/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef unsigned long uintptr_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u32 uint32_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct class; struct device; struct completion; struct gendisk; struct module; struct mutex; struct request_queue; struct request; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_10 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_11 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_9 { struct __anonstruct____missing_field_name_10 __annonCompField5 ; struct __anonstruct____missing_field_name_11 __annonCompField6 ; }; struct desc_struct { union __anonunion____missing_field_name_9 __annonCompField7 ; }; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_12 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_12 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_13 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_13 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; struct cpuinfo_x86; typedef void (*ctor_fn_t)(void); struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned char flags ; }; struct file_operations; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_16 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_16 __annonCompField8 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct cpuinfo_x86 { __u8 x86 ; __u8 x86_vendor ; __u8 x86_model ; __u8 x86_mask ; int x86_tlbsize ; __u8 x86_virt_bits ; __u8 x86_phys_bits ; __u8 x86_coreid_bits ; __u32 extended_cpuid_level ; int cpuid_level ; __u32 x86_capability[12U] ; char x86_vendor_id[16U] ; char x86_model_id[64U] ; int x86_cache_size ; int x86_cache_alignment ; int x86_power ; unsigned long loops_per_jiffy ; u16 x86_max_cores ; u16 apicid ; u16 initial_apicid ; u16 x86_clflush_size ; u16 booted_cores ; u16 phys_proc_id ; u16 cpu_core_id ; u8 compute_unit_id ; u16 cpu_index ; u32 microcode ; }; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_21 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_22 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_20 { struct __anonstruct____missing_field_name_21 __annonCompField12 ; struct __anonstruct____missing_field_name_22 __annonCompField13 ; }; union __anonunion____missing_field_name_23 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_20 __annonCompField14 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_23 __annonCompField15 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndreg { u64 lower_bound ; u64 upper_bound ; }; struct bndcsr { u64 bndcfgu ; u64 bndstatus ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndreg bndreg[4U] ; struct bndcsr bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_27 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_26 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_27 __annonCompField17 ; }; struct spinlock { union __anonunion____missing_field_name_26 __annonCompField18 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_28 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_28 rwlock_t; struct ldv_thread; struct optimistic_spin_queue { atomic_t tail ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct compat_timespec; struct __anonstruct_futex_30 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_31 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_32 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_29 { struct __anonstruct_futex_30 futex ; struct __anonstruct_nanosleep_31 nanosleep ; struct __anonstruct_poll_32 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_29 __annonCompField19 ; }; struct jump_entry; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_45 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_45 seqlock_t; struct __wait_queue; typedef struct __wait_queue wait_queue_t; struct __wait_queue { unsigned int flags ; void *private ; int (*func)(wait_queue_t * , unsigned int , int , void * ) ; struct list_head task_list ; }; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; union __anonunion____missing_field_name_46 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_46 __annonCompField20 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_47 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_47 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct user_namespace; struct __anonstruct_kuid_t_48 { uid_t val ; }; typedef struct __anonstruct_kuid_t_48 kuid_t; struct __anonstruct_kgid_t_49 { gid_t val ; }; typedef struct __anonstruct_kgid_t_49 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct inode; struct cdev { struct kobject kobj ; struct module *owner ; struct file_operations const *ops ; struct list_head list ; dev_t dev ; unsigned int count ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_50 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_50 nodemask_t; enum node_states { N_POSSIBLE = 0, N_ONLINE = 1, N_NORMAL_MEMORY = 2, N_HIGH_MEMORY = 2, N_MEMORY = 3, N_CPU = 4, NR_NODE_STATES = 5 } ; struct path; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; }; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct pci_dev; struct pci_bus; struct __anonstruct_mm_context_t_115 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_115 mm_context_t; struct bio_vec; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct call_single_data { struct llist_node llist ; void (*func)(void * ) ; void *info ; u16 flags ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; enum iio_chan_type { IIO_VOLTAGE = 0, IIO_CURRENT = 1, IIO_POWER = 2, IIO_ACCEL = 3, IIO_ANGL_VEL = 4, IIO_MAGN = 5, IIO_LIGHT = 6, IIO_INTENSITY = 7, IIO_PROXIMITY = 8, IIO_TEMP = 9, IIO_INCLI = 10, IIO_ROT = 11, IIO_ANGL = 12, IIO_TIMESTAMP = 13, IIO_CAPACITANCE = 14, IIO_ALTVOLTAGE = 15, IIO_CCT = 16, IIO_PRESSURE = 17, IIO_HUMIDITYRELATIVE = 18, IIO_ACTIVITY = 19, IIO_STEPS = 20, IIO_ENERGY = 21, IIO_DISTANCE = 22, IIO_VELOCITY = 23 } ; enum iio_event_type { IIO_EV_TYPE_THRESH = 0, IIO_EV_TYPE_MAG = 1, IIO_EV_TYPE_ROC = 2, IIO_EV_TYPE_THRESH_ADAPTIVE = 3, IIO_EV_TYPE_MAG_ADAPTIVE = 4, IIO_EV_TYPE_CHANGE = 5 } ; enum iio_event_info { IIO_EV_INFO_ENABLE = 0, IIO_EV_INFO_VALUE = 1, IIO_EV_INFO_HYSTERESIS = 2, IIO_EV_INFO_PERIOD = 3 } ; enum iio_event_direction { IIO_EV_DIR_EITHER = 0, IIO_EV_DIR_RISING = 1, IIO_EV_DIR_FALLING = 2, IIO_EV_DIR_NONE = 3 } ; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; enum fwnode_type { FWNODE_INVALID = 0, FWNODE_OF = 1, FWNODE_ACPI = 2 } ; struct fwnode_handle { enum fwnode_type type ; }; typedef u32 phandle; struct property { char *name ; int length ; void *value ; struct property *next ; unsigned long _flags ; unsigned int unique_id ; struct bin_attribute attr ; }; struct device_node { char const *name ; char const *type ; phandle phandle ; char const *full_name ; struct fwnode_handle fwnode ; struct property *properties ; struct property *deadprops ; struct device_node *parent ; struct device_node *child ; struct device_node *sibling ; struct kobject kobj ; unsigned long _flags ; void *data ; }; struct of_phandle_args { struct device_node *np ; int args_count ; uint32_t args[16U] ; }; enum iio_shared_by { IIO_SEPARATE = 0, IIO_SHARED_BY_TYPE = 1, IIO_SHARED_BY_DIR = 2, IIO_SHARED_BY_ALL = 3 } ; enum iio_endian { IIO_CPU = 0, IIO_BE = 1, IIO_LE = 2 } ; struct iio_chan_spec; struct iio_dev; struct iio_chan_spec_ext_info { char const *name ; enum iio_shared_by shared ; ssize_t (*read)(struct iio_dev * , uintptr_t , struct iio_chan_spec const * , char * ) ; ssize_t (*write)(struct iio_dev * , uintptr_t , struct iio_chan_spec const * , char const * , size_t ) ; uintptr_t private ; }; struct iio_event_spec { enum iio_event_type type ; enum iio_event_direction dir ; unsigned long mask_separate ; unsigned long mask_shared_by_type ; unsigned long mask_shared_by_dir ; unsigned long mask_shared_by_all ; }; struct __anonstruct_scan_type_145 { char sign ; u8 realbits ; u8 storagebits ; u8 shift ; u8 repeat ; enum iio_endian endianness ; }; struct iio_chan_spec { enum iio_chan_type type ; int channel ; int channel2 ; unsigned long address ; int scan_index ; struct __anonstruct_scan_type_145 scan_type ; long info_mask_separate ; long info_mask_shared_by_type ; long info_mask_shared_by_dir ; long info_mask_shared_by_all ; struct iio_event_spec const *event_spec ; unsigned int num_event_specs ; struct iio_chan_spec_ext_info const *ext_info ; char const *extend_name ; char const *datasheet_name ; unsigned char modified : 1 ; unsigned char indexed : 1 ; unsigned char output : 1 ; unsigned char differential : 1 ; }; struct iio_trigger; struct iio_info { struct module *driver_module ; struct attribute_group *event_attrs ; struct attribute_group const *attrs ; int (*read_raw)(struct iio_dev * , struct iio_chan_spec const * , int * , int * , long ) ; int (*read_raw_multi)(struct iio_dev * , struct iio_chan_spec const * , int , int * , int * , long ) ; int (*write_raw)(struct iio_dev * , struct iio_chan_spec const * , int , int , long ) ; int (*write_raw_get_fmt)(struct iio_dev * , struct iio_chan_spec const * , long ) ; int (*read_event_config)(struct iio_dev * , struct iio_chan_spec const * , enum iio_event_type , enum iio_event_direction ) ; int (*write_event_config)(struct iio_dev * , struct iio_chan_spec const * , enum iio_event_type , enum iio_event_direction , int ) ; int (*read_event_value)(struct iio_dev * , struct iio_chan_spec const * , enum iio_event_type , enum iio_event_direction , enum iio_event_info , int * , int * ) ; int (*write_event_value)(struct iio_dev * , struct iio_chan_spec const * , enum iio_event_type , enum iio_event_direction , enum iio_event_info , int , int ) ; int (*validate_trigger)(struct iio_dev * , struct iio_trigger * ) ; int (*update_scan_mode)(struct iio_dev * , unsigned long const * ) ; int (*debugfs_reg_access)(struct iio_dev * , unsigned int , unsigned int , unsigned int * ) ; int (*of_xlate)(struct iio_dev * , struct of_phandle_args const * ) ; }; struct iio_buffer_setup_ops { int (*preenable)(struct iio_dev * ) ; int (*postenable)(struct iio_dev * ) ; int (*predisable)(struct iio_dev * ) ; int (*postdisable)(struct iio_dev * ) ; bool (*validate_scan_mask)(struct iio_dev * , unsigned long const * ) ; }; struct iio_event_interface; struct iio_buffer; struct iio_poll_func; struct iio_dev { int id ; int modes ; int currentmode ; struct device dev ; struct iio_event_interface *event_interface ; struct iio_buffer *buffer ; struct list_head buffer_list ; int scan_bytes ; struct mutex mlock ; unsigned long const *available_scan_masks ; unsigned int masklength ; unsigned long const *active_scan_mask ; bool scan_timestamp ; unsigned int scan_index_timestamp ; struct iio_trigger *trig ; struct iio_poll_func *pollfunc ; struct iio_chan_spec const *channels ; int num_channels ; struct list_head channel_attr_list ; struct attribute_group chan_attr_group ; char const *name ; struct iio_info const *info ; struct mutex info_exist_lock ; struct iio_buffer_setup_ops const *setup_ops ; struct cdev chrdev ; struct attribute_group const *groups[7U] ; int groupcounter ; unsigned long flags ; struct dentry *debugfs_dentry ; unsigned int cached_reg_addr ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_152 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_153 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_151 { struct __anonstruct____missing_field_name_152 __annonCompField34 ; struct __anonstruct____missing_field_name_153 __annonCompField35 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_151 __annonCompField36 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; struct mem_cgroup; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_154 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_156 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_160 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_159 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_160 __annonCompField39 ; int units ; }; struct __anonstruct____missing_field_name_158 { union __anonunion____missing_field_name_159 __annonCompField40 ; atomic_t _count ; }; union __anonunion____missing_field_name_157 { unsigned long counters ; struct __anonstruct____missing_field_name_158 __annonCompField41 ; unsigned int active ; }; struct __anonstruct____missing_field_name_155 { union __anonunion____missing_field_name_156 __annonCompField38 ; union __anonunion____missing_field_name_157 __annonCompField42 ; }; struct __anonstruct____missing_field_name_162 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_163 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_161 { struct list_head lru ; struct __anonstruct____missing_field_name_162 __annonCompField44 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_163 __annonCompField45 ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_164 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_154 __annonCompField37 ; struct __anonstruct____missing_field_name_155 __annonCompField43 ; union __anonunion____missing_field_name_161 __annonCompField46 ; union __anonunion____missing_field_name_164 __annonCompField47 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_165 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_165 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; typedef unsigned long cputime_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct user_struct; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_167 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_167 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_169 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_170 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_171 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_172 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_174 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_173 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_174 _addr_bnd ; }; struct __anonstruct__sigpoll_175 { long _band ; int _fd ; }; struct __anonstruct__sigsys_176 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_168 { int _pad[28U] ; struct __anonstruct__kill_169 _kill ; struct __anonstruct__timer_170 _timer ; struct __anonstruct__rt_171 _rt ; struct __anonstruct__sigchld_172 _sigchld ; struct __anonstruct__sigfault_173 _sigfault ; struct __anonstruct__sigpoll_175 _sigpoll ; struct __anonstruct__sigsys_176 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_168 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int in_hrtirq ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct cred; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_181 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_182 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_184 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_183 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_184 __annonCompField52 ; }; union __anonunion_type_data_185 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_187 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_186 { union __anonunion_payload_187 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_181 __annonCompField50 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_182 __annonCompField51 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_183 __annonCompField53 ; union __anonunion_type_data_185 type_data ; union __anonunion____missing_field_name_186 __annonCompField54 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct io_context; struct pipe_inode_info; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned char brk_randomized : 1 ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct proc_dir_entry; struct pci_driver; union __anonunion____missing_field_name_192 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; unsigned char pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; u8 dma_alias_devfn ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned char pme_support : 5 ; unsigned char pme_interrupt : 1 ; unsigned char pme_poll : 1 ; unsigned char d1_support : 1 ; unsigned char d2_support : 1 ; unsigned char no_d1d2 : 1 ; unsigned char no_d3cold : 1 ; unsigned char d3cold_allowed : 1 ; unsigned char mmio_always_on : 1 ; unsigned char wakeup_prepared : 1 ; unsigned char runtime_d3cold : 1 ; unsigned char ignore_hotplug : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned char transparent : 1 ; unsigned char multifunction : 1 ; unsigned char is_added : 1 ; unsigned char is_busmaster : 1 ; unsigned char no_msi : 1 ; unsigned char no_64bit_msi : 1 ; unsigned char block_cfg_access : 1 ; unsigned char broken_parity_status : 1 ; unsigned char irq_reroute_variant : 2 ; unsigned char msi_enabled : 1 ; unsigned char msix_enabled : 1 ; unsigned char ari_enabled : 1 ; unsigned char is_managed : 1 ; unsigned char needs_freset : 1 ; unsigned char state_saved : 1 ; unsigned char is_physfn : 1 ; unsigned char is_virtfn : 1 ; unsigned char reset_fn : 1 ; unsigned char is_hotplug_bridge : 1 ; unsigned char __aer_firmware_first_valid : 1 ; unsigned char __aer_firmware_first : 1 ; unsigned char broken_intx_masking : 1 ; unsigned char io_window_1k : 1 ; unsigned char irq_managed : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_192 __annonCompField58 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; char *driver_override ; }; struct pci_ops; struct msi_controller; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_controller *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned char is_added : 1 ; }; struct pci_ops { void *(*map_bus)(struct pci_bus * , unsigned int , int ) ; int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*reset_notify)(struct pci_dev * , bool ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *cow_page ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; struct page *(*find_special_page)(struct vm_area_struct * , unsigned long ) ; }; struct kvec; struct pci_sysdata { int domain ; int node ; struct acpi_device *companion ; void *iommu ; }; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_194 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_193 { struct __anonstruct____missing_field_name_194 __annonCompField59 ; }; struct lockref { union __anonunion____missing_field_name_193 __annonCompField60 ; }; struct vfsmount; struct __anonstruct____missing_field_name_196 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_195 { struct __anonstruct____missing_field_name_196 __annonCompField61 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_195 __annonCompField62 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_197 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_197 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct __anonstruct____missing_field_name_199 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_198 { struct __anonstruct____missing_field_name_199 __annonCompField63 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_198 __annonCompField64 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct semaphore { raw_spinlock_t lock ; unsigned int count ; struct list_head wait_list ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct bio_set; struct bio; struct bio_integrity_payload; struct block_device; struct cgroup_subsys_state; typedef void bio_end_io_t(struct bio * , int ); struct bio_vec { struct page *bv_page ; unsigned int bv_len ; unsigned int bv_offset ; }; struct bvec_iter { sector_t bi_sector ; unsigned int bi_size ; unsigned int bi_idx ; unsigned int bi_bvec_done ; }; union __anonunion____missing_field_name_200 { struct bio_integrity_payload *bi_integrity ; }; struct bio { struct bio *bi_next ; struct block_device *bi_bdev ; unsigned long bi_flags ; unsigned long bi_rw ; struct bvec_iter bi_iter ; unsigned int bi_phys_segments ; unsigned int bi_seg_front_size ; unsigned int bi_seg_back_size ; atomic_t bi_remaining ; bio_end_io_t *bi_end_io ; void *bi_private ; struct io_context *bi_ioc ; struct cgroup_subsys_state *bi_css ; union __anonunion____missing_field_name_200 __annonCompField65 ; unsigned short bi_vcnt ; unsigned short bi_max_vecs ; atomic_t bi_cnt ; struct bio_vec *bi_io_vec ; struct bio_set *bi_pool ; struct bio_vec bi_inline_vecs[0U] ; }; struct export_operations; struct hd_geometry; struct iovec; struct nameidata; struct kiocb; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iov_iter; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_201 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_201 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_202 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_202 __annonCompField66 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct hd_struct; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_205 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_206 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; union __anonunion____missing_field_name_207 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_205 __annonCompField67 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_206 __annonCompField68 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_207 __annonCompField69 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_208 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_208 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_get_owner)(struct file_lock * , struct file_lock * ) ; void (*lm_put_owner)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_210 { struct list_head link ; int state ; }; union __anonunion_fl_u_209 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_210 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_209 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct block_device_operations; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; void (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; int (*dentry_open)(struct dentry * , struct file * , struct cred const * ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; struct exception_table_entry { int insn ; int fixup ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct __anonstruct_b_215 { unsigned char data : 1 ; unsigned char error_feature : 1 ; unsigned char sector : 1 ; unsigned char nsector : 1 ; unsigned char lcyl : 1 ; unsigned char hcyl : 1 ; unsigned char select : 1 ; unsigned char status_command : 1 ; unsigned char data_hob : 1 ; unsigned char error_feature_hob : 1 ; unsigned char sector_hob : 1 ; unsigned char nsector_hob : 1 ; unsigned char lcyl_hob : 1 ; unsigned char hcyl_hob : 1 ; unsigned char select_hob : 1 ; unsigned char control_hob : 1 ; }; union ide_reg_valid_s { unsigned short all ; struct __anonstruct_b_215 b ; }; typedef union ide_reg_valid_s ide_reg_valid_t; struct ide_task_request_s { __u8 io_ports[8U] ; __u8 hob_ports[8U] ; ide_reg_valid_t out_flags ; ide_reg_valid_t in_flags ; int data_phase ; int req_cmd ; unsigned long out_size ; unsigned long in_size ; }; typedef struct ide_task_request_s ide_task_request_t; struct hd_geometry { unsigned char heads ; unsigned char sectors ; unsigned short cylinders ; unsigned long start ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct kvec { void *iov_base ; size_t iov_len ; }; union __anonunion____missing_field_name_216 { struct iovec const *iov ; struct kvec const *kvec ; struct bio_vec const *bvec ; }; struct iov_iter { int type ; size_t iov_offset ; size_t count ; union __anonunion____missing_field_name_216 __annonCompField73 ; unsigned long nr_segs ; }; typedef s32 compat_time_t; typedef s32 compat_long_t; typedef u32 compat_ulong_t; typedef u32 compat_uptr_t; struct compat_timespec { compat_time_t tv_sec ; s32 tv_nsec ; }; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_246 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_246 __annonCompField74 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct disk_stats { unsigned long sectors[2U] ; unsigned long ios[2U] ; unsigned long merges[2U] ; unsigned long ticks[2U] ; unsigned long io_ticks ; unsigned long time_in_queue ; }; struct partition_meta_info { char uuid[37U] ; u8 volname[64U] ; }; struct hd_struct { sector_t start_sect ; sector_t nr_sects ; seqcount_t nr_sects_seq ; sector_t alignment_offset ; unsigned int discard_alignment ; struct device __dev ; struct kobject *holder_dir ; int policy ; int partno ; struct partition_meta_info *info ; int make_it_fail ; unsigned long stamp ; atomic_t in_flight[2U] ; struct disk_stats *dkstats ; atomic_t ref ; struct callback_head callback_head ; }; struct disk_part_tbl { struct callback_head callback_head ; int len ; struct hd_struct *last_lookup ; struct hd_struct *part[] ; }; struct disk_events; struct timer_rand_state; struct blk_integrity; struct gendisk { int major ; int first_minor ; int minors ; char disk_name[32U] ; char *(*devnode)(struct gendisk * , umode_t * ) ; unsigned int events ; unsigned int async_events ; struct disk_part_tbl *part_tbl ; struct hd_struct part0 ; struct block_device_operations const *fops ; struct request_queue *queue ; void *private_data ; int flags ; struct device *driverfs_dev ; struct kobject *slave_dir ; struct timer_rand_state *random ; atomic_t sync_io ; struct disk_events *ev ; struct blk_integrity *integrity ; int node_id ; }; struct fprop_local_percpu { struct percpu_counter events ; unsigned int period ; raw_spinlock_t lock ; }; enum writeback_sync_modes { WB_SYNC_NONE = 0, WB_SYNC_ALL = 1 } ; struct writeback_control { long nr_to_write ; long pages_skipped ; loff_t range_start ; loff_t range_end ; enum writeback_sync_modes sync_mode ; unsigned char for_kupdate : 1 ; unsigned char for_background : 1 ; unsigned char tagged_writepages : 1 ; unsigned char for_reclaim : 1 ; unsigned char range_cyclic : 1 ; unsigned char for_sync : 1 ; }; struct bdi_writeback; typedef int congested_fn(void * , int ); struct bdi_writeback { struct backing_dev_info *bdi ; unsigned long last_old_flush ; struct delayed_work dwork ; struct list_head b_dirty ; struct list_head b_io ; struct list_head b_more_io ; struct list_head b_dirty_time ; spinlock_t list_lock ; }; struct backing_dev_info { struct list_head bdi_list ; unsigned long ra_pages ; unsigned long state ; unsigned int capabilities ; congested_fn *congested_fn ; void *congested_data ; char *name ; struct percpu_counter bdi_stat[4U] ; unsigned long bw_time_stamp ; unsigned long dirtied_stamp ; unsigned long written_stamp ; unsigned long write_bandwidth ; unsigned long avg_write_bandwidth ; unsigned long dirty_ratelimit ; unsigned long balanced_dirty_ratelimit ; struct fprop_local_percpu completions ; int dirty_exceeded ; unsigned int min_ratio ; unsigned int max_ratio ; unsigned int max_prop_frac ; struct bdi_writeback wb ; spinlock_t wb_lock ; struct list_head work_list ; struct device *dev ; struct timer_list laptop_mode_wb_timer ; struct dentry *debug_dir ; struct dentry *debug_stats ; }; typedef void *mempool_alloc_t(gfp_t , void * ); typedef void mempool_free_t(void * , void * ); struct mempool_s { spinlock_t lock ; int min_nr ; int curr_nr ; void **elements ; void *pool_data ; mempool_alloc_t *alloc ; mempool_free_t *free ; wait_queue_head_t wait ; }; typedef struct mempool_s mempool_t; union __anonunion____missing_field_name_247 { struct list_head q_node ; struct kmem_cache *__rcu_icq_cache ; }; union __anonunion____missing_field_name_248 { struct hlist_node ioc_node ; struct callback_head __rcu_head ; }; struct io_cq { struct request_queue *q ; struct io_context *ioc ; union __anonunion____missing_field_name_247 __annonCompField75 ; union __anonunion____missing_field_name_248 __annonCompField76 ; unsigned int flags ; }; struct io_context { atomic_long_t refcount ; atomic_t active_ref ; atomic_t nr_tasks ; spinlock_t lock ; unsigned short ioprio ; int nr_batch_requests ; unsigned long last_waited ; struct radix_tree_root icq_tree ; struct io_cq *icq_hint ; struct hlist_head icq_list ; struct work_struct release_work ; }; struct bio_integrity_payload { struct bio *bip_bio ; struct bvec_iter bip_iter ; bio_end_io_t *bip_end_io ; unsigned short bip_slab ; unsigned short bip_vcnt ; unsigned short bip_max_vcnt ; unsigned short bip_flags ; struct work_struct bip_work ; struct bio_vec *bip_vec ; struct bio_vec bip_inline_vecs[0U] ; }; struct bio_list { struct bio *head ; struct bio *tail ; }; struct bio_set { struct kmem_cache *bio_slab ; unsigned int front_pad ; mempool_t *bio_pool ; mempool_t *bvec_pool ; mempool_t *bio_integrity_pool ; mempool_t *bvec_integrity_pool ; spinlock_t rescue_lock ; struct bio_list rescue_list ; struct work_struct rescue_work ; struct workqueue_struct *rescue_workqueue ; }; struct bsg_class_device { struct device *class_dev ; struct device *parent ; int minor ; struct request_queue *queue ; struct kref ref ; void (*release)(struct device * ) ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_long_t count ; unsigned long percpu_count_ptr ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_switch ; bool force_atomic ; struct callback_head rcu ; }; struct elevator_queue; struct blk_trace; struct bsg_job; struct blkcg_gq; struct blk_flush_queue; typedef void rq_end_io_fn(struct request * , int ); struct request_list { struct request_queue *q ; struct blkcg_gq *blkg ; int count[2U] ; int starved[2U] ; mempool_t *rq_pool ; wait_queue_head_t wait[2U] ; unsigned int flags ; }; enum rq_cmd_type_bits { REQ_TYPE_FS = 1, REQ_TYPE_BLOCK_PC = 2, REQ_TYPE_SENSE = 3, REQ_TYPE_PM_SUSPEND = 4, REQ_TYPE_PM_RESUME = 5, REQ_TYPE_PM_SHUTDOWN = 6, REQ_TYPE_SPECIAL = 7, REQ_TYPE_ATA_TASKFILE = 8, REQ_TYPE_ATA_PC = 9 } ; union __anonunion____missing_field_name_249 { struct call_single_data csd ; unsigned long fifo_time ; }; struct blk_mq_ctx; union __anonunion____missing_field_name_250 { struct hlist_node hash ; struct list_head ipi_list ; }; union __anonunion____missing_field_name_251 { struct rb_node rb_node ; void *completion_data ; }; struct __anonstruct_elv_253 { struct io_cq *icq ; void *priv[2U] ; }; struct __anonstruct_flush_254 { unsigned int seq ; struct list_head list ; rq_end_io_fn *saved_end_io ; }; union __anonunion____missing_field_name_252 { struct __anonstruct_elv_253 elv ; struct __anonstruct_flush_254 flush ; }; struct request { struct list_head queuelist ; union __anonunion____missing_field_name_249 __annonCompField77 ; struct request_queue *q ; struct blk_mq_ctx *mq_ctx ; u64 cmd_flags ; enum rq_cmd_type_bits cmd_type ; unsigned long atomic_flags ; int cpu ; unsigned int __data_len ; sector_t __sector ; struct bio *bio ; struct bio *biotail ; union __anonunion____missing_field_name_250 __annonCompField78 ; union __anonunion____missing_field_name_251 __annonCompField79 ; union __anonunion____missing_field_name_252 __annonCompField80 ; struct gendisk *rq_disk ; struct hd_struct *part ; unsigned long start_time ; struct request_list *rl ; unsigned long long start_time_ns ; unsigned long long io_start_time_ns ; unsigned short nr_phys_segments ; unsigned short nr_integrity_segments ; unsigned short ioprio ; void *special ; int tag ; int errors ; unsigned char __cmd[16U] ; unsigned char *cmd ; unsigned short cmd_len ; unsigned int extra_len ; unsigned int sense_len ; unsigned int resid_len ; void *sense ; unsigned long deadline ; struct list_head timeout_list ; unsigned int timeout ; int retries ; rq_end_io_fn *end_io ; void *end_io_data ; struct request *next_rq ; }; struct elevator_type; typedef int elevator_merge_fn(struct request_queue * , struct request ** , struct bio * ); typedef void elevator_merge_req_fn(struct request_queue * , struct request * , struct request * ); typedef void elevator_merged_fn(struct request_queue * , struct request * , int ); typedef int elevator_allow_merge_fn(struct request_queue * , struct request * , struct bio * ); typedef void elevator_bio_merged_fn(struct request_queue * , struct request * , struct bio * ); typedef int elevator_dispatch_fn(struct request_queue * , int ); typedef void elevator_add_req_fn(struct request_queue * , struct request * ); typedef struct request *elevator_request_list_fn(struct request_queue * , struct request * ); typedef void elevator_completed_req_fn(struct request_queue * , struct request * ); typedef int elevator_may_queue_fn(struct request_queue * , int ); typedef void elevator_init_icq_fn(struct io_cq * ); typedef void elevator_exit_icq_fn(struct io_cq * ); typedef int elevator_set_req_fn(struct request_queue * , struct request * , struct bio * , gfp_t ); typedef void elevator_put_req_fn(struct request * ); typedef void elevator_activate_req_fn(struct request_queue * , struct request * ); typedef void elevator_deactivate_req_fn(struct request_queue * , struct request * ); typedef int elevator_init_fn(struct request_queue * , struct elevator_type * ); typedef void elevator_exit_fn(struct elevator_queue * ); struct elevator_ops { elevator_merge_fn *elevator_merge_fn ; elevator_merged_fn *elevator_merged_fn ; elevator_merge_req_fn *elevator_merge_req_fn ; elevator_allow_merge_fn *elevator_allow_merge_fn ; elevator_bio_merged_fn *elevator_bio_merged_fn ; elevator_dispatch_fn *elevator_dispatch_fn ; elevator_add_req_fn *elevator_add_req_fn ; elevator_activate_req_fn *elevator_activate_req_fn ; elevator_deactivate_req_fn *elevator_deactivate_req_fn ; elevator_completed_req_fn *elevator_completed_req_fn ; elevator_request_list_fn *elevator_former_req_fn ; elevator_request_list_fn *elevator_latter_req_fn ; elevator_init_icq_fn *elevator_init_icq_fn ; elevator_exit_icq_fn *elevator_exit_icq_fn ; elevator_set_req_fn *elevator_set_req_fn ; elevator_put_req_fn *elevator_put_req_fn ; elevator_may_queue_fn *elevator_may_queue_fn ; elevator_init_fn *elevator_init_fn ; elevator_exit_fn *elevator_exit_fn ; }; struct elv_fs_entry { struct attribute attr ; ssize_t (*show)(struct elevator_queue * , char * ) ; ssize_t (*store)(struct elevator_queue * , char const * , size_t ) ; }; struct elevator_type { struct kmem_cache *icq_cache ; struct elevator_ops ops ; size_t icq_size ; size_t icq_align ; struct elv_fs_entry *elevator_attrs ; char elevator_name[16U] ; struct module *elevator_owner ; char icq_cache_name[21U] ; struct list_head list ; }; struct elevator_queue { struct elevator_type *type ; void *elevator_data ; struct kobject kobj ; struct mutex sysfs_lock ; unsigned char registered : 1 ; struct hlist_head hash[64U] ; }; typedef void request_fn_proc(struct request_queue * ); typedef void make_request_fn(struct request_queue * , struct bio * ); typedef int prep_rq_fn(struct request_queue * , struct request * ); typedef void unprep_rq_fn(struct request_queue * , struct request * ); struct bvec_merge_data { struct block_device *bi_bdev ; sector_t bi_sector ; unsigned int bi_size ; unsigned long bi_rw ; }; typedef int merge_bvec_fn(struct request_queue * , struct bvec_merge_data * , struct bio_vec * ); typedef void softirq_done_fn(struct request * ); typedef int dma_drain_needed_fn(struct request * ); typedef int lld_busy_fn(struct request_queue * ); typedef int bsg_job_fn(struct bsg_job * ); enum blk_eh_timer_return { BLK_EH_NOT_HANDLED = 0, BLK_EH_HANDLED = 1, BLK_EH_RESET_TIMER = 2 } ; typedef enum blk_eh_timer_return rq_timed_out_fn(struct request * ); struct blk_queue_tag { struct request **tag_index ; unsigned long *tag_map ; int busy ; int max_depth ; int real_max_depth ; atomic_t refcnt ; int alloc_policy ; int next_tag ; }; struct queue_limits { unsigned long bounce_pfn ; unsigned long seg_boundary_mask ; unsigned int max_hw_sectors ; unsigned int chunk_sectors ; unsigned int max_sectors ; unsigned int max_segment_size ; unsigned int physical_block_size ; unsigned int alignment_offset ; unsigned int io_min ; unsigned int io_opt ; unsigned int max_discard_sectors ; unsigned int max_write_same_sectors ; unsigned int discard_granularity ; unsigned int discard_alignment ; unsigned short logical_block_size ; unsigned short max_segments ; unsigned short max_integrity_segments ; unsigned char misaligned ; unsigned char discard_misaligned ; unsigned char cluster ; unsigned char discard_zeroes_data ; unsigned char raid_partial_stripes_expensive ; }; struct blk_mq_ops; struct blk_mq_hw_ctx; struct throtl_data; struct blk_mq_tag_set; struct request_queue { struct list_head queue_head ; struct request *last_merge ; struct elevator_queue *elevator ; int nr_rqs[2U] ; int nr_rqs_elvpriv ; struct request_list root_rl ; request_fn_proc *request_fn ; make_request_fn *make_request_fn ; prep_rq_fn *prep_rq_fn ; unprep_rq_fn *unprep_rq_fn ; merge_bvec_fn *merge_bvec_fn ; softirq_done_fn *softirq_done_fn ; rq_timed_out_fn *rq_timed_out_fn ; dma_drain_needed_fn *dma_drain_needed ; lld_busy_fn *lld_busy_fn ; struct blk_mq_ops *mq_ops ; unsigned int *mq_map ; struct blk_mq_ctx *queue_ctx ; unsigned int nr_queues ; struct blk_mq_hw_ctx **queue_hw_ctx ; unsigned int nr_hw_queues ; sector_t end_sector ; struct request *boundary_rq ; struct delayed_work delay_work ; struct backing_dev_info backing_dev_info ; void *queuedata ; unsigned long queue_flags ; int id ; gfp_t bounce_gfp ; spinlock_t __queue_lock ; spinlock_t *queue_lock ; struct kobject kobj ; struct kobject mq_kobj ; struct device *dev ; int rpm_status ; unsigned int nr_pending ; unsigned long nr_requests ; unsigned int nr_congestion_on ; unsigned int nr_congestion_off ; unsigned int nr_batching ; unsigned int dma_drain_size ; void *dma_drain_buffer ; unsigned int dma_pad_mask ; unsigned int dma_alignment ; struct blk_queue_tag *queue_tags ; struct list_head tag_busy_list ; unsigned int nr_sorted ; unsigned int in_flight[2U] ; unsigned int request_fn_active ; unsigned int rq_timeout ; struct timer_list timeout ; struct list_head timeout_list ; struct list_head icq_list ; unsigned long blkcg_pols[1U] ; struct blkcg_gq *root_blkg ; struct list_head blkg_list ; struct queue_limits limits ; unsigned int sg_timeout ; unsigned int sg_reserved_size ; int node ; struct blk_trace *blk_trace ; unsigned int flush_flags ; unsigned char flush_not_queueable : 1 ; struct blk_flush_queue *fq ; struct list_head requeue_list ; spinlock_t requeue_lock ; struct work_struct requeue_work ; struct mutex sysfs_lock ; int bypass_depth ; int mq_freeze_depth ; bsg_job_fn *bsg_job_fn ; int bsg_job_size ; struct bsg_class_device bsg_dev ; struct throtl_data *td ; struct callback_head callback_head ; wait_queue_head_t mq_freeze_wq ; struct percpu_ref mq_usage_counter ; struct list_head all_q_node ; struct blk_mq_tag_set *tag_set ; struct list_head tag_set_list ; }; struct blk_plug { struct list_head list ; struct list_head mq_list ; struct list_head cb_list ; }; struct blk_integrity_iter { void *prot_buf ; void *data_buf ; sector_t seed ; unsigned int data_size ; unsigned short interval ; char const *disk_name ; }; typedef int integrity_processing_fn(struct blk_integrity_iter * ); struct blk_integrity { integrity_processing_fn *generate_fn ; integrity_processing_fn *verify_fn ; unsigned short flags ; unsigned short tuple_size ; unsigned short interval ; unsigned short tag_size ; char const *name ; struct kobject kobj ; }; struct block_device_operations { int (*open)(struct block_device * , fmode_t ) ; void (*release)(struct gendisk * , fmode_t ) ; int (*rw_page)(struct block_device * , sector_t , struct page * , int ) ; int (*ioctl)(struct block_device * , fmode_t , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct block_device * , fmode_t , unsigned int , unsigned long ) ; long (*direct_access)(struct block_device * , sector_t , void ** , unsigned long * , long ) ; unsigned int (*check_events)(struct gendisk * , unsigned int ) ; int (*media_changed)(struct gendisk * ) ; void (*unlock_native_capacity)(struct gendisk * ) ; int (*revalidate_disk)(struct gendisk * ) ; int (*getgeo)(struct block_device * , struct hd_geometry * ) ; void (*swap_slot_free_notify)(struct block_device * , unsigned long ) ; struct module *owner ; }; struct blk_mq_tags; struct blk_mq_cpu_notifier { struct list_head list ; void *data ; int (*notify)(void * , unsigned long , unsigned int ) ; }; struct blk_align_bitmap; struct blk_mq_ctxmap { unsigned int map_size ; unsigned int bits_per_word ; struct blk_align_bitmap *map ; }; struct __anonstruct____missing_field_name_256 { spinlock_t lock ; struct list_head dispatch ; }; struct blk_mq_hw_ctx { struct __anonstruct____missing_field_name_256 __annonCompField81 ; unsigned long state ; struct delayed_work run_work ; struct delayed_work delay_work ; cpumask_var_t cpumask ; int next_cpu ; int next_cpu_batch ; unsigned long flags ; struct request_queue *queue ; struct blk_flush_queue *fq ; void *driver_data ; struct blk_mq_ctxmap ctx_map ; unsigned int nr_ctx ; struct blk_mq_ctx **ctxs ; atomic_t wait_index ; struct blk_mq_tags *tags ; unsigned long queued ; unsigned long run ; unsigned long dispatched[10U] ; unsigned int numa_node ; unsigned int queue_num ; atomic_t nr_active ; struct blk_mq_cpu_notifier cpu_notifier ; struct kobject kobj ; }; struct blk_mq_tag_set { struct blk_mq_ops *ops ; unsigned int nr_hw_queues ; unsigned int queue_depth ; unsigned int reserved_tags ; unsigned int cmd_size ; int numa_node ; unsigned int timeout ; unsigned int flags ; void *driver_data ; struct blk_mq_tags **tags ; struct mutex tag_list_lock ; struct list_head tag_list ; }; struct blk_mq_queue_data { struct request *rq ; struct list_head *list ; bool last ; }; typedef int queue_rq_fn(struct blk_mq_hw_ctx * , struct blk_mq_queue_data const * ); typedef struct blk_mq_hw_ctx *map_queue_fn(struct request_queue * , int const ); typedef enum blk_eh_timer_return timeout_fn(struct request * , bool ); typedef int init_hctx_fn(struct blk_mq_hw_ctx * , void * , unsigned int ); typedef void exit_hctx_fn(struct blk_mq_hw_ctx * , unsigned int ); typedef int init_request_fn(void * , struct request * , unsigned int , unsigned int , unsigned int ); typedef void exit_request_fn(void * , struct request * , unsigned int , unsigned int ); struct blk_mq_ops { queue_rq_fn *queue_rq ; map_queue_fn *map_queue ; timeout_fn *timeout ; softirq_done_fn *complete ; init_hctx_fn *init_hctx ; exit_hctx_fn *exit_hctx ; init_request_fn *init_request ; exit_request_fn *exit_request ; }; typedef u64 acpi_io_address; typedef void *acpi_handle; typedef u32 acpi_object_type; struct __anonstruct_integer_260 { acpi_object_type type ; u64 value ; }; struct __anonstruct_string_261 { acpi_object_type type ; u32 length ; char *pointer ; }; struct __anonstruct_buffer_262 { acpi_object_type type ; u32 length ; u8 *pointer ; }; struct __anonstruct_package_263 { acpi_object_type type ; u32 count ; union acpi_object *elements ; }; struct __anonstruct_reference_264 { acpi_object_type type ; acpi_object_type actual_type ; acpi_handle handle ; }; struct __anonstruct_processor_265 { acpi_object_type type ; u32 proc_id ; acpi_io_address pblk_address ; u32 pblk_length ; }; struct __anonstruct_power_resource_266 { acpi_object_type type ; u32 system_level ; u32 resource_order ; }; union acpi_object { acpi_object_type type ; struct __anonstruct_integer_260 integer ; struct __anonstruct_string_261 string ; struct __anonstruct_buffer_262 buffer ; struct __anonstruct_package_263 package ; struct __anonstruct_reference_264 reference ; struct __anonstruct_processor_265 processor ; struct __anonstruct_power_resource_266 power_resource ; }; struct acpi_driver; struct acpi_hotplug_profile { struct kobject kobj ; int (*scan_dependent)(struct acpi_device * ) ; void (*notify_online)(struct acpi_device * ) ; bool enabled ; bool demand_offline ; }; struct acpi_scan_handler { struct acpi_device_id const *ids ; struct list_head list_node ; bool (*match)(char * , struct acpi_device_id const ** ) ; int (*attach)(struct acpi_device * , struct acpi_device_id const * ) ; void (*detach)(struct acpi_device * ) ; void (*bind)(struct device * ) ; void (*unbind)(struct device * ) ; struct acpi_hotplug_profile hotplug ; }; struct acpi_hotplug_context { struct acpi_device *self ; int (*notify)(struct acpi_device * , u32 ) ; void (*uevent)(struct acpi_device * , u32 ) ; void (*fixup)(struct acpi_device * ) ; }; struct acpi_device_ops { int (*add)(struct acpi_device * ) ; int (*remove)(struct acpi_device * ) ; void (*notify)(struct acpi_device * , u32 ) ; }; struct acpi_driver { char name[80U] ; char class[80U] ; struct acpi_device_id const *ids ; unsigned int flags ; struct acpi_device_ops ops ; struct device_driver drv ; struct module *owner ; }; struct acpi_device_status { unsigned char present : 1 ; unsigned char enabled : 1 ; unsigned char show_in_ui : 1 ; unsigned char functional : 1 ; unsigned char battery_present : 1 ; unsigned int reserved : 27 ; }; struct acpi_device_flags { unsigned char dynamic_status : 1 ; unsigned char removable : 1 ; unsigned char ejectable : 1 ; unsigned char power_manageable : 1 ; unsigned char match_driver : 1 ; unsigned char initialized : 1 ; unsigned char visited : 1 ; unsigned char hotplug_notify : 1 ; unsigned char is_dock_station : 1 ; unsigned int reserved : 23 ; }; struct acpi_device_dir { struct proc_dir_entry *entry ; }; typedef char acpi_bus_id[8U]; typedef unsigned long acpi_bus_address; typedef char acpi_device_name[40U]; typedef char acpi_device_class[20U]; struct acpi_pnp_type { unsigned char hardware_id : 1 ; unsigned char bus_address : 1 ; unsigned char platform_id : 1 ; unsigned int reserved : 29 ; }; struct acpi_device_pnp { acpi_bus_id bus_id ; struct acpi_pnp_type type ; acpi_bus_address bus_address ; char *unique_id ; struct list_head ids ; acpi_device_name device_name ; acpi_device_class device_class ; union acpi_object *str_obj ; }; struct acpi_device_power_flags { unsigned char explicit_get : 1 ; unsigned char power_resources : 1 ; unsigned char inrush_current : 1 ; unsigned char power_removed : 1 ; unsigned char ignore_parent : 1 ; unsigned char dsw_present : 1 ; unsigned int reserved : 26 ; }; struct __anonstruct_flags_267 { unsigned char valid : 1 ; unsigned char os_accessible : 1 ; unsigned char explicit_set : 1 ; unsigned char reserved : 6 ; }; struct acpi_device_power_state { struct __anonstruct_flags_267 flags ; int power ; int latency ; struct list_head resources ; }; struct acpi_device_power { int state ; struct acpi_device_power_flags flags ; struct acpi_device_power_state states[5U] ; }; struct acpi_device_perf_flags { u8 reserved ; }; struct __anonstruct_flags_268 { unsigned char valid : 1 ; unsigned char reserved : 7 ; }; struct acpi_device_perf_state { struct __anonstruct_flags_268 flags ; u8 power ; u8 performance ; int latency ; }; struct acpi_device_perf { int state ; struct acpi_device_perf_flags flags ; int state_count ; struct acpi_device_perf_state *states ; }; struct acpi_device_wakeup_flags { unsigned char valid : 1 ; unsigned char run_wake : 1 ; unsigned char notifier_present : 1 ; unsigned char enabled : 1 ; }; struct acpi_device_wakeup_context { struct work_struct work ; struct device *dev ; }; struct acpi_device_wakeup { acpi_handle gpe_device ; u64 gpe_number ; u64 sleep_state ; struct list_head resources ; struct acpi_device_wakeup_flags flags ; struct acpi_device_wakeup_context context ; struct wakeup_source *ws ; int prepare_count ; }; struct acpi_device_data { union acpi_object const *pointer ; union acpi_object const *properties ; union acpi_object const *of_compatible ; }; struct acpi_gpio_mapping; struct acpi_device { int device_type ; acpi_handle handle ; struct fwnode_handle fwnode ; struct acpi_device *parent ; struct list_head children ; struct list_head node ; struct list_head wakeup_list ; struct list_head del_list ; struct acpi_device_status status ; struct acpi_device_flags flags ; struct acpi_device_pnp pnp ; struct acpi_device_power power ; struct acpi_device_wakeup wakeup ; struct acpi_device_perf performance ; struct acpi_device_dir dir ; struct acpi_device_data data ; struct acpi_scan_handler *handler ; struct acpi_hotplug_context *hp ; struct acpi_driver *driver ; struct acpi_gpio_mapping const *driver_gpios ; void *driver_data ; struct device dev ; unsigned int physical_node_count ; unsigned int dep_unmet ; struct list_head physical_node_list ; struct mutex physical_node_lock ; void (*remove)(struct acpi_device * ) ; }; struct acpi_gpio_params { unsigned int crs_entry_index ; unsigned int line_index ; bool active_low ; }; struct acpi_gpio_mapping { char const *name ; struct acpi_gpio_params const *data ; unsigned int size ; }; struct smart_attr { u8 attr_id ; u16 flags ; u8 cur ; u8 worst ; u32 data ; u8 res[3U] ; }; struct mtip_work { struct work_struct work ; void *port ; int cpu_binding ; u32 completed ; }; struct mtip_trim_entry { u32 lba ; u16 rsvd ; u16 range ; }; union __anonunion____missing_field_name_277 { unsigned char lba_low ; unsigned char sector ; }; union __anonunion____missing_field_name_278 { unsigned char lba_mid ; unsigned char cyl_low ; }; union __anonunion____missing_field_name_279 { unsigned char lba_hi ; unsigned char cyl_hi ; }; union __anonunion____missing_field_name_280 { unsigned char device ; unsigned char head ; }; union __anonunion____missing_field_name_281 { unsigned char lba_low_ex ; unsigned char sector_ex ; }; union __anonunion____missing_field_name_282 { unsigned char lba_mid_ex ; unsigned char cyl_low_ex ; }; union __anonunion____missing_field_name_283 { unsigned char lba_hi_ex ; unsigned char cyl_hi_ex ; }; struct host_to_dev_fis { unsigned char type ; unsigned char opts ; unsigned char command ; unsigned char features ; union __anonunion____missing_field_name_277 __annonCompField84 ; union __anonunion____missing_field_name_278 __annonCompField85 ; union __anonunion____missing_field_name_279 __annonCompField86 ; union __anonunion____missing_field_name_280 __annonCompField87 ; union __anonunion____missing_field_name_281 __annonCompField88 ; union __anonunion____missing_field_name_282 __annonCompField89 ; union __anonunion____missing_field_name_283 __annonCompField90 ; unsigned char features_ex ; unsigned char sect_count ; unsigned char sect_cnt_ex ; unsigned char res2 ; unsigned char control ; unsigned int res3 ; }; union __anonunion____missing_field_name_284 { unsigned int byte_count ; unsigned int status ; }; struct mtip_cmd_hdr { unsigned int opts ; union __anonunion____missing_field_name_284 __annonCompField91 ; unsigned int ctba ; unsigned int ctbau ; unsigned int res[4U] ; }; struct mtip_cmd_sg { unsigned int dba ; unsigned int dba_upper ; unsigned int reserved ; unsigned int info ; }; struct mtip_port; struct mtip_cmd { struct mtip_cmd_hdr *command_header ; dma_addr_t command_header_dma ; void *command ; dma_addr_t command_dma ; void *comp_data ; void (*comp_func)(struct mtip_port * , int , struct mtip_cmd * , int ) ; int scatter_ents ; int unaligned ; struct scatterlist sg[504U] ; int retries ; int direction ; }; struct driver_data; struct mtip_port { struct driver_data *dd ; unsigned long identify_valid ; void *mmio ; void *s_active[8U] ; void *completed[8U] ; void *cmd_issue[8U] ; void *command_list ; dma_addr_t command_list_dma ; void *rxfis ; dma_addr_t rxfis_dma ; void *block1 ; dma_addr_t block1_dma ; u16 *identify ; dma_addr_t identify_dma ; u16 *sector_buffer ; dma_addr_t sector_buffer_dma ; u16 *log_buf ; dma_addr_t log_buf_dma ; u8 *smart_buf ; dma_addr_t smart_buf_dma ; unsigned long allocated[4U] ; unsigned long cmds_to_issue[4U] ; wait_queue_head_t svc_wait ; unsigned long flags ; unsigned long ic_pause_timer ; struct semaphore cmd_slot_unal ; spinlock_t cmd_issue_lock[8U] ; }; struct driver_data { void *mmio ; int major ; int instance ; struct gendisk *disk ; struct pci_dev *pdev ; struct request_queue *queue ; struct blk_mq_tag_set tags ; struct mtip_port *port ; unsigned int product_type ; unsigned int slot_groups ; unsigned long index ; unsigned long dd_flag ; struct task_struct *mtip_svc_handler ; struct dentry *dfs_node ; bool trim_supp ; bool sr ; int numa_node ; char workq_name[32U] ; struct workqueue_struct *isr_workq ; atomic_t irq_workers_active ; struct mtip_work work[8U] ; int isr_binding ; struct block_device *bdev ; struct list_head online_list ; struct list_head remove_list ; int unal_qdepth ; }; struct mtip_compat_ide_task_request_s { __u8 io_ports[8U] ; __u8 hob_ports[8U] ; ide_reg_valid_t out_flags ; ide_reg_valid_t in_flags ; int data_phase ; int req_cmd ; compat_ulong_t out_size ; compat_ulong_t in_size ; }; struct ldv_struct_EMGentry_10 { int signal_pending ; }; struct ldv_struct_devm_free_irq_7 { int arg0 ; int signal_pending ; }; struct ldv_struct_pci_instance_5 { struct pci_driver *arg0 ; int signal_pending ; }; typedef int ldv_func_ret_type___0; struct device_private { void *driver_data ; }; typedef short s16; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; struct kthread_worker *worker ; }; struct dma_chan; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool (*can_dma)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool idling ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; bool cur_msg_mapped ; struct completion xfer_completion ; size_t max_dma_len ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; struct dma_chan *dma_tx ; struct dma_chan *dma_rx ; void *dummy_rx ; void *dummy_tx ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; struct sg_table tx_sg ; struct sg_table rx_sg ; unsigned char cs_change : 1 ; unsigned char tx_nbits : 3 ; unsigned char rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned char is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; struct notifier_block; enum hrtimer_restart; struct ratelimit_state { raw_spinlock_t lock ; int interval ; int burst ; int printed ; int missed ; unsigned long begin ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; typedef unsigned int mmc_pm_flag_t; struct mmc_card; struct sdio_func; typedef void sdio_irq_handler_t(struct sdio_func * ); struct sdio_func_tuple { struct sdio_func_tuple *next ; unsigned char code ; unsigned char size ; unsigned char data[0U] ; }; struct sdio_func { struct mmc_card *card ; struct device dev ; sdio_irq_handler_t *irq_handler ; unsigned int num ; unsigned char class ; unsigned short vendor ; unsigned short device ; unsigned int max_blksize ; unsigned int cur_blksize ; unsigned int enable_timeout ; unsigned int state ; u8 tmpbuf[4U] ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; }; enum led_brightness { LED_OFF = 0, LED_HALF = 127, LED_FULL = 255 } ; struct led_trigger; struct led_classdev { char const *name ; enum led_brightness brightness ; enum led_brightness max_brightness ; int flags ; void (*brightness_set)(struct led_classdev * , enum led_brightness ) ; int (*brightness_set_sync)(struct led_classdev * , enum led_brightness ) ; enum led_brightness (*brightness_get)(struct led_classdev * ) ; int (*blink_set)(struct led_classdev * , unsigned long * , unsigned long * ) ; struct device *dev ; struct attribute_group const **groups ; struct list_head node ; char const *default_trigger ; unsigned long blink_delay_on ; unsigned long blink_delay_off ; struct timer_list blink_timer ; int blink_brightness ; void (*flash_resume)(struct led_classdev * ) ; struct work_struct set_brightness_work ; int delayed_set_value ; struct rw_semaphore trigger_lock ; struct led_trigger *trigger ; struct list_head trig_list ; void *trigger_data ; bool activated ; struct mutex led_access ; }; struct led_trigger { char const *name ; void (*activate)(struct led_classdev * ) ; void (*deactivate)(struct led_classdev * ) ; rwlock_t leddev_list_lock ; struct list_head led_cdevs ; struct list_head next_trig ; }; struct fault_attr { unsigned long probability ; unsigned long interval ; atomic_t times ; atomic_t space ; unsigned long verbose ; u32 task_filter ; unsigned long stacktrace_depth ; unsigned long require_start ; unsigned long require_end ; unsigned long reject_start ; unsigned long reject_end ; unsigned long count ; struct ratelimit_state ratelimit_state ; struct dentry *dname ; }; struct mmc_data; struct mmc_request; struct mmc_command { u32 opcode ; u32 arg ; u32 resp[4U] ; unsigned int flags ; unsigned int retries ; unsigned int error ; unsigned int busy_timeout ; bool sanitize_busy ; struct mmc_data *data ; struct mmc_request *mrq ; }; struct mmc_data { unsigned int timeout_ns ; unsigned int timeout_clks ; unsigned int blksz ; unsigned int blocks ; unsigned int error ; unsigned int flags ; unsigned int bytes_xfered ; struct mmc_command *stop ; struct mmc_request *mrq ; unsigned int sg_len ; struct scatterlist *sg ; s32 host_cookie ; }; struct mmc_host; struct mmc_request { struct mmc_command *sbc ; struct mmc_command *cmd ; struct mmc_data *data ; struct mmc_command *stop ; struct completion completion ; void (*done)(struct mmc_request * ) ; struct mmc_host *host ; }; struct mmc_async_req; struct mmc_cid { unsigned int manfid ; char prod_name[8U] ; unsigned char prv ; unsigned int serial ; unsigned short oemid ; unsigned short year ; unsigned char hwrev ; unsigned char fwrev ; unsigned char month ; }; struct mmc_csd { unsigned char structure ; unsigned char mmca_vsn ; unsigned short cmdclass ; unsigned short tacc_clks ; unsigned int tacc_ns ; unsigned int c_size ; unsigned int r2w_factor ; unsigned int max_dtr ; unsigned int erase_size ; unsigned int read_blkbits ; unsigned int write_blkbits ; unsigned int capacity ; unsigned char read_partial : 1 ; unsigned char read_misalign : 1 ; unsigned char write_partial : 1 ; unsigned char write_misalign : 1 ; unsigned char dsr_imp : 1 ; }; struct mmc_ext_csd { u8 rev ; u8 erase_group_def ; u8 sec_feature_support ; u8 rel_sectors ; u8 rel_param ; u8 part_config ; u8 cache_ctrl ; u8 rst_n_function ; u8 max_packed_writes ; u8 max_packed_reads ; u8 packed_event_en ; unsigned int part_time ; unsigned int sa_timeout ; unsigned int generic_cmd6_time ; unsigned int power_off_longtime ; u8 power_off_notification ; unsigned int hs_max_dtr ; unsigned int hs200_max_dtr ; unsigned int sectors ; unsigned int hc_erase_size ; unsigned int hc_erase_timeout ; unsigned int sec_trim_mult ; unsigned int sec_erase_mult ; unsigned int trim_timeout ; bool partition_setting_completed ; unsigned long long enhanced_area_offset ; unsigned int enhanced_area_size ; unsigned int cache_size ; bool hpi_en ; bool hpi ; unsigned int hpi_cmd ; bool bkops ; bool man_bkops_en ; unsigned int data_sector_size ; unsigned int data_tag_unit_size ; unsigned int boot_ro_lock ; bool boot_ro_lockable ; bool ffu_capable ; u8 fwrev[8U] ; u8 raw_exception_status ; u8 raw_partition_support ; u8 raw_rpmb_size_mult ; u8 raw_erased_mem_count ; u8 raw_ext_csd_structure ; u8 raw_card_type ; u8 out_of_int_time ; u8 raw_pwr_cl_52_195 ; u8 raw_pwr_cl_26_195 ; u8 raw_pwr_cl_52_360 ; u8 raw_pwr_cl_26_360 ; u8 raw_s_a_timeout ; u8 raw_hc_erase_gap_size ; u8 raw_erase_timeout_mult ; u8 raw_hc_erase_grp_size ; u8 raw_sec_trim_mult ; u8 raw_sec_erase_mult ; u8 raw_sec_feature_support ; u8 raw_trim_mult ; u8 raw_pwr_cl_200_195 ; u8 raw_pwr_cl_200_360 ; u8 raw_pwr_cl_ddr_52_195 ; u8 raw_pwr_cl_ddr_52_360 ; u8 raw_pwr_cl_ddr_200_360 ; u8 raw_bkops_status ; u8 raw_sectors[4U] ; unsigned int feature_support ; }; struct sd_scr { unsigned char sda_vsn ; unsigned char sda_spec3 ; unsigned char bus_widths ; unsigned char cmds ; }; struct sd_ssr { unsigned int au ; unsigned int erase_timeout ; unsigned int erase_offset ; }; struct sd_switch_caps { unsigned int hs_max_dtr ; unsigned int uhs_max_dtr ; unsigned int sd3_bus_mode ; unsigned int sd3_drv_type ; unsigned int sd3_curr_limit ; }; struct sdio_cccr { unsigned int sdio_vsn ; unsigned int sd_vsn ; unsigned char multi_block : 1 ; unsigned char low_speed : 1 ; unsigned char wide_bus : 1 ; unsigned char high_power : 1 ; unsigned char high_speed : 1 ; unsigned char disable_cd : 1 ; }; struct sdio_cis { unsigned short vendor ; unsigned short device ; unsigned short blksize ; unsigned int max_dtr ; }; struct mmc_ios; struct mmc_part { unsigned int size ; unsigned int part_cfg ; char name[20U] ; bool force_ro ; unsigned int area_type ; }; struct mmc_card { struct mmc_host *host ; struct device dev ; u32 ocr ; unsigned int rca ; unsigned int type ; unsigned int state ; unsigned int quirks ; unsigned int erase_size ; unsigned int erase_shift ; unsigned int pref_erase ; u8 erased_byte ; u32 raw_cid[4U] ; u32 raw_csd[4U] ; u32 raw_scr[2U] ; struct mmc_cid cid ; struct mmc_csd csd ; struct mmc_ext_csd ext_csd ; struct sd_scr scr ; struct sd_ssr ssr ; struct sd_switch_caps sw_caps ; unsigned int sdio_funcs ; struct sdio_cccr cccr ; struct sdio_cis cis ; struct sdio_func *sdio_func[7U] ; struct sdio_func *sdio_single_irq ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; unsigned int sd_bus_speed ; unsigned int mmc_avail_type ; struct dentry *debugfs_root ; struct mmc_part part[7U] ; unsigned int nr_parts ; }; struct mmc_ios { unsigned int clock ; unsigned short vdd ; unsigned char bus_mode ; unsigned char chip_select ; unsigned char power_mode ; unsigned char bus_width ; unsigned char timing ; unsigned char signal_voltage ; unsigned char drv_type ; }; struct mmc_host_ops { int (*enable)(struct mmc_host * ) ; int (*disable)(struct mmc_host * ) ; void (*post_req)(struct mmc_host * , struct mmc_request * , int ) ; void (*pre_req)(struct mmc_host * , struct mmc_request * , bool ) ; void (*request)(struct mmc_host * , struct mmc_request * ) ; void (*set_ios)(struct mmc_host * , struct mmc_ios * ) ; int (*get_ro)(struct mmc_host * ) ; int (*get_cd)(struct mmc_host * ) ; void (*enable_sdio_irq)(struct mmc_host * , int ) ; void (*init_card)(struct mmc_host * , struct mmc_card * ) ; int (*start_signal_voltage_switch)(struct mmc_host * , struct mmc_ios * ) ; int (*card_busy)(struct mmc_host * ) ; int (*execute_tuning)(struct mmc_host * , u32 ) ; int (*prepare_hs400_tuning)(struct mmc_host * , struct mmc_ios * ) ; int (*select_drive_strength)(unsigned int , int , int ) ; void (*hw_reset)(struct mmc_host * ) ; void (*card_event)(struct mmc_host * ) ; int (*multi_io_quirk)(struct mmc_card * , unsigned int , int ) ; }; struct mmc_async_req { struct mmc_request *mrq ; int (*err_check)(struct mmc_card * , struct mmc_async_req * ) ; }; struct mmc_slot { int cd_irq ; void *handler_priv ; }; struct mmc_context_info { bool is_done_rcv ; bool is_new_req ; bool is_waiting_last_req ; wait_queue_head_t wait ; spinlock_t lock ; }; struct regulator; struct mmc_pwrseq; struct mmc_supply { struct regulator *vmmc ; struct regulator *vqmmc ; }; struct mmc_bus_ops; struct mmc_host { struct device *parent ; struct device class_dev ; int index ; struct mmc_host_ops const *ops ; struct mmc_pwrseq *pwrseq ; unsigned int f_min ; unsigned int f_max ; unsigned int f_init ; u32 ocr_avail ; u32 ocr_avail_sdio ; u32 ocr_avail_sd ; u32 ocr_avail_mmc ; struct notifier_block pm_notify ; u32 max_current_330 ; u32 max_current_300 ; u32 max_current_180 ; u32 caps ; u32 caps2 ; mmc_pm_flag_t pm_caps ; int clk_requests ; unsigned int clk_delay ; bool clk_gated ; struct delayed_work clk_gate_work ; unsigned int clk_old ; spinlock_t clk_lock ; struct mutex clk_gate_mutex ; struct device_attribute clkgate_delay_attr ; unsigned long clkgate_delay ; unsigned int max_seg_size ; unsigned short max_segs ; unsigned short unused ; unsigned int max_req_size ; unsigned int max_blk_size ; unsigned int max_blk_count ; unsigned int max_busy_timeout ; spinlock_t lock ; struct mmc_ios ios ; unsigned char use_spi_crc : 1 ; unsigned char claimed : 1 ; unsigned char bus_dead : 1 ; unsigned char removed : 1 ; int rescan_disable ; int rescan_entered ; bool trigger_card_event ; struct mmc_card *card ; wait_queue_head_t wq ; struct task_struct *claimer ; int claim_cnt ; struct delayed_work detect ; int detect_change ; struct mmc_slot slot ; struct mmc_bus_ops const *bus_ops ; unsigned int bus_refs ; unsigned int sdio_irqs ; struct task_struct *sdio_irq_thread ; bool sdio_irq_pending ; atomic_t sdio_irq_thread_abort ; mmc_pm_flag_t pm_flags ; struct led_trigger *led ; bool regulator_enabled ; struct mmc_supply supply ; struct dentry *debugfs_root ; struct mmc_async_req *areq ; struct mmc_context_info context_info ; struct fault_attr fail_mmc_request ; unsigned int actual_clock ; unsigned int slotno ; int dsr_req ; u32 dsr ; unsigned long private[0U] ; }; typedef int ldv_map; struct usb_device; struct urb; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; typedef _Bool ldv_set; void __builtin_prefetch(void const * , ...) ; long ldv__builtin_expect(long exp , long c ) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_irq_check_alloc_nonatomic(void) ; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) ; void ldv_linux_arch_io_check_final_state(void) ; void ldv_linux_block_genhd_check_final_state(void) ; void ldv_linux_block_queue_check_final_state(void) ; void ldv_linux_block_request_check_final_state(void) ; void *ldv_linux_drivers_base_class_create_class(void) ; int ldv_linux_drivers_base_class_register_class(void) ; void ldv_linux_drivers_base_class_check_final_state(void) ; void ldv_linux_fs_char_dev_check_final_state(void) ; void ldv_linux_fs_sysfs_check_final_state(void) ; void ldv_linux_kernel_locking_rwlock_check_final_state(void) ; void ldv_linux_kernel_module_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_check_final_state(void) ; void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) ; void ldv_linux_kernel_rcu_srcu_check_final_state(void) ; void ldv_linux_lib_find_bit_initialize(void) ; void ldv_linux_lib_idr_check_final_state(void) ; void ldv_linux_mmc_sdio_func_check_final_state(void) ; void ldv_linux_net_register_reset_error_counter(void) ; void ldv_linux_net_register_check_return_value_probe(int retval ) ; void ldv_linux_net_rtnetlink_check_final_state(void) ; void ldv_linux_net_sock_check_final_state(void) ; void ldv_linux_usb_coherent_check_final_state(void) ; void *ldv_linux_usb_gadget_create_class(void) ; int ldv_linux_usb_gadget_register_class(void) ; void ldv_linux_usb_gadget_check_final_state(void) ; void ldv_linux_usb_register_reset_error_counter(void) ; void ldv_linux_usb_register_check_return_value_probe(int retval ) ; void ldv_linux_usb_urb_check_final_state(void) ; void ldv_check_alloc_nonatomic(void) { { { ldv_linux_alloc_irq_check_alloc_nonatomic(); ldv_linux_alloc_usb_lock_check_alloc_nonatomic(); } return; } } void ldv_check_alloc_flags(gfp_t flags ) { { { ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return; } } void ldv_check_for_read_section(void) { { { ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_check_for_read_section(); ldv_linux_kernel_rcu_srcu_check_for_read_section(); } return; } } void *ldv_create_class(void) { void *res1 ; void *tmp ; void *res2 ; void *tmp___0 ; { { tmp = ldv_linux_drivers_base_class_create_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_create_class(); res2 = tmp___0; ldv_assume((unsigned long )res1 == (unsigned long )res2); } return (res1); } } int ldv_register_class(void) { int res1 ; int tmp ; int res2 ; int tmp___0 ; { { tmp = ldv_linux_drivers_base_class_register_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_register_class(); res2 = tmp___0; ldv_assume(res1 == res2); } return (res1); } } void *ldv_kzalloc(size_t size , gfp_t flags ) ; int ldv_linux_usb_dev_atomic_add_return(int i , atomic_t *v ) ; void ldv_linux_kernel_sched_completion_init_completion_wait(void) ; void ldv_linux_kernel_sched_completion_wait_for_completion_wait(void) ; unsigned long ldv_linux_lib_find_bit_find_next_bit(unsigned long size , unsigned long offset ) ; unsigned long ldv_linux_lib_find_bit_find_first_bit(unsigned long size ) ; void ldv_linux_block_genhd_add_disk(void) ; void ldv_linux_block_genhd_del_gendisk(void) ; void ldv_linux_block_genhd_put_disk(struct gendisk *disk ) ; int ldv_undef_int(void) ; static void ldv_ldv_initialize_142(void) ; int ldv_post_init(int init_ret_val ) ; static int ldv_ldv_post_init_139(int ldv_func_arg1 ) ; extern void ldv_pre_probe(void) ; static void ldv_ldv_pre_probe_143(void) ; int ldv_post_probe(int probe_ret_val ) ; static int ldv_ldv_post_probe_144(int retval ) ; int ldv_filter_err_code(int ret_val ) ; static void ldv_ldv_check_final_state_140(void) ; static void ldv_ldv_check_final_state_141(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; void *ldv_malloc_unknown_size(void) ; void *ldv_zalloc_unknown_size(void) ; extern void ldv_after_alloc(void * ) ; void *ldv_alloc_macro(gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } void ldv_linux_block_queue_blk_cleanup_queue(void) ; void ldv_linux_block_request_put_blk_rq(void) ; extern struct module __this_module ; __inline static void set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static int constant_test_bit(long nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr >> 6)) >> ((int )nr & 63)) & 1); } } __inline static int variable_test_bit(long nr , unsigned long const volatile *addr ) { int oldbit ; { __asm__ volatile ("bt %2,%1\n\tsbb %0,%0": "=r" (oldbit): "m" (*((unsigned long *)addr)), "Ir" (nr)); return (oldbit); } } static unsigned long ldv_find_next_bit_5(unsigned long const *addr , unsigned long size , unsigned long offset ) ; static unsigned long ldv_find_next_bit_47(unsigned long const *addr , unsigned long size , unsigned long offset ) ; static unsigned long ldv_find_next_bit_110(unsigned long const *addr , unsigned long size , unsigned long offset ) ; static unsigned long ldv_find_first_bit_4(unsigned long const *addr , unsigned long size ) ; static unsigned long ldv_find_first_bit_46(unsigned long const *addr , unsigned long size ) ; __inline static __u16 __fswab16(__u16 val ) { { return ((__u16 )((int )((short )((int )val << 8)) | (int )((short )((int )val >> 8)))); } } __inline static __u16 __swab16p(__u16 const *p ) { __u16 tmp ; { { tmp = __fswab16((int )*p); } return (tmp); } } __inline static void __swab16s(__u16 *p ) { { { *p = __swab16p((__u16 const *)p); } return; } } extern int printk(char const * , ...) ; extern void __dynamic_dev_dbg(struct _ddebug * , struct device const * , char const * , ...) ; extern void __might_sleep(char const * , int , int ) ; extern void might_fault(void) ; extern int sprintf(char * , char const * , ...) ; extern int snprintf(char * , size_t , char const * , ...) ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void __list_add(struct list_head * , struct list_head * , struct list_head * ) ; __inline static void list_add(struct list_head *new , struct list_head *head ) { { { __list_add(new, head, head->next); } return; } } extern void __list_del_entry(struct list_head * ) ; __inline static void list_del_init(struct list_head *entry ) { { { __list_del_entry(entry); INIT_LIST_HEAD(entry); } return; } } extern void __bad_percpu_size(void) ; extern void __bad_size_call_parameter(void) ; extern unsigned long __per_cpu_offset[8192U] ; extern unsigned long __phys_addr(unsigned long ) ; extern void *__memcpy(void * , void const * , size_t ) ; extern void *__memset(void * , int , size_t ) ; extern void *__memmove(void * , void const * , size_t ) ; extern size_t strlen(char const * ) ; extern size_t strlcpy(char * , char const * , size_t ) ; extern int __bitmap_empty(unsigned long const * , unsigned int ) ; extern int __bitmap_weight(unsigned long const * , unsigned int ) ; __inline static int bitmap_empty(unsigned long const *src , unsigned int nbits ) { int tmp ; { { tmp = __bitmap_empty(src, nbits); } return (tmp); } } __inline static int bitmap_weight(unsigned long const *src , unsigned int nbits ) { int tmp___0 ; { { tmp___0 = __bitmap_weight(src, nbits); } return (tmp___0); } } extern void warn_slowpath_null(char const * , int const ) ; extern int nr_cpu_ids ; extern struct cpumask const * const cpu_present_mask ; __inline static unsigned int cpumask_check(unsigned int cpu ) { bool __warned ; int __ret_warn_once ; int __ret_warn_on ; long tmp ; long tmp___0 ; long tmp___1 ; { { __ret_warn_once = cpu >= (unsigned int )nr_cpu_ids; tmp___1 = ldv__builtin_expect(__ret_warn_once != 0, 0L); } if (tmp___1 != 0L) { { __ret_warn_on = ! __warned; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("include/linux/cpumask.h", 116); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { __warned = 1; } else { } } else { } { ldv__builtin_expect(__ret_warn_once != 0, 0L); } return (cpu); } } __inline static unsigned int cpumask_first(struct cpumask const *srcp ) { unsigned long tmp ; { { tmp = ldv_find_first_bit_4((unsigned long const *)(& srcp->bits), (unsigned long )nr_cpu_ids); } return ((unsigned int )tmp); } } __inline static unsigned int cpumask_next(int n , struct cpumask const *srcp ) { unsigned long tmp ; { if (n != -1) { { cpumask_check((unsigned int )n); } } else { } { tmp = ldv_find_next_bit_5((unsigned long const *)(& srcp->bits), (unsigned long )nr_cpu_ids, (unsigned long )(n + 1)); } return ((unsigned int )tmp); } } __inline static bool cpumask_empty(struct cpumask const *srcp ) { int tmp ; { { tmp = bitmap_empty((unsigned long const *)(& srcp->bits), (unsigned int )nr_cpu_ids); } return (tmp != 0); } } __inline static unsigned int cpumask_weight(struct cpumask const *srcp ) { int tmp ; { { tmp = bitmap_weight((unsigned long const *)(& srcp->bits), (unsigned int )nr_cpu_ids); } return ((unsigned int )tmp); } } extern unsigned long const cpu_bit_bitmap[65U][128U] ; __inline static struct cpumask const *get_cpu_mask(unsigned int cpu ) { unsigned long const *p ; { p = (unsigned long const *)(& cpu_bit_bitmap) + (unsigned long )((cpu & 63U) + 1U); p = p + - ((unsigned long )(cpu / 64U)); return ((struct cpumask const *)p); } } __inline static bool IS_ERR(void const *ptr ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )ptr > 0xfffffffffffff000UL, 0L); } return (tmp != 0L); } } __inline static bool IS_ERR_OR_NULL(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv__builtin_expect((unsigned long )ptr > 0xfffffffffffff000UL, 0L); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((bool )tmp___0); } } extern struct cpuinfo_x86 cpu_info ; __inline static int atomic_read(atomic_t const *v ) { int __var ; { __var = 0; return ((int )*((int const volatile *)(& v->counter))); } } __inline static void atomic_set(atomic_t *v , int i ) { { v->counter = i; return; } } __inline static int atomic_add_return(int i , atomic_t *v ) ; __inline static int atomic_sub_return(int i , atomic_t *v ) { int tmp ; { { tmp = atomic_add_return(- i, v); } return (tmp); } } extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern void __ldv_linux_kernel_locking_spinlock_spin_lock(spinlock_t * ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_103(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_131(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_133(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_135(spinlock_t *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_spinlock_spin_lock_NOT_ARG_SIGN(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_NOT_ARG_SIGN(void) ; void ldv_linux_kernel_locking_spinlock_spin_lock_dev_lock(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_dev_lock(void) ; void ldv_linux_kernel_locking_spinlock_spin_lock_rssd_index_lock(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_rssd_index_lock(void) ; void ldv_switch_to_interrupt_context(void) ; void ldv_switch_to_process_context(void) ; extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField18.rlock); } } __inline static void spin_lock(spinlock_t *lock ) { { { _raw_spin_lock(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_lock_99(spinlock_t *lock ) ; __inline static void ldv_spin_lock_105(spinlock_t *lock ) ; __inline static void ldv_spin_lock_105(spinlock_t *lock ) ; __inline static void ldv_spin_lock_105(spinlock_t *lock ) ; __inline static void ldv_spin_lock_105(spinlock_t *lock ) ; __inline static void ldv_spin_lock_105(spinlock_t *lock ) ; __inline static void spin_unlock(spinlock_t *lock ) { { { _raw_spin_unlock(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_unlock_100(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_106(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_106(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_106(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_106(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_106(spinlock_t *lock ) ; __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField18.rlock, flags); } return; } } __inline static void ldv_spin_unlock_irqrestore_104(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_104(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_104(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_104(spinlock_t *lock , unsigned long flags ) ; extern void __init_waitqueue_head(wait_queue_head_t * , char const * , struct lock_class_key * ) ; extern void __wake_up(wait_queue_head_t * , unsigned int , int , void * ) ; extern long prepare_to_wait_event(wait_queue_head_t * , wait_queue_t * , int ) ; extern void finish_wait(wait_queue_head_t * , wait_queue_t * ) ; __inline static void ldv_init_completion_101(struct completion *x ) ; extern long wait_for_completion_interruptible_timeout(struct completion * , unsigned long ) ; static long ldv_wait_for_completion_interruptible_timeout_102(struct completion *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; extern void complete(struct completion * ) ; extern int ida_pre_get(struct ida * , gfp_t ) ; extern int ida_get_new_above(struct ida * , int , int * ) ; extern void ida_remove(struct ida * , int ) ; __inline static int ida_get_new(struct ida *ida , int *p_id ) { int tmp ; { { tmp = ida_get_new_above(ida, 0, p_id); } return (tmp); } } extern int sysfs_create_file_ns(struct kobject * , struct attribute const * , void const * ) ; extern void sysfs_remove_file_ns(struct kobject * , struct attribute const * , void const * ) ; __inline static int sysfs_create_file(struct kobject *kobj , struct attribute const *attr ) { int tmp ; { { tmp = sysfs_create_file_ns(kobj, attr, (void const *)0); } return (tmp); } } __inline static void sysfs_remove_file(struct kobject *kobj , struct attribute const *attr ) { { { sysfs_remove_file_ns(kobj, attr, (void const *)0); } return; } } extern unsigned long volatile jiffies ; extern unsigned int jiffies_to_msecs(unsigned long const ) ; extern unsigned long msecs_to_jiffies(unsigned int const ) ; extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *__alloc_workqueue_key(char const * , unsigned int , int , struct lock_class_key * , char const * , ...) ; extern void destroy_workqueue(struct workqueue_struct * ) ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; extern void flush_workqueue(struct workqueue_struct * ) ; __inline static char const *kobject_name(struct kobject const *kobj ) { { return ((char const *)kobj->name); } } extern struct kobject *kobject_get(struct kobject * ) ; extern void kobject_put(struct kobject * ) ; __inline static int __first_node(nodemask_t const *srcp ) { int __min1 ; int __min2 ; unsigned long tmp ; { { __min1 = 1024; tmp = ldv_find_first_bit_46((unsigned long const *)(& srcp->bits), 1024UL); __min2 = (int )tmp; } return (__min1 < __min2 ? __min1 : __min2); } } __inline static int __next_node(int n , nodemask_t const *srcp ) { int __min1 ; int __min2 ; unsigned long tmp ; { { __min1 = 1024; tmp = ldv_find_next_bit_47((unsigned long const *)(& srcp->bits), 1024UL, (unsigned long )(n + 1)); __min2 = (int )tmp; } return (__min1 < __min2 ? __min1 : __min2); } } extern nodemask_t node_states[5U] ; __inline static int node_state(int node , enum node_states state ) { int tmp___0 ; { { tmp___0 = variable_test_bit((long )node, (unsigned long const volatile *)(& node_states[(unsigned int )state].bits)); } return (tmp___0); } } __inline static int next_online_node(int nid ) { int tmp ; { { tmp = __next_node(nid, (nodemask_t const *)(& node_states) + 1U); } return (tmp); } } extern int __cpu_to_node(int ) ; extern struct cpumask const *cpumask_of_node(int ) ; __inline static unsigned int readl(void const volatile *addr ) { unsigned int ret ; { __asm__ volatile ("movl %1,%0": "=r" (ret): "m" (*((unsigned int volatile *)addr)): "memory"); return (ret); } } __inline static void writel(unsigned int val , void volatile *addr ) { { __asm__ volatile ("movl %0,%1": : "r" (val), "m" (*((unsigned int volatile *)addr)): "memory"); return; } } extern int cpu_number ; __inline static char const *dev_name(struct device const *dev ) { char const *tmp ; { if ((unsigned long )dev->init_name != (unsigned long )((char const */* const */)0)) { return ((char const *)dev->init_name); } else { } { tmp = kobject_name(& dev->kobj); } return (tmp); } } __inline static int dev_to_node(struct device *dev ) { { return (dev->numa_node); } } __inline static void *dev_get_drvdata(struct device const *dev ) { { return ((void *)dev->driver_data); } } __inline static void dev_set_drvdata(struct device *dev , void *data ) { { dev->driver_data = data; return; } } extern char const *dev_driver_string(struct device const * ) ; extern void dev_err(struct device const * , char const * , ...) ; extern void dev_warn(struct device const * , char const * , ...) ; extern void _dev_info(struct device const * , char const * , ...) ; extern bool capable(int ) ; extern void schedule(void) ; extern int wake_up_process(struct task_struct * ) ; extern void kfree(void const * ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; __inline static void *kzalloc_node(size_t size , gfp_t flags , int node ) ; extern int pci_find_capability(struct pci_dev * , int ) ; extern int pci_bus_read_config_word(struct pci_bus * , unsigned int , int , u16 * ) ; extern int pci_bus_write_config_word(struct pci_bus * , unsigned int , int , u16 ) ; __inline static int pci_read_config_word(struct pci_dev const *dev , int where , u16 *val ) { int tmp ; { { tmp = pci_bus_read_config_word(dev->bus, dev->devfn, where, val); } return (tmp); } } __inline static int pci_write_config_word(struct pci_dev const *dev , int where , u16 val ) { int tmp ; { { tmp = pci_bus_write_config_word(dev->bus, dev->devfn, where, (int )val); } return (tmp); } } extern int pcim_enable_device(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pci_save_state(struct pci_dev * ) ; extern void pci_restore_state(struct pci_dev * ) ; extern int pci_set_power_state(struct pci_dev * , pci_power_t ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; static int ldv___pci_register_driver_137(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; static void ldv_pci_unregister_driver_138(struct pci_driver *ldv_func_arg1 ) ; extern void pci_disable_msi(struct pci_dev * ) ; extern int pci_enable_msi_range(struct pci_dev * , int , int ) ; __inline static int pci_enable_msi_exact(struct pci_dev *dev , int nvec ) { int rc ; int tmp ; { { tmp = pci_enable_msi_range(dev, nvec, nvec); rc = tmp; } if (rc < 0) { return (rc); } else { } return (0); } } __inline static void *lowmem_page_address(struct page const *page ) { { return ((void *)((unsigned long )((unsigned long long )(((long )page + 24189255811072L) / 64L) << 12) + 0xffff880000000000UL)); } } __inline static struct page *sg_page(struct scatterlist *sg ) { long tmp ; long tmp___0 ; { { tmp = ldv__builtin_expect(sg->sg_magic != 2271560481UL, 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/scatterlist.h"), "i" (98), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___0 = ldv__builtin_expect((long )((int )sg->page_link) & 1L, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/scatterlist.h"), "i" (99), "i" (12UL)); __builtin_unreachable(); } } else { } return ((struct page *)(sg->page_link & 0xfffffffffffffffcUL)); } } __inline static void *sg_virt(struct scatterlist *sg ) { struct page *tmp ; void *tmp___0 ; { { tmp = sg_page(sg); tmp___0 = lowmem_page_address((struct page const *)tmp); } return (tmp___0 + (unsigned long )sg->offset); } } extern struct scatterlist *sg_next(struct scatterlist * ) ; extern void sg_init_table(struct scatterlist * , unsigned int ) ; __inline static int valid_dma_direction(int dma_direction ) { { return ((unsigned int )dma_direction <= 2U); } } __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern void debug_dma_map_sg(struct device * , struct scatterlist * , int , int , int ) ; extern void debug_dma_unmap_sg(struct device * , struct scatterlist * , int , int ) ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); } if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static dma_addr_t dma_map_single_attrs(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, (struct page *)-24189255811072L + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, (struct page *)-24189255811072L + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); } return (addr); } } __inline static void dma_unmap_single_attrs(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (36), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, attrs); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 1); } return; } } __inline static int dma_map_sg_attrs(struct device *dev , struct scatterlist *sg , int nents , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int i ; int ents ; struct scatterlist *s ; void *tmp___0 ; int tmp___1 ; long tmp___2 ; { { tmp = get_dma_ops(dev); ops = tmp; i = 0; s = sg; } goto ldv_27090; ldv_27089: { tmp___0 = sg_virt(s); kmemcheck_mark_initialized(tmp___0, s->length); i = i + 1; s = sg_next(s); } ldv_27090: ; if (i < nents) { goto ldv_27089; } else { } { tmp___1 = valid_dma_direction((int )dir); tmp___2 = ldv__builtin_expect(tmp___1 == 0, 0L); } if (tmp___2 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (52), "i" (12UL)); __builtin_unreachable(); } } else { } { ents = (*(ops->map_sg))(dev, sg, nents, dir, attrs); debug_dma_map_sg(dev, sg, nents, ents, (int )dir); } return (ents); } } __inline static void dma_unmap_sg_attrs(struct device *dev , struct scatterlist *sg , int nents , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (65), "i" (12UL)); __builtin_unreachable(); } } else { } { debug_dma_unmap_sg(dev, sg, nents, (int )dir); } if ((unsigned long )ops->unmap_sg != (unsigned long )((void (*)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_sg))(dev, sg, nents, dir, attrs); } } else { } return; } } extern int dma_supported(struct device * , u64 ) ; extern int dma_set_mask(struct device * , u64 ) ; __inline static int dma_set_coherent_mask(struct device *dev , u64 mask ) { int tmp ; { { tmp = dma_supported(dev, mask); } if (tmp == 0) { return (-5); } else { } dev->coherent_dma_mask = mask; return (0); } } extern void *dmam_alloc_coherent(struct device * , size_t , dma_addr_t * , gfp_t ) ; extern void dmam_free_coherent(struct device * , size_t , void * , dma_addr_t ) ; __inline static dma_addr_t pci_map_single(struct pci_dev *hwdev , void *ptr , size_t size , int direction ) { dma_addr_t tmp ; { { tmp = dma_map_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, ptr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); } return (tmp); } } __inline static void pci_unmap_single(struct pci_dev *hwdev , dma_addr_t dma_addr , size_t size , int direction ) { { { dma_unmap_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_addr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); } return; } } __inline static int pci_set_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_mask(& dev->dev, mask); } return (tmp); } } __inline static int pci_set_consistent_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_coherent_mask(& dev->dev, mask); } return (tmp); } } __inline static int __pcibus_to_node(struct pci_bus const *bus ) { struct pci_sysdata const *sd ; { sd = (struct pci_sysdata const *)bus->sysdata; return ((int )sd->node); } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { { tmp = dev_get_drvdata((struct device const *)(& pdev->dev)); } return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { { dev_set_drvdata(& pdev->dev, data); } return; } } extern void * const *pcim_iomap_table(struct pci_dev * ) ; extern int pcim_iomap_regions(struct pci_dev * , int , char const * ) ; extern void pcim_iounmap_regions(struct pci_dev * , int ) ; __inline static void sema_init(struct semaphore *sem , int val ) { struct lock_class_key __key ; struct semaphore __constr_expr_0 ; { { __constr_expr_0.lock.raw_lock.__annonCompField4.head_tail = 0U; __constr_expr_0.lock.magic = 3735899821U; __constr_expr_0.lock.owner_cpu = 4294967295U; __constr_expr_0.lock.owner = (void *)-1; __constr_expr_0.lock.dep_map.key = 0; __constr_expr_0.lock.dep_map.class_cache[0] = 0; __constr_expr_0.lock.dep_map.class_cache[1] = 0; __constr_expr_0.lock.dep_map.name = "(*sem).lock"; __constr_expr_0.lock.dep_map.cpu = 0; __constr_expr_0.lock.dep_map.ip = 0UL; __constr_expr_0.count = (unsigned int )val; __constr_expr_0.wait_list.next = & sem->wait_list; __constr_expr_0.wait_list.prev = & sem->wait_list; *sem = __constr_expr_0; lockdep_init_map(& sem->lock.dep_map, "semaphore->lock", & __key, 0); } return; } } extern int down_trylock(struct semaphore * ) ; extern void up(struct semaphore * ) ; extern int register_blkdev(unsigned int , char const * ) ; extern void unregister_blkdev(unsigned int , char const * ) ; extern void bdput(struct block_device * ) ; extern loff_t no_llseek(struct file * , loff_t , int ) ; extern int simple_open(struct inode * , struct file * ) ; extern unsigned long _copy_from_user(void * , void const * , unsigned int ) ; extern unsigned long _copy_to_user(void * , void const * , unsigned int ) ; extern void __copy_from_user_overflow(void) ; extern void __copy_to_user_overflow(void) ; __inline static unsigned long copy_from_user(void *to , void const *from , unsigned long n ) { int sz ; long tmp ; long tmp___0 ; { { sz = -1; might_fault(); tmp = ldv__builtin_expect(sz < 0, 1L); } if (tmp != 0L) { { n = _copy_from_user(to, from, (unsigned int )n); } } else { { tmp___0 = ldv__builtin_expect((unsigned long )sz >= n, 1L); } if (tmp___0 != 0L) { { n = _copy_from_user(to, from, (unsigned int )n); } } else { { __copy_from_user_overflow(); } } } return (n); } } __inline static unsigned long copy_to_user(void *to , void const *from , unsigned long n ) { int sz ; long tmp ; long tmp___0 ; { { sz = -1; might_fault(); tmp = ldv__builtin_expect(sz < 0, 1L); } if (tmp != 0L) { { n = _copy_to_user(to, from, (unsigned int )n); } } else { { tmp___0 = ldv__builtin_expect((unsigned long )sz >= n, 1L); } if (tmp___0 != 0L) { { n = _copy_to_user(to, from, (unsigned int )n); } } else { { __copy_to_user_overflow(); } } } return (n); } } extern void synchronize_irq(unsigned int ) ; extern int devm_request_threaded_irq(struct device * , unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int devm_request_irq(struct device *dev , unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long irqflags , char const *devname , void *dev_id ) { int tmp ; { { tmp = devm_request_threaded_irq(dev, irq, handler, (irqreturn_t (*)(int , void * ))0, irqflags, devname, dev_id); } return (tmp); } } extern void devm_free_irq(struct device * , unsigned int , void * ) ; static void ldv_devm_free_irq_111(struct device *ldv_func_arg1 , unsigned int ldv_func_arg2 , void *ldv_func_arg3 ) ; static void ldv_devm_free_irq_112(struct device *ldv_func_arg1 , unsigned int ldv_func_arg2 , void *ldv_func_arg3 ) ; extern int irq_set_affinity_hint(unsigned int , struct cpumask const * ) ; extern void __const_udelay(unsigned long ) ; extern void msleep(unsigned int ) ; extern unsigned long msleep_interruptible(unsigned int ) ; __inline static void ssleep(unsigned int seconds ) { { { msleep(seconds * 1000U); } return; } } extern void add_disk(struct gendisk * ) ; static void ldv_add_disk_115(struct gendisk *disk ) ; extern void del_gendisk(struct gendisk * ) ; static void ldv_del_gendisk_108(struct gendisk *gp ) ; static void ldv_del_gendisk_116(struct gendisk *gp ) ; static void ldv_del_gendisk_121(struct gendisk *gp ) ; static void ldv_del_gendisk_126(struct gendisk *gp ) ; extern struct block_device *bdget_disk(struct gendisk * , int ) ; __inline static void set_capacity(struct gendisk *disk , sector_t size ) { { disk->part0.nr_sects = size; return; } } extern struct gendisk *alloc_disk_node(int , int ) ; extern void put_disk(struct gendisk * ) ; static void ldv_put_disk_107(struct gendisk *disk ) ; static void ldv_put_disk_120(struct gendisk *disk ) ; static void ldv_put_disk_123(struct gendisk *disk ) ; static void ldv_put_disk_128(struct gendisk *disk ) ; static void ldv_blk_put_request_98(struct request *ldv_func_arg1 ) ; __inline static sector_t blk_rq_pos(struct request const *rq ) { { return ((sector_t )rq->__sector); } } __inline static unsigned int blk_rq_bytes(struct request const *rq ) { { return ((unsigned int )rq->__data_len); } } __inline static unsigned int blk_rq_sectors(struct request const *rq ) { unsigned int tmp ; { { tmp = blk_rq_bytes(rq); } return (tmp >> 9); } } extern void blk_cleanup_queue(struct request_queue * ) ; static void ldv_blk_cleanup_queue_109(struct request_queue *ldv_func_arg1 ) ; static void ldv_blk_cleanup_queue_117(struct request_queue *ldv_func_arg1 ) ; static void ldv_blk_cleanup_queue_122(struct request_queue *ldv_func_arg1 ) ; static void ldv_blk_cleanup_queue_127(struct request_queue *ldv_func_arg1 ) ; extern void blk_queue_bounce_limit(struct request_queue * , u64 ) ; extern void blk_queue_max_hw_sectors(struct request_queue * , unsigned int ) ; extern void blk_queue_max_segments(struct request_queue * , unsigned short ) ; extern void blk_queue_max_segment_size(struct request_queue * , unsigned int ) ; extern void blk_queue_max_discard_sectors(struct request_queue * , unsigned int ) ; extern void blk_queue_physical_block_size(struct request_queue * , unsigned int ) ; extern void blk_queue_io_min(struct request_queue * , unsigned int ) ; extern void blk_queue_flush(struct request_queue * , unsigned int ) ; extern int blk_rq_map_sg(struct request_queue * , struct request * , struct scatterlist * ) ; extern struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set * ) ; extern int blk_mq_alloc_tag_set(struct blk_mq_tag_set * ) ; extern void blk_mq_free_tag_set(struct blk_mq_tag_set * ) ; extern struct request *blk_mq_alloc_request(struct request_queue * , int , gfp_t , bool ) ; extern struct request *blk_mq_tag_to_rq(struct blk_mq_tags * , unsigned int ) ; extern struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue * , int const ) ; extern void blk_mq_start_request(struct request * ) ; extern void blk_mq_end_request(struct request * , int ) ; extern void blk_mq_stop_hw_queues(struct request_queue * ) ; extern void blk_mq_start_stopped_hw_queues(struct request_queue * , bool ) ; __inline static struct request *blk_mq_rq_from_pdu(void *pdu ) { { return ((struct request *)pdu + 0xfffffffffffffe90UL); } } __inline static void *blk_mq_rq_to_pdu(struct request *rq ) { { return ((void *)rq + 368UL); } } extern struct task_struct *kthread_create_on_node(int (*)(void * ) , void * , int , char const * , ...) ; extern int kthread_stop(struct task_struct * ) ; extern bool kthread_should_stop(void) ; extern struct dentry *debugfs_create_file(char const * , umode_t , struct dentry * , void * , struct file_operations const * ) ; extern struct dentry *debugfs_create_dir(char const * , struct dentry * ) ; extern void debugfs_remove(struct dentry * ) ; extern void debugfs_remove_recursive(struct dentry * ) ; static int instance ; struct list_head online_list ; struct list_head removing_list ; spinlock_t dev_lock ; static int mtip_major ; static struct dentry *dfs_parent ; static struct dentry *dfs_device_status ; static u32 cpu_use[8192U] ; static spinlock_t rssd_index_lock = {{{{{0U}}, 3735899821U, 4294967295U, (void *)-1, {0, {0, 0}, "rssd_index_lock", 0, 0UL}}}}; static struct ida rssd_index_ida = {{0, 0, 0, 0, {{{{{0U}}, 3735899821U, 4294967295U, (void *)-1, {0, {0, 0}, "(rssd_index_ida).idr.lock", 0, 0UL}}}}, 0, 0}, (struct ida_bitmap *)0}; static int mtip_block_initialize(struct driver_data *dd ) ; static bool mtip_check_surprise_removal(struct pci_dev *pdev ) { u16 vendor_id ; struct driver_data *dd ; void *tmp ; { { vendor_id = 0U; tmp = pci_get_drvdata(pdev); dd = (struct driver_data *)tmp; } if ((int )dd->sr) { return (1); } else { } { pci_read_config_word((struct pci_dev const *)pdev, 0, & vendor_id); } if ((unsigned int )vendor_id == 65535U) { dd->sr = 1; if ((unsigned long )dd->queue != (unsigned long )((struct request_queue *)0)) { { set_bit(19L, (unsigned long volatile *)(& (dd->queue)->queue_flags)); } } else { { dev_warn((struct device const *)(& (dd->pdev)->dev), "%s: dd->queue is NULL\n", "mtip_check_surprise_removal"); } } if ((unsigned long )dd->port != (unsigned long )((struct mtip_port *)0)) { { set_bit(7L, (unsigned long volatile *)(& (dd->port)->flags)); __wake_up(& (dd->port)->svc_wait, 1U, 1, (void *)0); } } else { { dev_warn((struct device const *)(& (dd->pdev)->dev), "%s: dd->port is NULL\n", "mtip_check_surprise_removal"); } } return (1); } else { } return (0); } } static struct mtip_cmd *mtip_get_int_command(struct driver_data *dd ) { struct request *rq ; void *tmp ; { { rq = blk_mq_alloc_request(dd->queue, 0, 16U, 1); tmp = blk_mq_rq_to_pdu(rq); } return ((struct mtip_cmd *)tmp); } } static void mtip_put_int_command(struct driver_data *dd , struct mtip_cmd *cmd ) { struct request *tmp ; { { tmp = blk_mq_rq_from_pdu((void *)cmd); ldv_blk_put_request_98(tmp); } return; } } static struct request *mtip_rq_from_tag(struct driver_data *dd , unsigned int tag ) { struct blk_mq_hw_ctx *hctx ; struct request *tmp ; { { hctx = *((dd->queue)->queue_hw_ctx); tmp = blk_mq_tag_to_rq(hctx->tags, tag); } return (tmp); } } static struct mtip_cmd *mtip_cmd_from_tag(struct driver_data *dd , unsigned int tag ) { struct request *rq ; struct request *tmp ; void *tmp___0 ; { { tmp = mtip_rq_from_tag(dd, tag); rq = tmp; tmp___0 = blk_mq_rq_to_pdu(rq); } return ((struct mtip_cmd *)tmp___0); } } static void mtip_async_complete(struct mtip_port *port , int tag , struct mtip_cmd *cmd , int status ) { struct driver_data *dd ; struct request *rq ; long tmp ; long tmp___0 ; long tmp___1 ; long tmp___2 ; { { dd = port->dd; tmp = ldv__builtin_expect((unsigned long )dd == (unsigned long )((struct driver_data *)0), 0L); } if (tmp != 0L) { return; } else { { tmp___0 = ldv__builtin_expect((unsigned long )port == (unsigned long )((struct mtip_port *)0), 0L); } if (tmp___0 != 0L) { return; } else { } } { tmp___1 = ldv__builtin_expect(status == 1073741824, 0L); } if (tmp___1 != 0L) { { dev_warn((struct device const *)(& ((port->dd)->pdev)->dev), "Command tag %d failed due to TFE\n", tag); } } else { } { dma_unmap_sg_attrs(& (dd->pdev)->dev, (struct scatterlist *)(& cmd->sg), cmd->scatter_ents, (enum dma_data_direction )cmd->direction, (struct dma_attrs *)0); rq = mtip_rq_from_tag(dd, (unsigned int )tag); tmp___2 = ldv__builtin_expect(cmd->unaligned != 0, 0L); } if (tmp___2 != 0L) { { up(& port->cmd_slot_unal); } } else { } { blk_mq_end_request(rq, status != 0 ? -5 : 0); } return; } } static int mtip_hba_reset(struct driver_data *dd ) { unsigned long timeout ; unsigned long tmp ; unsigned long __ms ; unsigned long tmp___0 ; int tmp___1 ; unsigned int tmp___2 ; unsigned int tmp___3 ; { { writel(1U, (void volatile *)dd->mmio + 4U); readl((void const volatile *)dd->mmio + 4U); tmp = msecs_to_jiffies(2000U); timeout = (unsigned long )jiffies + tmp; } ldv_47018: __ms = 10UL; goto ldv_47010; ldv_47009: { __const_udelay(4295000UL); } ldv_47010: tmp___0 = __ms; __ms = __ms - 1UL; if (tmp___0 != 0UL) { goto ldv_47009; } else { } { tmp___1 = constant_test_bit(1L, (unsigned long const volatile *)(& dd->dd_flag)); } if (tmp___1 != 0) { return (-1); } else { } { tmp___2 = readl((void const volatile *)dd->mmio + 4U); } if ((int )tmp___2 & 1 && (long )((unsigned long )jiffies - timeout) < 0L) { goto ldv_47018; } else { } { tmp___3 = readl((void const volatile *)dd->mmio + 4U); } if ((int )tmp___3 & 1) { return (-1); } else { } return (0); } } __inline static void mtip_issue_ncq_command(struct mtip_port *port , int tag ) { int group ; { { group = tag >> 5; ldv_spin_lock_99((spinlock_t *)(& port->cmd_issue_lock) + (unsigned long )group); writel((unsigned int )(1 << (tag & 31)), (void volatile *)port->s_active[tag >> 5]); writel((unsigned int )(1 << (tag & 31)), (void volatile *)port->cmd_issue[tag >> 5]); ldv_spin_unlock_100((spinlock_t *)(& port->cmd_issue_lock) + (unsigned long )group); } return; } } static int mtip_enable_fis(struct mtip_port *port , int enable ) { u32 tmp ; { { tmp = readl((void const volatile *)port->mmio + 24U); } if (enable != 0) { { writel(tmp | 16U, (void volatile *)port->mmio + 24U); } } else { { writel(tmp & 4294967279U, (void volatile *)port->mmio + 24U); } } { readl((void const volatile *)port->mmio + 24U); } return ((tmp & 16U) != 0U); } } static int mtip_enable_engine(struct mtip_port *port , int enable ) { u32 tmp ; { { tmp = readl((void const volatile *)port->mmio + 24U); } if (enable != 0) { { writel(tmp | 1U, (void volatile *)port->mmio + 24U); } } else { { writel(tmp & 4294967294U, (void volatile *)port->mmio + 24U); } } { readl((void const volatile *)port->mmio + 24U); } return ((int )tmp & 1); } } __inline static void mtip_start_port(struct mtip_port *port ) { { { mtip_enable_fis(port, 1); mtip_enable_engine(port, 1); } return; } } __inline static void mtip_deinit_port(struct mtip_port *port ) { { { writel(0U, (void volatile *)port->mmio + 20U); mtip_enable_engine(port, 0); mtip_enable_fis(port, 0); } return; } } static void mtip_init_port(struct mtip_port *port ) { int i ; unsigned int tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; unsigned int tmp___2 ; { { mtip_deinit_port(port); tmp = readl((void const volatile *)(port->dd)->mmio); } if ((int )tmp < 0) { { writel((unsigned int )(port->command_list_dma >> 32ULL), (void volatile *)port->mmio + 4U); writel((unsigned int )(port->rxfis_dma >> 32ULL), (void volatile *)port->mmio + 12U); } } else { } { writel((unsigned int )port->command_list_dma, (void volatile *)port->mmio); writel((unsigned int )port->rxfis_dma, (void volatile *)port->mmio + 8U); tmp___0 = readl((void const volatile *)port->mmio + 48U); writel(tmp___0, (void volatile *)port->mmio + 48U); i = 0; } goto ldv_47046; ldv_47045: { writel(4294967295U, (void volatile *)port->completed[i]); i = i + 1; } ldv_47046: ; if ((unsigned int )i < (port->dd)->slot_groups) { goto ldv_47045; } else { } { tmp___1 = readl((void const volatile *)port->mmio + 16U); writel(tmp___1, (void volatile *)port->mmio + 16U); tmp___2 = readl((void const volatile *)(port->dd)->mmio + 8U); writel(tmp___2, (void volatile *)(port->dd)->mmio + 8U); writel(2109735003U, (void volatile *)port->mmio + 20U); } return; } } static void mtip_restart_port(struct mtip_port *port ) { unsigned long timeout ; unsigned long tmp ; unsigned int tmp___0 ; int tmp___1 ; int tmp___2 ; unsigned long __ms ; unsigned long tmp___3 ; unsigned int tmp___4 ; unsigned int tmp___5 ; unsigned long tmp___6 ; int tmp___7 ; unsigned int tmp___8 ; unsigned long tmp___9 ; unsigned int tmp___10 ; int tmp___11 ; unsigned int tmp___12 ; { { mtip_enable_engine(port, 0); tmp = msecs_to_jiffies(500U); timeout = (unsigned long )jiffies + tmp; } goto ldv_47059; ldv_47058: ; ldv_47059: { tmp___0 = readl((void const volatile *)port->mmio + 24U); } if ((tmp___0 & 32768U) != 0U && (long )((unsigned long )jiffies - timeout) < 0L) { goto ldv_47058; } else { } { tmp___1 = constant_test_bit(1L, (unsigned long const volatile *)(& (port->dd)->dd_flag)); } if (tmp___1 != 0) { return; } else { } { tmp___4 = readl((void const volatile *)port->mmio + 24U); } if ((tmp___4 & 32768U) != 0U) { { dev_warn((struct device const *)(& ((port->dd)->pdev)->dev), "PxCMD.CR not clear, escalating reset\n"); tmp___2 = mtip_hba_reset(port->dd); } if (tmp___2 != 0) { { dev_err((struct device const *)(& ((port->dd)->pdev)->dev), "HBA reset escalation failed.\n"); } } else { } __ms = 30UL; goto ldv_47063; ldv_47062: { __const_udelay(4295000UL); } ldv_47063: tmp___3 = __ms; __ms = __ms - 1UL; if (tmp___3 != 0UL) { goto ldv_47062; } else { } } else { } { dev_warn((struct device const *)(& ((port->dd)->pdev)->dev), "Issuing COM reset\n"); tmp___5 = readl((void const volatile *)port->mmio + 44U); writel(tmp___5 | 1U, (void volatile *)port->mmio + 44U); readl((void const volatile *)port->mmio + 44U); tmp___6 = msecs_to_jiffies(1U); timeout = (unsigned long )jiffies + tmp___6; } goto ldv_47072; ldv_47071: ; ldv_47072: ; if ((long )((unsigned long )jiffies - timeout) < 0L) { goto ldv_47071; } else { } { tmp___7 = constant_test_bit(1L, (unsigned long const volatile *)(& (port->dd)->dd_flag)); } if (tmp___7 != 0) { return; } else { } { tmp___8 = readl((void const volatile *)port->mmio + 44U); writel(tmp___8 & 4294967294U, (void volatile *)port->mmio + 44U); readl((void const volatile *)port->mmio + 44U); tmp___9 = msecs_to_jiffies(500U); timeout = (unsigned long )jiffies + tmp___9; } goto ldv_47081; ldv_47080: ; ldv_47081: { tmp___10 = readl((void const volatile *)port->mmio + 40U); } if ((tmp___10 & 1U) == 0U && (long )((unsigned long )jiffies - timeout) < 0L) { goto ldv_47080; } else { } { tmp___11 = constant_test_bit(1L, (unsigned long const volatile *)(& (port->dd)->dd_flag)); } if (tmp___11 != 0) { return; } else { } { tmp___12 = readl((void const volatile *)port->mmio + 40U); } if ((tmp___12 & 1U) == 0U) { { dev_warn((struct device const *)(& ((port->dd)->pdev)->dev), "COM reset failed\n"); } } else { } { mtip_init_port(port); mtip_start_port(port); } return; } } static int mtip_device_reset(struct driver_data *dd ) { int rv ; bool tmp ; int tmp___0 ; unsigned long __ms ; unsigned long tmp___1 ; unsigned int tmp___2 ; { { rv = 0; tmp = mtip_check_surprise_removal(dd->pdev); } if ((int )tmp) { return (0); } else { } { tmp___0 = mtip_hba_reset(dd); } if (tmp___0 < 0) { rv = -14; } else { } if (1) { { __const_udelay(4295000UL); } } else { __ms = 1UL; goto ldv_47089; ldv_47088: { __const_udelay(4295000UL); } ldv_47089: tmp___1 = __ms; __ms = __ms - 1UL; if (tmp___1 != 0UL) { goto ldv_47088; } else { } } { mtip_init_port(dd->port); mtip_start_port(dd->port); tmp___2 = readl((void const volatile *)dd->mmio + 4U); writel(tmp___2 | 2U, (void volatile *)dd->mmio + 4U); } return (rv); } } static void print_tags(struct driver_data *dd , char *msg , unsigned long *tagbits , int cnt ) { unsigned char tagmap[128U] ; int group ; int tagmap_len ; int tmp ; { { tagmap_len = 0; __memset((void *)(& tagmap), 0, 128UL); group = 4; } goto ldv_47101; ldv_47100: { tmp = sprintf((char *)(& tagmap) + (unsigned long )tagmap_len, "%016lX ", *(tagbits + ((unsigned long )group + 0xffffffffffffffffUL))); tagmap_len = tagmap_len + tmp; group = group - 1; } ldv_47101: ; if (group > 0) { goto ldv_47100; } else { } { dev_warn((struct device const *)(& (dd->pdev)->dev), "%d command(s) %s: tagmap [%s]", cnt, msg, (unsigned char *)(& tagmap)); } return; } } static void mtip_completion(struct mtip_port *port , int tag , struct mtip_cmd *command , int status ) { struct completion *waiting ; long tmp ; { { waiting = (struct completion *)command->comp_data; tmp = ldv__builtin_expect(status == 1073741824, 0L); } if (tmp != 0L) { { dev_warn((struct device const *)(& ((port->dd)->pdev)->dev), "Internal command %d completed with TFE\n", tag); } } else { } { complete(waiting); } return; } } static void mtip_null_completion(struct mtip_port *port , int tag , struct mtip_cmd *command , int status ) { { return; } } static int mtip_read_log_page(struct mtip_port *port , u8 page , u16 *buffer , dma_addr_t buffer_dma , unsigned int sectors ) ; static int mtip_get_smart_attr(struct mtip_port *port , unsigned int id , struct smart_attr *attrib ) ; static void mtip_handle_tfe(struct driver_data *dd ) { int group ; int tag ; int bit ; int reissue ; int rv ; struct mtip_port *port ; struct mtip_cmd *cmd ; u32 completed ; struct host_to_dev_fis *fis ; unsigned long tagaccum[4U] ; unsigned int cmd_cnt ; unsigned char *buf ; char *fail_reason ; int fail_all_ncq_write ; int fail_all_ncq_cmds ; int tmp ; int tmp___0 ; bool tmp___1 ; long tmp___2 ; unsigned long __ms ; unsigned long tmp___3 ; int tmp___4 ; { { cmd_cnt = 0U; fail_reason = (char *)0; fail_all_ncq_write = 0; fail_all_ncq_cmds = 0; dev_warn((struct device const *)(& (dd->pdev)->dev), "Taskfile error\n"); port = dd->port; set_bit(1L, (unsigned long volatile *)(& port->flags)); tmp = constant_test_bit(0L, (unsigned long const volatile *)(& port->flags)); } if (tmp != 0) { { tmp___0 = constant_test_bit(0L, (unsigned long const volatile *)(& port->allocated)); } if (tmp___0 != 0) { { cmd = mtip_cmd_from_tag(dd, 0U); } if ((unsigned long )cmd->comp_data != (unsigned long )((void *)0) && (unsigned long )cmd->comp_func != (unsigned long )((void (*)(struct mtip_port * , int , struct mtip_cmd * , int ))0)) { { (*(cmd->comp_func))(port, 0, cmd, 1073741824); } } else { } goto handle_tfe_exit; } else { } } else { } { __memset((void *)(& tagaccum), 0, 32UL); group = 0; } goto ldv_47150; ldv_47149: { completed = readl((void const volatile *)port->completed[group]); dev_warn((struct device const *)(& (dd->pdev)->dev), "g=%u, comp=%x\n", group, completed); writel(completed, (void volatile *)port->completed[group]); bit = 0; } goto ldv_47147; ldv_47146: ; if ((completed & (u32 )(1 << bit)) == 0U) { goto ldv_47145; } else { } tag = (group << 5) + bit; if (tag == 0) { goto ldv_47145; } else { } { cmd = mtip_cmd_from_tag(dd, (unsigned int )tag); tmp___2 = ldv__builtin_expect((unsigned long )cmd->comp_func != (unsigned long )((void (*)(struct mtip_port * , int , struct mtip_cmd * , int ))0), 1L); } if (tmp___2 != 0L) { { set_bit((long )tag, (unsigned long volatile *)(& tagaccum)); cmd_cnt = cmd_cnt + 1U; (*(cmd->comp_func))(port, tag, cmd, 0); } } else { { dev_err((struct device const *)(& ((port->dd)->pdev)->dev), "Missing completion func for tag %d", tag); tmp___1 = mtip_check_surprise_removal(dd->pdev); } if ((int )tmp___1) { return; } else { } } ldv_47145: bit = bit + 1; ldv_47147: ; if (bit <= 31 && completed != 0U) { goto ldv_47146; } else { } group = group + 1; ldv_47150: ; if ((unsigned int )group < dd->slot_groups) { goto ldv_47149; } else { } { print_tags(dd, (char *)"completed (TFE)", (unsigned long *)(& tagaccum), (int )cmd_cnt); __ms = 20UL; } goto ldv_47154; ldv_47153: { __const_udelay(4295000UL); } ldv_47154: tmp___3 = __ms; __ms = __ms - 1UL; if (tmp___3 != 0UL) { goto ldv_47153; } else { } { mtip_restart_port(port); rv = mtip_read_log_page(dd->port, 16, (dd->port)->log_buf, (dd->port)->log_buf_dma, 1U); } if (rv != 0) { { dev_warn((struct device const *)(& (dd->pdev)->dev), "Error in READ LOG EXT (10h) command\n"); } } else { buf = (unsigned char *)(dd->port)->log_buf; if ((int )*(buf + 259UL) & 1) { { _dev_info((struct device const *)(& (dd->pdev)->dev), "Write protect bit is set.\n"); set_bit(3L, (unsigned long volatile *)(& dd->dd_flag)); fail_all_ncq_write = 1; fail_reason = (char *)"write protect"; } } else { } if ((unsigned int )*(buf + 288UL) == 247U) { { _dev_info((struct device const *)(& (dd->pdev)->dev), "Exceeded Tmax, drive in thermal shutdown.\n"); set_bit(2L, (unsigned long volatile *)(& dd->dd_flag)); fail_all_ncq_cmds = 1; fail_reason = (char *)"thermal shutdown"; } } else { } if ((unsigned int )*(buf + 288UL) == 191U) { { set_bit(0L, (unsigned long volatile *)(& dd->dd_flag)); _dev_info((struct device const *)(& (dd->pdev)->dev), "Drive indicates rebuild has failed. Secure erase required.\n"); fail_all_ncq_cmds = 1; fail_reason = (char *)"rebuild failed"; } } else { } } { __memset((void *)(& tagaccum), 0, 32UL); group = 0; } goto ldv_47161; ldv_47160: bit = 0; goto ldv_47158; ldv_47157: { reissue = 1; tag = (group << 5) + bit; cmd = mtip_cmd_from_tag(dd, (unsigned int )tag); fis = (struct host_to_dev_fis *)cmd->command; } if (tag == 0 || (unsigned int )fis->command == 239U) { reissue = 0; } else if (fail_all_ncq_cmds != 0 || (fail_all_ncq_write != 0 && (unsigned int )fis->command == 97U)) { { dev_warn((struct device const *)(& (dd->pdev)->dev), " Fail: %s w/tag %d [%s].\n", (unsigned int )fis->command == 97U ? (char *)"write" : (char *)"read", tag, (unsigned long )fail_reason != (unsigned long )((char *)0) ? fail_reason : (char *)"unknown"); } if ((unsigned long )cmd->comp_func != (unsigned long )((void (*)(struct mtip_port * , int , struct mtip_cmd * , int ))0)) { { (*(cmd->comp_func))(port, tag, cmd, -61); } } else { } goto ldv_47156; } else { } if (reissue != 0) { tmp___4 = cmd->retries; cmd->retries = cmd->retries - 1; if (tmp___4 > 0) { { set_bit((long )tag, (unsigned long volatile *)(& tagaccum)); mtip_issue_ncq_command(port, tag); } goto ldv_47156; } else { } } else { } { dev_warn((struct device const *)(& ((port->dd)->pdev)->dev), "retiring tag %d\n", tag); } if ((unsigned long )cmd->comp_func != (unsigned long )((void (*)(struct mtip_port * , int , struct mtip_cmd * , int ))0)) { { (*(cmd->comp_func))(port, tag, cmd, 1073741824); } } else { { dev_warn((struct device const *)(& ((port->dd)->pdev)->dev), "Bad completion for tag %d\n", tag); } } ldv_47156: bit = bit + 1; ldv_47158: ; if (bit <= 31) { goto ldv_47157; } else { } group = group + 1; ldv_47161: ; if ((unsigned int )group < dd->slot_groups) { goto ldv_47160; } else { } { print_tags(dd, (char *)"reissued (TFE)", (unsigned long *)(& tagaccum), (int )cmd_cnt); } handle_tfe_exit: { clear_bit(1L, (unsigned long volatile *)(& port->flags)); __wake_up(& port->svc_wait, 1U, 1, (void *)0); } return; } } __inline static void mtip_workq_sdbfx(struct mtip_port *port , int group , u32 completed ) { struct driver_data *dd ; int tag ; int bit ; struct mtip_cmd *command ; bool __warned ; int __ret_warn_once ; int __ret_warn_on ; long tmp ; long tmp___0 ; long tmp___1 ; long tmp___2 ; struct _ddebug descriptor ; long tmp___3 ; bool tmp___4 ; long tmp___5 ; int tmp___6 ; { dd = port->dd; if (completed == 0U) { { __ret_warn_once = completed == 0U; tmp___1 = ldv__builtin_expect(__ret_warn_once != 0, 0L); } if (tmp___1 != 0L) { { __ret_warn_on = ! __warned; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/block/mtip32xx/mtip32xx.c", 796); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { __warned = 1; } else { } } else { } { ldv__builtin_expect(__ret_warn_once != 0, 0L); } return; } else { } { writel(completed, (void volatile *)port->completed[group]); bit = 0; } goto ldv_47181; ldv_47180: ; if ((int )completed & 1) { { tag = (group << 5) | bit; tmp___2 = ldv__builtin_expect(tag == 0, 0L); } if (tmp___2 != 0L) { goto ldv_47177; } else { } { command = mtip_cmd_from_tag(dd, (unsigned int )tag); tmp___5 = ldv__builtin_expect((unsigned long )command->comp_func != (unsigned long )((void (*)(struct mtip_port * , int , struct mtip_cmd * , int ))0), 1L); } if (tmp___5 != 0L) { { (*(command->comp_func))(port, tag, command, 0); } } else { { descriptor.modname = "mtip32xx"; descriptor.function = "mtip_workq_sdbfx"; descriptor.filename = "drivers/block/mtip32xx/mtip32xx.c"; descriptor.format = "Null completion for tag %d"; descriptor.lineno = 817U; descriptor.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___3 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (dd->pdev)->dev), "Null completion for tag %d", tag); } } else { } { tmp___4 = mtip_check_surprise_removal(dd->pdev); } if ((int )tmp___4) { return; } else { } } } else { } completed = completed >> 1; ldv_47177: bit = bit + 1; ldv_47181: ; if (bit <= 31 && completed != 0U) { goto ldv_47180; } else { } { tmp___6 = atomic_sub_return(1, & dd->irq_workers_active); } if (tmp___6 == 0) { { writel(4294967295U, (void volatile *)dd->mmio + 8U); } } else { } return; } } __inline static void mtip_process_legacy(struct driver_data *dd , u32 port_stat ) { struct mtip_port *port ; struct mtip_cmd *cmd ; struct mtip_cmd *tmp ; int tmp___0 ; unsigned int tmp___1 ; { { port = dd->port; tmp = mtip_cmd_from_tag(dd, 0U); cmd = tmp; tmp___0 = constant_test_bit(0L, (unsigned long const volatile *)(& port->flags)); } if (tmp___0 != 0 && (unsigned long )cmd != (unsigned long )((struct mtip_cmd *)0)) { { tmp___1 = readl((void const volatile *)port->cmd_issue[0]); } if ((tmp___1 & 1U) == 0U) { if ((unsigned long )cmd->comp_func != (unsigned long )((void (*)(struct mtip_port * , int , struct mtip_cmd * , int ))0)) { { (*(cmd->comp_func))(port, 0, cmd, 0); } return; } else { } } else { } } else { } return; } } __inline static void mtip_process_errors(struct driver_data *dd , u32 port_stat ) { long tmp ; long tmp___0 ; bool tmp___1 ; long tmp___2 ; long tmp___3 ; { { tmp = ldv__builtin_expect((port_stat & 64U) != 0U, 0L); } if (tmp != 0L) { { dev_warn((struct device const *)(& (dd->pdev)->dev), "Clearing PxSERR.DIAG.x\n"); writel(67108864U, (void volatile *)(dd->port)->mmio + 48U); } } else { } { tmp___0 = ldv__builtin_expect((port_stat & 4194304U) != 0U, 0L); } if (tmp___0 != 0L) { { dev_warn((struct device const *)(& (dd->pdev)->dev), "Clearing PxSERR.DIAG.n\n"); writel(65536U, (void volatile *)(dd->port)->mmio + 48U); } } else { } { tmp___2 = ldv__builtin_expect((port_stat & 3082813364U) != 0U, 0L); } if (tmp___2 != 0L) { { dev_warn((struct device const *)(& (dd->pdev)->dev), "Port stat errors %x unhandled\n", port_stat & 3082813364U); tmp___1 = mtip_check_surprise_removal(dd->pdev); } if ((int )tmp___1) { return; } else { } } else { } { tmp___3 = ldv__builtin_expect((port_stat & 1207959552U) != 0U, 1L); } if (tmp___3 != 0L) { { set_bit(1L, (unsigned long volatile *)(& (dd->port)->flags)); __wake_up(& (dd->port)->svc_wait, 1U, 1, (void *)0); } } else { } return; } } __inline static irqreturn_t mtip_handle_irq(struct driver_data *data ) { struct driver_data *dd ; struct mtip_port *port ; u32 hba_stat ; u32 port_stat ; int rv ; int do_irq_enable ; int i ; int workers ; struct mtip_work *twork ; bool __warned ; int __ret_warn_once ; int tmp ; int __ret_warn_on ; long tmp___0 ; long tmp___1 ; long tmp___2 ; long tmp___3 ; long tmp___4 ; bool tmp___5 ; long tmp___6 ; int tmp___7 ; long tmp___8 ; long tmp___9 ; long tmp___10 ; { { dd = data; port = dd->port; rv = 0; do_irq_enable = 1; hba_stat = readl((void const volatile *)dd->mmio + 8U); } if (hba_stat != 0U) { { rv = 1; port_stat = readl((void const volatile *)port->mmio + 16U); writel(port_stat, (void volatile *)port->mmio + 16U); tmp___4 = ldv__builtin_expect((port_stat & 8U) != 0U, 1L); } if (tmp___4 != 0L) { { do_irq_enable = 0; tmp = atomic_read((atomic_t const *)(& dd->irq_workers_active)); __ret_warn_once = tmp != 0; tmp___2 = ldv__builtin_expect(__ret_warn_once != 0, 0L); } if (tmp___2 != 0L) { { __ret_warn_on = ! __warned; tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("drivers/block/mtip32xx/mtip32xx.c", 904); } } else { } { tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { __warned = 1; } else { } } else { } { ldv__builtin_expect(__ret_warn_once != 0, 0L); i = 0; workers = 0; } goto ldv_47211; ldv_47210: { twork = (struct mtip_work *)(& dd->work) + (unsigned long )i; twork->completed = readl((void const volatile *)port->completed[i]); } if (twork->completed != 0U) { workers = workers + 1; } else { } i = i + 1; ldv_47211: ; if (i <= 7) { goto ldv_47210; } else { } { atomic_set(& dd->irq_workers_active, workers); } if (workers != 0) { i = 1; goto ldv_47214; ldv_47213: twork = (struct mtip_work *)(& dd->work) + (unsigned long )i; if (twork->completed != 0U) { { queue_work_on(twork->cpu_binding, dd->isr_workq, & twork->work); } } else { } i = i + 1; ldv_47214: ; if (i <= 7) { goto ldv_47213; } else { } { tmp___3 = ldv__builtin_expect(dd->work[0].completed != 0U, 1L); } if (tmp___3 != 0L) { { mtip_workq_sdbfx(port, 0, dd->work[0].completed); } } else { } } else { do_irq_enable = 1; } } else { } { tmp___8 = ldv__builtin_expect((port_stat & 2109734992U) != 0U, 0L); } if (tmp___8 != 0L) { { tmp___5 = mtip_check_surprise_removal(dd->pdev); tmp___6 = ldv__builtin_expect((long )tmp___5, 0L); } if (tmp___6 != 0L) { return (1); } else { } { tmp___7 = constant_test_bit(1L, (unsigned long const volatile *)(& dd->dd_flag)); } if (tmp___7 != 0) { return ((irqreturn_t )rv); } else { } { mtip_process_errors(dd, port_stat & 2109734992U); } } else { } { tmp___9 = ldv__builtin_expect((port_stat & 3U) != 0U, 0L); } if (tmp___9 != 0L) { { mtip_process_legacy(dd, port_stat & 3U); } } else { } } else { } { tmp___10 = ldv__builtin_expect(do_irq_enable != 0, 0L); } if (tmp___10 != 0L) { { writel(hba_stat, (void volatile *)dd->mmio + 8U); } } else { } return ((irqreturn_t )rv); } } static irqreturn_t mtip_irq_handler(int irq , void *instance___0 ) { struct driver_data *dd ; irqreturn_t tmp ; { { dd = (struct driver_data *)instance___0; tmp = mtip_handle_irq(dd); } return (tmp); } } static void mtip_issue_non_ncq_command(struct mtip_port *port , int tag ) { { { writel((unsigned int )(1 << (tag & 31)), (void volatile *)port->cmd_issue[tag >> 5]); } return; } } static bool mtip_pause_ncq(struct mtip_port *port , struct host_to_dev_fis *fis ) { struct host_to_dev_fis *reply ; unsigned long task_file_data ; unsigned int tmp ; { { reply = (struct host_to_dev_fis *)port->rxfis + 64U; tmp = readl((void const volatile *)port->mmio + 32U); task_file_data = (unsigned long )tmp; } if ((unsigned int )fis->command == 244U) { { clear_bit(0L, (unsigned long volatile *)(& (port->dd)->dd_flag)); } } else { } if ((int )task_file_data & 1) { return (0); } else { } if ((unsigned int )fis->command == 243U) { { set_bit(2L, (unsigned long volatile *)(& port->flags)); set_bit(0L, (unsigned long volatile *)(& (port->dd)->dd_flag)); port->ic_pause_timer = jiffies; } return (1); } else if ((unsigned int )*((unsigned short *)fis + 1UL) == 914U) { { set_bit(3L, (unsigned long volatile *)(& port->flags)); port->ic_pause_timer = jiffies; } return (1); } else if ((unsigned int )fis->command == 244U || ((unsigned int )fis->command == 252U && ((((unsigned int )fis->features == 39U || (unsigned int )fis->features == 114U) || (unsigned int )fis->features == 98U) || (unsigned int )fis->features == 38U))) { { mtip_restart_port(port); } return (0); } else { } return (0); } } static int mtip_quiesce_io(struct mtip_port *port , unsigned long timeout ) { unsigned long to ; unsigned int n ; unsigned int active ; unsigned long tmp ; int tmp___0 ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; unsigned int tmp___4 ; unsigned int tmp___5 ; { { active = 1U; blk_mq_stop_hw_queues((port->dd)->queue); tmp = msecs_to_jiffies((unsigned int const )timeout); to = (unsigned long )jiffies + tmp; } ldv_47250: { tmp___0 = constant_test_bit(4L, (unsigned long const volatile *)(& port->flags)); } if (tmp___0 != 0) { { tmp___1 = constant_test_bit(5L, (unsigned long const volatile *)(& port->flags)); } if (tmp___1 != 0) { { msleep(20U); } goto ldv_47238; } else { } } else { } { msleep(100U); tmp___2 = mtip_check_surprise_removal((port->dd)->pdev); } if ((int )tmp___2) { goto err_fault; } else { } { tmp___3 = constant_test_bit(1L, (unsigned long const volatile *)(& (port->dd)->dd_flag)); } if (tmp___3 != 0) { goto err_fault; } else { } { tmp___4 = readl((void const volatile *)port->s_active[0]); active = tmp___4 & 4294967294U; n = 1U; } goto ldv_47241; ldv_47240: { tmp___5 = readl((void const volatile *)port->s_active[n]); active = active | tmp___5; n = n + 1U; } ldv_47241: ; if (n < (port->dd)->slot_groups) { goto ldv_47240; } else { } if (active == 0U) { goto ldv_47243; } else { } ldv_47238: ; if ((long )((unsigned long )jiffies - to) < 0L) { goto ldv_47250; } else { } ldv_47243: { blk_mq_start_stopped_hw_queues((port->dd)->queue, 1); } return (active != 0U ? -16 : 0); err_fault: { blk_mq_start_stopped_hw_queues((port->dd)->queue, 1); } return (-14); } } static int mtip_exec_internal_command(struct mtip_port *port , struct host_to_dev_fis *fis , int fis_len , dma_addr_t buffer , int buf_len , u32 opts , gfp_t atomic , unsigned long timeout ) { struct mtip_cmd_sg *command_sg ; struct completion wait ; struct mtip_cmd *int_cmd ; struct driver_data *dd ; int rv ; int tmp ; bool tmp___0 ; int tmp___1 ; unsigned long tmp___2 ; long tmp___3 ; u32 hba_stat ; u32 port_stat ; unsigned long tmp___4 ; bool tmp___5 ; int tmp___6 ; unsigned int tmp___7 ; int tmp___8 ; unsigned int tmp___9 ; bool tmp___10 ; { { ldv_init_completion_101(& wait); wait = wait; dd = port->dd; rv = 0; } if ((buffer & 7ULL) != 0ULL) { { dev_err((struct device const *)(& (dd->pdev)->dev), "SG buffer is not 8 byte aligned\n"); } return (-14); } else { } { int_cmd = mtip_get_int_command(dd); set_bit(0L, (unsigned long volatile *)(& port->flags)); port->ic_pause_timer = 0UL; clear_bit(2L, (unsigned long volatile *)(& port->flags)); clear_bit(3L, (unsigned long volatile *)(& port->flags)); } if (atomic == 208U) { if ((unsigned int )fis->command != 224U) { { tmp = mtip_quiesce_io(port, 45000UL); } if (tmp < 0) { { dev_warn((struct device const *)(& (dd->pdev)->dev), "Failed to quiesce IO\n"); mtip_put_int_command(dd, int_cmd); clear_bit(0L, (unsigned long volatile *)(& port->flags)); __wake_up(& port->svc_wait, 1U, 1, (void *)0); } return (-16); } else { } } else { } int_cmd->comp_data = (void *)(& wait); int_cmd->comp_func = & mtip_completion; } else { int_cmd->comp_data = (void *)0; int_cmd->comp_func = & mtip_null_completion; } { __memcpy(int_cmd->command, (void const *)fis, (size_t )(fis_len * 4)); (int_cmd->command_header)->opts = opts | (u32 )fis_len; } if (buf_len != 0) { command_sg = (struct mtip_cmd_sg *)int_cmd->command + 128U; command_sg->info = (unsigned int )(buf_len + -1) & 4194303U; command_sg->dba = (unsigned int )buffer; command_sg->dba_upper = (unsigned int )(buffer >> 32ULL); (int_cmd->command_header)->opts = (int_cmd->command_header)->opts | 65536U; } else { } { (int_cmd->command_header)->__annonCompField91.byte_count = 0U; mtip_issue_non_ncq_command(port, 0); } if (atomic == 208U) { { tmp___2 = msecs_to_jiffies((unsigned int const )timeout); tmp___3 = ldv_wait_for_completion_interruptible_timeout_102(& wait, tmp___2); rv = (int )tmp___3; } if (rv <= 0) { if (rv == -512) { { dev_err((struct device const *)(& (dd->pdev)->dev), "Internal command [%02X] was interrupted after %lu ms\n", (int )fis->command, timeout); rv = -4; } goto exec_ic_exit; } else if (rv == 0) { { dev_err((struct device const *)(& (dd->pdev)->dev), "Internal command did not complete [%02X] within timeout of %lu ms\n", (int )fis->command, timeout); } } else { { dev_err((struct device const *)(& (dd->pdev)->dev), "Internal command [%02X] wait returned code [%d] after %lu ms - unhandled\n", (int )fis->command, rv, timeout); } } { tmp___0 = mtip_check_surprise_removal(dd->pdev); } if ((int )tmp___0) { { dev_err((struct device const *)(& (dd->pdev)->dev), "Internal command [%02X] wait returned due to SR\n", (int )fis->command); rv = -6; } goto exec_ic_exit; } else { { tmp___1 = constant_test_bit(1L, (unsigned long const volatile *)(& dd->dd_flag)); } if (tmp___1 != 0) { { dev_err((struct device const *)(& (dd->pdev)->dev), "Internal command [%02X] wait returned due to SR\n", (int )fis->command); rv = -6; } goto exec_ic_exit; } else { } } { mtip_device_reset(dd); rv = -11; } goto exec_ic_exit; } else { } } else { { tmp___4 = msecs_to_jiffies((unsigned int const )timeout); timeout = (unsigned long )jiffies + tmp___4; } goto ldv_47276; ldv_47278: { tmp___5 = mtip_check_surprise_removal(dd->pdev); } if ((int )tmp___5) { rv = -6; goto exec_ic_exit; } else { } if ((unsigned int )fis->command != 224U) { { tmp___6 = constant_test_bit(1L, (unsigned long const volatile *)(& dd->dd_flag)); } if (tmp___6 != 0) { rv = -6; goto exec_ic_exit; } else { } } else { } { port_stat = readl((void const volatile *)port->mmio + 16U); } if (port_stat == 0U) { goto ldv_47276; } else { } if ((port_stat & 2109734992U) != 0U) { { dev_err((struct device const *)(& (dd->pdev)->dev), "Internal command [%02X] failed\n", (int )fis->command); mtip_device_reset(dd); rv = -5; } goto exec_ic_exit; } else { { writel(port_stat, (void volatile *)port->mmio + 16U); hba_stat = readl((void const volatile *)dd->mmio + 8U); } if (hba_stat != 0U) { { writel(hba_stat, (void volatile *)dd->mmio + 8U); } } else { } } goto ldv_47277; ldv_47276: { tmp___7 = readl((void const volatile *)port->cmd_issue[0]); } if ((int )tmp___7 & 1 && (long )((unsigned long )jiffies - timeout) < 0L) { goto ldv_47278; } else { } ldv_47277: ; } { tmp___9 = readl((void const volatile *)port->cmd_issue[0]); } if ((int )tmp___9 & 1) { { rv = -6; tmp___8 = constant_test_bit(1L, (unsigned long const volatile *)(& dd->dd_flag)); } if (tmp___8 == 0) { { mtip_device_reset(dd); rv = -11; } } else { } } else { } exec_ic_exit: { mtip_put_int_command(dd, int_cmd); } if (rv >= 0) { { tmp___10 = mtip_pause_ncq(port, fis); } if ((int )tmp___10) { return (rv); } else { } } else { } { clear_bit(0L, (unsigned long volatile *)(& port->flags)); __wake_up(& port->svc_wait, 1U, 1, (void *)0); } return (rv); } } __inline static void ata_swap_string(u16 *buf , unsigned int len ) { int i ; { i = 0; goto ldv_47285; ldv_47284: { __swab16s(buf + (unsigned long )i); i = i + 1; } ldv_47285: ; if ((unsigned int )i < len / 2U) { goto ldv_47284; } else { } return; } } static void mtip_set_timeout(struct driver_data *dd , struct host_to_dev_fis *fis , unsigned int *timeout , u8 erasemode ) { { { if ((int )fis->command == 146) { goto case_146; } else { } if ((int )fis->command == 244) { goto case_244; } else { } if ((int )fis->command == 252) { goto case_252; } else { } if ((int )fis->command == 224) { goto case_224; } else { } if ((int )fis->command == 247) { goto case_247; } else { } if ((int )fis->command == 250) { goto case_250; } else { } if ((int )fis->command == 176) { goto case_176; } else { } goto switch_default; case_146: /* CIL Label */ *timeout = 120000U; goto ldv_47294; case_244: /* CIL Label */ ; case_252: /* CIL Label */ ; if ((unsigned int )erasemode != 0U) { *timeout = (unsigned int )((int )*((dd->port)->identify + 90UL) * 120000); } else { *timeout = (unsigned int )((int )*((dd->port)->identify + 89UL) * 120000); } goto ldv_47294; case_224: /* CIL Label */ *timeout = 120000U; goto ldv_47294; case_247: /* CIL Label */ ; case_250: /* CIL Label */ *timeout = 60000U; goto ldv_47294; case_176: /* CIL Label */ *timeout = 15000U; goto ldv_47294; switch_default: /* CIL Label */ *timeout = 5000U; goto ldv_47294; switch_break: /* CIL Label */ ; } ldv_47294: ; return; } } static int mtip_get_identify(struct mtip_port *port , void *user_buffer ) { int rv ; struct host_to_dev_fis fis ; int tmp ; int tmp___0 ; unsigned long tmp___1 ; { { rv = 0; tmp = constant_test_bit(1L, (unsigned long const volatile *)(& (port->dd)->dd_flag)); } if (tmp != 0) { return (-14); } else { } { __memset((void *)(& fis), 0, 20UL); fis.type = 39U; fis.opts = 128U; fis.command = 236U; port->identify_valid = 0UL; __memset((void *)port->identify, 0, 512UL); tmp___0 = mtip_exec_internal_command(port, & fis, 5, port->identify_dma, 512, 0U, 208U, 5000UL); } if (tmp___0 < 0) { rv = -1; goto out; } else { } { ata_swap_string(port->identify + 27UL, 40U); ata_swap_string(port->identify + 23UL, 8U); ata_swap_string(port->identify + 10UL, 20U); } if (((int )*(port->identify + 128UL) & 4) != 0) { { set_bit(0L, (unsigned long volatile *)(& (port->dd)->dd_flag)); } } else { { clear_bit(0L, (unsigned long volatile *)(& (port->dd)->dd_flag)); } } (port->dd)->trim_supp = 0; port->identify_valid = 1UL; if ((unsigned long )user_buffer != (unsigned long )((void *)0)) { { tmp___1 = copy_to_user(user_buffer, (void const *)port->identify, 512UL); } if (tmp___1 != 0UL) { rv = -14; goto out; } else { } } else { } out: ; return (rv); } } static int mtip_standby_immediate(struct mtip_port *port ) { int rv ; struct host_to_dev_fis fis ; unsigned long start ; unsigned int timeout ; { { __memset((void *)(& fis), 0, 20UL); fis.type = 39U; fis.opts = 128U; fis.command = 224U; mtip_set_timeout(port->dd, & fis, & timeout, 0); start = jiffies; rv = mtip_exec_internal_command(port, & fis, 5, 0ULL, 0, 0U, 32U, (unsigned long )timeout); } if (rv != 0) { { dev_warn((struct device const *)(& ((port->dd)->pdev)->dev), "STANDBY IMMEDIATE command failed.\n"); } } else { } return (rv); } } static int mtip_read_log_page(struct mtip_port *port , u8 page , u16 *buffer , dma_addr_t buffer_dma , unsigned int sectors ) { struct host_to_dev_fis fis ; int tmp ; { { __memset((void *)(& fis), 0, 20UL); fis.type = 39U; fis.opts = 128U; fis.command = 47U; fis.sect_count = (unsigned char )sectors; fis.sect_cnt_ex = (unsigned char )(sectors >> 8); fis.__annonCompField84.lba_low = page; fis.__annonCompField85.lba_mid = 0U; fis.__annonCompField87.device = 160U; __memset((void *)buffer, 0, (size_t )(sectors * 512U)); tmp = mtip_exec_internal_command(port, & fis, 5, buffer_dma, (int )(sectors * 512U), 0U, 32U, 5000UL); } return (tmp); } } static int mtip_get_smart_data(struct mtip_port *port , u8 *buffer , dma_addr_t buffer_dma ) { struct host_to_dev_fis fis ; int tmp ; { { __memset((void *)(& fis), 0, 20UL); fis.type = 39U; fis.opts = 128U; fis.command = 176U; fis.features = 208U; fis.sect_count = 1U; fis.__annonCompField85.lba_mid = 79U; fis.__annonCompField86.lba_hi = 194U; fis.__annonCompField87.device = 160U; tmp = mtip_exec_internal_command(port, & fis, 5, buffer_dma, 512, 0U, 32U, 15000UL); } return (tmp); } } static int mtip_get_smart_attr(struct mtip_port *port , unsigned int id , struct smart_attr *attrib ) { int rv ; int i ; struct smart_attr *pattr ; { if ((unsigned long )attrib == (unsigned long )((struct smart_attr *)0)) { return (-22); } else { } if (port->identify_valid == 0UL) { { dev_warn((struct device const *)(& ((port->dd)->pdev)->dev), "IDENTIFY DATA not valid\n"); } return (-1); } else { } if (((int )*(port->identify + 82UL) & 1) == 0) { { dev_warn((struct device const *)(& ((port->dd)->pdev)->dev), "SMART not supported\n"); } return (-1); } else { } if (((int )*(port->identify + 85UL) & 1) == 0) { { dev_warn((struct device const *)(& ((port->dd)->pdev)->dev), "SMART not enabled\n"); } return (-1); } else { } { __memset((void *)port->smart_buf, 0, 512UL); rv = mtip_get_smart_data(port, port->smart_buf, port->smart_buf_dma); } if (rv != 0) { { dev_warn((struct device const *)(& ((port->dd)->pdev)->dev), "Failed to ge SMART data\n"); } return (rv); } else { } pattr = (struct smart_attr *)port->smart_buf + 2U; i = 0; goto ldv_47340; ldv_47339: ; if ((unsigned int )pattr->attr_id == id) { { __memcpy((void *)attrib, (void const *)pattr, 12UL); } goto ldv_47338; } else { } i = i + 1; pattr = pattr + 1; ldv_47340: ; if (i <= 28) { goto ldv_47339; } else { } ldv_47338: ; if (i == 29) { { dev_warn((struct device const *)(& ((port->dd)->pdev)->dev), "Query for invalid SMART attribute ID\n"); rv = -22; } } else { } return (rv); } } static int mtip_send_trim(struct driver_data *dd , unsigned int lba , unsigned int len ) { int i ; int rv ; u64 tlba ; u64 tlen ; u64 sect_left ; struct mtip_trim_entry *buf ; dma_addr_t dma_addr ; struct host_to_dev_fis fis ; int __ret_warn_on ; long tmp ; int __ret_warn_on___0 ; long tmp___0 ; int __ret_warn_on___1 ; long tmp___1 ; void *tmp___2 ; int __ret_warn_on___2 ; long tmp___3 ; int tmp___4 ; { rv = 0; if (len == 0U || ! dd->trim_supp) { return (-22); } else { } { __ret_warn_on = len > 524224U; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/block/mtip32xx/mtip32xx.c", 1613); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); __ret_warn_on___0 = (len & 7U) != 0U; tmp___0 = ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("drivers/block/mtip32xx/mtip32xx.c", 1616); } } else { } { ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); __ret_warn_on___1 = 0; tmp___1 = ldv__builtin_expect(__ret_warn_on___1 != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("drivers/block/mtip32xx/mtip32xx.c", 1619); } } else { } { ldv__builtin_expect(__ret_warn_on___1 != 0, 0L); tmp___2 = dmam_alloc_coherent(& (dd->pdev)->dev, 512UL, & dma_addr, 208U); buf = (struct mtip_trim_entry *)tmp___2; } if ((unsigned long )buf == (unsigned long )((struct mtip_trim_entry *)0)) { return (-12); } else { } { __memset((void *)buf, 0, 512UL); i = 0; sect_left = (u64 )len; tlba = (u64 )lba; } goto ldv_47361; ldv_47360: tlen = 65528ULL < sect_left ? 65528ULL : sect_left; (buf + (unsigned long )i)->lba = (unsigned int )tlba; (buf + (unsigned long )i)->range = (u16 )tlen; tlba = tlba + tlen; sect_left = sect_left - tlen; i = i + 1; ldv_47361: ; if (i <= 7 && sect_left != 0ULL) { goto ldv_47360; } else { } { __ret_warn_on___2 = sect_left != 0ULL; tmp___3 = ldv__builtin_expect(__ret_warn_on___2 != 0, 0L); } if (tmp___3 != 0L) { { warn_slowpath_null("drivers/block/mtip32xx/mtip32xx.c", 1639); } } else { } { ldv__builtin_expect(__ret_warn_on___2 != 0, 0L); __memset((void *)(& fis), 0, 20UL); fis.type = 39U; fis.opts = 128U; fis.command = 251U; fis.features = 96U; fis.sect_count = 1U; fis.__annonCompField87.device = 160U; tmp___4 = mtip_exec_internal_command(dd->port, & fis, 5, dma_addr, 512, 0U, 208U, 240000UL); } if (tmp___4 < 0) { rv = -5; } else { } { dmam_free_coherent(& (dd->pdev)->dev, 512UL, (void *)buf, dma_addr); } return (rv); } } static bool mtip_hw_get_capacity(struct driver_data *dd , sector_t *sectors ) { struct mtip_port *port ; u64 total ; u64 raw0 ; u64 raw1 ; u64 raw2 ; u64 raw3 ; { port = dd->port; raw0 = (u64 )*(port->identify + 100UL); raw1 = (u64 )*(port->identify + 101UL); raw2 = (u64 )*(port->identify + 102UL); raw3 = (u64 )*(port->identify + 103UL); total = ((raw0 | (raw1 << 16)) | (raw2 << 32)) | (raw3 << 48); *sectors = (sector_t )total; return (port->identify_valid != 0UL); } } static void mtip_dump_identify(struct mtip_port *port ) { sector_t sectors ; unsigned short revid ; char cbuf[42U] ; bool tmp ; { if (port->identify_valid == 0UL) { return; } else { } { strlcpy((char *)(& cbuf), (char const *)port->identify + 10U, 21UL); _dev_info((struct device const *)(& ((port->dd)->pdev)->dev), "Serial No.: %s\n", (char *)(& cbuf)); strlcpy((char *)(& cbuf), (char const *)port->identify + 23U, 9UL); _dev_info((struct device const *)(& ((port->dd)->pdev)->dev), "Firmware Ver.: %s\n", (char *)(& cbuf)); strlcpy((char *)(& cbuf), (char const *)port->identify + 27U, 41UL); _dev_info((struct device const *)(& ((port->dd)->pdev)->dev), "Model: %s\n", (char *)(& cbuf)); _dev_info((struct device const *)(& ((port->dd)->pdev)->dev), "Security: %04x %s\n", (int )*(port->identify + 128UL), ((int )*(port->identify + 128UL) & 4) != 0 ? (char *)"(LOCKED)" : (char *)""); tmp = mtip_hw_get_capacity(port->dd, & sectors); } if ((int )tmp) { { _dev_info((struct device const *)(& ((port->dd)->pdev)->dev), "Capacity: %llu sectors (%llu MB)\n", (unsigned long long )sectors, (unsigned long long )sectors * 512ULL >> 20); } } else { } { pci_read_config_word((struct pci_dev const *)(port->dd)->pdev, 8, & revid); } { if (((int )revid & 255) == 1) { goto case_1; } else { } if (((int )revid & 255) == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { strlcpy((char *)(& cbuf), "A0", 3UL); } goto ldv_47382; case_3: /* CIL Label */ { strlcpy((char *)(& cbuf), "A2", 3UL); } goto ldv_47382; switch_default: /* CIL Label */ { strlcpy((char *)(& cbuf), "?", 2UL); } goto ldv_47382; switch_break: /* CIL Label */ ; } ldv_47382: { _dev_info((struct device const *)(& ((port->dd)->pdev)->dev), "Card Type: %s\n", (char *)(& cbuf)); } return; } } __inline static void fill_command_sg(struct driver_data *dd , struct mtip_cmd *command , int nents ) { int n ; unsigned int dma_len ; struct mtip_cmd_sg *command_sg ; struct scatterlist *sg ; { sg = (struct scatterlist *)(& command->sg); command_sg = (struct mtip_cmd_sg *)command->command + 128U; n = 0; goto ldv_47395; ldv_47394: dma_len = sg->dma_length; if (dma_len > 4194304U) { { dev_err((struct device const *)(& (dd->pdev)->dev), "DMA segment length truncated\n"); } } else { } command_sg->info = (dma_len - 1U) & 4194303U; command_sg->dba = (unsigned int )sg->dma_address; command_sg->dba_upper = (unsigned int )(sg->dma_address >> 32ULL); command_sg = command_sg + 1; sg = sg + 1; n = n + 1; ldv_47395: ; if (n < nents) { goto ldv_47394; } else { } return; } } static int exec_drive_task(struct mtip_port *port , u8 *command ) { struct host_to_dev_fis fis ; struct host_to_dev_fis *reply ; unsigned int to ; int tmp ; { { reply = (struct host_to_dev_fis *)port->rxfis + 64U; __memset((void *)(& fis), 0, 20UL); fis.type = 39U; fis.opts = 128U; fis.command = *command; fis.features = *(command + 1UL); fis.sect_count = *(command + 2UL); fis.__annonCompField84.sector = *(command + 3UL); fis.__annonCompField85.cyl_low = *(command + 4UL); fis.__annonCompField86.cyl_hi = *(command + 5UL); fis.__annonCompField87.device = (unsigned int )*(command + 6UL) & 239U; mtip_set_timeout(port->dd, & fis, & to, 0); tmp = mtip_exec_internal_command(port, & fis, 5, 0ULL, 0, 0U, 208U, (unsigned long )to); } if (tmp < 0) { return (-1); } else { } *command = reply->command; *(command + 1UL) = reply->features; *(command + 4UL) = reply->__annonCompField85.cyl_low; *(command + 5UL) = reply->__annonCompField86.cyl_hi; return (0); } } static int exec_drive_command(struct mtip_port *port , u8 *command , void *user_buffer ) { struct host_to_dev_fis fis ; struct host_to_dev_fis *reply ; u8 *buf ; dma_addr_t dma_addr ; int rv ; int xfer_sz ; unsigned int to ; void *tmp ; int tmp___0 ; unsigned long tmp___1 ; { buf = (u8 *)0U; dma_addr = 0ULL; rv = 0; xfer_sz = (int )*(command + 3UL); if (xfer_sz != 0) { if ((unsigned long )user_buffer == (unsigned long )((void *)0)) { return (-14); } else { } { tmp = dmam_alloc_coherent(& ((port->dd)->pdev)->dev, (size_t )(xfer_sz * 512), & dma_addr, 208U); buf = (u8 *)tmp; } if ((unsigned long )buf == (unsigned long )((u8 *)0U)) { { dev_err((struct device const *)(& ((port->dd)->pdev)->dev), "Memory allocation failed (%d bytes)\n", xfer_sz * 512); } return (-12); } else { } { __memset((void *)buf, 0, (size_t )(xfer_sz * 512)); } } else { } { __memset((void *)(& fis), 0, 20UL); fis.type = 39U; fis.opts = 128U; fis.command = *command; fis.features = *(command + 2UL); fis.sect_count = *(command + 3UL); } if ((unsigned int )fis.command == 176U) { fis.__annonCompField84.sector = *(command + 1UL); fis.__annonCompField85.cyl_low = 79U; fis.__annonCompField86.cyl_hi = 194U; } else { } { mtip_set_timeout(port->dd, & fis, & to, 0); } if (xfer_sz != 0) { reply = (struct host_to_dev_fis *)port->rxfis + 32U; } else { reply = (struct host_to_dev_fis *)port->rxfis + 64U; } { tmp___0 = mtip_exec_internal_command(port, & fis, 5, xfer_sz != 0 ? dma_addr : 0ULL, xfer_sz != 0 ? xfer_sz * 512 : 0, 0U, 208U, (unsigned long )to); } if (tmp___0 < 0) { rv = -14; goto exit_drive_command; } else { } *command = reply->command; *(command + 1UL) = reply->features; *(command + 2UL) = reply->sect_count; if (xfer_sz != 0) { { tmp___1 = copy_to_user(user_buffer, (void const *)buf, (unsigned long )((int )*(command + 3UL) * 512)); } if (tmp___1 != 0UL) { rv = -14; goto exit_drive_command; } else { } } else { } exit_drive_command: ; if ((unsigned long )buf != (unsigned long )((u8 *)0U)) { { dmam_free_coherent(& ((port->dd)->pdev)->dev, (size_t )(xfer_sz * 512), (void *)buf, dma_addr); } } else { } return (rv); } } static unsigned int implicit_sector(unsigned char command , unsigned char features ) { unsigned int rv ; { rv = 0U; { if ((int )command == 241) { goto case_241; } else { } if ((int )command == 242) { goto case_242; } else { } if ((int )command == 243) { goto case_243; } else { } if ((int )command == 244) { goto case_244; } else { } if ((int )command == 245) { goto case_245; } else { } if ((int )command == 246) { goto case_246; } else { } if ((int )command == 228) { goto case_228; } else { } if ((int )command == 232) { goto case_232; } else { } if ((int )command == 249) { goto case_249; } else { } if ((int )command == 176) { goto case_176; } else { } if ((int )command == 177) { goto case_177; } else { } goto switch_break; case_241: /* CIL Label */ ; case_242: /* CIL Label */ ; case_243: /* CIL Label */ ; case_244: /* CIL Label */ ; case_245: /* CIL Label */ ; case_246: /* CIL Label */ ; case_228: /* CIL Label */ ; case_232: /* CIL Label */ rv = 1U; goto ldv_47430; case_249: /* CIL Label */ ; if ((unsigned int )features == 3U) { rv = 1U; } else { } goto ldv_47430; case_176: /* CIL Label */ ; if ((unsigned int )features - 208U <= 1U) { rv = 1U; } else { } goto ldv_47430; case_177: /* CIL Label */ ; if ((unsigned int )features - 194U <= 1U) { rv = 1U; } else { } goto ldv_47430; switch_break: /* CIL Label */ ; } ldv_47430: ; return (rv); } } static int exec_drive_taskfile(struct driver_data *dd , void *buf , ide_task_request_t *req_task , int outtotal ) { struct host_to_dev_fis fis ; struct host_to_dev_fis *reply ; u8 *outbuf ; u8 *inbuf ; dma_addr_t outbuf_dma ; dma_addr_t inbuf_dma ; dma_addr_t dma_buffer ; int err ; unsigned int taskin ; unsigned int taskout ; u8 nsect ; unsigned int timeout ; unsigned int force_single_sector ; unsigned int transfer_size ; unsigned long task_file_data ; int intotal ; int erasemode ; void *tmp ; unsigned long tmp___0 ; void *tmp___1 ; unsigned long tmp___2 ; int tmp___3 ; unsigned int tmp___4 ; unsigned long tmp___5 ; unsigned long tmp___6 ; { outbuf = (u8 *)0U; inbuf = (u8 *)0U; outbuf_dma = 0ULL; inbuf_dma = 0ULL; dma_buffer = 0ULL; err = 0; taskin = 0U; taskout = 0U; nsect = 0U; intotal = (int )((unsigned int )outtotal + (unsigned int )req_task->out_size); erasemode = 0; taskout = (unsigned int )req_task->out_size; taskin = (unsigned int )req_task->in_size; if (taskin > 130560U || taskout > 130560U) { err = -22; goto abort; } else { } if (taskout != 0U) { { tmp = kzalloc((size_t )taskout, 208U); outbuf = (u8 *)tmp; } if ((unsigned long )outbuf == (unsigned long )((u8 *)0U)) { err = -12; goto abort; } else { } { tmp___0 = copy_from_user((void *)outbuf, (void const *)buf + (unsigned long )outtotal, (unsigned long )taskout); } if (tmp___0 != 0UL) { err = -14; goto abort; } else { } { outbuf_dma = pci_map_single(dd->pdev, (void *)outbuf, (size_t )taskout, 1); } if (outbuf_dma == 0ULL) { err = -12; goto abort; } else { } dma_buffer = outbuf_dma; } else { } if (taskin != 0U) { { tmp___1 = kzalloc((size_t )taskin, 208U); inbuf = (u8 *)tmp___1; } if ((unsigned long )inbuf == (unsigned long )((u8 *)0U)) { err = -12; goto abort; } else { } { tmp___2 = copy_from_user((void *)inbuf, (void const *)buf + (unsigned long )intotal, (unsigned long )taskin); } if (tmp___2 != 0UL) { err = -14; goto abort; } else { } { inbuf_dma = pci_map_single(dd->pdev, (void *)inbuf, (size_t )taskin, 2); } if (inbuf_dma == 0ULL) { err = -12; goto abort; } else { } dma_buffer = inbuf_dma; } else { } { if (req_task->data_phase == 4) { goto case_4; } else { } if (req_task->data_phase == 1) { goto case_1; } else { } if (req_task->data_phase == 0) { goto case_0; } else { } goto switch_default; case_4: /* CIL Label */ nsect = (u8 )(taskout / 512U); reply = (struct host_to_dev_fis *)(dd->port)->rxfis + 32U; goto ldv_47459; case_1: /* CIL Label */ reply = (struct host_to_dev_fis *)(dd->port)->rxfis + 32U; goto ldv_47459; case_0: /* CIL Label */ reply = (struct host_to_dev_fis *)(dd->port)->rxfis + 64U; goto ldv_47459; switch_default: /* CIL Label */ err = -22; goto abort; switch_break: /* CIL Label */ ; } ldv_47459: { __memset((void *)(& fis), 0, 20UL); fis.type = 39U; fis.opts = 128U; fis.command = req_task->io_ports[7]; fis.features = req_task->io_ports[1]; fis.sect_count = req_task->io_ports[2]; fis.__annonCompField84.lba_low = req_task->io_ports[3]; fis.__annonCompField85.lba_mid = req_task->io_ports[4]; fis.__annonCompField86.lba_hi = req_task->io_ports[5]; fis.__annonCompField87.device = (unsigned int )req_task->io_ports[6] & 239U; } if ((unsigned int )req_task->in_flags.all == 0U && (int )req_task->out_flags.all & 1) { req_task->in_flags.all = 15614U; fis.__annonCompField88.lba_low_ex = req_task->hob_ports[3]; fis.__annonCompField89.lba_mid_ex = req_task->hob_ports[4]; fis.__annonCompField90.lba_hi_ex = req_task->hob_ports[5]; fis.features_ex = req_task->hob_ports[1]; fis.sect_cnt_ex = req_task->hob_ports[2]; } else { req_task->in_flags.all = 254U; } { force_single_sector = implicit_sector((int )fis.command, (int )fis.features); } if ((taskin | taskout) != 0U && (unsigned int )fis.sect_count == 0U) { if ((unsigned int )nsect != 0U) { fis.sect_count = nsect; } else if (force_single_sector == 0U) { { dev_warn((struct device const *)(& (dd->pdev)->dev), "data movement but sect_count is 0\n"); err = -22; } goto abort; } else { } } else { } if (((unsigned int )fis.command == 244U && (unsigned long )outbuf != (unsigned long )((u8 *)0U)) && ((int )*outbuf & 2) != 0) { erasemode = 1; } else { } { mtip_set_timeout(dd, & fis, & timeout, (int )((u8 )erasemode)); } if (force_single_sector != 0U) { transfer_size = 512U; } else { transfer_size = (unsigned int )((int )fis.sect_count * 512); } { tmp___3 = mtip_exec_internal_command(dd->port, & fis, 5, dma_buffer, (int )transfer_size, 0U, 208U, (unsigned long )timeout); } if (tmp___3 < 0) { err = -5; goto abort; } else { } { tmp___4 = readl((void const volatile *)(dd->port)->mmio + 32U); task_file_data = (unsigned long )tmp___4; } if (req_task->data_phase == 1 && (task_file_data & 1UL) == 0UL) { reply = (struct host_to_dev_fis *)(dd->port)->rxfis + 32U; req_task->io_ports[7] = reply->control; } else { reply = (struct host_to_dev_fis *)(dd->port)->rxfis + 64U; req_task->io_ports[7] = reply->command; } if (inbuf_dma != 0ULL) { { pci_unmap_single(dd->pdev, inbuf_dma, (size_t )taskin, 2); } } else { } if (outbuf_dma != 0ULL) { { pci_unmap_single(dd->pdev, outbuf_dma, (size_t )taskout, 1); } } else { } inbuf_dma = 0ULL; outbuf_dma = 0ULL; req_task->io_ports[1] = reply->features; req_task->io_ports[2] = reply->sect_count; req_task->io_ports[3] = reply->__annonCompField84.lba_low; req_task->io_ports[4] = reply->__annonCompField85.lba_mid; req_task->io_ports[5] = reply->__annonCompField86.lba_hi; req_task->io_ports[6] = reply->__annonCompField87.device; if ((int )req_task->out_flags.all & 1) { req_task->hob_ports[3] = reply->__annonCompField88.lba_low_ex; req_task->hob_ports[4] = reply->__annonCompField89.lba_mid_ex; req_task->hob_ports[5] = reply->__annonCompField90.lba_hi_ex; req_task->hob_ports[1] = reply->features_ex; req_task->hob_ports[2] = reply->sect_cnt_ex; } else { } if (taskout != 0U) { { tmp___5 = copy_to_user(buf + (unsigned long )outtotal, (void const *)outbuf, (unsigned long )taskout); } if (tmp___5 != 0UL) { err = -14; goto abort; } else { } } else { } if (taskin != 0U) { { tmp___6 = copy_to_user(buf + (unsigned long )intotal, (void const *)inbuf, (unsigned long )taskin); } if (tmp___6 != 0UL) { err = -14; goto abort; } else { } } else { } abort: ; if (inbuf_dma != 0ULL) { { pci_unmap_single(dd->pdev, inbuf_dma, (size_t )taskin, 2); } } else { } if (outbuf_dma != 0ULL) { { pci_unmap_single(dd->pdev, outbuf_dma, (size_t )taskout, 1); } } else { } { kfree((void const *)outbuf); kfree((void const *)inbuf); } return (err); } } static int mtip_hw_ioctl(struct driver_data *dd , unsigned int cmd , unsigned long arg ) { unsigned long tmp ; u8 drive_command[4U] ; unsigned long tmp___0 ; int tmp___1 ; unsigned long tmp___2 ; u8 drive_command___0[7U] ; unsigned long tmp___3 ; int tmp___4 ; unsigned long tmp___5 ; ide_task_request_t req_task ; int ret ; int outtotal ; unsigned long tmp___6 ; unsigned long tmp___7 ; { { if (cmd == 781U) { goto case_781; } else { } if (cmd == 799U) { goto case_799; } else { } if (cmd == 798U) { goto case_798; } else { } if (cmd == 797U) { goto case_797; } else { } goto switch_default; case_781: /* CIL Label */ { tmp = copy_to_user((void *)arg, (void const *)(dd->port)->identify, 512UL); } if (tmp != 0UL) { return (-14); } else { } goto ldv_47469; case_799: /* CIL Label */ { tmp___0 = copy_from_user((void *)(& drive_command), (void const *)arg, 4UL); } if (tmp___0 != 0UL) { return (-14); } else { } { tmp___1 = exec_drive_command(dd->port, (u8 *)(& drive_command), (void *)(arg + 4UL)); } if (tmp___1 != 0) { return (-5); } else { } { tmp___2 = copy_to_user((void *)arg, (void const *)(& drive_command), 4UL); } if (tmp___2 != 0UL) { return (-14); } else { } goto ldv_47469; case_798: /* CIL Label */ { tmp___3 = copy_from_user((void *)(& drive_command___0), (void const *)arg, 7UL); } if (tmp___3 != 0UL) { return (-14); } else { } { tmp___4 = exec_drive_task(dd->port, (u8 *)(& drive_command___0)); } if (tmp___4 != 0) { return (-5); } else { } { tmp___5 = copy_to_user((void *)arg, (void const *)(& drive_command___0), 7UL); } if (tmp___5 != 0UL) { return (-14); } else { } goto ldv_47469; case_797: /* CIL Label */ { tmp___6 = copy_from_user((void *)(& req_task), (void const *)arg, 48UL); } if (tmp___6 != 0UL) { return (-14); } else { } { outtotal = 48; ret = exec_drive_taskfile(dd, (void *)arg, & req_task, outtotal); tmp___7 = copy_to_user((void *)arg, (void const *)(& req_task), 48UL); } if (tmp___7 != 0UL) { return (-14); } else { } return (ret); switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } ldv_47469: ; return (0); } } static void mtip_hw_submit_io(struct driver_data *dd , struct request *rq , struct mtip_cmd *command , int nents , struct blk_mq_hw_ctx *hctx ) { struct host_to_dev_fis *fis ; struct mtip_port *port ; int dma_dir ; u64 start ; sector_t tmp ; unsigned int nsect ; unsigned int tmp___0 ; long tmp___1 ; long tmp___2 ; { { port = dd->port; dma_dir = ((int )rq->cmd_flags & 1) == 0 ? 2 : 1; tmp = blk_rq_pos((struct request const *)rq); start = (u64 )tmp; tmp___0 = blk_rq_sectors((struct request const *)rq); nsect = tmp___0; nents = dma_map_sg_attrs(& (dd->pdev)->dev, (struct scatterlist *)(& command->sg), nents, (enum dma_data_direction )dma_dir, (struct dma_attrs *)0); __builtin_prefetch((void const *)(& port->flags)); command->scatter_ents = nents; command->retries = 2; fis = (struct host_to_dev_fis *)command->command; fis->type = 39U; fis->opts = 128U; } if (dma_dir == 2) { fis->command = 96U; } else { fis->command = 97U; } { fis->__annonCompField84.lba_low = (unsigned char )start; fis->__annonCompField85.lba_mid = (unsigned char )(start >> 8); fis->__annonCompField86.lba_hi = (unsigned char )(start >> 16); fis->__annonCompField88.lba_low_ex = (unsigned char )(start >> 24); fis->__annonCompField89.lba_mid_ex = (unsigned char )(start >> 32); fis->__annonCompField90.lba_hi_ex = (unsigned char )(start >> 40); fis->__annonCompField87.device = 64U; fis->features = (unsigned char )nsect; fis->features_ex = (unsigned char )(nsect >> 8); fis->sect_count = (unsigned char )((int )((signed char )(rq->tag << 3)) | (int )((signed char )(rq->tag >> 5))); fis->sect_cnt_ex = 0U; fis->control = 0U; fis->res2 = 0U; fis->res3 = 0U; fill_command_sg(dd, command, nents); tmp___1 = ldv__builtin_expect(command->unaligned != 0, 0L); } if (tmp___1 != 0L) { fis->__annonCompField87.device = (unsigned int )fis->__annonCompField87.device | 128U; } else { } { (command->command_header)->opts = (unsigned int )((nents << 16) | 133); (command->command_header)->__annonCompField91.byte_count = 0U; command->comp_data = (void *)dd; command->comp_func = & mtip_async_complete; command->direction = dma_dir; tmp___2 = ldv__builtin_expect((port->flags & 15UL) != 0UL, 0L); } if (tmp___2 != 0L) { { set_bit((long )rq->tag, (unsigned long volatile *)(& port->cmds_to_issue)); set_bit(5L, (unsigned long volatile *)(& port->flags)); } return; } else { } { mtip_issue_ncq_command(port, rq->tag); } return; } } static ssize_t mtip_hw_show_status(struct device *dev , struct device_attribute *attr , char *buf ) { struct driver_data *dd ; struct device const *__mptr ; int size ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { { __mptr = (struct device const *)dev; dd = (struct driver_data *)((struct gendisk *)__mptr + 0xffffffffffffff60UL)->private_data; size = 0; tmp___3 = constant_test_bit(2L, (unsigned long const volatile *)(& dd->dd_flag)); } if (tmp___3 != 0) { { tmp = sprintf(buf, "%s", (char *)"thermal_shutdown\n"); size = size + tmp; } } else { { tmp___2 = constant_test_bit(3L, (unsigned long const volatile *)(& dd->dd_flag)); } if (tmp___2 != 0) { { tmp___0 = sprintf(buf, "%s", (char *)"write_protect\n"); size = size + tmp___0; } } else { { tmp___1 = sprintf(buf, "%s", (char *)"online\n"); size = size + tmp___1; } } } return ((ssize_t )size); } } static struct device_attribute dev_attr_status = {{"status", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & mtip_hw_show_status, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}; static ssize_t show_device_status(struct device_driver *drv , char *buf ) { int size ; struct driver_data *dd ; struct driver_data *tmp ; unsigned long flags ; char id_buf[42U] ; u16 status ; int tmp___0 ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; char const *tmp___1 ; int tmp___2 ; char const *tmp___3 ; int tmp___4 ; int tmp___5 ; struct list_head const *__mptr___1 ; int tmp___6 ; struct list_head const *__mptr___2 ; struct list_head const *__mptr___3 ; char const *tmp___7 ; int tmp___8 ; char const *tmp___9 ; int tmp___10 ; int tmp___11 ; struct list_head const *__mptr___4 ; { { size = 0; status = 0U; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_103(& dev_lock); tmp___0 = sprintf(buf + (unsigned long )size, "Devices Present:\n"); size = size + tmp___0; __mptr = (struct list_head const *)online_list.next; dd = (struct driver_data *)__mptr + 0xfffffffffffffa70UL; __mptr___0 = (struct list_head const *)dd->online_list.next; tmp = (struct driver_data *)__mptr___0 + 0xfffffffffffffa70UL; } goto ldv_47528; ldv_47527: ; if ((unsigned long )dd->pdev != (unsigned long )((struct pci_dev *)0)) { if (((unsigned long )dd->port != (unsigned long )((struct mtip_port *)0) && (unsigned long )(dd->port)->identify != (unsigned long )((u16 *)0U)) && (dd->port)->identify_valid != 0UL) { { strlcpy((char *)(& id_buf), (char const *)(dd->port)->identify + 10U, 21UL); status = *((dd->port)->identify + 141UL); } } else { { __memset((void *)(& id_buf), 0, 42UL); status = 0U; } } if ((unsigned long )dd->port != (unsigned long )((struct mtip_port *)0)) { { tmp___5 = constant_test_bit(6L, (unsigned long const volatile *)(& (dd->port)->flags)); } if (tmp___5 != 0) { { tmp___1 = dev_name((struct device const *)(& (dd->pdev)->dev)); tmp___2 = sprintf(buf + (unsigned long )size, " device %s %s (ftl rebuild %d %%)\n", tmp___1, (char *)(& id_buf), (int )status); size = size + tmp___2; } } else { { tmp___3 = dev_name((struct device const *)(& (dd->pdev)->dev)); tmp___4 = sprintf(buf + (unsigned long )size, " device %s %s\n", tmp___3, (char *)(& id_buf)); size = size + tmp___4; } } } else { { tmp___3 = dev_name((struct device const *)(& (dd->pdev)->dev)); tmp___4 = sprintf(buf + (unsigned long )size, " device %s %s\n", tmp___3, (char *)(& id_buf)); size = size + tmp___4; } } } else { } dd = tmp; __mptr___1 = (struct list_head const *)tmp->online_list.next; tmp = (struct driver_data *)__mptr___1 + 0xfffffffffffffa70UL; ldv_47528: ; if ((unsigned long )(& dd->online_list) != (unsigned long )(& online_list)) { goto ldv_47527; } else { } { tmp___6 = sprintf(buf + (unsigned long )size, "Devices Being Removed:\n"); size = size + tmp___6; __mptr___2 = (struct list_head const *)removing_list.next; dd = (struct driver_data *)__mptr___2 + 0xfffffffffffffa60UL; __mptr___3 = (struct list_head const *)dd->remove_list.next; tmp = (struct driver_data *)__mptr___3 + 0xfffffffffffffa60UL; } goto ldv_47537; ldv_47536: ; if ((unsigned long )dd->pdev != (unsigned long )((struct pci_dev *)0)) { if (((unsigned long )dd->port != (unsigned long )((struct mtip_port *)0) && (unsigned long )(dd->port)->identify != (unsigned long )((u16 *)0U)) && (dd->port)->identify_valid != 0UL) { { strlcpy((char *)(& id_buf), (char const *)(dd->port)->identify + 10U, 21UL); status = *((dd->port)->identify + 141UL); } } else { { __memset((void *)(& id_buf), 0, 42UL); status = 0U; } } if ((unsigned long )dd->port != (unsigned long )((struct mtip_port *)0)) { { tmp___11 = constant_test_bit(6L, (unsigned long const volatile *)(& (dd->port)->flags)); } if (tmp___11 != 0) { { tmp___7 = dev_name((struct device const *)(& (dd->pdev)->dev)); tmp___8 = sprintf(buf + (unsigned long )size, " device %s %s (ftl rebuild %d %%)\n", tmp___7, (char *)(& id_buf), (int )status); size = size + tmp___8; } } else { { tmp___9 = dev_name((struct device const *)(& (dd->pdev)->dev)); tmp___10 = sprintf(buf + (unsigned long )size, " device %s %s\n", tmp___9, (char *)(& id_buf)); size = size + tmp___10; } } } else { { tmp___9 = dev_name((struct device const *)(& (dd->pdev)->dev)); tmp___10 = sprintf(buf + (unsigned long )size, " device %s %s\n", tmp___9, (char *)(& id_buf)); size = size + tmp___10; } } } else { } dd = tmp; __mptr___4 = (struct list_head const *)tmp->remove_list.next; tmp = (struct driver_data *)__mptr___4 + 0xfffffffffffffa60UL; ldv_47537: ; if ((unsigned long )(& dd->remove_list) != (unsigned long )(& removing_list)) { goto ldv_47536; } else { } { ldv_spin_unlock_irqrestore_104(& dev_lock, flags); } return ((ssize_t )size); } } static ssize_t mtip_hw_read_device_status(struct file *f , char *ubuf , size_t len , loff_t *offset ) { struct driver_data *dd ; int size ; char *buf ; int rv ; void *tmp ; ssize_t tmp___0 ; unsigned long tmp___1 ; { dd = (struct driver_data *)f->private_data; size = (int )*offset; rv = 0; if (len == 0UL || *offset != 0LL) { return (0L); } else { } { tmp = kzalloc(1024UL, 208U); buf = (char *)tmp; } if ((unsigned long )buf == (unsigned long )((char *)0)) { { dev_err((struct device const *)(& (dd->pdev)->dev), "Memory allocation: status buffer\n"); } return (-12L); } else { } { tmp___0 = show_device_status((struct device_driver *)0, buf); size = (int )((unsigned int )size + (unsigned int )tmp___0); *offset = (loff_t )(len < (size_t )size ? len : (size_t )size); tmp___1 = copy_to_user((void *)ubuf, (void const *)buf, (unsigned long )*offset); size = (int )tmp___1; } if (size != 0) { rv = -14; } else { } { kfree((void const *)buf); } return (rv != 0 ? (ssize_t )rv : (ssize_t )*offset); } } static ssize_t mtip_hw_read_registers(struct file *f , char *ubuf , size_t len , loff_t *offset ) { struct driver_data *dd ; char *buf ; u32 group_allocated ; int size ; int n ; int rv ; void *tmp ; int tmp___0 ; unsigned int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; unsigned int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; unsigned int tmp___9 ; int tmp___10 ; int tmp___11 ; unsigned int tmp___12 ; int tmp___13 ; unsigned int tmp___14 ; int tmp___15 ; int tmp___16 ; int tmp___17 ; int tmp___18 ; int tmp___19 ; int tmp___20 ; int tmp___21 ; int tmp___22 ; unsigned long tmp___23 ; { dd = (struct driver_data *)f->private_data; size = (int )*offset; rv = 0; if (len == 0UL || size != 0) { return (0L); } else { } { tmp = kzalloc(1024UL, 208U); buf = (char *)tmp; } if ((unsigned long )buf == (unsigned long )((char *)0)) { { dev_err((struct device const *)(& (dd->pdev)->dev), "Memory allocation: register buffer\n"); } return (-12L); } else { } { tmp___0 = sprintf(buf + (unsigned long )size, "H/ S ACTive : [ 0x"); size = size + tmp___0; n = (int )(dd->slot_groups - 1U); } goto ldv_47562; ldv_47561: { tmp___1 = readl((void const volatile *)(dd->port)->s_active[n]); tmp___2 = sprintf(buf + (unsigned long )size, "%08X ", tmp___1); size = size + tmp___2; n = n - 1; } ldv_47562: ; if (n >= 0) { goto ldv_47561; } else { } { tmp___3 = sprintf(buf + (unsigned long )size, "]\n"); size = size + tmp___3; tmp___4 = sprintf(buf + (unsigned long )size, "H/ Command Issue : [ 0x"); size = size + tmp___4; n = (int )(dd->slot_groups - 1U); } goto ldv_47565; ldv_47564: { tmp___5 = readl((void const volatile *)(dd->port)->cmd_issue[n]); tmp___6 = sprintf(buf + (unsigned long )size, "%08X ", tmp___5); size = size + tmp___6; n = n - 1; } ldv_47565: ; if (n >= 0) { goto ldv_47564; } else { } { tmp___7 = sprintf(buf + (unsigned long )size, "]\n"); size = size + tmp___7; tmp___8 = sprintf(buf + (unsigned long )size, "H/ Completed : [ 0x"); size = size + tmp___8; n = (int )(dd->slot_groups - 1U); } goto ldv_47568; ldv_47567: { tmp___9 = readl((void const volatile *)(dd->port)->completed[n]); tmp___10 = sprintf(buf + (unsigned long )size, "%08X ", tmp___9); size = size + tmp___10; n = n - 1; } ldv_47568: ; if (n >= 0) { goto ldv_47567; } else { } { tmp___11 = sprintf(buf + (unsigned long )size, "]\n"); size = size + tmp___11; tmp___12 = readl((void const volatile *)(dd->port)->mmio + 16U); tmp___13 = sprintf(buf + (unsigned long )size, "H/ PORT IRQ STAT : [ 0x%08X ]\n", tmp___12); size = size + tmp___13; tmp___14 = readl((void const volatile *)dd->mmio + 8U); tmp___15 = sprintf(buf + (unsigned long )size, "H/ HOST IRQ STAT : [ 0x%08X ]\n", tmp___14); size = size + tmp___15; tmp___16 = sprintf(buf + (unsigned long )size, "\n"); size = size + tmp___16; tmp___17 = sprintf(buf + (unsigned long )size, "L/ Allocated : [ 0x"); size = size + tmp___17; n = (int )(dd->slot_groups - 1U); } goto ldv_47571; ldv_47570: { group_allocated = (u32 )((dd->port)->allocated[n / 2] >> (n & 1) * 32); tmp___18 = sprintf(buf + (unsigned long )size, "%08X ", group_allocated); size = size + tmp___18; n = n - 1; } ldv_47571: ; if (n >= 0) { goto ldv_47570; } else { } { tmp___19 = sprintf(buf + (unsigned long )size, "]\n"); size = size + tmp___19; tmp___20 = sprintf(buf + (unsigned long )size, "L/ Commands in Q : [ 0x"); size = size + tmp___20; n = (int )(dd->slot_groups - 1U); } goto ldv_47574; ldv_47573: { group_allocated = (u32 )((dd->port)->cmds_to_issue[n / 2] >> (n & 1) * 32); tmp___21 = sprintf(buf + (unsigned long )size, "%08X ", group_allocated); size = size + tmp___21; n = n - 1; } ldv_47574: ; if (n >= 0) { goto ldv_47573; } else { } { tmp___22 = sprintf(buf + (unsigned long )size, "]\n"); size = size + tmp___22; *offset = (loff_t )(len < (size_t )size ? len : (size_t )size); tmp___23 = copy_to_user((void *)ubuf, (void const *)buf, (unsigned long )*offset); size = (int )tmp___23; } if (size != 0) { rv = -14; } else { } { kfree((void const *)buf); } return (rv != 0 ? (ssize_t )rv : (ssize_t )*offset); } } static ssize_t mtip_hw_read_flags(struct file *f , char *ubuf , size_t len , loff_t *offset ) { struct driver_data *dd ; char *buf ; int size ; int rv ; void *tmp ; int tmp___0 ; int tmp___1 ; unsigned long tmp___2 ; { dd = (struct driver_data *)f->private_data; size = (int )*offset; rv = 0; if (len == 0UL || size != 0) { return (0L); } else { } { tmp = kzalloc(1024UL, 208U); buf = (char *)tmp; } if ((unsigned long )buf == (unsigned long )((char *)0)) { { dev_err((struct device const *)(& (dd->pdev)->dev), "Memory allocation: flag buffer\n"); } return (-12L); } else { } { tmp___0 = sprintf(buf + (unsigned long )size, "Flag-port : [ %08lX ]\n", (dd->port)->flags); size = size + tmp___0; tmp___1 = sprintf(buf + (unsigned long )size, "Flag-dd : [ %08lX ]\n", dd->dd_flag); size = size + tmp___1; *offset = (loff_t )(len < (size_t )size ? len : (size_t )size); tmp___2 = copy_to_user((void *)ubuf, (void const *)buf, (unsigned long )*offset); size = (int )tmp___2; } if (size != 0) { rv = -14; } else { } { kfree((void const *)buf); } return (rv != 0 ? (ssize_t )rv : (ssize_t )*offset); } } static struct file_operations const mtip_device_status_fops = {& __this_module, & no_llseek, & mtip_hw_read_device_status, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & simple_open, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct file_operations const mtip_regs_fops = {& __this_module, & no_llseek, & mtip_hw_read_registers, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & simple_open, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct file_operations const mtip_flags_fops = {& __this_module, & no_llseek, & mtip_hw_read_flags, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & simple_open, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static int mtip_hw_sysfs_init(struct driver_data *dd , struct kobject *kobj ) { int tmp ; { if ((unsigned long )kobj == (unsigned long )((struct kobject *)0) || (unsigned long )dd == (unsigned long )((struct driver_data *)0)) { return (-22); } else { } { tmp = sysfs_create_file(kobj, (struct attribute const *)(& dev_attr_status.attr)); } if (tmp != 0) { { dev_warn((struct device const *)(& (dd->pdev)->dev), "Error creating \'status\' sysfs entry\n"); } } else { } return (0); } } static int mtip_hw_sysfs_exit(struct driver_data *dd , struct kobject *kobj ) { { if ((unsigned long )kobj == (unsigned long )((struct kobject *)0) || (unsigned long )dd == (unsigned long )((struct driver_data *)0)) { return (-22); } else { } { sysfs_remove_file(kobj, (struct attribute const *)(& dev_attr_status.attr)); } return (0); } } static int mtip_hw_debugfs_init(struct driver_data *dd ) { bool tmp ; { if ((unsigned long )dfs_parent == (unsigned long )((struct dentry *)0)) { return (-1); } else { } { dd->dfs_node = debugfs_create_dir((char const *)(& (dd->disk)->disk_name), dfs_parent); tmp = IS_ERR_OR_NULL((void const *)dd->dfs_node); } if ((int )tmp) { { dev_warn((struct device const *)(& (dd->pdev)->dev), "Error creating node %s under debugfs\n", (char *)(& (dd->disk)->disk_name)); dd->dfs_node = (struct dentry *)0; } return (-1); } else { } { debugfs_create_file("flags", 292, dd->dfs_node, (void *)dd, & mtip_flags_fops); debugfs_create_file("registers", 292, dd->dfs_node, (void *)dd, & mtip_regs_fops); } return (0); } } static void mtip_hw_debugfs_exit(struct driver_data *dd ) { { if ((unsigned long )dd->dfs_node != (unsigned long )((struct dentry *)0)) { { debugfs_remove_recursive(dd->dfs_node); } } else { } return; } } static int mtip_free_orphan(struct driver_data *dd ) { struct kobject *kobj ; int tmp ; int tmp___0 ; { if ((unsigned long )dd->bdev != (unsigned long )((struct block_device *)0)) { if ((dd->bdev)->bd_holders > 0) { return (-2); } else { } { bdput(dd->bdev); dd->bdev = (struct block_device *)0; } } else { } { mtip_hw_debugfs_exit(dd); ldv_spin_lock_105(& rssd_index_lock); ida_remove(& rssd_index_ida, (int )dd->index); ldv_spin_unlock_106(& rssd_index_lock); tmp = constant_test_bit(7L, (unsigned long const volatile *)(& dd->dd_flag)); } if (tmp == 0) { { tmp___0 = constant_test_bit(8L, (unsigned long const volatile *)(& dd->dd_flag)); } if (tmp___0 != 0) { { ldv_put_disk_107(dd->disk); } } else { goto _L; } } else { _L: /* CIL Label */ if ((unsigned long )dd->disk != (unsigned long )((struct gendisk *)0)) { { kobj = kobject_get(& (dd->disk)->part0.__dev.kobj); } if ((unsigned long )kobj != (unsigned long )((struct kobject *)0)) { { mtip_hw_sysfs_exit(dd, kobj); kobject_put(kobj); } } else { } { ldv_del_gendisk_108(dd->disk); dd->disk = (struct gendisk *)0; } } else { } if ((unsigned long )dd->queue != (unsigned long )((struct request_queue *)0)) { { (dd->queue)->queuedata = (void *)0; ldv_blk_cleanup_queue_109(dd->queue); blk_mq_free_tag_set(& dd->tags); dd->queue = (struct request_queue *)0; } } else { } } { kfree((void const *)dd); } return (0); } } __inline static void hba_setup(struct driver_data *dd ) { u32 hwdata ; { { hwdata = readl((void const volatile *)dd->mmio + 252U); writel(hwdata | 16842752U, (void volatile *)dd->mmio + 252U); } return; } } static int mtip_device_unaligned_constrained(struct driver_data *dd ) { { return ((unsigned int )(dd->pdev)->device == 20833U); } } static void mtip_detect_product(struct driver_data *dd ) { u32 hwdata ; unsigned int rev ; unsigned int slotgroups ; { { hwdata = readl((void const volatile *)dd->mmio + 252U); dd->product_type = 0U; dd->slot_groups = 1U; } if ((hwdata & 8U) != 0U) { { dd->product_type = 17U; rev = (hwdata & 65280U) >> 8; slotgroups = (hwdata & 7U) + 1U; _dev_info((struct device const *)(& (dd->pdev)->dev), "ASIC-FPGA design, HS rev 0x%x, %i slot groups [%i slots]\n", rev, slotgroups, slotgroups * 32U); } if (slotgroups > 8U) { { dev_warn((struct device const *)(& (dd->pdev)->dev), "Warning: driver only supports %i slot groups.\n", 8); slotgroups = 8U; } } else { } dd->slot_groups = slotgroups; return; } else { } { dev_warn((struct device const *)(& (dd->pdev)->dev), "Unrecognized product id\n"); } return; } } static int mtip_ftl_rebuild_poll(struct driver_data *dd ) { unsigned long timeout ; unsigned long cnt ; unsigned long start ; unsigned long tmp ; int tmp___0 ; long tmp___1 ; bool tmp___2 ; int tmp___3 ; unsigned int tmp___4 ; unsigned long tmp___5 ; unsigned int tmp___6 ; unsigned int tmp___7 ; { { cnt = 0UL; dev_warn((struct device const *)(& (dd->pdev)->dev), "FTL rebuild in progress. Polling for completion.\n"); start = jiffies; tmp = msecs_to_jiffies(2400000U); timeout = (unsigned long )jiffies + tmp; } ldv_47632: { tmp___0 = constant_test_bit(1L, (unsigned long const volatile *)(& dd->dd_flag)); tmp___1 = ldv__builtin_expect(tmp___0 != 0, 0L); } if (tmp___1 != 0L) { return (-14); } else { } { tmp___2 = mtip_check_surprise_removal(dd->pdev); } if ((int )tmp___2) { return (-14); } else { } { tmp___3 = mtip_get_identify(dd->port, (void *)0); } if (tmp___3 < 0) { return (-14); } else { } if ((unsigned int )*((dd->port)->identify + 142UL) == 60753U) { { ssleep(1U); tmp___5 = cnt; cnt = cnt + 1UL; } if (tmp___5 > 179UL) { { tmp___4 = jiffies_to_msecs((unsigned long )jiffies - start); dev_warn((struct device const *)(& (dd->pdev)->dev), "FTL rebuild in progress (%d secs).\n", tmp___4 / 1000U); cnt = 0UL; } } else { } } else { { tmp___6 = jiffies_to_msecs((unsigned long )jiffies - start); dev_warn((struct device const *)(& (dd->pdev)->dev), "FTL rebuild complete (%d secs).\n", tmp___6 / 1000U); mtip_block_initialize(dd); } return (0); } { ssleep(10U); } if ((long )((unsigned long )jiffies - timeout) < 0L) { goto ldv_47632; } else { } { tmp___7 = jiffies_to_msecs((unsigned long )jiffies - start); dev_err((struct device const *)(& (dd->pdev)->dev), "Timed out waiting for FTL rebuild to complete (%d secs).\n", tmp___7 / 1000U); } return (-14); } } static int mtip_service_thread(void *data ) { struct driver_data *dd ; unsigned long slot ; unsigned long slot_start ; unsigned long slot_wrap ; unsigned int num_cmd_slots ; struct mtip_port *port ; int ret ; bool tmp ; int tmp___0 ; int __ret ; wait_queue_t __wait ; long __ret___0 ; long __int ; long tmp___1 ; bool tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; int tmp___11 ; int tmp___12 ; int tmp___13 ; int tmp___14 ; bool tmp___15 ; bool tmp___16 ; { dd = (struct driver_data *)data; num_cmd_slots = dd->slot_groups * 32U; port = dd->port; ldv_47659: { tmp = kthread_should_stop(); } if ((int )tmp) { goto st_out; } else { { tmp___0 = constant_test_bit(8L, (unsigned long const volatile *)(& port->flags)); } if (tmp___0 != 0) { goto st_out; } else { } } { clear_bit(4L, (unsigned long volatile *)(& port->flags)); __ret = 0; __might_sleep("drivers/block/mtip32xx/mtip32xx.c", 2985, 0); } if (port->flags == 0UL || (port->flags & 15UL) != 0UL) { { __ret___0 = 0L; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; } ldv_47651: { tmp___1 = prepare_to_wait_event(& port->svc_wait, & __wait, 1); __int = tmp___1; } if (port->flags != 0UL && (port->flags & 15UL) == 0UL) { goto ldv_47650; } else { } if (__int != 0L) { __ret___0 = __int; goto ldv_47650; } else { } { schedule(); } goto ldv_47651; ldv_47650: { finish_wait(& port->svc_wait, & __wait); } __ret = (int )__ret___0; } else { } { set_bit(4L, (unsigned long volatile *)(& port->flags)); tmp___2 = kthread_should_stop(); } if ((int )tmp___2) { goto st_out; } else { { tmp___3 = constant_test_bit(8L, (unsigned long const volatile *)(& port->flags)); } if (tmp___3 != 0) { goto st_out; } else { } } { tmp___4 = constant_test_bit(7L, (unsigned long const volatile *)(& port->flags)); } if (tmp___4 != 0) { goto ldv_47654; } else { } { tmp___5 = constant_test_bit(1L, (unsigned long const volatile *)(& dd->dd_flag)); tmp___6 = ldv__builtin_expect(tmp___5 != 0, 0L); } if (tmp___6 != 0L) { goto st_out; } else { } restart_eh: { tmp___7 = constant_test_bit(1L, (unsigned long const volatile *)(& port->flags)); } if (tmp___7 != 0) { { mtip_handle_tfe(dd); clear_bit(1L, (unsigned long volatile *)(& port->flags)); } } else { } { tmp___8 = constant_test_bit(1L, (unsigned long const volatile *)(& port->flags)); } if (tmp___8 != 0) { goto restart_eh; } else { } { tmp___11 = constant_test_bit(5L, (unsigned long const volatile *)(& port->flags)); } if (tmp___11 != 0) { slot = 1UL; slot_start = (unsigned long )num_cmd_slots; slot_wrap = 0UL; ldv_47658: { slot = ldv_find_next_bit_110((unsigned long const *)(& port->cmds_to_issue), (unsigned long )num_cmd_slots, slot); } if (slot_wrap == 1UL) { if (slot_start >= slot || slot >= (unsigned long )num_cmd_slots) { goto ldv_47656; } else { } } else { } { tmp___9 = ldv__builtin_expect(slot_start == (unsigned long )num_cmd_slots, 0L); } if (tmp___9 != 0L) { slot_start = slot; } else { } { tmp___10 = ldv__builtin_expect(slot == (unsigned long )num_cmd_slots, 0L); } if (tmp___10 != 0L) { slot = 1UL; slot_wrap = 1UL; goto ldv_47657; } else { } { mtip_issue_ncq_command(port, (int )slot); clear_bit((long )slot, (unsigned long volatile *)(& port->cmds_to_issue)); } ldv_47657: ; goto ldv_47658; ldv_47656: { clear_bit(5L, (unsigned long volatile *)(& port->flags)); } } else { } { tmp___13 = constant_test_bit(6L, (unsigned long const volatile *)(& port->flags)); } if (tmp___13 != 0) { { tmp___12 = mtip_ftl_rebuild_poll(dd); } if (tmp___12 < 0) { { set_bit(8L, (unsigned long volatile *)(& dd->dd_flag)); } } else { } { clear_bit(6L, (unsigned long volatile *)(& port->flags)); } } else { } goto ldv_47659; ldv_47654: ; ldv_47661: { tmp___14 = constant_test_bit(4L, (unsigned long const volatile *)(& dd->dd_flag)); } if (tmp___14 != 0) { goto ldv_47660; } else { } { msleep_interruptible(1000U); tmp___15 = kthread_should_stop(); } if ((int )tmp___15) { goto st_out; } else { } goto ldv_47661; ldv_47660: ; ldv_47662: { ret = mtip_free_orphan(dd); } if (ret == 0) { return (0); } else { } { msleep_interruptible(1000U); tmp___16 = kthread_should_stop(); } if ((int )tmp___16) { goto st_out; } else { } goto ldv_47662; st_out: ; return (0); } } static void mtip_dma_free(struct driver_data *dd ) { struct mtip_port *port ; { port = dd->port; if ((unsigned long )port->block1 != (unsigned long )((void *)0)) { { dmam_free_coherent(& (dd->pdev)->dev, 4096UL, port->block1, port->block1_dma); } } else { } if ((unsigned long )port->command_list != (unsigned long )((void *)0)) { { dmam_free_coherent(& (dd->pdev)->dev, 8192UL, port->command_list, port->command_list_dma); } } else { } return; } } static int mtip_dma_alloc(struct driver_data *dd ) { struct mtip_port *port ; { { port = dd->port; port->block1 = dmam_alloc_coherent(& (dd->pdev)->dev, 4096UL, & port->block1_dma, 208U); } if ((unsigned long )port->block1 == (unsigned long )((void *)0)) { return (-12); } else { } { __memset(port->block1, 0, 4096UL); port->command_list = dmam_alloc_coherent(& (dd->pdev)->dev, 8192UL, & port->command_list_dma, 208U); } if ((unsigned long )port->command_list == (unsigned long )((void *)0)) { { dmam_free_coherent(& (dd->pdev)->dev, 4096UL, port->block1, port->block1_dma); port->block1 = (void *)0; port->block1_dma = 0ULL; } return (-12); } else { } { __memset(port->command_list, 0, 8192UL); port->rxfis = port->block1; port->rxfis_dma = port->block1_dma; port->identify = (u16 *)port->block1 + 1024U; port->identify_dma = port->block1_dma + 1024ULL; port->log_buf = (u16 *)port->block1 + 2048U; port->log_buf_dma = port->block1_dma + 2048ULL; port->smart_buf = (u8 *)port->block1 + 3072U; port->smart_buf_dma = port->block1_dma + 3072ULL; } return (0); } } static int mtip_hw_get_identify(struct driver_data *dd ) { struct smart_attr attr242 ; unsigned char *buf ; int rv ; int tmp ; int tmp___0 ; { { tmp = mtip_get_identify(dd->port, (void *)0); } if (tmp < 0) { return (-14); } else { } if ((unsigned int )*((dd->port)->identify + 142UL) == 60753U) { { set_bit(6L, (unsigned long volatile *)(& (dd->port)->flags)); } return (60753); } else { } { mtip_dump_identify(dd->port); rv = mtip_read_log_page(dd->port, 16, (dd->port)->log_buf, (dd->port)->log_buf_dma, 1U); } if (rv != 0) { { dev_warn((struct device const *)(& (dd->pdev)->dev), "Error in READ LOG EXT (10h) command\n"); } } else { buf = (unsigned char *)(dd->port)->log_buf; if ((int )*(buf + 259UL) & 1) { { _dev_info((struct device const *)(& (dd->pdev)->dev), "Write protect bit is set.\n"); set_bit(3L, (unsigned long volatile *)(& dd->dd_flag)); } } else { } if ((unsigned int )*(buf + 288UL) == 247U) { { _dev_info((struct device const *)(& (dd->pdev)->dev), "Exceeded Tmax, drive in thermal shutdown.\n"); set_bit(2L, (unsigned long volatile *)(& dd->dd_flag)); } } else { } if ((unsigned int )*(buf + 288UL) == 191U) { { _dev_info((struct device const *)(& (dd->pdev)->dev), "Drive indicates rebuild has failed.\n"); } } else { } } { __memset((void *)(& attr242), 0, 12UL); tmp___0 = mtip_get_smart_attr(dd->port, 242U, & attr242); } if (tmp___0 != 0) { { dev_warn((struct device const *)(& (dd->pdev)->dev), "Unable to check write protect progress\n"); } } else { { _dev_info((struct device const *)(& (dd->pdev)->dev), "Write protect progress: %u%% (%u blocks)\n", (int )attr242.cur, attr242.data); } } return (rv); } } static int mtip_hw_init(struct driver_data *dd ) { int i ; int rv ; unsigned int num_command_slots ; unsigned long timeout ; unsigned long timetaken ; void * const *tmp ; void *tmp___0 ; int tmp___1 ; struct lock_class_key __key ; unsigned long tmp___2 ; unsigned long __ms ; unsigned long tmp___3 ; unsigned int tmp___4 ; unsigned int tmp___5 ; bool tmp___6 ; long tmp___7 ; unsigned int tmp___8 ; int tmp___9 ; long tmp___10 ; int tmp___11 ; unsigned int tmp___12 ; unsigned int tmp___13 ; char const *tmp___14 ; struct cpumask const *tmp___15 ; unsigned int tmp___16 ; struct lock_class_key __key___0 ; int tmp___17 ; unsigned int tmp___18 ; { { tmp = pcim_iomap_table(dd->pdev); dd->mmio = *(tmp + 5UL); mtip_detect_product(dd); } if (dd->product_type == 0U) { rv = -5; goto out1; } else { } { num_command_slots = dd->slot_groups * 32U; hba_setup(dd); tmp___0 = kzalloc_node(1168UL, 208U, dd->numa_node); dd->port = (struct mtip_port *)tmp___0; } if ((unsigned long )dd->port == (unsigned long )((struct mtip_port *)0)) { { dev_err((struct device const *)(& (dd->pdev)->dev), "Memory allocation: port structure\n"); } return (-12); } else { } i = 0; goto ldv_47687; ldv_47686: dd->work[i].port = (void *)dd->port; i = i + 1; ldv_47687: ; if (i <= 7) { goto ldv_47686; } else { } { tmp___1 = mtip_device_unaligned_constrained(dd); } if (tmp___1 != 0) { dd->unal_qdepth = 2; } else { dd->unal_qdepth = 0; } { sema_init(& (dd->port)->cmd_slot_unal, dd->unal_qdepth); i = 0; } goto ldv_47691; ldv_47690: { spinlock_check((spinlock_t *)(& (dd->port)->cmd_issue_lock) + (unsigned long )i); __raw_spin_lock_init(& ((spinlock_t *)(& (dd->port)->cmd_issue_lock) + (unsigned long )i)->__annonCompField18.rlock, "&(&dd->port->cmd_issue_lock[i])->rlock", & __key); i = i + 1; } ldv_47691: ; if (i <= 7) { goto ldv_47690; } else { } { (dd->port)->mmio = dd->mmio + 256UL; (dd->port)->dd = dd; rv = mtip_dma_alloc(dd); } if (rv < 0) { goto out1; } else { } i = 0; goto ldv_47694; ldv_47693: (dd->port)->s_active[i] = (dd->port)->mmio + ((unsigned long )(i * 128) + 52UL); (dd->port)->cmd_issue[i] = (dd->port)->mmio + ((unsigned long )(i * 128) + 56UL); (dd->port)->completed[i] = (dd->port)->mmio + ((unsigned long )(i * 128) + 124UL); i = i + 1; ldv_47694: ; if ((unsigned int )i < dd->slot_groups) { goto ldv_47693; } else { } { timetaken = jiffies; tmp___2 = msecs_to_jiffies(30000U); timeout = (unsigned long )jiffies + tmp___2; } goto ldv_47707; ldv_47706: __ms = 100UL; goto ldv_47704; ldv_47703: { __const_udelay(4295000UL); } ldv_47704: tmp___3 = __ms; __ms = __ms - 1UL; if (tmp___3 != 0UL) { goto ldv_47703; } else { } ldv_47707: { tmp___4 = readl((void const volatile *)(dd->port)->mmio + 40U); } if ((tmp___4 & 15U) != 3U && (long )((unsigned long )jiffies - timeout) < 0L) { goto ldv_47706; } else { } { tmp___6 = mtip_check_surprise_removal(dd->pdev); tmp___7 = ldv__builtin_expect((long )tmp___6, 0L); } if (tmp___7 != 0L) { { timetaken = (unsigned long )jiffies - timetaken; tmp___5 = jiffies_to_msecs(timetaken); dev_warn((struct device const *)(& (dd->pdev)->dev), "Surprise removal detected at %u ms\n", tmp___5); rv = -19; } goto out2; } else { } { tmp___9 = constant_test_bit(1L, (unsigned long const volatile *)(& dd->dd_flag)); tmp___10 = ldv__builtin_expect(tmp___9 != 0, 0L); } if (tmp___10 != 0L) { { timetaken = (unsigned long )jiffies - timetaken; tmp___8 = jiffies_to_msecs(timetaken); dev_warn((struct device const *)(& (dd->pdev)->dev), "Removal detected at %u ms\n", tmp___8); rv = -14; } goto out2; } else { } { tmp___13 = readl((void const volatile *)dd->mmio); } if ((tmp___13 & 524288U) == 0U) { { tmp___11 = mtip_hba_reset(dd); } if (tmp___11 < 0) { { dev_err((struct device const *)(& (dd->pdev)->dev), "Card did not reset within timeout\n"); rv = -5; } goto out2; } else { } } else { { tmp___12 = readl((void const volatile *)dd->mmio + 8U); writel(tmp___12, (void volatile *)dd->mmio + 8U); } } { mtip_init_port(dd->port); mtip_start_port(dd->port); tmp___14 = dev_driver_string((struct device const *)(& (dd->pdev)->dev)); rv = devm_request_irq(& (dd->pdev)->dev, (dd->pdev)->irq, & mtip_irq_handler, 128UL, tmp___14, (void *)dd); } if (rv != 0) { { dev_err((struct device const *)(& (dd->pdev)->dev), "Unable to allocate IRQ %d\n", (dd->pdev)->irq); } goto out2; } else { } { tmp___15 = get_cpu_mask((unsigned int )dd->isr_binding); irq_set_affinity_hint((dd->pdev)->irq, tmp___15); tmp___16 = readl((void const volatile *)dd->mmio + 4U); writel(tmp___16 | 2U, (void volatile *)dd->mmio + 4U); __init_waitqueue_head(& (dd->port)->svc_wait, "&dd->port->svc_wait", & __key___0); tmp___17 = constant_test_bit(1L, (unsigned long const volatile *)(& dd->dd_flag)); } if (tmp___17 != 0) { rv = -14; goto out3; } else { } return (rv); out3: { tmp___18 = readl((void const volatile *)dd->mmio + 4U); writel(tmp___18 & 4294967293U, (void volatile *)dd->mmio + 4U); irq_set_affinity_hint((dd->pdev)->irq, (struct cpumask const *)0); ldv_devm_free_irq_111(& (dd->pdev)->dev, (dd->pdev)->irq, (void *)dd); } out2: { mtip_deinit_port(dd->port); mtip_dma_free(dd); } out1: { kfree((void const *)dd->port); } return (rv); } } static void mtip_standby_drive(struct driver_data *dd ) { int tmp ; int tmp___0 ; int tmp___1 ; { if ((int )dd->sr) { return; } else { } { tmp___0 = constant_test_bit(6L, (unsigned long const volatile *)(& (dd->port)->flags)); } if (tmp___0 == 0) { { tmp___1 = constant_test_bit(0L, (unsigned long const volatile *)(& dd->dd_flag)); } if (tmp___1 == 0) { { tmp = mtip_standby_immediate(dd->port); } if (tmp != 0) { { dev_warn((struct device const *)(& (dd->pdev)->dev), "STANDBY IMMEDIATE failed\n"); } } else { } } else { } } else { } return; } } static int mtip_hw_exit(struct driver_data *dd ) { unsigned int tmp ; { if (! dd->sr) { { mtip_deinit_port(dd->port); tmp = readl((void const volatile *)dd->mmio + 4U); writel(tmp & 4294967293U, (void volatile *)dd->mmio + 4U); } } else { } { irq_set_affinity_hint((dd->pdev)->irq, (struct cpumask const *)0); ldv_devm_free_irq_112(& (dd->pdev)->dev, (dd->pdev)->irq, (void *)dd); mtip_dma_free(dd); kfree((void const *)dd->port); dd->port = (struct mtip_port *)0; } return (0); } } static int mtip_hw_shutdown(struct driver_data *dd ) { { if (! dd->sr && (unsigned long )dd->port != (unsigned long )((struct mtip_port *)0)) { { mtip_standby_immediate(dd->port); } } else { } return (0); } } static int mtip_hw_suspend(struct driver_data *dd ) { int tmp ; unsigned int tmp___0 ; { { tmp = mtip_standby_immediate(dd->port); } if (tmp != 0) { { dev_err((struct device const *)(& (dd->pdev)->dev), "Failed standby-immediate command\n"); } return (-14); } else { } { tmp___0 = readl((void const volatile *)dd->mmio + 4U); writel(tmp___0 & 4294967293U, (void volatile *)dd->mmio + 4U); mtip_deinit_port(dd->port); } return (0); } } static int mtip_hw_resume(struct driver_data *dd ) { int tmp ; unsigned int tmp___0 ; { { hba_setup(dd); tmp = mtip_hba_reset(dd); } if (tmp != 0) { { dev_err((struct device const *)(& (dd->pdev)->dev), "Unable to reset the HBA\n"); } return (-14); } else { } { mtip_init_port(dd->port); mtip_start_port(dd->port); tmp___0 = readl((void const volatile *)dd->mmio + 4U); writel(tmp___0 | 2U, (void volatile *)dd->mmio + 4U); } return (0); } } static int rssd_disk_name_format(char *prefix , int index , char *buf , int buflen ) { int base ; char *begin ; size_t tmp ; char *end ; char *p ; int unit ; size_t tmp___0 ; { { base = 26; tmp = strlen((char const *)prefix); begin = buf + tmp; end = buf + (unsigned long )buflen; p = end + 0xffffffffffffffffUL; *p = 0; unit = 26; } ldv_47738: ; if ((unsigned long )p == (unsigned long )begin) { return (-22); } else { } p = p - 1; *p = (char )((unsigned int )((unsigned char )(index % unit)) + 97U); index = index / unit + -1; if (index >= 0) { goto ldv_47738; } else { } { __memmove((void *)begin, (void const *)p, (size_t )((long )end - (long )p)); tmp___0 = strlen((char const *)prefix); __memcpy((void *)buf, (void const *)prefix, tmp___0); } return (0); } } static int mtip_block_ioctl(struct block_device *dev , fmode_t mode , unsigned int cmd , unsigned long arg ) { struct driver_data *dd ; bool tmp ; int tmp___0 ; int tmp___1 ; long tmp___2 ; int tmp___3 ; { { dd = (struct driver_data *)(dev->bd_disk)->private_data; tmp = capable(21); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (-13); } else { } if ((unsigned long )dd == (unsigned long )((struct driver_data *)0)) { return (-25); } else { } { tmp___1 = constant_test_bit(1L, (unsigned long const volatile *)(& dd->dd_flag)); tmp___2 = ldv__builtin_expect(tmp___1 != 0, 0L); } if (tmp___2 != 0L) { return (-25); } else { } { if (cmd == 4705U) { goto case_4705; } else { } goto switch_default; case_4705: /* CIL Label */ ; return (-25); switch_default: /* CIL Label */ { tmp___3 = mtip_hw_ioctl(dd, cmd, arg); } return (tmp___3); switch_break: /* CIL Label */ ; } } } static int mtip_block_compat_ioctl(struct block_device *dev , fmode_t mode , unsigned int cmd , unsigned long arg ) { struct driver_data *dd ; bool tmp ; int tmp___0 ; int tmp___1 ; long tmp___2 ; struct mtip_compat_ide_task_request_s *compat_req_task ; ide_task_request_t req_task ; int compat_tasksize ; int outtotal ; int ret ; unsigned long tmp___3 ; int __ret_gu ; register unsigned long __val_gu ; int __ret_gu___0 ; register unsigned long __val_gu___0 ; unsigned long tmp___4 ; int __ret_pu ; compat_ulong_t __pu_val ; int __ret_pu___0 ; compat_ulong_t __pu_val___0 ; int tmp___5 ; { { dd = (struct driver_data *)(dev->bd_disk)->private_data; tmp = capable(21); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (-13); } else { } if ((unsigned long )dd == (unsigned long )((struct driver_data *)0)) { return (-25); } else { } { tmp___1 = constant_test_bit(1L, (unsigned long const volatile *)(& dd->dd_flag)); tmp___2 = ldv__builtin_expect(tmp___1 != 0, 0L); } if (tmp___2 != 0L) { return (-25); } else { } { if (cmd == 4705U) { goto case_4705; } else { } if (cmd == 797U) { goto case_797; } else { } goto switch_default___1; case_4705: /* CIL Label */ ; return (-25); case_797: /* CIL Label */ { compat_tasksize = 40; compat_req_task = (struct mtip_compat_ide_task_request_s *)arg; tmp___3 = copy_from_user((void *)(& req_task), (void const *)arg, (unsigned long )compat_tasksize - 8UL); } if (tmp___3 != 0UL) { return (-14); } else { } { might_fault(); __asm__ volatile ("call __get_user_%P3": "=a" (__ret_gu), "=r" (__val_gu): "0" (& compat_req_task->out_size), "i" (4UL)); req_task.out_size = (unsigned long )((unsigned int )__val_gu); } if (__ret_gu != 0) { return (-14); } else { } { might_fault(); __asm__ volatile ("call __get_user_%P3": "=a" (__ret_gu___0), "=r" (__val_gu___0): "0" (& compat_req_task->in_size), "i" (4UL)); req_task.in_size = (unsigned long )((unsigned int )__val_gu___0); } if (__ret_gu___0 != 0) { return (-14); } else { } { outtotal = 40; ret = exec_drive_taskfile(dd, (void *)arg, & req_task, outtotal); tmp___4 = copy_to_user((void *)arg, (void const *)(& req_task), (unsigned long )compat_tasksize - 8UL); } if (tmp___4 != 0UL) { return (-14); } else { } { might_fault(); __pu_val = (compat_ulong_t )req_task.out_size; } { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ volatile ("call __put_user_1": "=a" (__ret_pu): "0" (__pu_val), "c" (& compat_req_task->out_size): "ebx"); goto ldv_47772; case_2: /* CIL Label */ __asm__ volatile ("call __put_user_2": "=a" (__ret_pu): "0" (__pu_val), "c" (& compat_req_task->out_size): "ebx"); goto ldv_47772; case_4: /* CIL Label */ __asm__ volatile ("call __put_user_4": "=a" (__ret_pu): "0" (__pu_val), "c" (& compat_req_task->out_size): "ebx"); goto ldv_47772; case_8: /* CIL Label */ __asm__ volatile ("call __put_user_8": "=a" (__ret_pu): "0" (__pu_val), "c" (& compat_req_task->out_size): "ebx"); goto ldv_47772; switch_default: /* CIL Label */ __asm__ volatile ("call __put_user_X": "=a" (__ret_pu): "0" (__pu_val), "c" (& compat_req_task->out_size): "ebx"); goto ldv_47772; switch_break___0: /* CIL Label */ ; } ldv_47772: ; if (__ret_pu != 0) { return (-14); } else { } { might_fault(); __pu_val___0 = (compat_ulong_t )req_task.in_size; } { if (4UL == 1UL) { goto case_1___0; } else { } if (4UL == 2UL) { goto case_2___0; } else { } if (4UL == 4UL) { goto case_4___0; } else { } if (4UL == 8UL) { goto case_8___0; } else { } goto switch_default___0; case_1___0: /* CIL Label */ __asm__ volatile ("call __put_user_1": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" (& compat_req_task->in_size): "ebx"); goto ldv_47781; case_2___0: /* CIL Label */ __asm__ volatile ("call __put_user_2": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" (& compat_req_task->in_size): "ebx"); goto ldv_47781; case_4___0: /* CIL Label */ __asm__ volatile ("call __put_user_4": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" (& compat_req_task->in_size): "ebx"); goto ldv_47781; case_8___0: /* CIL Label */ __asm__ volatile ("call __put_user_8": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" (& compat_req_task->in_size): "ebx"); goto ldv_47781; switch_default___0: /* CIL Label */ __asm__ volatile ("call __put_user_X": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" (& compat_req_task->in_size): "ebx"); goto ldv_47781; switch_break___1: /* CIL Label */ ; } ldv_47781: ; if (__ret_pu___0 != 0) { return (-14); } else { } return (ret); switch_default___1: /* CIL Label */ { tmp___5 = mtip_hw_ioctl(dd, cmd, arg); } return (tmp___5); switch_break: /* CIL Label */ ; } } } static int mtip_block_getgeo(struct block_device *dev , struct hd_geometry *geo ) { struct driver_data *dd ; sector_t capacity ; bool tmp ; int tmp___0 ; int _res ; { dd = (struct driver_data *)(dev->bd_disk)->private_data; if ((unsigned long )dd == (unsigned long )((struct driver_data *)0)) { return (-25); } else { } { tmp = mtip_hw_get_capacity(dd, & capacity); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { dev_warn((struct device const *)(& (dd->pdev)->dev), "Could not get drive capacity.\n"); } return (-25); } else { } geo->heads = 224U; geo->sectors = 56U; _res = (int )(capacity % (sector_t )((int )geo->heads * (int )geo->sectors)); capacity = capacity / (sector_t )((int )geo->heads * (int )geo->sectors); geo->cylinders = (unsigned short )capacity; return (0); } } static struct block_device_operations const mtip_block_ops = {0, 0, 0, & mtip_block_ioctl, & mtip_block_compat_ioctl, 0, 0, 0, 0, 0, & mtip_block_getgeo, 0, & __this_module}; static int mtip_submit_request(struct blk_mq_hw_ctx *hctx , struct request *rq ) { struct driver_data *dd ; struct mtip_cmd *cmd ; void *tmp ; unsigned int nents ; int tmp___0 ; long tmp___1 ; int tmp___2 ; long tmp___3 ; int tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; long tmp___8 ; int tmp___9 ; long tmp___10 ; int err ; unsigned int tmp___11 ; sector_t tmp___12 ; int tmp___13 ; { { dd = (struct driver_data *)(hctx->queue)->queuedata; tmp = blk_mq_rq_to_pdu(rq); cmd = (struct mtip_cmd *)tmp; tmp___10 = ldv__builtin_expect((dd->dd_flag & 271UL) != 0UL, 0L); } if (tmp___10 != 0L) { { tmp___0 = constant_test_bit(1L, (unsigned long const volatile *)(& dd->dd_flag)); tmp___1 = ldv__builtin_expect(tmp___0 != 0, 0L); } if (tmp___1 != 0L) { return (-6); } else { } { tmp___2 = constant_test_bit(2L, (unsigned long const volatile *)(& dd->dd_flag)); tmp___3 = ldv__builtin_expect(tmp___2 != 0, 0L); } if (tmp___3 != 0L) { return (-61); } else { } { tmp___4 = constant_test_bit(3L, (unsigned long const volatile *)(& dd->dd_flag)); tmp___5 = ldv__builtin_expect(tmp___4 != 0, 0L); } if (tmp___5 != 0L) { { tmp___6 = ldv__builtin_expect((long )((int )rq->cmd_flags) & 1L, 0L); } if (tmp___6 != 0L) { return (-61); } else { } } else { } { tmp___7 = constant_test_bit(0L, (unsigned long const volatile *)(& dd->dd_flag)); tmp___8 = ldv__builtin_expect(tmp___7 != 0, 0L); } if (tmp___8 != 0L) { return (-61); } else { } { tmp___9 = constant_test_bit(8L, (unsigned long const volatile *)(& dd->dd_flag)); } if (tmp___9 != 0) { return (-6); } else { } } else { } if ((rq->cmd_flags & 128ULL) != 0ULL) { { tmp___11 = blk_rq_sectors((struct request const *)rq); tmp___12 = blk_rq_pos((struct request const *)rq); err = mtip_send_trim(dd, (unsigned int )tmp___12, tmp___11); blk_mq_end_request(rq, err); } return (0); } else { } { tmp___13 = blk_rq_map_sg(hctx->queue, rq, (struct scatterlist *)(& cmd->sg)); nents = (unsigned int )tmp___13; mtip_hw_submit_io(dd, rq, cmd, (int )nents, hctx); } return (0); } } static bool mtip_check_unal_depth(struct blk_mq_hw_ctx *hctx , struct request *rq ) { struct driver_data *dd ; struct mtip_cmd *cmd ; void *tmp ; sector_t tmp___0 ; unsigned int tmp___1 ; unsigned int tmp___2 ; int tmp___3 ; { { dd = (struct driver_data *)(hctx->queue)->queuedata; tmp = blk_mq_rq_to_pdu(rq); cmd = (struct mtip_cmd *)tmp; } if (((int )rq->cmd_flags & 1) == 0 || dd->unal_qdepth == 0) { return (0); } else { } { tmp___2 = blk_rq_sectors((struct request const *)rq); } if (tmp___2 <= 64U) { { tmp___0 = blk_rq_pos((struct request const *)rq); } if ((tmp___0 & 7UL) != 0UL) { cmd->unaligned = 1; } else { { tmp___1 = blk_rq_sectors((struct request const *)rq); } if ((tmp___1 & 7U) != 0U) { cmd->unaligned = 1; } else { } } } else { } if (cmd->unaligned != 0) { { tmp___3 = down_trylock(& (dd->port)->cmd_slot_unal); } if (tmp___3 != 0) { return (1); } else { } } else { } return (0); } } static int mtip_queue_rq(struct blk_mq_hw_ctx *hctx , struct blk_mq_queue_data const *bd ) { struct request *rq ; int ret ; bool tmp ; long tmp___0 ; long tmp___1 ; { { rq = bd->rq; tmp = mtip_check_unal_depth(hctx, rq); tmp___0 = ldv__builtin_expect((long )tmp, 0L); } if (tmp___0 != 0L) { return (1); } else { } { blk_mq_start_request(rq); ret = mtip_submit_request(hctx, rq); tmp___1 = ldv__builtin_expect(ret == 0, 1L); } if (tmp___1 != 0L) { return (0); } else { } rq->errors = ret; return (2); } } static void mtip_free_cmd(void *data , struct request *rq , unsigned int hctx_idx , unsigned int request_idx ) { struct driver_data *dd ; struct mtip_cmd *cmd ; void *tmp ; { { dd = (struct driver_data *)data; tmp = blk_mq_rq_to_pdu(rq); cmd = (struct mtip_cmd *)tmp; } if ((unsigned long )cmd->command == (unsigned long )((void *)0)) { return; } else { } { dmam_free_coherent(& (dd->pdev)->dev, 8192UL, cmd->command, cmd->command_dma); } return; } } static int mtip_init_cmd(void *data , struct request *rq , unsigned int hctx_idx , unsigned int request_idx , unsigned int numa_node___0 ) { struct driver_data *dd ; struct mtip_cmd *cmd ; void *tmp ; u32 host_cap_64 ; unsigned int tmp___0 ; { { dd = (struct driver_data *)data; tmp = blk_mq_rq_to_pdu(rq); cmd = (struct mtip_cmd *)tmp; tmp___0 = readl((void const volatile *)dd->mmio); host_cap_64 = tmp___0 & 2147483648U; cmd->command = dmam_alloc_coherent(& (dd->pdev)->dev, 8192UL, & cmd->command_dma, 208U); } if ((unsigned long )cmd->command == (unsigned long )((void *)0)) { return (-12); } else { } { __memset(cmd->command, 0, 8192UL); cmd->command_header = (struct mtip_cmd_hdr *)((dd->port)->command_list + (unsigned long )request_idx * 32UL); cmd->command_header_dma = (dd->port)->command_list_dma + (unsigned long long )((unsigned long )request_idx * 32UL); } if (host_cap_64 != 0U) { (cmd->command_header)->ctbau = (unsigned int )(cmd->command_dma >> 32ULL); } else { } { (cmd->command_header)->ctba = (unsigned int )cmd->command_dma; sg_init_table((struct scatterlist *)(& cmd->sg), 504U); } return (0); } } static struct blk_mq_ops mtip_mq_ops = {& mtip_queue_rq, & blk_mq_map_queue, 0, 0, 0, 0, & mtip_init_cmd, & mtip_free_cmd}; static int mtip_block_initialize(struct driver_data *dd ) { int rv ; int wait_for_rebuild ; sector_t capacity ; unsigned int index ; struct kobject *kobj ; unsigned char thd_name[16U] ; int tmp ; int tmp___0 ; bool tmp___1 ; bool tmp___2 ; int tmp___3 ; bool tmp___4 ; { rv = 0; wait_for_rebuild = 0; index = 0U; if ((unsigned long )dd->disk != (unsigned long )((struct gendisk *)0)) { goto skip_create_disk; } else { } { tmp = mtip_hw_init(dd); } if (tmp != 0) { rv = -22; goto protocol_init_error; } else { } { dd->disk = alloc_disk_node(16, dd->numa_node); } if ((unsigned long )dd->disk == (unsigned long )((struct gendisk *)0)) { { dev_err((struct device const *)(& (dd->pdev)->dev), "Unable to allocate gendisk structure\n"); rv = -22; } goto alloc_disk_error; } else { } ldv_47849: { tmp___0 = ida_pre_get(& rssd_index_ida, 208U); } if (tmp___0 == 0) { goto ida_get_error; } else { } { ldv_spin_lock_105(& rssd_index_lock); rv = ida_get_new(& rssd_index_ida, (int *)(& index)); ldv_spin_unlock_106(& rssd_index_lock); } if (rv == -11) { goto ldv_47849; } else { } if (rv != 0) { goto ida_get_error; } else { } { rv = rssd_disk_name_format((char *)"rssd", (int )index, (char *)(& (dd->disk)->disk_name), 32); } if (rv != 0) { goto disk_index_error; } else { } { (dd->disk)->driverfs_dev = & (dd->pdev)->dev; (dd->disk)->major = dd->major; (dd->disk)->first_minor = dd->instance * 16; (dd->disk)->fops = & mtip_block_ops; (dd->disk)->private_data = (void *)dd; dd->index = (unsigned long )index; mtip_hw_debugfs_init(dd); } skip_create_disk: { __memset((void *)(& dd->tags), 0, 232UL); dd->tags.ops = & mtip_mq_ops; dd->tags.nr_hw_queues = 1U; dd->tags.queue_depth = 256U; dd->tags.reserved_tags = 1U; dd->tags.cmd_size = 20224U; dd->tags.numa_node = dd->numa_node; dd->tags.flags = 1U; dd->tags.driver_data = (void *)dd; rv = blk_mq_alloc_tag_set(& dd->tags); } if (rv != 0) { { dev_err((struct device const *)(& (dd->pdev)->dev), "Unable to allocate request queue\n"); } goto block_queue_alloc_init_error; } else { } { dd->queue = blk_mq_init_queue(& dd->tags); tmp___1 = IS_ERR((void const *)dd->queue); } if ((int )tmp___1) { { dev_err((struct device const *)(& (dd->pdev)->dev), "Unable to allocate request queue\n"); rv = -12; } goto block_queue_alloc_init_error; } else { } { (dd->disk)->queue = dd->queue; (dd->queue)->queuedata = (void *)dd; wait_for_rebuild = mtip_hw_get_identify(dd); } if (wait_for_rebuild < 0) { { dev_err((struct device const *)(& (dd->pdev)->dev), "Protocol layer initialization failed\n"); rv = -22; } goto init_hw_cmds_error; } else { } if (wait_for_rebuild == 60753) { goto start_service_thread; } else { } { set_bit(12L, (unsigned long volatile *)(& (dd->queue)->queue_flags)); clear_bit(16L, (unsigned long volatile *)(& (dd->queue)->queue_flags)); blk_queue_max_segments(dd->queue, 504); blk_queue_physical_block_size(dd->queue, 4096U); blk_queue_max_hw_sectors(dd->queue, 65535U); blk_queue_max_segment_size(dd->queue, 4194304U); blk_queue_io_min(dd->queue, 4096U); blk_queue_bounce_limit(dd->queue, (dd->pdev)->dma_mask); blk_queue_flush(dd->queue, 0U); } if ((int )dd->trim_supp) { { set_bit(14L, (unsigned long volatile *)(& (dd->queue)->queue_flags)); (dd->queue)->limits.discard_granularity = 4096U; blk_queue_max_discard_sectors(dd->queue, 524224U); (dd->queue)->limits.discard_zeroes_data = 0U; } } else { } { tmp___2 = mtip_hw_get_capacity(dd, & capacity); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { { dev_warn((struct device const *)(& (dd->pdev)->dev), "Could not read drive capacity\n"); rv = -5; } goto read_capacity_error; } else { } { set_capacity(dd->disk, capacity); ldv_add_disk_115(dd->disk); dd->bdev = bdget_disk(dd->disk, 0); kobj = kobject_get(& (dd->disk)->part0.__dev.kobj); } if ((unsigned long )kobj != (unsigned long )((struct kobject *)0)) { { mtip_hw_sysfs_init(dd, kobj); kobject_put(kobj); } } else { } if ((unsigned long )dd->mtip_svc_handler != (unsigned long )((struct task_struct *)0)) { { set_bit(7L, (unsigned long volatile *)(& dd->dd_flag)); } return (rv); } else { } start_service_thread: { sprintf((char *)(& thd_name), "mtip_svc_thd_%02d", index); dd->mtip_svc_handler = kthread_create_on_node(& mtip_service_thread, (void *)dd, dd->numa_node, "%s", (unsigned char *)(& thd_name)); tmp___4 = IS_ERR((void const *)dd->mtip_svc_handler); } if ((int )tmp___4) { { dev_err((struct device const *)(& (dd->pdev)->dev), "service thread failed to start\n"); dd->mtip_svc_handler = (struct task_struct *)0; rv = -14; } goto kthread_run_error; } else { } { wake_up_process(dd->mtip_svc_handler); } if (wait_for_rebuild == 60753) { rv = wait_for_rebuild; } else { } return (rv); kthread_run_error: { bdput(dd->bdev); dd->bdev = (struct block_device *)0; ldv_del_gendisk_116(dd->disk); } read_capacity_error: ; init_hw_cmds_error: { ldv_blk_cleanup_queue_117(dd->queue); blk_mq_free_tag_set(& dd->tags); } block_queue_alloc_init_error: { mtip_hw_debugfs_exit(dd); } disk_index_error: { ldv_spin_lock_105(& rssd_index_lock); ida_remove(& rssd_index_ida, (int )index); ldv_spin_unlock_106(& rssd_index_lock); } ida_get_error: { ldv_put_disk_120(dd->disk); } alloc_disk_error: { mtip_hw_exit(dd); } protocol_init_error: ; return (rv); } } static int mtip_block_remove(struct driver_data *dd ) { struct kobject *kobj ; int tmp ; { if (! dd->sr) { { mtip_hw_debugfs_exit(dd); } if ((unsigned long )dd->mtip_svc_handler != (unsigned long )((struct task_struct *)0)) { { set_bit(8L, (unsigned long volatile *)(& (dd->port)->flags)); __wake_up(& (dd->port)->svc_wait, 1U, 1, (void *)0); kthread_stop(dd->mtip_svc_handler); } } else { } { tmp = constant_test_bit(7L, (unsigned long const volatile *)(& dd->dd_flag)); } if (tmp != 0) { { kobj = kobject_get(& (dd->disk)->part0.__dev.kobj); } if ((unsigned long )kobj != (unsigned long )((struct kobject *)0)) { { mtip_hw_sysfs_exit(dd, kobj); kobject_put(kobj); } } else { } } else { } { mtip_standby_drive(dd); } if ((unsigned long )dd->bdev != (unsigned long )((struct block_device *)0)) { { bdput(dd->bdev); dd->bdev = (struct block_device *)0; } } else { } if ((unsigned long )dd->disk != (unsigned long )((struct gendisk *)0)) { if ((unsigned long )(dd->disk)->queue != (unsigned long )((struct request_queue *)0)) { { ldv_del_gendisk_121(dd->disk); ldv_blk_cleanup_queue_122(dd->queue); blk_mq_free_tag_set(& dd->tags); dd->queue = (struct request_queue *)0; } } else { { ldv_put_disk_123(dd->disk); } } } else { } { dd->disk = (struct gendisk *)0; ldv_spin_lock_105(& rssd_index_lock); ida_remove(& rssd_index_ida, (int )dd->index); ldv_spin_unlock_106(& rssd_index_lock); } } else { { _dev_info((struct device const *)(& (dd->pdev)->dev), "device %s surprise removal\n", (char *)(& (dd->disk)->disk_name)); } } { mtip_hw_exit(dd); } return (0); } } static int mtip_block_shutdown(struct driver_data *dd ) { { { mtip_hw_shutdown(dd); } if ((unsigned long )dd->disk != (unsigned long )((struct gendisk *)0)) { { _dev_info((struct device const *)(& (dd->pdev)->dev), "Shutting down %s ...\n", (char *)(& (dd->disk)->disk_name)); } if ((unsigned long )(dd->disk)->queue != (unsigned long )((struct request_queue *)0)) { { ldv_del_gendisk_126(dd->disk); ldv_blk_cleanup_queue_127(dd->queue); blk_mq_free_tag_set(& dd->tags); } } else { { ldv_put_disk_128(dd->disk); } } dd->disk = (struct gendisk *)0; dd->queue = (struct request_queue *)0; } else { } { ldv_spin_lock_105(& rssd_index_lock); ida_remove(& rssd_index_ida, (int )dd->index); ldv_spin_unlock_106(& rssd_index_lock); } return (0); } } static int mtip_block_suspend(struct driver_data *dd ) { { { _dev_info((struct device const *)(& (dd->pdev)->dev), "Suspending %s ...\n", (char *)(& (dd->disk)->disk_name)); mtip_hw_suspend(dd); } return (0); } } static int mtip_block_resume(struct driver_data *dd ) { { { _dev_info((struct device const *)(& (dd->pdev)->dev), "Resuming %s ...\n", (char *)(& (dd->disk)->disk_name)); mtip_hw_resume(dd); } return (0); } } static void drop_cpu(int cpu ) { { cpu_use[cpu] = cpu_use[cpu] - 1U; return; } } static int get_least_used_cpu_on_node(int node ) { int cpu ; int least_used_cpu ; int least_cnt ; struct cpumask const *node_mask ; unsigned int tmp ; unsigned int tmp___0 ; { { node_mask = cpumask_of_node(node); tmp = cpumask_first(node_mask); least_used_cpu = (int )tmp; least_cnt = (int )cpu_use[least_used_cpu]; cpu = least_used_cpu; cpu = -1; } goto ldv_47881; ldv_47880: ; if (cpu_use[cpu] < (u32 )least_cnt) { least_used_cpu = cpu; least_cnt = (int )cpu_use[cpu]; } else { } ldv_47881: { tmp___0 = cpumask_next(cpu, node_mask); cpu = (int )tmp___0; } if (cpu < nr_cpu_ids) { goto ldv_47880; } else { } cpu_use[least_used_cpu] = cpu_use[least_used_cpu] + 1U; return (least_used_cpu); } } __inline static int mtip_get_next_rr_node(void) { int next_node ; { next_node = -1; if (next_node == -1) { { next_node = __first_node((nodemask_t const *)(& node_states) + 1U); } return (next_node); } else { } { next_node = next_online_node(next_node); } if (next_node == 1024) { { next_node = __first_node((nodemask_t const *)(& node_states) + 1U); } } else { } return (next_node); } } static void mtip_workq_sdbf0(struct work_struct *work ) { struct mtip_work *w ; { { w = (struct mtip_work *)work; mtip_workq_sdbfx((struct mtip_port *)w->port, 0, w->completed); } return; } } static void mtip_workq_sdbf1(struct work_struct *work ) { struct mtip_work *w ; { { w = (struct mtip_work *)work; mtip_workq_sdbfx((struct mtip_port *)w->port, 1, w->completed); } return; } } static void mtip_workq_sdbf2(struct work_struct *work ) { struct mtip_work *w ; { { w = (struct mtip_work *)work; mtip_workq_sdbfx((struct mtip_port *)w->port, 2, w->completed); } return; } } static void mtip_workq_sdbf3(struct work_struct *work ) { struct mtip_work *w ; { { w = (struct mtip_work *)work; mtip_workq_sdbfx((struct mtip_port *)w->port, 3, w->completed); } return; } } static void mtip_workq_sdbf4(struct work_struct *work ) { struct mtip_work *w ; { { w = (struct mtip_work *)work; mtip_workq_sdbfx((struct mtip_port *)w->port, 4, w->completed); } return; } } static void mtip_workq_sdbf5(struct work_struct *work ) { struct mtip_work *w ; { { w = (struct mtip_work *)work; mtip_workq_sdbfx((struct mtip_port *)w->port, 5, w->completed); } return; } } static void mtip_workq_sdbf6(struct work_struct *work ) { struct mtip_work *w ; { { w = (struct mtip_work *)work; mtip_workq_sdbfx((struct mtip_port *)w->port, 6, w->completed); } return; } } static void mtip_workq_sdbf7(struct work_struct *work ) { struct mtip_work *w ; { { w = (struct mtip_work *)work; mtip_workq_sdbfx((struct mtip_port *)w->port, 7, w->completed); } return; } } static void mtip_disable_link_opts(struct driver_data *dd , struct pci_dev *pdev ) { int pos ; unsigned short pcie_dev_ctrl ; { { pos = pci_find_capability(pdev, 16); } if (pos != 0) { { pci_read_config_word((struct pci_dev const *)pdev, pos + 8, & pcie_dev_ctrl); } if (((unsigned int )pcie_dev_ctrl & 2064U) != 0U) { { _dev_info((struct device const *)(& (dd->pdev)->dev), "Disabling ERO/No-Snoop on bridge device %04x:%04x\n", (int )pdev->vendor, (int )pdev->device); pcie_dev_ctrl = (unsigned int )pcie_dev_ctrl & 63471U; pci_write_config_word((struct pci_dev const *)pdev, pos + 8, (int )pcie_dev_ctrl); } } else { } } else { } return; } } static void mtip_fix_ero_nosnoop(struct driver_data *dd , struct pci_dev *pdev ) { struct pci_dev *parent_dev ; { if ((unsigned long )pdev->bus != (unsigned long )((struct pci_bus *)0) && (unsigned long )(pdev->bus)->self != (unsigned long )((struct pci_dev *)0)) { if ((unsigned int )((pdev->bus)->self)->vendor == 4098U && ((int )((pdev->bus)->self)->device & 65280) == 23040) { { mtip_disable_link_opts(dd, (pdev->bus)->self); } } else { parent_dev = (pdev->bus)->self; if (((((unsigned long )parent_dev->bus != (unsigned long )((struct pci_bus *)0) && (unsigned long )(parent_dev->bus)->parent != (unsigned long )((struct pci_bus *)0)) && (unsigned long )((parent_dev->bus)->parent)->self != (unsigned long )((struct pci_dev *)0)) && (unsigned int )(((parent_dev->bus)->parent)->self)->vendor == 4098U) && ((int )(((parent_dev->bus)->parent)->self)->device & 65280) == 23040) { { mtip_disable_link_opts(dd, ((parent_dev->bus)->parent)->self); } } else { } } } else { } return; } } static int mtip_pci_probe(struct pci_dev *pdev , struct pci_device_id const *ent ) { int rv ; struct driver_data *dd ; char cpu_list[256U] ; struct cpumask const *node_mask ; int cpu ; int i ; int j ; int my_node ; unsigned long flags ; int tmp ; int pscr_ret__ ; void const *__vpp_verify ; int pfo_ret__ ; int pfo_ret_____0 ; int pfo_ret_____1 ; int pfo_ret_____2 ; int pscr_ret_____0 ; void const *__vpp_verify___0 ; int pfo_ret_____3 ; int pfo_ret_____4 ; int pfo_ret_____5 ; int pfo_ret_____6 ; int tmp___0 ; int tmp___1 ; int tmp___2 ; void *tmp___3 ; int tmp___4 ; struct lock_class_key __key ; char const *__lock_name ; struct workqueue_struct *tmp___5 ; size_t tmp___6 ; unsigned int tmp___7 ; struct cpumask const *tmp___8 ; unsigned int tmp___9 ; void const *__vpp_verify___1 ; unsigned long __ptr ; unsigned int tmp___10 ; struct _ddebug descriptor ; long tmp___11 ; bool tmp___12 ; int tmp___13 ; int tmp___14 ; size_t tmp___15 ; unsigned int tmp___16 ; struct lock_class_key __key___0 ; atomic_long_t __constr_expr_0 ; struct lock_class_key __key___1 ; atomic_long_t __constr_expr_1 ; struct lock_class_key __key___2 ; atomic_long_t __constr_expr_2 ; struct lock_class_key __key___3 ; atomic_long_t __constr_expr_3 ; struct lock_class_key __key___4 ; atomic_long_t __constr_expr_4 ; struct lock_class_key __key___5 ; atomic_long_t __constr_expr_5 ; struct lock_class_key __key___6 ; atomic_long_t __constr_expr_6 ; struct lock_class_key __key___7 ; atomic_long_t __constr_expr_7 ; { { rv = 0; dd = (struct driver_data *)0; i = 0; j = 0; my_node = -1; my_node = __pcibus_to_node((struct pci_bus const *)pdev->bus); } if (my_node != -1) { { tmp = node_state(my_node, 1); } if (tmp == 0) { { my_node = mtip_get_next_rr_node(); } } else { } } else { { _dev_info((struct device const *)(& pdev->dev), "Kernel not reporting proximity, choosing a node\n"); my_node = mtip_get_next_rr_node(); } } __vpp_verify = (void const *)0; { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2___0; } else { } if (4UL == 4UL) { goto case_4___1; } else { } if (4UL == 8UL) { goto case_8___2; } else { } goto switch_default___3; case_1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___0; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1___0: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret__): "m" (cpu_number)); goto ldv_47989; case_2: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_47989; case_4: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_47989; case_8: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_47989; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break___0: /* CIL Label */ ; } ldv_47989: pscr_ret__ = pfo_ret__; goto ldv_47995; case_2___0: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___1; } else { } if (4UL == 2UL) { goto case_2___1; } else { } if (4UL == 4UL) { goto case_4___0; } else { } if (4UL == 8UL) { goto case_8___0; } else { } goto switch_default___0; case_1___1: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____0): "m" (cpu_number)); goto ldv_47999; case_2___1: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_47999; case_4___0: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_47999; case_8___0: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_47999; switch_default___0: /* CIL Label */ { __bad_percpu_size(); } switch_break___1: /* CIL Label */ ; } ldv_47999: pscr_ret__ = pfo_ret_____0; goto ldv_47995; case_4___1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___2; } else { } if (4UL == 2UL) { goto case_2___2; } else { } if (4UL == 4UL) { goto case_4___2; } else { } if (4UL == 8UL) { goto case_8___1; } else { } goto switch_default___1; case_1___2: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____1): "m" (cpu_number)); goto ldv_48008; case_2___2: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_48008; case_4___2: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_48008; case_8___1: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_48008; switch_default___1: /* CIL Label */ { __bad_percpu_size(); } switch_break___2: /* CIL Label */ ; } ldv_48008: pscr_ret__ = pfo_ret_____1; goto ldv_47995; case_8___2: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___3; } else { } if (4UL == 2UL) { goto case_2___3; } else { } if (4UL == 4UL) { goto case_4___3; } else { } if (4UL == 8UL) { goto case_8___3; } else { } goto switch_default___2; case_1___3: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____2): "m" (cpu_number)); goto ldv_48017; case_2___3: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_48017; case_4___3: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_48017; case_8___3: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_48017; switch_default___2: /* CIL Label */ { __bad_percpu_size(); } switch_break___3: /* CIL Label */ ; } ldv_48017: pscr_ret__ = pfo_ret_____2; goto ldv_47995; switch_default___3: /* CIL Label */ { __bad_size_call_parameter(); } goto ldv_47995; switch_break: /* CIL Label */ ; } ldv_47995: __vpp_verify___0 = (void const *)0; { if (4UL == 1UL) { goto case_1___4; } else { } if (4UL == 2UL) { goto case_2___5; } else { } if (4UL == 4UL) { goto case_4___6; } else { } if (4UL == 8UL) { goto case_8___7; } else { } goto switch_default___8; case_1___4: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___5; } else { } if (4UL == 2UL) { goto case_2___4; } else { } if (4UL == 4UL) { goto case_4___4; } else { } if (4UL == 8UL) { goto case_8___4; } else { } goto switch_default___4; case_1___5: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____3): "m" (cpu_number)); goto ldv_47948; case_2___4: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____3): "m" (cpu_number)); goto ldv_47948; case_4___4: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____3): "m" (cpu_number)); goto ldv_47948; case_8___4: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____3): "m" (cpu_number)); goto ldv_47948; switch_default___4: /* CIL Label */ { __bad_percpu_size(); } switch_break___5: /* CIL Label */ ; } ldv_47948: pscr_ret_____0 = pfo_ret_____3; goto ldv_47954; case_2___5: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___6; } else { } if (4UL == 2UL) { goto case_2___6; } else { } if (4UL == 4UL) { goto case_4___5; } else { } if (4UL == 8UL) { goto case_8___5; } else { } goto switch_default___5; case_1___6: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____4): "m" (cpu_number)); goto ldv_47958; case_2___6: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____4): "m" (cpu_number)); goto ldv_47958; case_4___5: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____4): "m" (cpu_number)); goto ldv_47958; case_8___5: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____4): "m" (cpu_number)); goto ldv_47958; switch_default___5: /* CIL Label */ { __bad_percpu_size(); } switch_break___6: /* CIL Label */ ; } ldv_47958: pscr_ret_____0 = pfo_ret_____4; goto ldv_47954; case_4___6: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___7; } else { } if (4UL == 2UL) { goto case_2___7; } else { } if (4UL == 4UL) { goto case_4___7; } else { } if (4UL == 8UL) { goto case_8___6; } else { } goto switch_default___6; case_1___7: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____5): "m" (cpu_number)); goto ldv_47967; case_2___7: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____5): "m" (cpu_number)); goto ldv_47967; case_4___7: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____5): "m" (cpu_number)); goto ldv_47967; case_8___6: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____5): "m" (cpu_number)); goto ldv_47967; switch_default___6: /* CIL Label */ { __bad_percpu_size(); } switch_break___7: /* CIL Label */ ; } ldv_47967: pscr_ret_____0 = pfo_ret_____5; goto ldv_47954; case_8___7: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___8; } else { } if (4UL == 2UL) { goto case_2___8; } else { } if (4UL == 4UL) { goto case_4___8; } else { } if (4UL == 8UL) { goto case_8___8; } else { } goto switch_default___7; case_1___8: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____6): "m" (cpu_number)); goto ldv_47976; case_2___8: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____6): "m" (cpu_number)); goto ldv_47976; case_4___8: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____6): "m" (cpu_number)); goto ldv_47976; case_8___8: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____6): "m" (cpu_number)); goto ldv_47976; switch_default___7: /* CIL Label */ { __bad_percpu_size(); } switch_break___8: /* CIL Label */ ; } ldv_47976: pscr_ret_____0 = pfo_ret_____6; goto ldv_47954; switch_default___8: /* CIL Label */ { __bad_size_call_parameter(); } goto ldv_47954; switch_break___4: /* CIL Label */ ; } ldv_47954: { tmp___0 = __cpu_to_node(pscr_ret_____0); tmp___1 = dev_to_node(& pdev->dev); tmp___2 = __pcibus_to_node((struct pci_bus const *)pdev->bus); _dev_info((struct device const *)(& pdev->dev), "NUMA node %d (closest: %d,%d, probe on %d:%d)\n", my_node, tmp___2, tmp___1, tmp___0, pscr_ret__); tmp___3 = kzalloc_node(1472UL, 208U, my_node); dd = (struct driver_data *)tmp___3; } if ((unsigned long )dd == (unsigned long )((struct driver_data *)0)) { { dev_err((struct device const *)(& pdev->dev), "Unable to allocate memory for driver data\n"); } return (-12); } else { } { pci_set_drvdata(pdev, (void *)dd); rv = pcim_enable_device(pdev); } if (rv < 0) { { dev_err((struct device const *)(& pdev->dev), "Unable to enable device\n"); } goto iomap_err; } else { } { rv = pcim_iomap_regions(pdev, 32, "mtip32xx"); } if (rv < 0) { { dev_err((struct device const *)(& pdev->dev), "Unable to map regions\n"); } goto iomap_err; } else { } { tmp___4 = pci_set_dma_mask(pdev, 0xffffffffffffffffULL); } if (tmp___4 == 0) { { rv = pci_set_consistent_dma_mask(pdev, 0xffffffffffffffffULL); } if (rv != 0) { { rv = pci_set_consistent_dma_mask(pdev, 4294967295ULL); } if (rv != 0) { { dev_warn((struct device const *)(& pdev->dev), "64-bit DMA enable failed\n"); } goto setmask_err; } else { } } else { } } else { } { dd->major = mtip_major; dd->instance = instance; dd->pdev = pdev; dd->numa_node = my_node; INIT_LIST_HEAD(& dd->online_list); INIT_LIST_HEAD(& dd->remove_list); __memset((void *)(& dd->workq_name), 0, 32UL); snprintf((char *)(& dd->workq_name), 31UL, "mtipq%d", dd->instance); __lock_name = "\"%s\"(dd->workq_name)"; tmp___5 = __alloc_workqueue_key("%s", 8U, 1, & __key, __lock_name, (char *)(& dd->workq_name)); dd->isr_workq = tmp___5; } if ((unsigned long )dd->isr_workq == (unsigned long )((struct workqueue_struct *)0)) { { dev_warn((struct device const *)(& pdev->dev), "Can\'t create wq %d\n", dd->instance); rv = -12; } goto block_initialize_err; } else { } { __memset((void *)(& cpu_list), 0, 256UL); node_mask = cpumask_of_node(dd->numa_node); tmp___12 = cpumask_empty(node_mask); } if (tmp___12) { tmp___13 = 0; } else { tmp___13 = 1; } if (tmp___13) { cpu = -1; goto ldv_48032; ldv_48031: { snprintf((char *)(& cpu_list) + (unsigned long )j, (size_t )(256 - j), "%d ", cpu); tmp___6 = strlen((char const *)(& cpu_list)); j = (int )tmp___6; } ldv_48032: { tmp___7 = cpumask_next(cpu, node_mask); cpu = (int )tmp___7; } if (cpu < nr_cpu_ids) { goto ldv_48031; } else { } { tmp___8 = cpumask_of_node(dd->numa_node); tmp___9 = cpumask_weight(tmp___8); __vpp_verify___1 = (void const *)0; __asm__ ("": "=r" (__ptr): "0" (& cpu_info)); tmp___10 = cpumask_first(node_mask); _dev_info((struct device const *)(& pdev->dev), "Node %d on package %d has %d cpu(s): %s\n", dd->numa_node, (int )((struct cpuinfo_x86 *)(__ptr + __per_cpu_offset[tmp___10]))->phys_proc_id, tmp___9, (char *)(& cpu_list)); } } else { { descriptor.modname = "mtip32xx"; descriptor.function = "mtip_pci_probe"; descriptor.filename = "drivers/block/mtip32xx/mtip32xx.c"; descriptor.format = "mtip32xx: node_mask empty\n"; descriptor.lineno = 4381U; descriptor.flags = 0U; tmp___11 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___11 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& pdev->dev), "mtip32xx: node_mask empty\n"); } } else { } } { dd->isr_binding = get_least_used_cpu_on_node(dd->numa_node); tmp___14 = __cpu_to_node(dd->isr_binding); _dev_info((struct device const *)(& pdev->dev), "Initial IRQ binding node:cpu %d:%d\n", tmp___14, dd->isr_binding); dd->work[0].cpu_binding = dd->isr_binding; dd->work[1].cpu_binding = get_least_used_cpu_on_node(dd->numa_node); dd->work[2].cpu_binding = get_least_used_cpu_on_node(dd->numa_node); dd->work[3].cpu_binding = dd->work[0].cpu_binding; dd->work[4].cpu_binding = dd->work[1].cpu_binding; dd->work[5].cpu_binding = dd->work[2].cpu_binding; dd->work[6].cpu_binding = dd->work[2].cpu_binding; dd->work[7].cpu_binding = dd->work[1].cpu_binding; cpu = -1; } goto ldv_48044; ldv_48043: { __memset((void *)(& cpu_list), 0, 256UL); i = 0; j = 0; } goto ldv_48041; ldv_48040: ; if (dd->work[i].cpu_binding == cpu) { { snprintf((char *)(& cpu_list) + (unsigned long )j, (size_t )(256 - j), "%d ", i); tmp___15 = strlen((char const *)(& cpu_list)); j = (int )tmp___15; } } else { } i = i + 1; ldv_48041: ; if (i <= 7) { goto ldv_48040; } else { } if (j != 0) { { _dev_info((struct device const *)(& pdev->dev), "CPU %d: WQs %s\n", cpu, (char *)(& cpu_list)); } } else { } ldv_48044: { tmp___16 = cpumask_next(cpu, cpu_present_mask); cpu = (int )tmp___16; } if (cpu < nr_cpu_ids) { goto ldv_48043; } else { } { __init_work(& dd->work[0].work, 0); __constr_expr_0.counter = 137438953408L; dd->work[0].work.data = __constr_expr_0; lockdep_init_map(& dd->work[0].work.lockdep_map, "(&dd->work[0].work)", & __key___0, 0); INIT_LIST_HEAD(& dd->work[0].work.entry); dd->work[0].work.func = & mtip_workq_sdbf0; __init_work(& dd->work[1].work, 0); __constr_expr_1.counter = 137438953408L; dd->work[1].work.data = __constr_expr_1; lockdep_init_map(& dd->work[1].work.lockdep_map, "(&dd->work[1].work)", & __key___1, 0); INIT_LIST_HEAD(& dd->work[1].work.entry); dd->work[1].work.func = & mtip_workq_sdbf1; __init_work(& dd->work[2].work, 0); __constr_expr_2.counter = 137438953408L; dd->work[2].work.data = __constr_expr_2; lockdep_init_map(& dd->work[2].work.lockdep_map, "(&dd->work[2].work)", & __key___2, 0); INIT_LIST_HEAD(& dd->work[2].work.entry); dd->work[2].work.func = & mtip_workq_sdbf2; __init_work(& dd->work[3].work, 0); __constr_expr_3.counter = 137438953408L; dd->work[3].work.data = __constr_expr_3; lockdep_init_map(& dd->work[3].work.lockdep_map, "(&dd->work[3].work)", & __key___3, 0); INIT_LIST_HEAD(& dd->work[3].work.entry); dd->work[3].work.func = & mtip_workq_sdbf3; __init_work(& dd->work[4].work, 0); __constr_expr_4.counter = 137438953408L; dd->work[4].work.data = __constr_expr_4; lockdep_init_map(& dd->work[4].work.lockdep_map, "(&dd->work[4].work)", & __key___4, 0); INIT_LIST_HEAD(& dd->work[4].work.entry); dd->work[4].work.func = & mtip_workq_sdbf4; __init_work(& dd->work[5].work, 0); __constr_expr_5.counter = 137438953408L; dd->work[5].work.data = __constr_expr_5; lockdep_init_map(& dd->work[5].work.lockdep_map, "(&dd->work[5].work)", & __key___5, 0); INIT_LIST_HEAD(& dd->work[5].work.entry); dd->work[5].work.func = & mtip_workq_sdbf5; __init_work(& dd->work[6].work, 0); __constr_expr_6.counter = 137438953408L; dd->work[6].work.data = __constr_expr_6; lockdep_init_map(& dd->work[6].work.lockdep_map, "(&dd->work[6].work)", & __key___6, 0); INIT_LIST_HEAD(& dd->work[6].work.entry); dd->work[6].work.func = & mtip_workq_sdbf6; __init_work(& dd->work[7].work, 0); __constr_expr_7.counter = 137438953408L; dd->work[7].work.data = __constr_expr_7; lockdep_init_map(& dd->work[7].work.lockdep_map, "(&dd->work[7].work)", & __key___7, 0); INIT_LIST_HEAD(& dd->work[7].work.entry); dd->work[7].work.func = & mtip_workq_sdbf7; pci_set_master(pdev); rv = pci_enable_msi_exact(pdev, 1); } if (rv != 0) { { dev_warn((struct device const *)(& pdev->dev), "Unable to enable MSI interrupt.\n"); } goto msi_initialize_err; } else { } { mtip_fix_ero_nosnoop(dd, pdev); rv = mtip_block_initialize(dd); } if (rv < 0) { { dev_err((struct device const *)(& pdev->dev), "Unable to initialize block layer\n"); } goto block_initialize_err; } else { } instance = instance + 1; if (rv != 60753) { { set_bit(7L, (unsigned long volatile *)(& dd->dd_flag)); } } else { rv = 0; } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_131(& dev_lock); list_add(& dd->online_list, & online_list); ldv_spin_unlock_irqrestore_104(& dev_lock, flags); } goto done; block_initialize_err: { pci_disable_msi(pdev); } msi_initialize_err: ; if ((unsigned long )dd->isr_workq != (unsigned long )((struct workqueue_struct *)0)) { { flush_workqueue(dd->isr_workq); destroy_workqueue(dd->isr_workq); drop_cpu(dd->work[0].cpu_binding); drop_cpu(dd->work[1].cpu_binding); drop_cpu(dd->work[2].cpu_binding); } } else { } setmask_err: { pcim_iounmap_regions(pdev, 32); } iomap_err: { kfree((void const *)dd); pci_set_drvdata(pdev, (void *)0); } return (rv); done: ; return (rv); } } static void mtip_pci_remove(struct pci_dev *pdev ) { struct driver_data *dd ; void *tmp ; unsigned long flags ; unsigned long to ; unsigned long tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = pci_get_drvdata(pdev); dd = (struct driver_data *)tmp; set_bit(1L, (unsigned long volatile *)(& dd->dd_flag)); ldv___ldv_linux_kernel_locking_spinlock_spin_lock_133(& dev_lock); list_del_init(& dd->online_list); list_add(& dd->remove_list, & removing_list); ldv_spin_unlock_irqrestore_104(& dev_lock, flags); mtip_check_surprise_removal(pdev); synchronize_irq((dd->pdev)->irq); tmp___0 = msecs_to_jiffies(4000U); to = (unsigned long )jiffies + tmp___0; } ldv_48076: { msleep(20U); tmp___1 = atomic_read((atomic_t const *)(& dd->irq_workers_active)); } if (tmp___1 != 0 && (long )((unsigned long )jiffies - to) < 0L) { goto ldv_48076; } else { } { tmp___2 = atomic_read((atomic_t const *)(& dd->irq_workers_active)); } if (tmp___2 != 0) { { dev_warn((struct device const *)(& (dd->pdev)->dev), "Completion workers still active!\n"); } } else { } { mtip_block_remove(dd); } if ((unsigned long )dd->isr_workq != (unsigned long )((struct workqueue_struct *)0)) { { flush_workqueue(dd->isr_workq); destroy_workqueue(dd->isr_workq); drop_cpu(dd->work[0].cpu_binding); drop_cpu(dd->work[1].cpu_binding); drop_cpu(dd->work[2].cpu_binding); } } else { } { pci_disable_msi(pdev); ldv___ldv_linux_kernel_locking_spinlock_spin_lock_135(& dev_lock); list_del_init(& dd->remove_list); ldv_spin_unlock_irqrestore_104(& dev_lock, flags); } if (! dd->sr) { { kfree((void const *)dd); } } else { { set_bit(4L, (unsigned long volatile *)(& dd->dd_flag)); } } { pcim_iounmap_regions(pdev, 32); pci_set_drvdata(pdev, (void *)0); } return; } } static int mtip_pci_suspend(struct pci_dev *pdev , pm_message_t mesg ) { int rv ; struct driver_data *dd ; void *tmp ; { { rv = 0; tmp = pci_get_drvdata(pdev); dd = (struct driver_data *)tmp; } if ((unsigned long )dd == (unsigned long )((struct driver_data *)0)) { { dev_err((struct device const *)(& pdev->dev), "Driver private datastructure is NULL\n"); } return (-14); } else { } { set_bit(6L, (unsigned long volatile *)(& dd->dd_flag)); rv = mtip_block_suspend(dd); } if (rv < 0) { { dev_err((struct device const *)(& pdev->dev), "Failed to suspend controller\n"); } return (rv); } else { } { pci_save_state(pdev); pci_disable_device(pdev); pci_set_power_state(pdev, 3); } return (rv); } } static int mtip_pci_resume(struct pci_dev *pdev ) { int rv ; struct driver_data *dd ; void *tmp ; { { rv = 0; tmp = pci_get_drvdata(pdev); dd = (struct driver_data *)tmp; } if ((unsigned long )dd == (unsigned long )((struct driver_data *)0)) { { dev_err((struct device const *)(& pdev->dev), "Driver private datastructure is NULL\n"); } return (-14); } else { } { pci_set_power_state(pdev, 0); pci_restore_state(pdev); rv = pcim_enable_device(pdev); } if (rv < 0) { { dev_err((struct device const *)(& pdev->dev), "Failed to enable card during resume\n"); } goto err; } else { } { pci_set_master(pdev); rv = mtip_block_resume(dd); } if (rv < 0) { { dev_err((struct device const *)(& pdev->dev), "Unable to resume\n"); } } else { } err: { clear_bit(6L, (unsigned long volatile *)(& dd->dd_flag)); } return (rv); } } static void mtip_pci_shutdown(struct pci_dev *pdev ) { struct driver_data *dd ; void *tmp ; { { tmp = pci_get_drvdata(pdev); dd = (struct driver_data *)tmp; } if ((unsigned long )dd != (unsigned long )((struct driver_data *)0)) { { mtip_block_shutdown(dd); } } else { } return; } } static struct pci_device_id const mtip_pci_tbl[8U] = { {4932U, 20816U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4932U, 20817U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4932U, 20818U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4932U, 20819U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4932U, 20832U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4932U, 20833U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4932U, 20835U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {0U, 0U, 0U, 0U, 0U, 0U, 0UL}}; static struct pci_driver mtip_pci_driver = {{0, 0}, "mtip32xx", (struct pci_device_id const *)(& mtip_pci_tbl), & mtip_pci_probe, & mtip_pci_remove, & mtip_pci_suspend, 0, 0, & mtip_pci_resume, & mtip_pci_shutdown, 0, 0, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; struct pci_device_id const __mod_pci__mtip_pci_tbl_device_table[8U] ; static int mtip_init(void) { int error ; struct lock_class_key __key ; bool tmp ; bool tmp___0 ; { { printk("\016mtip32xx Version 1.3.1\n"); spinlock_check(& dev_lock); __raw_spin_lock_init(& dev_lock.__annonCompField18.rlock, "&(&dev_lock)->rlock", & __key); INIT_LIST_HEAD(& online_list); INIT_LIST_HEAD(& removing_list); error = register_blkdev(0U, "mtip32xx"); } if (error <= 0) { { printk("\vUnable to register block device (%d)\n", error); } return (-16); } else { } { mtip_major = error; dfs_parent = debugfs_create_dir("rssd", (struct dentry *)0); tmp = IS_ERR_OR_NULL((void const *)dfs_parent); } if ((int )tmp) { { printk("\fError creating debugfs parent\n"); dfs_parent = (struct dentry *)0; } } else { } if ((unsigned long )dfs_parent != (unsigned long )((struct dentry *)0)) { { dfs_device_status = debugfs_create_file("device_status", 292, dfs_parent, (void *)0, & mtip_device_status_fops); tmp___0 = IS_ERR_OR_NULL((void const *)dfs_device_status); } if ((int )tmp___0) { { printk("\vError creating device_status node\n"); dfs_device_status = (struct dentry *)0; } } else { } } else { } { error = ldv___pci_register_driver_137(& mtip_pci_driver, & __this_module, "mtip32xx"); } if (error != 0) { { debugfs_remove(dfs_parent); unregister_blkdev((unsigned int )mtip_major, "mtip32xx"); } } else { } return (error); } } static void mtip_exit(void) { { { unregister_blkdev((unsigned int )mtip_major, "mtip32xx"); ldv_pci_unregister_driver_138(& mtip_pci_driver); debugfs_remove_recursive(dfs_parent); } return; } } void ldv_EMGentry_exit_mtip_exit_10_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_mtip_init_10_11(int (*arg0)(void) ) ; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) ; void ldv_devm_free_irq(void *arg0 , struct device *arg1 , unsigned int arg2 , void *arg3 ) ; void ldv_dispatch_deregister_8_1(struct pci_driver *arg0 ) ; void ldv_dispatch_deregister_dummy_resourceless_instance_8_10_4(void) ; void ldv_dispatch_deregister_file_operations_instance_2_10_5(void) ; void ldv_dispatch_irq_deregister_7_1(int arg0 ) ; void ldv_dispatch_register_9_2(struct pci_driver *arg0 ) ; void ldv_dispatch_register_dummy_resourceless_instance_8_10_6(void) ; void ldv_dispatch_register_file_operations_instance_2_10_7(void) ; void ldv_dummy_resourceless_instance_callback_6_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_entry_EMGentry_10(void *arg0 ) ; int main(void) ; void ldv_file_operations_file_operations_instance_0(void *arg0 ) ; void ldv_file_operations_file_operations_instance_1(void *arg0 ) ; void ldv_file_operations_file_operations_instance_2(void *arg0 ) ; void ldv_file_operations_instance_callback_0_22(int (*arg0)(struct block_device * , struct hd_geometry * ) , struct block_device *arg1 , struct hd_geometry *arg2 ) ; void ldv_file_operations_instance_callback_0_25(int (*arg0)(struct block_device * , unsigned int , unsigned int , unsigned long ) , struct block_device *arg1 , unsigned int arg2 , unsigned int arg3 , unsigned long arg4 ) ; void ldv_file_operations_instance_callback_0_28(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) ; void ldv_file_operations_instance_callback_0_31(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_callback_0_5(int (*arg0)(struct block_device * , unsigned int , unsigned int , unsigned long ) , struct block_device *arg1 , unsigned int arg2 , unsigned int arg3 , unsigned long arg4 ) ; void ldv_file_operations_instance_callback_1_22(int (*arg0)(struct block_device * , struct hd_geometry * ) , struct block_device *arg1 , struct hd_geometry *arg2 ) ; void ldv_file_operations_instance_callback_1_25(int (*arg0)(struct block_device * , unsigned int , unsigned int , unsigned long ) , struct block_device *arg1 , unsigned int arg2 , unsigned int arg3 , unsigned long arg4 ) ; void ldv_file_operations_instance_callback_1_28(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) ; void ldv_file_operations_instance_callback_1_31(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_callback_1_5(int (*arg0)(struct block_device * , unsigned int , unsigned int , unsigned long ) , struct block_device *arg1 , unsigned int arg2 , unsigned int arg3 , unsigned long arg4 ) ; void ldv_file_operations_instance_callback_2_22(int (*arg0)(struct block_device * , struct hd_geometry * ) , struct block_device *arg1 , struct hd_geometry *arg2 ) ; void ldv_file_operations_instance_callback_2_25(int (*arg0)(struct block_device * , unsigned int , unsigned int , unsigned long ) , struct block_device *arg1 , unsigned int arg2 , unsigned int arg3 , unsigned long arg4 ) ; void ldv_file_operations_instance_callback_2_28(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) ; void ldv_file_operations_instance_callback_2_31(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_callback_2_5(int (*arg0)(struct block_device * , unsigned int , unsigned int , unsigned long ) , struct block_device *arg1 , unsigned int arg2 , unsigned int arg3 , unsigned long arg4 ) ; int ldv_file_operations_instance_probe_0_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; int ldv_file_operations_instance_probe_1_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; int ldv_file_operations_instance_probe_2_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_write_0_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_write_1_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_write_2_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_iio_triggered_buffer_iio_triggered_buffer_instance_3(void *arg0 ) ; enum irqreturn ldv_iio_triggered_buffer_instance_handler_3_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_iio_triggered_buffer_instance_thread_3_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; enum irqreturn ldv_interrupt_instance_handler_4_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_4_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_interrupt_instance_4(void *arg0 ) ; int ldv_pci_instance_probe_5_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_5_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_5_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_5_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_5_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_5_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_5_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_5(void *arg0 ) ; void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) ; void ldv_struct_device_attribute_dummy_resourceless_instance_6(void *arg0 ) ; struct ldv_thread ldv_thread_0 ; struct ldv_thread ldv_thread_1 ; struct ldv_thread ldv_thread_10 ; struct ldv_thread ldv_thread_2 ; struct ldv_thread ldv_thread_3 ; struct ldv_thread ldv_thread_4 ; struct ldv_thread ldv_thread_5 ; struct ldv_thread ldv_thread_6 ; void ldv_EMGentry_exit_mtip_exit_10_2(void (*arg0)(void) ) { { { mtip_exit(); } return; } } int ldv_EMGentry_init_mtip_init_10_11(int (*arg0)(void) ) { int tmp ; { { tmp = mtip_init(); } return (tmp); } } int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) { struct pci_driver *ldv_9_pci_driver_pci_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_9_pci_driver_pci_driver = arg1; ldv_dispatch_register_9_2(ldv_9_pci_driver_pci_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_devm_free_irq(void *arg0 , struct device *arg1 , unsigned int arg2 , void *arg3 ) { int ldv_7_line_line ; { { ldv_7_line_line = (int )((long )arg1); ldv_dispatch_irq_deregister_7_1(ldv_7_line_line); } return; return; } } void ldv_dispatch_deregister_8_1(struct pci_driver *arg0 ) { { return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_8_10_4(void) { { return; } } void ldv_dispatch_deregister_file_operations_instance_2_10_5(void) { { return; } } void ldv_dispatch_irq_deregister_7_1(int arg0 ) { { return; } } void ldv_dispatch_register_9_2(struct pci_driver *arg0 ) { struct ldv_struct_pci_instance_5 *cf_arg_5 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_5 = (struct ldv_struct_pci_instance_5 *)tmp; cf_arg_5->arg0 = arg0; ldv_pci_pci_instance_5((void *)cf_arg_5); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_8_10_6(void) { struct ldv_struct_EMGentry_10 *cf_arg_6 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_6 = (struct ldv_struct_EMGentry_10 *)tmp; ldv_struct_device_attribute_dummy_resourceless_instance_6((void *)cf_arg_6); } return; } } void ldv_dispatch_register_file_operations_instance_2_10_7(void) { struct ldv_struct_EMGentry_10 *cf_arg_0 ; struct ldv_struct_EMGentry_10 *cf_arg_1 ; struct ldv_struct_EMGentry_10 *cf_arg_2 ; void *tmp ; void *tmp___0 ; void *tmp___1 ; { { tmp = ldv_xmalloc(4UL); cf_arg_0 = (struct ldv_struct_EMGentry_10 *)tmp; ldv_file_operations_file_operations_instance_0((void *)cf_arg_0); tmp___0 = ldv_xmalloc(4UL); cf_arg_1 = (struct ldv_struct_EMGentry_10 *)tmp___0; ldv_file_operations_file_operations_instance_1((void *)cf_arg_1); tmp___1 = ldv_xmalloc(4UL); cf_arg_2 = (struct ldv_struct_EMGentry_10 *)tmp___1; ldv_file_operations_file_operations_instance_2((void *)cf_arg_2); } return; } } void ldv_dummy_resourceless_instance_callback_6_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { mtip_hw_show_status(arg1, arg2, arg3); } return; } } void ldv_entry_EMGentry_10(void *arg0 ) { void (*ldv_10_exit_mtip_exit_default)(void) ; int (*ldv_10_init_mtip_init_default)(void) ; int ldv_10_ret_default ; int tmp ; int tmp___0 ; { { ldv_10_ret_default = ldv_EMGentry_init_mtip_init_10_11(ldv_10_init_mtip_init_default); ldv_10_ret_default = ldv_ldv_post_init_139(ldv_10_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_10_ret_default != 0); ldv_ldv_check_final_state_140(); ldv_stop(); } return; } else { { ldv_assume(ldv_10_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dispatch_register_file_operations_instance_2_10_7(); ldv_dispatch_register_dummy_resourceless_instance_8_10_6(); ldv_dispatch_deregister_file_operations_instance_2_10_5(); ldv_dispatch_deregister_dummy_resourceless_instance_8_10_4(); } } else { } { ldv_EMGentry_exit_mtip_exit_10_2(ldv_10_exit_mtip_exit_default); ldv_ldv_check_final_state_141(); ldv_stop(); } return; } return; } } int main(void) { { { ldv_ldv_initialize_142(); ldv_entry_EMGentry_10((void *)0); } return 0; } } void ldv_file_operations_file_operations_instance_0(void *arg0 ) { int (*ldv_0_callback_compat_ioctl)(struct block_device * , unsigned int , unsigned int , unsigned long ) ; int (*ldv_0_callback_getgeo)(struct block_device * , struct hd_geometry * ) ; int (*ldv_0_callback_ioctl)(struct block_device * , unsigned int , unsigned int , unsigned long ) ; long long (*ldv_0_callback_llseek)(struct file * , long long , int ) ; long (*ldv_0_callback_read)(struct file * , char * , unsigned long , long long * ) ; struct file_operations *ldv_0_container_file_operations ; struct block_device *ldv_0_ldv_param_22_0_default ; struct block_device *ldv_0_ldv_param_25_0_default ; unsigned int ldv_0_ldv_param_25_1_default ; unsigned int ldv_0_ldv_param_25_2_default ; long long ldv_0_ldv_param_28_1_default ; int ldv_0_ldv_param_28_2_default ; char *ldv_0_ldv_param_31_1_default ; long long *ldv_0_ldv_param_31_3_default ; char *ldv_0_ldv_param_4_1_default ; long long *ldv_0_ldv_param_4_3_default ; struct block_device *ldv_0_ldv_param_5_0_default ; unsigned int ldv_0_ldv_param_5_1_default ; unsigned int ldv_0_ldv_param_5_2_default ; struct file *ldv_0_resource_file ; struct inode *ldv_0_resource_inode ; int ldv_0_ret_default ; struct block_device *ldv_0_size_cnt_struct_block_device_ptr ; struct hd_geometry *ldv_0_size_cnt_struct_hd_geometry_ptr ; unsigned long ldv_0_size_cnt_write_size ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; int tmp___8 ; void *tmp___9 ; void *tmp___10 ; void *tmp___11 ; void *tmp___12 ; { { ldv_0_ret_default = 1; tmp = ldv_xmalloc(504UL); ldv_0_resource_file = (struct file *)tmp; tmp___0 = ldv_xmalloc(976UL); ldv_0_resource_inode = (struct inode *)tmp___0; tmp___1 = ldv_undef_int(); ldv_0_size_cnt_struct_block_device_ptr = (struct block_device *)((long )tmp___1); } goto ldv_main_0; return; ldv_main_0: { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { ldv_0_ret_default = ldv_file_operations_instance_probe_0_12(ldv_0_container_file_operations->open, ldv_0_resource_inode, ldv_0_resource_file); ldv_0_ret_default = ldv_filter_err_code(ldv_0_ret_default); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_assume(ldv_0_ret_default == 0); } goto ldv_call_0; } else { { ldv_assume(ldv_0_ret_default != 0); } goto ldv_main_0; } } else { { ldv_free((void *)ldv_0_resource_file); ldv_free((void *)ldv_0_resource_inode); } return; } return; ldv_call_0: { tmp___4 = ldv_undef_int(); } { if (tmp___4 == 1) { goto case_1; } else { } if (tmp___4 == 2) { goto case_2; } else { } if (tmp___4 == 3) { goto case_3; } else { } goto switch_default___0; case_1: /* CIL Label */ { tmp___5 = ldv_xmalloc(1UL); ldv_0_ldv_param_4_1_default = (char *)tmp___5; tmp___6 = ldv_xmalloc(8UL); ldv_0_ldv_param_4_3_default = (long long *)tmp___6; ldv_assume((unsigned long )ldv_0_size_cnt_struct_block_device_ptr <= (unsigned long )((struct block_device *)2147479552)); } if ((unsigned long )ldv_0_container_file_operations->write != (unsigned long )((ssize_t (*)(struct file * , char const * , size_t , loff_t * ))0)) { { ldv_file_operations_instance_write_0_4((long (*)(struct file * , char * , unsigned long , long long * ))ldv_0_container_file_operations->write, ldv_0_resource_file, ldv_0_ldv_param_4_1_default, ldv_0_size_cnt_write_size, ldv_0_ldv_param_4_3_default); } } else { } { ldv_free((void *)ldv_0_ldv_param_4_1_default); ldv_free((void *)ldv_0_ldv_param_4_3_default); } goto ldv_call_0; case_2: /* CIL Label */ ; goto ldv_main_0; case_3: /* CIL Label */ { tmp___7 = ldv_xmalloc(480UL); ldv_0_ldv_param_5_0_default = (struct block_device *)tmp___7; tmp___8 = ldv_undef_int(); } { if (tmp___8 == 1) { goto case_1___0; } else { } if (tmp___8 == 2) { goto case_2___0; } else { } if (tmp___8 == 3) { goto case_3___0; } else { } if (tmp___8 == 4) { goto case_4; } else { } if (tmp___8 == 5) { goto case_5; } else { } goto switch_default; case_1___0: /* CIL Label */ { tmp___9 = ldv_xmalloc(1UL); ldv_0_ldv_param_31_1_default = (char *)tmp___9; tmp___10 = ldv_xmalloc(8UL); ldv_0_ldv_param_31_3_default = (long long *)tmp___10; ldv_file_operations_instance_callback_0_31(ldv_0_callback_read, ldv_0_resource_file, ldv_0_ldv_param_31_1_default, ldv_0_size_cnt_write_size, ldv_0_ldv_param_31_3_default); ldv_free((void *)ldv_0_ldv_param_31_1_default); ldv_free((void *)ldv_0_ldv_param_31_3_default); } goto ldv_48559; case_2___0: /* CIL Label */ { ldv_file_operations_instance_callback_0_28(ldv_0_callback_llseek, ldv_0_resource_file, ldv_0_ldv_param_28_1_default, ldv_0_ldv_param_28_2_default); } goto ldv_48559; case_3___0: /* CIL Label */ { tmp___11 = ldv_xmalloc(480UL); ldv_0_ldv_param_25_0_default = (struct block_device *)tmp___11; ldv_file_operations_instance_callback_0_25(ldv_0_callback_ioctl, ldv_0_ldv_param_25_0_default, ldv_0_ldv_param_25_1_default, ldv_0_ldv_param_25_2_default, ldv_0_size_cnt_write_size); ldv_free((void *)ldv_0_ldv_param_25_0_default); } goto ldv_48559; case_4: /* CIL Label */ { tmp___12 = ldv_xmalloc(480UL); ldv_0_ldv_param_22_0_default = (struct block_device *)tmp___12; ldv_file_operations_instance_callback_0_22(ldv_0_callback_getgeo, ldv_0_ldv_param_22_0_default, ldv_0_size_cnt_struct_hd_geometry_ptr); ldv_free((void *)ldv_0_ldv_param_22_0_default); } goto ldv_48559; case_5: /* CIL Label */ { ldv_file_operations_instance_callback_0_5(ldv_0_callback_compat_ioctl, ldv_0_ldv_param_5_0_default, ldv_0_ldv_param_5_1_default, ldv_0_ldv_param_5_2_default, ldv_0_size_cnt_write_size); } goto ldv_48559; switch_default: /* CIL Label */ { ldv_stop(); } switch_break___0: /* CIL Label */ ; } ldv_48559: ; goto ldv_48565; switch_default___0: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_48565: { ldv_free((void *)ldv_0_ldv_param_5_0_default); } goto ldv_call_0; goto ldv_call_0; return; } } void ldv_file_operations_file_operations_instance_1(void *arg0 ) { int (*ldv_1_callback_compat_ioctl)(struct block_device * , unsigned int , unsigned int , unsigned long ) ; int (*ldv_1_callback_getgeo)(struct block_device * , struct hd_geometry * ) ; int (*ldv_1_callback_ioctl)(struct block_device * , unsigned int , unsigned int , unsigned long ) ; long long (*ldv_1_callback_llseek)(struct file * , long long , int ) ; long (*ldv_1_callback_read)(struct file * , char * , unsigned long , long long * ) ; struct file_operations *ldv_1_container_file_operations ; struct block_device *ldv_1_ldv_param_22_0_default ; struct block_device *ldv_1_ldv_param_25_0_default ; unsigned int ldv_1_ldv_param_25_1_default ; unsigned int ldv_1_ldv_param_25_2_default ; long long ldv_1_ldv_param_28_1_default ; int ldv_1_ldv_param_28_2_default ; char *ldv_1_ldv_param_31_1_default ; long long *ldv_1_ldv_param_31_3_default ; char *ldv_1_ldv_param_4_1_default ; long long *ldv_1_ldv_param_4_3_default ; struct block_device *ldv_1_ldv_param_5_0_default ; unsigned int ldv_1_ldv_param_5_1_default ; unsigned int ldv_1_ldv_param_5_2_default ; struct file *ldv_1_resource_file ; struct inode *ldv_1_resource_inode ; int ldv_1_ret_default ; struct block_device *ldv_1_size_cnt_struct_block_device_ptr ; struct hd_geometry *ldv_1_size_cnt_struct_hd_geometry_ptr ; unsigned long ldv_1_size_cnt_write_size ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; int tmp___8 ; void *tmp___9 ; void *tmp___10 ; void *tmp___11 ; void *tmp___12 ; { { ldv_1_ret_default = 1; tmp = ldv_xmalloc(504UL); ldv_1_resource_file = (struct file *)tmp; tmp___0 = ldv_xmalloc(976UL); ldv_1_resource_inode = (struct inode *)tmp___0; tmp___1 = ldv_undef_int(); ldv_1_size_cnt_struct_block_device_ptr = (struct block_device *)((long )tmp___1); } goto ldv_main_1; return; ldv_main_1: { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { ldv_1_ret_default = ldv_file_operations_instance_probe_1_12(ldv_1_container_file_operations->open, ldv_1_resource_inode, ldv_1_resource_file); ldv_1_ret_default = ldv_filter_err_code(ldv_1_ret_default); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_assume(ldv_1_ret_default == 0); } goto ldv_call_1; } else { { ldv_assume(ldv_1_ret_default != 0); } goto ldv_main_1; } } else { { ldv_free((void *)ldv_1_resource_file); ldv_free((void *)ldv_1_resource_inode); } return; } return; ldv_call_1: { tmp___4 = ldv_undef_int(); } { if (tmp___4 == 1) { goto case_1; } else { } if (tmp___4 == 2) { goto case_2; } else { } if (tmp___4 == 3) { goto case_3; } else { } goto switch_default___0; case_1: /* CIL Label */ { tmp___5 = ldv_xmalloc(1UL); ldv_1_ldv_param_4_1_default = (char *)tmp___5; tmp___6 = ldv_xmalloc(8UL); ldv_1_ldv_param_4_3_default = (long long *)tmp___6; ldv_assume((unsigned long )ldv_1_size_cnt_struct_block_device_ptr <= (unsigned long )((struct block_device *)2147479552)); } if ((unsigned long )ldv_1_container_file_operations->write != (unsigned long )((ssize_t (*)(struct file * , char const * , size_t , loff_t * ))0)) { { ldv_file_operations_instance_write_1_4((long (*)(struct file * , char * , unsigned long , long long * ))ldv_1_container_file_operations->write, ldv_1_resource_file, ldv_1_ldv_param_4_1_default, ldv_1_size_cnt_write_size, ldv_1_ldv_param_4_3_default); } } else { } { ldv_free((void *)ldv_1_ldv_param_4_1_default); ldv_free((void *)ldv_1_ldv_param_4_3_default); } goto ldv_call_1; case_2: /* CIL Label */ ; goto ldv_main_1; case_3: /* CIL Label */ { tmp___7 = ldv_xmalloc(480UL); ldv_1_ldv_param_5_0_default = (struct block_device *)tmp___7; tmp___8 = ldv_undef_int(); } { if (tmp___8 == 1) { goto case_1___0; } else { } if (tmp___8 == 2) { goto case_2___0; } else { } if (tmp___8 == 3) { goto case_3___0; } else { } if (tmp___8 == 4) { goto case_4; } else { } if (tmp___8 == 5) { goto case_5; } else { } goto switch_default; case_1___0: /* CIL Label */ { tmp___9 = ldv_xmalloc(1UL); ldv_1_ldv_param_31_1_default = (char *)tmp___9; tmp___10 = ldv_xmalloc(8UL); ldv_1_ldv_param_31_3_default = (long long *)tmp___10; ldv_file_operations_instance_callback_1_31(ldv_1_callback_read, ldv_1_resource_file, ldv_1_ldv_param_31_1_default, ldv_1_size_cnt_write_size, ldv_1_ldv_param_31_3_default); ldv_free((void *)ldv_1_ldv_param_31_1_default); ldv_free((void *)ldv_1_ldv_param_31_3_default); } goto ldv_48618; case_2___0: /* CIL Label */ { ldv_file_operations_instance_callback_1_28(ldv_1_callback_llseek, ldv_1_resource_file, ldv_1_ldv_param_28_1_default, ldv_1_ldv_param_28_2_default); } goto ldv_48618; case_3___0: /* CIL Label */ { tmp___11 = ldv_xmalloc(480UL); ldv_1_ldv_param_25_0_default = (struct block_device *)tmp___11; ldv_file_operations_instance_callback_1_25(ldv_1_callback_ioctl, ldv_1_ldv_param_25_0_default, ldv_1_ldv_param_25_1_default, ldv_1_ldv_param_25_2_default, ldv_1_size_cnt_write_size); ldv_free((void *)ldv_1_ldv_param_25_0_default); } goto ldv_48618; case_4: /* CIL Label */ { tmp___12 = ldv_xmalloc(480UL); ldv_1_ldv_param_22_0_default = (struct block_device *)tmp___12; ldv_file_operations_instance_callback_1_22(ldv_1_callback_getgeo, ldv_1_ldv_param_22_0_default, ldv_1_size_cnt_struct_hd_geometry_ptr); ldv_free((void *)ldv_1_ldv_param_22_0_default); } goto ldv_48618; case_5: /* CIL Label */ { ldv_file_operations_instance_callback_1_5(ldv_1_callback_compat_ioctl, ldv_1_ldv_param_5_0_default, ldv_1_ldv_param_5_1_default, ldv_1_ldv_param_5_2_default, ldv_1_size_cnt_write_size); } goto ldv_48618; switch_default: /* CIL Label */ { ldv_stop(); } switch_break___0: /* CIL Label */ ; } ldv_48618: ; goto ldv_48624; switch_default___0: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_48624: { ldv_free((void *)ldv_1_ldv_param_5_0_default); } goto ldv_call_1; goto ldv_call_1; return; } } void ldv_file_operations_file_operations_instance_2(void *arg0 ) { int (*ldv_2_callback_compat_ioctl)(struct block_device * , unsigned int , unsigned int , unsigned long ) ; int (*ldv_2_callback_getgeo)(struct block_device * , struct hd_geometry * ) ; int (*ldv_2_callback_ioctl)(struct block_device * , unsigned int , unsigned int , unsigned long ) ; long long (*ldv_2_callback_llseek)(struct file * , long long , int ) ; long (*ldv_2_callback_read)(struct file * , char * , unsigned long , long long * ) ; struct file_operations *ldv_2_container_file_operations ; struct block_device *ldv_2_ldv_param_22_0_default ; struct block_device *ldv_2_ldv_param_25_0_default ; unsigned int ldv_2_ldv_param_25_1_default ; unsigned int ldv_2_ldv_param_25_2_default ; long long ldv_2_ldv_param_28_1_default ; int ldv_2_ldv_param_28_2_default ; char *ldv_2_ldv_param_31_1_default ; long long *ldv_2_ldv_param_31_3_default ; char *ldv_2_ldv_param_4_1_default ; long long *ldv_2_ldv_param_4_3_default ; struct block_device *ldv_2_ldv_param_5_0_default ; unsigned int ldv_2_ldv_param_5_1_default ; unsigned int ldv_2_ldv_param_5_2_default ; struct file *ldv_2_resource_file ; struct inode *ldv_2_resource_inode ; int ldv_2_ret_default ; struct block_device *ldv_2_size_cnt_struct_block_device_ptr ; struct hd_geometry *ldv_2_size_cnt_struct_hd_geometry_ptr ; unsigned long ldv_2_size_cnt_write_size ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; int tmp___8 ; void *tmp___9 ; void *tmp___10 ; void *tmp___11 ; void *tmp___12 ; { { ldv_2_ret_default = 1; tmp = ldv_xmalloc(504UL); ldv_2_resource_file = (struct file *)tmp; tmp___0 = ldv_xmalloc(976UL); ldv_2_resource_inode = (struct inode *)tmp___0; tmp___1 = ldv_undef_int(); ldv_2_size_cnt_struct_block_device_ptr = (struct block_device *)((long )tmp___1); } goto ldv_main_2; return; ldv_main_2: { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { ldv_2_ret_default = ldv_file_operations_instance_probe_2_12(ldv_2_container_file_operations->open, ldv_2_resource_inode, ldv_2_resource_file); ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_assume(ldv_2_ret_default == 0); } goto ldv_call_2; } else { { ldv_assume(ldv_2_ret_default != 0); } goto ldv_main_2; } } else { { ldv_free((void *)ldv_2_resource_file); ldv_free((void *)ldv_2_resource_inode); } return; } return; ldv_call_2: { tmp___4 = ldv_undef_int(); } { if (tmp___4 == 1) { goto case_1; } else { } if (tmp___4 == 2) { goto case_2; } else { } if (tmp___4 == 3) { goto case_3; } else { } goto switch_default___0; case_1: /* CIL Label */ { tmp___5 = ldv_xmalloc(1UL); ldv_2_ldv_param_4_1_default = (char *)tmp___5; tmp___6 = ldv_xmalloc(8UL); ldv_2_ldv_param_4_3_default = (long long *)tmp___6; ldv_assume((unsigned long )ldv_2_size_cnt_struct_block_device_ptr <= (unsigned long )((struct block_device *)2147479552)); } if ((unsigned long )ldv_2_container_file_operations->write != (unsigned long )((ssize_t (*)(struct file * , char const * , size_t , loff_t * ))0)) { { ldv_file_operations_instance_write_2_4((long (*)(struct file * , char * , unsigned long , long long * ))ldv_2_container_file_operations->write, ldv_2_resource_file, ldv_2_ldv_param_4_1_default, ldv_2_size_cnt_write_size, ldv_2_ldv_param_4_3_default); } } else { } { ldv_free((void *)ldv_2_ldv_param_4_1_default); ldv_free((void *)ldv_2_ldv_param_4_3_default); } goto ldv_call_2; case_2: /* CIL Label */ ; goto ldv_main_2; case_3: /* CIL Label */ { tmp___7 = ldv_xmalloc(480UL); ldv_2_ldv_param_5_0_default = (struct block_device *)tmp___7; tmp___8 = ldv_undef_int(); } { if (tmp___8 == 1) { goto case_1___0; } else { } if (tmp___8 == 2) { goto case_2___0; } else { } if (tmp___8 == 3) { goto case_3___0; } else { } if (tmp___8 == 4) { goto case_4; } else { } if (tmp___8 == 5) { goto case_5; } else { } goto switch_default; case_1___0: /* CIL Label */ { tmp___9 = ldv_xmalloc(1UL); ldv_2_ldv_param_31_1_default = (char *)tmp___9; tmp___10 = ldv_xmalloc(8UL); ldv_2_ldv_param_31_3_default = (long long *)tmp___10; ldv_file_operations_instance_callback_2_31(ldv_2_callback_read, ldv_2_resource_file, ldv_2_ldv_param_31_1_default, ldv_2_size_cnt_write_size, ldv_2_ldv_param_31_3_default); ldv_free((void *)ldv_2_ldv_param_31_1_default); ldv_free((void *)ldv_2_ldv_param_31_3_default); } goto ldv_48677; case_2___0: /* CIL Label */ { ldv_file_operations_instance_callback_2_28(ldv_2_callback_llseek, ldv_2_resource_file, ldv_2_ldv_param_28_1_default, ldv_2_ldv_param_28_2_default); } goto ldv_48677; case_3___0: /* CIL Label */ { tmp___11 = ldv_xmalloc(480UL); ldv_2_ldv_param_25_0_default = (struct block_device *)tmp___11; ldv_file_operations_instance_callback_2_25(ldv_2_callback_ioctl, ldv_2_ldv_param_25_0_default, ldv_2_ldv_param_25_1_default, ldv_2_ldv_param_25_2_default, ldv_2_size_cnt_write_size); ldv_free((void *)ldv_2_ldv_param_25_0_default); } goto ldv_48677; case_4: /* CIL Label */ { tmp___12 = ldv_xmalloc(480UL); ldv_2_ldv_param_22_0_default = (struct block_device *)tmp___12; ldv_file_operations_instance_callback_2_22(ldv_2_callback_getgeo, ldv_2_ldv_param_22_0_default, ldv_2_size_cnt_struct_hd_geometry_ptr); ldv_free((void *)ldv_2_ldv_param_22_0_default); } goto ldv_48677; case_5: /* CIL Label */ { ldv_file_operations_instance_callback_2_5(ldv_2_callback_compat_ioctl, ldv_2_ldv_param_5_0_default, ldv_2_ldv_param_5_1_default, ldv_2_ldv_param_5_2_default, ldv_2_size_cnt_write_size); } goto ldv_48677; switch_default: /* CIL Label */ { ldv_stop(); } switch_break___0: /* CIL Label */ ; } ldv_48677: ; goto ldv_48683; switch_default___0: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_48683: { ldv_free((void *)ldv_2_ldv_param_5_0_default); } goto ldv_call_2; goto ldv_call_2; return; } } void ldv_file_operations_instance_callback_0_22(int (*arg0)(struct block_device * , struct hd_geometry * ) , struct block_device *arg1 , struct hd_geometry *arg2 ) { { { mtip_block_getgeo(arg1, arg2); } return; } } void ldv_file_operations_instance_callback_0_25(int (*arg0)(struct block_device * , unsigned int , unsigned int , unsigned long ) , struct block_device *arg1 , unsigned int arg2 , unsigned int arg3 , unsigned long arg4 ) { { { mtip_block_ioctl(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_0_28(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) { { { no_llseek(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_0_31(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { mtip_hw_read_device_status(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_0_5(int (*arg0)(struct block_device * , unsigned int , unsigned int , unsigned long ) , struct block_device *arg1 , unsigned int arg2 , unsigned int arg3 , unsigned long arg4 ) { { { mtip_block_compat_ioctl(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_1_22(int (*arg0)(struct block_device * , struct hd_geometry * ) , struct block_device *arg1 , struct hd_geometry *arg2 ) { { { mtip_block_getgeo(arg1, arg2); } return; } } void ldv_file_operations_instance_callback_1_25(int (*arg0)(struct block_device * , unsigned int , unsigned int , unsigned long ) , struct block_device *arg1 , unsigned int arg2 , unsigned int arg3 , unsigned long arg4 ) { { { mtip_block_ioctl(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_1_28(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) { { { no_llseek(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_1_31(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { mtip_hw_read_flags(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_1_5(int (*arg0)(struct block_device * , unsigned int , unsigned int , unsigned long ) , struct block_device *arg1 , unsigned int arg2 , unsigned int arg3 , unsigned long arg4 ) { { { mtip_block_compat_ioctl(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_2_22(int (*arg0)(struct block_device * , struct hd_geometry * ) , struct block_device *arg1 , struct hd_geometry *arg2 ) { { { mtip_block_getgeo(arg1, arg2); } return; } } void ldv_file_operations_instance_callback_2_25(int (*arg0)(struct block_device * , unsigned int , unsigned int , unsigned long ) , struct block_device *arg1 , unsigned int arg2 , unsigned int arg3 , unsigned long arg4 ) { { { mtip_block_ioctl(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_2_28(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) { { { no_llseek(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_2_31(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { mtip_hw_read_registers(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_2_5(int (*arg0)(struct block_device * , unsigned int , unsigned int , unsigned long ) , struct block_device *arg1 , unsigned int arg2 , unsigned int arg3 , unsigned long arg4 ) { { { mtip_block_compat_ioctl(arg1, arg2, arg3, arg4); } return; } } int ldv_file_operations_instance_probe_0_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { int tmp ; { { tmp = simple_open(arg1, arg2); } return (tmp); } } int ldv_file_operations_instance_probe_1_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { int tmp ; { { tmp = simple_open(arg1, arg2); } return (tmp); } } int ldv_file_operations_instance_probe_2_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { int tmp ; { { tmp = simple_open(arg1, arg2); } return (tmp); } } void ldv_file_operations_instance_write_0_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { (*arg0)(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_write_1_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { (*arg0)(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_write_2_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { (*arg0)(arg1, arg2, arg3, arg4); } return; } } void ldv_iio_triggered_buffer_iio_triggered_buffer_instance_3(void *arg0 ) { enum irqreturn (*ldv_3_callback_handler)(int , void * ) ; void *ldv_3_data_data ; int ldv_3_line_line ; enum irqreturn ldv_3_ret_val_default ; enum irqreturn (*ldv_3_thread_thread)(int , void * ) ; int tmp ; { { ldv_switch_to_interrupt_context(); ldv_3_ret_val_default = ldv_iio_triggered_buffer_instance_handler_3_5(ldv_3_callback_handler, ldv_3_line_line, ldv_3_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume((unsigned int )ldv_3_ret_val_default == 2U); ldv_iio_triggered_buffer_instance_thread_3_3(ldv_3_thread_thread, ldv_3_line_line, ldv_3_data_data); } } else { { ldv_assume((unsigned int )ldv_3_ret_val_default != 2U); } } return; return; } } enum irqreturn ldv_iio_triggered_buffer_instance_handler_3_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = mtip_irq_handler(arg1, arg2); } return (tmp); } } void ldv_iio_triggered_buffer_instance_thread_3_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { mtip_irq_handler(arg1, arg2); } return; } } enum irqreturn ldv_interrupt_instance_handler_4_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = mtip_irq_handler(arg1, arg2); } return (tmp); } } void ldv_interrupt_instance_thread_4_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { mtip_irq_handler(arg1, arg2); } return; } } void ldv_interrupt_interrupt_instance_4(void *arg0 ) { enum irqreturn (*ldv_4_callback_handler)(int , void * ) ; void *ldv_4_data_data ; int ldv_4_line_line ; enum irqreturn ldv_4_ret_val_default ; enum irqreturn (*ldv_4_thread_thread)(int , void * ) ; int tmp ; { { ldv_switch_to_interrupt_context(); ldv_4_ret_val_default = ldv_interrupt_instance_handler_4_5(ldv_4_callback_handler, ldv_4_line_line, ldv_4_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume((unsigned int )ldv_4_ret_val_default == 2U); ldv_interrupt_instance_thread_4_3(ldv_4_thread_thread, ldv_4_line_line, ldv_4_data_data); } } else { { ldv_assume((unsigned int )ldv_4_ret_val_default != 2U); } } return; return; } } int ldv_pci_instance_probe_5_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = mtip_pci_probe(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_5_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { mtip_pci_remove(arg1); } return; } } void ldv_pci_instance_resume_5_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { mtip_pci_resume(arg1); } return; } } void ldv_pci_instance_resume_early_5_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_5_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { mtip_pci_shutdown(arg1); } return; } } int ldv_pci_instance_suspend_5_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = mtip_pci_suspend(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_5_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_5(void *arg0 ) { struct pci_driver *ldv_5_container_pci_driver ; struct pci_dev *ldv_5_resource_dev ; struct pm_message ldv_5_resource_pm_message ; struct pci_device_id *ldv_5_resource_struct_pci_device_id_ptr ; int ldv_5_ret_default ; struct ldv_struct_pci_instance_5 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { data = (struct ldv_struct_pci_instance_5 *)arg0; ldv_5_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_pci_instance_5 *)0)) { { ldv_5_container_pci_driver = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(2968UL); ldv_5_resource_dev = (struct pci_dev *)tmp; tmp___0 = ldv_xmalloc(32UL); ldv_5_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___0; } goto ldv_main_5; return; ldv_main_5: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_ldv_pre_probe_143(); ldv_5_ret_default = ldv_pci_instance_probe_5_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_5_container_pci_driver->probe, ldv_5_resource_dev, ldv_5_resource_struct_pci_device_id_ptr); ldv_5_ret_default = ldv_ldv_post_probe_144(ldv_5_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { ldv_assume(ldv_5_ret_default == 0); } goto ldv_call_5; } else { { ldv_assume(ldv_5_ret_default != 0); } goto ldv_main_5; } } else { { ldv_free((void *)ldv_5_resource_dev); ldv_free((void *)ldv_5_resource_struct_pci_device_id_ptr); } return; } return; ldv_call_5: { tmp___3 = ldv_undef_int(); } { if (tmp___3 == 1) { goto case_1; } else { } if (tmp___3 == 2) { goto case_2; } else { } if (tmp___3 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_call_5; case_2: /* CIL Label */ { ldv_5_ret_default = ldv_pci_instance_suspend_5_8(ldv_5_container_pci_driver->suspend, ldv_5_resource_dev, ldv_5_resource_pm_message); ldv_5_ret_default = ldv_filter_err_code(ldv_5_ret_default); } if ((unsigned long )ldv_5_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_5_ret_default = ldv_pci_instance_suspend_late_5_7(ldv_5_container_pci_driver->suspend_late, ldv_5_resource_dev, ldv_5_resource_pm_message); } } else { } { ldv_5_ret_default = ldv_filter_err_code(ldv_5_ret_default); } if ((unsigned long )ldv_5_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_5_6(ldv_5_container_pci_driver->resume_early, ldv_5_resource_dev); } } else { } { ldv_pci_instance_resume_5_5(ldv_5_container_pci_driver->resume, ldv_5_resource_dev); } goto ldv_call_5; case_3: /* CIL Label */ { ldv_pci_instance_shutdown_5_3(ldv_5_container_pci_driver->shutdown, ldv_5_resource_dev); ldv_pci_instance_release_5_2(ldv_5_container_pci_driver->remove, ldv_5_resource_dev); } goto ldv_main_5; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) { struct pci_driver *ldv_8_pci_driver_pci_driver ; { { ldv_8_pci_driver_pci_driver = arg1; ldv_dispatch_deregister_8_1(ldv_8_pci_driver_pci_driver); } return; return; } } void ldv_struct_device_attribute_dummy_resourceless_instance_6(void *arg0 ) { long (*ldv_6_callback_show)(struct device * , struct device_attribute * , char * ) ; struct device_attribute *ldv_6_container_struct_device_attribute ; struct device *ldv_6_container_struct_device_ptr ; char *ldv_6_ldv_param_3_2_default ; void *tmp ; int tmp___0 ; { goto ldv_call_6; return; ldv_call_6: { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { tmp = ldv_xmalloc(1UL); ldv_6_ldv_param_3_2_default = (char *)tmp; ldv_dummy_resourceless_instance_callback_6_3(ldv_6_callback_show, ldv_6_container_struct_device_ptr, ldv_6_container_struct_device_attribute, ldv_6_ldv_param_3_2_default); ldv_free((void *)ldv_6_ldv_param_3_2_default); } goto ldv_call_6; } else { return; } return; } } static unsigned long ldv_find_first_bit_4(unsigned long const *addr , unsigned long size ) { unsigned long tmp ; { { tmp = ldv_linux_lib_find_bit_find_first_bit(size); } return (tmp); } } static unsigned long ldv_find_next_bit_5(unsigned long const *addr , unsigned long size , unsigned long offset ) { unsigned long tmp ; { { tmp = ldv_linux_lib_find_bit_find_next_bit(size, offset); } return (tmp); } } __inline static int atomic_add_return(int i , atomic_t *v ) { int tmp ; { { tmp = ldv_linux_usb_dev_atomic_add_return(i, v); } return (tmp); } } static unsigned long ldv_find_first_bit_46(unsigned long const *addr , unsigned long size ) { unsigned long tmp ; { { tmp = ldv_linux_lib_find_bit_find_first_bit(size); } return (tmp); } } static unsigned long ldv_find_next_bit_47(unsigned long const *addr , unsigned long size , unsigned long offset ) { unsigned long tmp ; { { tmp = ldv_linux_lib_find_bit_find_next_bit(size, offset); } return (tmp); } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = ldv_kzalloc(size, flags); } return (tmp); } } __inline static void *kzalloc_node(size_t size , gfp_t flags , int node ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc_unknown_size(); ldv_after_alloc(res); } return (res); } } static void ldv_blk_put_request_98(struct request *ldv_func_arg1 ) { { { ldv_linux_block_request_put_blk_rq(); } return; } } __inline static void ldv_spin_lock_99(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_NOT_ARG_SIGN(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_100(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_NOT_ARG_SIGN(); spin_unlock(lock); } return; } } __inline static void ldv_init_completion_101(struct completion *x ) { { { ldv_linux_kernel_sched_completion_init_completion_wait(); } return; } } static long ldv_wait_for_completion_interruptible_timeout_102(struct completion *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { long tmp ; { { ldv_linux_kernel_sched_completion_wait_for_completion_wait(); tmp = wait_for_completion_interruptible_timeout(ldv_func_arg1, ldv_func_arg2); } return (tmp); } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_103(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_dev_lock(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_104(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_dev_lock(); spin_unlock_irqrestore(lock, flags); } return; } } __inline static void ldv_spin_lock_105(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_rssd_index_lock(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_106(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_rssd_index_lock(); spin_unlock(lock); } return; } } static void ldv_put_disk_107(struct gendisk *disk ) { { { ldv_linux_block_genhd_put_disk(disk); put_disk(disk); } return; } } static void ldv_del_gendisk_108(struct gendisk *gp ) { { { ldv_linux_block_genhd_del_gendisk(); del_gendisk(gp); } return; } } static void ldv_blk_cleanup_queue_109(struct request_queue *ldv_func_arg1 ) { { { ldv_linux_block_queue_blk_cleanup_queue(); blk_cleanup_queue(ldv_func_arg1); } return; } } static unsigned long ldv_find_next_bit_110(unsigned long const *addr , unsigned long size , unsigned long offset ) { unsigned long tmp ; { { tmp = ldv_linux_lib_find_bit_find_next_bit(size, offset); } return (tmp); } } static void ldv_devm_free_irq_111(struct device *ldv_func_arg1 , unsigned int ldv_func_arg2 , void *ldv_func_arg3 ) { { { devm_free_irq(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_devm_free_irq((void *)0, ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); } return; } } static void ldv_devm_free_irq_112(struct device *ldv_func_arg1 , unsigned int ldv_func_arg2 , void *ldv_func_arg3 ) { { { devm_free_irq(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_devm_free_irq((void *)0, ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); } return; } } static void ldv_add_disk_115(struct gendisk *disk ) { { { ldv_linux_block_genhd_add_disk(); add_disk(disk); } return; } } static void ldv_del_gendisk_116(struct gendisk *gp ) { { { ldv_linux_block_genhd_del_gendisk(); del_gendisk(gp); } return; } } static void ldv_blk_cleanup_queue_117(struct request_queue *ldv_func_arg1 ) { { { ldv_linux_block_queue_blk_cleanup_queue(); blk_cleanup_queue(ldv_func_arg1); } return; } } static void ldv_put_disk_120(struct gendisk *disk ) { { { ldv_linux_block_genhd_put_disk(disk); put_disk(disk); } return; } } static void ldv_del_gendisk_121(struct gendisk *gp ) { { { ldv_linux_block_genhd_del_gendisk(); del_gendisk(gp); } return; } } static void ldv_blk_cleanup_queue_122(struct request_queue *ldv_func_arg1 ) { { { ldv_linux_block_queue_blk_cleanup_queue(); blk_cleanup_queue(ldv_func_arg1); } return; } } static void ldv_put_disk_123(struct gendisk *disk ) { { { ldv_linux_block_genhd_put_disk(disk); put_disk(disk); } return; } } static void ldv_del_gendisk_126(struct gendisk *gp ) { { { ldv_linux_block_genhd_del_gendisk(); del_gendisk(gp); } return; } } static void ldv_blk_cleanup_queue_127(struct request_queue *ldv_func_arg1 ) { { { ldv_linux_block_queue_blk_cleanup_queue(); blk_cleanup_queue(ldv_func_arg1); } return; } } static void ldv_put_disk_128(struct gendisk *disk ) { { { ldv_linux_block_genhd_put_disk(disk); put_disk(disk); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_131(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_dev_lock(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_133(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_dev_lock(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_135(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_dev_lock(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static int ldv___pci_register_driver_137(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___pci_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_pci_unregister_driver_138(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } static int ldv_ldv_post_init_139(int ldv_func_arg1 ) { int tmp ; { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); tmp = ldv_post_init(ldv_func_arg1); } return (tmp); } } static void ldv_ldv_check_final_state_140(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_check_final_state_141(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_initialize_142(void) { { { ldv_linux_lib_find_bit_initialize(); } return; } } static void ldv_ldv_pre_probe_143(void) { { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); ldv_pre_probe(); } return; } } static int ldv_ldv_post_probe_144(int retval ) { int tmp ; { { ldv_linux_net_register_check_return_value_probe(retval); ldv_linux_usb_register_check_return_value_probe(retval); tmp = ldv_post_probe(retval); } return (tmp); } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) ; bool ldv_in_interrupt_context(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) { bool tmp ; int tmp___0 ; { { tmp = ldv_in_interrupt_context(); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } { ldv_assert_linux_alloc_irq__wrong_flags(tmp___0 || flags == 32U); } return; } } void ldv_linux_alloc_irq_check_alloc_nonatomic(void) { bool tmp ; { { tmp = ldv_in_interrupt_context(); } if ((int )tmp) { { ldv_assert_linux_alloc_irq__nonatomic(0); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_linux_alloc_spinlock_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_linux_alloc_spinlock_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) ; int ldv_linux_alloc_usb_lock_lock = 1; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) { { if (ldv_linux_alloc_usb_lock_lock == 2) { { ldv_assert_linux_alloc_usb_lock__wrong_flags(flags == 16U || flags == 32U); } } else { } return; } } void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) { { { ldv_assert_linux_alloc_usb_lock__nonatomic(ldv_linux_alloc_usb_lock_lock == 1); } return; } } void ldv_linux_alloc_usb_lock_usb_lock_device(void) { { ldv_linux_alloc_usb_lock_lock = 2; return; } } int ldv_linux_alloc_usb_lock_usb_trylock_device(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_alloc_usb_lock_usb_lock_device_for_reset(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (0); } else { return (-1); } } else { return (-1); } } } void ldv_linux_alloc_usb_lock_usb_unlock_device(void) { { ldv_linux_alloc_usb_lock_lock = 1; return; } } void ldv_linux_usb_dev_atomic_add(int i , atomic_t *v ) { { v->counter = v->counter + i; return; } } void ldv_linux_usb_dev_atomic_sub(int i , atomic_t *v ) { { v->counter = v->counter - i; return; } } int ldv_linux_usb_dev_atomic_sub_and_test(int i , atomic_t *v ) { { v->counter = v->counter - i; if (v->counter != 0) { return (0); } else { } return (1); } } void ldv_linux_usb_dev_atomic_inc(atomic_t *v ) { { v->counter = v->counter + 1; return; } } void ldv_linux_usb_dev_atomic_dec(atomic_t *v ) { { v->counter = v->counter - 1; return; } } int ldv_linux_usb_dev_atomic_dec_and_test(atomic_t *v ) { { v->counter = v->counter - 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_inc_and_test(atomic_t *v ) { { v->counter = v->counter + 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_add_return(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter); } } int ldv_linux_usb_dev_atomic_add_negative(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter < 0); } } int ldv_linux_usb_dev_atomic_inc_short(short *v ) { { *v = (short )((unsigned int )((unsigned short )*v) + 1U); return ((int )*v); } } void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) ; void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) ; void *ldv_undef_ptr(void) ; int ldv_linux_arch_io_iomem = 0; void *ldv_linux_arch_io_io_mem_remap(void) { void *ptr ; void *tmp ; { { tmp = ldv_undef_ptr(); ptr = tmp; } if ((unsigned long )ptr != (unsigned long )((void *)0)) { ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem + 1; return (ptr); } else { } return (ptr); } } void ldv_linux_arch_io_io_mem_unmap(void) { { { ldv_assert_linux_arch_io__less_initial_decrement(ldv_linux_arch_io_iomem > 0); ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem - 1; } return; } } void ldv_linux_arch_io_check_final_state(void) { { { ldv_assert_linux_arch_io__more_initial_at_exit(ldv_linux_arch_io_iomem == 0); } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) ; void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) ; void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) ; static int ldv_linux_block_genhd_disk_state = 0; struct gendisk *ldv_linux_block_genhd_alloc_disk(void) { struct gendisk *res ; void *tmp ; { { tmp = ldv_undef_ptr(); res = (struct gendisk *)tmp; ldv_assert_linux_block_genhd__double_allocation(ldv_linux_block_genhd_disk_state == 0); } if ((unsigned long )res != (unsigned long )((struct gendisk *)0)) { ldv_linux_block_genhd_disk_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_genhd_add_disk(void) { { { ldv_assert_linux_block_genhd__use_before_allocation(ldv_linux_block_genhd_disk_state == 1); ldv_linux_block_genhd_disk_state = 2; } return; } } void ldv_linux_block_genhd_del_gendisk(void) { { { ldv_assert_linux_block_genhd__delete_before_add(ldv_linux_block_genhd_disk_state == 2); ldv_linux_block_genhd_disk_state = 1; } return; } } void ldv_linux_block_genhd_put_disk(struct gendisk *disk ) { { if ((unsigned long )disk != (unsigned long )((struct gendisk *)0)) { { ldv_assert_linux_block_genhd__free_before_allocation(ldv_linux_block_genhd_disk_state > 0); ldv_linux_block_genhd_disk_state = 0; } } else { } return; } } void ldv_linux_block_genhd_check_final_state(void) { { { ldv_assert_linux_block_genhd__more_initial_at_exit(ldv_linux_block_genhd_disk_state == 0); } return; } } void ldv_assert_linux_block_queue__double_allocation(int expr ) ; void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_queue__use_before_allocation(int expr ) ; static int ldv_linux_block_queue_queue_state = 0; struct request_queue *ldv_linux_block_queue_request_queue(void) { struct request_queue *res ; void *tmp ; { { tmp = ldv_undef_ptr(); res = (struct request_queue *)tmp; ldv_assert_linux_block_queue__double_allocation(ldv_linux_block_queue_queue_state == 0); } if ((unsigned long )res != (unsigned long )((struct request_queue *)0)) { ldv_linux_block_queue_queue_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_queue_blk_cleanup_queue(void) { { { ldv_assert_linux_block_queue__use_before_allocation(ldv_linux_block_queue_queue_state == 1); ldv_linux_block_queue_queue_state = 0; } return; } } void ldv_linux_block_queue_check_final_state(void) { { { ldv_assert_linux_block_queue__more_initial_at_exit(ldv_linux_block_queue_queue_state == 0); } return; } } void ldv_assert_linux_block_request__double_get(int expr ) ; void ldv_assert_linux_block_request__double_put(int expr ) ; void ldv_assert_linux_block_request__get_at_exit(int expr ) ; long ldv_is_err(void const *ptr ) ; int ldv_linux_block_request_blk_rq = 0; struct request *ldv_linux_block_request_blk_get_request(gfp_t mask ) { struct request *res ; void *tmp ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_undef_ptr(); res = (struct request *)tmp; } if ((mask == 16U || mask == 208U) || mask == 16U) { { ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); } } else { } if ((unsigned long )res != (unsigned long )((struct request *)0)) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } struct request *ldv_linux_block_request_blk_make_request(gfp_t mask ) { struct request *res ; void *tmp ; long tmp___0 ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_undef_ptr(); res = (struct request *)tmp; ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); tmp___0 = ldv_is_err((void const *)res); } if (tmp___0 == 0L) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } void ldv_linux_block_request_put_blk_rq(void) { { { ldv_assert_linux_block_request__double_put(ldv_linux_block_request_blk_rq == 1); ldv_linux_block_request_blk_rq = 0; } return; } } void ldv_linux_block_request_check_final_state(void) { { { ldv_assert_linux_block_request__get_at_exit(ldv_linux_block_request_blk_rq == 0); } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) ; void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) ; int ldv_undef_int_nonpositive(void) ; int ldv_linux_drivers_base_class_usb_gadget_class = 0; void *ldv_linux_drivers_base_class_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_undef_ptr(); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_got); } } int ldv_linux_drivers_base_class_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_reg); } } void ldv_linux_drivers_base_class_unregister_class(void) { { { ldv_assert_linux_drivers_base_class__double_deregistration(ldv_linux_drivers_base_class_usb_gadget_class == 1); ldv_linux_drivers_base_class_usb_gadget_class = 0; } return; } } void ldv_linux_drivers_base_class_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_drivers_base_class_unregister_class(); } return; } } void ldv_linux_drivers_base_class_check_final_state(void) { { { ldv_assert_linux_drivers_base_class__registered_at_exit(ldv_linux_drivers_base_class_usb_gadget_class == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2176UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) ; void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) ; int ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; int ldv_linux_fs_char_dev_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_fs_char_dev_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } } else { } return (is_reg); } } void ldv_linux_fs_char_dev_unregister_chrdev_region(void) { { { ldv_assert_linux_fs_char_dev__double_deregistration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 1); ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; } return; } } void ldv_linux_fs_char_dev_check_final_state(void) { { { ldv_assert_linux_fs_char_dev__registered_at_exit(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); } return; } } void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) ; void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) ; int ldv_linux_fs_sysfs_sysfs = 0; int ldv_linux_fs_sysfs_sysfs_create_group(void) { int res ; int tmp ; { { tmp = ldv_undef_int_nonpositive(); res = tmp; } if (res == 0) { ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs + 1; return (0); } else { } return (res); } } void ldv_linux_fs_sysfs_sysfs_remove_group(void) { { { ldv_assert_linux_fs_sysfs__less_initial_decrement(ldv_linux_fs_sysfs_sysfs > 0); ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs - 1; } return; } } void ldv_linux_fs_sysfs_check_final_state(void) { { { ldv_assert_linux_fs_sysfs__more_initial_at_exit(ldv_linux_fs_sysfs_sysfs == 0); } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) ; int ldv_linux_kernel_locking_rwlock_rlock = 1; int ldv_linux_kernel_locking_rwlock_wlock = 1; void ldv_linux_kernel_locking_rwlock_read_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; } return; } } void ldv_linux_kernel_locking_rwlock_read_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(ldv_linux_kernel_locking_rwlock_rlock > 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + -1; } return; } } void ldv_linux_kernel_locking_rwlock_write_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_wlock = 2; } return; } } void ldv_linux_kernel_locking_rwlock_write_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(ldv_linux_kernel_locking_rwlock_wlock != 1); ldv_linux_kernel_locking_rwlock_wlock = 1; } return; } } int ldv_linux_kernel_locking_rwlock_read_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_kernel_locking_rwlock_write_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_wlock = 2; return (1); } else { return (0); } } else { return (0); } } } void ldv_linux_kernel_locking_rwlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(ldv_linux_kernel_locking_rwlock_rlock == 1); ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(ldv_linux_kernel_locking_rwlock_wlock == 1); } return; } } void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) ; void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) ; int ldv_linux_kernel_module_module_refcounter = 1; void ldv_linux_kernel_module_module_get(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; } else { } return; } } int ldv_linux_kernel_module_try_module_get(struct module *module ) { int tmp ; { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { tmp = ldv_undef_int(); } if (tmp == 1) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; return (1); } else { return (0); } } else { } return (0); } } void ldv_linux_kernel_module_module_put(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { ldv_assert_linux_kernel_module__less_initial_decrement(ldv_linux_kernel_module_module_refcounter > 1); ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter - 1; } } else { } return; } } void ldv_linux_kernel_module_module_put_and_exit(void) { { { ldv_linux_kernel_module_module_put((struct module *)1); } LDV_LINUX_KERNEL_MODULE_STOP: ; goto LDV_LINUX_KERNEL_MODULE_STOP; } } unsigned int ldv_linux_kernel_module_module_refcount(void) { { return ((unsigned int )(ldv_linux_kernel_module_module_refcounter + -1)); } } void ldv_linux_kernel_module_check_final_state(void) { { { ldv_assert_linux_kernel_module__more_initial_at_exit(ldv_linux_kernel_module_module_refcounter == 1); } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_srcu_srcu_nested = 0; void ldv_linux_kernel_rcu_srcu_srcu_read_lock(void) { { ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested + 1; return; } } void ldv_linux_kernel_rcu_srcu_srcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_srcu__more_unlocks(ldv_linux_kernel_rcu_srcu_srcu_nested > 0); ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_srcu_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = 0; void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_lock_bh(void) { { ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh + 1; return; } } void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_unlock_bh(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh > 0); ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = 0; void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_lock_sched(void) { { ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched + 1; return; } } void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_unlock_sched(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched > 0); ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_rcu_nested = 0; void ldv_linux_kernel_rcu_update_lock_rcu_read_lock(void) { { ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested + 1; return; } } void ldv_linux_kernel_rcu_update_lock_rcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(ldv_linux_kernel_rcu_update_lock_rcu_nested > 0); ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } static bool __ldv_in_interrupt_context = 0; void ldv_switch_to_interrupt_context(void) { { __ldv_in_interrupt_context = 1; return; } } void ldv_switch_to_process_context(void) { { __ldv_in_interrupt_context = 0; return; } } bool ldv_in_interrupt_context(void) { { return (__ldv_in_interrupt_context); } } void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) ; unsigned long ldv_undef_ulong(void) ; unsigned long ldv_linux_lib_find_bit_find_next_bit(unsigned long size , unsigned long offset ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assert_linux_lib_find_bit__offset_out_of_range(offset <= size); ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } unsigned long ldv_linux_lib_find_bit_find_first_bit(unsigned long size ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } void ldv_linux_lib_find_bit_initialize(void) { { { ldv_assume(nr_cpu_ids > 0); } return; } } void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) ; unsigned short ldv_linux_mmc_sdio_func_sdio_element = 0U; void ldv_linux_mmc_sdio_func_check_context(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__wrong_params((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); } return; } } void ldv_linux_mmc_sdio_func_sdio_claim_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__double_claim((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); ldv_linux_mmc_sdio_func_sdio_element = (unsigned short )((func->card)->host)->index; } return; } } void ldv_linux_mmc_sdio_func_sdio_release_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__release_without_claim((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); ldv_linux_mmc_sdio_func_sdio_element = 0U; } return; } } void ldv_linux_mmc_sdio_func_check_final_state(void) { { { ldv_assert_linux_mmc_sdio_func__unreleased_at_exit((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); } return; } } void ldv_assert_linux_net_register__wrong_return_value(int expr ) ; int ldv_pre_register_netdev(void) ; int ldv_linux_net_register_probe_state = 0; int ldv_pre_register_netdev(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_net_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_net_register_reset_error_counter(void) { { ldv_linux_net_register_probe_state = 0; return; } } void ldv_linux_net_register_check_return_value_probe(int retval ) { { if (ldv_linux_net_register_probe_state == 1) { { ldv_assert_linux_net_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_net_register_reset_error_counter(); } return; } } void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) ; void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) ; void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) ; int rtnllocknumber = 0; void ldv_linux_net_rtnetlink_past_rtnl_unlock(void) { { { ldv_assert_linux_net_rtnetlink__double_unlock(rtnllocknumber == 1); rtnllocknumber = 0; } return; } } void ldv_linux_net_rtnetlink_past_rtnl_lock(void) { { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); rtnllocknumber = 1; } return; } } void ldv_linux_net_rtnetlink_before_ieee80211_unregister_hw(void) { { { ldv_linux_net_rtnetlink_past_rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } int ldv_linux_net_rtnetlink_rtnl_is_locked(void) { int tmp ; { if (rtnllocknumber != 0) { return (rtnllocknumber); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_net_rtnetlink_rtnl_trylock(void) { int tmp ; { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); tmp = ldv_linux_net_rtnetlink_rtnl_is_locked(); } if (tmp == 0) { rtnllocknumber = 1; return (1); } else { return (0); } } } void ldv_linux_net_rtnetlink_check_final_state(void) { { { ldv_assert_linux_net_rtnetlink__lock_on_exit(rtnllocknumber == 0); } return; } } void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) ; void ldv_assert_linux_net_sock__double_release(int expr ) ; int locksocknumber = 0; void ldv_linux_net_sock_past_lock_sock_nested(void) { { locksocknumber = locksocknumber + 1; return; } } bool ldv_linux_net_sock_lock_sock_fast(void) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { locksocknumber = locksocknumber + 1; return (1); } else { } return (0); } } void ldv_linux_net_sock_unlock_sock_fast(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_before_release_sock(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_check_final_state(void) { { { ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(locksocknumber == 0); } return; } } void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) ; int ldv_linux_usb_coherent_coherent_state = 0; void *ldv_linux_usb_coherent_usb_alloc_coherent(void) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return (arbitrary_memory); } else { } ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + 1; return (arbitrary_memory); } } void ldv_linux_usb_coherent_usb_free_coherent(void *addr ) { { if ((unsigned long )addr != (unsigned long )((void *)0)) { { ldv_assert_linux_usb_coherent__less_initial_decrement(ldv_linux_usb_coherent_coherent_state > 0); ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + -1; } } else { } return; } } void ldv_linux_usb_coherent_check_final_state(void) { { { ldv_assert_linux_usb_coherent__more_initial_at_exit(ldv_linux_usb_coherent_coherent_state == 0); } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) ; void ldv_assert_linux_usb_dev__probe_failed(int expr ) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) ; ldv_map LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS ; struct usb_device *ldv_linux_usb_dev_usb_get_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0 ? LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + 1 : 1; } else { } return (dev); } } void ldv_linux_usb_dev_usb_put_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { { ldv_assert_linux_usb_dev__unincremented_counter_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0); ldv_assert_linux_usb_dev__less_initial_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 0); } if (LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 1) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + -1; } else { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; } } else { } return; } } void ldv_linux_usb_dev_check_return_value_probe(int retval ) { { if (retval != 0) { { ldv_assert_linux_usb_dev__probe_failed(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } } else { } return; } } void ldv_linux_usb_dev_initialize(void) { { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; return; } } void ldv_linux_usb_dev_check_final_state(void) { { { ldv_assert_linux_usb_dev__more_initial_at_exit(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) ; void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) ; int ldv_linux_usb_gadget_usb_gadget = 0; void *ldv_linux_usb_gadget_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_undef_ptr(); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_got); } } int ldv_linux_usb_gadget_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_class(void) { { { ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_linux_usb_gadget_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_usb_gadget_unregister_class(); } return; } } int ldv_linux_usb_gadget_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_usb_gadget_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_chrdev_region(void) { { { ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } int ldv_linux_usb_gadget_register_usb_gadget(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__double_usb_gadget_registration(ldv_linux_usb_gadget_usb_gadget == 0); ldv_linux_usb_gadget_usb_gadget = 1; } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_usb_gadget(void) { { { ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(ldv_linux_usb_gadget_usb_gadget == 1); ldv_linux_usb_gadget_usb_gadget = 0; } return; } } void ldv_linux_usb_gadget_check_final_state(void) { { { ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_assert_linux_usb_register__wrong_return_value(int expr ) ; int ldv_pre_usb_register_driver(void) ; int ldv_linux_usb_register_probe_state = 0; int ldv_pre_usb_register_driver(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_usb_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_usb_register_reset_error_counter(void) { { ldv_linux_usb_register_probe_state = 0; return; } } void ldv_linux_usb_register_check_return_value_probe(int retval ) { { if (ldv_linux_usb_register_probe_state == 1) { { ldv_assert_linux_usb_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_usb_register_reset_error_counter(); } return; } } void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) ; int ldv_linux_usb_urb_urb_state = 0; struct urb *ldv_linux_usb_urb_usb_alloc_urb(void) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return ((struct urb *)arbitrary_memory); } else { } ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + 1; return ((struct urb *)arbitrary_memory); } } void ldv_linux_usb_urb_usb_free_urb(struct urb *urb ) { { if ((unsigned long )urb != (unsigned long )((struct urb *)0)) { { ldv_assert_linux_usb_urb__less_initial_decrement(ldv_linux_usb_urb_urb_state > 0); ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + -1; } } else { } return; } } void ldv_linux_usb_urb_check_final_state(void) { { { ldv_assert_linux_usb_urb__more_initial_at_exit(ldv_linux_usb_urb_urb_state == 0); } return; } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *external_allocated_data(void) ; void *ldv_calloc_unknown_size(void) ; void *ldv_xmalloc_unknown_size(size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; extern void *memset(void * , int , size_t ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_malloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; memset(res, 0, 8UL); ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc_unknown_size(void) { void *tmp ; { { tmp = ldv_calloc_unknown_size(); } return (tmp); } } void *ldv_xmalloc_unknown_size(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } int ldv_undef_int_negative(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { { tmp = __VERIFIER_nondet_pointer(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) ; ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode ; void ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock ; void ldv_linux_kernel_locking_mutex_mutex_lock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_lock(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device ; void ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; } return; } } void ldv_linux_kernel_locking_mutex_initialize(void) { { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; return; } } void ldv_linux_kernel_locking_mutex_check_final_state(void) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN == 1); ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN == 2); ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_dev_lock = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_dev_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_dev_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_dev_lock == 1); ldv_linux_kernel_locking_spinlock_spin_dev_lock = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_dev_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_dev_lock == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_dev_lock == 2); ldv_linux_kernel_locking_spinlock_spin_dev_lock = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_dev_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_dev_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_dev_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_dev_lock = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_dev_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_dev_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_dev_lock == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_dev_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_dev_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_dev_lock(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_dev_lock(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_dev_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_dev_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_dev_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_dev_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_dev_lock = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_linux_kernel_locking_spinlock_spin_lock = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_linux_kernel_locking_spinlock_spin_lock = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_ptl = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_linux_kernel_locking_spinlock_spin_ptl = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_linux_kernel_locking_spinlock_spin_ptl = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_rssd_index_lock = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_rssd_index_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_rssd_index_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_rssd_index_lock == 1); ldv_linux_kernel_locking_spinlock_spin_rssd_index_lock = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_rssd_index_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_rssd_index_lock == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_rssd_index_lock == 2); ldv_linux_kernel_locking_spinlock_spin_rssd_index_lock = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_rssd_index_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_rssd_index_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_rssd_index_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_rssd_index_lock = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_rssd_index_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_rssd_index_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_rssd_index_lock == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_rssd_index_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_rssd_index_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_rssd_index_lock(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_rssd_index_lock(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_rssd_index_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_rssd_index_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_rssd_index_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_rssd_index_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_rssd_index_lock = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } void ldv_linux_kernel_locking_spinlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_dev_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_rssd_index_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_linux_kernel_locking_spinlock_spin_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_dev_lock == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_rssd_index_lock == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2) { return (1); } else { } return (0); } } void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) ; void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) ; static int ldv_linux_kernel_sched_completion_completion_wait = 0; void ldv_linux_kernel_sched_completion_init_completion_wait(void) { { ldv_linux_kernel_sched_completion_completion_wait = 1; return; } } void ldv_linux_kernel_sched_completion_init_completion_macro_wait(void) { { { ldv_assert_linux_kernel_sched_completion__double_init(ldv_linux_kernel_sched_completion_completion_wait != 0); ldv_linux_kernel_sched_completion_completion_wait = 1; } return; } } void ldv_linux_kernel_sched_completion_wait_for_completion_wait(void) { { { ldv_assert_linux_kernel_sched_completion__wait_without_init(ldv_linux_kernel_sched_completion_completion_wait != 0); ldv_linux_kernel_sched_completion_completion_wait = 2; } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) ; void ldv_assert_linux_lib_idr__double_init(int expr ) ; void ldv_assert_linux_lib_idr__more_at_exit(int expr ) ; void ldv_assert_linux_lib_idr__not_initialized(int expr ) ; static int ldv_linux_lib_idr_idr = 0; void ldv_linux_lib_idr_idr_init(void) { { { ldv_assert_linux_lib_idr__double_init(ldv_linux_lib_idr_idr == 0); ldv_linux_lib_idr_idr = 1; } return; } } void ldv_linux_lib_idr_idr_alloc(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_find(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_remove(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_destroy(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 3; } return; } } void ldv_linux_lib_idr_check_final_state(void) { { { ldv_assert_linux_lib_idr__more_at_exit(ldv_linux_lib_idr_idr == 0 || ldv_linux_lib_idr_idr == 3); } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_lib_idr__double_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__not_initialized(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__more_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_register__wrong_return_value(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_sock__double_release(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__probe_failed(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_request__double_get(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_request__double_put(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_request__get_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_queue__double_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_queue__use_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_register__wrong_return_value(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } }