/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __be16; typedef __u32 __le32; typedef __u32 __be32; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct class; struct device; struct completion; struct gendisk; struct module; struct mutex; struct request_queue; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_10 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_11 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_9 { struct __anonstruct____missing_field_name_10 __annonCompField5 ; struct __anonstruct____missing_field_name_11 __annonCompField6 ; }; struct desc_struct { union __anonunion____missing_field_name_9 __annonCompField7 ; }; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_12 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_12 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_13 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_13 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; typedef void (*ctor_fn_t)(void); struct net_device; struct file_operations; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_16 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_16 __annonCompField8 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_21 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_22 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_20 { struct __anonstruct____missing_field_name_21 __annonCompField12 ; struct __anonstruct____missing_field_name_22 __annonCompField13 ; }; union __anonunion____missing_field_name_23 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_20 __annonCompField14 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_23 __annonCompField15 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndreg { u64 lower_bound ; u64 upper_bound ; }; struct bndcsr { u64 bndcfgu ; u64 bndstatus ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndreg bndreg[4U] ; struct bndcsr bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_27 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_26 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_27 __annonCompField17 ; }; struct spinlock { union __anonunion____missing_field_name_26 __annonCompField18 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_28 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_28 rwlock_t; struct ldv_thread; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct optimistic_spin_queue { atomic_t tail ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct compat_timespec; struct __anonstruct_futex_33 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_34 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_35 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_32 { struct __anonstruct_futex_33 futex ; struct __anonstruct_nanosleep_34 nanosleep ; struct __anonstruct_poll_35 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_32 __annonCompField19 ; }; struct jump_entry; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_48 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_48 seqlock_t; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct notifier_block; union __anonunion____missing_field_name_49 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_49 __annonCompField20 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_50 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_50 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct user_namespace; struct __anonstruct_kuid_t_51 { uid_t val ; }; typedef struct __anonstruct_kuid_t_51 kuid_t; struct __anonstruct_kgid_t_52 { gid_t val ; }; typedef struct __anonstruct_kgid_t_52 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; enum tk_offsets { TK_OFFS_REAL = 0, TK_OFFS_BOOT = 1, TK_OFFS_TAI = 2, TK_OFFS_MAX = 3 } ; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_53 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_53 nodemask_t; struct path; struct inode; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; }; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct ctl_table; struct pci_dev; struct pci_bus; struct __anonstruct_mm_context_t_118 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_118 mm_context_t; struct bio_vec; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_151 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_152 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_150 { struct __anonstruct____missing_field_name_151 __annonCompField34 ; struct __anonstruct____missing_field_name_152 __annonCompField35 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_150 __annonCompField36 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; struct mem_cgroup; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_153 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_155 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_159 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_158 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_159 __annonCompField39 ; int units ; }; struct __anonstruct____missing_field_name_157 { union __anonunion____missing_field_name_158 __annonCompField40 ; atomic_t _count ; }; union __anonunion____missing_field_name_156 { unsigned long counters ; struct __anonstruct____missing_field_name_157 __annonCompField41 ; unsigned int active ; }; struct __anonstruct____missing_field_name_154 { union __anonunion____missing_field_name_155 __annonCompField38 ; union __anonunion____missing_field_name_156 __annonCompField42 ; }; struct __anonstruct____missing_field_name_161 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_162 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_160 { struct list_head lru ; struct __anonstruct____missing_field_name_161 __annonCompField44 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_162 __annonCompField45 ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_163 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_153 __annonCompField37 ; struct __anonstruct____missing_field_name_154 __annonCompField43 ; union __anonunion____missing_field_name_160 __annonCompField46 ; union __anonunion____missing_field_name_163 __annonCompField47 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_164 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_164 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; typedef unsigned long cputime_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct user_struct; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_166 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_166 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_168 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_169 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_170 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_171 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_173 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_172 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_173 _addr_bnd ; }; struct __anonstruct__sigpoll_174 { long _band ; int _fd ; }; struct __anonstruct__sigsys_175 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_167 { int _pad[28U] ; struct __anonstruct__kill_168 _kill ; struct __anonstruct__timer_169 _timer ; struct __anonstruct__rt_170 _rt ; struct __anonstruct__sigchld_171 _sigchld ; struct __anonstruct__sigfault_172 _sigfault ; struct __anonstruct__sigpoll_174 _sigpoll ; struct __anonstruct__sigsys_175 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_167 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int in_hrtirq ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct____missing_field_name_179 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion____missing_field_name_178 { struct __anonstruct____missing_field_name_179 __annonCompField48 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion____missing_field_name_178 __annonCompField49 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct cred; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_180 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_181 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_183 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_182 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_183 __annonCompField52 ; }; union __anonunion_type_data_184 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_186 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_185 { union __anonunion_payload_186 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_180 __annonCompField50 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_181 __annonCompField51 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_182 __annonCompField53 ; union __anonunion_type_data_184 type_data ; union __anonunion____missing_field_name_185 __annonCompField54 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct io_context; struct pipe_inode_info; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned char brk_randomized : 1 ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct proc_dir_entry; struct pci_driver; union __anonunion____missing_field_name_191 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; unsigned char pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; u8 dma_alias_devfn ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned char pme_support : 5 ; unsigned char pme_interrupt : 1 ; unsigned char pme_poll : 1 ; unsigned char d1_support : 1 ; unsigned char d2_support : 1 ; unsigned char no_d1d2 : 1 ; unsigned char no_d3cold : 1 ; unsigned char d3cold_allowed : 1 ; unsigned char mmio_always_on : 1 ; unsigned char wakeup_prepared : 1 ; unsigned char runtime_d3cold : 1 ; unsigned char ignore_hotplug : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned char transparent : 1 ; unsigned char multifunction : 1 ; unsigned char is_added : 1 ; unsigned char is_busmaster : 1 ; unsigned char no_msi : 1 ; unsigned char no_64bit_msi : 1 ; unsigned char block_cfg_access : 1 ; unsigned char broken_parity_status : 1 ; unsigned char irq_reroute_variant : 2 ; unsigned char msi_enabled : 1 ; unsigned char msix_enabled : 1 ; unsigned char ari_enabled : 1 ; unsigned char is_managed : 1 ; unsigned char needs_freset : 1 ; unsigned char state_saved : 1 ; unsigned char is_physfn : 1 ; unsigned char is_virtfn : 1 ; unsigned char reset_fn : 1 ; unsigned char is_hotplug_bridge : 1 ; unsigned char __aer_firmware_first_valid : 1 ; unsigned char __aer_firmware_first : 1 ; unsigned char broken_intx_masking : 1 ; unsigned char io_window_1k : 1 ; unsigned char irq_managed : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_191 __annonCompField58 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; char *driver_override ; }; struct pci_ops; struct msi_controller; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_controller *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned char is_added : 1 ; }; struct pci_ops { void *(*map_bus)(struct pci_bus * , unsigned int , int ) ; int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*reset_notify)(struct pci_dev * , bool ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *cow_page ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; struct page *(*find_special_page)(struct vm_area_struct * , unsigned long ) ; }; struct kvec; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct exception_table_entry { int insn ; int fixup ; }; struct tasklet_struct { struct tasklet_struct *next ; unsigned long state ; atomic_t count ; void (*func)(unsigned long ) ; unsigned long data ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_200 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_200 __annonCompField62 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct kvec { void *iov_base ; size_t iov_len ; }; union __anonunion____missing_field_name_201 { struct iovec const *iov ; struct kvec const *kvec ; struct bio_vec const *bvec ; }; struct iov_iter { int type ; size_t iov_offset ; size_t count ; union __anonunion____missing_field_name_201 __annonCompField63 ; unsigned long nr_segs ; }; typedef unsigned short __kernel_sa_family_t; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct msghdr { void *msg_name ; int msg_namelen ; struct iov_iter msg_iter ; void *msg_control ; __kernel_size_t msg_controllen ; unsigned int msg_flags ; }; enum ldv_23555 { SS_FREE = 0, SS_UNCONNECTED = 1, SS_CONNECTING = 2, SS_CONNECTED = 3, SS_DISCONNECTING = 4 } ; typedef enum ldv_23555 socket_state; struct poll_table_struct; struct net; struct fasync_struct; struct socket_wq { wait_queue_head_t wait ; struct fasync_struct *fasync_list ; struct callback_head rcu ; }; struct proto_ops; struct socket { socket_state state ; short type ; unsigned long flags ; struct socket_wq *wq ; struct file *file ; struct sock *sk ; struct proto_ops const *ops ; }; struct kiocb; struct proto_ops { int family ; struct module *owner ; int (*release)(struct socket * ) ; int (*bind)(struct socket * , struct sockaddr * , int ) ; int (*connect)(struct socket * , struct sockaddr * , int , int ) ; int (*socketpair)(struct socket * , struct socket * ) ; int (*accept)(struct socket * , struct socket * , int ) ; int (*getname)(struct socket * , struct sockaddr * , int * , int ) ; unsigned int (*poll)(struct file * , struct socket * , struct poll_table_struct * ) ; int (*ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*listen)(struct socket * , int ) ; int (*shutdown)(struct socket * , int ) ; int (*setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct socket * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct socket * , int , int , char * , int * ) ; int (*sendmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t , int ) ; int (*mmap)(struct file * , struct socket * , struct vm_area_struct * ) ; ssize_t (*sendpage)(struct socket * , struct page * , int , size_t , int ) ; ssize_t (*splice_read)(struct socket * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*set_peek_off)(struct sock * , int ) ; }; struct in6_addr; struct sk_buff; typedef u64 netdev_features_t; struct napi_struct; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; typedef unsigned int sk_buff_data_t; struct __anonstruct____missing_field_name_205 { u32 stamp_us ; u32 stamp_jiffies ; }; union __anonunion____missing_field_name_204 { u64 v64 ; struct __anonstruct____missing_field_name_205 __annonCompField65 ; }; struct skb_mstamp { union __anonunion____missing_field_name_204 __annonCompField66 ; }; union __anonunion____missing_field_name_208 { ktime_t tstamp ; struct skb_mstamp skb_mstamp ; }; struct __anonstruct____missing_field_name_207 { struct sk_buff *next ; struct sk_buff *prev ; union __anonunion____missing_field_name_208 __annonCompField67 ; }; union __anonunion____missing_field_name_206 { struct __anonstruct____missing_field_name_207 __annonCompField68 ; struct rb_node rbnode ; }; struct sec_path; struct __anonstruct____missing_field_name_210 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_209 { __wsum csum ; struct __anonstruct____missing_field_name_210 __annonCompField70 ; }; union __anonunion____missing_field_name_211 { unsigned int napi_id ; unsigned int sender_cpu ; }; union __anonunion____missing_field_name_212 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; union __anonunion____missing_field_name_213 { __be16 inner_protocol ; __u8 inner_ipproto ; }; struct sk_buff { union __anonunion____missing_field_name_206 __annonCompField69 ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; void (*destructor)(struct sk_buff * ) ; struct sec_path *sp ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; __u16 queue_mapping ; unsigned char cloned : 1 ; unsigned char nohdr : 1 ; unsigned char fclone : 2 ; unsigned char peeked : 1 ; unsigned char head_frag : 1 ; unsigned char xmit_more : 1 ; __u32 headers_start[0U] ; __u8 __pkt_type_offset[0U] ; unsigned char pkt_type : 3 ; unsigned char pfmemalloc : 1 ; unsigned char ignore_df : 1 ; unsigned char nfctinfo : 3 ; unsigned char nf_trace : 1 ; unsigned char ip_summed : 2 ; unsigned char ooo_okay : 1 ; unsigned char l4_hash : 1 ; unsigned char sw_hash : 1 ; unsigned char wifi_acked_valid : 1 ; unsigned char wifi_acked : 1 ; unsigned char no_fcs : 1 ; unsigned char encapsulation : 1 ; unsigned char encap_hdr_csum : 1 ; unsigned char csum_valid : 1 ; unsigned char csum_complete_sw : 1 ; unsigned char csum_level : 2 ; unsigned char csum_bad : 1 ; unsigned char ndisc_nodetype : 2 ; unsigned char ipvs_property : 1 ; unsigned char inner_protocol_type : 1 ; unsigned char remcsum_offload : 1 ; __u16 tc_index ; __u16 tc_verd ; union __anonunion____missing_field_name_209 __annonCompField71 ; __u32 priority ; int skb_iif ; __u32 hash ; __be16 vlan_proto ; __u16 vlan_tci ; union __anonunion____missing_field_name_211 __annonCompField72 ; __u32 secmark ; union __anonunion____missing_field_name_212 __annonCompField73 ; union __anonunion____missing_field_name_213 __annonCompField74 ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __be16 protocol ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; __u32 headers_end[0U] ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct rtable; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct pm_qos_flags_request { struct list_head node ; s32 flags ; }; enum dev_pm_qos_req_type { DEV_PM_QOS_RESUME_LATENCY = 1, DEV_PM_QOS_LATENCY_TOLERANCE = 2, DEV_PM_QOS_FLAGS = 3 } ; union __anonunion_data_214 { struct plist_node pnode ; struct pm_qos_flags_request flr ; }; struct dev_pm_qos_request { enum dev_pm_qos_req_type type ; union __anonunion_data_214 data ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2, PM_QOS_SUM = 3 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; s32 no_constraint_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct pm_qos_flags { struct list_head list ; s32 effective_flags ; }; struct dev_pm_qos { struct pm_qos_constraints resume_latency ; struct pm_qos_constraints latency_tolerance ; struct pm_qos_flags flags ; struct dev_pm_qos_request *resume_latency_req ; struct dev_pm_qos_request *latency_tolerance_req ; struct dev_pm_qos_request *flags_req ; }; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; struct __anonstruct_sync_serial_settings_216 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_216 sync_serial_settings; struct __anonstruct_te1_settings_217 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_217 te1_settings; struct __anonstruct_raw_hdlc_proto_218 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_218 raw_hdlc_proto; struct __anonstruct_fr_proto_219 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_219 fr_proto; struct __anonstruct_fr_proto_pvc_220 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_220 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_221 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_221 fr_proto_pvc_info; struct __anonstruct_cisco_proto_222 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_222 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_223 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_223 ifs_ifsu ; }; union __anonunion_ifr_ifrn_224 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_225 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_224 ifr_ifrn ; union __anonunion_ifr_ifru_225 ifr_ifru ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_228 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_227 { struct __anonstruct____missing_field_name_228 __annonCompField75 ; }; struct lockref { union __anonunion____missing_field_name_227 __annonCompField76 ; }; struct vfsmount; struct __anonstruct____missing_field_name_230 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_229 { struct __anonstruct____missing_field_name_230 __annonCompField77 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_229 __annonCompField78 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_231 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_231 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct __anonstruct____missing_field_name_233 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_232 { struct __anonstruct____missing_field_name_233 __annonCompField79 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_232 __annonCompField80 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct cgroup_subsys_state; struct bio_vec { struct page *bv_page ; unsigned int bv_len ; unsigned int bv_offset ; }; struct export_operations; struct nameidata; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_235 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_235 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_236 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_236 __annonCompField82 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct hd_struct; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_239 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_240 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; struct cdev; union __anonunion____missing_field_name_241 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_239 __annonCompField83 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_240 __annonCompField84 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_241 __annonCompField85 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_242 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_242 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_get_owner)(struct file_lock * , struct file_lock * ) ; void (*lm_put_owner)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct __anonstruct_afs_244 { struct list_head link ; int state ; }; union __anonunion_fl_u_243 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_244 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_243 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; void (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; int (*dentry_open)(struct dentry * , struct file * , struct cred const * ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; typedef s32 compat_time_t; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_timespec { compat_time_t tv_sec ; s32 tv_nsec ; }; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char erom_version[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_tunable { __u32 cmd ; __u32 id ; __u32 type_id ; __u32 len ; void *data[0U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_key_size)(struct net_device * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh)(struct net_device * , u32 * , u8 * , u8 * ) ; int (*set_rxfh)(struct net_device * , u32 const * , u8 const * , u8 const ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; int (*get_tunable)(struct net_device * , struct ethtool_tunable const * , void * ) ; int (*set_tunable)(struct net_device * , struct ethtool_tunable const * , void const * ) ; }; union __anonunion_in6_u_261 { __u8 u6_addr8[16U] ; __be16 u6_addr16[8U] ; __be32 u6_addr32[4U] ; }; struct in6_addr { union __anonunion_in6_u_261 in6_u ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[9U] ; }; struct linux_mib { unsigned long mibs[113U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct netns_mib { struct tcp_mib *tcp_statistics ; struct ipstats_mib *ip_statistics ; struct linux_mib *net_statistics ; struct udp_mib *udp_statistics ; struct udp_mib *udplite_statistics ; struct icmp_mib *icmp_statistics ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6 ; struct udp_mib *udplite_stats_in6 ; struct ipstats_mib *ipv6_statistics ; struct icmpv6_mib *icmpv6_statistics ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct tcpm_hash_bucket; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; }; struct ping_group_range { seqlock_t lock ; kgid_t range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct inet_peer_base *peers ; struct tcpm_hash_bucket *tcp_metrics_hash ; unsigned int tcp_metrics_hash_log ; struct sock **tcp_sk ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports ip_local_ports ; int sysctl_tcp_ecn ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; int sysctl_ip_nonlocal_bind ; int sysctl_fwmark_reflect ; int sysctl_tcp_fwmark_accept ; int sysctl_tcp_mtu_probing ; int sysctl_tcp_base_mss ; struct ping_group_range ping_group_range ; atomic_t dev_addr_genid ; unsigned long *sysctl_local_reserved_ports ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int auto_flowlabels ; int icmpv6_time ; int anycast_src_echo_reply ; int fwmark_reflect ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t fib6_sernum ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct netns_sysctl_lowpan { struct ctl_table_header *frags_hdr ; }; struct netns_ieee802154_lowpan { struct netns_sysctl_lowpan sysctl ; struct netns_frags frags ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; struct nlattr; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ct_pcpu { spinlock_t lock ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct delayed_work ecache_dwork ; bool ecache_dwork_pending ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; seqcount_t generation ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct ct_pcpu *pcpu_lists ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; unsigned int base_seq ; u8 gencursor ; }; struct flow_cache_percpu { struct hlist_head *hash_table ; int hash_count ; u32 hash_rnd ; int hash_rnd_recalc ; struct tasklet_struct flush_tasklet ; }; struct flow_cache { u32 hash_shift ; struct flow_cache_percpu *percpu ; struct notifier_block hotcpu_notifier ; int low_watermark ; int high_watermark ; struct timer_list rnd_timer ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; u8 dbits4 ; u8 sbits4 ; u8 dbits6 ; u8 sbits6 ; }; struct xfrm_policy_hthresh { struct work_struct work ; seqlock_t lock ; u8 lbits4 ; u8 rbits4 ; u8 lbits6 ; u8 rbits6 ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[3U] ; struct xfrm_policy_hash policy_bydst[3U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct xfrm_policy_hthresh policy_hthresh ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; struct flow_cache flow_cache_global ; atomic_t flow_cache_genid ; struct list_head flow_cache_gc_list ; spinlock_t flow_cache_gc_lock ; struct work_struct flow_cache_gc_work ; struct work_struct flow_cache_flush_work ; struct mutex flow_flush_sem ; }; struct proc_ns_operations; struct ns_common { atomic_long_t stashed ; struct proc_ns_operations const *ops ; unsigned int inum ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; struct idr netns_ids ; struct ns_common ns ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_ieee802154_lowpan ieee802154_lowpan ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; enum fwnode_type { FWNODE_INVALID = 0, FWNODE_OF = 1, FWNODE_ACPI = 2 } ; struct fwnode_handle { enum fwnode_type type ; }; typedef u32 phandle; struct property { char *name ; int length ; void *value ; struct property *next ; unsigned long _flags ; unsigned int unique_id ; struct bin_attribute attr ; }; struct device_node { char const *name ; char const *type ; phandle phandle ; char const *full_name ; struct fwnode_handle fwnode ; struct property *properties ; struct property *deadprops ; struct device_node *parent ; struct device_node *child ; struct device_node *sibling ; struct kobject kobj ; unsigned long _flags ; void *data ; }; enum ldv_28633 { PHY_INTERFACE_MODE_NA = 0, PHY_INTERFACE_MODE_MII = 1, PHY_INTERFACE_MODE_GMII = 2, PHY_INTERFACE_MODE_SGMII = 3, PHY_INTERFACE_MODE_TBI = 4, PHY_INTERFACE_MODE_REVMII = 5, PHY_INTERFACE_MODE_RMII = 6, PHY_INTERFACE_MODE_RGMII = 7, PHY_INTERFACE_MODE_RGMII_ID = 8, PHY_INTERFACE_MODE_RGMII_RXID = 9, PHY_INTERFACE_MODE_RGMII_TXID = 10, PHY_INTERFACE_MODE_RTBI = 11, PHY_INTERFACE_MODE_SMII = 12, PHY_INTERFACE_MODE_XGMII = 13, PHY_INTERFACE_MODE_MOCA = 14, PHY_INTERFACE_MODE_QSGMII = 15, PHY_INTERFACE_MODE_MAX = 16 } ; typedef enum ldv_28633 phy_interface_t; enum ldv_28686 { MDIOBUS_ALLOCATED = 1, MDIOBUS_REGISTERED = 2, MDIOBUS_UNREGISTERED = 3, MDIOBUS_RELEASED = 4 } ; struct phy_device; struct mii_bus { char const *name ; char id[17U] ; void *priv ; int (*read)(struct mii_bus * , int , int ) ; int (*write)(struct mii_bus * , int , int , u16 ) ; int (*reset)(struct mii_bus * ) ; struct mutex mdio_lock ; struct device *parent ; enum ldv_28686 state ; struct device dev ; struct phy_device *phy_map[32U] ; u32 phy_mask ; int *irq ; }; enum phy_state { PHY_DOWN = 0, PHY_STARTING = 1, PHY_READY = 2, PHY_PENDING = 3, PHY_UP = 4, PHY_AN = 5, PHY_RUNNING = 6, PHY_NOLINK = 7, PHY_FORCING = 8, PHY_CHANGELINK = 9, PHY_HALTED = 10, PHY_RESUMING = 11 } ; struct phy_c45_device_ids { u32 devices_in_package ; u32 device_ids[8U] ; }; struct phy_driver; struct phy_device { struct phy_driver *drv ; struct mii_bus *bus ; struct device dev ; u32 phy_id ; struct phy_c45_device_ids c45_ids ; bool is_c45 ; bool is_internal ; bool has_fixups ; bool suspended ; enum phy_state state ; u32 dev_flags ; phy_interface_t interface ; int addr ; int speed ; int duplex ; int pause ; int asym_pause ; int link ; u32 interrupts ; u32 supported ; u32 advertising ; u32 lp_advertising ; int autoneg ; int link_timeout ; int irq ; void *priv ; struct work_struct phy_queue ; struct delayed_work state_queue ; atomic_t irq_disable ; struct mutex lock ; struct net_device *attached_dev ; void (*adjust_link)(struct net_device * ) ; }; struct phy_driver { u32 phy_id ; char *name ; unsigned int phy_id_mask ; u32 features ; u32 flags ; void const *driver_data ; int (*soft_reset)(struct phy_device * ) ; int (*config_init)(struct phy_device * ) ; int (*probe)(struct phy_device * ) ; int (*suspend)(struct phy_device * ) ; int (*resume)(struct phy_device * ) ; int (*config_aneg)(struct phy_device * ) ; int (*aneg_done)(struct phy_device * ) ; int (*read_status)(struct phy_device * ) ; int (*ack_interrupt)(struct phy_device * ) ; int (*config_intr)(struct phy_device * ) ; int (*did_interrupt)(struct phy_device * ) ; void (*remove)(struct phy_device * ) ; int (*match_phy_device)(struct phy_device * ) ; int (*ts_info)(struct phy_device * , struct ethtool_ts_info * ) ; int (*hwtstamp)(struct phy_device * , struct ifreq * ) ; bool (*rxtstamp)(struct phy_device * , struct sk_buff * , int ) ; void (*txtstamp)(struct phy_device * , struct sk_buff * , int ) ; int (*set_wol)(struct phy_device * , struct ethtool_wolinfo * ) ; void (*get_wol)(struct phy_device * , struct ethtool_wolinfo * ) ; void (*link_change_notify)(struct phy_device * ) ; int (*read_mmd_indirect)(struct phy_device * , int , int , int ) ; void (*write_mmd_indirect)(struct phy_device * , int , int , int , u32 ) ; int (*module_info)(struct phy_device * , struct ethtool_modinfo * ) ; int (*module_eeprom)(struct phy_device * , struct ethtool_eeprom * , u8 * ) ; struct device_driver driver ; }; struct fixed_phy_status { int link ; int speed ; int duplex ; int pause ; int asym_pause ; }; enum dsa_tag_protocol { DSA_TAG_PROTO_NONE = 0, DSA_TAG_PROTO_DSA = 1, DSA_TAG_PROTO_TRAILER = 2, DSA_TAG_PROTO_EDSA = 3, DSA_TAG_PROTO_BRCM = 4 } ; struct dsa_chip_data { struct device *host_dev ; int sw_addr ; int eeprom_len ; struct device_node *of_node ; char *port_names[12U] ; struct device_node *port_dn[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct packet_type; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; int (*rcv)(struct sk_buff * , struct net_device * , struct packet_type * , struct net_device * ) ; enum dsa_tag_protocol tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct device *master_dev ; char hwmon_name[24U] ; struct device *hwmon_dev ; u32 dsa_port_mask ; u32 phys_port_mask ; u32 phys_mii_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; enum dsa_tag_protocol tag_protocol ; int priv_size ; char *(*probe)(struct device * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; u32 (*get_phy_flags)(struct dsa_switch * , int ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*adjust_link)(struct dsa_switch * , int , struct phy_device * ) ; void (*fixed_link_update)(struct dsa_switch * , int , struct fixed_phy_status * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; void (*get_wol)(struct dsa_switch * , int , struct ethtool_wolinfo * ) ; int (*set_wol)(struct dsa_switch * , int , struct ethtool_wolinfo * ) ; int (*suspend)(struct dsa_switch * ) ; int (*resume)(struct dsa_switch * ) ; int (*port_enable)(struct dsa_switch * , int , struct phy_device * ) ; void (*port_disable)(struct dsa_switch * , int , struct phy_device * ) ; int (*set_eee)(struct dsa_switch * , int , struct phy_device * , struct ethtool_eee * ) ; int (*get_eee)(struct dsa_switch * , int , struct ethtool_eee * ) ; int (*get_temp)(struct dsa_switch * , int * ) ; int (*get_temp_limit)(struct dsa_switch * , int * ) ; int (*set_temp_limit)(struct dsa_switch * , int ) ; int (*get_temp_alarm)(struct dsa_switch * , bool * ) ; int (*get_eeprom_len)(struct dsa_switch * ) ; int (*get_eeprom)(struct dsa_switch * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct dsa_switch * , struct ethtool_eeprom * , u8 * ) ; int (*get_regs_len)(struct dsa_switch * , int ) ; void (*get_regs)(struct dsa_switch * , int , struct ethtool_regs * , void * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; int (*setapp)(struct net_device * , u8 , u16 , u8 ) ; int (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_long_t count ; unsigned long percpu_count_ptr ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_switch ; bool force_atomic ; struct callback_head rcu ; }; struct cgroup_root; struct cgroup_subsys; struct cgroup; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; struct list_head sibling ; struct list_head children ; int id ; unsigned int flags ; u64 serial_nr ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct cgroup { struct cgroup_subsys_state self ; unsigned long flags ; int id ; int populated_cnt ; struct kernfs_node *kn ; struct kernfs_node *populated_kn ; unsigned int subtree_control ; unsigned int child_subsys_mask ; struct cgroup_subsys_state *subsys[12U] ; struct cgroup_root *root ; struct list_head cset_links ; struct list_head e_csets[12U] ; struct list_head pidlists ; struct mutex pidlist_mutex ; wait_queue_head_t offline_waitq ; struct work_struct release_agent_work ; }; struct cgroup_root { struct kernfs_root *kf_root ; unsigned int subsys_mask ; int hierarchy_id ; struct cgroup cgrp ; atomic_t nr_cgrps ; struct list_head root_list ; unsigned int flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head mg_tasks ; struct list_head cgrp_links ; struct cgroup *dfl_cgrp ; struct cgroup_subsys_state *subsys[12U] ; struct list_head mg_preload_node ; struct list_head mg_node ; struct cgroup *mg_src_cgrp ; struct css_set *mg_dst_cset ; struct list_head e_cset_node[12U] ; struct callback_head callback_head ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; struct list_head node ; struct kernfs_ops *kf_ops ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; struct lock_class_key lockdep_key ; }; struct cgroup_taskset; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_released)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; void (*css_reset)(struct cgroup_subsys_state * ) ; void (*css_e_css_changed)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; int id ; char const *name ; struct cgroup_root *root ; struct idr css_idr ; struct list_head cfts ; struct cftype *dfl_cftypes ; struct cftype *legacy_cftypes ; unsigned int depends_on ; }; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct xfrm_policy; struct xfrm_state; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 spoofchk ; __u32 linkstate ; __u32 min_tx_rate ; __u32 max_tx_rate ; }; struct netpoll_info; struct wireless_dev; struct wpan_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct hrtimer timer ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_item_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_rate)(struct net_device * , int , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * , u16 ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * , u16 ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_item_id * ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; int (*ndo_get_lock_subclass)(struct net_device * ) ; netdev_features_t (*ndo_features_check)(struct sk_buff * , struct net_device * , netdev_features_t ) ; int (*ndo_switch_parent_id_get)(struct net_device * , struct netdev_phys_item_id * ) ; int (*ndo_switch_port_stp_update)(struct net_device * , u8 ) ; }; struct __anonstruct_adj_list_270 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_271 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct forwarding_accel_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion____missing_field_name_272 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct list_head ptype_all ; struct list_head ptype_specific ; struct __anonstruct_adj_list_270 adj_list ; struct __anonstruct_all_adj_list_271 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; atomic_long_t tx_dropped ; atomic_t carrier_changes ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct forwarding_accel_ops const *fwd_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; unsigned short dev_port ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; unsigned char name_assign_type ; bool uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; struct wpan_dev *ieee802154_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; unsigned long gro_flush_timeout ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; unsigned char broadcast[32U] ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; struct cpu_rmap *rx_cpu_rmap ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; unsigned char reg_state ; bool dismantle ; unsigned short rtnl_link_state ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion____missing_field_name_272 __annonCompField88 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; u16 gso_min_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; int group ; struct pm_qos_request pm_qos_req ; }; struct packet_type { __be16 type ; struct net_device *dev ; int (*func)(struct sk_buff * , struct net_device * , struct packet_type * , struct net_device * ) ; bool (*id_match)(struct packet_type * , struct sock * ) ; void *af_packet_priv ; struct list_head list ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; enum skb_free_reason { SKB_REASON_CONSUMED = 0, SKB_REASON_DROPPED = 1 } ; struct page_counter { atomic_long_t count ; unsigned long limit ; struct page_counter *parent ; unsigned long watermark ; unsigned long failcnt ; }; struct kioctx; typedef int kiocb_cancel_fn(struct kiocb * ); union __anonunion_ki_obj_273 { void *user ; struct task_struct *tsk ; }; struct eventfd_ctx; struct kiocb { struct file *ki_filp ; struct kioctx *ki_ctx ; kiocb_cancel_fn *ki_cancel ; void *private ; union __anonunion_ki_obj_273 ki_obj ; __u64 ki_user_data ; loff_t ki_pos ; size_t ki_nbytes ; struct list_head ki_list ; struct eventfd_ctx *ki_eventfd ; }; struct sock_filter { __u16 code ; __u8 jt ; __u8 jf ; __u32 k ; }; struct bpf_insn { __u8 code ; unsigned char dst_reg : 4 ; unsigned char src_reg : 4 ; __s16 off ; __s32 imm ; }; struct bpf_prog_aux; struct sock_fprog_kern { u16 len ; struct sock_filter *filter ; }; union __anonunion____missing_field_name_278 { struct sock_filter insns[0U] ; struct bpf_insn insnsi[0U] ; }; struct bpf_prog { u16 pages ; bool jited ; u32 len ; struct sock_fprog_kern *orig_prog ; struct bpf_prog_aux *aux ; unsigned int (*bpf_func)(struct sk_buff const * , struct bpf_insn const * ) ; union __anonunion____missing_field_name_278 __annonCompField93 ; }; struct sk_filter { atomic_t refcnt ; struct callback_head rcu ; struct bpf_prog *prog ; }; struct pollfd { int fd ; short events ; short revents ; }; struct poll_table_struct { void (*_qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long _key ; }; struct nla_policy { u16 type ; u16 len ; }; struct rtnl_link_ops { struct list_head list ; char const *kind ; size_t priv_size ; void (*setup)(struct net_device * ) ; int maxtype ; struct nla_policy const *policy ; int (*validate)(struct nlattr ** , struct nlattr ** ) ; int (*newlink)(struct net * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; int (*changelink)(struct net_device * , struct nlattr ** , struct nlattr ** ) ; void (*dellink)(struct net_device * , struct list_head * ) ; size_t (*get_size)(struct net_device const * ) ; int (*fill_info)(struct sk_buff * , struct net_device const * ) ; size_t (*get_xstats_size)(struct net_device const * ) ; int (*fill_xstats)(struct sk_buff * , struct net_device const * ) ; unsigned int (*get_num_tx_queues)(void) ; unsigned int (*get_num_rx_queues)(void) ; int slave_maxtype ; struct nla_policy const *slave_policy ; int (*slave_validate)(struct nlattr ** , struct nlattr ** ) ; int (*slave_changelink)(struct net_device * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; size_t (*get_slave_size)(struct net_device const * , struct net_device const * ) ; int (*fill_slave_info)(struct sk_buff * , struct net_device const * , struct net_device const * ) ; struct net *(*get_link_net)(struct net_device const * ) ; }; struct neigh_table; struct neigh_parms { struct net *net ; struct net_device *dev ; struct list_head list ; int (*neigh_setup)(struct neighbour * ) ; void (*neigh_cleanup)(struct neighbour * ) ; struct neigh_table *tbl ; void *sysctl_table ; int dead ; atomic_t refcnt ; struct callback_head callback_head ; int reachable_time ; int data[12U] ; unsigned long data_state[1U] ; }; struct neigh_statistics { unsigned long allocs ; unsigned long destroys ; unsigned long hash_grows ; unsigned long res_failed ; unsigned long lookups ; unsigned long hits ; unsigned long rcv_probes_mcast ; unsigned long rcv_probes_ucast ; unsigned long periodic_gc_runs ; unsigned long forced_gc_runs ; unsigned long unres_discards ; }; struct neigh_ops; struct neighbour { struct neighbour *next ; struct neigh_table *tbl ; struct neigh_parms *parms ; unsigned long confirmed ; unsigned long updated ; rwlock_t lock ; atomic_t refcnt ; struct sk_buff_head arp_queue ; unsigned int arp_queue_len_bytes ; struct timer_list timer ; unsigned long used ; atomic_t probes ; __u8 flags ; __u8 nud_state ; __u8 type ; __u8 dead ; seqlock_t ha_lock ; unsigned char ha[32U] ; struct hh_cache hh ; int (*output)(struct neighbour * , struct sk_buff * ) ; struct neigh_ops const *ops ; struct callback_head rcu ; struct net_device *dev ; u8 primary_key[0U] ; }; struct neigh_ops { int family ; void (*solicit)(struct neighbour * , struct sk_buff * ) ; void (*error_report)(struct neighbour * , struct sk_buff * ) ; int (*output)(struct neighbour * , struct sk_buff * ) ; int (*connected_output)(struct neighbour * , struct sk_buff * ) ; }; struct pneigh_entry { struct pneigh_entry *next ; struct net *net ; struct net_device *dev ; u8 flags ; u8 key[0U] ; }; struct neigh_hash_table { struct neighbour **hash_buckets ; unsigned int hash_shift ; __u32 hash_rnd[4U] ; struct callback_head rcu ; }; struct neigh_table { int family ; int entry_size ; int key_len ; __u32 (*hash)(void const * , struct net_device const * , __u32 * ) ; int (*constructor)(struct neighbour * ) ; int (*pconstructor)(struct pneigh_entry * ) ; void (*pdestructor)(struct pneigh_entry * ) ; void (*proxy_redo)(struct sk_buff * ) ; char *id ; struct neigh_parms parms ; struct list_head parms_list ; int gc_interval ; int gc_thresh1 ; int gc_thresh2 ; int gc_thresh3 ; unsigned long last_flush ; struct delayed_work gc_work ; struct timer_list proxy_timer ; struct sk_buff_head proxy_queue ; atomic_t entries ; rwlock_t lock ; unsigned long last_rand ; struct neigh_statistics *stats ; struct neigh_hash_table *nht ; struct pneigh_entry **phash_buckets ; }; struct dn_route; union __anonunion____missing_field_name_283 { struct dst_entry *next ; struct rtable *rt_next ; struct rt6_info *rt6_next ; struct dn_route *dn_next ; }; struct dst_entry { struct callback_head callback_head ; struct dst_entry *child ; struct net_device *dev ; struct dst_ops *ops ; unsigned long _metrics ; unsigned long expires ; struct dst_entry *path ; struct dst_entry *from ; struct xfrm_state *xfrm ; int (*input)(struct sk_buff * ) ; int (*output)(struct sock * , struct sk_buff * ) ; unsigned short flags ; unsigned short pending_confirm ; short error ; short obsolete ; unsigned short header_len ; unsigned short trailer_len ; __u32 tclassid ; long __pad_to_align_refcnt[2U] ; atomic_t __refcnt ; int __use ; unsigned long lastuse ; union __anonunion____missing_field_name_283 __annonCompField94 ; }; struct __anonstruct_socket_lock_t_284 { spinlock_t slock ; int owned ; wait_queue_head_t wq ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_socket_lock_t_284 socket_lock_t; struct proto; typedef __u32 __portpair; typedef __u64 __addrpair; struct __anonstruct____missing_field_name_286 { __be32 skc_daddr ; __be32 skc_rcv_saddr ; }; union __anonunion____missing_field_name_285 { __addrpair skc_addrpair ; struct __anonstruct____missing_field_name_286 __annonCompField95 ; }; union __anonunion____missing_field_name_287 { unsigned int skc_hash ; __u16 skc_u16hashes[2U] ; }; struct __anonstruct____missing_field_name_289 { __be16 skc_dport ; __u16 skc_num ; }; union __anonunion____missing_field_name_288 { __portpair skc_portpair ; struct __anonstruct____missing_field_name_289 __annonCompField98 ; }; union __anonunion____missing_field_name_290 { struct hlist_node skc_bind_node ; struct hlist_nulls_node skc_portaddr_node ; }; union __anonunion____missing_field_name_291 { struct hlist_node skc_node ; struct hlist_nulls_node skc_nulls_node ; }; struct sock_common { union __anonunion____missing_field_name_285 __annonCompField96 ; union __anonunion____missing_field_name_287 __annonCompField97 ; union __anonunion____missing_field_name_288 __annonCompField99 ; unsigned short skc_family ; unsigned char volatile skc_state ; unsigned char skc_reuse : 4 ; unsigned char skc_reuseport : 1 ; unsigned char skc_ipv6only : 1 ; int skc_bound_dev_if ; union __anonunion____missing_field_name_290 __annonCompField100 ; struct proto *skc_prot ; struct net *skc_net ; struct in6_addr skc_v6_daddr ; struct in6_addr skc_v6_rcv_saddr ; int skc_dontcopy_begin[0U] ; union __anonunion____missing_field_name_291 __annonCompField101 ; int skc_tx_queue_mapping ; atomic_t skc_refcnt ; int skc_dontcopy_end[0U] ; }; struct cg_proto; struct __anonstruct_sk_backlog_292 { atomic_t rmem_alloc ; int len ; struct sk_buff *head ; struct sk_buff *tail ; }; struct sock { struct sock_common __sk_common ; socket_lock_t sk_lock ; struct sk_buff_head sk_receive_queue ; struct __anonstruct_sk_backlog_292 sk_backlog ; int sk_forward_alloc ; __u32 sk_rxhash ; u16 sk_incoming_cpu ; __u32 sk_txhash ; unsigned int sk_napi_id ; unsigned int sk_ll_usec ; atomic_t sk_drops ; int sk_rcvbuf ; struct sk_filter *sk_filter ; struct socket_wq *sk_wq ; struct xfrm_policy *sk_policy[2U] ; unsigned long sk_flags ; struct dst_entry *sk_rx_dst ; struct dst_entry *sk_dst_cache ; spinlock_t sk_dst_lock ; atomic_t sk_wmem_alloc ; atomic_t sk_omem_alloc ; int sk_sndbuf ; struct sk_buff_head sk_write_queue ; unsigned char sk_shutdown : 2 ; unsigned char sk_no_check_tx : 1 ; unsigned char sk_no_check_rx : 1 ; unsigned char sk_userlocks : 4 ; unsigned char sk_protocol ; unsigned short sk_type ; int sk_wmem_queued ; gfp_t sk_allocation ; u32 sk_pacing_rate ; u32 sk_max_pacing_rate ; netdev_features_t sk_route_caps ; netdev_features_t sk_route_nocaps ; int sk_gso_type ; unsigned int sk_gso_max_size ; u16 sk_gso_max_segs ; int sk_rcvlowat ; unsigned long sk_lingertime ; struct sk_buff_head sk_error_queue ; struct proto *sk_prot_creator ; rwlock_t sk_callback_lock ; int sk_err ; int sk_err_soft ; unsigned short sk_ack_backlog ; unsigned short sk_max_ack_backlog ; __u32 sk_priority ; __u32 sk_cgrp_prioidx ; struct pid *sk_peer_pid ; struct cred const *sk_peer_cred ; long sk_rcvtimeo ; long sk_sndtimeo ; void *sk_protinfo ; struct timer_list sk_timer ; ktime_t sk_stamp ; u16 sk_tsflags ; u32 sk_tskey ; struct socket *sk_socket ; void *sk_user_data ; struct page_frag sk_frag ; struct sk_buff *sk_send_head ; __s32 sk_peek_off ; int sk_write_pending ; void *sk_security ; __u32 sk_mark ; u32 sk_classid ; struct cg_proto *sk_cgrp ; void (*sk_state_change)(struct sock * ) ; void (*sk_data_ready)(struct sock * ) ; void (*sk_write_space)(struct sock * ) ; void (*sk_error_report)(struct sock * ) ; int (*sk_backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*sk_destruct)(struct sock * ) ; }; struct request_sock_ops; struct timewait_sock_ops; struct inet_hashinfo; struct raw_hashinfo; struct udp_table; union __anonunion_h_293 { struct inet_hashinfo *hashinfo ; struct udp_table *udp_table ; struct raw_hashinfo *raw_hash ; }; struct proto { void (*close)(struct sock * , long ) ; int (*connect)(struct sock * , struct sockaddr * , int ) ; int (*disconnect)(struct sock * , int ) ; struct sock *(*accept)(struct sock * , int , int * ) ; int (*ioctl)(struct sock * , int , unsigned long ) ; int (*init)(struct sock * ) ; void (*destroy)(struct sock * ) ; void (*shutdown)(struct sock * , int ) ; int (*setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_ioctl)(struct sock * , unsigned int , unsigned long ) ; int (*sendmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t , int , int , int * ) ; int (*sendpage)(struct sock * , struct page * , int , size_t , int ) ; int (*bind)(struct sock * , struct sockaddr * , int ) ; int (*backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*release_cb)(struct sock * ) ; void (*hash)(struct sock * ) ; void (*unhash)(struct sock * ) ; void (*rehash)(struct sock * ) ; int (*get_port)(struct sock * , unsigned short ) ; void (*clear_sk)(struct sock * , int ) ; unsigned int inuse_idx ; bool (*stream_memory_free)(struct sock const * ) ; void (*enter_memory_pressure)(struct sock * ) ; atomic_long_t *memory_allocated ; struct percpu_counter *sockets_allocated ; int *memory_pressure ; long *sysctl_mem ; int *sysctl_wmem ; int *sysctl_rmem ; int max_header ; bool no_autobind ; struct kmem_cache *slab ; unsigned int obj_size ; int slab_flags ; struct percpu_counter *orphan_count ; struct request_sock_ops *rsk_prot ; struct timewait_sock_ops *twsk_prot ; union __anonunion_h_293 h ; struct module *owner ; char name[32U] ; struct list_head node ; int (*init_cgroup)(struct mem_cgroup * , struct cgroup_subsys * ) ; void (*destroy_cgroup)(struct mem_cgroup * ) ; struct cg_proto *(*proto_cgroup)(struct mem_cgroup * ) ; }; struct cg_proto { struct page_counter memory_allocated ; struct percpu_counter sockets_allocated ; int memory_pressure ; long sysctl_mem[3U] ; unsigned long flags ; struct mem_cgroup *memcg ; }; struct __anonstruct_itu_296 { unsigned char mode ; unsigned char window ; }; union __anonunion_l2_295 { struct __anonstruct_itu_296 itu ; unsigned char user ; }; struct __anonstruct_itu_298 { unsigned char mode ; unsigned char def_size ; unsigned char window ; }; struct __anonstruct_h310_299 { unsigned char term_type ; unsigned char fw_mpx_cap ; unsigned char bw_mpx_cap ; }; struct __anonstruct_tr9577_300 { unsigned char ipi ; unsigned char snap[5U] ; }; union __anonunion_l3_297 { struct __anonstruct_itu_298 itu ; unsigned char user ; struct __anonstruct_h310_299 h310 ; struct __anonstruct_tr9577_300 tr9577 ; }; struct atm_blli { unsigned char l2_proto ; union __anonunion_l2_295 l2 ; unsigned char l3_proto ; union __anonunion_l3_297 l3 ; }; struct atm_bhli { unsigned char hl_type ; unsigned char hl_length ; unsigned char hl_info[8U] ; }; struct atm_sap { struct atm_bhli bhli ; struct atm_blli blli[3U] ; }; struct atm_trafprm { unsigned char traffic_class ; int max_pcr ; int pcr ; int min_pcr ; int max_cdv ; int max_sdu ; unsigned int icr ; unsigned int tbe ; unsigned int frtt : 24 ; unsigned char rif : 4 ; unsigned char rdf : 4 ; unsigned char nrm_pres : 1 ; unsigned char trm_pres : 1 ; unsigned char adtf_pres : 1 ; unsigned char cdf_pres : 1 ; unsigned char nrm : 3 ; unsigned char trm : 3 ; unsigned short adtf : 10 ; unsigned char cdf : 3 ; unsigned short spare : 9 ; }; struct atm_qos { struct atm_trafprm txtp ; struct atm_trafprm rxtp ; unsigned char aal ; }; struct __anonstruct_sas_addr_302 { unsigned char prv[20U] ; char pub[13U] ; char lij_type ; __u32 lij_id ; }; struct sockaddr_atmsvc { unsigned short sas_family ; struct __anonstruct_sas_addr_302 sas_addr ; }; struct atm_cirange { signed char vpi_bits ; signed char vci_bits ; }; struct k_atm_aal_stats { atomic_t tx ; atomic_t tx_err ; atomic_t rx ; atomic_t rx_err ; atomic_t rx_drop ; }; struct k_atm_dev_stats { struct k_atm_aal_stats aal0 ; struct k_atm_aal_stats aal34 ; struct k_atm_aal_stats aal5 ; }; struct atm_dev; struct atm_vcc { struct sock sk ; unsigned long flags ; short vpi ; int vci ; unsigned long aal_options ; unsigned long atm_options ; struct atm_dev *dev ; struct atm_qos qos ; struct atm_sap sap ; void (*release_cb)(struct atm_vcc * ) ; void (*push)(struct atm_vcc * , struct sk_buff * ) ; void (*pop)(struct atm_vcc * , struct sk_buff * ) ; int (*push_oam)(struct atm_vcc * , void * ) ; int (*send)(struct atm_vcc * , struct sk_buff * ) ; void *dev_data ; void *proto_data ; struct k_atm_aal_stats *stats ; struct module *owner ; short itf ; struct sockaddr_atmsvc local ; struct sockaddr_atmsvc remote ; struct atm_vcc *session ; void *user_back ; }; struct atmdev_ops; struct atmphy_ops; struct atm_dev { struct atmdev_ops const *ops ; struct atmphy_ops const *phy ; char const *type ; int number ; void *dev_data ; void *phy_data ; unsigned long flags ; struct list_head local ; struct list_head lecs ; unsigned char esi[6U] ; struct atm_cirange ci_range ; struct k_atm_dev_stats stats ; char signal ; int link_rate ; atomic_t refcnt ; spinlock_t lock ; struct proc_dir_entry *proc_entry ; char *proc_name ; struct device class_dev ; struct list_head dev_list ; }; struct atmdev_ops { void (*dev_close)(struct atm_dev * ) ; int (*open)(struct atm_vcc * ) ; void (*close)(struct atm_vcc * ) ; int (*ioctl)(struct atm_dev * , unsigned int , void * ) ; int (*compat_ioctl)(struct atm_dev * , unsigned int , void * ) ; int (*getsockopt)(struct atm_vcc * , int , int , void * , int ) ; int (*setsockopt)(struct atm_vcc * , int , int , void * , unsigned int ) ; int (*send)(struct atm_vcc * , struct sk_buff * ) ; int (*send_oam)(struct atm_vcc * , void * , int ) ; void (*phy_put)(struct atm_dev * , unsigned char , unsigned long ) ; unsigned char (*phy_get)(struct atm_dev * , unsigned long ) ; int (*change_qos)(struct atm_vcc * , struct atm_qos * , int ) ; int (*proc_read)(struct atm_dev * , loff_t * , char * ) ; struct module *owner ; }; struct atmphy_ops { int (*start)(struct atm_dev * ) ; int (*ioctl)(struct atm_dev * , unsigned int , void * ) ; void (*interrupt)(struct atm_dev * ) ; int (*stop)(struct atm_dev * ) ; }; struct sonet_stats { int section_bip ; int line_bip ; int path_bip ; int line_febe ; int path_febe ; int corr_hcs ; int uncorr_hcs ; int tx_cells ; int rx_cells ; }; struct firmware { size_t size ; u8 const *data ; struct page **pages ; void *priv ; }; struct atm_header { unsigned char clp : 1 ; unsigned char plt : 3 ; unsigned short vci ; unsigned char vpi ; unsigned char gfc : 4 ; }; enum fore200e_aal { FORE200E_AAL0 = 0, FORE200E_AAL34 = 4, FORE200E_AAL5 = 5 } ; struct tpd_spec { unsigned short length ; unsigned char nseg ; unsigned char aal : 4 ; unsigned char intr : 4 ; }; struct tpd_rate { unsigned short idle_cells ; unsigned short data_cells ; }; struct tsd { u32 buffer ; u32 length ; }; struct tpd { struct atm_header atm_header ; struct tpd_spec spec ; struct tpd_rate rate ; u32 pad ; struct tsd tsd[2U] ; }; struct rsd { u32 handle ; u32 length ; }; struct rpd { struct atm_header atm_header ; u32 nseg ; struct rsd rsd[19U] ; }; enum buffer_scheme { BUFFER_SCHEME_ONE = 0, BUFFER_SCHEME_TWO = 1, BUFFER_SCHEME_NBR = 2 } ; enum buffer_magn { BUFFER_MAGN_SMALL = 0, BUFFER_MAGN_LARGE = 1, BUFFER_MAGN_NBR = 2 } ; struct rbd { u32 handle ; u32 buffer_haddr ; }; struct rbd_block { struct rbd rbd[32U] ; }; struct tpd_haddr { unsigned char size : 4 ; unsigned char pad : 1 ; unsigned int haddr : 27 ; }; struct cp_txq_entry { struct tpd_haddr tpd_haddr ; u32 status_haddr ; }; struct cp_rxq_entry { u32 rpd_haddr ; u32 status_haddr ; }; struct cp_bsq_entry { u32 rbd_block_haddr ; u32 status_haddr ; }; enum status { STATUS_PENDING = 1, STATUS_COMPLETE = 2, STATUS_FREE = 4, STATUS_ERROR = 8 } ; enum opcode { OPCODE_INITIALIZE = 1, OPCODE_ACTIVATE_VCIN = 2, OPCODE_ACTIVATE_VCOUT = 3, OPCODE_DEACTIVATE_VCIN = 4, OPCODE_DEACTIVATE_VCOUT = 5, OPCODE_GET_STATS = 6, OPCODE_SET_OC3 = 7, OPCODE_GET_OC3 = 8, OPCODE_RESET_STATS = 9, OPCODE_GET_PROM = 10, OPCODE_SET_VPI_BITS = 11, OPCODE_REQUEST_INTR = 128 } ; struct vpvc { unsigned short vci ; unsigned char vpi ; unsigned char pad ; }; struct activate_opcode { unsigned char opcode ; unsigned char aal ; unsigned char scheme ; unsigned char pad ; }; struct activate_block { struct activate_opcode opcode ; struct vpvc vpvc ; u32 mtu ; }; struct deactivate_opcode { unsigned char opcode ; unsigned int pad : 24 ; }; struct deactivate_block { struct deactivate_opcode opcode ; struct vpvc vpvc ; }; struct oc3_opcode { unsigned char opcode ; unsigned char reg ; unsigned char value ; unsigned char mask ; }; struct oc3_block { struct oc3_opcode opcode ; u32 regs_haddr ; }; struct stats_phy { __be32 crc_header_errors ; __be32 framing_errors ; __be32 pad[2U] ; }; struct stats_oc3 { __be32 section_bip8_errors ; __be32 path_bip8_errors ; __be32 line_bip24_errors ; __be32 line_febe_errors ; __be32 path_febe_errors ; __be32 corr_hcs_errors ; __be32 ucorr_hcs_errors ; __be32 pad[1U] ; }; struct stats_atm { __be32 cells_transmitted ; __be32 cells_received ; __be32 vpi_bad_range ; __be32 vpi_no_conn ; __be32 vci_bad_range ; __be32 vci_no_conn ; __be32 pad[2U] ; }; struct stats_aal0 { __be32 cells_transmitted ; __be32 cells_received ; __be32 cells_dropped ; __be32 pad[1U] ; }; struct stats_aal34 { __be32 cells_transmitted ; __be32 cells_received ; __be32 cells_crc_errors ; __be32 cells_protocol_errors ; __be32 cells_dropped ; __be32 cspdus_transmitted ; __be32 cspdus_received ; __be32 cspdus_protocol_errors ; __be32 cspdus_dropped ; __be32 pad[3U] ; }; struct stats_aal5 { __be32 cells_transmitted ; __be32 cells_received ; __be32 cells_dropped ; __be32 congestion_experienced ; __be32 cspdus_transmitted ; __be32 cspdus_received ; __be32 cspdus_crc_errors ; __be32 cspdus_protocol_errors ; __be32 cspdus_dropped ; __be32 pad[3U] ; }; struct stats_aux { __be32 small_b1_failed ; __be32 large_b1_failed ; __be32 small_b2_failed ; __be32 large_b2_failed ; __be32 rpd_alloc_failed ; __be32 receive_carrier ; __be32 pad[2U] ; }; struct stats { struct stats_phy phy ; struct stats_oc3 oc3 ; struct stats_atm atm ; struct stats_aal0 aal0 ; struct stats_aal34 aal34 ; struct stats_aal5 aal5 ; struct stats_aux aux ; }; struct stats_opcode { unsigned char opcode ; unsigned int pad : 24 ; }; struct stats_block { struct stats_opcode opcode ; u32 stats_haddr ; }; struct prom_data { u32 hw_revision ; u32 serial_number ; u8 mac_addr[8U] ; }; struct prom_opcode { unsigned char opcode ; unsigned int pad : 24 ; }; struct prom_block { struct prom_opcode opcode ; u32 prom_haddr ; }; union cmd { enum opcode opcode ; struct activate_block activate_block ; struct deactivate_block deactivate_block ; struct stats_block stats_block ; struct prom_block prom_block ; struct oc3_block oc3_block ; u32 pad[4U] ; }; struct cp_cmdq_entry { union cmd cmd ; u32 status_haddr ; u32 pad[3U] ; }; struct fore200e_vc_map; struct host_txq_entry { struct cp_txq_entry *cp_entry ; enum status *status ; struct tpd *tpd ; u32 tpd_dma ; struct sk_buff *skb ; void *data ; unsigned long incarn ; struct fore200e_vc_map *vc_map ; }; struct host_rxq_entry { struct cp_rxq_entry *cp_entry ; enum status *status ; struct rpd *rpd ; u32 rpd_dma ; }; struct host_bsq_entry { struct cp_bsq_entry *cp_entry ; enum status *status ; struct rbd_block *rbd_block ; u32 rbd_block_dma ; }; struct host_cmdq_entry { struct cp_cmdq_entry *cp_entry ; enum status *status ; }; struct chunk { void *alloc_addr ; void *align_addr ; dma_addr_t dma_addr ; int direction ; u32 alloc_size ; u32 align_size ; }; struct buffer { struct buffer *next ; enum buffer_scheme scheme ; enum buffer_magn magn ; struct chunk data ; }; struct host_cmdq { struct host_cmdq_entry host_entry[16U] ; int head ; struct chunk status ; }; struct host_txq { struct host_txq_entry host_entry[256U] ; int head ; int tail ; struct chunk tpd ; struct chunk status ; int txing ; }; struct host_rxq { struct host_rxq_entry host_entry[64U] ; int head ; struct chunk rpd ; struct chunk status ; }; struct host_bsq { struct host_bsq_entry host_entry[32U] ; int head ; struct chunk rbd_block ; struct chunk status ; struct buffer *buffer ; struct buffer *freebuf ; int volatile freebuf_count ; }; struct fw_header { __le32 magic ; __le32 version ; __le32 load_offset ; __le32 start_offset ; }; struct bs_spec { u32 queue_length ; u32 buffer_size ; u32 pool_size ; u32 supply_blksize ; }; struct init_block { enum opcode opcode ; enum status status ; u32 receive_threshold ; u32 num_connect ; u32 cmd_queue_len ; u32 tx_queue_len ; u32 rx_queue_len ; u32 rsd_extension ; u32 tsd_extension ; u32 conless_vpvc ; u32 pad[2U] ; struct bs_spec bs_spec[2U][2U] ; }; enum media_type { MEDIA_TYPE_CAT5_UTP = 6, MEDIA_TYPE_MM_OC3_ST = 22, MEDIA_TYPE_MM_OC3_SC = 38, MEDIA_TYPE_SM_OC3_ST = 54, MEDIA_TYPE_SM_OC3_SC = 70 } ; struct cp_queues { u32 cp_cmdq ; u32 cp_txq ; u32 cp_rxq ; u32 cp_bsq[2U][2U] ; u32 imask ; u32 istat ; u32 heap_base ; u32 heap_size ; u32 hlogger ; u32 heartbeat ; u32 fw_release ; u32 mon960_release ; u32 tq_plen ; struct init_block init ; enum media_type media_type ; u32 oc3_revision ; }; enum boot_status { BSTAT_COLD_START = 3223175197U, BSTAT_SELFTEST_OK = 35658072, BSTAT_SELFTEST_FAIL = 2914704301U, BSTAT_CP_RUNNING = 3457285869U, BSTAT_MON_TOO_BIG = 279833856 } ; struct soft_uart { u32 send ; u32 recv ; }; struct cp_monitor { struct soft_uart soft_uart ; enum boot_status bstat ; u32 app_base ; u32 mon_version ; }; enum fore200e_state { FORE200E_STATE_BLANK = 0, FORE200E_STATE_REGISTER = 1, FORE200E_STATE_CONFIGURE = 2, FORE200E_STATE_MAP = 3, FORE200E_STATE_RESET = 4, FORE200E_STATE_START_FW = 5, FORE200E_STATE_INITIALIZE = 6, FORE200E_STATE_INIT_CMDQ = 7, FORE200E_STATE_INIT_TXQ = 8, FORE200E_STATE_INIT_RXQ = 9, FORE200E_STATE_INIT_BSQ = 10, FORE200E_STATE_ALLOC_BUF = 11, FORE200E_STATE_IRQ = 12, FORE200E_STATE_COMPLETE = 13 } ; struct fore200e_pca_regs { u32 volatile *hcr ; u32 volatile *imr ; u32 volatile *psr ; }; struct fore200e_sba_regs { u32 *hcr ; u32 *bsr ; u32 *isr ; }; union fore200e_regs { struct fore200e_pca_regs pca ; struct fore200e_sba_regs sba ; }; struct fore200e; struct fore200e_bus { char *model_name ; char *proc_name ; int descr_alignment ; int buffer_alignment ; int status_alignment ; u32 (*read)(u32 volatile * ) ; void (*write)(u32 , u32 volatile * ) ; u32 (*dma_map)(struct fore200e * , void * , int , int ) ; void (*dma_unmap)(struct fore200e * , u32 , int , int ) ; void (*dma_sync_for_cpu)(struct fore200e * , u32 , int , int ) ; void (*dma_sync_for_device)(struct fore200e * , u32 , int , int ) ; int (*dma_chunk_alloc)(struct fore200e * , struct chunk * , int , int , int ) ; void (*dma_chunk_free)(struct fore200e * , struct chunk * ) ; int (*configure)(struct fore200e * ) ; int (*map)(struct fore200e * ) ; void (*reset)(struct fore200e * ) ; int (*prom_read)(struct fore200e * , struct prom_data * ) ; void (*unmap)(struct fore200e * ) ; void (*irq_enable)(struct fore200e * ) ; int (*irq_check)(struct fore200e * ) ; void (*irq_ack)(struct fore200e * ) ; int (*proc_read)(struct fore200e * , char * ) ; }; struct fore200e_vc_map { struct atm_vcc *vcc ; unsigned long incarn ; }; struct fore200e { struct list_head entry ; struct fore200e_bus const *bus ; union fore200e_regs regs ; struct atm_dev *atm_dev ; enum fore200e_state state ; char name[16U] ; void *bus_dev ; int irq ; unsigned long phys_base ; void *virt_base ; unsigned char esi[6U] ; struct cp_monitor *cp_monitor ; struct cp_queues *cp_queues ; struct host_cmdq host_cmdq ; struct host_txq host_txq ; struct host_rxq host_rxq ; struct host_bsq host_bsq[2U][2U] ; u32 available_cell_rate ; int loop_mode ; struct stats *stats ; struct mutex rate_mtx ; spinlock_t q_lock ; struct tasklet_struct tx_tasklet ; struct tasklet_struct rx_tasklet ; unsigned long tx_sat ; unsigned long incarn_count ; struct fore200e_vc_map vc_map[1024U] ; }; struct fore200e_vcc { enum buffer_scheme scheme ; struct tpd_rate rate ; int rx_min_pdu ; int rx_max_pdu ; int tx_min_pdu ; int tx_max_pdu ; unsigned long tx_pdu ; unsigned long rx_pdu ; }; struct ldv_struct_EMGentry_9 { int signal_pending ; }; struct ldv_struct_free_irq_4 { int arg0 ; int signal_pending ; }; struct ldv_struct_interrupt_instance_0 { int arg0 ; enum irqreturn (*arg1)(int , void * ) ; enum irqreturn (*arg2)(int , void * ) ; void *arg3 ; int signal_pending ; }; struct ldv_struct_io_instance_2 { struct atmdev_ops *arg0 ; int signal_pending ; }; struct ldv_struct_pci_instance_1 { struct pci_driver *arg0 ; int signal_pending ; }; typedef int ldv_func_ret_type___1; typedef struct atm_dev *ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; struct request; struct device_private { void *driver_data ; }; typedef short s16; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; struct kthread_worker *worker ; }; struct dma_chan; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool (*can_dma)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool idling ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; bool cur_msg_mapped ; struct completion xfer_completion ; size_t max_dma_len ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; struct dma_chan *dma_tx ; struct dma_chan *dma_rx ; void *dummy_rx ; void *dummy_tx ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; struct sg_table tx_sg ; struct sg_table rx_sg ; unsigned char cs_change : 1 ; unsigned char tx_nbits : 3 ; unsigned char rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned char is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; enum hrtimer_restart; struct ratelimit_state { raw_spinlock_t lock ; int interval ; int burst ; int printed ; int missed ; unsigned long begin ; }; typedef unsigned int mmc_pm_flag_t; struct mmc_card; struct sdio_func; typedef void sdio_irq_handler_t(struct sdio_func * ); struct sdio_func_tuple { struct sdio_func_tuple *next ; unsigned char code ; unsigned char size ; unsigned char data[0U] ; }; struct sdio_func { struct mmc_card *card ; struct device dev ; sdio_irq_handler_t *irq_handler ; unsigned int num ; unsigned char class ; unsigned short vendor ; unsigned short device ; unsigned int max_blksize ; unsigned int cur_blksize ; unsigned int enable_timeout ; unsigned int state ; u8 tmpbuf[4U] ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; }; enum led_brightness { LED_OFF = 0, LED_HALF = 127, LED_FULL = 255 } ; struct led_trigger; struct led_classdev { char const *name ; enum led_brightness brightness ; enum led_brightness max_brightness ; int flags ; void (*brightness_set)(struct led_classdev * , enum led_brightness ) ; int (*brightness_set_sync)(struct led_classdev * , enum led_brightness ) ; enum led_brightness (*brightness_get)(struct led_classdev * ) ; int (*blink_set)(struct led_classdev * , unsigned long * , unsigned long * ) ; struct device *dev ; struct attribute_group const **groups ; struct list_head node ; char const *default_trigger ; unsigned long blink_delay_on ; unsigned long blink_delay_off ; struct timer_list blink_timer ; int blink_brightness ; void (*flash_resume)(struct led_classdev * ) ; struct work_struct set_brightness_work ; int delayed_set_value ; struct rw_semaphore trigger_lock ; struct led_trigger *trigger ; struct list_head trig_list ; void *trigger_data ; bool activated ; struct mutex led_access ; }; struct led_trigger { char const *name ; void (*activate)(struct led_classdev * ) ; void (*deactivate)(struct led_classdev * ) ; rwlock_t leddev_list_lock ; struct list_head led_cdevs ; struct list_head next_trig ; }; struct fault_attr { unsigned long probability ; unsigned long interval ; atomic_t times ; atomic_t space ; unsigned long verbose ; u32 task_filter ; unsigned long stacktrace_depth ; unsigned long require_start ; unsigned long require_end ; unsigned long reject_start ; unsigned long reject_end ; unsigned long count ; struct ratelimit_state ratelimit_state ; struct dentry *dname ; }; struct mmc_data; struct mmc_request; struct mmc_command { u32 opcode ; u32 arg ; u32 resp[4U] ; unsigned int flags ; unsigned int retries ; unsigned int error ; unsigned int busy_timeout ; bool sanitize_busy ; struct mmc_data *data ; struct mmc_request *mrq ; }; struct mmc_data { unsigned int timeout_ns ; unsigned int timeout_clks ; unsigned int blksz ; unsigned int blocks ; unsigned int error ; unsigned int flags ; unsigned int bytes_xfered ; struct mmc_command *stop ; struct mmc_request *mrq ; unsigned int sg_len ; struct scatterlist *sg ; s32 host_cookie ; }; struct mmc_host; struct mmc_request { struct mmc_command *sbc ; struct mmc_command *cmd ; struct mmc_data *data ; struct mmc_command *stop ; struct completion completion ; void (*done)(struct mmc_request * ) ; struct mmc_host *host ; }; struct mmc_async_req; struct mmc_cid { unsigned int manfid ; char prod_name[8U] ; unsigned char prv ; unsigned int serial ; unsigned short oemid ; unsigned short year ; unsigned char hwrev ; unsigned char fwrev ; unsigned char month ; }; struct mmc_csd { unsigned char structure ; unsigned char mmca_vsn ; unsigned short cmdclass ; unsigned short tacc_clks ; unsigned int tacc_ns ; unsigned int c_size ; unsigned int r2w_factor ; unsigned int max_dtr ; unsigned int erase_size ; unsigned int read_blkbits ; unsigned int write_blkbits ; unsigned int capacity ; unsigned char read_partial : 1 ; unsigned char read_misalign : 1 ; unsigned char write_partial : 1 ; unsigned char write_misalign : 1 ; unsigned char dsr_imp : 1 ; }; struct mmc_ext_csd { u8 rev ; u8 erase_group_def ; u8 sec_feature_support ; u8 rel_sectors ; u8 rel_param ; u8 part_config ; u8 cache_ctrl ; u8 rst_n_function ; u8 max_packed_writes ; u8 max_packed_reads ; u8 packed_event_en ; unsigned int part_time ; unsigned int sa_timeout ; unsigned int generic_cmd6_time ; unsigned int power_off_longtime ; u8 power_off_notification ; unsigned int hs_max_dtr ; unsigned int hs200_max_dtr ; unsigned int sectors ; unsigned int hc_erase_size ; unsigned int hc_erase_timeout ; unsigned int sec_trim_mult ; unsigned int sec_erase_mult ; unsigned int trim_timeout ; bool partition_setting_completed ; unsigned long long enhanced_area_offset ; unsigned int enhanced_area_size ; unsigned int cache_size ; bool hpi_en ; bool hpi ; unsigned int hpi_cmd ; bool bkops ; bool man_bkops_en ; unsigned int data_sector_size ; unsigned int data_tag_unit_size ; unsigned int boot_ro_lock ; bool boot_ro_lockable ; bool ffu_capable ; u8 fwrev[8U] ; u8 raw_exception_status ; u8 raw_partition_support ; u8 raw_rpmb_size_mult ; u8 raw_erased_mem_count ; u8 raw_ext_csd_structure ; u8 raw_card_type ; u8 out_of_int_time ; u8 raw_pwr_cl_52_195 ; u8 raw_pwr_cl_26_195 ; u8 raw_pwr_cl_52_360 ; u8 raw_pwr_cl_26_360 ; u8 raw_s_a_timeout ; u8 raw_hc_erase_gap_size ; u8 raw_erase_timeout_mult ; u8 raw_hc_erase_grp_size ; u8 raw_sec_trim_mult ; u8 raw_sec_erase_mult ; u8 raw_sec_feature_support ; u8 raw_trim_mult ; u8 raw_pwr_cl_200_195 ; u8 raw_pwr_cl_200_360 ; u8 raw_pwr_cl_ddr_52_195 ; u8 raw_pwr_cl_ddr_52_360 ; u8 raw_pwr_cl_ddr_200_360 ; u8 raw_bkops_status ; u8 raw_sectors[4U] ; unsigned int feature_support ; }; struct sd_scr { unsigned char sda_vsn ; unsigned char sda_spec3 ; unsigned char bus_widths ; unsigned char cmds ; }; struct sd_ssr { unsigned int au ; unsigned int erase_timeout ; unsigned int erase_offset ; }; struct sd_switch_caps { unsigned int hs_max_dtr ; unsigned int uhs_max_dtr ; unsigned int sd3_bus_mode ; unsigned int sd3_drv_type ; unsigned int sd3_curr_limit ; }; struct sdio_cccr { unsigned int sdio_vsn ; unsigned int sd_vsn ; unsigned char multi_block : 1 ; unsigned char low_speed : 1 ; unsigned char wide_bus : 1 ; unsigned char high_power : 1 ; unsigned char high_speed : 1 ; unsigned char disable_cd : 1 ; }; struct sdio_cis { unsigned short vendor ; unsigned short device ; unsigned short blksize ; unsigned int max_dtr ; }; struct mmc_ios; struct mmc_part { unsigned int size ; unsigned int part_cfg ; char name[20U] ; bool force_ro ; unsigned int area_type ; }; struct mmc_card { struct mmc_host *host ; struct device dev ; u32 ocr ; unsigned int rca ; unsigned int type ; unsigned int state ; unsigned int quirks ; unsigned int erase_size ; unsigned int erase_shift ; unsigned int pref_erase ; u8 erased_byte ; u32 raw_cid[4U] ; u32 raw_csd[4U] ; u32 raw_scr[2U] ; struct mmc_cid cid ; struct mmc_csd csd ; struct mmc_ext_csd ext_csd ; struct sd_scr scr ; struct sd_ssr ssr ; struct sd_switch_caps sw_caps ; unsigned int sdio_funcs ; struct sdio_cccr cccr ; struct sdio_cis cis ; struct sdio_func *sdio_func[7U] ; struct sdio_func *sdio_single_irq ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; unsigned int sd_bus_speed ; unsigned int mmc_avail_type ; struct dentry *debugfs_root ; struct mmc_part part[7U] ; unsigned int nr_parts ; }; struct mmc_ios { unsigned int clock ; unsigned short vdd ; unsigned char bus_mode ; unsigned char chip_select ; unsigned char power_mode ; unsigned char bus_width ; unsigned char timing ; unsigned char signal_voltage ; unsigned char drv_type ; }; struct mmc_host_ops { int (*enable)(struct mmc_host * ) ; int (*disable)(struct mmc_host * ) ; void (*post_req)(struct mmc_host * , struct mmc_request * , int ) ; void (*pre_req)(struct mmc_host * , struct mmc_request * , bool ) ; void (*request)(struct mmc_host * , struct mmc_request * ) ; void (*set_ios)(struct mmc_host * , struct mmc_ios * ) ; int (*get_ro)(struct mmc_host * ) ; int (*get_cd)(struct mmc_host * ) ; void (*enable_sdio_irq)(struct mmc_host * , int ) ; void (*init_card)(struct mmc_host * , struct mmc_card * ) ; int (*start_signal_voltage_switch)(struct mmc_host * , struct mmc_ios * ) ; int (*card_busy)(struct mmc_host * ) ; int (*execute_tuning)(struct mmc_host * , u32 ) ; int (*prepare_hs400_tuning)(struct mmc_host * , struct mmc_ios * ) ; int (*select_drive_strength)(unsigned int , int , int ) ; void (*hw_reset)(struct mmc_host * ) ; void (*card_event)(struct mmc_host * ) ; int (*multi_io_quirk)(struct mmc_card * , unsigned int , int ) ; }; struct mmc_async_req { struct mmc_request *mrq ; int (*err_check)(struct mmc_card * , struct mmc_async_req * ) ; }; struct mmc_slot { int cd_irq ; void *handler_priv ; }; struct mmc_context_info { bool is_done_rcv ; bool is_new_req ; bool is_waiting_last_req ; wait_queue_head_t wait ; spinlock_t lock ; }; struct regulator; struct mmc_pwrseq; struct mmc_supply { struct regulator *vmmc ; struct regulator *vqmmc ; }; struct mmc_bus_ops; struct mmc_host { struct device *parent ; struct device class_dev ; int index ; struct mmc_host_ops const *ops ; struct mmc_pwrseq *pwrseq ; unsigned int f_min ; unsigned int f_max ; unsigned int f_init ; u32 ocr_avail ; u32 ocr_avail_sdio ; u32 ocr_avail_sd ; u32 ocr_avail_mmc ; struct notifier_block pm_notify ; u32 max_current_330 ; u32 max_current_300 ; u32 max_current_180 ; u32 caps ; u32 caps2 ; mmc_pm_flag_t pm_caps ; int clk_requests ; unsigned int clk_delay ; bool clk_gated ; struct delayed_work clk_gate_work ; unsigned int clk_old ; spinlock_t clk_lock ; struct mutex clk_gate_mutex ; struct device_attribute clkgate_delay_attr ; unsigned long clkgate_delay ; unsigned int max_seg_size ; unsigned short max_segs ; unsigned short unused ; unsigned int max_req_size ; unsigned int max_blk_size ; unsigned int max_blk_count ; unsigned int max_busy_timeout ; spinlock_t lock ; struct mmc_ios ios ; unsigned char use_spi_crc : 1 ; unsigned char claimed : 1 ; unsigned char bus_dead : 1 ; unsigned char removed : 1 ; int rescan_disable ; int rescan_entered ; bool trigger_card_event ; struct mmc_card *card ; wait_queue_head_t wq ; struct task_struct *claimer ; int claim_cnt ; struct delayed_work detect ; int detect_change ; struct mmc_slot slot ; struct mmc_bus_ops const *bus_ops ; unsigned int bus_refs ; unsigned int sdio_irqs ; struct task_struct *sdio_irq_thread ; bool sdio_irq_pending ; atomic_t sdio_irq_thread_abort ; mmc_pm_flag_t pm_flags ; struct led_trigger *led ; bool regulator_enabled ; struct mmc_supply supply ; struct dentry *debugfs_root ; struct mmc_async_req *areq ; struct mmc_context_info context_info ; struct fault_attr fail_mmc_request ; unsigned int actual_clock ; unsigned int slotno ; int dsr_req ; u32 dsr ; unsigned long private[0U] ; }; typedef int ldv_map; struct usb_device; struct urb; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; typedef _Bool ldv_set; long ldv__builtin_expect(long exp , long c ) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_irq_check_alloc_nonatomic(void) ; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) ; void ldv_linux_arch_io_check_final_state(void) ; void ldv_linux_block_genhd_check_final_state(void) ; void ldv_linux_block_queue_check_final_state(void) ; void ldv_linux_block_request_check_final_state(void) ; void *ldv_linux_drivers_base_class_create_class(void) ; int ldv_linux_drivers_base_class_register_class(void) ; void ldv_linux_drivers_base_class_check_final_state(void) ; void ldv_linux_fs_char_dev_check_final_state(void) ; void ldv_linux_fs_sysfs_check_final_state(void) ; void ldv_linux_kernel_locking_rwlock_check_final_state(void) ; void ldv_linux_kernel_module_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_check_final_state(void) ; void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) ; void ldv_linux_kernel_rcu_srcu_check_final_state(void) ; void ldv_linux_lib_find_bit_initialize(void) ; void ldv_linux_lib_idr_check_final_state(void) ; void ldv_linux_mmc_sdio_func_check_final_state(void) ; void ldv_linux_net_register_reset_error_counter(void) ; void ldv_linux_net_register_check_return_value_probe(int retval ) ; void ldv_linux_net_rtnetlink_check_final_state(void) ; void ldv_linux_net_sock_check_final_state(void) ; void ldv_linux_usb_coherent_check_final_state(void) ; void *ldv_linux_usb_gadget_create_class(void) ; int ldv_linux_usb_gadget_register_class(void) ; void ldv_linux_usb_gadget_check_final_state(void) ; void ldv_linux_usb_register_reset_error_counter(void) ; void ldv_linux_usb_register_check_return_value_probe(int retval ) ; void ldv_linux_usb_urb_check_final_state(void) ; void ldv_check_alloc_nonatomic(void) { { { ldv_linux_alloc_irq_check_alloc_nonatomic(); ldv_linux_alloc_usb_lock_check_alloc_nonatomic(); } return; } } void ldv_check_alloc_flags(gfp_t flags ) { { { ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return; } } void ldv_check_for_read_section(void) { { { ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_check_for_read_section(); ldv_linux_kernel_rcu_srcu_check_for_read_section(); } return; } } void *ldv_create_class(void) { void *res1 ; void *tmp ; void *res2 ; void *tmp___0 ; { { tmp = ldv_linux_drivers_base_class_create_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_create_class(); res2 = tmp___0; ldv_assume((unsigned long )res1 == (unsigned long )res2); } return (res1); } } int ldv_register_class(void) { int res1 ; int tmp ; int res2 ; int tmp___0 ; { { tmp = ldv_linux_drivers_base_class_register_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_register_class(); res2 = tmp___0; ldv_assume(res1 == res2); } return (res1); } } void *ldv_kzalloc(size_t size , gfp_t flags ) ; void ldv_linux_usb_dev_atomic_inc(atomic_t *v ) ; int ldv_undef_int(void) ; void *ldv_linux_arch_io_io_mem_remap(void) ; void ldv_linux_arch_io_io_mem_unmap(void) ; static void ldv_ldv_initialize_159(void) ; int ldv_post_init(int init_ret_val ) ; static int ldv_ldv_post_init_156(int ldv_func_arg1 ) ; extern void ldv_pre_probe(void) ; static void ldv_ldv_pre_probe_160(void) ; int ldv_post_probe(int probe_ret_val ) ; static int ldv_ldv_post_probe_161(int retval ) ; int ldv_filter_err_code(int ret_val ) ; static void ldv_ldv_check_final_state_157(void) ; static void ldv_ldv_check_final_state_158(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; void *ldv_malloc_unknown_size(void) ; extern void ldv_after_alloc(void * ) ; void *ldv_alloc_macro(gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } static void ldv_mutex_lock_136(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_141(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_146(struct mutex *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_mutex_mutex_lock_rate_mtx_of_fore200e(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_rate_mtx_of_fore200e(struct mutex *lock ) ; extern struct module __this_module ; extern struct pv_irq_ops pv_irq_ops ; __inline static void set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static int test_and_set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("":); return (0); return (1); } } __inline static int constant_test_bit(long nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr >> 6)) >> ((int )nr & 63)) & 1); } } __inline static __u32 __fswab32(__u32 val ) { int tmp ; { { tmp = __builtin_bswap32(val); } return ((__u32 )tmp); } } extern int printk(char const * , ...) ; extern void might_fault(void) ; extern void panic(char const * , ...) ; extern int sprintf(char * , char const * , ...) ; extern unsigned long __phys_addr(unsigned long ) ; extern void *__memcpy(void * , void const * , size_t ) ; extern void *__memset(void * , int , size_t ) ; extern int strcmp(char const * , char const * ) ; extern void warn_slowpath_null(char const * , int const ) ; __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"./arch/x86/include/asm/paravirt.h"), "i" (804), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } __inline static int atomic_read(atomic_t const *v ) { int __var ; { __var = 0; return ((int )*((int const volatile *)(& v->counter))); } } __inline static void atomic_set(atomic_t *v , int i ) { { v->counter = i; return; } } __inline static void atomic_inc(atomic_t *v ) ; extern void __ldv_linux_kernel_locking_spinlock_spin_lock(spinlock_t * ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_129(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_131(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_133(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_139(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_143(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_153(spinlock_t *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_spinlock_spin_lock_q_lock_of_fore200e(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_q_lock_of_fore200e(void) ; void ldv_switch_to_interrupt_context(void) ; void ldv_switch_to_process_context(void) ; extern void __mutex_init(struct mutex * , char const * , struct lock_class_key * ) ; static void ldv_mutex_unlock_137(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_138(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_142(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_147(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_148(struct mutex *ldv_func_arg1 ) ; extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField18.rlock); } } __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField18.rlock, flags); } return; } } __inline static void ldv_spin_unlock_irqrestore_130(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_130(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_130(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_130(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_130(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_130(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_130(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_130(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_130(spinlock_t *lock , unsigned long flags ) ; extern unsigned long volatile jiffies ; extern unsigned long msecs_to_jiffies(unsigned int const ) ; extern ktime_t ktime_get_with_offset(enum tk_offsets ) ; __inline static ktime_t ktime_get_real(void) { ktime_t tmp ; { { tmp = ktime_get_with_offset(0); } return (tmp); } } __inline static unsigned int readl(void const volatile *addr ) { unsigned int ret ; { __asm__ volatile ("movl %1,%0": "=r" (ret): "m" (*((unsigned int volatile *)addr)): "memory"); return (ret); } } __inline static void writel(unsigned int val , void volatile *addr ) { { __asm__ volatile ("movl %0,%1": : "r" (val), "m" (*((unsigned int volatile *)addr)): "memory"); return; } } __inline static void *ioremap(resource_size_t offset , unsigned long size ) ; static void ldv_iounmap_128(void volatile *ldv_func_arg1 ) ; __inline static void *dev_get_drvdata(struct device const *dev ) { { return ((void *)dev->driver_data); } } __inline static void dev_set_drvdata(struct device *dev , void *data ) { { dev->driver_data = data; return; } } extern bool capable(int ) ; extern void kfree(void const * ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; extern int pci_bus_read_config_byte(struct pci_bus * , unsigned int , int , u8 * ) ; extern int pci_bus_write_config_byte(struct pci_bus * , unsigned int , int , u8 ) ; __inline static int pci_read_config_byte(struct pci_dev const *dev , int where , u8 *val ) { int tmp ; { { tmp = pci_bus_read_config_byte(dev->bus, dev->devfn, where, val); } return (tmp); } } __inline static int pci_write_config_byte(struct pci_dev const *dev , int where , u8 val ) { int tmp ; { { tmp = pci_bus_write_config_byte(dev->bus, dev->devfn, where, (int )val); } return (tmp); } } extern int pci_enable_device(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; static int ldv___pci_register_driver_151(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; static void ldv_pci_unregister_driver_152(struct pci_driver *ldv_func_arg1 ) ; __inline static int valid_dma_direction(int dma_direction ) { { return ((unsigned int )dma_direction <= 2U); } } __inline static int is_device_dma_capable(struct device *dev ) { { return ((unsigned long )dev->dma_mask != (unsigned long )((u64 *)0ULL) && *(dev->dma_mask) != 0ULL); } } __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern void debug_dma_alloc_coherent(struct device * , size_t , dma_addr_t , void * ) ; extern void debug_dma_free_coherent(struct device * , size_t , void * , dma_addr_t ) ; extern void debug_dma_sync_single_for_cpu(struct device * , dma_addr_t , size_t , int ) ; extern void debug_dma_sync_single_for_device(struct device * , dma_addr_t , size_t , int ) ; extern struct device x86_dma_fallback_dev ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); } if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static dma_addr_t dma_map_single_attrs(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, (struct page *)-24189255811072L + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, (struct page *)-24189255811072L + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); } return (addr); } } __inline static void dma_unmap_single_attrs(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (36), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, attrs); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 1); } return; } } __inline static void dma_sync_single_for_cpu(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (103), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->sync_single_for_cpu != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { { (*(ops->sync_single_for_cpu))(dev, addr, size, dir); } } else { } { debug_dma_sync_single_for_cpu(dev, addr, size, (int )dir); } return; } } __inline static void dma_sync_single_for_device(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (115), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->sync_single_for_device != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { { (*(ops->sync_single_for_device))(dev, addr, size, dir); } } else { } { debug_dma_sync_single_for_device(dev, addr, size, (int )dir); } return; } } extern int dma_supported(struct device * , u64 ) ; extern int dma_set_mask(struct device * , u64 ) ; __inline static unsigned long dma_alloc_coherent_mask(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; { dma_mask = 0UL; dma_mask = (unsigned long )dev->coherent_dma_mask; if (dma_mask == 0UL) { dma_mask = (int )gfp & 1 ? 16777215UL : 4294967295UL; } else { } return (dma_mask); } } __inline static gfp_t dma_alloc_coherent_gfp_flags(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; unsigned long tmp ; { { tmp = dma_alloc_coherent_mask(dev, gfp); dma_mask = tmp; } if ((unsigned long long )dma_mask <= 16777215ULL) { gfp = gfp | 1U; } else { } if ((unsigned long long )dma_mask <= 4294967295ULL && (gfp & 1U) == 0U) { gfp = gfp | 4U; } else { } return (gfp); } } __inline static void *dma_alloc_attrs(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t gfp , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; void *memory ; int tmp___0 ; gfp_t tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; gfp = gfp & 4294967288U; } if ((unsigned long )dev == (unsigned long )((struct device *)0)) { dev = & x86_dma_fallback_dev; } else { } { tmp___0 = is_device_dma_capable(dev); } if (tmp___0 == 0) { return ((void *)0); } else { } if ((unsigned long )ops->alloc == (unsigned long )((void *(*)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ))0)) { return ((void *)0); } else { } { tmp___1 = dma_alloc_coherent_gfp_flags(dev, gfp); memory = (*(ops->alloc))(dev, size, dma_handle, tmp___1, attrs); debug_dma_alloc_coherent(dev, size, *dma_handle, memory); } return (memory); } } __inline static void dma_free_attrs(struct device *dev , size_t size , void *vaddr , dma_addr_t bus , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int __ret_warn_on ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; _flags = arch_local_save_flags(); tmp___0 = arch_irqs_disabled_flags(_flags); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("./arch/x86/include/asm/dma-mapping.h", 166); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); debug_dma_free_coherent(dev, size, vaddr, bus); } if ((unsigned long )ops->free != (unsigned long )((void (*)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ))0)) { { (*(ops->free))(dev, size, vaddr, bus, attrs); } } else { } return; } } __inline static int dma_set_coherent_mask(struct device *dev , u64 mask ) { int tmp ; { { tmp = dma_supported(dev, mask); } if (tmp == 0) { return (-5); } else { } dev->coherent_dma_mask = mask; return (0); } } __inline static int dma_set_mask_and_coherent(struct device *dev , u64 mask ) { int rc ; int tmp ; { { tmp = dma_set_mask(dev, mask); rc = tmp; } if (rc == 0) { { dma_set_coherent_mask(dev, mask); } } else { } return (rc); } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { { tmp = dev_get_drvdata((struct device const *)(& pdev->dev)); } return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { { dev_set_drvdata(& pdev->dev, data); } return; } } extern unsigned long _copy_to_user(void * , void const * , unsigned int ) ; extern void __copy_to_user_overflow(void) ; __inline static unsigned long copy_to_user(void *to , void const *from , unsigned long n ) { int sz ; long tmp ; long tmp___0 ; { { sz = -1; might_fault(); tmp = ldv__builtin_expect(sz < 0, 1L); } if (tmp != 0L) { { n = _copy_to_user(to, from, (unsigned int )n); } } else { { tmp___0 = ldv__builtin_expect((unsigned long )sz >= n, 1L); } if (tmp___0 != 0L) { { n = _copy_to_user(to, from, (unsigned int )n); } } else { { __copy_to_user_overflow(); } } } return (n); } } extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); } return (tmp); } } __inline static int ldv_request_irq_149(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; static void ldv_free_irq_127(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; extern void __tasklet_schedule(struct tasklet_struct * ) ; __inline static void tasklet_schedule(struct tasklet_struct *t ) { int tmp ; { { tmp = test_and_set_bit(0L, (unsigned long volatile *)(& t->state)); } if (tmp == 0) { { __tasklet_schedule(t); } } else { } return; } } extern void tasklet_init(struct tasklet_struct * , void (*)(unsigned long ) , unsigned long ) ; __inline static struct sk_buff *alloc_skb(unsigned int size , gfp_t flags ) ; extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; __inline static void __net_timestamp(struct sk_buff *skb ) { { { skb->__annonCompField69.__annonCompField68.__annonCompField67.tstamp = ktime_get_real(); } return; } } extern void __const_udelay(unsigned long ) ; extern void __dev_kfree_skb_any(struct sk_buff * , enum skb_free_reason ) ; __inline static void dev_kfree_skb_any(struct sk_buff *skb ) { { { __dev_kfree_skb_any(skb, 1); } return; } } __inline static struct sock *sk_atm(struct atm_vcc *vcc ) { { return ((struct sock *)vcc); } } extern struct atm_dev *atm_dev_register(char const * , struct device * , struct atmdev_ops const * , int , unsigned long * ) ; static struct atm_dev *ldv_atm_dev_register_150(char const *ldv_func_arg1 , struct device *ldv_func_arg2 , struct atmdev_ops const *ldv_func_arg3 , int ldv_func_arg4 , unsigned long *ldv_func_arg5 ) ; extern void atm_dev_deregister(struct atm_dev * ) ; extern int atm_charge(struct atm_vcc * , int ) ; extern int request_firmware(struct firmware const ** , char const * , struct device * ) ; extern void release_firmware(struct firmware const * ) ; static struct atmdev_ops const fore200e_ops ; static struct fore200e_bus const fore200e_bus[2U] ; static int const fore200e_rx_buf_nbr[2U][2U] = { { 192, 128}, { 192, 128}}; static int const fore200e_rx_buf_size[2U][2U] = { { 384, 4032}, { 384, 4032}}; static enum fore200e_aal fore200e_atm2fore_aal(int aal ) { { { if (aal == 13) { goto case_13; } else { } if (aal == 3) { goto case_3; } else { } if (aal == 1) { goto case_1; } else { } if (aal == 2) { goto case_2; } else { } if (aal == 5) { goto case_5; } else { } goto switch_break; case_13: /* CIL Label */ ; return (0); case_3: /* CIL Label */ ; return (4); case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; case_5: /* CIL Label */ ; return (5); switch_break: /* CIL Label */ ; } return (4294967274L); } } static char *fore200e_irq_itoa(int irq ) { char str[8U] ; { { sprintf((char *)(& str), "%d", irq); } return ((char *)(& str)); } } static int fore200e_chunk_alloc(struct fore200e *fore200e , struct chunk *chunk , int size , int alignment , int direction ) { unsigned long offset ; u32 tmp ; { offset = 0UL; if ((unsigned int )alignment <= 4U) { alignment = 0; } else { } { chunk->alloc_size = (u32 )(size + alignment); chunk->align_size = (u32 )size; chunk->direction = direction; chunk->alloc_addr = kzalloc((size_t )chunk->alloc_size, 209U); } if ((unsigned long )chunk->alloc_addr == (unsigned long )((void *)0)) { return (-12); } else { } if (alignment > 0) { offset = (((unsigned long )chunk->alloc_addr + (unsigned long )(alignment + -1)) & (unsigned long )(- alignment)) - (unsigned long )chunk->alloc_addr; } else { } { chunk->align_addr = chunk->alloc_addr + offset; tmp = (*((fore200e->bus)->dma_map))(fore200e, chunk->align_addr, (int )chunk->align_size, direction); chunk->dma_addr = (dma_addr_t )tmp; } return (0); } } static void fore200e_chunk_free(struct fore200e *fore200e , struct chunk *chunk ) { { { (*((fore200e->bus)->dma_unmap))(fore200e, (u32 )chunk->dma_addr, (int )chunk->align_size, chunk->direction); kfree((void const *)chunk->alloc_addr); } return; } } static void fore200e_spin(int msecs ) { unsigned long timeout ; unsigned long tmp ; { { tmp = msecs_to_jiffies((unsigned int const )msecs); timeout = (unsigned long )jiffies + tmp; } goto ldv_51638; ldv_51637: ; ldv_51638: ; if ((long )((unsigned long )jiffies - timeout) < 0L) { goto ldv_51637; } else { } return; } } static int fore200e_poll(struct fore200e *fore200e , u32 volatile *addr , u32 val , int msecs ) { unsigned long timeout ; unsigned long tmp ; int ok ; { { tmp = msecs_to_jiffies((unsigned int const )msecs); timeout = (unsigned long )jiffies + tmp; __asm__ volatile ("mfence": : : "memory"); } ldv_51655: ok = (unsigned int )*addr == val; if (ok != 0 || ((unsigned int )*addr & 8U) != 0U) { goto ldv_51648; } else { } if ((long )((unsigned long )jiffies - timeout) < 0L) { goto ldv_51655; } else { } ldv_51648: ; if (ok == 0) { { printk("fore200e: cmd polling failed, got status 0x%08x, expected 0x%08x\n", *addr, val); } } else { } return (ok); } } static int fore200e_io_poll(struct fore200e *fore200e , u32 volatile *addr , u32 val , int msecs ) { unsigned long timeout ; unsigned long tmp ; int ok ; u32 tmp___0 ; u32 tmp___1 ; { { tmp = msecs_to_jiffies((unsigned int const )msecs); timeout = (unsigned long )jiffies + tmp; } ldv_51671: { tmp___0 = (*((fore200e->bus)->read))(addr); ok = tmp___0 == val; } if (ok != 0) { goto ldv_51664; } else { } if ((long )((unsigned long )jiffies - timeout) < 0L) { goto ldv_51671; } else { } ldv_51664: ; if (ok == 0) { { tmp___1 = (*((fore200e->bus)->read))(addr); printk("fore200e: I/O polling failed, got status 0x%08x, expected 0x%08x\n", tmp___1, val); } } else { } return (ok); } } static void fore200e_free_rx_buf(struct fore200e *fore200e ) { int scheme ; int magn ; int nbr ; struct buffer *buffer ; struct chunk *data ; { scheme = 0; goto ldv_51687; ldv_51686: magn = 0; goto ldv_51684; ldv_51683: buffer = fore200e->host_bsq[scheme][magn].buffer; if ((unsigned long )buffer != (unsigned long )((struct buffer *)0)) { nbr = 0; goto ldv_51681; ldv_51680: data = & (buffer + (unsigned long )nbr)->data; if ((unsigned long )data->alloc_addr != (unsigned long )((void *)0)) { { fore200e_chunk_free(fore200e, data); } } else { } nbr = nbr + 1; ldv_51681: ; if (nbr < (int )fore200e_rx_buf_nbr[scheme][magn]) { goto ldv_51680; } else { } } else { } magn = magn + 1; ldv_51684: ; if (magn <= 1) { goto ldv_51683; } else { } scheme = scheme + 1; ldv_51687: ; if (scheme <= 1) { goto ldv_51686; } else { } return; } } static void fore200e_uninit_bs_queue(struct fore200e *fore200e ) { int scheme ; int magn ; struct chunk *status ; struct chunk *rbd_block ; { scheme = 0; goto ldv_51700; ldv_51699: magn = 0; goto ldv_51697; ldv_51696: status = & fore200e->host_bsq[scheme][magn].status; rbd_block = & fore200e->host_bsq[scheme][magn].rbd_block; if ((unsigned long )status->alloc_addr != (unsigned long )((void *)0)) { { (*((fore200e->bus)->dma_chunk_free))(fore200e, status); } } else { } if ((unsigned long )rbd_block->alloc_addr != (unsigned long )((void *)0)) { { (*((fore200e->bus)->dma_chunk_free))(fore200e, rbd_block); } } else { } magn = magn + 1; ldv_51697: ; if (magn <= 1) { goto ldv_51696; } else { } scheme = scheme + 1; ldv_51700: ; if (scheme <= 1) { goto ldv_51699; } else { } return; } } static int fore200e_reset(struct fore200e *fore200e , int diag ) { int ok ; { { fore200e->cp_monitor = (struct cp_monitor *)fore200e->virt_base + 1024U; (*((fore200e->bus)->write))(3223175197U, (u32 volatile *)(& (fore200e->cp_monitor)->bstat)); (*((fore200e->bus)->reset))(fore200e); } if (diag != 0) { { ok = fore200e_io_poll(fore200e, (u32 volatile *)(& (fore200e->cp_monitor)->bstat), 35658072U, 1000); } if (ok == 0) { { printk("fore200e: device %s self-test failed\n", (char *)(& fore200e->name)); } return (-19); } else { } { printk("fore200e: device %s self-test passed\n", (char *)(& fore200e->name)); fore200e->state = 4; } } else { } return (0); } } static void fore200e_shutdown(struct fore200e *fore200e ) { char *tmp ; { { tmp = fore200e_irq_itoa(fore200e->irq); printk("fore200e: removing device %s at 0x%lx, IRQ %s\n", (char *)(& fore200e->name), fore200e->phys_base, tmp); } if ((unsigned int )fore200e->state > 4U) { { fore200e_reset(fore200e, 0); } } else { } { if ((unsigned int )fore200e->state == 13U) { goto case_13; } else { } if ((unsigned int )fore200e->state == 12U) { goto case_12; } else { } if ((unsigned int )fore200e->state == 11U) { goto case_11; } else { } if ((unsigned int )fore200e->state == 10U) { goto case_10; } else { } if ((unsigned int )fore200e->state == 9U) { goto case_9; } else { } if ((unsigned int )fore200e->state == 8U) { goto case_8; } else { } if ((unsigned int )fore200e->state == 7U) { goto case_7; } else { } if ((unsigned int )fore200e->state == 6U) { goto case_6; } else { } if ((unsigned int )fore200e->state == 5U) { goto case_5; } else { } if ((unsigned int )fore200e->state == 4U) { goto case_4; } else { } if ((unsigned int )fore200e->state == 3U) { goto case_3; } else { } if ((unsigned int )fore200e->state == 2U) { goto case_2; } else { } if ((unsigned int )fore200e->state == 1U) { goto case_1; } else { } if ((unsigned int )fore200e->state == 0U) { goto case_0; } else { } goto switch_break; case_13: /* CIL Label */ { kfree((void const *)fore200e->stats); } case_12: /* CIL Label */ { ldv_free_irq_127((unsigned int )fore200e->irq, (void *)fore200e->atm_dev); } case_11: /* CIL Label */ { fore200e_free_rx_buf(fore200e); } case_10: /* CIL Label */ { fore200e_uninit_bs_queue(fore200e); } case_9: /* CIL Label */ { (*((fore200e->bus)->dma_chunk_free))(fore200e, & fore200e->host_rxq.status); (*((fore200e->bus)->dma_chunk_free))(fore200e, & fore200e->host_rxq.rpd); } case_8: /* CIL Label */ { (*((fore200e->bus)->dma_chunk_free))(fore200e, & fore200e->host_txq.status); (*((fore200e->bus)->dma_chunk_free))(fore200e, & fore200e->host_txq.tpd); } case_7: /* CIL Label */ { (*((fore200e->bus)->dma_chunk_free))(fore200e, & fore200e->host_cmdq.status); } case_6: /* CIL Label */ ; case_5: /* CIL Label */ ; case_4: /* CIL Label */ ; case_3: /* CIL Label */ { (*((fore200e->bus)->unmap))(fore200e); } case_2: /* CIL Label */ ; case_1: /* CIL Label */ { atm_dev_deregister(fore200e->atm_dev); } case_0: /* CIL Label */ ; goto ldv_51724; switch_break: /* CIL Label */ ; } ldv_51724: ; return; } } static u32 fore200e_pca_read(u32 volatile *addr ) { unsigned int tmp ; { { tmp = readl((void const volatile *)addr); } return (tmp); } } static void fore200e_pca_write(u32 val , u32 volatile *addr ) { { { writel(val, (void volatile *)addr); } return; } } static u32 fore200e_pca_dma_map(struct fore200e *fore200e , void *virt_addr , int size , int direction ) { u32 dma_addr ; dma_addr_t tmp ; { { tmp = dma_map_single_attrs(& ((struct pci_dev *)fore200e->bus_dev)->dev, virt_addr, (size_t )size, (enum dma_data_direction )direction, (struct dma_attrs *)0); dma_addr = (u32 )tmp; } return (dma_addr); } } static void fore200e_pca_dma_unmap(struct fore200e *fore200e , u32 dma_addr , int size , int direction ) { { { dma_unmap_single_attrs(& ((struct pci_dev *)fore200e->bus_dev)->dev, (dma_addr_t )dma_addr, (size_t )size, (enum dma_data_direction )direction, (struct dma_attrs *)0); } return; } } static void fore200e_pca_dma_sync_for_cpu(struct fore200e *fore200e , u32 dma_addr , int size , int direction ) { { { dma_sync_single_for_cpu(& ((struct pci_dev *)fore200e->bus_dev)->dev, (dma_addr_t )dma_addr, (size_t )size, (enum dma_data_direction )direction); } return; } } static void fore200e_pca_dma_sync_for_device(struct fore200e *fore200e , u32 dma_addr , int size , int direction ) { { { dma_sync_single_for_device(& ((struct pci_dev *)fore200e->bus_dev)->dev, (dma_addr_t )dma_addr, (size_t )size, (enum dma_data_direction )direction); } return; } } static int fore200e_pca_dma_chunk_alloc(struct fore200e *fore200e , struct chunk *chunk , int size , int nbr , int alignment ) { { { chunk->alloc_size = (u32 )(size * nbr); chunk->alloc_addr = dma_alloc_attrs(& ((struct pci_dev *)fore200e->bus_dev)->dev, (size_t )chunk->alloc_size, & chunk->dma_addr, 208U, (struct dma_attrs *)0); } if ((unsigned long )chunk->alloc_addr == (unsigned long )((void *)0) || chunk->dma_addr == 0ULL) { return (-12); } else { } chunk->align_addr = chunk->alloc_addr; return (0); } } static void fore200e_pca_dma_chunk_free(struct fore200e *fore200e , struct chunk *chunk ) { { { dma_free_attrs(& ((struct pci_dev *)fore200e->bus_dev)->dev, (size_t )chunk->alloc_size, chunk->alloc_addr, chunk->dma_addr, (struct dma_attrs *)0); } return; } } static int fore200e_pca_irq_check(struct fore200e *fore200e ) { int irq_posted ; unsigned int tmp ; { { tmp = readl((void const volatile *)fore200e->regs.pca.psr); irq_posted = (int )tmp; } return (irq_posted); } } static void fore200e_pca_irq_ack(struct fore200e *fore200e ) { { { writel(16U, (void volatile *)fore200e->regs.pca.hcr); } return; } } static void fore200e_pca_reset(struct fore200e *fore200e ) { { { writel(1U, (void volatile *)fore200e->regs.pca.hcr); fore200e_spin(10); writel(0U, (void volatile *)fore200e->regs.pca.hcr); } return; } } static int fore200e_pca_map(struct fore200e *fore200e ) { { { fore200e->virt_base = ioremap((resource_size_t )fore200e->phys_base, 2097152UL); } if ((unsigned long )fore200e->virt_base == (unsigned long )((void *)0)) { { printk("fore200e: can\'t map device %s\n", (char *)(& fore200e->name)); } return (-14); } else { } fore200e->regs.pca.hcr = (u32 volatile *)fore200e->virt_base + 1048576U; fore200e->regs.pca.imr = (u32 volatile *)fore200e->virt_base + 1048580U; fore200e->regs.pca.psr = (u32 volatile *)fore200e->virt_base + 1048584U; fore200e->state = 3; return (0); } } static void fore200e_pca_unmap(struct fore200e *fore200e ) { { if ((unsigned long )fore200e->virt_base != (unsigned long )((void *)0)) { { ldv_iounmap_128((void volatile *)fore200e->virt_base); } } else { } return; } } static int fore200e_pca_configure(struct fore200e *fore200e ) { struct pci_dev *pci_dev ; u8 master_ctrl ; u8 latency ; { pci_dev = (struct pci_dev *)fore200e->bus_dev; if (pci_dev->irq == 0U || pci_dev->irq == 255U) { { printk("fore200e: incorrect IRQ setting - misconfigured PCI-PCI bridge?\n"); } return (-5); } else { } { pci_read_config_byte((struct pci_dev const *)pci_dev, 65, & master_ctrl); master_ctrl = (u8 )((unsigned int )master_ctrl | 32U); pci_write_config_byte((struct pci_dev const *)pci_dev, 65, (int )master_ctrl); latency = 192U; pci_write_config_byte((struct pci_dev const *)pci_dev, 13, (int )latency); fore200e->state = 2; } return (0); } } static int fore200e_pca_prom_read(struct fore200e *fore200e , struct prom_data *prom ) { struct host_cmdq *cmdq ; struct host_cmdq_entry *entry ; struct prom_opcode opcode ; int ok ; u32 prom_dma ; { { cmdq = & fore200e->host_cmdq; entry = (struct host_cmdq_entry *)(& cmdq->host_entry) + (unsigned long )cmdq->head; cmdq->head = (cmdq->head + 1) % 16; opcode.opcode = 10U; opcode.pad = 0U; prom_dma = (*((fore200e->bus)->dma_map))(fore200e, (void *)prom, 16, 2); (*((fore200e->bus)->write))(prom_dma, (u32 volatile *)(& (entry->cp_entry)->cmd.prom_block.prom_haddr)); *(entry->status) = 1; (*((fore200e->bus)->write))(*((u32 *)(& opcode)), (u32 volatile *)(& (entry->cp_entry)->cmd.prom_block.opcode)); ok = fore200e_poll(fore200e, (u32 volatile *)entry->status, 2U, 400); *(entry->status) = 4; (*((fore200e->bus)->dma_unmap))(fore200e, prom_dma, 16, 2); } if (ok == 0) { { printk("fore200e: unable to get PROM data from device %s\n", (char *)(& fore200e->name)); } return (-5); } else { } return (0); } } static int fore200e_pca_proc_read(struct fore200e *fore200e , char *page ) { struct pci_dev *pci_dev ; int tmp ; { { pci_dev = (struct pci_dev *)fore200e->bus_dev; tmp = sprintf(page, " PCI bus/slot/function:\t%d/%d/%d\n", (int )(pci_dev->bus)->number, (pci_dev->devfn >> 3) & 31U, pci_dev->devfn & 7U); } return (tmp); } } static void fore200e_tx_irq(struct fore200e *fore200e ) { struct host_txq *txq ; struct host_txq_entry *entry ; struct atm_vcc *vcc ; struct fore200e_vc_map *vc_map ; struct sock *tmp ; struct sock *tmp___0 ; int tmp___1 ; int tmp___2 ; { txq = & fore200e->host_txq; if (fore200e->host_txq.txing == 0) { return; } else { } ldv_51813: entry = (struct host_txq_entry *)(& txq->host_entry) + (unsigned long )txq->tail; if (((unsigned int )*(entry->status) & 2U) == 0U) { goto ldv_51811; } else { } { kfree((void const *)entry->data); (*((fore200e->bus)->dma_unmap))(fore200e, (entry->tpd)->tsd[0].buffer, (int )(entry->tpd)->tsd[0].length, 1); vc_map = entry->vc_map; } if ((unsigned long )vc_map->vcc == (unsigned long )((struct atm_vcc *)0)) { { dev_kfree_skb_any(entry->skb); } } else { { tmp___2 = constant_test_bit(1L, (unsigned long const volatile *)(& (vc_map->vcc)->flags)); } if (tmp___2 == 0) { { dev_kfree_skb_any(entry->skb); } } else { if ((unsigned long )vc_map->vcc == (unsigned long )((struct atm_vcc *)0)) { { printk("fore200e: assertion failed! %s[%d]: %s\n", "fore200e_tx_irq", 894, (char *)"vc_map->vcc"); panic("fore200e: %s", "fore200e_tx_irq"); } } else { } if (vc_map->incarn != entry->incarn) { { dev_kfree_skb_any(entry->skb); } } else { vcc = vc_map->vcc; if ((unsigned long )vcc == (unsigned long )((struct atm_vcc *)0)) { { printk("fore200e: assertion failed! %s[%d]: %s\n", "fore200e_tx_irq", 918, (char *)"vcc"); panic("fore200e: %s", "fore200e_tx_irq"); } } else { } if ((unsigned long )vcc->pop != (unsigned long )((void (*)(struct atm_vcc * , struct sk_buff * ))0)) { { (*(vcc->pop))(vcc, entry->skb); } } else { { dev_kfree_skb_any(entry->skb); } } { tmp___0 = sk_atm(vcc); tmp___1 = atomic_read((atomic_t const *)(& tmp___0->sk_wmem_alloc)); } if (tmp___1 < 0) { { tmp = sk_atm(vcc); atomic_set(& tmp->sk_wmem_alloc, 0); } } else { } if (((unsigned int )*(entry->status) & 8U) != 0U) { { atomic_inc(& (vcc->stats)->tx_err); } } else { { atomic_inc(& (vcc->stats)->tx); } } } } } *(entry->status) = 4; fore200e->host_txq.txing = fore200e->host_txq.txing - 1; txq->tail = (txq->tail + 1) % 256; goto ldv_51813; ldv_51811: ; return; } } static void fore200e_supply(struct fore200e *fore200e ) { int scheme ; int magn ; int i ; struct host_bsq *bsq ; struct host_bsq_entry *entry ; struct buffer *buffer ; { scheme = 0; goto ldv_51833; ldv_51832: magn = 0; goto ldv_51830; ldv_51829: bsq = (struct host_bsq *)(& fore200e->host_bsq) + ((unsigned long )scheme + (unsigned long )magn); goto ldv_51827; ldv_51826: entry = (struct host_bsq_entry *)(& bsq->host_entry) + (unsigned long )bsq->head; i = 0; goto ldv_51824; ldv_51823: buffer = bsq->freebuf; if ((unsigned long )buffer == (unsigned long )((struct buffer *)0)) { { printk("fore200e: no more free bufs in queue %d.%d, but freebuf_count = %d\n", scheme, magn, bsq->freebuf_count); } return; } else { } bsq->freebuf = buffer->next; (entry->rbd_block)->rbd[i].buffer_haddr = (u32 )buffer->data.dma_addr; (entry->rbd_block)->rbd[i].handle = (unsigned int )((long )buffer); i = i + 1; ldv_51824: ; if (i <= 31) { goto ldv_51823; } else { } { bsq->head = (bsq->head + 1) % 32; bsq->freebuf_count = (int )bsq->freebuf_count + -32; *(entry->status) = 1; (*((fore200e->bus)->write))(entry->rbd_block_dma, (u32 volatile *)(& (entry->cp_entry)->rbd_block_haddr)); } ldv_51827: ; if ((int )bsq->freebuf_count > 31) { goto ldv_51826; } else { } magn = magn + 1; ldv_51830: ; if (magn <= 1) { goto ldv_51829; } else { } scheme = scheme + 1; ldv_51833: ; if (scheme <= 1) { goto ldv_51832; } else { } return; } } static int fore200e_push_rpd(struct fore200e *fore200e , struct atm_vcc *vcc , struct rpd *rpd ) { struct sk_buff *skb ; struct buffer *buffer ; struct fore200e_vcc *fore200e_vcc ; int i ; int pdu_len ; u32 cell_header ; unsigned char *tmp ; unsigned char *tmp___0 ; int tmp___1 ; struct sock *tmp___2 ; int tmp___3 ; struct sock *tmp___4 ; int tmp___5 ; { pdu_len = 0; cell_header = 0U; if ((unsigned long )vcc == (unsigned long )((struct atm_vcc *)0)) { { printk("fore200e: assertion failed! %s[%d]: %s\n", "fore200e_push_rpd", 1061, (char *)"vcc"); panic("fore200e: %s", "fore200e_push_rpd"); } } else { } fore200e_vcc = (struct fore200e_vcc *)vcc->dev_data; if ((unsigned long )fore200e_vcc == (unsigned long )((struct fore200e_vcc *)0)) { { printk("fore200e: assertion failed! %s[%d]: %s\n", "fore200e_push_rpd", 1064, (char *)"fore200e_vcc"); panic("fore200e: %s", "fore200e_push_rpd"); } } else { } if ((unsigned int )vcc->qos.aal == 13U && vcc->qos.rxtp.max_sdu == 52) { cell_header = (u32 )((((((int )rpd->atm_header.gfc << 28) | ((int )rpd->atm_header.vpi << 20)) | ((int )rpd->atm_header.vci << 4)) | ((int )rpd->atm_header.plt << 1)) | (int )rpd->atm_header.clp); pdu_len = 4; } else { } i = 0; goto ldv_51848; ldv_51847: pdu_len = (int )((u32 )pdu_len + rpd->rsd[i].length); i = i + 1; ldv_51848: ; if ((u32 )i < rpd->nseg) { goto ldv_51847; } else { } { skb = alloc_skb((unsigned int )pdu_len, 32U); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { { atomic_inc(& (vcc->stats)->rx_drop); } return (-12); } else { } { __net_timestamp(skb); } if (cell_header != 0U) { { tmp = skb_put(skb, 4U); *((u32 *)tmp) = cell_header; } } else { } i = 0; goto ldv_51851; ldv_51850: { buffer = (struct buffer *)((unsigned long long )rpd->rsd[i].handle | 0xffff880000000000ULL); (*((fore200e->bus)->dma_sync_for_cpu))(fore200e, (u32 )buffer->data.dma_addr, (int )rpd->rsd[i].length, 2); tmp___0 = skb_put(skb, rpd->rsd[i].length); __memcpy((void *)tmp___0, (void const *)buffer->data.align_addr, (size_t )rpd->rsd[i].length); (*((fore200e->bus)->dma_sync_for_device))(fore200e, (u32 )buffer->data.dma_addr, (int )rpd->rsd[i].length, 2); i = i + 1; } ldv_51851: ; if ((u32 )i < rpd->nseg) { goto ldv_51850; } else { } if (pdu_len < fore200e_vcc->rx_min_pdu) { fore200e_vcc->rx_min_pdu = pdu_len; } else { } if (pdu_len > fore200e_vcc->rx_max_pdu) { fore200e_vcc->rx_max_pdu = pdu_len; } else { } { fore200e_vcc->rx_pdu = fore200e_vcc->rx_pdu + 1UL; tmp___1 = atm_charge(vcc, (int )skb->truesize); } if (tmp___1 == 0) { { dev_kfree_skb_any(skb); atomic_inc(& (vcc->stats)->rx_drop); } return (-12); } else { } { tmp___2 = sk_atm(vcc); tmp___3 = atomic_read((atomic_t const *)(& tmp___2->sk_wmem_alloc)); } if (tmp___3 < 0) { { printk("fore200e: assertion failed! %s[%d]: %s\n", "fore200e_push_rpd", 1133, (char *)"atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0"); panic("fore200e: %s", "fore200e_push_rpd"); } } else { } { (*(vcc->push))(vcc, skb); atomic_inc(& (vcc->stats)->rx); tmp___4 = sk_atm(vcc); tmp___5 = atomic_read((atomic_t const *)(& tmp___4->sk_wmem_alloc)); } if (tmp___5 < 0) { { printk("fore200e: assertion failed! %s[%d]: %s\n", "fore200e_push_rpd", 1138, (char *)"atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0"); panic("fore200e: %s", "fore200e_push_rpd"); } } else { } return (0); } } static void fore200e_collect_rpd(struct fore200e *fore200e , struct rpd *rpd ) { struct host_bsq *bsq ; struct buffer *buffer ; int i ; { i = 0; goto ldv_51861; ldv_51860: buffer = (struct buffer *)((unsigned long long )rpd->rsd[i].handle | 0xffff880000000000ULL); bsq = (struct host_bsq *)(& fore200e->host_bsq) + ((unsigned long )buffer->scheme + (unsigned long )buffer->magn); buffer->next = bsq->freebuf; bsq->freebuf = buffer; bsq->freebuf_count = bsq->freebuf_count + (int volatile )1; i = i + 1; ldv_51861: ; if ((u32 )i < rpd->nseg) { goto ldv_51860; } else { } return; } } static void fore200e_rx_irq(struct fore200e *fore200e ) { struct host_rxq *rxq ; struct host_rxq_entry *entry ; struct atm_vcc *vcc ; struct fore200e_vc_map *vc_map ; int tmp ; { rxq = & fore200e->host_rxq; ldv_51872: entry = (struct host_rxq_entry *)(& rxq->host_entry) + (unsigned long )rxq->head; if (((unsigned int )*(entry->status) & 2U) == 0U) { goto ldv_51870; } else { } vc_map = (struct fore200e_vc_map *)(& fore200e->vc_map) + (unsigned long )(((int )(entry->rpd)->atm_header.vpi << 10) | (int )(entry->rpd)->atm_header.vci); if ((unsigned long )vc_map->vcc == (unsigned long )((struct atm_vcc *)0)) { } else { { tmp = constant_test_bit(1L, (unsigned long const volatile *)(& (vc_map->vcc)->flags)); } if (tmp == 0) { } else { vcc = vc_map->vcc; if ((unsigned long )vcc == (unsigned long )((struct atm_vcc *)0)) { { printk("fore200e: assertion failed! %s[%d]: %s\n", "fore200e_rx_irq", 1204, (char *)"vcc"); panic("fore200e: %s", "fore200e_rx_irq"); } } else { } if (((unsigned int )*(entry->status) & 8U) == 0U) { { fore200e_push_rpd(fore200e, vcc, entry->rpd); } } else { { atomic_inc(& (vcc->stats)->rx_err); } } } } { rxq->head = (rxq->head + 1) % 64; fore200e_collect_rpd(fore200e, entry->rpd); (*((fore200e->bus)->write))(entry->rpd_dma, (u32 volatile *)(& (entry->cp_entry)->rpd_haddr)); *(entry->status) = 4; fore200e_supply(fore200e); } goto ldv_51872; ldv_51870: ; return; } } static irqreturn_t fore200e_interrupt(int irq , void *dev ) { struct fore200e *fore200e ; int tmp ; { { fore200e = (struct fore200e *)((struct atm_dev *)dev)->dev_data; tmp = (*((fore200e->bus)->irq_check))(fore200e); } if (tmp == 0) { return (0); } else { } { tasklet_schedule(& fore200e->tx_tasklet); tasklet_schedule(& fore200e->rx_tasklet); (*((fore200e->bus)->irq_ack))(fore200e); } return (1); } } static void fore200e_tx_tasklet(unsigned long data ) { struct fore200e *fore200e ; unsigned long flags ; { { fore200e = (struct fore200e *)data; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_129(& fore200e->q_lock); fore200e_tx_irq(fore200e); ldv_spin_unlock_irqrestore_130(& fore200e->q_lock, flags); } return; } } static void fore200e_rx_tasklet(unsigned long data ) { struct fore200e *fore200e ; unsigned long flags ; { { fore200e = (struct fore200e *)data; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_131(& fore200e->q_lock); fore200e_rx_irq((struct fore200e *)data); ldv_spin_unlock_irqrestore_130(& fore200e->q_lock, flags); } return; } } static int fore200e_select_scheme(struct atm_vcc *vcc ) { int scheme ; { scheme = vcc->vci & 1 ? 0 : 1; return (scheme); } } static int fore200e_activate_vcin(struct fore200e *fore200e , int activate , struct atm_vcc *vcc , int mtu ) { struct host_cmdq *cmdq ; struct host_cmdq_entry *entry ; struct activate_opcode activ_opcode ; struct deactivate_opcode deactiv_opcode ; struct vpvc vpvc ; int ok ; enum fore200e_aal aal ; enum fore200e_aal tmp ; int tmp___0 ; { { cmdq = & fore200e->host_cmdq; entry = (struct host_cmdq_entry *)(& cmdq->host_entry) + (unsigned long )cmdq->head; tmp = fore200e_atm2fore_aal((int )vcc->qos.aal); aal = tmp; cmdq->head = (cmdq->head + 1) % 16; } if (activate != 0) { { tmp___0 = fore200e_select_scheme(vcc); ((struct fore200e_vcc *)vcc->dev_data)->scheme = (enum buffer_scheme )tmp___0; activ_opcode.opcode = 2U; activ_opcode.aal = (unsigned char )aal; activ_opcode.scheme = (unsigned char )((struct fore200e_vcc *)vcc->dev_data)->scheme; activ_opcode.pad = 0U; } } else { deactiv_opcode.opcode = 4U; deactiv_opcode.pad = 0U; } vpvc.vci = (unsigned short )vcc->vci; vpvc.vpi = (unsigned char )vcc->vpi; *(entry->status) = 1; if (activate != 0) { { mtu = 48; (*((fore200e->bus)->write))((u32 )mtu, (u32 volatile *)(& (entry->cp_entry)->cmd.activate_block.mtu)); (*((fore200e->bus)->write))(*((u32 *)(& vpvc)), (u32 volatile *)(& (entry->cp_entry)->cmd.activate_block.vpvc)); (*((fore200e->bus)->write))(*((u32 *)(& activ_opcode)), (u32 volatile *)(& (entry->cp_entry)->cmd.activate_block.opcode)); } } else { { (*((fore200e->bus)->write))(*((u32 *)(& vpvc)), (u32 volatile *)(& (entry->cp_entry)->cmd.deactivate_block.vpvc)); (*((fore200e->bus)->write))(*((u32 *)(& deactiv_opcode)), (u32 volatile *)(& (entry->cp_entry)->cmd.deactivate_block.opcode)); } } { ok = fore200e_poll(fore200e, (u32 volatile *)entry->status, 2U, 400); *(entry->status) = 4; } if (ok == 0) { { printk("fore200e: unable to %s VC %d.%d.%d\n", activate != 0 ? (char *)"open" : (char *)"close", (int )vcc->itf, (int )vcc->vpi, vcc->vci); } return (-5); } else { } return (0); } } static void fore200e_rate_ctrl(struct atm_qos *qos , struct tpd_rate *rate ) { unsigned short tmp ; { if (qos->txtp.max_pcr <= 353206) { rate->data_cells = (unsigned short )((qos->txtp.max_pcr * 255) / 353207); rate->idle_cells = 255U - (unsigned int )rate->data_cells; } else { tmp = 0U; rate->idle_cells = tmp; rate->data_cells = tmp; } return; } } static int fore200e_open(struct atm_vcc *vcc ) { struct fore200e *fore200e ; struct fore200e_vcc *fore200e_vcc ; struct fore200e_vc_map *vc_map ; unsigned long flags ; int vci ; short vpi ; void *tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; unsigned long tmp___3 ; { fore200e = (struct fore200e *)(vcc->dev)->dev_data; vci = vcc->vci; vpi = vcc->vpi; if ((int )vpi != 0) { { printk("fore200e: assertion failed! %s[%d]: %s\n", "fore200e_open", 1406, (char *)"(vpi >= 0) && (vpi < 1< 1023U) { { printk("fore200e: assertion failed! %s[%d]: %s\n", "fore200e_open", 1407, (char *)"(vci >= 0) && (vci < 1<q_lock); vc_map = (struct fore200e_vc_map *)(& fore200e->vc_map) + (unsigned long )(((int )vpi << 10) | vci); } if ((unsigned long )vc_map->vcc != (unsigned long )((struct atm_vcc *)0)) { { ldv_spin_unlock_irqrestore_130(& fore200e->q_lock, flags); printk("fore200e: VC %d.%d.%d already in use\n", (fore200e->atm_dev)->number, (int )vpi, vci); } return (-22); } else { } { vc_map->vcc = vcc; ldv_spin_unlock_irqrestore_130(& fore200e->q_lock, flags); tmp = kzalloc(40UL, 32U); fore200e_vcc = (struct fore200e_vcc *)tmp; } if ((unsigned long )fore200e_vcc == (unsigned long )((struct fore200e_vcc *)0)) { vc_map->vcc = (struct atm_vcc *)0; return (-12); } else { } if ((unsigned int )vcc->qos.txtp.traffic_class == 2U && vcc->qos.txtp.max_pcr > 0) { { ldv_mutex_lock_136(& fore200e->rate_mtx); } if (fore200e->available_cell_rate < (u32 )vcc->qos.txtp.max_pcr) { { ldv_mutex_unlock_137(& fore200e->rate_mtx); kfree((void const *)fore200e_vcc); vc_map->vcc = (struct atm_vcc *)0; } return (-11); } else { } { fore200e->available_cell_rate = fore200e->available_cell_rate - (u32 )vcc->qos.txtp.max_pcr; ldv_mutex_unlock_138(& fore200e->rate_mtx); } } else { } { vcc->itf = (short )(vcc->dev)->number; set_bit(2L, (unsigned long volatile *)(& vcc->flags)); set_bit(0L, (unsigned long volatile *)(& vcc->flags)); vcc->dev_data = (void *)fore200e_vcc; tmp___0 = fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu); } if (tmp___0 < 0) { { vc_map->vcc = (struct atm_vcc *)0; clear_bit(0L, (unsigned long volatile *)(& vcc->flags)); clear_bit(2L, (unsigned long volatile *)(& vcc->flags)); vcc->dev_data = (void *)0; fore200e->available_cell_rate = fore200e->available_cell_rate + (u32 )vcc->qos.txtp.max_pcr; kfree((void const *)fore200e_vcc); } return (-22); } else { } if ((unsigned int )vcc->qos.txtp.traffic_class == 2U && vcc->qos.txtp.max_pcr > 0) { { fore200e_rate_ctrl(& vcc->qos, & fore200e_vcc->rate); set_bit(6L, (unsigned long volatile *)(& vcc->flags)); } } else { } { tmp___1 = 65536; fore200e_vcc->rx_min_pdu = tmp___1; fore200e_vcc->tx_min_pdu = tmp___1; tmp___2 = 0; fore200e_vcc->rx_max_pdu = tmp___2; fore200e_vcc->tx_max_pdu = tmp___2; tmp___3 = 0UL; fore200e_vcc->rx_pdu = tmp___3; fore200e_vcc->tx_pdu = tmp___3; fore200e->incarn_count = fore200e->incarn_count + 1UL; vc_map->incarn = fore200e->incarn_count; set_bit(1L, (unsigned long volatile *)(& vcc->flags)); } return (0); } } static void fore200e_close(struct atm_vcc *vcc ) { struct fore200e *fore200e ; struct fore200e_vcc *fore200e_vcc ; struct fore200e_vc_map *vc_map ; unsigned long flags ; int tmp ; { fore200e = (struct fore200e *)(vcc->dev)->dev_data; if ((unsigned long )vcc == (unsigned long )((struct atm_vcc *)0)) { { printk("fore200e: assertion failed! %s[%d]: %s\n", "fore200e_close", 1513, (char *)"vcc"); panic("fore200e: %s", "fore200e_close"); } } else { } if ((int )vcc->vpi != 0) { { printk("fore200e: assertion failed! %s[%d]: %s\n", "fore200e_close", 1514, (char *)"(vcc->vpi >= 0) && (vcc->vpi < 1<vci > 1023U) { { printk("fore200e: assertion failed! %s[%d]: %s\n", "fore200e_close", 1515, (char *)"(vcc->vci >= 0) && (vcc->vci < 1<flags)); fore200e_activate_vcin(fore200e, 0, vcc, 0); ldv___ldv_linux_kernel_locking_spinlock_spin_lock_139(& fore200e->q_lock); vc_map = (struct fore200e_vc_map *)(& fore200e->vc_map) + (unsigned long )(((int )vcc->vpi << 10) | vcc->vci); vc_map->vcc = (struct atm_vcc *)0; vcc->vpi = 0; tmp = 0; vcc->vci = tmp; vcc->itf = (short )tmp; fore200e_vcc = (struct fore200e_vcc *)vcc->dev_data; vcc->dev_data = (void *)0; ldv_spin_unlock_irqrestore_130(& fore200e->q_lock, flags); } if ((unsigned int )vcc->qos.txtp.traffic_class == 2U && vcc->qos.txtp.max_pcr > 0) { { ldv_mutex_lock_141(& fore200e->rate_mtx); fore200e->available_cell_rate = fore200e->available_cell_rate + (u32 )vcc->qos.txtp.max_pcr; ldv_mutex_unlock_142(& fore200e->rate_mtx); clear_bit(6L, (unsigned long volatile *)(& vcc->flags)); } } else { } { clear_bit(0L, (unsigned long volatile *)(& vcc->flags)); clear_bit(2L, (unsigned long volatile *)(& vcc->flags)); } if ((unsigned long )fore200e_vcc == (unsigned long )((struct fore200e_vcc *)0)) { { printk("fore200e: assertion failed! %s[%d]: %s\n", "fore200e_close", 1550, (char *)"fore200e_vcc"); panic("fore200e: %s", "fore200e_close"); } } else { } { kfree((void const *)fore200e_vcc); } return; } } static int fore200e_send(struct atm_vcc *vcc , struct sk_buff *skb ) { struct fore200e *fore200e ; struct fore200e_vcc *fore200e_vcc ; struct fore200e_vc_map *vc_map ; struct host_txq *txq ; struct host_txq_entry *entry ; struct tpd *tpd ; struct tpd_haddr tpd_haddr ; int retry ; int tx_copy ; int tx_len ; u32 *cell_header ; unsigned char *skb_data ; int skb_len ; unsigned char *data ; unsigned long flags ; struct sock *tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; enum fore200e_aal tmp___3 ; { fore200e = (struct fore200e *)(vcc->dev)->dev_data; fore200e_vcc = (struct fore200e_vcc *)vcc->dev_data; txq = & fore200e->host_txq; retry = 16; tx_copy = 0; tx_len = (int )skb->len; cell_header = (u32 *)0U; if ((unsigned long )vcc == (unsigned long )((struct atm_vcc *)0)) { { printk("fore200e: assertion failed! %s[%d]: %s\n", "fore200e_send", 1574, (char *)"vcc"); panic("fore200e: %s", "fore200e_send"); } } else { } { tmp = sk_atm(vcc); tmp___0 = atomic_read((atomic_t const *)(& tmp->sk_wmem_alloc)); } if (tmp___0 < 0) { { printk("fore200e: assertion failed! %s[%d]: %s\n", "fore200e_send", 1575, (char *)"atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0"); panic("fore200e: %s", "fore200e_send"); } } else { } if ((unsigned long )fore200e == (unsigned long )((struct fore200e *)0)) { { printk("fore200e: assertion failed! %s[%d]: %s\n", "fore200e_send", 1576, (char *)"fore200e"); panic("fore200e: %s", "fore200e_send"); } } else { } if ((unsigned long )fore200e_vcc == (unsigned long )((struct fore200e_vcc *)0)) { { printk("fore200e: assertion failed! %s[%d]: %s\n", "fore200e_send", 1577, (char *)"fore200e_vcc"); panic("fore200e: %s", "fore200e_send"); } } else { } { tmp___1 = constant_test_bit(1L, (unsigned long const volatile *)(& vcc->flags)); } if (tmp___1 == 0) { { dev_kfree_skb_any(skb); } return (-22); } else { } if ((unsigned int )vcc->qos.aal == 13U && vcc->qos.txtp.max_sdu == 52) { cell_header = (u32 *)skb->data; skb_data = skb->data + 4UL; tx_len = (int )(skb->len - 4U); skb_len = tx_len; } else { skb_data = skb->data; skb_len = (int )skb->len; } if (((unsigned long )skb_data & 3UL) != 0UL) { tx_copy = 1; tx_len = skb_len; } else { } if ((unsigned int )vcc->qos.aal == 13U && skb_len % 48 != 0) { tx_copy = 1; tx_len = (skb_len / 48 + 1) * 48; } else { } if (tx_copy != 0) { { tmp___2 = kmalloc((size_t )tx_len, 33U); data = (unsigned char *)tmp___2; } if ((unsigned long )data == (unsigned long )((unsigned char *)0U)) { if ((unsigned long )vcc->pop != (unsigned long )((void (*)(struct atm_vcc * , struct sk_buff * ))0)) { { (*(vcc->pop))(vcc, skb); } } else { { dev_kfree_skb_any(skb); } } return (-12); } else { } { __memcpy((void *)data, (void const *)skb_data, (size_t )skb_len); } if (skb_len < tx_len) { { __memset((void *)data + (unsigned long )skb_len, 0, (size_t )(tx_len - skb_len)); } } else { } } else { data = skb_data; } vc_map = (struct fore200e_vc_map *)(& fore200e->vc_map) + (unsigned long )(((int )vcc->vpi << 10) | vcc->vci); if ((unsigned long )vc_map->vcc != (unsigned long )vcc) { { printk("fore200e: assertion failed! %s[%d]: %s\n", "fore200e_send", 1636, (char *)"vc_map->vcc == vcc"); panic("fore200e: %s", "fore200e_send"); } } else { } retry_here: { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_143(& fore200e->q_lock); entry = (struct host_txq_entry *)(& txq->host_entry) + (unsigned long )txq->head; } if ((unsigned int )*(entry->status) != 4U || txq->txing > 253) { { fore200e_tx_irq(fore200e); } if ((unsigned int )*(entry->status) != 4U) { { ldv_spin_unlock_irqrestore_130(& fore200e->q_lock, flags); retry = retry - 1; } if (retry > 0) { { __const_udelay(214750UL); } goto retry_here; } else { } { atomic_inc(& (vcc->stats)->tx_err); fore200e->tx_sat = fore200e->tx_sat + 1UL; } if ((unsigned long )vcc->pop != (unsigned long )((void (*)(struct atm_vcc * , struct sk_buff * ))0)) { { (*(vcc->pop))(vcc, skb); } } else { { dev_kfree_skb_any(skb); } } if (tx_copy != 0) { { kfree((void const *)data); } } else { } return (-105); } else { } } else { } { entry->incarn = vc_map->incarn; entry->vc_map = vc_map; entry->skb = skb; entry->data = tx_copy != 0 ? (void *)data : (void *)0; tpd = entry->tpd; tpd->tsd[0].buffer = (*((fore200e->bus)->dma_map))(fore200e, (void *)data, tx_len, 1); tpd->tsd[0].length = (u32 )tx_len; txq->head = (txq->head + 1) % 256; txq->txing = txq->txing + 1; } if (skb_len < fore200e_vcc->tx_min_pdu) { fore200e_vcc->tx_min_pdu = skb_len; } else { } if (skb_len > fore200e_vcc->tx_max_pdu) { fore200e_vcc->tx_max_pdu = skb_len; } else { } fore200e_vcc->tx_pdu = fore200e_vcc->tx_pdu + 1UL; tpd->rate.data_cells = fore200e_vcc->rate.data_cells; tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells; if ((unsigned long )cell_header != (unsigned long )((u32 *)0U)) { tpd->atm_header.clp = (unsigned int )((unsigned char )*cell_header) & 1U; tpd->atm_header.plt = (unsigned char )((*cell_header & 14U) >> 1); tpd->atm_header.vci = (unsigned short )((*cell_header & 1048560U) >> 4); tpd->atm_header.vpi = (unsigned char )((*cell_header & 267386880U) >> 20); tpd->atm_header.gfc = (unsigned char )(*cell_header >> 28); } else { tpd->atm_header.clp = 0U; tpd->atm_header.plt = 0U; tpd->atm_header.vci = (unsigned short )vcc->vci; tpd->atm_header.vpi = (unsigned char )vcc->vpi; tpd->atm_header.gfc = 0U; } { tpd->spec.length = (unsigned short )tx_len; tpd->spec.nseg = 1U; tmp___3 = fore200e_atm2fore_aal((int )vcc->qos.aal); tpd->spec.aal = (unsigned char )tmp___3; tpd->spec.intr = 1U; tpd_haddr.size = 1U; tpd_haddr.pad = 0U; tpd_haddr.haddr = entry->tpd_dma >> 5; *(entry->status) = 1; (*((fore200e->bus)->write))(*((u32 *)(& tpd_haddr)), (u32 volatile *)(& (entry->cp_entry)->tpd_haddr)); ldv_spin_unlock_irqrestore_130(& fore200e->q_lock, flags); } return (0); } } static int fore200e_getstats(struct fore200e *fore200e ) { struct host_cmdq *cmdq ; struct host_cmdq_entry *entry ; struct stats_opcode opcode ; int ok ; u32 stats_dma_addr ; void *tmp ; { cmdq = & fore200e->host_cmdq; entry = (struct host_cmdq_entry *)(& cmdq->host_entry) + (unsigned long )cmdq->head; if ((unsigned long )fore200e->stats == (unsigned long )((struct stats *)0)) { { tmp = kzalloc(224UL, 209U); fore200e->stats = (struct stats *)tmp; } if ((unsigned long )fore200e->stats == (unsigned long )((struct stats *)0)) { return (-12); } else { } } else { } { stats_dma_addr = (*((fore200e->bus)->dma_map))(fore200e, (void *)fore200e->stats, 224, 2); cmdq->head = (cmdq->head + 1) % 16; opcode.opcode = 6U; opcode.pad = 0U; (*((fore200e->bus)->write))(stats_dma_addr, (u32 volatile *)(& (entry->cp_entry)->cmd.stats_block.stats_haddr)); *(entry->status) = 1; (*((fore200e->bus)->write))(*((u32 *)(& opcode)), (u32 volatile *)(& (entry->cp_entry)->cmd.stats_block.opcode)); ok = fore200e_poll(fore200e, (u32 volatile *)entry->status, 2U, 400); *(entry->status) = 4; (*((fore200e->bus)->dma_unmap))(fore200e, stats_dma_addr, 224, 2); } if (ok == 0) { { printk("fore200e: unable to get statistics from device %s\n", (char *)(& fore200e->name)); } return (-5); } else { } return (0); } } static int fore200e_getsockopt(struct atm_vcc *vcc , int level , int optname , void *optval , int optlen ) { { return (-22); } } static int fore200e_setsockopt(struct atm_vcc *vcc , int level , int optname , void *optval , unsigned int optlen ) { { return (-22); } } static int fore200e_set_oc3(struct fore200e *fore200e , u32 reg , u32 value , u32 mask ) { struct host_cmdq *cmdq ; struct host_cmdq_entry *entry ; struct oc3_opcode opcode ; int ok ; { { cmdq = & fore200e->host_cmdq; entry = (struct host_cmdq_entry *)(& cmdq->host_entry) + (unsigned long )cmdq->head; cmdq->head = (cmdq->head + 1) % 16; opcode.opcode = 7U; opcode.reg = (unsigned char )reg; opcode.value = (unsigned char )value; opcode.mask = (unsigned char )mask; (*((fore200e->bus)->write))(0U, (u32 volatile *)(& (entry->cp_entry)->cmd.oc3_block.regs_haddr)); *(entry->status) = 1; (*((fore200e->bus)->write))(*((u32 *)(& opcode)), (u32 volatile *)(& (entry->cp_entry)->cmd.oc3_block.opcode)); ok = fore200e_poll(fore200e, (u32 volatile *)entry->status, 2U, 400); *(entry->status) = 4; } if (ok == 0) { { printk("fore200e: unable to set OC-3 reg 0x%02x of device %s\n", reg, (char *)(& fore200e->name)); } return (-5); } else { } return (0); } } static int fore200e_setloop(struct fore200e *fore200e , int loop_mode ) { u32 mct_value ; u32 mct_mask ; int error ; bool tmp ; int tmp___0 ; { { tmp = capable(12); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (-1); } else { } { if (loop_mode == 0) { goto case_0; } else { } if (loop_mode == 8) { goto case_8; } else { } if (loop_mode == 2048) { goto case_2048; } else { } goto switch_default; case_0: /* CIL Label */ mct_value = 0U; mct_mask = 6U; goto ldv_51988; case_8: /* CIL Label */ mct_mask = 2U; mct_value = mct_mask; goto ldv_51988; case_2048: /* CIL Label */ mct_mask = 4U; mct_value = mct_mask; goto ldv_51988; switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } ldv_51988: { error = fore200e_set_oc3(fore200e, 5U, mct_value, mct_mask); } if (error == 0) { fore200e->loop_mode = loop_mode; } else { } return (error); } } static int fore200e_fetch_stats(struct fore200e *fore200e , struct sonet_stats *arg ) { struct sonet_stats tmp ; int tmp___0 ; __u32 tmp___1 ; __u32 tmp___2 ; __u32 tmp___3 ; __u32 tmp___4 ; __u32 tmp___5 ; __u32 tmp___6 ; __u32 tmp___7 ; __u32 tmp___8 ; __u32 tmp___9 ; __u32 tmp___10 ; __u32 tmp___11 ; __u32 tmp___12 ; __u32 tmp___13 ; unsigned long tmp___14 ; { { tmp___0 = fore200e_getstats(fore200e); } if (tmp___0 < 0) { return (-5); } else { } { tmp___1 = __fswab32((fore200e->stats)->oc3.section_bip8_errors); tmp.section_bip = (int )tmp___1; tmp___2 = __fswab32((fore200e->stats)->oc3.line_bip24_errors); tmp.line_bip = (int )tmp___2; tmp___3 = __fswab32((fore200e->stats)->oc3.path_bip8_errors); tmp.path_bip = (int )tmp___3; tmp___4 = __fswab32((fore200e->stats)->oc3.line_febe_errors); tmp.line_febe = (int )tmp___4; tmp___5 = __fswab32((fore200e->stats)->oc3.path_febe_errors); tmp.path_febe = (int )tmp___5; tmp___6 = __fswab32((fore200e->stats)->oc3.corr_hcs_errors); tmp.corr_hcs = (int )tmp___6; tmp___7 = __fswab32((fore200e->stats)->oc3.ucorr_hcs_errors); tmp.uncorr_hcs = (int )tmp___7; tmp___8 = __fswab32((fore200e->stats)->aal0.cells_transmitted); tmp___9 = __fswab32((fore200e->stats)->aal34.cells_transmitted); tmp___10 = __fswab32((fore200e->stats)->aal5.cells_transmitted); tmp.tx_cells = (int )((tmp___8 + tmp___9) + tmp___10); tmp___11 = __fswab32((fore200e->stats)->aal0.cells_received); tmp___12 = __fswab32((fore200e->stats)->aal34.cells_received); tmp___13 = __fswab32((fore200e->stats)->aal5.cells_received); tmp.rx_cells = (int )((tmp___11 + tmp___12) + tmp___13); } if ((unsigned long )arg != (unsigned long )((struct sonet_stats *)0)) { { tmp___14 = copy_to_user((void *)arg, (void const *)(& tmp), 36UL); } return (tmp___14 != 0UL ? -14 : 0); } else { } return (0); } } static int fore200e_ioctl(struct atm_dev *dev , unsigned int cmd , void *arg ) { struct fore200e *fore200e ; int tmp ; int __ret_pu ; int __pu_val ; int tmp___0 ; int __ret_pu___0 ; int __pu_val___0 ; int __ret_pu___1 ; int __pu_val___1 ; { fore200e = (struct fore200e *)dev->dev_data; { if (cmd == 2149867792U) { goto case_2149867792; } else { } if (cmd == 2147770644U) { goto case_2147770644; } else { } if (cmd == 1074815315U) { goto case_1074815315; } else { } if (cmd == 1074815314U) { goto case_1074815314; } else { } if (cmd == 1074815316U) { goto case_1074815316; } else { } goto switch_break; case_2149867792: /* CIL Label */ { tmp = fore200e_fetch_stats(fore200e, (struct sonet_stats *)arg); } return (tmp); case_2147770644: /* CIL Label */ { might_fault(); __pu_val = 0; } { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ volatile ("call __put_user_1": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx"); goto ldv_52008; case_2: /* CIL Label */ __asm__ volatile ("call __put_user_2": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx"); goto ldv_52008; case_4: /* CIL Label */ __asm__ volatile ("call __put_user_4": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx"); goto ldv_52008; case_8: /* CIL Label */ __asm__ volatile ("call __put_user_8": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx"); goto ldv_52008; switch_default: /* CIL Label */ __asm__ volatile ("call __put_user_X": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx"); goto ldv_52008; switch_break___0: /* CIL Label */ ; } ldv_52008: ; return (__ret_pu != 0 ? -14 : 0); case_1074815315: /* CIL Label */ { tmp___0 = fore200e_setloop(fore200e, (int )((long )arg)); } return (tmp___0); case_1074815314: /* CIL Label */ { might_fault(); __pu_val___0 = fore200e->loop_mode; } { if (4UL == 1UL) { goto case_1___0; } else { } if (4UL == 2UL) { goto case_2___0; } else { } if (4UL == 4UL) { goto case_4___0; } else { } if (4UL == 8UL) { goto case_8___0; } else { } goto switch_default___0; case_1___0: /* CIL Label */ __asm__ volatile ("call __put_user_1": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" ((int *)arg): "ebx"); goto ldv_52019; case_2___0: /* CIL Label */ __asm__ volatile ("call __put_user_2": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" ((int *)arg): "ebx"); goto ldv_52019; case_4___0: /* CIL Label */ __asm__ volatile ("call __put_user_4": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" ((int *)arg): "ebx"); goto ldv_52019; case_8___0: /* CIL Label */ __asm__ volatile ("call __put_user_8": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" ((int *)arg): "ebx"); goto ldv_52019; switch_default___0: /* CIL Label */ __asm__ volatile ("call __put_user_X": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" ((int *)arg): "ebx"); goto ldv_52019; switch_break___1: /* CIL Label */ ; } ldv_52019: ; return (__ret_pu___0 != 0 ? -14 : 0); case_1074815316: /* CIL Label */ { might_fault(); __pu_val___1 = 2056; } { if (4UL == 1UL) { goto case_1___1; } else { } if (4UL == 2UL) { goto case_2___1; } else { } if (4UL == 4UL) { goto case_4___1; } else { } if (4UL == 8UL) { goto case_8___1; } else { } goto switch_default___1; case_1___1: /* CIL Label */ __asm__ volatile ("call __put_user_1": "=a" (__ret_pu___1): "0" (__pu_val___1), "c" ((int *)arg): "ebx"); goto ldv_52029; case_2___1: /* CIL Label */ __asm__ volatile ("call __put_user_2": "=a" (__ret_pu___1): "0" (__pu_val___1), "c" ((int *)arg): "ebx"); goto ldv_52029; case_4___1: /* CIL Label */ __asm__ volatile ("call __put_user_4": "=a" (__ret_pu___1): "0" (__pu_val___1), "c" ((int *)arg): "ebx"); goto ldv_52029; case_8___1: /* CIL Label */ __asm__ volatile ("call __put_user_8": "=a" (__ret_pu___1): "0" (__pu_val___1), "c" ((int *)arg): "ebx"); goto ldv_52029; switch_default___1: /* CIL Label */ __asm__ volatile ("call __put_user_X": "=a" (__ret_pu___1): "0" (__pu_val___1), "c" ((int *)arg): "ebx"); goto ldv_52029; switch_break___2: /* CIL Label */ ; } ldv_52029: ; return (__ret_pu___1 != 0 ? -14 : 0); switch_break: /* CIL Label */ ; } return (-38); } } static int fore200e_change_qos(struct atm_vcc *vcc , struct atm_qos *qos , int flags ) { struct fore200e_vcc *fore200e_vcc ; struct fore200e *fore200e ; int tmp ; { { fore200e_vcc = (struct fore200e_vcc *)vcc->dev_data; fore200e = (struct fore200e *)(vcc->dev)->dev_data; tmp = constant_test_bit(1L, (unsigned long const volatile *)(& vcc->flags)); } if (tmp == 0) { return (-22); } else { } if ((unsigned int )qos->txtp.traffic_class == 2U && qos->txtp.max_pcr > 0) { { ldv_mutex_lock_146(& fore200e->rate_mtx); } if (fore200e->available_cell_rate + (u32 )vcc->qos.txtp.max_pcr < (u32 )qos->txtp.max_pcr) { { ldv_mutex_unlock_147(& fore200e->rate_mtx); } return (-11); } else { } { fore200e->available_cell_rate = fore200e->available_cell_rate + (u32 )vcc->qos.txtp.max_pcr; fore200e->available_cell_rate = fore200e->available_cell_rate - (u32 )qos->txtp.max_pcr; ldv_mutex_unlock_148(& fore200e->rate_mtx); __memcpy((void *)(& vcc->qos), (void const *)qos, 84UL); fore200e_rate_ctrl(qos, & fore200e_vcc->rate); set_bit(6L, (unsigned long volatile *)(& vcc->flags)); } return (0); } else { } return (-22); } } static int fore200e_irq_request(struct fore200e *fore200e ) { char *tmp ; int tmp___0 ; char *tmp___1 ; { { tmp___0 = ldv_request_irq_149((unsigned int )fore200e->irq, & fore200e_interrupt, 128UL, (char const *)(& fore200e->name), (void *)fore200e->atm_dev); } if (tmp___0 < 0) { { tmp = fore200e_irq_itoa(fore200e->irq); printk("fore200e: unable to reserve IRQ %s for device %s\n", tmp, (char *)(& fore200e->name)); } return (-16); } else { } { tmp___1 = fore200e_irq_itoa(fore200e->irq); printk("fore200e: IRQ %s reserved for device %s\n", tmp___1, (char *)(& fore200e->name)); tasklet_init(& fore200e->tx_tasklet, & fore200e_tx_tasklet, (unsigned long )fore200e); tasklet_init(& fore200e->rx_tasklet, & fore200e_rx_tasklet, (unsigned long )fore200e); fore200e->state = 12; } return (0); } } static int fore200e_get_esi(struct fore200e *fore200e ) { struct prom_data *prom ; void *tmp ; int ok ; int i ; unsigned char tmp___0 ; { { tmp = kzalloc(16UL, 209U); prom = (struct prom_data *)tmp; } if ((unsigned long )prom == (unsigned long )((struct prom_data *)0)) { return (-12); } else { } { ok = (*((fore200e->bus)->prom_read))(fore200e, prom); } if (ok < 0) { { kfree((void const *)prom); } return (-16); } else { } { printk("fore200e: device %s, rev. %c, S/N: %d, ESI: %pM\n", (char *)(& fore200e->name), (prom->hw_revision & 255U) + 64U, prom->serial_number & 65535U, (u8 *)(& prom->mac_addr) + 2UL); i = 0; } goto ldv_52052; ldv_52051: tmp___0 = prom->mac_addr[i + 2]; (fore200e->atm_dev)->esi[i] = tmp___0; fore200e->esi[i] = tmp___0; i = i + 1; ldv_52052: ; if (i <= 5) { goto ldv_52051; } else { } { kfree((void const *)prom); } return (0); } } static int fore200e_alloc_rx_buf(struct fore200e *fore200e ) { int scheme ; int magn ; int nbr ; int size ; int i ; struct host_bsq *bsq ; struct buffer *buffer ; struct buffer *tmp ; void *tmp___0 ; int tmp___1 ; { scheme = 0; goto ldv_52074; ldv_52073: magn = 0; goto ldv_52071; ldv_52070: { bsq = (struct host_bsq *)(& fore200e->host_bsq) + ((unsigned long )scheme + (unsigned long )magn); nbr = fore200e_rx_buf_nbr[scheme][magn]; size = fore200e_rx_buf_size[scheme][magn]; tmp___0 = kzalloc((unsigned long )nbr * 56UL, 208U); tmp = (struct buffer *)tmp___0; bsq->buffer = tmp; buffer = tmp; } if ((unsigned long )buffer == (unsigned long )((struct buffer *)0)) { return (-12); } else { } bsq->freebuf = (struct buffer *)0; i = 0; goto ldv_52068; ldv_52067: { (buffer + (unsigned long )i)->scheme = (enum buffer_scheme )scheme; (buffer + (unsigned long )i)->magn = (enum buffer_magn )magn; tmp___1 = fore200e_chunk_alloc(fore200e, & (buffer + (unsigned long )i)->data, size, (fore200e->bus)->buffer_alignment, 2); } if (tmp___1 < 0) { goto ldv_52065; ldv_52064: { i = i - 1; fore200e_chunk_free(fore200e, & (buffer + (unsigned long )i)->data); } ldv_52065: ; if (i > 0) { goto ldv_52064; } else { } { kfree((void const *)buffer); } return (-12); } else { } (buffer + (unsigned long )i)->next = bsq->freebuf; bsq->freebuf = buffer + (unsigned long )i; i = i + 1; ldv_52068: ; if (i < nbr) { goto ldv_52067; } else { } bsq->freebuf_count = nbr; magn = magn + 1; ldv_52071: ; if (magn <= 1) { goto ldv_52070; } else { } scheme = scheme + 1; ldv_52074: ; if (scheme <= 1) { goto ldv_52073; } else { } fore200e->state = 11; return (0); } } static int fore200e_init_bs_queue(struct fore200e *fore200e ) { int scheme ; int magn ; int i ; struct host_bsq *bsq ; struct cp_bsq_entry *cp_entry ; int tmp ; int tmp___0 ; u32 tmp___1 ; { scheme = 0; goto ldv_52091; ldv_52090: magn = 0; goto ldv_52088; ldv_52087: { bsq = (struct host_bsq *)(& fore200e->host_bsq) + ((unsigned long )scheme + (unsigned long )magn); tmp = (*((fore200e->bus)->dma_chunk_alloc))(fore200e, & bsq->status, 4, 32, (fore200e->bus)->status_alignment); } if (tmp < 0) { return (-12); } else { } { tmp___0 = (*((fore200e->bus)->dma_chunk_alloc))(fore200e, & bsq->rbd_block, 256, 32, (fore200e->bus)->descr_alignment); } if (tmp___0 < 0) { { (*((fore200e->bus)->dma_chunk_free))(fore200e, & bsq->status); } return (-12); } else { } { tmp___1 = (*((fore200e->bus)->read))((u32 volatile *)(& (fore200e->cp_queues)->cp_bsq) + ((unsigned long )scheme + (unsigned long )magn)); cp_entry = (struct cp_bsq_entry *)fore200e->virt_base + (unsigned long )tmp___1; i = 0; } goto ldv_52085; ldv_52084: { bsq->host_entry[i].status = (enum status *)bsq->status.align_addr + (unsigned long )i; bsq->host_entry[i].rbd_block = (struct rbd_block *)bsq->rbd_block.align_addr + (unsigned long )i; bsq->host_entry[i].rbd_block_dma = (u32 )bsq->rbd_block.dma_addr + (u32 )((unsigned long )i) * 256U; bsq->host_entry[i].cp_entry = cp_entry + (unsigned long )i; *(bsq->host_entry[i].status) = 4; (*((fore200e->bus)->write))((u32 )bsq->status.dma_addr + (u32 )((unsigned long )i) * 4U, (u32 volatile *)(& (cp_entry + (unsigned long )i)->status_haddr)); i = i + 1; } ldv_52085: ; if (i <= 31) { goto ldv_52084; } else { } magn = magn + 1; ldv_52088: ; if (magn <= 1) { goto ldv_52087; } else { } scheme = scheme + 1; ldv_52091: ; if (scheme <= 1) { goto ldv_52090; } else { } fore200e->state = 10; return (0); } } static int fore200e_init_rx_queue(struct fore200e *fore200e ) { struct host_rxq *rxq ; struct cp_rxq_entry *cp_entry ; int i ; int tmp ; int tmp___0 ; u32 tmp___1 ; { { rxq = & fore200e->host_rxq; tmp = (*((fore200e->bus)->dma_chunk_alloc))(fore200e, & rxq->status, 4, 64, (fore200e->bus)->status_alignment); } if (tmp < 0) { return (-12); } else { } { tmp___0 = (*((fore200e->bus)->dma_chunk_alloc))(fore200e, & rxq->rpd, 160, 64, (fore200e->bus)->descr_alignment); } if (tmp___0 < 0) { { (*((fore200e->bus)->dma_chunk_free))(fore200e, & rxq->status); } return (-12); } else { } { tmp___1 = (*((fore200e->bus)->read))((u32 volatile *)(& (fore200e->cp_queues)->cp_rxq)); cp_entry = (struct cp_rxq_entry *)fore200e->virt_base + (unsigned long )tmp___1; i = 0; } goto ldv_52100; ldv_52099: { rxq->host_entry[i].status = (enum status *)rxq->status.align_addr + (unsigned long )i; rxq->host_entry[i].rpd = (struct rpd *)rxq->rpd.align_addr + (unsigned long )i; rxq->host_entry[i].rpd_dma = (u32 )rxq->rpd.dma_addr + (u32 )((unsigned long )i) * 160U; rxq->host_entry[i].cp_entry = cp_entry + (unsigned long )i; *(rxq->host_entry[i].status) = 4; (*((fore200e->bus)->write))((u32 )rxq->status.dma_addr + (u32 )((unsigned long )i) * 4U, (u32 volatile *)(& (cp_entry + (unsigned long )i)->status_haddr)); (*((fore200e->bus)->write))((u32 )rxq->rpd.dma_addr + (u32 )((unsigned long )i) * 160U, (u32 volatile *)(& (cp_entry + (unsigned long )i)->rpd_haddr)); i = i + 1; } ldv_52100: ; if (i <= 63) { goto ldv_52099; } else { } rxq->head = 0; fore200e->state = 9; return (0); } } static int fore200e_init_tx_queue(struct fore200e *fore200e ) { struct host_txq *txq ; struct cp_txq_entry *cp_entry ; int i ; int tmp ; int tmp___0 ; u32 tmp___1 ; { { txq = & fore200e->host_txq; tmp = (*((fore200e->bus)->dma_chunk_alloc))(fore200e, & txq->status, 4, 256, (fore200e->bus)->status_alignment); } if (tmp < 0) { return (-12); } else { } { tmp___0 = (*((fore200e->bus)->dma_chunk_alloc))(fore200e, & txq->tpd, 32, 256, (fore200e->bus)->descr_alignment); } if (tmp___0 < 0) { { (*((fore200e->bus)->dma_chunk_free))(fore200e, & txq->status); } return (-12); } else { } { tmp___1 = (*((fore200e->bus)->read))((u32 volatile *)(& (fore200e->cp_queues)->cp_txq)); cp_entry = (struct cp_txq_entry *)fore200e->virt_base + (unsigned long )tmp___1; i = 0; } goto ldv_52109; ldv_52108: { txq->host_entry[i].status = (enum status *)txq->status.align_addr + (unsigned long )i; txq->host_entry[i].tpd = (struct tpd *)txq->tpd.align_addr + (unsigned long )i; txq->host_entry[i].tpd_dma = (u32 )txq->tpd.dma_addr + (u32 )((unsigned long )i) * 32U; txq->host_entry[i].cp_entry = cp_entry + (unsigned long )i; *(txq->host_entry[i].status) = 4; (*((fore200e->bus)->write))((u32 )txq->status.dma_addr + (u32 )((unsigned long )i) * 4U, (u32 volatile *)(& (cp_entry + (unsigned long )i)->status_haddr)); i = i + 1; } ldv_52109: ; if (i <= 255) { goto ldv_52108; } else { } txq->head = 0; txq->tail = 0; fore200e->state = 8; return (0); } } static int fore200e_init_cmd_queue(struct fore200e *fore200e ) { struct host_cmdq *cmdq ; struct cp_cmdq_entry *cp_entry ; int i ; int tmp ; u32 tmp___0 ; { { cmdq = & fore200e->host_cmdq; tmp = (*((fore200e->bus)->dma_chunk_alloc))(fore200e, & cmdq->status, 4, 16, (fore200e->bus)->status_alignment); } if (tmp < 0) { return (-12); } else { } { tmp___0 = (*((fore200e->bus)->read))((u32 volatile *)(& (fore200e->cp_queues)->cp_cmdq)); cp_entry = (struct cp_cmdq_entry *)fore200e->virt_base + (unsigned long )tmp___0; i = 0; } goto ldv_52118; ldv_52117: { cmdq->host_entry[i].status = (enum status *)cmdq->status.align_addr + (unsigned long )i; cmdq->host_entry[i].cp_entry = cp_entry + (unsigned long )i; *(cmdq->host_entry[i].status) = 4; (*((fore200e->bus)->write))((u32 )cmdq->status.dma_addr + (u32 )((unsigned long )i) * 4U, (u32 volatile *)(& (cp_entry + (unsigned long )i)->status_haddr)); i = i + 1; } ldv_52118: ; if (i <= 15) { goto ldv_52117; } else { } cmdq->head = 0; fore200e->state = 7; return (0); } } static void fore200e_param_bs_queue(struct fore200e *fore200e , enum buffer_scheme scheme , enum buffer_magn magn , int queue_length , int pool_size , int supply_blksize ) { struct bs_spec *bs_spec ; { { bs_spec = (struct bs_spec *)(& (fore200e->cp_queues)->init.bs_spec) + ((unsigned long )scheme + (unsigned long )magn); (*((fore200e->bus)->write))((u32 )queue_length, (u32 volatile *)(& bs_spec->queue_length)); (*((fore200e->bus)->write))((u32 )fore200e_rx_buf_size[(unsigned int )scheme][(unsigned int )magn], (u32 volatile *)(& bs_spec->buffer_size)); (*((fore200e->bus)->write))((u32 )pool_size, (u32 volatile *)(& bs_spec->pool_size)); (*((fore200e->bus)->write))((u32 )supply_blksize, (u32 volatile *)(& bs_spec->supply_blksize)); } return; } } static int fore200e_initialize(struct fore200e *fore200e ) { struct cp_queues *cpq ; int ok ; int scheme ; int magn ; struct lock_class_key __key ; struct lock_class_key __key___0 ; struct cp_queues *tmp ; { { __mutex_init(& fore200e->rate_mtx, "&fore200e->rate_mtx", & __key); spinlock_check(& fore200e->q_lock); __raw_spin_lock_init(& fore200e->q_lock.__annonCompField18.rlock, "&(&fore200e->q_lock)->rlock", & __key___0); tmp = (struct cp_queues *)fore200e->virt_base + 19776U; fore200e->cp_queues = tmp; cpq = tmp; (*((fore200e->bus)->write))(1U, (u32 volatile *)(& cpq->imask)); } if ((unsigned long )(fore200e->bus)->irq_enable != (unsigned long )((void (*/* const */)(struct fore200e * ))0)) { { (*((fore200e->bus)->irq_enable))(fore200e); } } else { } { (*((fore200e->bus)->write))(1024U, (u32 volatile *)(& cpq->init.num_connect)); (*((fore200e->bus)->write))(16U, (u32 volatile *)(& cpq->init.cmd_queue_len)); (*((fore200e->bus)->write))(64U, (u32 volatile *)(& cpq->init.rx_queue_len)); (*((fore200e->bus)->write))(256U, (u32 volatile *)(& cpq->init.tx_queue_len)); (*((fore200e->bus)->write))(16U, (u32 volatile *)(& cpq->init.rsd_extension)); (*((fore200e->bus)->write))(0U, (u32 volatile *)(& cpq->init.tsd_extension)); scheme = 0; } goto ldv_52142; ldv_52141: magn = 0; goto ldv_52139; ldv_52138: { fore200e_param_bs_queue(fore200e, (enum buffer_scheme )scheme, (enum buffer_magn )magn, 32, fore200e_rx_buf_nbr[scheme][magn], 32); magn = magn + 1; } ldv_52139: ; if (magn <= 1) { goto ldv_52138; } else { } scheme = scheme + 1; ldv_52142: ; if (scheme <= 1) { goto ldv_52141; } else { } { (*((fore200e->bus)->write))(1U, (u32 volatile *)(& cpq->init.status)); (*((fore200e->bus)->write))(1U, (u32 volatile *)(& cpq->init.opcode)); ok = fore200e_io_poll(fore200e, (u32 volatile *)(& cpq->init.status), 2U, 3000); } if (ok == 0) { { printk("fore200e: device %s initialization failed\n", (char *)(& fore200e->name)); } return (-19); } else { } { printk("fore200e: device %s initialized\n", (char *)(& fore200e->name)); fore200e->state = 6; } return (0); } } static void fore200e_monitor_putc(struct fore200e *fore200e , char c ) { struct cp_monitor *monitor ; { { monitor = fore200e->cp_monitor; (*((fore200e->bus)->write))((unsigned int )c | 16777216U, (u32 volatile *)(& monitor->soft_uart.send)); } return; } } static int fore200e_monitor_getc(struct fore200e *fore200e ) { struct cp_monitor *monitor ; unsigned long timeout ; unsigned long tmp ; int c ; u32 tmp___0 ; { { monitor = fore200e->cp_monitor; tmp = msecs_to_jiffies(50U); timeout = (unsigned long )jiffies + tmp; } goto ldv_52162; ldv_52161: { tmp___0 = (*((fore200e->bus)->read))((u32 volatile *)(& monitor->soft_uart.recv)); c = (int )tmp___0; } if ((c & 16777216) != 0) { { (*((fore200e->bus)->write))(0U, (u32 volatile *)(& monitor->soft_uart.recv)); } return (c & 255); } else { } ldv_52162: ; if ((long )((unsigned long )jiffies - timeout) < 0L) { goto ldv_52161; } else { } return (-1); } } static void fore200e_monitor_puts(struct fore200e *fore200e , char *str ) { int tmp ; char *tmp___0 ; int tmp___1 ; { goto ldv_52172; ldv_52171: ; goto ldv_52169; ldv_52168: ; ldv_52169: { tmp = fore200e_monitor_getc(fore200e); } if (tmp >= 0) { goto ldv_52168; } else { } { tmp___0 = str; str = str + 1; fore200e_monitor_putc(fore200e, (int )*tmp___0); } ldv_52172: ; if ((int )((signed char )*str) != 0) { goto ldv_52171; } else { } goto ldv_52175; ldv_52174: ; ldv_52175: { tmp___1 = fore200e_monitor_getc(fore200e); } if (tmp___1 >= 0) { goto ldv_52174; } else { } return; } } static int fore200e_load_and_start_fw(struct fore200e *fore200e ) { struct firmware const *firmware ; struct device *device ; struct fw_header *fw_header ; __le32 const *fw_data ; u32 fw_size ; u32 *load_addr ; char buf[48U] ; int err ; int tmp ; u32 tmp___0 ; int tmp___1 ; { { err = -19; tmp = strcmp((char const *)(fore200e->bus)->model_name, "PCA-200E"); } if (tmp == 0) { device = & ((struct pci_dev *)fore200e->bus_dev)->dev; } else { return (err); } { sprintf((char *)(& buf), "%s%s", (fore200e->bus)->proc_name, (char *)".bin"); err = request_firmware(& firmware, (char const *)(& buf), device); } if (err < 0) { { printk("fore200e: problem loading firmware image %s\n", (fore200e->bus)->model_name); } return (err); } else { } fw_data = (__le32 const *)firmware->data; fw_size = (u32 )((unsigned long )firmware->size / 4UL); fw_header = (struct fw_header *)firmware->data; load_addr = (u32 *)fore200e->virt_base + (unsigned long )fw_header->load_offset; if (fw_header->magic != 1701998438U) { { printk("fore200e: corrupted %s firmware image\n", (fore200e->bus)->model_name); } goto release; } else { } goto ldv_52190; ldv_52189: { (*((fore200e->bus)->write))(*fw_data, (u32 volatile *)load_addr); fw_data = fw_data + 1; load_addr = load_addr + 1; } ldv_52190: tmp___0 = fw_size; fw_size = fw_size - 1U; if (tmp___0 != 0U) { goto ldv_52189; } else { } { sprintf((char *)(& buf), "\rgo %x\r", fw_header->start_offset); fore200e_monitor_puts(fore200e, (char *)(& buf)); tmp___1 = fore200e_io_poll(fore200e, (u32 volatile *)(& (fore200e->cp_monitor)->bstat), 3457285869U, 1000); } if (tmp___1 == 0) { { printk("fore200e: device %s firmware didn\'t start\n", (char *)(& fore200e->name)); } goto release; } else { } { printk("fore200e: device %s firmware started\n", (char *)(& fore200e->name)); fore200e->state = 5; err = 0; } release: { release_firmware(firmware); } return (err); } } static int fore200e_register(struct fore200e *fore200e , struct device *parent ) { struct atm_dev *atm_dev ; { { atm_dev = ldv_atm_dev_register_150((char const *)(fore200e->bus)->proc_name, parent, & fore200e_ops, -1, (unsigned long *)0UL); } if ((unsigned long )atm_dev == (unsigned long )((struct atm_dev *)0)) { { printk("fore200e: unable to register device %s\n", (char *)(& fore200e->name)); } return (-19); } else { } atm_dev->dev_data = (void *)fore200e; fore200e->atm_dev = atm_dev; atm_dev->ci_range.vpi_bits = 0; atm_dev->ci_range.vci_bits = 10; fore200e->available_cell_rate = 353207U; fore200e->state = 1; return (0); } } static int fore200e_init(struct fore200e *fore200e , struct device *parent ) { int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; { { tmp = fore200e_register(fore200e, parent); } if (tmp < 0) { return (-19); } else { } { tmp___0 = (*((fore200e->bus)->configure))(fore200e); } if (tmp___0 < 0) { return (-19); } else { } { tmp___1 = (*((fore200e->bus)->map))(fore200e); } if (tmp___1 < 0) { return (-19); } else { } { tmp___2 = fore200e_reset(fore200e, 1); } if (tmp___2 < 0) { return (-19); } else { } { tmp___3 = fore200e_load_and_start_fw(fore200e); } if (tmp___3 < 0) { return (-19); } else { } { tmp___4 = fore200e_initialize(fore200e); } if (tmp___4 < 0) { return (-19); } else { } { tmp___5 = fore200e_init_cmd_queue(fore200e); } if (tmp___5 < 0) { return (-12); } else { } { tmp___6 = fore200e_init_tx_queue(fore200e); } if (tmp___6 < 0) { return (-12); } else { } { tmp___7 = fore200e_init_rx_queue(fore200e); } if (tmp___7 < 0) { return (-12); } else { } { tmp___8 = fore200e_init_bs_queue(fore200e); } if (tmp___8 < 0) { return (-12); } else { } { tmp___9 = fore200e_alloc_rx_buf(fore200e); } if (tmp___9 < 0) { return (-12); } else { } { tmp___10 = fore200e_get_esi(fore200e); } if (tmp___10 < 0) { return (-5); } else { } { tmp___11 = fore200e_irq_request(fore200e); } if (tmp___11 < 0) { return (-16); } else { } { fore200e_supply(fore200e); fore200e->state = 13; } return (0); } } static int fore200e_pca_detect(struct pci_dev *pci_dev , struct pci_device_id const *pci_ent ) { struct fore200e_bus const *bus ; struct fore200e *fore200e ; int err ; int index ; int tmp ; int tmp___0 ; void *tmp___1 ; char *tmp___2 ; { { bus = (struct fore200e_bus const *)pci_ent->driver_data; err = 0; index = 0; tmp = pci_enable_device(pci_dev); } if (tmp != 0) { err = -22; goto out; } else { } { tmp___0 = dma_set_mask_and_coherent(& pci_dev->dev, 4294967295ULL); } if (tmp___0 != 0) { err = -22; goto out; } else { } { tmp___1 = kzalloc(40328UL, 208U); fore200e = (struct fore200e *)tmp___1; } if ((unsigned long )fore200e == (unsigned long )((struct fore200e *)0)) { err = -12; goto out_disable; } else { } { fore200e->bus = bus; fore200e->bus_dev = (void *)pci_dev; fore200e->irq = (int )pci_dev->irq; fore200e->phys_base = (unsigned long )pci_dev->resource[0].start; sprintf((char *)(& fore200e->name), "%s-%d", bus->model_name, index + -1); pci_set_master(pci_dev); tmp___2 = fore200e_irq_itoa(fore200e->irq); printk("fore200e: device %s found at 0x%lx, IRQ %s\n", (fore200e->bus)->model_name, fore200e->phys_base, tmp___2); sprintf((char *)(& fore200e->name), "%s-%d", bus->model_name, index); err = fore200e_init(fore200e, & pci_dev->dev); } if (err < 0) { { fore200e_shutdown(fore200e); } goto out_free; } else { } { index = index + 1; pci_set_drvdata(pci_dev, (void *)fore200e); } out: ; return (err); out_free: { kfree((void const *)fore200e); } out_disable: { pci_disable_device(pci_dev); } goto out; } } static void fore200e_pca_remove_one(struct pci_dev *pci_dev ) { struct fore200e *fore200e ; void *tmp ; { { tmp = pci_get_drvdata(pci_dev); fore200e = (struct fore200e *)tmp; fore200e_shutdown(fore200e); kfree((void const *)fore200e); pci_disable_device(pci_dev); } return; } } static struct pci_device_id fore200e_pca_tbl[2U] = { {4391U, 768U, 4294967295U, 4294967295U, 0U, 0U, (unsigned long )(& fore200e_bus)}, {0U, 0U, 0U, 0U, 0U, 0U, 0UL}}; struct pci_device_id const __mod_pci__fore200e_pca_tbl_device_table[2U] ; static struct pci_driver fore200e_pca_driver = {{0, 0}, "fore_200e", (struct pci_device_id const *)(& fore200e_pca_tbl), & fore200e_pca_detect, & fore200e_pca_remove_one, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int fore200e_module_init(void) { int err ; { { err = 0; printk("fore200e: FORE Systems 200E-series ATM driver - version 0.3e\n"); err = ldv___pci_register_driver_151(& fore200e_pca_driver, & __this_module, "fore_200e"); } return (err); } } static void fore200e_module_cleanup(void) { { { ldv_pci_unregister_driver_152(& fore200e_pca_driver); } return; } } static int fore200e_proc_read(struct atm_dev *dev , loff_t *pos , char *page ) { struct fore200e *fore200e ; struct fore200e_vcc *fore200e_vcc ; struct atm_vcc *vcc ; int i ; int len ; int left ; unsigned long flags ; int tmp ; int tmp___0 ; char *tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; u32 hb ; u32 tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; char const *media_name[6U] ; char const *oc3_mode[4U] ; u32 fw_release ; u32 tmp___10 ; u32 mon960_release ; u32 tmp___11 ; u32 oc3_revision ; u32 tmp___12 ; u32 media_index ; u32 tmp___13 ; u32 oc3_index ; int tmp___14 ; int tmp___15 ; struct cp_monitor *cp_monitor ; u32 tmp___16 ; u32 tmp___17 ; int tmp___18 ; int tmp___19 ; __u32 tmp___20 ; __u32 tmp___21 ; int tmp___22 ; int tmp___23 ; __u32 tmp___24 ; __u32 tmp___25 ; __u32 tmp___26 ; __u32 tmp___27 ; __u32 tmp___28 ; __u32 tmp___29 ; __u32 tmp___30 ; int tmp___31 ; int tmp___32 ; __u32 tmp___33 ; __u32 tmp___34 ; __u32 tmp___35 ; __u32 tmp___36 ; __u32 tmp___37 ; __u32 tmp___38 ; int tmp___39 ; int tmp___40 ; __u32 tmp___41 ; __u32 tmp___42 ; __u32 tmp___43 ; int tmp___44 ; int tmp___45 ; __u32 tmp___46 ; __u32 tmp___47 ; __u32 tmp___48 ; __u32 tmp___49 ; __u32 tmp___50 ; __u32 tmp___51 ; __u32 tmp___52 ; __u32 tmp___53 ; __u32 tmp___54 ; int tmp___55 ; int tmp___56 ; __u32 tmp___57 ; __u32 tmp___58 ; __u32 tmp___59 ; __u32 tmp___60 ; __u32 tmp___61 ; __u32 tmp___62 ; __u32 tmp___63 ; __u32 tmp___64 ; __u32 tmp___65 ; int tmp___66 ; int tmp___67 ; __u32 tmp___68 ; __u32 tmp___69 ; __u32 tmp___70 ; __u32 tmp___71 ; __u32 tmp___72 ; int tmp___73 ; int tmp___74 ; int tmp___75 ; int tmp___76 ; int tmp___77 ; int tmp___78 ; enum fore200e_aal tmp___79 ; int tmp___80 ; int tmp___81 ; { fore200e = (struct fore200e *)dev->dev_data; left = (int )*pos; tmp___3 = left; left = left - 1; if (tmp___3 == 0) { { tmp = fore200e_getstats(fore200e); } if (tmp < 0) { return (-5); } else { } { len = sprintf(page, "\n device:\n internal name:\t\t%s\n", (char *)(& fore200e->name)); } if ((unsigned long )(fore200e->bus)->proc_read != (unsigned long )((int (*/* const */)(struct fore200e * , char * ))0)) { { tmp___0 = (*((fore200e->bus)->proc_read))(fore200e, page + (unsigned long )len); len = len + tmp___0; } } else { } { tmp___1 = fore200e_irq_itoa(fore200e->irq); tmp___2 = sprintf(page + (unsigned long )len, " interrupt line:\t\t%s\n physical base address:\t0x%p\n virtual base address:\t0x%p\n factory address (ESI):\t%pM\n board serial number:\t\t%d\n\n", tmp___1, (void *)fore200e->phys_base, fore200e->virt_base, (unsigned char *)(& fore200e->esi), (int )fore200e->esi[4] * 256 + (int )fore200e->esi[5]); len = len + tmp___2; } return (len); } else { } tmp___5 = left; left = left - 1; if (tmp___5 == 0) { { tmp___4 = sprintf(page, " free small bufs, scheme 1:\t%d\n free large bufs, scheme 1:\t%d\n free small bufs, scheme 2:\t%d\n free large bufs, scheme 2:\t%d\n", fore200e->host_bsq[0][0].freebuf_count, fore200e->host_bsq[0][1].freebuf_count, fore200e->host_bsq[1][0].freebuf_count, fore200e->host_bsq[1][1].freebuf_count); } return (tmp___4); } else { } tmp___9 = left; left = left - 1; if (tmp___9 == 0) { { tmp___6 = (*((fore200e->bus)->read))((u32 volatile *)(& (fore200e->cp_queues)->heartbeat)); hb = tmp___6; len = sprintf(page, "\n\n cell processor:\n heartbeat state:\t\t"); } if (hb >> 16 != 57005U) { { tmp___7 = sprintf(page + (unsigned long )len, "0x%08x\n", hb); len = len + tmp___7; } } else { { tmp___8 = sprintf(page + (unsigned long )len, "*** FATAL ERROR %04x ***\n", hb & 65535U); len = len + tmp___8; } } return (len); } else { } tmp___15 = left; left = left - 1; if (tmp___15 == 0) { { media_name[0] = "unshielded twisted pair"; media_name[1] = "multimode optical fiber ST"; media_name[2] = "multimode optical fiber SC"; media_name[3] = "single-mode optical fiber ST"; media_name[4] = "single-mode optical fiber SC"; media_name[5] = "unknown"; oc3_mode[0] = "normal operation"; oc3_mode[1] = "diagnostic loopback"; oc3_mode[2] = "line loopback"; oc3_mode[3] = "unknown"; tmp___10 = (*((fore200e->bus)->read))((u32 volatile *)(& (fore200e->cp_queues)->fw_release)); fw_release = tmp___10; tmp___11 = (*((fore200e->bus)->read))((u32 volatile *)(& (fore200e->cp_queues)->mon960_release)); mon960_release = tmp___11; tmp___12 = (*((fore200e->bus)->read))((u32 volatile *)(& (fore200e->cp_queues)->oc3_revision)); oc3_revision = tmp___12; tmp___13 = (*((fore200e->bus)->read))((u32 volatile *)(& (fore200e->cp_queues)->media_type)); media_index = tmp___13 >> 4; } if (media_index > 4U) { media_index = 5U; } else { } { if (fore200e->loop_mode == 0) { goto case_0; } else { } if (fore200e->loop_mode == 8) { goto case_8; } else { } if (fore200e->loop_mode == 2048) { goto case_2048; } else { } goto switch_default; case_0: /* CIL Label */ oc3_index = 0U; goto ldv_52247; case_8: /* CIL Label */ oc3_index = 1U; goto ldv_52247; case_2048: /* CIL Label */ oc3_index = 2U; goto ldv_52247; switch_default: /* CIL Label */ oc3_index = 3U; switch_break: /* CIL Label */ ; } ldv_52247: { tmp___14 = sprintf(page, " firmware release:\t\t%d.%d.%d\n monitor release:\t\t%d.%d\n media type:\t\t\t%s\n OC-3 revision:\t\t0x%x\n OC-3 mode:\t\t\t%s", fw_release >> 16, (fw_release << 16) >> 24, fw_release & 255U, mon960_release >> 16, mon960_release & 65535U, media_name[media_index], oc3_revision, oc3_mode[oc3_index]); } return (tmp___14); } else { } tmp___19 = left; left = left - 1; if (tmp___19 == 0) { { cp_monitor = fore200e->cp_monitor; tmp___16 = (*((fore200e->bus)->read))((u32 volatile *)(& cp_monitor->bstat)); tmp___17 = (*((fore200e->bus)->read))((u32 volatile *)(& cp_monitor->mon_version)); tmp___18 = sprintf(page, "\n\n monitor:\n version number:\t\t%d\n boot status word:\t\t0x%08x\n", tmp___17, tmp___16); } return (tmp___18); } else { } tmp___23 = left; left = left - 1; if (tmp___23 == 0) { { tmp___20 = __fswab32((fore200e->stats)->phy.framing_errors); tmp___21 = __fswab32((fore200e->stats)->phy.crc_header_errors); tmp___22 = sprintf(page, "\n device statistics:\n 4b5b:\n crc_header_errors:\t\t%10u\n framing_errors:\t\t%10u\n", tmp___21, tmp___20); } return (tmp___22); } else { } tmp___32 = left; left = left - 1; if (tmp___32 == 0) { { tmp___24 = __fswab32((fore200e->stats)->oc3.ucorr_hcs_errors); tmp___25 = __fswab32((fore200e->stats)->oc3.corr_hcs_errors); tmp___26 = __fswab32((fore200e->stats)->oc3.path_febe_errors); tmp___27 = __fswab32((fore200e->stats)->oc3.line_febe_errors); tmp___28 = __fswab32((fore200e->stats)->oc3.line_bip24_errors); tmp___29 = __fswab32((fore200e->stats)->oc3.path_bip8_errors); tmp___30 = __fswab32((fore200e->stats)->oc3.section_bip8_errors); tmp___31 = sprintf(page, "\n OC-3:\n section_bip8_errors:\t%10u\n path_bip8_errors:\t\t%10u\n line_bip24_errors:\t\t%10u\n line_febe_errors:\t\t%10u\n path_febe_errors:\t\t%10u\n corr_hcs_errors:\t\t%10u\n ucorr_hcs_errors:\t\t%10u\n", tmp___30, tmp___29, tmp___28, tmp___27, tmp___26, tmp___25, tmp___24); } return (tmp___31); } else { } tmp___40 = left; left = left - 1; if (tmp___40 == 0) { { tmp___33 = __fswab32((fore200e->stats)->atm.vci_no_conn); tmp___34 = __fswab32((fore200e->stats)->atm.vci_bad_range); tmp___35 = __fswab32((fore200e->stats)->atm.vpi_no_conn); tmp___36 = __fswab32((fore200e->stats)->atm.vpi_bad_range); tmp___37 = __fswab32((fore200e->stats)->atm.cells_received); tmp___38 = __fswab32((fore200e->stats)->atm.cells_transmitted); tmp___39 = sprintf(page, "\n ATM:\t\t\t\t cells\n TX:\t\t\t%10u\n RX:\t\t\t%10u\n vpi out of range:\t\t%10u\n vpi no conn:\t\t%10u\n vci out of range:\t\t%10u\n vci no conn:\t\t%10u\n", tmp___38, tmp___37, tmp___36, tmp___35, tmp___34, tmp___33); } return (tmp___39); } else { } tmp___45 = left; left = left - 1; if (tmp___45 == 0) { { tmp___41 = __fswab32((fore200e->stats)->aal0.cells_dropped); tmp___42 = __fswab32((fore200e->stats)->aal0.cells_received); tmp___43 = __fswab32((fore200e->stats)->aal0.cells_transmitted); tmp___44 = sprintf(page, "\n AAL0:\t\t\t cells\n TX:\t\t\t%10u\n RX:\t\t\t%10u\n dropped:\t\t\t%10u\n", tmp___43, tmp___42, tmp___41); } return (tmp___44); } else { } tmp___56 = left; left = left - 1; if (tmp___56 == 0) { { tmp___46 = __fswab32((fore200e->stats)->aal34.cspdus_protocol_errors); tmp___47 = __fswab32((fore200e->stats)->aal34.cspdus_dropped); tmp___48 = __fswab32((fore200e->stats)->aal34.cspdus_received); tmp___49 = __fswab32((fore200e->stats)->aal34.cspdus_transmitted); tmp___50 = __fswab32((fore200e->stats)->aal34.cells_protocol_errors); tmp___51 = __fswab32((fore200e->stats)->aal34.cells_crc_errors); tmp___52 = __fswab32((fore200e->stats)->aal34.cells_dropped); tmp___53 = __fswab32((fore200e->stats)->aal34.cells_received); tmp___54 = __fswab32((fore200e->stats)->aal34.cells_transmitted); tmp___55 = sprintf(page, "\n AAL3/4:\n SAR sublayer:\t\t cells\n TX:\t\t\t%10u\n RX:\t\t\t%10u\n dropped:\t\t\t%10u\n CRC errors:\t\t%10u\n protocol errors:\t\t%10u\n\n CS sublayer:\t\t PDUs\n TX:\t\t\t%10u\n RX:\t\t\t%10u\n dropped:\t\t\t%10u\n protocol errors:\t\t%10u\n", tmp___54, tmp___53, tmp___52, tmp___51, tmp___50, tmp___49, tmp___48, tmp___47, tmp___46); } return (tmp___55); } else { } tmp___67 = left; left = left - 1; if (tmp___67 == 0) { { tmp___57 = __fswab32((fore200e->stats)->aal5.cspdus_protocol_errors); tmp___58 = __fswab32((fore200e->stats)->aal5.cspdus_crc_errors); tmp___59 = __fswab32((fore200e->stats)->aal5.cspdus_dropped); tmp___60 = __fswab32((fore200e->stats)->aal5.cspdus_received); tmp___61 = __fswab32((fore200e->stats)->aal5.cspdus_transmitted); tmp___62 = __fswab32((fore200e->stats)->aal5.congestion_experienced); tmp___63 = __fswab32((fore200e->stats)->aal5.cells_dropped); tmp___64 = __fswab32((fore200e->stats)->aal5.cells_received); tmp___65 = __fswab32((fore200e->stats)->aal5.cells_transmitted); tmp___66 = sprintf(page, "\n AAL5:\n SAR sublayer:\t\t cells\n TX:\t\t\t%10u\n RX:\t\t\t%10u\n dropped:\t\t\t%10u\n congestions:\t\t%10u\n\n CS sublayer:\t\t PDUs\n TX:\t\t\t%10u\n RX:\t\t\t%10u\n dropped:\t\t\t%10u\n CRC errors:\t\t%10u\n protocol errors:\t\t%10u\n", tmp___65, tmp___64, tmp___63, tmp___62, tmp___61, tmp___60, tmp___59, tmp___58, tmp___57); } return (tmp___66); } else { } tmp___74 = left; left = left - 1; if (tmp___74 == 0) { { tmp___68 = __fswab32((fore200e->stats)->aux.rpd_alloc_failed); tmp___69 = __fswab32((fore200e->stats)->aux.large_b2_failed); tmp___70 = __fswab32((fore200e->stats)->aux.small_b2_failed); tmp___71 = __fswab32((fore200e->stats)->aux.large_b1_failed); tmp___72 = __fswab32((fore200e->stats)->aux.small_b1_failed); tmp___73 = sprintf(page, "\n AUX:\t\t allocation failures\n small b1:\t\t\t%10u\n large b1:\t\t\t%10u\n small b2:\t\t\t%10u\n large b2:\t\t\t%10u\n RX PDUs:\t\t\t%10u\n TX PDUs:\t\t\t%10lu\n", tmp___72, tmp___71, tmp___70, tmp___69, tmp___68, fore200e->tx_sat); } return (tmp___73); } else { } tmp___76 = left; left = left - 1; if (tmp___76 == 0) { { tmp___75 = sprintf(page, "\n receive carrier:\t\t\t%s\n", (fore200e->stats)->aux.receive_carrier != 0U ? (char *)"ON" : (char *)"OFF!"); } return (tmp___75); } else { } tmp___78 = left; left = left - 1; if (tmp___78 == 0) { { tmp___77 = sprintf(page, "\n VCCs:\n address VPI VCI AAL TX PDUs TX min/max size RX PDUs RX min/max size\n"); } return (tmp___77); } else { } i = 0; goto ldv_52255; ldv_52254: vcc = fore200e->vc_map[i].vcc; if ((unsigned long )vcc == (unsigned long )((struct atm_vcc *)0)) { goto ldv_52252; } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_153(& fore200e->q_lock); } if ((unsigned long )vcc != (unsigned long )((struct atm_vcc *)0)) { { tmp___80 = constant_test_bit(1L, (unsigned long const volatile *)(& vcc->flags)); } if (tmp___80 != 0) { tmp___81 = left; left = left - 1; if (tmp___81 == 0) { fore200e_vcc = (struct fore200e_vcc *)vcc->dev_data; if ((unsigned long )fore200e_vcc == (unsigned long )((struct fore200e_vcc *)0)) { { printk("fore200e: assertion failed! %s[%d]: %s\n", "fore200e_proc_read", 3085, (char *)"fore200e_vcc"); panic("fore200e: %s", "fore200e_proc_read"); } } else { } { tmp___79 = fore200e_atm2fore_aal((int )vcc->qos.aal); len = sprintf(page, " %08x %03d %05d %1d %09lu %05d/%05d %09lu %05d/%05d\n", (unsigned int )((long )vcc), (int )vcc->vpi, vcc->vci, (unsigned int )tmp___79, fore200e_vcc->tx_pdu, fore200e_vcc->tx_min_pdu <= 65535 ? fore200e_vcc->tx_min_pdu : 0, fore200e_vcc->tx_max_pdu, fore200e_vcc->rx_pdu, fore200e_vcc->rx_min_pdu <= 65535 ? fore200e_vcc->rx_min_pdu : 0, fore200e_vcc->rx_max_pdu); ldv_spin_unlock_irqrestore_130(& fore200e->q_lock, flags); } return (len); } else { } } else { } } else { } { ldv_spin_unlock_irqrestore_130(& fore200e->q_lock, flags); } ldv_52252: i = i + 1; ldv_52255: ; if (i <= 1023) { goto ldv_52254; } else { } return (0); } } static struct atmdev_ops const fore200e_ops = {0, & fore200e_open, & fore200e_close, & fore200e_ioctl, 0, & fore200e_getsockopt, & fore200e_setsockopt, & fore200e_send, 0, 0, 0, & fore200e_change_qos, & fore200e_proc_read, & __this_module}; static struct fore200e_bus const fore200e_bus[2U] = { {(char *)"PCA-200E", (char *)"pca200e", 32, 4, 32, & fore200e_pca_read, & fore200e_pca_write, & fore200e_pca_dma_map, & fore200e_pca_dma_unmap, & fore200e_pca_dma_sync_for_cpu, & fore200e_pca_dma_sync_for_device, & fore200e_pca_dma_chunk_alloc, & fore200e_pca_dma_chunk_free, & fore200e_pca_configure, & fore200e_pca_map, & fore200e_pca_reset, & fore200e_pca_prom_read, & fore200e_pca_unmap, (void (*)(struct fore200e * ))0, & fore200e_pca_irq_check, & fore200e_pca_irq_ack, & fore200e_pca_proc_read}}; void ldv_EMGentry_exit_fore200e_module_cleanup_9_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_fore200e_module_init_9_10(int (*arg0)(void) ) ; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) ; struct atm_dev *ldv_atm_dev_register(struct atm_dev *arg0 , char *arg1 , struct device *arg2 , struct atmdev_ops *arg3 , int arg4 , unsigned long *arg5 ) ; void ldv_dispatch_deregister_6_1(struct pci_driver *arg0 ) ; void ldv_dispatch_deregister_dummy_resourceless_instance_9_9_4(void) ; void ldv_dispatch_deregister_io_instance_7_9_5(void) ; void ldv_dispatch_irq_deregister_4_1(int arg0 ) ; void ldv_dispatch_irq_register_5_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_register_7_2(struct pci_driver *arg0 ) ; void ldv_dispatch_register_8_1(struct atmdev_ops *arg0 ) ; void ldv_dispatch_register_dummy_resourceless_instance_9_9_6(void) ; void ldv_dummy_resourceless_instance_callback_3_10(void (*arg0)(struct fore200e * , struct chunk * ) , struct fore200e *arg1 , struct chunk *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_11(unsigned int (*arg0)(struct fore200e * , void * , int , int ) , struct fore200e *arg1 , void *arg2 , int arg3 , int arg4 ) ; void ldv_dummy_resourceless_instance_callback_3_14(void (*arg0)(struct fore200e * , unsigned int , int , int ) , struct fore200e *arg1 , unsigned int arg2 , int arg3 , int arg4 ) ; void ldv_dummy_resourceless_instance_callback_3_17(void (*arg0)(struct fore200e * , unsigned int , int , int ) , struct fore200e *arg1 , unsigned int arg2 , int arg3 , int arg4 ) ; void ldv_dummy_resourceless_instance_callback_3_20(void (*arg0)(struct fore200e * , unsigned int , int , int ) , struct fore200e *arg1 , unsigned int arg2 , int arg3 , int arg4 ) ; void ldv_dummy_resourceless_instance_callback_3_23(void (*arg0)(struct fore200e * ) , struct fore200e *arg1 ) ; void ldv_dummy_resourceless_instance_callback_3_24(int (*arg0)(struct fore200e * ) , struct fore200e *arg1 ) ; void ldv_dummy_resourceless_instance_callback_3_25(int (*arg0)(struct fore200e * ) , struct fore200e *arg1 ) ; void ldv_dummy_resourceless_instance_callback_3_26(int (*arg0)(struct fore200e * , char * ) , struct fore200e *arg1 , char *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_29(int (*arg0)(struct fore200e * , struct prom_data * ) , struct fore200e *arg1 , struct prom_data *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_3(int (*arg0)(struct fore200e * ) , struct fore200e *arg1 ) ; void ldv_dummy_resourceless_instance_callback_3_30(unsigned int (*arg0)(unsigned int * ) , unsigned int *arg1 ) ; void ldv_dummy_resourceless_instance_callback_3_33(void (*arg0)(struct fore200e * ) , struct fore200e *arg1 ) ; void ldv_dummy_resourceless_instance_callback_3_34(void (*arg0)(struct fore200e * ) , struct fore200e *arg1 ) ; void ldv_dummy_resourceless_instance_callback_3_35(void (*arg0)(unsigned int , unsigned int * ) , unsigned int arg1 , unsigned int *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_7(int (*arg0)(struct fore200e * , struct chunk * , int , int , int ) , struct fore200e *arg1 , struct chunk *arg2 , int arg3 , int arg4 , int arg5 ) ; void ldv_entry_EMGentry_9(void *arg0 ) ; int main(void) ; void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) ; enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_interrupt_instance_0(void *arg0 ) ; void ldv_io_instance_callback_2_19(int (*arg0)(struct atm_vcc * , int , int , void * , int ) , struct atm_vcc *arg1 , int arg2 , int arg3 , void *arg4 , int arg5 ) ; void ldv_io_instance_callback_2_22(int (*arg0)(struct atm_dev * , unsigned int , void * ) , struct atm_dev *arg1 , unsigned int arg2 , void *arg3 ) ; void ldv_io_instance_callback_2_25(int (*arg0)(struct atm_dev * , long long * , char * ) , struct atm_dev *arg1 , long long *arg2 , char *arg3 ) ; void ldv_io_instance_callback_2_28(int (*arg0)(struct atm_vcc * , struct sk_buff * ) , struct atm_vcc *arg1 , struct sk_buff *arg2 ) ; void ldv_io_instance_callback_2_29(int (*arg0)(struct atm_vcc * , int , int , void * , unsigned int ) , struct atm_vcc *arg1 , int arg2 , int arg3 , void *arg4 , unsigned int arg5 ) ; void ldv_io_instance_callback_2_4(int (*arg0)(struct atm_vcc * , struct atm_qos * , int ) , struct atm_vcc *arg1 , struct atm_qos *arg2 , int arg3 ) ; int ldv_io_instance_probe_2_11(int (*arg0)(struct atm_vcc * ) , struct atm_vcc *arg1 ) ; void ldv_io_instance_release_2_2(void (*arg0)(struct atm_vcc * ) , struct atm_vcc *arg1 ) ; int ldv_pci_instance_probe_1_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_1_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_1_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_1_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_1_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_1_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_1_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_1(void *arg0 ) ; void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) ; int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) ; void ldv_struct_atmdev_ops_io_instance_2(void *arg0 ) ; void ldv_struct_fore200e_bus_dummy_resourceless_instance_3(void *arg0 ) ; struct ldv_thread ldv_thread_0 ; struct ldv_thread ldv_thread_1 ; struct ldv_thread ldv_thread_2 ; struct ldv_thread ldv_thread_3 ; struct ldv_thread ldv_thread_9 ; void ldv_EMGentry_exit_fore200e_module_cleanup_9_2(void (*arg0)(void) ) { { { fore200e_module_cleanup(); } return; } } int ldv_EMGentry_init_fore200e_module_init_9_10(int (*arg0)(void) ) { int tmp ; { { tmp = fore200e_module_init(); } return (tmp); } } int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) { struct pci_driver *ldv_7_pci_driver_pci_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_7_pci_driver_pci_driver = arg1; ldv_dispatch_register_7_2(ldv_7_pci_driver_pci_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } struct atm_dev *ldv_atm_dev_register(struct atm_dev *arg0 , char *arg1 , struct device *arg2 , struct atmdev_ops *arg3 , int arg4 , unsigned long *arg5 ) { struct atmdev_ops *ldv_8_struct_atmdev_ops_struct_atmdev_ops ; { { ldv_8_struct_atmdev_ops_struct_atmdev_ops = arg3; ldv_dispatch_register_8_1(ldv_8_struct_atmdev_ops_struct_atmdev_ops); } return (arg0); return (arg0); } } void ldv_dispatch_deregister_6_1(struct pci_driver *arg0 ) { { return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_9_9_4(void) { { return; } } void ldv_dispatch_deregister_io_instance_7_9_5(void) { { return; } } void ldv_dispatch_irq_deregister_4_1(int arg0 ) { { return; } } void ldv_dispatch_irq_register_5_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { struct ldv_struct_interrupt_instance_0 *cf_arg_0 ; void *tmp ; { { tmp = ldv_xmalloc(40UL); cf_arg_0 = (struct ldv_struct_interrupt_instance_0 *)tmp; cf_arg_0->arg0 = arg0; cf_arg_0->arg1 = arg1; cf_arg_0->arg2 = arg2; cf_arg_0->arg3 = arg3; ldv_interrupt_interrupt_instance_0((void *)cf_arg_0); } return; } } void ldv_dispatch_register_7_2(struct pci_driver *arg0 ) { struct ldv_struct_pci_instance_1 *cf_arg_1 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_1 = (struct ldv_struct_pci_instance_1 *)tmp; cf_arg_1->arg0 = arg0; ldv_pci_pci_instance_1((void *)cf_arg_1); } return; } } void ldv_dispatch_register_8_1(struct atmdev_ops *arg0 ) { struct ldv_struct_io_instance_2 *cf_arg_2 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_2 = (struct ldv_struct_io_instance_2 *)tmp; cf_arg_2->arg0 = arg0; ldv_struct_atmdev_ops_io_instance_2((void *)cf_arg_2); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_9_9_6(void) { struct ldv_struct_EMGentry_9 *cf_arg_3 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_3 = (struct ldv_struct_EMGentry_9 *)tmp; ldv_struct_fore200e_bus_dummy_resourceless_instance_3((void *)cf_arg_3); } return; } } void ldv_dummy_resourceless_instance_callback_3_10(void (*arg0)(struct fore200e * , struct chunk * ) , struct fore200e *arg1 , struct chunk *arg2 ) { { { fore200e_pca_dma_chunk_free(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_11(unsigned int (*arg0)(struct fore200e * , void * , int , int ) , struct fore200e *arg1 , void *arg2 , int arg3 , int arg4 ) { { { fore200e_pca_dma_map(arg1, arg2, arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_3_14(void (*arg0)(struct fore200e * , unsigned int , int , int ) , struct fore200e *arg1 , unsigned int arg2 , int arg3 , int arg4 ) { { { fore200e_pca_dma_sync_for_cpu(arg1, arg2, arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_3_17(void (*arg0)(struct fore200e * , unsigned int , int , int ) , struct fore200e *arg1 , unsigned int arg2 , int arg3 , int arg4 ) { { { fore200e_pca_dma_sync_for_device(arg1, arg2, arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_3_20(void (*arg0)(struct fore200e * , unsigned int , int , int ) , struct fore200e *arg1 , unsigned int arg2 , int arg3 , int arg4 ) { { { fore200e_pca_dma_unmap(arg1, arg2, arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_3_23(void (*arg0)(struct fore200e * ) , struct fore200e *arg1 ) { { { fore200e_pca_irq_ack(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_3_24(int (*arg0)(struct fore200e * ) , struct fore200e *arg1 ) { { { fore200e_pca_irq_check(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_3_25(int (*arg0)(struct fore200e * ) , struct fore200e *arg1 ) { { { fore200e_pca_map(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_3_26(int (*arg0)(struct fore200e * , char * ) , struct fore200e *arg1 , char *arg2 ) { { { fore200e_pca_proc_read(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_29(int (*arg0)(struct fore200e * , struct prom_data * ) , struct fore200e *arg1 , struct prom_data *arg2 ) { { { fore200e_pca_prom_read(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_3(int (*arg0)(struct fore200e * ) , struct fore200e *arg1 ) { { { fore200e_pca_configure(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_3_30(unsigned int (*arg0)(unsigned int * ) , unsigned int *arg1 ) { { { fore200e_pca_read((u32 volatile *)arg1); } return; } } void ldv_dummy_resourceless_instance_callback_3_33(void (*arg0)(struct fore200e * ) , struct fore200e *arg1 ) { { { fore200e_pca_reset(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_3_34(void (*arg0)(struct fore200e * ) , struct fore200e *arg1 ) { { { fore200e_pca_unmap(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_3_35(void (*arg0)(unsigned int , unsigned int * ) , unsigned int arg1 , unsigned int *arg2 ) { { { fore200e_pca_write(arg1, (u32 volatile *)arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_7(int (*arg0)(struct fore200e * , struct chunk * , int , int , int ) , struct fore200e *arg1 , struct chunk *arg2 , int arg3 , int arg4 , int arg5 ) { { { fore200e_pca_dma_chunk_alloc(arg1, arg2, arg3, arg4, arg5); } return; } } void ldv_entry_EMGentry_9(void *arg0 ) { void (*ldv_9_exit_fore200e_module_cleanup_default)(void) ; int (*ldv_9_init_fore200e_module_init_default)(void) ; int ldv_9_ret_default ; int tmp ; int tmp___0 ; { { ldv_9_ret_default = ldv_EMGentry_init_fore200e_module_init_9_10(ldv_9_init_fore200e_module_init_default); ldv_9_ret_default = ldv_ldv_post_init_156(ldv_9_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_9_ret_default != 0); ldv_ldv_check_final_state_157(); ldv_stop(); } return; } else { { ldv_assume(ldv_9_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dispatch_register_dummy_resourceless_instance_9_9_6(); ldv_dispatch_deregister_io_instance_7_9_5(); ldv_dispatch_deregister_dummy_resourceless_instance_9_9_4(); } } else { } { ldv_EMGentry_exit_fore200e_module_cleanup_9_2(ldv_9_exit_fore200e_module_cleanup_default); ldv_ldv_check_final_state_158(); ldv_stop(); } return; } return; } } int main(void) { { { ldv_ldv_initialize_159(); ldv_entry_EMGentry_9((void *)0); } return 0; } } void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) { int ldv_4_line_line ; { { ldv_4_line_line = arg1; ldv_dispatch_irq_deregister_4_1(ldv_4_line_line); } return; return; } } enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = fore200e_interrupt(arg1, arg2); } return (tmp); } } void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_interrupt_instance_0(void *arg0 ) { enum irqreturn (*ldv_0_callback_handler)(int , void * ) ; void *ldv_0_data_data ; int ldv_0_line_line ; enum irqreturn ldv_0_ret_val_default ; enum irqreturn (*ldv_0_thread_thread)(int , void * ) ; struct ldv_struct_interrupt_instance_0 *data ; int tmp ; { data = (struct ldv_struct_interrupt_instance_0 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_interrupt_instance_0 *)0)) { { ldv_0_line_line = data->arg0; ldv_0_callback_handler = data->arg1; ldv_0_thread_thread = data->arg2; ldv_0_data_data = data->arg3; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); ldv_0_ret_val_default = ldv_interrupt_instance_handler_0_5(ldv_0_callback_handler, ldv_0_line_line, ldv_0_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume((unsigned int )ldv_0_ret_val_default == 2U); } if ((unsigned long )ldv_0_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_0_3(ldv_0_thread_thread, ldv_0_line_line, ldv_0_data_data); } } else { } } else { { ldv_assume((unsigned int )ldv_0_ret_val_default != 2U); } } return; return; } } void ldv_io_instance_callback_2_19(int (*arg0)(struct atm_vcc * , int , int , void * , int ) , struct atm_vcc *arg1 , int arg2 , int arg3 , void *arg4 , int arg5 ) { { { fore200e_getsockopt(arg1, arg2, arg3, arg4, arg5); } return; } } void ldv_io_instance_callback_2_22(int (*arg0)(struct atm_dev * , unsigned int , void * ) , struct atm_dev *arg1 , unsigned int arg2 , void *arg3 ) { { { fore200e_ioctl(arg1, arg2, arg3); } return; } } void ldv_io_instance_callback_2_25(int (*arg0)(struct atm_dev * , long long * , char * ) , struct atm_dev *arg1 , long long *arg2 , char *arg3 ) { { { fore200e_proc_read(arg1, arg2, arg3); } return; } } void ldv_io_instance_callback_2_28(int (*arg0)(struct atm_vcc * , struct sk_buff * ) , struct atm_vcc *arg1 , struct sk_buff *arg2 ) { { { fore200e_send(arg1, arg2); } return; } } void ldv_io_instance_callback_2_29(int (*arg0)(struct atm_vcc * , int , int , void * , unsigned int ) , struct atm_vcc *arg1 , int arg2 , int arg3 , void *arg4 , unsigned int arg5 ) { { { fore200e_setsockopt(arg1, arg2, arg3, arg4, arg5); } return; } } void ldv_io_instance_callback_2_4(int (*arg0)(struct atm_vcc * , struct atm_qos * , int ) , struct atm_vcc *arg1 , struct atm_qos *arg2 , int arg3 ) { { { fore200e_change_qos(arg1, arg2, arg3); } return; } } int ldv_io_instance_probe_2_11(int (*arg0)(struct atm_vcc * ) , struct atm_vcc *arg1 ) { int tmp ; { { tmp = fore200e_open(arg1); } return (tmp); } } void ldv_io_instance_release_2_2(void (*arg0)(struct atm_vcc * ) , struct atm_vcc *arg1 ) { { { fore200e_close(arg1); } return; } } int ldv_pci_instance_probe_1_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = fore200e_pca_detect(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_1_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { fore200e_pca_remove_one(arg1); } return; } } void ldv_pci_instance_resume_1_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_resume_early_1_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_1_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } int ldv_pci_instance_suspend_1_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_1_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_1(void *arg0 ) { struct pci_driver *ldv_1_container_pci_driver ; struct pci_dev *ldv_1_resource_dev ; struct pm_message ldv_1_resource_pm_message ; struct pci_device_id *ldv_1_resource_struct_pci_device_id_ptr ; int ldv_1_ret_default ; struct ldv_struct_pci_instance_1 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { data = (struct ldv_struct_pci_instance_1 *)arg0; ldv_1_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_pci_instance_1 *)0)) { { ldv_1_container_pci_driver = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(2968UL); ldv_1_resource_dev = (struct pci_dev *)tmp; tmp___0 = ldv_xmalloc(32UL); ldv_1_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___0; } goto ldv_main_1; return; ldv_main_1: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_ldv_pre_probe_160(); ldv_1_ret_default = ldv_pci_instance_probe_1_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_1_container_pci_driver->probe, ldv_1_resource_dev, ldv_1_resource_struct_pci_device_id_ptr); ldv_1_ret_default = ldv_ldv_post_probe_161(ldv_1_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { ldv_assume(ldv_1_ret_default == 0); } goto ldv_call_1; } else { { ldv_assume(ldv_1_ret_default != 0); } goto ldv_main_1; } } else { { ldv_free((void *)ldv_1_resource_dev); ldv_free((void *)ldv_1_resource_struct_pci_device_id_ptr); } return; } return; ldv_call_1: { tmp___3 = ldv_undef_int(); } { if (tmp___3 == 1) { goto case_1; } else { } if (tmp___3 == 2) { goto case_2; } else { } if (tmp___3 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_call_1; case_2: /* CIL Label */ ; if ((unsigned long )ldv_1_container_pci_driver->suspend != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_1_ret_default = ldv_pci_instance_suspend_1_8(ldv_1_container_pci_driver->suspend, ldv_1_resource_dev, ldv_1_resource_pm_message); } } else { } { ldv_1_ret_default = ldv_filter_err_code(ldv_1_ret_default); } if ((unsigned long )ldv_1_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_1_ret_default = ldv_pci_instance_suspend_late_1_7(ldv_1_container_pci_driver->suspend_late, ldv_1_resource_dev, ldv_1_resource_pm_message); } } else { } { ldv_1_ret_default = ldv_filter_err_code(ldv_1_ret_default); } if ((unsigned long )ldv_1_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_1_6(ldv_1_container_pci_driver->resume_early, ldv_1_resource_dev); } } else { } if ((unsigned long )ldv_1_container_pci_driver->resume != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_1_5(ldv_1_container_pci_driver->resume, ldv_1_resource_dev); } } else { } goto ldv_call_1; case_3: /* CIL Label */ ; if ((unsigned long )ldv_1_container_pci_driver->shutdown != (unsigned long )((void (*)(struct pci_dev * ))0)) { { ldv_pci_instance_shutdown_1_3(ldv_1_container_pci_driver->shutdown, ldv_1_resource_dev); } } else { } { ldv_pci_instance_release_1_2(ldv_1_container_pci_driver->remove, ldv_1_resource_dev); } goto ldv_main_1; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) { struct pci_driver *ldv_6_pci_driver_pci_driver ; { { ldv_6_pci_driver_pci_driver = arg1; ldv_dispatch_deregister_6_1(ldv_6_pci_driver_pci_driver); } return; return; } } int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) { enum irqreturn (*ldv_5_callback_handler)(int , void * ) ; void *ldv_5_data_data ; int ldv_5_line_line ; enum irqreturn (*ldv_5_thread_thread)(int , void * ) ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_5_line_line = (int )arg1; ldv_5_callback_handler = arg2; ldv_5_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_5_data_data = arg5; ldv_dispatch_irq_register_5_2(ldv_5_line_line, ldv_5_callback_handler, ldv_5_thread_thread, ldv_5_data_data); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_struct_atmdev_ops_io_instance_2(void *arg0 ) { int (*ldv_2_callback_change_qos)(struct atm_vcc * , struct atm_qos * , int ) ; int (*ldv_2_callback_getsockopt)(struct atm_vcc * , int , int , void * , int ) ; int (*ldv_2_callback_ioctl)(struct atm_dev * , unsigned int , void * ) ; int (*ldv_2_callback_proc_read)(struct atm_dev * , long long * , char * ) ; int (*ldv_2_callback_send)(struct atm_vcc * , struct sk_buff * ) ; int (*ldv_2_callback_setsockopt)(struct atm_vcc * , int , int , void * , unsigned int ) ; struct atmdev_ops *ldv_2_container_struct_atmdev_ops ; int ldv_2_ldv_param_19_1_default ; int ldv_2_ldv_param_19_2_default ; int ldv_2_ldv_param_19_4_default ; unsigned int ldv_2_ldv_param_22_1_default ; long long *ldv_2_ldv_param_25_1_default ; char *ldv_2_ldv_param_25_2_default ; int ldv_2_ldv_param_29_1_default ; int ldv_2_ldv_param_29_2_default ; unsigned int ldv_2_ldv_param_29_4_default ; int ldv_2_ldv_param_4_2_default ; struct atm_dev *ldv_2_resource_struct_atm_dev_ptr ; struct atm_qos *ldv_2_resource_struct_atm_qos_ptr ; struct atm_vcc *ldv_2_resource_struct_atm_vcc_ptr ; struct sk_buff *ldv_2_resource_struct_sk_buff_ptr ; int ldv_2_ret_default ; struct ldv_struct_io_instance_2 *data ; void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; void *tmp___6 ; void *tmp___7 ; int tmp___8 ; { data = (struct ldv_struct_io_instance_2 *)arg0; ldv_2_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_io_instance_2 *)0)) { { ldv_2_container_struct_atmdev_ops = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(1680UL); ldv_2_resource_struct_atm_dev_ptr = (struct atm_dev *)tmp; tmp___0 = ldv_xmalloc(84UL); ldv_2_resource_struct_atm_qos_ptr = (struct atm_qos *)tmp___0; tmp___1 = ldv_xmalloc(1640UL); ldv_2_resource_struct_atm_vcc_ptr = (struct atm_vcc *)tmp___1; tmp___2 = ldv_xmalloc(232UL); ldv_2_resource_struct_sk_buff_ptr = (struct sk_buff *)tmp___2; } goto ldv_main_2; return; ldv_main_2: { tmp___4 = ldv_undef_int(); } if (tmp___4 != 0) { { ldv_2_ret_default = ldv_io_instance_probe_2_11(ldv_2_container_struct_atmdev_ops->open, ldv_2_resource_struct_atm_vcc_ptr); ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { ldv_assume(ldv_2_ret_default == 0); } goto ldv_call_2; } else { { ldv_assume(ldv_2_ret_default != 0); } goto ldv_main_2; } } else { { ldv_free((void *)ldv_2_resource_struct_atm_dev_ptr); ldv_free((void *)ldv_2_resource_struct_atm_qos_ptr); ldv_free((void *)ldv_2_resource_struct_atm_vcc_ptr); ldv_free((void *)ldv_2_resource_struct_sk_buff_ptr); } return; } return; ldv_call_2: { tmp___8 = ldv_undef_int(); } if (tmp___8 != 0) { { ldv_io_instance_release_2_2(ldv_2_container_struct_atmdev_ops->close, ldv_2_resource_struct_atm_vcc_ptr); } goto ldv_main_2; } else { { tmp___5 = ldv_undef_int(); } { if (tmp___5 == 1) { goto case_1; } else { } if (tmp___5 == 2) { goto case_2; } else { } if (tmp___5 == 3) { goto case_3; } else { } if (tmp___5 == 4) { goto case_4; } else { } if (tmp___5 == 5) { goto case_5; } else { } if (tmp___5 == 6) { goto case_6; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_io_instance_callback_2_29(ldv_2_callback_setsockopt, ldv_2_resource_struct_atm_vcc_ptr, ldv_2_ldv_param_29_1_default, ldv_2_ldv_param_29_2_default, (void *)ldv_2_resource_struct_atm_dev_ptr, ldv_2_ldv_param_29_4_default); } goto ldv_53008; case_2: /* CIL Label */ { ldv_io_instance_callback_2_28(ldv_2_callback_send, ldv_2_resource_struct_atm_vcc_ptr, ldv_2_resource_struct_sk_buff_ptr); } goto ldv_53008; case_3: /* CIL Label */ { tmp___6 = ldv_xmalloc(8UL); ldv_2_ldv_param_25_1_default = (long long *)tmp___6; tmp___7 = ldv_xmalloc(1UL); ldv_2_ldv_param_25_2_default = (char *)tmp___7; ldv_io_instance_callback_2_25(ldv_2_callback_proc_read, ldv_2_resource_struct_atm_dev_ptr, ldv_2_ldv_param_25_1_default, ldv_2_ldv_param_25_2_default); ldv_free((void *)ldv_2_ldv_param_25_1_default); ldv_free((void *)ldv_2_ldv_param_25_2_default); } goto ldv_53008; case_4: /* CIL Label */ { ldv_io_instance_callback_2_22(ldv_2_callback_ioctl, ldv_2_resource_struct_atm_dev_ptr, ldv_2_ldv_param_22_1_default, (void *)ldv_2_resource_struct_atm_qos_ptr); } goto ldv_53008; case_5: /* CIL Label */ { ldv_io_instance_callback_2_19(ldv_2_callback_getsockopt, ldv_2_resource_struct_atm_vcc_ptr, ldv_2_ldv_param_19_1_default, ldv_2_ldv_param_19_2_default, (void *)ldv_2_resource_struct_atm_dev_ptr, ldv_2_ldv_param_19_4_default); } goto ldv_53008; case_6: /* CIL Label */ { ldv_io_instance_callback_2_4(ldv_2_callback_change_qos, ldv_2_resource_struct_atm_vcc_ptr, ldv_2_resource_struct_atm_qos_ptr, ldv_2_ldv_param_4_2_default); } goto ldv_53008; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_53008: ; } goto ldv_call_2; return; } } void ldv_struct_fore200e_bus_dummy_resourceless_instance_3(void *arg0 ) { int (*ldv_3_callback_configure)(struct fore200e * ) ; int (*ldv_3_callback_dma_chunk_alloc)(struct fore200e * , struct chunk * , int , int , int ) ; void (*ldv_3_callback_dma_chunk_free)(struct fore200e * , struct chunk * ) ; unsigned int (*ldv_3_callback_dma_map)(struct fore200e * , void * , int , int ) ; void (*ldv_3_callback_dma_sync_for_cpu)(struct fore200e * , unsigned int , int , int ) ; void (*ldv_3_callback_dma_sync_for_device)(struct fore200e * , unsigned int , int , int ) ; void (*ldv_3_callback_dma_unmap)(struct fore200e * , unsigned int , int , int ) ; void (*ldv_3_callback_irq_ack)(struct fore200e * ) ; int (*ldv_3_callback_irq_check)(struct fore200e * ) ; int (*ldv_3_callback_map)(struct fore200e * ) ; int (*ldv_3_callback_proc_read)(struct fore200e * , char * ) ; int (*ldv_3_callback_prom_read)(struct fore200e * , struct prom_data * ) ; unsigned int (*ldv_3_callback_read)(unsigned int * ) ; void (*ldv_3_callback_reset)(struct fore200e * ) ; void (*ldv_3_callback_unmap)(struct fore200e * ) ; void (*ldv_3_callback_write)(unsigned int , unsigned int * ) ; struct chunk *ldv_3_container_struct_chunk_ptr ; struct fore200e *ldv_3_container_struct_fore200e_ptr ; struct prom_data *ldv_3_container_struct_prom_data_ptr ; int ldv_3_ldv_param_11_2_default ; int ldv_3_ldv_param_11_3_default ; unsigned int ldv_3_ldv_param_14_1_default ; int ldv_3_ldv_param_14_2_default ; int ldv_3_ldv_param_14_3_default ; unsigned int ldv_3_ldv_param_17_1_default ; int ldv_3_ldv_param_17_2_default ; int ldv_3_ldv_param_17_3_default ; unsigned int ldv_3_ldv_param_20_1_default ; int ldv_3_ldv_param_20_2_default ; int ldv_3_ldv_param_20_3_default ; char *ldv_3_ldv_param_26_1_default ; unsigned int *ldv_3_ldv_param_30_0_default ; unsigned int ldv_3_ldv_param_35_0_default ; unsigned int *ldv_3_ldv_param_35_1_default ; int ldv_3_ldv_param_7_2_default ; int ldv_3_ldv_param_7_3_default ; int ldv_3_ldv_param_7_4_default ; int tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; { goto ldv_call_3; return; ldv_call_3: { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } if (tmp == 9) { goto case_9; } else { } if (tmp == 10) { goto case_10; } else { } if (tmp == 11) { goto case_11; } else { } if (tmp == 12) { goto case_12; } else { } if (tmp == 13) { goto case_13; } else { } if (tmp == 14) { goto case_14; } else { } if (tmp == 15) { goto case_15; } else { } if (tmp == 16) { goto case_16; } else { } if (tmp == 17) { goto case_17; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___0 = ldv_xmalloc(4UL); ldv_3_ldv_param_35_1_default = (unsigned int *)tmp___0; ldv_dummy_resourceless_instance_callback_3_35(ldv_3_callback_write, ldv_3_ldv_param_35_0_default, ldv_3_ldv_param_35_1_default); ldv_free((void *)ldv_3_ldv_param_35_1_default); } goto ldv_call_3; case_2: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_34(ldv_3_callback_unmap, ldv_3_container_struct_fore200e_ptr); } goto ldv_call_3; goto ldv_call_3; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_33(ldv_3_callback_reset, ldv_3_container_struct_fore200e_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_4: /* CIL Label */ { tmp___1 = ldv_xmalloc(4UL); ldv_3_ldv_param_30_0_default = (unsigned int *)tmp___1; ldv_dummy_resourceless_instance_callback_3_30(ldv_3_callback_read, ldv_3_ldv_param_30_0_default); ldv_free((void *)ldv_3_ldv_param_30_0_default); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_5: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_29(ldv_3_callback_prom_read, ldv_3_container_struct_fore200e_ptr, ldv_3_container_struct_prom_data_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_6: /* CIL Label */ { tmp___2 = ldv_xmalloc(1UL); ldv_3_ldv_param_26_1_default = (char *)tmp___2; ldv_dummy_resourceless_instance_callback_3_26(ldv_3_callback_proc_read, ldv_3_container_struct_fore200e_ptr, ldv_3_ldv_param_26_1_default); ldv_free((void *)ldv_3_ldv_param_26_1_default); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_7: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_25(ldv_3_callback_map, ldv_3_container_struct_fore200e_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_8: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_24(ldv_3_callback_irq_check, ldv_3_container_struct_fore200e_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_9: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_23(ldv_3_callback_irq_ack, ldv_3_container_struct_fore200e_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_10: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_20(ldv_3_callback_dma_unmap, ldv_3_container_struct_fore200e_ptr, ldv_3_ldv_param_20_1_default, ldv_3_ldv_param_20_2_default, ldv_3_ldv_param_20_3_default); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_11: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_17(ldv_3_callback_dma_sync_for_device, ldv_3_container_struct_fore200e_ptr, ldv_3_ldv_param_17_1_default, ldv_3_ldv_param_17_2_default, ldv_3_ldv_param_17_3_default); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_12: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_14(ldv_3_callback_dma_sync_for_cpu, ldv_3_container_struct_fore200e_ptr, ldv_3_ldv_param_14_1_default, ldv_3_ldv_param_14_2_default, ldv_3_ldv_param_14_3_default); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_13: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_11(ldv_3_callback_dma_map, ldv_3_container_struct_fore200e_ptr, (void *)ldv_3_container_struct_chunk_ptr, ldv_3_ldv_param_11_2_default, ldv_3_ldv_param_11_3_default); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_14: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_10(ldv_3_callback_dma_chunk_free, ldv_3_container_struct_fore200e_ptr, ldv_3_container_struct_chunk_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_15: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_7(ldv_3_callback_dma_chunk_alloc, ldv_3_container_struct_fore200e_ptr, ldv_3_container_struct_chunk_ptr, ldv_3_ldv_param_7_2_default, ldv_3_ldv_param_7_3_default, ldv_3_ldv_param_7_4_default); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_16: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_3(ldv_3_callback_configure, ldv_3_container_struct_fore200e_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_17: /* CIL Label */ ; return; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } __inline static void atomic_inc(atomic_t *v ) { { { ldv_linux_usb_dev_atomic_inc(v); } return; } } __inline static void *ioremap(resource_size_t offset , unsigned long size ) { void *tmp ; { { tmp = ldv_linux_arch_io_io_mem_remap(); } return (tmp); } } __inline static void *kmalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_malloc_unknown_size(); ldv_after_alloc(res); } return (res); } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = ldv_kzalloc(size, flags); } return (tmp); } } __inline static struct sk_buff *alloc_skb(unsigned int size , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return ((struct sk_buff *)tmp); } } static void ldv_free_irq_127(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv_iounmap_128(void volatile *ldv_func_arg1 ) { { { ldv_linux_arch_io_io_mem_unmap(); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_129(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_q_lock_of_fore200e(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_130(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_q_lock_of_fore200e(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_131(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_q_lock_of_fore200e(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_133(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_q_lock_of_fore200e(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv_mutex_lock_136(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_rate_mtx_of_fore200e(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_137(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_rate_mtx_of_fore200e(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_138(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_rate_mtx_of_fore200e(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_139(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_q_lock_of_fore200e(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv_mutex_lock_141(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_rate_mtx_of_fore200e(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_142(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_rate_mtx_of_fore200e(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_143(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_q_lock_of_fore200e(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv_mutex_lock_146(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_rate_mtx_of_fore200e(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_147(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_rate_mtx_of_fore200e(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_148(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_rate_mtx_of_fore200e(ldv_func_arg1); } return; } } __inline static int ldv_request_irq_149(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static struct atm_dev *ldv_atm_dev_register_150(char const *ldv_func_arg1 , struct device *ldv_func_arg2 , struct atmdev_ops const *ldv_func_arg3 , int ldv_func_arg4 , unsigned long *ldv_func_arg5 ) { ldv_func_ret_type___2 ldv_func_res ; struct atm_dev *tmp ; struct atm_dev *tmp___0 ; { { tmp = atm_dev_register(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4, ldv_func_arg5); ldv_func_res = tmp; tmp___0 = ldv_atm_dev_register(ldv_func_res, (char *)ldv_func_arg1, ldv_func_arg2, (struct atmdev_ops *)ldv_func_arg3, ldv_func_arg4, ldv_func_arg5); } return (tmp___0); return (ldv_func_res); } } static int ldv___pci_register_driver_151(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___pci_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_pci_unregister_driver_152(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_153(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_q_lock_of_fore200e(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static int ldv_ldv_post_init_156(int ldv_func_arg1 ) { int tmp ; { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); tmp = ldv_post_init(ldv_func_arg1); } return (tmp); } } static void ldv_ldv_check_final_state_157(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_check_final_state_158(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_initialize_159(void) { { { ldv_linux_lib_find_bit_initialize(); } return; } } static void ldv_ldv_pre_probe_160(void) { { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); ldv_pre_probe(); } return; } } static int ldv_ldv_post_probe_161(int retval ) { int tmp ; { { ldv_linux_net_register_check_return_value_probe(retval); ldv_linux_usb_register_check_return_value_probe(retval); tmp = ldv_post_probe(retval); } return (tmp); } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) ; bool ldv_in_interrupt_context(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) { bool tmp ; int tmp___0 ; { { tmp = ldv_in_interrupt_context(); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } { ldv_assert_linux_alloc_irq__wrong_flags(tmp___0 || flags == 32U); } return; } } void ldv_linux_alloc_irq_check_alloc_nonatomic(void) { bool tmp ; { { tmp = ldv_in_interrupt_context(); } if ((int )tmp) { { ldv_assert_linux_alloc_irq__nonatomic(0); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_linux_alloc_spinlock_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_linux_alloc_spinlock_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) ; int ldv_linux_alloc_usb_lock_lock = 1; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) { { if (ldv_linux_alloc_usb_lock_lock == 2) { { ldv_assert_linux_alloc_usb_lock__wrong_flags(flags == 16U || flags == 32U); } } else { } return; } } void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) { { { ldv_assert_linux_alloc_usb_lock__nonatomic(ldv_linux_alloc_usb_lock_lock == 1); } return; } } void ldv_linux_alloc_usb_lock_usb_lock_device(void) { { ldv_linux_alloc_usb_lock_lock = 2; return; } } int ldv_linux_alloc_usb_lock_usb_trylock_device(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_alloc_usb_lock_usb_lock_device_for_reset(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (0); } else { return (-1); } } else { return (-1); } } } void ldv_linux_alloc_usb_lock_usb_unlock_device(void) { { ldv_linux_alloc_usb_lock_lock = 1; return; } } void ldv_linux_usb_dev_atomic_add(int i , atomic_t *v ) { { v->counter = v->counter + i; return; } } void ldv_linux_usb_dev_atomic_sub(int i , atomic_t *v ) { { v->counter = v->counter - i; return; } } int ldv_linux_usb_dev_atomic_sub_and_test(int i , atomic_t *v ) { { v->counter = v->counter - i; if (v->counter != 0) { return (0); } else { } return (1); } } void ldv_linux_usb_dev_atomic_inc(atomic_t *v ) { { v->counter = v->counter + 1; return; } } void ldv_linux_usb_dev_atomic_dec(atomic_t *v ) { { v->counter = v->counter - 1; return; } } int ldv_linux_usb_dev_atomic_dec_and_test(atomic_t *v ) { { v->counter = v->counter - 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_inc_and_test(atomic_t *v ) { { v->counter = v->counter + 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_add_return(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter); } } int ldv_linux_usb_dev_atomic_add_negative(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter < 0); } } int ldv_linux_usb_dev_atomic_inc_short(short *v ) { { *v = (short )((unsigned int )((unsigned short )*v) + 1U); return ((int )*v); } } void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) ; void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) ; void *ldv_undef_ptr(void) ; int ldv_linux_arch_io_iomem = 0; void *ldv_linux_arch_io_io_mem_remap(void) { void *ptr ; void *tmp ; { { tmp = ldv_undef_ptr(); ptr = tmp; } if ((unsigned long )ptr != (unsigned long )((void *)0)) { ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem + 1; return (ptr); } else { } return (ptr); } } void ldv_linux_arch_io_io_mem_unmap(void) { { { ldv_assert_linux_arch_io__less_initial_decrement(ldv_linux_arch_io_iomem > 0); ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem - 1; } return; } } void ldv_linux_arch_io_check_final_state(void) { { { ldv_assert_linux_arch_io__more_initial_at_exit(ldv_linux_arch_io_iomem == 0); } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) ; void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) ; void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) ; static int ldv_linux_block_genhd_disk_state = 0; struct gendisk *ldv_linux_block_genhd_alloc_disk(void) { struct gendisk *res ; void *tmp ; { { tmp = ldv_undef_ptr(); res = (struct gendisk *)tmp; ldv_assert_linux_block_genhd__double_allocation(ldv_linux_block_genhd_disk_state == 0); } if ((unsigned long )res != (unsigned long )((struct gendisk *)0)) { ldv_linux_block_genhd_disk_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_genhd_add_disk(void) { { { ldv_assert_linux_block_genhd__use_before_allocation(ldv_linux_block_genhd_disk_state == 1); ldv_linux_block_genhd_disk_state = 2; } return; } } void ldv_linux_block_genhd_del_gendisk(void) { { { ldv_assert_linux_block_genhd__delete_before_add(ldv_linux_block_genhd_disk_state == 2); ldv_linux_block_genhd_disk_state = 1; } return; } } void ldv_linux_block_genhd_put_disk(struct gendisk *disk ) { { if ((unsigned long )disk != (unsigned long )((struct gendisk *)0)) { { ldv_assert_linux_block_genhd__free_before_allocation(ldv_linux_block_genhd_disk_state > 0); ldv_linux_block_genhd_disk_state = 0; } } else { } return; } } void ldv_linux_block_genhd_check_final_state(void) { { { ldv_assert_linux_block_genhd__more_initial_at_exit(ldv_linux_block_genhd_disk_state == 0); } return; } } void ldv_assert_linux_block_queue__double_allocation(int expr ) ; void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_queue__use_before_allocation(int expr ) ; static int ldv_linux_block_queue_queue_state = 0; struct request_queue *ldv_linux_block_queue_request_queue(void) { struct request_queue *res ; void *tmp ; { { tmp = ldv_undef_ptr(); res = (struct request_queue *)tmp; ldv_assert_linux_block_queue__double_allocation(ldv_linux_block_queue_queue_state == 0); } if ((unsigned long )res != (unsigned long )((struct request_queue *)0)) { ldv_linux_block_queue_queue_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_queue_blk_cleanup_queue(void) { { { ldv_assert_linux_block_queue__use_before_allocation(ldv_linux_block_queue_queue_state == 1); ldv_linux_block_queue_queue_state = 0; } return; } } void ldv_linux_block_queue_check_final_state(void) { { { ldv_assert_linux_block_queue__more_initial_at_exit(ldv_linux_block_queue_queue_state == 0); } return; } } void ldv_assert_linux_block_request__double_get(int expr ) ; void ldv_assert_linux_block_request__double_put(int expr ) ; void ldv_assert_linux_block_request__get_at_exit(int expr ) ; long ldv_is_err(void const *ptr ) ; int ldv_linux_block_request_blk_rq = 0; struct request *ldv_linux_block_request_blk_get_request(gfp_t mask ) { struct request *res ; void *tmp ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_undef_ptr(); res = (struct request *)tmp; } if ((mask == 16U || mask == 208U) || mask == 16U) { { ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); } } else { } if ((unsigned long )res != (unsigned long )((struct request *)0)) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } struct request *ldv_linux_block_request_blk_make_request(gfp_t mask ) { struct request *res ; void *tmp ; long tmp___0 ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_undef_ptr(); res = (struct request *)tmp; ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); tmp___0 = ldv_is_err((void const *)res); } if (tmp___0 == 0L) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } void ldv_linux_block_request_put_blk_rq(void) { { { ldv_assert_linux_block_request__double_put(ldv_linux_block_request_blk_rq == 1); ldv_linux_block_request_blk_rq = 0; } return; } } void ldv_linux_block_request_check_final_state(void) { { { ldv_assert_linux_block_request__get_at_exit(ldv_linux_block_request_blk_rq == 0); } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) ; void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) ; int ldv_undef_int_nonpositive(void) ; int ldv_linux_drivers_base_class_usb_gadget_class = 0; void *ldv_linux_drivers_base_class_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_undef_ptr(); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_got); } } int ldv_linux_drivers_base_class_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_reg); } } void ldv_linux_drivers_base_class_unregister_class(void) { { { ldv_assert_linux_drivers_base_class__double_deregistration(ldv_linux_drivers_base_class_usb_gadget_class == 1); ldv_linux_drivers_base_class_usb_gadget_class = 0; } return; } } void ldv_linux_drivers_base_class_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_drivers_base_class_unregister_class(); } return; } } void ldv_linux_drivers_base_class_check_final_state(void) { { { ldv_assert_linux_drivers_base_class__registered_at_exit(ldv_linux_drivers_base_class_usb_gadget_class == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2176UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) ; void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) ; int ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; int ldv_linux_fs_char_dev_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_fs_char_dev_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } } else { } return (is_reg); } } void ldv_linux_fs_char_dev_unregister_chrdev_region(void) { { { ldv_assert_linux_fs_char_dev__double_deregistration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 1); ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; } return; } } void ldv_linux_fs_char_dev_check_final_state(void) { { { ldv_assert_linux_fs_char_dev__registered_at_exit(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); } return; } } void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) ; void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) ; int ldv_linux_fs_sysfs_sysfs = 0; int ldv_linux_fs_sysfs_sysfs_create_group(void) { int res ; int tmp ; { { tmp = ldv_undef_int_nonpositive(); res = tmp; } if (res == 0) { ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs + 1; return (0); } else { } return (res); } } void ldv_linux_fs_sysfs_sysfs_remove_group(void) { { { ldv_assert_linux_fs_sysfs__less_initial_decrement(ldv_linux_fs_sysfs_sysfs > 0); ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs - 1; } return; } } void ldv_linux_fs_sysfs_check_final_state(void) { { { ldv_assert_linux_fs_sysfs__more_initial_at_exit(ldv_linux_fs_sysfs_sysfs == 0); } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) ; int ldv_linux_kernel_locking_rwlock_rlock = 1; int ldv_linux_kernel_locking_rwlock_wlock = 1; void ldv_linux_kernel_locking_rwlock_read_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; } return; } } void ldv_linux_kernel_locking_rwlock_read_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(ldv_linux_kernel_locking_rwlock_rlock > 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + -1; } return; } } void ldv_linux_kernel_locking_rwlock_write_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_wlock = 2; } return; } } void ldv_linux_kernel_locking_rwlock_write_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(ldv_linux_kernel_locking_rwlock_wlock != 1); ldv_linux_kernel_locking_rwlock_wlock = 1; } return; } } int ldv_linux_kernel_locking_rwlock_read_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_kernel_locking_rwlock_write_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_wlock = 2; return (1); } else { return (0); } } else { return (0); } } } void ldv_linux_kernel_locking_rwlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(ldv_linux_kernel_locking_rwlock_rlock == 1); ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(ldv_linux_kernel_locking_rwlock_wlock == 1); } return; } } void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) ; void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) ; int ldv_linux_kernel_module_module_refcounter = 1; void ldv_linux_kernel_module_module_get(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; } else { } return; } } int ldv_linux_kernel_module_try_module_get(struct module *module ) { int tmp ; { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { tmp = ldv_undef_int(); } if (tmp == 1) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; return (1); } else { return (0); } } else { } return (0); } } void ldv_linux_kernel_module_module_put(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { ldv_assert_linux_kernel_module__less_initial_decrement(ldv_linux_kernel_module_module_refcounter > 1); ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter - 1; } } else { } return; } } void ldv_linux_kernel_module_module_put_and_exit(void) { { { ldv_linux_kernel_module_module_put((struct module *)1); } LDV_LINUX_KERNEL_MODULE_STOP: ; goto LDV_LINUX_KERNEL_MODULE_STOP; } } unsigned int ldv_linux_kernel_module_module_refcount(void) { { return ((unsigned int )(ldv_linux_kernel_module_module_refcounter + -1)); } } void ldv_linux_kernel_module_check_final_state(void) { { { ldv_assert_linux_kernel_module__more_initial_at_exit(ldv_linux_kernel_module_module_refcounter == 1); } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_srcu_srcu_nested = 0; void ldv_linux_kernel_rcu_srcu_srcu_read_lock(void) { { ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested + 1; return; } } void ldv_linux_kernel_rcu_srcu_srcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_srcu__more_unlocks(ldv_linux_kernel_rcu_srcu_srcu_nested > 0); ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_srcu_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = 0; void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_lock_bh(void) { { ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh + 1; return; } } void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_unlock_bh(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh > 0); ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = 0; void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_lock_sched(void) { { ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched + 1; return; } } void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_unlock_sched(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched > 0); ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_rcu_nested = 0; void ldv_linux_kernel_rcu_update_lock_rcu_read_lock(void) { { ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested + 1; return; } } void ldv_linux_kernel_rcu_update_lock_rcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(ldv_linux_kernel_rcu_update_lock_rcu_nested > 0); ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } static bool __ldv_in_interrupt_context = 0; void ldv_switch_to_interrupt_context(void) { { __ldv_in_interrupt_context = 1; return; } } void ldv_switch_to_process_context(void) { { __ldv_in_interrupt_context = 0; return; } } bool ldv_in_interrupt_context(void) { { return (__ldv_in_interrupt_context); } } void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) ; extern int nr_cpu_ids ; unsigned long ldv_undef_ulong(void) ; unsigned long ldv_linux_lib_find_bit_find_next_bit(unsigned long size , unsigned long offset ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assert_linux_lib_find_bit__offset_out_of_range(offset <= size); ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } unsigned long ldv_linux_lib_find_bit_find_first_bit(unsigned long size ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } void ldv_linux_lib_find_bit_initialize(void) { { { ldv_assume(nr_cpu_ids > 0); } return; } } void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) ; unsigned short ldv_linux_mmc_sdio_func_sdio_element = 0U; void ldv_linux_mmc_sdio_func_check_context(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__wrong_params((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); } return; } } void ldv_linux_mmc_sdio_func_sdio_claim_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__double_claim((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); ldv_linux_mmc_sdio_func_sdio_element = (unsigned short )((func->card)->host)->index; } return; } } void ldv_linux_mmc_sdio_func_sdio_release_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__release_without_claim((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); ldv_linux_mmc_sdio_func_sdio_element = 0U; } return; } } void ldv_linux_mmc_sdio_func_check_final_state(void) { { { ldv_assert_linux_mmc_sdio_func__unreleased_at_exit((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); } return; } } void ldv_assert_linux_net_register__wrong_return_value(int expr ) ; int ldv_pre_register_netdev(void) ; int ldv_linux_net_register_probe_state = 0; int ldv_pre_register_netdev(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_net_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_net_register_reset_error_counter(void) { { ldv_linux_net_register_probe_state = 0; return; } } void ldv_linux_net_register_check_return_value_probe(int retval ) { { if (ldv_linux_net_register_probe_state == 1) { { ldv_assert_linux_net_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_net_register_reset_error_counter(); } return; } } void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) ; void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) ; void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) ; int rtnllocknumber = 0; void ldv_linux_net_rtnetlink_past_rtnl_unlock(void) { { { ldv_assert_linux_net_rtnetlink__double_unlock(rtnllocknumber == 1); rtnllocknumber = 0; } return; } } void ldv_linux_net_rtnetlink_past_rtnl_lock(void) { { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); rtnllocknumber = 1; } return; } } void ldv_linux_net_rtnetlink_before_ieee80211_unregister_hw(void) { { { ldv_linux_net_rtnetlink_past_rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } int ldv_linux_net_rtnetlink_rtnl_is_locked(void) { int tmp ; { if (rtnllocknumber != 0) { return (rtnllocknumber); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_net_rtnetlink_rtnl_trylock(void) { int tmp ; { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); tmp = ldv_linux_net_rtnetlink_rtnl_is_locked(); } if (tmp == 0) { rtnllocknumber = 1; return (1); } else { return (0); } } } void ldv_linux_net_rtnetlink_check_final_state(void) { { { ldv_assert_linux_net_rtnetlink__lock_on_exit(rtnllocknumber == 0); } return; } } void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) ; void ldv_assert_linux_net_sock__double_release(int expr ) ; int locksocknumber = 0; void ldv_linux_net_sock_past_lock_sock_nested(void) { { locksocknumber = locksocknumber + 1; return; } } bool ldv_linux_net_sock_lock_sock_fast(void) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { locksocknumber = locksocknumber + 1; return (1); } else { } return (0); } } void ldv_linux_net_sock_unlock_sock_fast(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_before_release_sock(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_check_final_state(void) { { { ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(locksocknumber == 0); } return; } } void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) ; int ldv_linux_usb_coherent_coherent_state = 0; void *ldv_linux_usb_coherent_usb_alloc_coherent(void) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return (arbitrary_memory); } else { } ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + 1; return (arbitrary_memory); } } void ldv_linux_usb_coherent_usb_free_coherent(void *addr ) { { if ((unsigned long )addr != (unsigned long )((void *)0)) { { ldv_assert_linux_usb_coherent__less_initial_decrement(ldv_linux_usb_coherent_coherent_state > 0); ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + -1; } } else { } return; } } void ldv_linux_usb_coherent_check_final_state(void) { { { ldv_assert_linux_usb_coherent__more_initial_at_exit(ldv_linux_usb_coherent_coherent_state == 0); } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) ; void ldv_assert_linux_usb_dev__probe_failed(int expr ) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) ; ldv_map LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS ; struct usb_device *ldv_linux_usb_dev_usb_get_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0 ? LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + 1 : 1; } else { } return (dev); } } void ldv_linux_usb_dev_usb_put_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { { ldv_assert_linux_usb_dev__unincremented_counter_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0); ldv_assert_linux_usb_dev__less_initial_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 0); } if (LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 1) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + -1; } else { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; } } else { } return; } } void ldv_linux_usb_dev_check_return_value_probe(int retval ) { { if (retval != 0) { { ldv_assert_linux_usb_dev__probe_failed(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } } else { } return; } } void ldv_linux_usb_dev_initialize(void) { { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; return; } } void ldv_linux_usb_dev_check_final_state(void) { { { ldv_assert_linux_usb_dev__more_initial_at_exit(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) ; void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) ; int ldv_linux_usb_gadget_usb_gadget = 0; void *ldv_linux_usb_gadget_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_undef_ptr(); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_got); } } int ldv_linux_usb_gadget_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_class(void) { { { ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_linux_usb_gadget_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_usb_gadget_unregister_class(); } return; } } int ldv_linux_usb_gadget_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_usb_gadget_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_chrdev_region(void) { { { ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } int ldv_linux_usb_gadget_register_usb_gadget(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__double_usb_gadget_registration(ldv_linux_usb_gadget_usb_gadget == 0); ldv_linux_usb_gadget_usb_gadget = 1; } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_usb_gadget(void) { { { ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(ldv_linux_usb_gadget_usb_gadget == 1); ldv_linux_usb_gadget_usb_gadget = 0; } return; } } void ldv_linux_usb_gadget_check_final_state(void) { { { ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_assert_linux_usb_register__wrong_return_value(int expr ) ; int ldv_pre_usb_register_driver(void) ; int ldv_linux_usb_register_probe_state = 0; int ldv_pre_usb_register_driver(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_usb_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_usb_register_reset_error_counter(void) { { ldv_linux_usb_register_probe_state = 0; return; } } void ldv_linux_usb_register_check_return_value_probe(int retval ) { { if (ldv_linux_usb_register_probe_state == 1) { { ldv_assert_linux_usb_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_usb_register_reset_error_counter(); } return; } } void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) ; int ldv_linux_usb_urb_urb_state = 0; struct urb *ldv_linux_usb_urb_usb_alloc_urb(void) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return ((struct urb *)arbitrary_memory); } else { } ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + 1; return ((struct urb *)arbitrary_memory); } } void ldv_linux_usb_urb_usb_free_urb(struct urb *urb ) { { if ((unsigned long )urb != (unsigned long )((struct urb *)0)) { { ldv_assert_linux_usb_urb__less_initial_decrement(ldv_linux_usb_urb_urb_state > 0); ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + -1; } } else { } return; } } void ldv_linux_usb_urb_check_final_state(void) { { { ldv_assert_linux_usb_urb__more_initial_at_exit(ldv_linux_usb_urb_urb_state == 0); } return; } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *external_allocated_data(void) ; void *ldv_calloc_unknown_size(void) ; void *ldv_zalloc_unknown_size(void) ; void *ldv_xmalloc_unknown_size(size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; extern void *memset(void * , int , size_t ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_malloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; memset(res, 0, 8UL); ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc_unknown_size(void) { void *tmp ; { { tmp = ldv_calloc_unknown_size(); } return (tmp); } } void *ldv_xmalloc_unknown_size(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } int ldv_undef_int_negative(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { { tmp = __VERIFIER_nondet_pointer(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) ; ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode ; void ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock ; void ldv_linux_kernel_locking_mutex_mutex_lock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_lock(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device ; void ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_rate_mtx_of_fore200e ; void ldv_linux_kernel_locking_mutex_mutex_lock_rate_mtx_of_fore200e(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_rate_mtx_of_fore200e); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_rate_mtx_of_fore200e = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_rate_mtx_of_fore200e(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_rate_mtx_of_fore200e); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_rate_mtx_of_fore200e = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_rate_mtx_of_fore200e(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_rate_mtx_of_fore200e) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_rate_mtx_of_fore200e(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_rate_mtx_of_fore200e); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_rate_mtx_of_fore200e(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_rate_mtx_of_fore200e = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_rate_mtx_of_fore200e(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_rate_mtx_of_fore200e(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_rate_mtx_of_fore200e(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_rate_mtx_of_fore200e); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_rate_mtx_of_fore200e = 0; } return; } } void ldv_linux_kernel_locking_mutex_initialize(void) { { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_rate_mtx_of_fore200e = 0; return; } } void ldv_linux_kernel_locking_mutex_check_final_state(void) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_rate_mtx_of_fore200e); } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 1; void ldv_linux_kernel_locking_spinlock_spin_lock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 2); ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock__xmit_lock_of_netdev_queue(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked__xmit_lock_of_netdev_queue(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended__xmit_lock_of_netdev_queue(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock__xmit_lock_of_netdev_queue(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 2); ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_addr_list_lock_of_net_device(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_addr_list_lock_of_net_device(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_addr_list_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_addr_list_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_dma_spin_lock = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_dma_spin_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_dma_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_dma_spin_lock == 1); ldv_linux_kernel_locking_spinlock_spin_dma_spin_lock = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_dma_spin_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_dma_spin_lock == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_dma_spin_lock == 2); ldv_linux_kernel_locking_spinlock_spin_dma_spin_lock = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_dma_spin_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_dma_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_dma_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_dma_spin_lock = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_dma_spin_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_dma_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_dma_spin_lock == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_dma_spin_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_dma_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_dma_spin_lock(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_dma_spin_lock(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_dma_spin_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_dma_spin_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_dma_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_dma_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_dma_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_linux_kernel_locking_spinlock_spin_lock = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_linux_kernel_locking_spinlock_spin_lock = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_ptl = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_linux_kernel_locking_spinlock_spin_ptl = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_linux_kernel_locking_spinlock_spin_ptl = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_q_lock_of_fore200e = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_q_lock_of_fore200e(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_q_lock_of_fore200e == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_q_lock_of_fore200e == 1); ldv_linux_kernel_locking_spinlock_spin_q_lock_of_fore200e = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_q_lock_of_fore200e(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_q_lock_of_fore200e == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_q_lock_of_fore200e == 2); ldv_linux_kernel_locking_spinlock_spin_q_lock_of_fore200e = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_q_lock_of_fore200e(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_q_lock_of_fore200e == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_q_lock_of_fore200e == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_q_lock_of_fore200e = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_q_lock_of_fore200e(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_q_lock_of_fore200e == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_q_lock_of_fore200e == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_q_lock_of_fore200e(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_q_lock_of_fore200e == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_q_lock_of_fore200e(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_q_lock_of_fore200e(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_q_lock_of_fore200e(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_q_lock_of_fore200e(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_q_lock_of_fore200e == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_q_lock_of_fore200e == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_q_lock_of_fore200e = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 2); ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_slock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_slock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_slock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_slock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_slock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_slock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 2); ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_tx_global_lock_of_net_device(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_tx_global_lock_of_net_device(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_tx_global_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_tx_global_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 2; return (1); } else { } return (0); } } void ldv_linux_kernel_locking_spinlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_dma_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_q_lock_of_fore200e == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_dma_spin_lock == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_q_lock_of_fore200e == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 2) { return (1); } else { } return (0); } } void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) ; void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) ; static int ldv_linux_kernel_sched_completion_completion = 0; void ldv_linux_kernel_sched_completion_init_completion(void) { { ldv_linux_kernel_sched_completion_completion = 1; return; } } void ldv_linux_kernel_sched_completion_init_completion_macro(void) { { { ldv_assert_linux_kernel_sched_completion__double_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 1; } return; } } void ldv_linux_kernel_sched_completion_wait_for_completion(void) { { { ldv_assert_linux_kernel_sched_completion__wait_without_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 2; } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) ; void ldv_assert_linux_lib_idr__double_init(int expr ) ; void ldv_assert_linux_lib_idr__more_at_exit(int expr ) ; void ldv_assert_linux_lib_idr__not_initialized(int expr ) ; static int ldv_linux_lib_idr_idr = 0; void ldv_linux_lib_idr_idr_init(void) { { { ldv_assert_linux_lib_idr__double_init(ldv_linux_lib_idr_idr == 0); ldv_linux_lib_idr_idr = 1; } return; } } void ldv_linux_lib_idr_idr_alloc(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_find(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_remove(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_destroy(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 3; } return; } } void ldv_linux_lib_idr_check_final_state(void) { { { ldv_assert_linux_lib_idr__more_at_exit(ldv_linux_lib_idr_idr == 0 || ldv_linux_lib_idr_idr == 3); } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_lib_idr__double_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__not_initialized(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__more_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_register__wrong_return_value(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_sock__double_release(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__probe_failed(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_request__double_get(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_request__double_put(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_request__get_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_queue__double_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_queue__use_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_register__wrong_return_value(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } }