 3268U, 0U, 3272U, 0U, 3276U, 0U, 3280U, 0U, 3284U, 0U, 3288U, 1689396263U, 3292U, 7760178U, 3296U, 2236962U, 3300U, 0U, 3304U, 929317634U, 3308U, 798479372U, 3328U, 1856U, 3332U, 1073873921U, 3336U, 36991U, 3340U, 536936961U, 3344U, 2690855731U, 3348U, 859028563U, 3352U, 2056215407U, 3372U, 3432487285U, 3376U, 0U, 3380U, 2153807872U, 3384U, 0U, 3388U, 1209171U, 3392U, 0U, 3396U, 0U, 3400U, 0U, 3404U, 0U, 3408U, 1681331210U, 3412U, 0U, 3416U, 642U, 3420U, 805511268U, 3424U, 1179901544U, 3428U, 72452668U, 3432U, 8449U, 3436U, 706747414U, 3440U, 403846702U, 3444U, 841753120U, 3448U, 932900U, 3584U, 757935405U, 3588U, 757935405U, 3592U, 59778861U, 3600U, 757935405U, 3604U, 757935405U, 3608U, 757935405U, 3612U, 757935405U, 3624U, 0U, 3632U, 268491807U, 3636U, 268471327U, 3640U, 34865410U, 3644U, 1746273474U, 3648U, 16808960U, 3652U, 16795648U, 3656U, 4211081216U, 3660U, 10449U, 3664U, 268491807U, 3668U, 268471327U, 3672U, 34865410U, 3676U, 672533765U, 3680U, 8U, 3688U, 1779030U, 3692U, 12583062U, 3696U, 12583062U, 3700U, 16777302U, 3704U, 16777236U, 3708U, 16777302U, 3712U, 16777236U, 3716U, 12583062U, 3720U, 16777302U, 3724U, 12583062U, 3792U, 12583062U, 3796U, 12583062U, 3800U, 12583062U, 3804U, 214U, 3808U, 214U, 3820U, 29360150U, 3860U, 3U, 3916U, 0U, 3840U, 768U, 2080U, 16777472U, 2048U, 2198077440U}; u32 RTL8723BEPHY_REG_ARRAY_PG[36U] = { 0U, 0U, 0U, 3592U, 65280U, 16384U, 0U, 0U, 0U, 2156U, 4294967040U, 875968512U, 0U, 0U, 0U, 3584U, 4294967295U, 1111770694U, 0U, 0U, 0U, 3588U, 4294967295U, 808728640U, 0U, 0U, 0U, 3600U, 4294967295U, 943735364U, 0U, 0U, 0U, 3604U, 4294967295U, 640693302U}; u32 RTL8723BE_RADIOA_1TARRAY[206U] = { 0U, 65536U, 176U, 917472U, 254U, 0U, 254U, 0U, 254U, 0U, 177U, 24U, 254U, 0U, 254U, 0U, 254U, 0U, 178U, 543744U, 181U, 53964U, 182U, 599466U, 183U, 16U, 184U, 36991U, 92U, 2U, 124U, 2U, 126U, 5U, 139U, 457728U, 176U, 1047024U, 28U, 473554U, 30U, 0U, 223U, 1920U, 80U, 422965U, 81U, 438350U, 82U, 2002U, 83U, 0U, 84U, 328704U, 85U, 262766U, 221U, 76U, 112U, 422965U, 113U, 438350U, 114U, 2002U, 115U, 0U, 116U, 328704U, 117U, 262766U, 239U, 256U, 52U, 44503U, 53U, 23552U, 52U, 40404U, 53U, 20480U, 52U, 36305U, 53U, 17408U, 52U, 32206U, 53U, 14336U, 52U, 27857U, 53U, 17408U, 52U, 23758U, 53U, 14336U, 52U, 18638U, 53U, 17408U, 52U, 13518U, 53U, 14336U, 52U, 9297U, 53U, 17408U, 52U, 5198U, 53U, 14336U, 52U, 81U, 53U, 17408U, 239U, 0U, 239U, 256U, 237U, 16U, 68U, 44503U, 68U, 40404U, 68U, 36305U, 68U, 32206U, 68U, 27841U, 68U, 23758U, 68U, 17617U, 68U, 13518U, 68U, 9297U, 68U, 5198U, 68U, 81U, 239U, 0U, 237U, 0U, 239U, 8192U, 59U, 229615U, 59U, 197374U, 59U, 167142U, 59U, 131260U, 59U, 100517U, 59U, 69564U, 59U, 36721U, 59U, 2304U, 239U, 0U, 237U, 1U, 64U, 229615U, 64U, 197374U, 64U, 167142U, 64U, 131260U, 64U, 100517U, 64U, 69564U, 64U, 36721U, 64U, 2304U, 237U, 0U, 130U, 524288U, 131U, 32768U, 132U, 298368U, 133U, 425984U, 162U, 524288U, 163U, 32768U, 164U, 298368U, 165U, 425984U, 0U, 212352U}; u32 RTL8723BEMAC_1T_ARRAY[194U] = { 47U, 48U, 53U, 0U, 1064U, 10U, 1065U, 16U, 1072U, 0U, 1073U, 0U, 1074U, 0U, 1075U, 1U, 1076U, 4U, 1077U, 5U, 1078U, 7U, 1079U, 8U, 1084U, 4U, 1085U, 5U, 1086U, 7U, 1087U, 8U, 1088U, 93U, 1089U, 1U, 1090U, 0U, 1092U, 16U, 1093U, 0U, 1094U, 0U, 1095U, 0U, 1096U, 0U, 1097U, 240U, 1098U, 15U, 1099U, 62U, 1100U, 16U, 1101U, 0U, 1102U, 0U, 1103U, 0U, 1104U, 0U, 1105U, 240U, 1106U, 15U, 1107U, 0U, 1110U, 94U, 1120U, 102U, 1121U, 102U, 1224U, 255U, 1225U, 8U, 1228U, 255U, 1229U, 255U, 1230U, 1U, 1280U, 38U, 1281U, 162U, 1282U, 47U, 1283U, 0U, 1284U, 40U, 1285U, 163U, 1286U, 94U, 1287U, 0U, 1288U, 43U, 1289U, 164U, 1290U, 94U, 1291U, 0U, 1292U, 79U, 1293U, 164U, 1294U, 0U, 1295U, 0U, 1298U, 28U, 1300U, 10U, 1302U, 10U, 1317U, 79U, 1360U, 16U, 1361U, 16U, 1369U, 2U, 1372U, 80U, 1373U, 255U, 1541U, 48U, 1544U, 14U, 1545U, 42U, 1568U, 255U, 1569U, 255U, 1570U, 255U, 1571U, 255U, 1572U, 255U, 1573U, 255U, 1574U, 255U, 1575U, 255U, 1592U, 80U, 1596U, 10U, 1597U, 10U, 1598U, 14U, 1599U, 14U, 1600U, 64U, 1602U, 64U, 1603U, 0U, 1618U, 200U, 1646U, 5U, 1792U, 33U, 1793U, 67U, 1794U, 101U, 1795U, 135U, 1800U, 33U, 1801U, 67U, 1802U, 101U, 1803U, 135U}; u32 RTL8723BEAGCTAB_1TARRAY[260U] = { 3192U, 4244635649U, 3192U, 4227923969U, 3192U, 4211212289U, 3192U, 4194500609U, 3192U, 4177788929U, 3192U, 4161077249U, 3192U, 4144365569U, 3192U, 4127653889U, 3192U, 4110942209U, 3192U, 4094230529U, 3192U, 4077518849U, 3192U, 4060807169U, 3192U, 4044095489U, 3192U, 4027383809U, 3192U, 4010672129U, 3192U, 3993960449U, 3192U, 3977248769U, 3192U, 3960537089U, 3192U, 3943825409U, 3192U, 3927113729U, 3192U, 3910402049U, 3192U, 3893690369U, 3192U, 3876978689U, 3192U, 2853634049U, 3192U, 2836922369U, 3192U, 2820210689U, 3192U, 2803499009U, 3192U, 2786787329U, 3192U, 2770075649U, 3192U, 2753363969U, 3192U, 2736652289U, 3192U, 1730084865U, 3192U, 1713373185U, 3192U, 1696661505U, 3192U, 1679949825U, 3192U, 1663238145U, 3192U, 1646526465U, 3192U, 1629814785U, 3192U, 1193672705U, 3192U, 1176961025U, 3192U, 1160249345U, 3192U, 1143537665U, 3192U, 1126825985U, 3192U, 1110114305U, 3192U, 690749441U, 3192U, 674037761U, 3192U, 657326081U, 3192U, 640614401U, 3192U, 623902721U, 3192U, 607191041U, 3192U, 154271745U, 3192U, 137560065U, 3192U, 120848385U, 3192U, 104136705U, 3192U, 87425025U, 3192U, 70713345U, 3192U, 54001665U, 3192U, 37289985U, 3192U, 20578305U, 3192U, 3866625U, 3192U, 3932161U, 3192U, 3997697U, 3192U, 4063233U, 3192U, 4128769U, 3192U, 4232052737U, 3192U, 4215341057U, 3192U, 4198629377U, 3192U, 4181917697U, 3192U, 4165206017U, 3192U, 4148494337U, 3192U, 4131782657U, 3192U, 4115070977U, 3192U, 4098359297U, 3192U, 4081647617U, 3192U, 4064935937U, 3192U, 4048224257U, 3192U, 4031512577U, 3192U, 4014800897U, 3192U, 3998089217U, 3192U, 3981377537U, 3192U, 3964665857U, 3192U, 3947954177U, 3192U, 3931242497U, 3192U, 3914530817U, 3192U, 3897819137U, 3192U, 3881107457U, 3192U, 3864395777U, 3192U, 3847684097U, 3192U, 2857893889U, 3192U, 2841182209U, 3192U, 2824470529U, 3192U, 2807758849U, 3192U, 2791047169U, 3192U, 2774335489U, 3192U, 2757623809U, 3192U, 1734279169U, 3192U, 1717567489U, 3192U, 1700855809U, 3192U, 1684144129U, 3192U, 1667432449U, 3192U, 1650720769U, 3192U, 1634009089U, 3192U, 1197867009U, 3192U, 1181155329U, 3192U, 1164443649U, 3192U, 1147731969U, 3192U, 1131020289U, 3192U, 1114308609U, 3192U, 694943745U, 3192U, 678232065U, 3192U, 661520385U, 3192U, 644808705U, 3192U, 628097025U, 3192U, 611385345U, 3192U, 158466049U, 3192U, 141754369U, 3192U, 125042689U, 3192U, 108331009U, 3192U, 91619329U, 3192U, 74907649U, 3192U, 58195969U, 3192U, 41484289U, 3192U, 24772609U, 3192U, 8060929U, 3192U, 8126465U, 3192U, 8192001U, 3192U, 8257537U, 3192U, 8323073U, 3152U, 1767191586U, 3152U, 1767191584U}; void ldv_consume_skb_98(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_99(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_100(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_101(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } extern void warn_slowpath_null(char const * , int const ) ; extern unsigned long __phys_addr(unsigned long ) ; __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_mapping_error(struct device * , dma_addr_t ) ; __inline static dma_addr_t dma_map_single_attrs(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); ldv_20746: ; goto ldv_20746; } else { } tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, (struct page *)-24189255811072L + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, (struct page *)-24189255811072L + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); return (addr); } } __inline static int dma_mapping_error(struct device *dev , dma_addr_t dma_addr ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; { tmp = get_dma_ops(dev); ops = tmp; debug_dma_mapping_error(dev, dma_addr); if ((unsigned long )ops->mapping_error != (unsigned long )((int (*)(struct device * , dma_addr_t ))0)) { tmp___0 = (*(ops->mapping_error))(dev, dma_addr); return (tmp___0); } else { } return (dma_addr == 0ULL); } } void ldv_kfree_skb_109(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_110(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_111(struct sk_buff *ldv_func_arg1 ) ; void ldv_kfree_skb_114(struct sk_buff *ldv_func_arg1 ) ; void ldv_consume_skb_108(struct sk_buff *ldv_func_arg1 ) ; extern unsigned char *skb_push(struct sk_buff * , unsigned int ) ; __inline static bool is_multicast_ether_addr(u8 const *addr ) { { return (((int )*addr & 1) != 0); } } __inline static bool is_broadcast_ether_addr(u8 const *addr ) { { return ((unsigned int )(((int )((unsigned short )*((u16 const *)addr)) & (int )((unsigned short )*((u16 const *)addr + 2U))) & (int )((unsigned short )*((u16 const *)addr + 4U))) == 65535U); } } __inline static bool ether_addr_equal(u8 const *addr1 , u8 const *addr2 ) { u32 fold ; { fold = ((unsigned int )*((u32 const *)addr1) ^ (unsigned int )*((u32 const *)addr2)) | (unsigned int )((int )((unsigned short )*((u16 const *)addr1 + 4U)) ^ (int )((unsigned short )*((u16 const *)addr2 + 4U))); return (fold == 0U); } } __inline static int ieee80211_has_tods(__le16 fc ) { { return (((int )fc & 256) != 0); } } __inline static int ieee80211_has_fromds(__le16 fc ) { { return (((int )fc & 512) != 0); } } __inline static int ieee80211_has_a4(__le16 fc ) { __le16 tmp ; { tmp = 768U; return (((int )fc & (int )tmp) == (int )tmp); } } __inline static int ieee80211_has_protected(__le16 fc ) { { return (((int )fc & 16384) != 0); } } __inline static int ieee80211_is_mgmt(__le16 fc ) { { return (((int )fc & 12) == 0); } } __inline static int ieee80211_is_ctl(__le16 fc ) { { return (((int )fc & 12) == 4); } } __inline static int ieee80211_is_data_qos(__le16 fc ) { { return (((int )fc & 140) == 136); } } __inline static int ieee80211_is_beacon(__le16 fc ) { { return (((int )fc & 252) == 128); } } __inline static int ieee80211_is_disassoc(__le16 fc ) { { return (((int )fc & 252) == 160); } } __inline static int ieee80211_is_deauth(__le16 fc ) { { return (((int )fc & 252) == 192); } } __inline static int ieee80211_is_action(__le16 fc ) { { return (((int )fc & 252) == 208); } } __inline static int ieee80211_is_nullfunc(__le16 fc ) { { return (((int )fc & 252) == 72); } } __inline static u8 *ieee80211_get_SA(struct ieee80211_hdr *hdr ) { int tmp ; int tmp___0 ; { tmp = ieee80211_has_a4((int )hdr->frame_control); if (tmp != 0) { return ((u8 *)(& hdr->addr4)); } else { } tmp___0 = ieee80211_has_fromds((int )hdr->frame_control); if (tmp___0 != 0) { return ((u8 *)(& hdr->addr3)); } else { } return ((u8 *)(& hdr->addr2)); } } __inline static u8 *ieee80211_get_DA(struct ieee80211_hdr *hdr ) { int tmp ; { tmp = ieee80211_has_tods((int )hdr->frame_control); if (tmp != 0) { return ((u8 *)(& hdr->addr3)); } else { return ((u8 *)(& hdr->addr1)); } } } __inline static bool _ieee80211_is_robust_mgmt_frame(struct ieee80211_hdr *hdr ) { int tmp ; int tmp___0 ; u8 *category ; int tmp___1 ; int tmp___2 ; { tmp = ieee80211_is_disassoc((int )hdr->frame_control); if (tmp != 0) { return (1); } else { tmp___0 = ieee80211_is_deauth((int )hdr->frame_control); if (tmp___0 != 0) { return (1); } else { } } tmp___2 = ieee80211_is_action((int )hdr->frame_control); if (tmp___2 != 0) { tmp___1 = ieee80211_has_protected((int )hdr->frame_control); if (tmp___1 != 0) { return (1); } else { } category = (u8 *)hdr + 24UL; return ((bool )((((unsigned int )*category != 4U && (unsigned int )*category != 7U) && (unsigned int )*category != 15U) && (unsigned int )*category != 127U)); } else { } return (0); } } __inline static struct ieee80211_hdr *rtl_get_hdr(struct sk_buff *skb ) { { return ((struct ieee80211_hdr *)skb->data); } } __inline static __le16 rtl_get_fc(struct sk_buff *skb ) { struct ieee80211_hdr *tmp ; { tmp = rtl_get_hdr(skb); return (tmp->frame_control); } } __inline static dma_addr_t pci_map_single(struct pci_dev *hwdev , void *ptr , size_t size , int direction ) { dma_addr_t tmp ; { tmp = dma_map_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, ptr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); return (tmp); } } __inline static int pci_dma_mapping_error(struct pci_dev *pdev , dma_addr_t dma_addr ) { int tmp ; { tmp = dma_mapping_error(& pdev->dev, dma_addr); return (tmp); } } extern void rtl_get_tcb_desc(struct ieee80211_hw * , struct ieee80211_tx_info * , struct ieee80211_sta * , struct sk_buff * , struct rtl_tcb_desc * ) ; extern u8 rtl_query_rxpwrpercentage(char ) ; extern u8 rtl_evm_db_to_percentage(char ) ; extern long rtl_signal_scale_mapping(struct ieee80211_hw * , long ) ; extern void rtl_process_phyinfo(struct ieee80211_hw * , u8 * , struct rtl_stats * ) ; static u8 _rtl8723be_map_hwqueue_to_fwqueue(struct sk_buff *skb , u8 hw_queue ) { __le16 fc ; __le16 tmp ; int tmp___0 ; long tmp___1 ; int tmp___2 ; int tmp___3 ; { tmp = rtl_get_fc(skb); fc = tmp; tmp___0 = ieee80211_is_beacon((int )fc); tmp___1 = ldv__builtin_expect(tmp___0 != 0, 0L); if (tmp___1 != 0L) { return (16U); } else { } tmp___2 = ieee80211_is_mgmt((int )fc); if (tmp___2 != 0) { return (18U); } else { tmp___3 = ieee80211_is_ctl((int )fc); if (tmp___3 != 0) { return (18U); } else { } } return ((u8 )skb->priority); } } static int _rtl8723be_rate_mapping(struct ieee80211_hw *hw , bool isht , u8 desc_rate ) { int rate_idx ; { if (! isht) { if ((unsigned int )(hw->conf.chandef.chan)->band == 0U) { switch ((int )desc_rate) { case 0: rate_idx = 0; goto ldv_51508; case 1: rate_idx = 1; goto ldv_51508; case 2: rate_idx = 2; goto ldv_51508; case 3: rate_idx = 3; goto ldv_51508; case 4: rate_idx = 4; goto ldv_51508; case 5: rate_idx = 5; goto ldv_51508; case 6: rate_idx = 6; goto ldv_51508; case 7: rate_idx = 7; goto ldv_51508; case 8: rate_idx = 8; goto ldv_51508; case 9: rate_idx = 9; goto ldv_51508; case 10: rate_idx = 10; goto ldv_51508; case 11: rate_idx = 11; goto ldv_51508; default: rate_idx = 0; goto ldv_51508; } ldv_51508: ; } else { switch ((int )desc_rate) { case 4: rate_idx = 0; goto ldv_51522; case 5: rate_idx = 1; goto ldv_51522; case 6: rate_idx = 2; goto ldv_51522; case 7: rate_idx = 3; goto ldv_51522; case 8: rate_idx = 4; goto ldv_51522; case 9: rate_idx = 5; goto ldv_51522; case 10: rate_idx = 6; goto ldv_51522; case 11: rate_idx = 7; goto ldv_51522; default: rate_idx = 0; goto ldv_51522; } ldv_51522: ; } } else { switch ((int )desc_rate) { case 12: rate_idx = 0; goto ldv_51532; case 13: rate_idx = 1; goto ldv_51532; case 14: rate_idx = 2; goto ldv_51532; case 15: rate_idx = 3; goto ldv_51532; case 16: rate_idx = 4; goto ldv_51532; case 17: rate_idx = 5; goto ldv_51532; case 18: rate_idx = 6; goto ldv_51532; case 19: rate_idx = 7; goto ldv_51532; case 20: rate_idx = 8; goto ldv_51532; case 21: rate_idx = 9; goto ldv_51532; case 22: rate_idx = 10; goto ldv_51532; case 23: rate_idx = 11; goto ldv_51532; case 24: rate_idx = 12; goto ldv_51532; case 25: rate_idx = 13; goto ldv_51532; case 26: rate_idx = 14; goto ldv_51532; case 27: rate_idx = 15; goto ldv_51532; default: rate_idx = 0; goto ldv_51532; } ldv_51532: ; } return (rate_idx); } } static void _rtl8723be_query_rxphystatus(struct ieee80211_hw *hw , struct rtl_stats *pstatus , u8 *pdesc , struct rx_fwinfo_8723be *p_drvinfo , bool packet_match_bssid , bool packet_toself , bool packet_beacon ) { struct rtl_priv *rtlpriv ; struct rtl_ps_ctl *ppsc ; struct phy_sts_cck_8723e_t *cck_buf ; struct phy_status_rpt *p_phystrpt ; struct rtl_dm *rtldm ; char rx_pwr_all ; char rx_pwr[4U] ; u8 rf_rx_num ; u8 evm ; u8 pwdb_all ; u8 i ; u8 max_spatial_stream ; u32 rssi ; u32 total_rssi ; bool is_cck ; u8 lan_idx ; u8 vga_idx ; u8 cck_highpwr ; u8 cck_agc_rpt ; u32 tmp ; u8 sq ; u8 tmp___0 ; long tmp___1 ; long tmp___2 ; { rtlpriv = (struct rtl_priv *)hw->priv; ppsc = & rtlpriv->psc; p_phystrpt = (struct phy_status_rpt *)p_drvinfo; rtldm = & ((struct rtl_priv *)hw->priv)->dm; rx_pwr_all = 0; rf_rx_num = 0U; total_rssi = 0U; is_cck = pstatus->is_cck; pstatus->packet_matchbssid = packet_match_bssid; pstatus->packet_toself = packet_toself; pstatus->packet_beacon = packet_beacon; pstatus->rx_mimo_sig_qual[0] = -1; pstatus->rx_mimo_sig_qual[1] = -1; if ((int )is_cck) { cck_buf = (struct phy_sts_cck_8723e_t *)p_drvinfo; cck_agc_rpt = cck_buf->cck_agc_rpt; if ((unsigned int )ppsc->rfpwr_state == 0U) { tmp = rtl_get_bbreg(hw, 2084U, 512U); cck_highpwr = (unsigned char )tmp; } else { cck_highpwr = 0U; } lan_idx = (int )cck_agc_rpt >> 5; vga_idx = (unsigned int )cck_agc_rpt & 31U; switch ((int )lan_idx) { case 7: ; if ((unsigned int )vga_idx <= 27U) { rx_pwr_all = (char )((unsigned int )((unsigned char )(-23 - (int )vga_idx)) * 2U); } else { rx_pwr_all = -100; } goto ldv_51578; case 6: rx_pwr_all = (char )((unsigned int )((unsigned char )(-22 - (int )vga_idx)) * 2U); goto ldv_51578; case 5: rx_pwr_all = (char )((unsigned int )((unsigned char )(-14 - (int )vga_idx)) * 2U); goto ldv_51578; case 4: rx_pwr_all = (char )((unsigned int )((unsigned char )(-11 - (int )vga_idx)) * 2U); goto ldv_51578; case 3: rx_pwr_all = (char )((unsigned int )((unsigned char )(-5 - (int )vga_idx)) * 2U); goto ldv_51578; case 2: ; if ((unsigned int )cck_highpwr != 0U) { rx_pwr_all = (char )((unsigned int )((unsigned char )(~ ((int )vga_idx))) * 2U); } else { rx_pwr_all = (char )((unsigned int )((unsigned char )(2 - (int )vga_idx)) * 2U); } goto ldv_51578; case 1: rx_pwr_all = (char )((unsigned int )((unsigned char )(4 - (int )vga_idx)) * 2U); goto ldv_51578; case 0: rx_pwr_all = (char )((unsigned int )((unsigned char )(7 - (int )vga_idx)) * 2U); goto ldv_51578; default: ; goto ldv_51578; } ldv_51578: rx_pwr_all = (char )((unsigned int )((unsigned char )rx_pwr_all) + 6U); pwdb_all = rtl_query_rxpwrpercentage((int )rx_pwr_all); pwdb_all = (unsigned int )pwdb_all + 6U; if ((unsigned int )pwdb_all > 100U) { pwdb_all = 100U; } else { } if ((unsigned int )pwdb_all > 34U && (unsigned int )pwdb_all <= 42U) { pwdb_all = (unsigned int )pwdb_all + 254U; } else if ((unsigned int )pwdb_all > 26U && (unsigned int )pwdb_all <= 34U) { pwdb_all = (unsigned int )pwdb_all + 250U; } else if ((unsigned int )pwdb_all > 14U && (unsigned int )pwdb_all <= 26U) { pwdb_all = (unsigned int )pwdb_all + 248U; } else if ((unsigned int )pwdb_all > 4U && (unsigned int )pwdb_all <= 14U) { pwdb_all = (unsigned int )pwdb_all + 252U; } else { } if ((unsigned int )cck_highpwr == 0U) { if ((unsigned int )pwdb_all > 79U) { pwdb_all = ((((unsigned int )pwdb_all + 176U) << 1U) + (unsigned int )((u8 )(((int )pwdb_all + -80) >> 1))) + 80U; } else if ((unsigned int )pwdb_all <= 78U && (unsigned int )pwdb_all > 19U) { pwdb_all = (unsigned int )pwdb_all + 3U; } else { } if ((unsigned int )pwdb_all > 100U) { pwdb_all = 100U; } else { } } else { } pstatus->rx_pwdb_all = (u32 )pwdb_all; pstatus->recvsignalpower = (s32 )rx_pwr_all; if ((int )packet_match_bssid) { if (pstatus->rx_pwdb_all > 40U) { sq = 100U; } else { sq = cck_buf->sq_rpt; if ((unsigned int )sq > 64U) { sq = 0U; } else if ((unsigned int )sq <= 19U) { sq = 100U; } else { sq = (u8 )(((int )sq * -100 + 6400) / 44); } } pstatus->signalquality = sq; pstatus->rx_mimo_sig_qual[0] = (s8 )sq; pstatus->rx_mimo_sig_qual[1] = -1; } else { } } else { rtlpriv->dm.rfpath_rxenable[0] = 1; rtlpriv->dm.rfpath_rxenable[1] = 1; i = 0U; goto ldv_51589; ldv_51588: ; if ((int )rtlpriv->dm.rfpath_rxenable[(int )i]) { rf_rx_num = (u8 )((int )rf_rx_num + 1); } else { } rx_pwr[(int )i] = (char )((unsigned int )((unsigned char )(((int )p_drvinfo->gain_trsw[(int )i] & 63) + -55)) * 2U); tmp___0 = rtl_query_rxpwrpercentage((int )rx_pwr[(int )i]); rssi = (u32 )tmp___0; total_rssi = total_rssi + rssi; rtlpriv->stats.rx_snr_db[(int )i] = (long )((int )((signed char )p_drvinfo->rxsnr[(int )i]) / 2); if ((int )packet_match_bssid) { pstatus->rx_mimo_signalstrength[(int )i] = (unsigned char )rssi; } else { } i = (u8 )((int )i + 1); ldv_51589: ; if ((unsigned int )i <= 1U) { goto ldv_51588; } else { } rx_pwr_all = (char )((unsigned int )((int )p_drvinfo->pwdb_all >> 1) + 146U); pwdb_all = rtl_query_rxpwrpercentage((int )rx_pwr_all); pstatus->rx_pwdb_all = (u32 )pwdb_all; pstatus->rxpower = (s8 )rx_pwr_all; pstatus->recvsignalpower = (s32 )rx_pwr_all; if (((int )pstatus->is_ht && (unsigned int )pstatus->rate > 19U) && (unsigned int )pstatus->rate <= 27U) { max_spatial_stream = 2U; } else { max_spatial_stream = 1U; } i = 0U; goto ldv_51592; ldv_51591: evm = rtl_evm_db_to_percentage((int )p_drvinfo->rxevm[(int )i]); if ((int )packet_match_bssid) { if ((unsigned int )i == 0U) { pstatus->signalquality = evm; } else { } pstatus->rx_mimo_sig_qual[(int )i] = (s8 )evm; } else { } i = (u8 )((int )i + 1); ldv_51592: ; if ((int )i < (int )max_spatial_stream) { goto ldv_51591; } else { } if ((int )packet_match_bssid) { i = 0U; goto ldv_51595; ldv_51594: ((struct rtl_priv *)hw->priv)->dm.cfo_tail[(int )i] = (int )p_phystrpt->path_cfotail[(int )i]; i = (u8 )((int )i + 1); ldv_51595: ; if ((unsigned int )i <= 1U) { goto ldv_51594; } else { } ((struct rtl_priv *)hw->priv)->dm.packet_count = ((struct rtl_priv *)hw->priv)->dm.packet_count + 1U; if (((struct rtl_priv *)hw->priv)->dm.packet_count == 4294967295U) { ((struct rtl_priv *)hw->priv)->dm.packet_count = 0U; } else { } } else { } } if ((int )is_cck) { tmp___1 = rtl_signal_scale_mapping(hw, (long )pwdb_all); pstatus->signalstrength = (unsigned char )tmp___1; } else if ((unsigned int )rf_rx_num != 0U) { total_rssi = total_rssi / (u32 )rf_rx_num; tmp___2 = rtl_signal_scale_mapping(hw, (long )total_rssi); pstatus->signalstrength = (unsigned char )tmp___2; } else { } rtldm->fat_table.antsel_rx_keep_0 = p_phystrpt->ant_sel; rtldm->fat_table.antsel_rx_keep_1 = p_phystrpt->ant_sel_b; rtldm->fat_table.antsel_rx_keep_2 = p_phystrpt->antsel_rx_keep_2; return; } } static void _rtl8723be_translate_rx_signal_stuff(struct ieee80211_hw *hw , struct sk_buff *skb , struct rtl_stats *pstatus , u8 *pdesc , struct rx_fwinfo_8723be *p_drvinfo ) { struct rtl_mac *mac ; struct rtl_efuse *rtlefuse ; struct ieee80211_hdr *hdr ; u8 *tmp_buf ; u8 *praddr ; u8 *psaddr ; u16 fc ; u16 type ; bool packet_matchbssid ; bool packet_toself ; bool packet_beacon ; size_t __len ; void *__ret ; bool tmp ; int tmp___0 ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; { mac = & ((struct rtl_priv *)hw->priv)->mac80211; rtlefuse = & ((struct rtl_priv *)hw->priv)->efuse; tmp_buf = skb->data + ((unsigned long )pstatus->rx_drvinfo_size + (unsigned long )pstatus->rx_bufshift); hdr = (struct ieee80211_hdr *)tmp_buf; fc = hdr->frame_control; type = (unsigned int )hdr->frame_control & 12U; praddr = (u8 *)(& hdr->addr1); psaddr = ieee80211_get_SA(hdr); __len = 6UL; if (__len > 63UL) { __ret = __memcpy((void *)(& pstatus->psaddr), (void const *)psaddr, __len); } else { __ret = __builtin_memcpy((void *)(& pstatus->psaddr), (void const *)psaddr, __len); } if ((unsigned int )type != 4U) { tmp = ether_addr_equal((u8 const *)(& mac->bssid), (u8 const *)(((int )fc & 256) != 0 ? & hdr->addr1 : (((int )fc & 512) != 0 ? & hdr->addr2 : & hdr->addr3))); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { if ((unsigned int )*((unsigned char *)pstatus + 58UL) == 0U) { if ((unsigned int )*((unsigned char *)pstatus + 58UL) == 0U) { if ((unsigned int )*((unsigned char *)pstatus + 58UL) == 0U) { tmp___1 = 1; } else { tmp___1 = 0; } } else { tmp___1 = 0; } } else { tmp___1 = 0; } } else { tmp___1 = 0; } } else { tmp___1 = 0; } packet_matchbssid = (bool )tmp___1; if ((int )packet_matchbssid) { tmp___2 = ether_addr_equal((u8 const *)praddr, (u8 const *)(& rtlefuse->dev_addr)); if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { tmp___4 = 1; } else { tmp___4 = 0; } } else { tmp___4 = 0; } packet_toself = (bool )tmp___4; tmp___5 = ieee80211_is_beacon((int )hdr->frame_control); if (tmp___5 != 0) { packet_beacon = 1; } else { packet_beacon = 0; } if ((int )packet_beacon && (int )packet_matchbssid) { ((struct rtl_priv *)hw->priv)->dm.dbginfo.num_qry_beacon_pkt = (u16 )((int )((struct rtl_priv *)hw->priv)->dm.dbginfo.num_qry_beacon_pkt + 1); } else { } _rtl8723be_query_rxphystatus(hw, pstatus, pdesc, p_drvinfo, (int )packet_matchbssid, (int )packet_toself, (int )packet_beacon); rtl_process_phyinfo(hw, tmp_buf, pstatus); return; } } static void _rtl8723be_insert_emcontent(struct rtl_tcb_desc *ptcb_desc , u8 *virtualaddress ) { u32 dwtmp ; { dwtmp = 0U; memset((void *)virtualaddress, 0, 8UL); *((u32 *)virtualaddress) = (*((__le32 *)virtualaddress) & 4294967280U) | ((__le32 )ptcb_desc->empkt_num & 15U); if ((unsigned int )ptcb_desc->empkt_num == 1U) { dwtmp = ptcb_desc->empkt_len[0]; } else { dwtmp = ptcb_desc->empkt_len[0]; dwtmp = ((dwtmp & 3U) != 0U ? 8U - (dwtmp & 3U) : 4U) + dwtmp; dwtmp = ptcb_desc->empkt_len[1] + dwtmp; } *((u32 *)virtualaddress) = (*((__le32 *)virtualaddress) & 4294901775U) | ((dwtmp << 4) & 65535U); if ((unsigned int )ptcb_desc->empkt_num <= 3U) { dwtmp = ptcb_desc->empkt_len[2]; } else { dwtmp = ptcb_desc->empkt_len[2]; dwtmp = ((dwtmp & 3U) != 0U ? 8U - (dwtmp & 3U) : 4U) + dwtmp; dwtmp = ptcb_desc->empkt_len[3] + dwtmp; } *((u32 *)virtualaddress) = (*((__le32 *)virtualaddress) & 4026597375U) | ((dwtmp & 4095U) << 16); if ((unsigned int )ptcb_desc->empkt_num <= 5U) { dwtmp = ptcb_desc->empkt_len[4]; } else { dwtmp = ptcb_desc->empkt_len[4]; dwtmp = ((dwtmp & 3U) != 0U ? 8U - (dwtmp & 3U) : 4U) + dwtmp; dwtmp = ptcb_desc->empkt_len[5] + dwtmp; } *((u32 *)virtualaddress) = (*((__le32 *)virtualaddress) & 268435455U) | (dwtmp << 28); *((u32 *)virtualaddress + 4U) = (*((__le32 *)virtualaddress + 4U) & 4294967040U) | ((dwtmp >> 4) & 255U); if ((unsigned int )ptcb_desc->empkt_num <= 7U) { dwtmp = ptcb_desc->empkt_len[6]; } else { dwtmp = ptcb_desc->empkt_len[6]; dwtmp = ((dwtmp & 3U) != 0U ? 8U - (dwtmp & 3U) : 4U) + dwtmp; dwtmp = ptcb_desc->empkt_len[7] + dwtmp; } *((u32 *)virtualaddress + 4U) = (*((__le32 *)virtualaddress + 4U) & 4293918975U) | ((dwtmp & 4095U) << 8); if ((unsigned int )ptcb_desc->empkt_num <= 9U) { dwtmp = ptcb_desc->empkt_len[8]; } else { dwtmp = ptcb_desc->empkt_len[8]; dwtmp = ((dwtmp & 3U) != 0U ? 8U - (dwtmp & 3U) : 4U) + dwtmp; dwtmp = ptcb_desc->empkt_len[9] + dwtmp; } *((u32 *)virtualaddress + 4U) = (*((__le32 *)virtualaddress + 4U) & 1048575U) | (dwtmp << 20); return; } } bool rtl8723be_rx_query_desc(struct ieee80211_hw *hw , struct rtl_stats *status , struct ieee80211_rx_status *rx_status , u8 *pdesc , struct sk_buff *skb ) { struct rtl_priv *rtlpriv ; struct rx_fwinfo_8723be *p_drvinfo ; struct ieee80211_hdr *hdr ; u32 phystatus ; int tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; bool __warned ; int __ret_warn_once ; int __ret_warn_on ; long tmp___3 ; long tmp___4 ; long tmp___5 ; struct ieee80211_hdr *tmp___6 ; bool tmp___7 ; int tmp___8 ; int tmp___9 ; { rtlpriv = (struct rtl_priv *)hw->priv; phystatus = (*((__le32 *)pdesc) >> 26) & 1U; status->packet_report_type = (unsigned int )((unsigned char )(*((__le32 *)pdesc + 8U) >> 28)) & 1U; if ((unsigned int )status->packet_report_type == 2U) { status->length = (unsigned int )((unsigned short )*((__le32 *)pdesc)) & 511U; } else { status->length = (unsigned int )((unsigned short )*((__le32 *)pdesc)) & 16383U; } status->rx_drvinfo_size = ((unsigned int )((u8 )(*((__le32 *)pdesc) >> 16)) & 15U) * 8U; status->rx_bufshift = (unsigned int )((unsigned char )(*((__le32 *)pdesc) >> 24)) & 3U; status->icv = (unsigned int )((unsigned char )(*((__le32 *)pdesc) >> 15)) & 1U; status->crc = (unsigned int )((unsigned char )(*((__le32 *)pdesc) >> 14)) & 1U; status->hwerror = (unsigned char )((int )status->crc | (int )status->icv); status->decrypted = (*((__le32 *)pdesc) & 134217728U) == 0U; status->rate = (unsigned int )((unsigned char )*((__le32 *)pdesc + 12U)) & 127U; status->shortpreamble = (unsigned int )((unsigned char )*((__le32 *)pdesc + 16U)) & 1U; status->isampdu = (*((__le32 *)pdesc + 4U) & 32768U) != 0U; status->isfirst_ampdu = (*((__le32 *)pdesc + 4U) & 32768U) != 0U; if ((unsigned int )status->packet_report_type == 0U) { status->timestamp_low = *((__le32 *)pdesc + 20U); } else { } status->rx_is40Mhzpacket = ((*((__le32 *)pdesc + 16U) >> 4) & 3U) != 0U; status->is_ht = (*((__le32 *)pdesc + 12U) & 64U) != 0U; status->is_cck = (bool )((((unsigned int )status->rate == 0U || (unsigned int )status->rate == 1U) || (unsigned int )status->rate == 2U) || (unsigned int )status->rate == 3U); status->macid = *((__le32 *)pdesc + 4U) & 127U; if ((int )*((__le32 *)pdesc + 12U) < 0) { status->wake_match = 4U; } else if ((int )*((__le32 *)pdesc + 12U) < 0) { status->wake_match = 2U; } else if ((*((__le32 *)pdesc + 12U) & 1073741824U) != 0U) { status->wake_match = 1U; } else { status->wake_match = 0U; } if ((unsigned int )status->wake_match != 0U) { tmp___1 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 4096ULL) != 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 3, 0L); if (tmp___2 != 0L) { tmp = preempt_count(); tmp___0 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> GGGGGGGGGGGGGet Wakeup Packet!! WakeMatch=%d\n", "rtl8723be_rx_query_desc", (unsigned long )tmp___0 & 2096896UL, ((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, (int )status->wake_match); } else { } } else { } } else { } rx_status->freq = (hw->conf.chandef.chan)->center_freq; rx_status->band = (u8 )(hw->conf.chandef.chan)->band; hdr = (struct ieee80211_hdr *)(skb->data + ((unsigned long )status->rx_drvinfo_size + (unsigned long )status->rx_bufshift)); if ((unsigned int )*((unsigned char *)status + 58UL) != 0U) { rx_status->flag = rx_status->flag | 32U; } else { } if ((int )status->rx_is40Mhzpacket) { rx_status->flag = rx_status->flag | 1024U; } else { } if ((int )status->is_ht) { rx_status->flag = rx_status->flag | 512U; } else { } rx_status->flag = rx_status->flag | 128U; if ((unsigned int )*((unsigned char *)status + 58UL) != 0U) { if ((unsigned long )hdr == (unsigned long )((struct ieee80211_hdr *)0)) { __ret_warn_once = 1; tmp___5 = ldv__builtin_expect(__ret_warn_once != 0, 0L); if (tmp___5 != 0L) { __ret_warn_on = ! __warned; tmp___3 = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp___3 != 0L) { warn_slowpath_null("/work/ldvuser/mutilin/launch/work/current--X--drivers/net/--X--defaultlinux-3.16-rc1.tar.xz--X--205_9a--X--cpachecker/linux-3.16-rc1.tar.xz/csd_deg_dscv/623/dscv_tempdir/dscv/ri/205_9a/drivers/net/wireless/rtlwifi/rtl8723be/trx.o.c.prepared", 634); } else { } tmp___4 = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp___4 != 0L) { __warned = 1; } else { } } else { } ldv__builtin_expect(__ret_warn_once != 0, 0L); tmp___6 = rtl_get_hdr(skb); printk("\vrtl8723be: decrypted is true but hdr NULL in skb %p\n", tmp___6); return (0); } else { } tmp___7 = _ieee80211_is_robust_mgmt_frame(hdr); if ((int )tmp___7) { tmp___8 = ieee80211_has_protected((int )hdr->frame_control); if (tmp___8 != 0) { rx_status->flag = rx_status->flag & 4294967293U; } else { rx_status->flag = rx_status->flag | 2U; } } else { rx_status->flag = rx_status->flag | 2U; } } else { } tmp___9 = _rtl8723be_rate_mapping(hw, (int )status->is_ht, (int )status->rate); rx_status->rate_idx = (u8 )tmp___9; rx_status->mactime = (u64 )status->timestamp_low; if (phystatus != 0U) { p_drvinfo = (struct rx_fwinfo_8723be *)skb->data + (unsigned long )status->rx_bufshift; _rtl8723be_translate_rx_signal_stuff(hw, skb, status, pdesc, p_drvinfo); } else { } rx_status->signal = (s8 )((unsigned int )((unsigned char )status->recvsignalpower) + 10U); if ((unsigned int )status->packet_report_type == 2U) { status->macid_valid_entry[0] = *((__le32 *)pdesc + 16U); status->macid_valid_entry[1] = *((__le32 *)pdesc + 20U); } else { } return (1); } } void rtl8723be_tx_fill_desc(struct ieee80211_hw *hw , struct ieee80211_hdr *hdr , u8 *pdesc_tx , u8 *pbd_desc_tx , struct ieee80211_tx_info *info , struct ieee80211_sta *sta , struct sk_buff *skb , u8 hw_queue , struct rtl_tcb_desc *ptcb_desc ) { struct rtl_priv *rtlpriv ; struct rtl_mac *mac ; struct rtl_pci *rtlpci ; struct rtl_hal *rtlhal ; u8 *pdesc ; u16 seq_number ; __le16 fc ; unsigned int buf_len ; unsigned int skb_len ; u8 fw_qsel ; u8 tmp ; bool firstseg ; bool lastseg ; dma_addr_t mapping ; u8 bw_40 ; u8 short_gi ; int tmp___0 ; int tmp___1 ; long tmp___2 ; long tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; u8 ampdu_density ; struct ieee80211_key_conf *keyconf ; int tmp___11 ; int tmp___12 ; long tmp___13 ; long tmp___14 ; int tmp___15 ; int tmp___16 ; u8 *tmp___17 ; bool tmp___18 ; u8 *tmp___19 ; bool tmp___20 ; int tmp___21 ; int tmp___22 ; long tmp___23 ; long tmp___24 ; { rtlpriv = (struct rtl_priv *)hw->priv; mac = & ((struct rtl_priv *)hw->priv)->mac80211; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; rtlhal = & rtlpriv->rtlhal; pdesc = pdesc_tx; fc = hdr->frame_control; buf_len = 0U; skb_len = skb->len; tmp = _rtl8723be_map_hwqueue_to_fwqueue(skb, (int )hw_queue); fw_qsel = tmp; firstseg = ((int )hdr->seq_ctrl & 15) == 0; lastseg = ((int )hdr->frame_control & 1024) == 0; bw_40 = 0U; short_gi = 0U; if ((unsigned int )mac->opmode == 2U) { bw_40 = mac->bw_40; } else if ((unsigned int )mac->opmode == 3U || (unsigned int )mac->opmode == 1U) { if ((unsigned long )sta != (unsigned long )((struct ieee80211_sta *)0)) { bw_40 = (unsigned int )((u8 )sta->ht_cap.cap) & 2U; } else { } } else { } seq_number = (u16 )((int )hdr->seq_ctrl >> 4); rtl_get_tcb_desc(hw, info, sta, skb, ptcb_desc); if ((int )rtlhal->earlymode_enable) { skb_push(skb, 8U); memset((void *)skb->data, 0, 8UL); } else { } buf_len = skb->len; mapping = pci_map_single(rtlpci->pdev, (void *)skb->data, (size_t )skb->len, 1); tmp___4 = pci_dma_mapping_error(rtlpci->pdev, mapping); if (tmp___4 != 0) { tmp___2 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 16ULL) != 0ULL, 0L); if (tmp___2 != 0L) { tmp___3 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); if (tmp___3 != 0L) { tmp___0 = preempt_count(); tmp___1 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> DMA mapping error", "rtl8723be_tx_fill_desc", (unsigned long )tmp___1 & 2096896UL, ((unsigned long )tmp___0 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } return; } else { } memset((void *)pdesc, 0, 40UL); tmp___5 = ieee80211_is_nullfunc((int )fc); if (tmp___5 != 0) { firstseg = 1; lastseg = 1; } else { tmp___6 = ieee80211_is_ctl((int )fc); if (tmp___6 != 0) { firstseg = 1; lastseg = 1; } else { } } if ((int )firstseg) { if ((int )rtlhal->earlymode_enable) { *((u32 *)pdesc + 4U) = (*((__le32 *)pdesc + 4U) & 3774873599U) | 16777216U; *((u32 *)pdesc) = (*((__le32 *)pdesc) & 4278255615U) | 3145728U; if ((unsigned int )ptcb_desc->empkt_num != 0U) { tmp___9 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 16ULL) != 0ULL, 0L); if (tmp___9 != 0L) { tmp___10 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); if (tmp___10 != 0L) { tmp___7 = preempt_count(); tmp___8 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Insert 8 byte.pTcb->EMPktNum:%d\n", "rtl8723be_tx_fill_desc", (unsigned long )tmp___8 & 2096896UL, ((unsigned long )tmp___7 & 0xffffffffffdfffffUL) != 0UL, (int )ptcb_desc->empkt_num); } else { } } else { } _rtl8723be_insert_emcontent(ptcb_desc, skb->data); } else { } } else { *((u32 *)pdesc) = (*((__le32 *)pdesc) & 4278255615U) | 2621440U; } *((u32 *)pdesc + 16U) = (*((__le32 *)pdesc + 16U) & 4294967168U) | ((__le32 )ptcb_desc->hw_rate & 127U); if ((unsigned int )ptcb_desc->hw_rate > 12U) { short_gi = (unsigned int )*((unsigned char *)ptcb_desc + 3UL) & 1U; } else { short_gi = (unsigned int )*((unsigned char *)ptcb_desc + 3UL) != 0U; } *((u32 *)pdesc + 20U) = (*((__le32 *)pdesc + 20U) & 4294967279U) | (((unsigned int )short_gi & 1U) << 4); if ((info->flags & 64U) != 0U) { *((u32 *)pdesc + 8U) = *((__le32 *)pdesc + 8U) | 4096U; *((u32 *)pdesc + 12U) = (*((__le32 *)pdesc + 12U) & 4290904063U) | 2621440U; } else { } *((u32 *)pdesc + 36U) = (*((__le32 *)pdesc + 36U) & 4278194175U) | (((unsigned int )seq_number & 4095U) << 12); *((u32 *)pdesc + 12U) = (*((__le32 *)pdesc + 12U) & 4294963199U) | ((unsigned int )*((unsigned char *)ptcb_desc + 0UL) != 0U && (unsigned int )*((unsigned char *)ptcb_desc + 0UL) == 0U ? 4096U : 0U); *((u32 *)pdesc + 12U) = *((__le32 *)pdesc + 12U) & 4294959103U; *((u32 *)pdesc + 12U) = (*((__le32 *)pdesc + 12U) & 4294965247U) | ((unsigned int )*((unsigned char *)ptcb_desc + 0UL) != 0U ? 2048U : 0U); *((u32 *)pdesc + 16U) = (*((__le32 *)pdesc + 16U) & 3774873599U) | (((unsigned int )ptcb_desc->rts_rate & 31U) << 24); *((u32 *)pdesc + 20U) = (*((__le32 *)pdesc + 20U) & 4294844415U) | ((unsigned int )ptcb_desc->rts_sc << 13); *((u32 *)pdesc + 20U) = (*((__le32 *)pdesc + 20U) & 4294963199U) | ((unsigned int )ptcb_desc->rts_rate <= 11U ? ((unsigned int )*((unsigned char *)ptcb_desc + 0UL) != 0U ? 4096U : 0U) : ((unsigned int )*((unsigned char *)ptcb_desc + 0UL) != 0U ? 4096U : 0U)); if ((int )ptcb_desc->btx_enable_sw_calc_duration) { *((u32 *)pdesc + 12U) = *((__le32 *)pdesc + 12U) | 32768U; } else { } if ((unsigned int )bw_40 != 0U) { if ((unsigned int )*((unsigned char *)ptcb_desc + 0UL) != 0U) { *((u32 *)pdesc + 20U) = (*((__le32 *)pdesc + 20U) & 4294967199U) | 32U; *((u32 *)pdesc + 20U) = (*((__le32 *)pdesc + 20U) & 4294967280U) | 3U; } else { *((u32 *)pdesc + 20U) = *((__le32 *)pdesc + 20U) & 4294967199U; *((u32 *)pdesc + 20U) = (*((__le32 *)pdesc + 20U) & 4294967280U) | ((__le32 )mac->cur_40_prime_sc & 15U); } } else { *((u32 *)pdesc + 20U) = *((__le32 *)pdesc + 20U) & 4294967199U; *((u32 *)pdesc + 20U) = *((__le32 *)pdesc + 20U) & 4294967280U; } *((u32 *)pdesc) = *((__le32 *)pdesc) & 4026531839U; *((u32 *)pdesc) = (*((__le32 *)pdesc) & 4294901760U) | (__le32 )((unsigned short )skb_len); if ((unsigned long )sta != (unsigned long )((struct ieee80211_sta *)0)) { ampdu_density = sta->ht_cap.ampdu_density; *((u32 *)pdesc + 8U) = (*((__le32 *)pdesc + 8U) & 4287627263U) | (((unsigned int )ampdu_density & 7U) << 20); } else { } if ((unsigned long )info->ldv_46054.control.hw_key != (unsigned long )((struct ieee80211_key_conf *)0)) { keyconf = info->ldv_46054.control.hw_key; switch (keyconf->cipher) { case 1027073U: ; case 1027077U: ; case 1027074U: *((u32 *)pdesc + 4U) = (*((__le32 *)pdesc + 4U) & 4282384383U) | 4194304U; goto ldv_51672; case 1027076U: *((u32 *)pdesc + 4U) = *((__le32 *)pdesc + 4U) | 12582912U; goto ldv_51672; default: *((u32 *)pdesc + 4U) = *((__le32 *)pdesc + 4U) & 4282384383U; goto ldv_51672; } ldv_51672: ; } else { } *((u32 *)pdesc + 4U) = (*((__le32 *)pdesc + 4U) & 4294959359U) | (((unsigned int )fw_qsel & 31U) << 8); *((u32 *)pdesc + 16U) = *((__le32 *)pdesc + 16U) | 7936U; *((u32 *)pdesc + 16U) = *((__le32 *)pdesc + 16U) | 122880U; *((u32 *)pdesc + 12U) = (*((__le32 *)pdesc + 12U) & 4294966271U) | ((unsigned int )*((unsigned char *)ptcb_desc + 3UL) != 0U ? 1024U : 0U); *((u32 *)pdesc + 12U) = (*((__le32 *)pdesc + 12U) & 4294967039U) | ((unsigned int )*((unsigned char *)ptcb_desc + 3UL) != 0U ? 256U : 0U); tmp___15 = ieee80211_is_data_qos((int )fc); if (tmp___15 != 0) { if ((int )mac->rdg_en) { tmp___13 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 16ULL) != 0ULL, 0L); if (tmp___13 != 0L) { tmp___14 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); if (tmp___14 != 0L) { tmp___11 = preempt_count(); tmp___12 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> Enable RDG function.\n", "rtl8723be_tx_fill_desc", (unsigned long )tmp___12 & 2096896UL, ((unsigned long )tmp___11 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } *((u32 *)pdesc + 8U) = *((__le32 *)pdesc + 8U) | 8192U; *((u32 *)pdesc) = *((__le32 *)pdesc) | 33554432U; } else { } } else { } } else { } *((u32 *)pdesc) = (*((__le32 *)pdesc) & 4160749567U) | ((int )firstseg ? 134217728U : 0U); *((u32 *)pdesc) = (*((__le32 *)pdesc) & 4227858431U) | ((int )lastseg ? 67108864U : 0U); *((u32 *)pdesc + 28U) = (*((__le32 *)pdesc + 28U) & 4294901760U) | (__le32 )((unsigned short )buf_len); *((u32 *)pdesc + 40U) = (__le32 )mapping; *((u32 *)pdesc + 4U) = (*((__le32 *)pdesc + 4U) & 4292935679U) | (((unsigned int )ptcb_desc->ratr_index & 31U) << 16); *((u32 *)pdesc + 4U) = (*((__le32 *)pdesc + 4U) & 4294967168U) | ((__le32 )ptcb_desc->mac_id & 127U); tmp___16 = ieee80211_is_data_qos((int )fc); if (tmp___16 == 0) { *((u32 *)pdesc + 32U) = *((__le32 *)pdesc + 32U) | 32768U; *((u32 *)pdesc + 12U) = *((__le32 *)pdesc + 12U) & 4294967103U; } else { } *((u32 *)pdesc + 8U) = (*((__le32 *)pdesc + 8U) & 4294836223U) | ((unsigned int )(! lastseg) << 17); tmp___17 = ieee80211_get_DA(hdr); tmp___18 = is_multicast_ether_addr((u8 const *)tmp___17); if ((int )tmp___18) { *((u32 *)pdesc) = *((__le32 *)pdesc) | 16777216U; } else { tmp___19 = ieee80211_get_DA(hdr); tmp___20 = is_broadcast_ether_addr((u8 const *)tmp___19); if ((int )tmp___20) { *((u32 *)pdesc) = *((__le32 *)pdesc) | 16777216U; } else { } } tmp___23 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 16ULL) != 0ULL, 0L); if (tmp___23 != 0L) { tmp___24 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); if (tmp___24 != 0L) { tmp___21 = preempt_count(); tmp___22 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> \n", "rtl8723be_tx_fill_desc", (unsigned long )tmp___22 & 2096896UL, ((unsigned long )tmp___21 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } return; } } void rtl8723be_tx_fill_cmddesc(struct ieee80211_hw *hw , u8 *pdesc , bool b_firstseg , bool b_lastseg , struct sk_buff *skb ) { struct rtl_priv *rtlpriv ; struct rtl_pci *rtlpci ; u8 fw_queue ; dma_addr_t mapping ; dma_addr_t tmp ; int tmp___0 ; int tmp___1 ; long tmp___2 ; long tmp___3 ; int tmp___4 ; { rtlpriv = (struct rtl_priv *)hw->priv; rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; fw_queue = 16U; tmp = pci_map_single(rtlpci->pdev, (void *)skb->data, (size_t )skb->len, 1); mapping = tmp; tmp___4 = pci_dma_mapping_error(rtlpci->pdev, mapping); if (tmp___4 != 0) { tmp___2 = ldv__builtin_expect((rtlpriv->dbg.global_debugcomponents & 16ULL) != 0ULL, 0L); if (tmp___2 != 0L) { tmp___3 = ldv__builtin_expect(rtlpriv->dbg.global_debuglevel > 4, 0L); if (tmp___3 != 0L) { tmp___0 = preempt_count(); tmp___1 = preempt_count(); printk("\017rtl8723be:%s():<%lx-%x> DMA mapping error", "rtl8723be_tx_fill_cmddesc", (unsigned long )tmp___1 & 2096896UL, ((unsigned long )tmp___0 & 0xffffffffffdfffffUL) != 0UL); } else { } } else { } return; } else { } memset((void *)pdesc, 0, 40UL); *((u32 *)pdesc) = (*((__le32 *)pdesc) & 4278255615U) | 2621440U; *((u32 *)pdesc + 16U) = *((__le32 *)pdesc + 16U) & 4294967168U; *((u32 *)pdesc + 36U) = *((__le32 *)pdesc + 36U) & 4278194175U; *((u32 *)pdesc) = *((__le32 *)pdesc) & 4026531839U; *((u32 *)pdesc + 4U) = (*((__le32 *)pdesc + 4U) & 4294959359U) | (((unsigned int )fw_queue & 31U) << 8); *((u32 *)pdesc) = *((__le32 *)pdesc) | 134217728U; *((u32 *)pdesc) = *((__le32 *)pdesc) | 67108864U; *((u32 *)pdesc + 28U) = (*((__le32 *)pdesc + 28U) & 4294901760U) | (__le32 )((unsigned short )skb->len); *((u32 *)pdesc + 40U) = (__le32 )mapping; *((u32 *)pdesc + 4U) = *((__le32 *)pdesc + 4U) & 4292935679U; *((u32 *)pdesc + 4U) = *((__le32 *)pdesc + 4U) & 4294967168U; *((u32 *)pdesc) = *((__le32 *)pdesc) | 2147483648U; *((u32 *)pdesc) = (*((__le32 *)pdesc) & 4294901760U) | (__le32 )((unsigned short )skb->len); *((u32 *)pdesc) = *((__le32 *)pdesc) | 134217728U; *((u32 *)pdesc) = *((__le32 *)pdesc) | 67108864U; *((u32 *)pdesc + 12U) = *((__le32 *)pdesc + 12U) | 256U; return; } } void rtl8723be_set_desc(struct ieee80211_hw *hw , u8 *pdesc , bool istx , u8 desc_name , u8 *val ) { { if ((int )istx) { switch ((int )desc_name) { case 0: *((u32 *)pdesc) = *((__le32 *)pdesc) | 2147483648U; goto ldv_51695; case 2: *((u32 *)pdesc + 48U) = *((u32 *)val); goto ldv_51695; default: printk("\017rtl8723be:%s(): ERR txdesc :%d not process\n", "rtl8723be_set_desc", (int )desc_name); goto ldv_51695; } ldv_51695: ; } else { switch ((int )desc_name) { case 1: *((u32 *)pdesc) = *((__le32 *)pdesc) | 2147483648U; goto ldv_51700; case 4: *((u32 *)pdesc + 24U) = *((u32 *)val); goto ldv_51700; case 5: *((u32 *)pdesc) = (*((__le32 *)pdesc) & 4294950912U) | (*((u32 *)val) & 16383U); goto ldv_51700; case 6: *((u32 *)pdesc) = *((__le32 *)pdesc) | 1073741824U; goto ldv_51700; default: printk("\017rtl8723be:%s(): ERR rxdesc :%d not process\n", "rtl8723be_set_desc", (int )desc_name); goto ldv_51700; } ldv_51700: ; } return; } } u32 rtl8723be_get_desc(u8 *pdesc , bool istx , u8 desc_name ) { u32 ret ; { ret = 0U; if ((int )istx) { switch ((int )desc_name) { case 0: ret = *((__le32 *)pdesc) >> 31; goto ldv_51712; case 3: ret = *((__le32 *)pdesc + 40U); goto ldv_51712; default: printk("\017rtl8723be:%s(): ERR txdesc :%d not process\n", "rtl8723be_get_desc", (int )desc_name); goto ldv_51712; } ldv_51712: ; } else { switch ((int )desc_name) { case 0: ret = *((__le32 *)pdesc) >> 31; goto ldv_51717; case 5: ret = *((__le32 *)pdesc) & 16383U; goto ldv_51717; default: printk("\017rtl8723be:%s(): ERR rxdesc :%d not process\n", "rtl8723be_get_desc", (int )desc_name); goto ldv_51717; } ldv_51717: ; } return (ret); } } bool rtl8723be_is_tx_desc_closed(struct ieee80211_hw *hw , u8 hw_queue , u16 index ) { struct rtl_pci *rtlpci ; struct rtl8192_tx_ring *ring ; u8 *entry ; u8 own ; u32 tmp ; { rtlpci = & ((struct rtl_pci_priv *)(& ((struct rtl_priv *)hw->priv)->priv))->dev; ring = (struct rtl8192_tx_ring *)(& rtlpci->tx_ring) + (unsigned long )hw_queue; entry = (u8 *)ring->desc + (unsigned long )ring->idx; tmp = rtl8723be_get_desc(entry, 1, 0); own = (unsigned char )tmp; if ((unsigned int )own != 0U) { return (0); } else { return (1); } } } void rtl8723be_tx_polling(struct ieee80211_hw *hw , u8 hw_queue ) { struct rtl_priv *rtlpriv ; { rtlpriv = (struct rtl_priv *)hw->priv; if ((unsigned int )hw_queue == 4U) { rtl_write_word(rtlpriv, 768U, 16); } else { rtl_write_word(rtlpriv, 768U, (int )((u16 )(1UL << (int )hw_queue))); } return; } } void ldv_consume_skb_108(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_109(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_110(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_111(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } void ldv_kfree_skb_114(struct sk_buff *ldv_func_arg1 ) { { ldv_skb_free(ldv_func_arg1); return; } } __inline static void ldv_error(void); Element set_impl[15] ; int last_index = 0; __inline static void ldv_set_init(Set set ) __attribute__((__no_instrument_function__)) ; __inline static void ldv_set_init(Set set ) { { set = set_impl; last_index = 0; return; } } __inline static void ldv_set_add(Set set , Element e ) __attribute__((__no_instrument_function__)) ; __inline static void ldv_set_add(Set set , Element e ) { int i ; { i = 0; while (1) { if (i < last_index) { } else { break; } if ((unsigned long )set_impl[i] == (unsigned long )e) { return; } else { } i = i + 1; } if (last_index < 15) { set_impl[last_index] = e; last_index = last_index + 1; } else { } return; } } __inline static void ldv_set_remove(Set set , Element e ) __attribute__((__no_instrument_function__)) ; __inline static void ldv_set_remove(Set set , Element e ) { int i ; int deleted_index ; { deleted_index = -1; i = 0; while (1) { if (i < last_index) { } else { break; } if ((unsigned long )set_impl[i] == (unsigned long )e) { deleted_index = i; break; } else { } i = i + 1; } if (deleted_index != -1) { i = deleted_index + 1; while (1) { if (i < last_index) { } else { break; } set_impl[i - 1] = set_impl[i]; i = i + 1; } last_index = last_index - 1; } else { } return; } } __inline static int ldv_set_contains(Set set , Element e ) __attribute__((__no_instrument_function__)) ; __inline static int ldv_set_contains(Set set , Element e ) { int i ; { i = 0; while (1) { if (i < last_index) { } else { break; } if ((unsigned long )set_impl[i] == (unsigned long )e) { return (1); } else { } i = i + 1; } return (0); } } __inline static int ldv_set_is_empty(Set set ) __attribute__((__no_instrument_function__)) ; __inline static int ldv_set_is_empty(Set set ) { { return (last_index == 0); } } bool ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 2012UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(2012L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(2012UL - (unsigned long )ptr)); } } bool ldv_is_err_or_null(void const *ptr ) { bool tmp___7 ; int tmp___8 ; { if (! ptr) { tmp___8 = 1; } else { tmp___7 = ldv_is_err((unsigned long )ptr); if (tmp___7) { tmp___8 = 1; } else { tmp___8 = 0; } } return (tmp___8); } } Set LDV_SKBS ; struct sk_buff___0 *ldv_skb_alloc(void) { void *skb ; void *tmp___7 ; { tmp___7 = ldv_zalloc(sizeof(struct sk_buff___0 )); skb = (struct sk_buff___0 *)tmp___7; if (! skb) { return ((void *)0); } else { ldv_set_add(LDV_SKBS, skb); return (skb); } } } void ldv_initialize(void) { { ldv_set_init(LDV_SKBS); return; } } void ldv_skb_free(struct sk_buff___0 *skb ) { { ldv_set_remove(LDV_SKBS, skb); return; } } int ldv_skb_free_int(struct sk_buff___0 *skb ) { { ldv_set_remove(LDV_SKBS, skb); return (0); } } struct sk_buff___0 *ldv_netdev_alloc_skb(void) ; struct sk_buff___0 *ldv_dev_alloc_skb(void) { void *skb ; int tmp___7 ; { tmp___7 = (int )ldv_netdev_alloc_skb(); skb = tmp___7; return (skb); } } struct sk_buff___0 *ldv_netdev_alloc_skb(void) { struct sk_buff___0 *tmp___7 ; { tmp___7 = ldv_skb_alloc(); return (tmp___7); } } int ldv_skb_current(struct sk_buff___0 *skb ) { int tmp___7 ; { tmp___7 = ldv_set_contains(LDV_SKBS, skb); if (tmp___7) { return (1); } else { return (0); } } } void ldv_check_final_state(void) { int tmp___7 ; { tmp___7 = ldv_set_is_empty(LDV_SKBS); if (tmp___7) { } else { ldv_error(); } return; } }