/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef short s16; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __le16; typedef __u16 __be16; typedef __u32 __le32; typedef __u32 __be32; typedef __u64 __le64; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u32 uint32_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct class; struct device; struct completion; struct gendisk; struct module; struct mutex; struct request_queue; struct request; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_10 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_11 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_9 { struct __anonstruct____missing_field_name_10 __annonCompField5 ; struct __anonstruct____missing_field_name_11 __annonCompField6 ; }; struct desc_struct { union __anonunion____missing_field_name_9 __annonCompField7 ; }; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_12 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_12 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_13 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_13 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; typedef void (*ctor_fn_t)(void); struct file_operations; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_16 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_16 __annonCompField8 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct exec_domain; struct map_segment; struct exec_domain { char const *name ; void (*handler)(int , struct pt_regs * ) ; unsigned char pers_low ; unsigned char pers_high ; unsigned long *signal_map ; unsigned long *signal_invmap ; struct map_segment *err_map ; struct map_segment *socktype_map ; struct map_segment *sockopt_map ; struct map_segment *af_map ; struct module *module ; struct exec_domain *next ; }; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_21 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_22 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_20 { struct __anonstruct____missing_field_name_21 __annonCompField12 ; struct __anonstruct____missing_field_name_22 __annonCompField13 ; }; union __anonunion____missing_field_name_23 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_20 __annonCompField14 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_23 __annonCompField15 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndreg { u64 lower_bound ; u64 upper_bound ; }; struct bndcsr { u64 bndcfgu ; u64 bndstatus ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndreg bndreg[4U] ; struct bndcsr bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; struct __anonstruct_mm_segment_t_25 { unsigned long seg ; }; typedef struct __anonstruct_mm_segment_t_25 mm_segment_t; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_27 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_26 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_27 __annonCompField17 ; }; struct spinlock { union __anonunion____missing_field_name_26 __annonCompField18 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_28 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_28 rwlock_t; struct ldv_thread; struct optimistic_spin_queue { atomic_t tail ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct compat_timespec; struct __anonstruct_futex_30 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_31 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_32 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_29 { struct __anonstruct_futex_30 futex ; struct __anonstruct_nanosleep_31 nanosleep ; struct __anonstruct_poll_32 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_29 __annonCompField19 ; }; struct thread_info { struct task_struct *task ; struct exec_domain *exec_domain ; __u32 flags ; __u32 status ; __u32 cpu ; int saved_preempt_count ; mm_segment_t addr_limit ; void *sysenter_return ; unsigned char sig_on_uaccess_error : 1 ; unsigned char uaccess_err : 1 ; }; typedef int pao_T__; typedef int pao_T_____0; struct jump_entry; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_45 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_45 seqlock_t; struct __wait_queue; typedef struct __wait_queue wait_queue_t; struct __wait_queue { unsigned int flags ; void *private ; int (*func)(wait_queue_t * , unsigned int , int , void * ) ; struct list_head task_list ; }; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; union __anonunion____missing_field_name_46 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_46 __annonCompField20 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_47 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_47 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct user_namespace; struct __anonstruct_kuid_t_48 { uid_t val ; }; typedef struct __anonstruct_kuid_t_48 kuid_t; struct __anonstruct_kgid_t_49 { gid_t val ; }; typedef struct __anonstruct_kgid_t_49 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct inode; struct cdev { struct kobject kobj ; struct module *owner ; struct file_operations const *ops ; struct list_head list ; dev_t dev ; unsigned int count ; }; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct platform_device_id { char name[20U] ; kernel_ulong_t driver_data ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_53 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_53 nodemask_t; struct path; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; }; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct pci_dev; struct pci_bus; struct __anonstruct_mm_context_t_118 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_118 mm_context_t; struct bio_vec; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct call_single_data { struct llist_node llist ; void (*func)(void * ) ; void *info ; u16 flags ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct pdev_archdata { }; struct device_private; struct device_driver; struct driver_private; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_151 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_152 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_150 { struct __anonstruct____missing_field_name_151 __annonCompField34 ; struct __anonstruct____missing_field_name_152 __annonCompField35 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_150 __annonCompField36 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; struct mem_cgroup; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_153 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_155 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_159 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_158 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_159 __annonCompField39 ; int units ; }; struct __anonstruct____missing_field_name_157 { union __anonunion____missing_field_name_158 __annonCompField40 ; atomic_t _count ; }; union __anonunion____missing_field_name_156 { unsigned long counters ; struct __anonstruct____missing_field_name_157 __annonCompField41 ; unsigned int active ; }; struct __anonstruct____missing_field_name_154 { union __anonunion____missing_field_name_155 __annonCompField38 ; union __anonunion____missing_field_name_156 __annonCompField42 ; }; struct __anonstruct____missing_field_name_161 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_162 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_160 { struct list_head lru ; struct __anonstruct____missing_field_name_161 __annonCompField44 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_162 __annonCompField45 ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_163 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_153 __annonCompField37 ; struct __anonstruct____missing_field_name_154 __annonCompField43 ; union __anonunion____missing_field_name_160 __annonCompField46 ; union __anonunion____missing_field_name_163 __annonCompField47 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_164 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_164 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; typedef unsigned long cputime_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct user_struct; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_166 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_166 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_168 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_169 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_170 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_171 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_173 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_172 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_173 _addr_bnd ; }; struct __anonstruct__sigpoll_174 { long _band ; int _fd ; }; struct __anonstruct__sigsys_175 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_167 { int _pad[28U] ; struct __anonstruct__kill_168 _kill ; struct __anonstruct__timer_169 _timer ; struct __anonstruct__rt_170 _rt ; struct __anonstruct__sigchld_171 _sigchld ; struct __anonstruct__sigfault_172 _sigfault ; struct __anonstruct__sigpoll_174 _sigpoll ; struct __anonstruct__sigsys_175 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_167 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int in_hrtirq ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct cred; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_180 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_181 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_183 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_182 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_183 __annonCompField52 ; }; union __anonunion_type_data_184 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_186 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_185 { union __anonunion_payload_186 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_180 __annonCompField50 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_181 __annonCompField51 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_182 __annonCompField53 ; union __anonunion_type_data_184 type_data ; union __anonunion____missing_field_name_185 __annonCompField54 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct io_context; struct pipe_inode_info; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned char brk_randomized : 1 ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct proc_dir_entry; struct pci_driver; union __anonunion____missing_field_name_191 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; unsigned char pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; u8 dma_alias_devfn ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned char pme_support : 5 ; unsigned char pme_interrupt : 1 ; unsigned char pme_poll : 1 ; unsigned char d1_support : 1 ; unsigned char d2_support : 1 ; unsigned char no_d1d2 : 1 ; unsigned char no_d3cold : 1 ; unsigned char d3cold_allowed : 1 ; unsigned char mmio_always_on : 1 ; unsigned char wakeup_prepared : 1 ; unsigned char runtime_d3cold : 1 ; unsigned char ignore_hotplug : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned char transparent : 1 ; unsigned char multifunction : 1 ; unsigned char is_added : 1 ; unsigned char is_busmaster : 1 ; unsigned char no_msi : 1 ; unsigned char no_64bit_msi : 1 ; unsigned char block_cfg_access : 1 ; unsigned char broken_parity_status : 1 ; unsigned char irq_reroute_variant : 2 ; unsigned char msi_enabled : 1 ; unsigned char msix_enabled : 1 ; unsigned char ari_enabled : 1 ; unsigned char is_managed : 1 ; unsigned char needs_freset : 1 ; unsigned char state_saved : 1 ; unsigned char is_physfn : 1 ; unsigned char is_virtfn : 1 ; unsigned char reset_fn : 1 ; unsigned char is_hotplug_bridge : 1 ; unsigned char __aer_firmware_first_valid : 1 ; unsigned char __aer_firmware_first : 1 ; unsigned char broken_intx_masking : 1 ; unsigned char io_window_1k : 1 ; unsigned char irq_managed : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_191 __annonCompField58 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; char *driver_override ; }; struct pci_ops; struct msi_controller; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_controller *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned char is_added : 1 ; }; struct pci_ops { void *(*map_bus)(struct pci_bus * , unsigned int , int ) ; int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*reset_notify)(struct pci_dev * , bool ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct dma_pool; struct msix_entry { u32 vector ; u16 entry ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *cow_page ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; struct page *(*find_special_page)(struct vm_area_struct * , unsigned long ) ; }; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; struct mfd_cell; struct platform_device { char const *name ; int id ; bool id_auto ; struct device dev ; u32 num_resources ; struct resource *resource ; struct platform_device_id const *id_entry ; char *driver_override ; struct mfd_cell *mfd_cell ; struct pdev_archdata archdata ; }; struct platform_driver { int (*probe)(struct platform_device * ) ; int (*remove)(struct platform_device * ) ; void (*shutdown)(struct platform_device * ) ; int (*suspend)(struct platform_device * , pm_message_t ) ; int (*resume)(struct platform_device * ) ; struct device_driver driver ; struct platform_device_id const *id_table ; bool prevent_deferred_probe ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_193 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_192 { struct __anonstruct____missing_field_name_193 __annonCompField59 ; }; struct lockref { union __anonunion____missing_field_name_192 __annonCompField60 ; }; struct vfsmount; struct __anonstruct____missing_field_name_195 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_194 { struct __anonstruct____missing_field_name_195 __annonCompField61 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_194 __annonCompField62 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_196 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_196 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct __anonstruct____missing_field_name_198 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_197 { struct __anonstruct____missing_field_name_198 __annonCompField63 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_197 __annonCompField64 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct bio_set; struct bio; struct bio_integrity_payload; struct block_device; struct cgroup_subsys_state; typedef void bio_end_io_t(struct bio * , int ); struct bio_vec { struct page *bv_page ; unsigned int bv_len ; unsigned int bv_offset ; }; struct bvec_iter { sector_t bi_sector ; unsigned int bi_size ; unsigned int bi_idx ; unsigned int bi_bvec_done ; }; union __anonunion____missing_field_name_199 { struct bio_integrity_payload *bi_integrity ; }; struct bio { struct bio *bi_next ; struct block_device *bi_bdev ; unsigned long bi_flags ; unsigned long bi_rw ; struct bvec_iter bi_iter ; unsigned int bi_phys_segments ; unsigned int bi_seg_front_size ; unsigned int bi_seg_back_size ; atomic_t bi_remaining ; bio_end_io_t *bi_end_io ; void *bi_private ; struct io_context *bi_ioc ; struct cgroup_subsys_state *bi_css ; union __anonunion____missing_field_name_199 __annonCompField65 ; unsigned short bi_vcnt ; unsigned short bi_max_vecs ; atomic_t bi_cnt ; struct bio_vec *bi_io_vec ; struct bio_set *bi_pool ; struct bio_vec bi_inline_vecs[0U] ; }; struct export_operations; struct hd_geometry; struct iovec; struct nameidata; struct kiocb; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iov_iter; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_200 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_200 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_201 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_201 __annonCompField66 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct hd_struct; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_204 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_205 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; union __anonunion____missing_field_name_206 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_204 __annonCompField67 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_205 __annonCompField68 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_206 __annonCompField69 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_207 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_207 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_get_owner)(struct file_lock * , struct file_lock * ) ; void (*lm_put_owner)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct net; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_209 { struct list_head link ; int state ; }; union __anonunion_fl_u_208 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_209 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_208 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct block_device_operations; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; void (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; int (*dentry_open)(struct dentry * , struct file * , struct cred const * ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; struct exception_table_entry { int insn ; int fixup ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct nvme_id_power_state { __le16 max_power ; __u8 rsvd2 ; __u8 flags ; __le32 entry_lat ; __le32 exit_lat ; __u8 read_tput ; __u8 read_lat ; __u8 write_tput ; __u8 write_lat ; __le16 idle_power ; __u8 idle_scale ; __u8 rsvd19 ; __le16 active_power ; __u8 active_work_scale ; __u8 rsvd23[9U] ; }; struct nvme_id_ctrl { __le16 vid ; __le16 ssvid ; char sn[20U] ; char mn[40U] ; char fr[8U] ; __u8 rab ; __u8 ieee[3U] ; __u8 mic ; __u8 mdts ; __u16 cntlid ; __u32 ver ; __u8 rsvd84[172U] ; __le16 oacs ; __u8 acl ; __u8 aerl ; __u8 frmw ; __u8 lpa ; __u8 elpe ; __u8 npss ; __u8 avscc ; __u8 apsta ; __le16 wctemp ; __le16 cctemp ; __u8 rsvd270[242U] ; __u8 sqes ; __u8 cqes ; __u8 rsvd514[2U] ; __le32 nn ; __le16 oncs ; __le16 fuses ; __u8 fna ; __u8 vwc ; __le16 awun ; __le16 awupf ; __u8 nvscc ; __u8 rsvd531 ; __le16 acwu ; __u8 rsvd534[2U] ; __le32 sgls ; __u8 rsvd540[1508U] ; struct nvme_id_power_state psd[32U] ; __u8 vs[1024U] ; }; struct nvme_lbaf { __le16 ms ; __u8 ds ; __u8 rp ; }; struct nvme_id_ns { __le64 nsze ; __le64 ncap ; __le64 nuse ; __u8 nsfeat ; __u8 nlbaf ; __u8 flbas ; __u8 mc ; __u8 dpc ; __u8 dps ; __u8 nmic ; __u8 rescap ; __u8 fpi ; __u8 rsvd33 ; __le16 nawun ; __le16 nawupf ; __le16 nacwu ; __le16 nabsn ; __le16 nabo ; __le16 nabspf ; __u16 rsvd46 ; __le64 nvmcap[2U] ; __u8 rsvd64[40U] ; __u8 nguid[16U] ; __u8 eui64[8U] ; struct nvme_lbaf lbaf[16U] ; __u8 rsvd192[192U] ; __u8 vs[3712U] ; }; struct nvme_common_command { __u8 opcode ; __u8 flags ; __u16 command_id ; __le32 nsid ; __le32 cdw2[2U] ; __le64 metadata ; __le64 prp1 ; __le64 prp2 ; __le32 cdw10[6U] ; }; struct nvme_rw_command { __u8 opcode ; __u8 flags ; __u16 command_id ; __le32 nsid ; __u64 rsvd2 ; __le64 metadata ; __le64 prp1 ; __le64 prp2 ; __le64 slba ; __le16 length ; __le16 control ; __le32 dsmgmt ; __le32 reftag ; __le16 apptag ; __le16 appmask ; }; struct nvme_dsm_cmd { __u8 opcode ; __u8 flags ; __u16 command_id ; __le32 nsid ; __u64 rsvd2[2U] ; __le64 prp1 ; __le64 prp2 ; __le32 nr ; __le32 attributes ; __u32 rsvd12[4U] ; }; struct nvme_dsm_range { __le32 cattr ; __le32 nlb ; __le64 slba ; }; struct nvme_identify { __u8 opcode ; __u8 flags ; __u16 command_id ; __le32 nsid ; __u64 rsvd2[2U] ; __le64 prp1 ; __le64 prp2 ; __le32 cns ; __u32 rsvd11[5U] ; }; struct nvme_features { __u8 opcode ; __u8 flags ; __u16 command_id ; __le32 nsid ; __u64 rsvd2[2U] ; __le64 prp1 ; __le64 prp2 ; __le32 fid ; __le32 dword11 ; __u32 rsvd12[4U] ; }; struct nvme_create_cq { __u8 opcode ; __u8 flags ; __u16 command_id ; __u32 rsvd1[5U] ; __le64 prp1 ; __u64 rsvd8 ; __le16 cqid ; __le16 qsize ; __le16 cq_flags ; __le16 irq_vector ; __u32 rsvd12[4U] ; }; struct nvme_create_sq { __u8 opcode ; __u8 flags ; __u16 command_id ; __u32 rsvd1[5U] ; __le64 prp1 ; __u64 rsvd8 ; __le16 sqid ; __le16 qsize ; __le16 sq_flags ; __le16 cqid ; __u32 rsvd12[4U] ; }; struct nvme_delete_queue { __u8 opcode ; __u8 flags ; __u16 command_id ; __u32 rsvd1[9U] ; __le16 qid ; __u16 rsvd10 ; __u32 rsvd11[5U] ; }; struct nvme_abort_cmd { __u8 opcode ; __u8 flags ; __u16 command_id ; __u32 rsvd1[9U] ; __le16 sqid ; __u16 cid ; __u32 rsvd11[5U] ; }; struct nvme_download_firmware { __u8 opcode ; __u8 flags ; __u16 command_id ; __u32 rsvd1[5U] ; __le64 prp1 ; __le64 prp2 ; __le32 numd ; __le32 offset ; __u32 rsvd12[4U] ; }; struct nvme_format_cmd { __u8 opcode ; __u8 flags ; __u16 command_id ; __le32 nsid ; __u64 rsvd2[4U] ; __le32 cdw10 ; __u32 rsvd11[5U] ; }; union __anonunion____missing_field_name_215 { struct nvme_common_command common ; struct nvme_rw_command rw ; struct nvme_identify identify ; struct nvme_features features ; struct nvme_create_cq create_cq ; struct nvme_create_sq create_sq ; struct nvme_delete_queue delete_queue ; struct nvme_download_firmware dlfw ; struct nvme_format_cmd format ; struct nvme_dsm_cmd dsm ; struct nvme_abort_cmd abort ; }; struct nvme_command { union __anonunion____missing_field_name_215 __annonCompField73 ; }; struct nvme_completion { __le32 result ; __u32 rsvd ; __le16 sq_head ; __le16 sq_id ; __u16 command_id ; __le16 status ; }; struct nvme_user_io { __u8 opcode ; __u8 flags ; __u16 control ; __u16 nblocks ; __u16 rsvd ; __u64 metadata ; __u64 addr ; __u64 slba ; __u32 dsmgmt ; __u32 reftag ; __u16 apptag ; __u16 appmask ; }; struct nvme_passthru_cmd { __u8 opcode ; __u8 flags ; __u16 rsvd1 ; __u32 nsid ; __u32 cdw2 ; __u32 cdw3 ; __u64 metadata ; __u64 addr ; __u32 metadata_len ; __u32 data_len ; __u32 cdw10 ; __u32 cdw11 ; __u32 cdw12 ; __u32 cdw13 ; __u32 cdw14 ; __u32 cdw15 ; __u32 timeout_ms ; __u32 result ; }; struct disk_stats { unsigned long sectors[2U] ; unsigned long ios[2U] ; unsigned long merges[2U] ; unsigned long ticks[2U] ; unsigned long io_ticks ; unsigned long time_in_queue ; }; struct partition_meta_info { char uuid[37U] ; u8 volname[64U] ; }; struct hd_struct { sector_t start_sect ; sector_t nr_sects ; seqcount_t nr_sects_seq ; sector_t alignment_offset ; unsigned int discard_alignment ; struct device __dev ; struct kobject *holder_dir ; int policy ; int partno ; struct partition_meta_info *info ; int make_it_fail ; unsigned long stamp ; atomic_t in_flight[2U] ; struct disk_stats *dkstats ; atomic_t ref ; struct callback_head callback_head ; }; struct disk_part_tbl { struct callback_head callback_head ; int len ; struct hd_struct *last_lookup ; struct hd_struct *part[] ; }; struct disk_events; struct timer_rand_state; struct blk_integrity; struct gendisk { int major ; int first_minor ; int minors ; char disk_name[32U] ; char *(*devnode)(struct gendisk * , umode_t * ) ; unsigned int events ; unsigned int async_events ; struct disk_part_tbl *part_tbl ; struct hd_struct part0 ; struct block_device_operations const *fops ; struct request_queue *queue ; void *private_data ; int flags ; struct device *driverfs_dev ; struct kobject *slave_dir ; struct timer_rand_state *random ; atomic_t sync_io ; struct disk_events *ev ; struct blk_integrity *integrity ; int node_id ; }; struct fprop_local_percpu { struct percpu_counter events ; unsigned int period ; raw_spinlock_t lock ; }; enum writeback_sync_modes { WB_SYNC_NONE = 0, WB_SYNC_ALL = 1 } ; struct writeback_control { long nr_to_write ; long pages_skipped ; loff_t range_start ; loff_t range_end ; enum writeback_sync_modes sync_mode ; unsigned char for_kupdate : 1 ; unsigned char for_background : 1 ; unsigned char tagged_writepages : 1 ; unsigned char for_reclaim : 1 ; unsigned char range_cyclic : 1 ; unsigned char for_sync : 1 ; }; struct bdi_writeback; typedef int congested_fn(void * , int ); struct bdi_writeback { struct backing_dev_info *bdi ; unsigned long last_old_flush ; struct delayed_work dwork ; struct list_head b_dirty ; struct list_head b_io ; struct list_head b_more_io ; struct list_head b_dirty_time ; spinlock_t list_lock ; }; struct backing_dev_info { struct list_head bdi_list ; unsigned long ra_pages ; unsigned long state ; unsigned int capabilities ; congested_fn *congested_fn ; void *congested_data ; char *name ; struct percpu_counter bdi_stat[4U] ; unsigned long bw_time_stamp ; unsigned long dirtied_stamp ; unsigned long written_stamp ; unsigned long write_bandwidth ; unsigned long avg_write_bandwidth ; unsigned long dirty_ratelimit ; unsigned long balanced_dirty_ratelimit ; struct fprop_local_percpu completions ; int dirty_exceeded ; unsigned int min_ratio ; unsigned int max_ratio ; unsigned int max_prop_frac ; struct bdi_writeback wb ; spinlock_t wb_lock ; struct list_head work_list ; struct device *dev ; struct timer_list laptop_mode_wb_timer ; struct dentry *debug_dir ; struct dentry *debug_stats ; }; typedef void *mempool_alloc_t(gfp_t , void * ); typedef void mempool_free_t(void * , void * ); struct mempool_s { spinlock_t lock ; int min_nr ; int curr_nr ; void **elements ; void *pool_data ; mempool_alloc_t *alloc ; mempool_free_t *free ; wait_queue_head_t wait ; }; typedef struct mempool_s mempool_t; union __anonunion____missing_field_name_216 { struct list_head q_node ; struct kmem_cache *__rcu_icq_cache ; }; union __anonunion____missing_field_name_217 { struct hlist_node ioc_node ; struct callback_head __rcu_head ; }; struct io_cq { struct request_queue *q ; struct io_context *ioc ; union __anonunion____missing_field_name_216 __annonCompField74 ; union __anonunion____missing_field_name_217 __annonCompField75 ; unsigned int flags ; }; struct io_context { atomic_long_t refcount ; atomic_t active_ref ; atomic_t nr_tasks ; spinlock_t lock ; unsigned short ioprio ; int nr_batch_requests ; unsigned long last_waited ; struct radix_tree_root icq_tree ; struct io_cq *icq_hint ; struct hlist_head icq_list ; struct work_struct release_work ; }; struct bio_integrity_payload { struct bio *bip_bio ; struct bvec_iter bip_iter ; bio_end_io_t *bip_end_io ; unsigned short bip_slab ; unsigned short bip_vcnt ; unsigned short bip_max_vcnt ; unsigned short bip_flags ; struct work_struct bip_work ; struct bio_vec *bip_vec ; struct bio_vec bip_inline_vecs[0U] ; }; struct bio_list { struct bio *head ; struct bio *tail ; }; struct bio_set { struct kmem_cache *bio_slab ; unsigned int front_pad ; mempool_t *bio_pool ; mempool_t *bvec_pool ; mempool_t *bio_integrity_pool ; mempool_t *bvec_integrity_pool ; spinlock_t rescue_lock ; struct bio_list rescue_list ; struct work_struct rescue_work ; struct workqueue_struct *rescue_workqueue ; }; struct bsg_class_device { struct device *class_dev ; struct device *parent ; int minor ; struct request_queue *queue ; struct kref ref ; void (*release)(struct device * ) ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_long_t count ; unsigned long percpu_count_ptr ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_switch ; bool force_atomic ; struct callback_head rcu ; }; struct elevator_queue; struct blk_trace; struct sg_io_hdr; struct bsg_job; struct blkcg_gq; struct blk_flush_queue; typedef void rq_end_io_fn(struct request * , int ); struct request_list { struct request_queue *q ; struct blkcg_gq *blkg ; int count[2U] ; int starved[2U] ; mempool_t *rq_pool ; wait_queue_head_t wait[2U] ; unsigned int flags ; }; enum rq_cmd_type_bits { REQ_TYPE_FS = 1, REQ_TYPE_BLOCK_PC = 2, REQ_TYPE_SENSE = 3, REQ_TYPE_PM_SUSPEND = 4, REQ_TYPE_PM_RESUME = 5, REQ_TYPE_PM_SHUTDOWN = 6, REQ_TYPE_SPECIAL = 7, REQ_TYPE_ATA_TASKFILE = 8, REQ_TYPE_ATA_PC = 9 } ; union __anonunion____missing_field_name_218 { struct call_single_data csd ; unsigned long fifo_time ; }; struct blk_mq_ctx; union __anonunion____missing_field_name_219 { struct hlist_node hash ; struct list_head ipi_list ; }; union __anonunion____missing_field_name_220 { struct rb_node rb_node ; void *completion_data ; }; struct __anonstruct_elv_222 { struct io_cq *icq ; void *priv[2U] ; }; struct __anonstruct_flush_223 { unsigned int seq ; struct list_head list ; rq_end_io_fn *saved_end_io ; }; union __anonunion____missing_field_name_221 { struct __anonstruct_elv_222 elv ; struct __anonstruct_flush_223 flush ; }; struct request { struct list_head queuelist ; union __anonunion____missing_field_name_218 __annonCompField76 ; struct request_queue *q ; struct blk_mq_ctx *mq_ctx ; u64 cmd_flags ; enum rq_cmd_type_bits cmd_type ; unsigned long atomic_flags ; int cpu ; unsigned int __data_len ; sector_t __sector ; struct bio *bio ; struct bio *biotail ; union __anonunion____missing_field_name_219 __annonCompField77 ; union __anonunion____missing_field_name_220 __annonCompField78 ; union __anonunion____missing_field_name_221 __annonCompField79 ; struct gendisk *rq_disk ; struct hd_struct *part ; unsigned long start_time ; struct request_list *rl ; unsigned long long start_time_ns ; unsigned long long io_start_time_ns ; unsigned short nr_phys_segments ; unsigned short nr_integrity_segments ; unsigned short ioprio ; void *special ; int tag ; int errors ; unsigned char __cmd[16U] ; unsigned char *cmd ; unsigned short cmd_len ; unsigned int extra_len ; unsigned int sense_len ; unsigned int resid_len ; void *sense ; unsigned long deadline ; struct list_head timeout_list ; unsigned int timeout ; int retries ; rq_end_io_fn *end_io ; void *end_io_data ; struct request *next_rq ; }; struct elevator_type; typedef int elevator_merge_fn(struct request_queue * , struct request ** , struct bio * ); typedef void elevator_merge_req_fn(struct request_queue * , struct request * , struct request * ); typedef void elevator_merged_fn(struct request_queue * , struct request * , int ); typedef int elevator_allow_merge_fn(struct request_queue * , struct request * , struct bio * ); typedef void elevator_bio_merged_fn(struct request_queue * , struct request * , struct bio * ); typedef int elevator_dispatch_fn(struct request_queue * , int ); typedef void elevator_add_req_fn(struct request_queue * , struct request * ); typedef struct request *elevator_request_list_fn(struct request_queue * , struct request * ); typedef void elevator_completed_req_fn(struct request_queue * , struct request * ); typedef int elevator_may_queue_fn(struct request_queue * , int ); typedef void elevator_init_icq_fn(struct io_cq * ); typedef void elevator_exit_icq_fn(struct io_cq * ); typedef int elevator_set_req_fn(struct request_queue * , struct request * , struct bio * , gfp_t ); typedef void elevator_put_req_fn(struct request * ); typedef void elevator_activate_req_fn(struct request_queue * , struct request * ); typedef void elevator_deactivate_req_fn(struct request_queue * , struct request * ); typedef int elevator_init_fn(struct request_queue * , struct elevator_type * ); typedef void elevator_exit_fn(struct elevator_queue * ); struct elevator_ops { elevator_merge_fn *elevator_merge_fn ; elevator_merged_fn *elevator_merged_fn ; elevator_merge_req_fn *elevator_merge_req_fn ; elevator_allow_merge_fn *elevator_allow_merge_fn ; elevator_bio_merged_fn *elevator_bio_merged_fn ; elevator_dispatch_fn *elevator_dispatch_fn ; elevator_add_req_fn *elevator_add_req_fn ; elevator_activate_req_fn *elevator_activate_req_fn ; elevator_deactivate_req_fn *elevator_deactivate_req_fn ; elevator_completed_req_fn *elevator_completed_req_fn ; elevator_request_list_fn *elevator_former_req_fn ; elevator_request_list_fn *elevator_latter_req_fn ; elevator_init_icq_fn *elevator_init_icq_fn ; elevator_exit_icq_fn *elevator_exit_icq_fn ; elevator_set_req_fn *elevator_set_req_fn ; elevator_put_req_fn *elevator_put_req_fn ; elevator_may_queue_fn *elevator_may_queue_fn ; elevator_init_fn *elevator_init_fn ; elevator_exit_fn *elevator_exit_fn ; }; struct elv_fs_entry { struct attribute attr ; ssize_t (*show)(struct elevator_queue * , char * ) ; ssize_t (*store)(struct elevator_queue * , char const * , size_t ) ; }; struct elevator_type { struct kmem_cache *icq_cache ; struct elevator_ops ops ; size_t icq_size ; size_t icq_align ; struct elv_fs_entry *elevator_attrs ; char elevator_name[16U] ; struct module *elevator_owner ; char icq_cache_name[21U] ; struct list_head list ; }; struct elevator_queue { struct elevator_type *type ; void *elevator_data ; struct kobject kobj ; struct mutex sysfs_lock ; unsigned char registered : 1 ; struct hlist_head hash[64U] ; }; typedef void request_fn_proc(struct request_queue * ); typedef void make_request_fn(struct request_queue * , struct bio * ); typedef int prep_rq_fn(struct request_queue * , struct request * ); typedef void unprep_rq_fn(struct request_queue * , struct request * ); struct bvec_merge_data { struct block_device *bi_bdev ; sector_t bi_sector ; unsigned int bi_size ; unsigned long bi_rw ; }; typedef int merge_bvec_fn(struct request_queue * , struct bvec_merge_data * , struct bio_vec * ); typedef void softirq_done_fn(struct request * ); typedef int dma_drain_needed_fn(struct request * ); typedef int lld_busy_fn(struct request_queue * ); typedef int bsg_job_fn(struct bsg_job * ); enum blk_eh_timer_return { BLK_EH_NOT_HANDLED = 0, BLK_EH_HANDLED = 1, BLK_EH_RESET_TIMER = 2 } ; typedef enum blk_eh_timer_return rq_timed_out_fn(struct request * ); struct blk_queue_tag { struct request **tag_index ; unsigned long *tag_map ; int busy ; int max_depth ; int real_max_depth ; atomic_t refcnt ; int alloc_policy ; int next_tag ; }; struct queue_limits { unsigned long bounce_pfn ; unsigned long seg_boundary_mask ; unsigned int max_hw_sectors ; unsigned int chunk_sectors ; unsigned int max_sectors ; unsigned int max_segment_size ; unsigned int physical_block_size ; unsigned int alignment_offset ; unsigned int io_min ; unsigned int io_opt ; unsigned int max_discard_sectors ; unsigned int max_write_same_sectors ; unsigned int discard_granularity ; unsigned int discard_alignment ; unsigned short logical_block_size ; unsigned short max_segments ; unsigned short max_integrity_segments ; unsigned char misaligned ; unsigned char discard_misaligned ; unsigned char cluster ; unsigned char discard_zeroes_data ; unsigned char raid_partial_stripes_expensive ; }; struct blk_mq_ops; struct blk_mq_hw_ctx; struct throtl_data; struct blk_mq_tag_set; struct request_queue { struct list_head queue_head ; struct request *last_merge ; struct elevator_queue *elevator ; int nr_rqs[2U] ; int nr_rqs_elvpriv ; struct request_list root_rl ; request_fn_proc *request_fn ; make_request_fn *make_request_fn ; prep_rq_fn *prep_rq_fn ; unprep_rq_fn *unprep_rq_fn ; merge_bvec_fn *merge_bvec_fn ; softirq_done_fn *softirq_done_fn ; rq_timed_out_fn *rq_timed_out_fn ; dma_drain_needed_fn *dma_drain_needed ; lld_busy_fn *lld_busy_fn ; struct blk_mq_ops *mq_ops ; unsigned int *mq_map ; struct blk_mq_ctx *queue_ctx ; unsigned int nr_queues ; struct blk_mq_hw_ctx **queue_hw_ctx ; unsigned int nr_hw_queues ; sector_t end_sector ; struct request *boundary_rq ; struct delayed_work delay_work ; struct backing_dev_info backing_dev_info ; void *queuedata ; unsigned long queue_flags ; int id ; gfp_t bounce_gfp ; spinlock_t __queue_lock ; spinlock_t *queue_lock ; struct kobject kobj ; struct kobject mq_kobj ; struct device *dev ; int rpm_status ; unsigned int nr_pending ; unsigned long nr_requests ; unsigned int nr_congestion_on ; unsigned int nr_congestion_off ; unsigned int nr_batching ; unsigned int dma_drain_size ; void *dma_drain_buffer ; unsigned int dma_pad_mask ; unsigned int dma_alignment ; struct blk_queue_tag *queue_tags ; struct list_head tag_busy_list ; unsigned int nr_sorted ; unsigned int in_flight[2U] ; unsigned int request_fn_active ; unsigned int rq_timeout ; struct timer_list timeout ; struct list_head timeout_list ; struct list_head icq_list ; unsigned long blkcg_pols[1U] ; struct blkcg_gq *root_blkg ; struct list_head blkg_list ; struct queue_limits limits ; unsigned int sg_timeout ; unsigned int sg_reserved_size ; int node ; struct blk_trace *blk_trace ; unsigned int flush_flags ; unsigned char flush_not_queueable : 1 ; struct blk_flush_queue *fq ; struct list_head requeue_list ; spinlock_t requeue_lock ; struct work_struct requeue_work ; struct mutex sysfs_lock ; int bypass_depth ; int mq_freeze_depth ; bsg_job_fn *bsg_job_fn ; int bsg_job_size ; struct bsg_class_device bsg_dev ; struct throtl_data *td ; struct callback_head callback_head ; wait_queue_head_t mq_freeze_wq ; struct percpu_ref mq_usage_counter ; struct list_head all_q_node ; struct blk_mq_tag_set *tag_set ; struct list_head tag_set_list ; }; struct blk_plug { struct list_head list ; struct list_head mq_list ; struct list_head cb_list ; }; struct blk_integrity_iter { void *prot_buf ; void *data_buf ; sector_t seed ; unsigned int data_size ; unsigned short interval ; char const *disk_name ; }; typedef int integrity_processing_fn(struct blk_integrity_iter * ); struct blk_integrity { integrity_processing_fn *generate_fn ; integrity_processing_fn *verify_fn ; unsigned short flags ; unsigned short tuple_size ; unsigned short interval ; unsigned short tag_size ; char const *name ; struct kobject kobj ; }; struct block_device_operations { int (*open)(struct block_device * , fmode_t ) ; void (*release)(struct gendisk * , fmode_t ) ; int (*rw_page)(struct block_device * , sector_t , struct page * , int ) ; int (*ioctl)(struct block_device * , fmode_t , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct block_device * , fmode_t , unsigned int , unsigned long ) ; long (*direct_access)(struct block_device * , sector_t , void ** , unsigned long * , long ) ; unsigned int (*check_events)(struct gendisk * , unsigned int ) ; int (*media_changed)(struct gendisk * ) ; void (*unlock_native_capacity)(struct gendisk * ) ; int (*revalidate_disk)(struct gendisk * ) ; int (*getgeo)(struct block_device * , struct hd_geometry * ) ; void (*swap_slot_free_notify)(struct block_device * , unsigned long ) ; struct module *owner ; }; struct blk_mq_tags; struct blk_mq_cpu_notifier { struct list_head list ; void *data ; int (*notify)(void * , unsigned long , unsigned int ) ; }; struct blk_align_bitmap; struct blk_mq_ctxmap { unsigned int map_size ; unsigned int bits_per_word ; struct blk_align_bitmap *map ; }; struct __anonstruct____missing_field_name_225 { spinlock_t lock ; struct list_head dispatch ; }; struct blk_mq_hw_ctx { struct __anonstruct____missing_field_name_225 __annonCompField80 ; unsigned long state ; struct delayed_work run_work ; struct delayed_work delay_work ; cpumask_var_t cpumask ; int next_cpu ; int next_cpu_batch ; unsigned long flags ; struct request_queue *queue ; struct blk_flush_queue *fq ; void *driver_data ; struct blk_mq_ctxmap ctx_map ; unsigned int nr_ctx ; struct blk_mq_ctx **ctxs ; atomic_t wait_index ; struct blk_mq_tags *tags ; unsigned long queued ; unsigned long run ; unsigned long dispatched[10U] ; unsigned int numa_node ; unsigned int queue_num ; atomic_t nr_active ; struct blk_mq_cpu_notifier cpu_notifier ; struct kobject kobj ; }; struct blk_mq_tag_set { struct blk_mq_ops *ops ; unsigned int nr_hw_queues ; unsigned int queue_depth ; unsigned int reserved_tags ; unsigned int cmd_size ; int numa_node ; unsigned int timeout ; unsigned int flags ; void *driver_data ; struct blk_mq_tags **tags ; struct mutex tag_list_lock ; struct list_head tag_list ; }; struct blk_mq_queue_data { struct request *rq ; struct list_head *list ; bool last ; }; typedef int queue_rq_fn(struct blk_mq_hw_ctx * , struct blk_mq_queue_data const * ); typedef struct blk_mq_hw_ctx *map_queue_fn(struct request_queue * , int const ); typedef enum blk_eh_timer_return timeout_fn(struct request * , bool ); typedef int init_hctx_fn(struct blk_mq_hw_ctx * , void * , unsigned int ); typedef void exit_hctx_fn(struct blk_mq_hw_ctx * , unsigned int ); typedef int init_request_fn(void * , struct request * , unsigned int , unsigned int , unsigned int ); typedef void exit_request_fn(void * , struct request * , unsigned int , unsigned int ); typedef void busy_iter_fn(struct blk_mq_hw_ctx * , struct request * , void * , bool ); struct blk_mq_ops { queue_rq_fn *queue_rq ; map_queue_fn *map_queue ; timeout_fn *timeout ; softirq_done_fn *complete ; init_hctx_fn *init_hctx ; exit_hctx_fn *exit_hctx ; init_request_fn *init_request ; exit_request_fn *exit_request ; }; struct nvme_bar { __u64 cap ; __u32 vs ; __u32 intms ; __u32 intmc ; __u32 cc ; __u32 rsvd1 ; __u32 csts ; __u32 rsvd2 ; __u32 aqa ; __u64 asq ; __u64 acq ; }; struct nvme_queue; struct nvme_dev { struct list_head node ; struct nvme_queue **queues ; struct request_queue *admin_q ; struct blk_mq_tag_set tagset ; struct blk_mq_tag_set admin_tagset ; u32 *dbs ; struct pci_dev *pci_dev ; struct dma_pool *prp_page_pool ; struct dma_pool *prp_small_pool ; int instance ; unsigned int queue_count ; unsigned int online_queues ; unsigned int max_qid ; int q_depth ; u32 db_stride ; u32 ctrl_config ; struct msix_entry *entry ; struct nvme_bar *bar ; struct list_head namespaces ; struct kref kref ; struct device *device ; void (*reset_workfn)(struct work_struct * ) ; struct work_struct reset_work ; struct work_struct probe_work ; char name[12U] ; char serial[20U] ; char model[40U] ; char firmware_rev[8U] ; u32 max_hw_sectors ; u32 stripe_size ; u32 page_size ; u16 oncs ; u16 abort_limit ; u8 event_limit ; u8 vwc ; }; struct nvme_ns { struct list_head list ; struct nvme_dev *dev ; struct request_queue *queue ; struct gendisk *disk ; unsigned int ns_id ; int lba_shift ; int ms ; int pi_type ; u64 mode_select_num_blocks ; u32 mode_select_block_len ; }; struct nvme_iod { unsigned long private ; int npages ; int offset ; int nents ; int length ; dma_addr_t first_dma ; struct scatterlist meta_sg[1U] ; struct scatterlist sg[0U] ; }; struct hd_geometry { unsigned char heads ; unsigned char sectors ; unsigned short cylinders ; unsigned long start ; }; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; struct kthread_worker *worker ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_231 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_231 __annonCompField81 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct proc_ns_operations; struct ns_common { atomic_long_t stashed ; struct proc_ns_operations const *ops ; unsigned int inum ; }; struct pidmap { atomic_t nr_free ; void *page ; }; struct fs_pin; struct pid_namespace { struct kref kref ; struct pidmap pidmap[128U] ; struct callback_head rcu ; int last_pid ; unsigned int nr_hashed ; struct task_struct *child_reaper ; struct kmem_cache *pid_cachep ; unsigned int level ; struct pid_namespace *parent ; struct vfsmount *proc_mnt ; struct dentry *proc_self ; struct dentry *proc_thread_self ; struct fs_pin *bacct ; struct user_namespace *user_ns ; struct work_struct proc_work ; kgid_t pid_gid ; int hide_pid ; int reboot ; struct ns_common ns ; }; struct t10_pi_tuple { __be16 guard_tag ; __be16 app_tag ; __be32 ref_tag ; }; struct sg_io_hdr { int interface_id ; int dxfer_direction ; unsigned char cmd_len ; unsigned char mx_sb_len ; unsigned short iovec_count ; unsigned int dxfer_len ; void *dxferp ; unsigned char *cmdp ; void *sbp ; unsigned int timeout ; unsigned int flags ; int pack_id ; void *usr_ptr ; unsigned char status ; unsigned char masked_status ; unsigned char msg_status ; unsigned char sb_len_wr ; unsigned short host_status ; unsigned short driver_status ; int resid ; unsigned int duration ; unsigned int info ; }; struct async_cmd_info { struct kthread_work work ; struct kthread_worker *worker ; struct request *req ; u32 result ; int status ; void *ctx ; }; struct nvme_queue { struct device *q_dmadev ; struct nvme_dev *dev ; char irqname[24U] ; spinlock_t q_lock ; struct nvme_command *sq_cmds ; struct nvme_completion volatile *cqes ; dma_addr_t sq_dma_addr ; dma_addr_t cq_dma_addr ; u32 *q_db ; u16 q_depth ; s16 cq_vector ; u16 sq_head ; u16 sq_tail ; u16 cq_head ; u16 qid ; u8 cq_phase ; u8 cqe_seen ; struct async_cmd_info cmdinfo ; struct blk_mq_hw_ctx *hctx ; }; typedef void (*nvme_completion_fn)(struct nvme_queue * , void * , struct nvme_completion * ); struct nvme_cmd_info { void (*fn)(struct nvme_queue * , void * , struct nvme_completion * ) ; void *ctx ; int aborted ; struct nvme_queue *nvmeq ; struct nvme_iod iod[0U] ; }; struct sync_cmd_info { struct task_struct *task ; u32 result ; int status ; }; struct nvme_delq_ctx { struct task_struct *waiter ; struct kthread_worker *worker ; atomic_t refcount ; }; struct ldv_struct_file_operations_instance_0 { struct file_operations *arg0 ; int signal_pending ; }; struct ldv_struct_free_irq_6 { int arg0 ; int signal_pending ; }; struct ldv_struct_interrupt_instance_1 { int arg0 ; enum irqreturn (*arg1)(int , void * ) ; enum irqreturn (*arg2)(int , void * ) ; void *arg3 ; int signal_pending ; }; struct ldv_struct_pci_instance_3 { struct pci_driver *arg0 ; int signal_pending ; }; struct ldv_struct_platform_instance_5 { int signal_pending ; }; typedef int ldv_func_ret_type___1; typedef int ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; typedef int ldv_func_ret_type___4; typedef int ldv_func_ret_type___5; typedef __u64 __be64; enum hrtimer_restart; struct kvec; struct nvme_smart_log { __u8 critical_warning ; __u8 temperature[2U] ; __u8 avail_spare ; __u8 spare_thresh ; __u8 percent_used ; __u8 rsvd6[26U] ; __u8 data_units_read[16U] ; __u8 data_units_written[16U] ; __u8 host_reads[16U] ; __u8 host_writes[16U] ; __u8 ctrl_busy_time[16U] ; __u8 power_cycles[16U] ; __u8 power_on_hours[16U] ; __u8 unsafe_shutdowns[16U] ; __u8 media_errors[16U] ; __u8 num_err_log_entries[16U] ; __le32 warning_temp_time ; __le32 critical_comp_time ; __le16 temp_sensor[8U] ; __u8 rsvd216[296U] ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct kvec { void *iov_base ; size_t iov_len ; }; union __anonunion____missing_field_name_226 { struct iovec const *iov ; struct kvec const *kvec ; struct bio_vec const *bvec ; }; struct iov_iter { int type ; size_t iov_offset ; size_t count ; union __anonunion____missing_field_name_226 __annonCompField81 ; unsigned long nr_segs ; }; typedef s32 compat_time_t; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_timespec { compat_time_t tv_sec ; s32 tv_nsec ; }; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; struct sg_iovec { void *iov_base ; size_t iov_len ; }; struct nvme_trans_io_cdb { u8 fua ; u8 prot_info ; u64 lba ; u32 xfer_len ; }; struct scsi_unmap_blk_desc { __be64 slba ; __be32 nlb ; u32 resv ; }; struct scsi_unmap_parm_list { __be16 unmap_data_len ; __be16 unmap_blk_desc_data_len ; u32 resv ; struct scsi_unmap_blk_desc desc[0U] ; }; struct device_private { void *driver_data ; }; enum hrtimer_restart; struct dma_chan; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool (*can_dma)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool idling ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; bool cur_msg_mapped ; struct completion xfer_completion ; size_t max_dma_len ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; struct dma_chan *dma_tx ; struct dma_chan *dma_rx ; void *dummy_rx ; void *dummy_tx ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; struct sg_table tx_sg ; struct sg_table rx_sg ; unsigned char cs_change : 1 ; unsigned char tx_nbits : 3 ; unsigned char rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned char is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; struct notifier_block; enum hrtimer_restart; struct ratelimit_state { raw_spinlock_t lock ; int interval ; int burst ; int printed ; int missed ; unsigned long begin ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; typedef unsigned int mmc_pm_flag_t; struct mmc_card; struct sdio_func; typedef void sdio_irq_handler_t(struct sdio_func * ); struct sdio_func_tuple { struct sdio_func_tuple *next ; unsigned char code ; unsigned char size ; unsigned char data[0U] ; }; struct sdio_func { struct mmc_card *card ; struct device dev ; sdio_irq_handler_t *irq_handler ; unsigned int num ; unsigned char class ; unsigned short vendor ; unsigned short device ; unsigned int max_blksize ; unsigned int cur_blksize ; unsigned int enable_timeout ; unsigned int state ; u8 tmpbuf[4U] ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; }; enum led_brightness { LED_OFF = 0, LED_HALF = 127, LED_FULL = 255 } ; struct led_trigger; struct led_classdev { char const *name ; enum led_brightness brightness ; enum led_brightness max_brightness ; int flags ; void (*brightness_set)(struct led_classdev * , enum led_brightness ) ; int (*brightness_set_sync)(struct led_classdev * , enum led_brightness ) ; enum led_brightness (*brightness_get)(struct led_classdev * ) ; int (*blink_set)(struct led_classdev * , unsigned long * , unsigned long * ) ; struct device *dev ; struct attribute_group const **groups ; struct list_head node ; char const *default_trigger ; unsigned long blink_delay_on ; unsigned long blink_delay_off ; struct timer_list blink_timer ; int blink_brightness ; void (*flash_resume)(struct led_classdev * ) ; struct work_struct set_brightness_work ; int delayed_set_value ; struct rw_semaphore trigger_lock ; struct led_trigger *trigger ; struct list_head trig_list ; void *trigger_data ; bool activated ; struct mutex led_access ; }; struct led_trigger { char const *name ; void (*activate)(struct led_classdev * ) ; void (*deactivate)(struct led_classdev * ) ; rwlock_t leddev_list_lock ; struct list_head led_cdevs ; struct list_head next_trig ; }; struct fault_attr { unsigned long probability ; unsigned long interval ; atomic_t times ; atomic_t space ; unsigned long verbose ; u32 task_filter ; unsigned long stacktrace_depth ; unsigned long require_start ; unsigned long require_end ; unsigned long reject_start ; unsigned long reject_end ; unsigned long count ; struct ratelimit_state ratelimit_state ; struct dentry *dname ; }; struct mmc_data; struct mmc_request; struct mmc_command { u32 opcode ; u32 arg ; u32 resp[4U] ; unsigned int flags ; unsigned int retries ; unsigned int error ; unsigned int busy_timeout ; bool sanitize_busy ; struct mmc_data *data ; struct mmc_request *mrq ; }; struct mmc_data { unsigned int timeout_ns ; unsigned int timeout_clks ; unsigned int blksz ; unsigned int blocks ; unsigned int error ; unsigned int flags ; unsigned int bytes_xfered ; struct mmc_command *stop ; struct mmc_request *mrq ; unsigned int sg_len ; struct scatterlist *sg ; s32 host_cookie ; }; struct mmc_host; struct mmc_request { struct mmc_command *sbc ; struct mmc_command *cmd ; struct mmc_data *data ; struct mmc_command *stop ; struct completion completion ; void (*done)(struct mmc_request * ) ; struct mmc_host *host ; }; struct mmc_async_req; struct mmc_cid { unsigned int manfid ; char prod_name[8U] ; unsigned char prv ; unsigned int serial ; unsigned short oemid ; unsigned short year ; unsigned char hwrev ; unsigned char fwrev ; unsigned char month ; }; struct mmc_csd { unsigned char structure ; unsigned char mmca_vsn ; unsigned short cmdclass ; unsigned short tacc_clks ; unsigned int tacc_ns ; unsigned int c_size ; unsigned int r2w_factor ; unsigned int max_dtr ; unsigned int erase_size ; unsigned int read_blkbits ; unsigned int write_blkbits ; unsigned int capacity ; unsigned char read_partial : 1 ; unsigned char read_misalign : 1 ; unsigned char write_partial : 1 ; unsigned char write_misalign : 1 ; unsigned char dsr_imp : 1 ; }; struct mmc_ext_csd { u8 rev ; u8 erase_group_def ; u8 sec_feature_support ; u8 rel_sectors ; u8 rel_param ; u8 part_config ; u8 cache_ctrl ; u8 rst_n_function ; u8 max_packed_writes ; u8 max_packed_reads ; u8 packed_event_en ; unsigned int part_time ; unsigned int sa_timeout ; unsigned int generic_cmd6_time ; unsigned int power_off_longtime ; u8 power_off_notification ; unsigned int hs_max_dtr ; unsigned int hs200_max_dtr ; unsigned int sectors ; unsigned int hc_erase_size ; unsigned int hc_erase_timeout ; unsigned int sec_trim_mult ; unsigned int sec_erase_mult ; unsigned int trim_timeout ; bool partition_setting_completed ; unsigned long long enhanced_area_offset ; unsigned int enhanced_area_size ; unsigned int cache_size ; bool hpi_en ; bool hpi ; unsigned int hpi_cmd ; bool bkops ; bool man_bkops_en ; unsigned int data_sector_size ; unsigned int data_tag_unit_size ; unsigned int boot_ro_lock ; bool boot_ro_lockable ; bool ffu_capable ; u8 fwrev[8U] ; u8 raw_exception_status ; u8 raw_partition_support ; u8 raw_rpmb_size_mult ; u8 raw_erased_mem_count ; u8 raw_ext_csd_structure ; u8 raw_card_type ; u8 out_of_int_time ; u8 raw_pwr_cl_52_195 ; u8 raw_pwr_cl_26_195 ; u8 raw_pwr_cl_52_360 ; u8 raw_pwr_cl_26_360 ; u8 raw_s_a_timeout ; u8 raw_hc_erase_gap_size ; u8 raw_erase_timeout_mult ; u8 raw_hc_erase_grp_size ; u8 raw_sec_trim_mult ; u8 raw_sec_erase_mult ; u8 raw_sec_feature_support ; u8 raw_trim_mult ; u8 raw_pwr_cl_200_195 ; u8 raw_pwr_cl_200_360 ; u8 raw_pwr_cl_ddr_52_195 ; u8 raw_pwr_cl_ddr_52_360 ; u8 raw_pwr_cl_ddr_200_360 ; u8 raw_bkops_status ; u8 raw_sectors[4U] ; unsigned int feature_support ; }; struct sd_scr { unsigned char sda_vsn ; unsigned char sda_spec3 ; unsigned char bus_widths ; unsigned char cmds ; }; struct sd_ssr { unsigned int au ; unsigned int erase_timeout ; unsigned int erase_offset ; }; struct sd_switch_caps { unsigned int hs_max_dtr ; unsigned int uhs_max_dtr ; unsigned int sd3_bus_mode ; unsigned int sd3_drv_type ; unsigned int sd3_curr_limit ; }; struct sdio_cccr { unsigned int sdio_vsn ; unsigned int sd_vsn ; unsigned char multi_block : 1 ; unsigned char low_speed : 1 ; unsigned char wide_bus : 1 ; unsigned char high_power : 1 ; unsigned char high_speed : 1 ; unsigned char disable_cd : 1 ; }; struct sdio_cis { unsigned short vendor ; unsigned short device ; unsigned short blksize ; unsigned int max_dtr ; }; struct mmc_ios; struct mmc_part { unsigned int size ; unsigned int part_cfg ; char name[20U] ; bool force_ro ; unsigned int area_type ; }; struct mmc_card { struct mmc_host *host ; struct device dev ; u32 ocr ; unsigned int rca ; unsigned int type ; unsigned int state ; unsigned int quirks ; unsigned int erase_size ; unsigned int erase_shift ; unsigned int pref_erase ; u8 erased_byte ; u32 raw_cid[4U] ; u32 raw_csd[4U] ; u32 raw_scr[2U] ; struct mmc_cid cid ; struct mmc_csd csd ; struct mmc_ext_csd ext_csd ; struct sd_scr scr ; struct sd_ssr ssr ; struct sd_switch_caps sw_caps ; unsigned int sdio_funcs ; struct sdio_cccr cccr ; struct sdio_cis cis ; struct sdio_func *sdio_func[7U] ; struct sdio_func *sdio_single_irq ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; unsigned int sd_bus_speed ; unsigned int mmc_avail_type ; struct dentry *debugfs_root ; struct mmc_part part[7U] ; unsigned int nr_parts ; }; struct mmc_ios { unsigned int clock ; unsigned short vdd ; unsigned char bus_mode ; unsigned char chip_select ; unsigned char power_mode ; unsigned char bus_width ; unsigned char timing ; unsigned char signal_voltage ; unsigned char drv_type ; }; struct mmc_host_ops { int (*enable)(struct mmc_host * ) ; int (*disable)(struct mmc_host * ) ; void (*post_req)(struct mmc_host * , struct mmc_request * , int ) ; void (*pre_req)(struct mmc_host * , struct mmc_request * , bool ) ; void (*request)(struct mmc_host * , struct mmc_request * ) ; void (*set_ios)(struct mmc_host * , struct mmc_ios * ) ; int (*get_ro)(struct mmc_host * ) ; int (*get_cd)(struct mmc_host * ) ; void (*enable_sdio_irq)(struct mmc_host * , int ) ; void (*init_card)(struct mmc_host * , struct mmc_card * ) ; int (*start_signal_voltage_switch)(struct mmc_host * , struct mmc_ios * ) ; int (*card_busy)(struct mmc_host * ) ; int (*execute_tuning)(struct mmc_host * , u32 ) ; int (*prepare_hs400_tuning)(struct mmc_host * , struct mmc_ios * ) ; int (*select_drive_strength)(unsigned int , int , int ) ; void (*hw_reset)(struct mmc_host * ) ; void (*card_event)(struct mmc_host * ) ; int (*multi_io_quirk)(struct mmc_card * , unsigned int , int ) ; }; struct mmc_async_req { struct mmc_request *mrq ; int (*err_check)(struct mmc_card * , struct mmc_async_req * ) ; }; struct mmc_slot { int cd_irq ; void *handler_priv ; }; struct mmc_context_info { bool is_done_rcv ; bool is_new_req ; bool is_waiting_last_req ; wait_queue_head_t wait ; spinlock_t lock ; }; struct regulator; struct mmc_pwrseq; struct mmc_supply { struct regulator *vmmc ; struct regulator *vqmmc ; }; struct mmc_bus_ops; struct mmc_host { struct device *parent ; struct device class_dev ; int index ; struct mmc_host_ops const *ops ; struct mmc_pwrseq *pwrseq ; unsigned int f_min ; unsigned int f_max ; unsigned int f_init ; u32 ocr_avail ; u32 ocr_avail_sdio ; u32 ocr_avail_sd ; u32 ocr_avail_mmc ; struct notifier_block pm_notify ; u32 max_current_330 ; u32 max_current_300 ; u32 max_current_180 ; u32 caps ; u32 caps2 ; mmc_pm_flag_t pm_caps ; int clk_requests ; unsigned int clk_delay ; bool clk_gated ; struct delayed_work clk_gate_work ; unsigned int clk_old ; spinlock_t clk_lock ; struct mutex clk_gate_mutex ; struct device_attribute clkgate_delay_attr ; unsigned long clkgate_delay ; unsigned int max_seg_size ; unsigned short max_segs ; unsigned short unused ; unsigned int max_req_size ; unsigned int max_blk_size ; unsigned int max_blk_count ; unsigned int max_busy_timeout ; spinlock_t lock ; struct mmc_ios ios ; unsigned char use_spi_crc : 1 ; unsigned char claimed : 1 ; unsigned char bus_dead : 1 ; unsigned char removed : 1 ; int rescan_disable ; int rescan_entered ; bool trigger_card_event ; struct mmc_card *card ; wait_queue_head_t wq ; struct task_struct *claimer ; int claim_cnt ; struct delayed_work detect ; int detect_change ; struct mmc_slot slot ; struct mmc_bus_ops const *bus_ops ; unsigned int bus_refs ; unsigned int sdio_irqs ; struct task_struct *sdio_irq_thread ; bool sdio_irq_pending ; atomic_t sdio_irq_thread_abort ; mmc_pm_flag_t pm_flags ; struct led_trigger *led ; bool regulator_enabled ; struct mmc_supply supply ; struct dentry *debugfs_root ; struct mmc_async_req *areq ; struct mmc_context_info context_info ; struct fault_attr fail_mmc_request ; unsigned int actual_clock ; unsigned int slotno ; int dsr_req ; u32 dsr ; unsigned long private[0U] ; }; typedef int ldv_map; struct usb_device; struct urb; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; typedef _Bool ldv_set; long ldv__builtin_expect(long exp , long c ) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_irq_check_alloc_nonatomic(void) ; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) ; void ldv_linux_arch_io_check_final_state(void) ; void ldv_linux_block_genhd_check_final_state(void) ; void ldv_linux_block_queue_check_final_state(void) ; void ldv_linux_block_request_check_final_state(void) ; void *ldv_linux_drivers_base_class_create_class(void) ; int ldv_linux_drivers_base_class_register_class(void) ; void ldv_linux_drivers_base_class_destroy_class(struct class *cls ) ; void ldv_linux_drivers_base_class_check_final_state(void) ; void ldv_linux_fs_char_dev_check_final_state(void) ; void ldv_linux_fs_sysfs_check_final_state(void) ; void ldv_linux_kernel_locking_rwlock_check_final_state(void) ; void ldv_linux_kernel_module_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_check_final_state(void) ; void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) ; void ldv_linux_kernel_rcu_srcu_check_final_state(void) ; void ldv_linux_lib_find_bit_initialize(void) ; void ldv_linux_lib_idr_check_final_state(void) ; void ldv_linux_mmc_sdio_func_check_final_state(void) ; void ldv_linux_net_register_reset_error_counter(void) ; void ldv_linux_net_register_check_return_value_probe(int retval ) ; void ldv_linux_net_rtnetlink_check_final_state(void) ; void ldv_linux_net_sock_check_final_state(void) ; void ldv_linux_usb_coherent_check_final_state(void) ; void *ldv_linux_usb_gadget_create_class(void) ; int ldv_linux_usb_gadget_register_class(void) ; void ldv_linux_usb_gadget_destroy_class(struct class *cls ) ; void ldv_linux_usb_gadget_check_final_state(void) ; void ldv_linux_usb_register_reset_error_counter(void) ; void ldv_linux_usb_register_check_return_value_probe(int retval ) ; void ldv_linux_usb_urb_check_final_state(void) ; void ldv_check_alloc_nonatomic(void) { { { ldv_linux_alloc_irq_check_alloc_nonatomic(); ldv_linux_alloc_usb_lock_check_alloc_nonatomic(); } return; } } void ldv_check_alloc_flags(gfp_t flags ) { { { ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return; } } void ldv_check_for_read_section(void) { { { ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_check_for_read_section(); ldv_linux_kernel_rcu_srcu_check_for_read_section(); } return; } } void *ldv_create_class(void) { void *res1 ; void *tmp ; void *res2 ; void *tmp___0 ; { { tmp = ldv_linux_drivers_base_class_create_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_create_class(); res2 = tmp___0; ldv_assume((unsigned long )res1 == (unsigned long )res2); } return (res1); } } int ldv_register_class(void) { int res1 ; int tmp ; int res2 ; int tmp___0 ; { { tmp = ldv_linux_drivers_base_class_register_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_register_class(); res2 = tmp___0; ldv_assume(res1 == res2); } return (res1); } } void *ldv_err_ptr(long error ) ; long ldv_ptr_err(void const *ptr ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) ; int ldv_linux_usb_dev_atomic_sub_and_test(int i , atomic_t *v ) ; void ldv_linux_usb_dev_atomic_inc(atomic_t *v ) ; void ldv_linux_usb_dev_atomic_dec(atomic_t *v ) ; int ldv_linux_usb_dev_atomic_add_return(int i , atomic_t *v ) ; void ldv_linux_block_genhd_add_disk(void) ; void ldv_linux_block_genhd_del_gendisk(void) ; void ldv_linux_block_genhd_put_disk(struct gendisk *disk ) ; int ldv_undef_int(void) ; void *ldv_linux_arch_io_io_mem_remap(void) ; void ldv_linux_arch_io_io_mem_unmap(void) ; static void ldv_ldv_initialize_167(void) ; int ldv_post_init(int init_ret_val ) ; static int ldv_ldv_post_init_164(int ldv_func_arg1 ) ; extern void ldv_pre_probe(void) ; static void ldv_ldv_pre_probe_168(void) ; static void ldv_ldv_pre_probe_170(void) ; int ldv_post_probe(int probe_ret_val ) ; static int ldv_ldv_post_probe_169(int retval ) ; static int ldv_ldv_post_probe_171(int retval ) ; int ldv_filter_err_code(int ret_val ) ; static void ldv_ldv_check_final_state_165(void) ; static void ldv_ldv_check_final_state_166(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; void *ldv_malloc_unknown_size(void) ; void *ldv_zalloc_unknown_size(void) ; extern void ldv_after_alloc(void * ) ; void *ldv_alloc_macro(gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } void ldv_linux_block_queue_blk_cleanup_queue(void) ; extern struct module __this_module ; extern struct pv_irq_ops pv_irq_ops ; __inline static void __set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void __clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static int constant_test_bit(long nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr >> 6)) >> ((int )nr & 63)) & 1); } } __inline static int variable_test_bit(long nr , unsigned long const volatile *addr ) { int oldbit ; { __asm__ volatile ("bt %2,%1\n\tsbb %0,%0": "=r" (oldbit): "m" (*((unsigned long *)addr)), "Ir" (nr)); return (oldbit); } } __inline static __u32 __fswab32(__u32 val ) { int tmp ; { { tmp = __builtin_bswap32(val); } return ((__u32 )tmp); } } __inline static __u64 __le64_to_cpup(__le64 const *p ) { { return ((__u64 )*p); } } __inline static __u32 __le32_to_cpup(__le32 const *p ) { { return ((__u32 )*p); } } __inline static __u16 __le16_to_cpup(__le16 const *p ) { { return ((__u16 )*p); } } extern void __might_sleep(char const * , int , int ) ; extern void might_fault(void) ; extern int sprintf(char * , char const * , ...) ; extern int snprintf(char * , size_t , char const * , ...) ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void __list_add(struct list_head * , struct list_head * , struct list_head * ) ; __inline static void list_add(struct list_head *new , struct list_head *head ) { { { __list_add(new, head, head->next); } return; } } __inline static void list_add_tail(struct list_head *new , struct list_head *head ) { { { __list_add(new, head->prev, head); } return; } } extern void __list_del_entry(struct list_head * ) ; extern void list_del(struct list_head * ) ; __inline static void list_del_init(struct list_head *entry ) { { { __list_del_entry(entry); INIT_LIST_HEAD(entry); } return; } } __inline static int list_empty(struct list_head const *head ) { { return ((unsigned long )((struct list_head const *)head->next) == (unsigned long )head); } } extern void __bad_percpu_size(void) ; extern struct task_struct *current_task ; __inline static struct task_struct *get_current(void) { struct task_struct *pfo_ret__ ; { { if (8UL == 1UL) { goto case_1; } else { } if (8UL == 2UL) { goto case_2; } else { } if (8UL == 4UL) { goto case_4; } else { } if (8UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "p" (& current_task)); goto ldv_3546; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_3546; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_3546; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_3546; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_3546: ; return (pfo_ret__); } } extern void *__memcpy(void * , void const * , size_t ) ; extern void *__memset(void * , int , size_t ) ; extern int __bitmap_weight(unsigned long const * , unsigned int ) ; __inline static int bitmap_weight(unsigned long const *src , unsigned int nbits ) { int tmp___0 ; { { tmp___0 = __bitmap_weight(src, nbits); } return (tmp___0); } } extern void warn_slowpath_null(char const * , int const ) ; extern int nr_cpu_ids ; extern struct cpumask const * const cpu_possible_mask ; __inline static unsigned int cpumask_weight(struct cpumask const *srcp ) { int tmp ; { { tmp = bitmap_weight((unsigned long const *)(& srcp->bits), (unsigned int )nr_cpu_ids); } return ((unsigned int )tmp); } } __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"./arch/x86/include/asm/paravirt.h"), "i" (804), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static void *ERR_PTR(long error ) ; __inline static long PTR_ERR(void const *ptr ) ; __inline static bool IS_ERR(void const *ptr ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )ptr > 0xfffffffffffff000UL, 0L); } return (tmp != 0L); } } __inline static bool IS_ERR_OR_NULL(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv__builtin_expect((unsigned long )ptr > 0xfffffffffffff000UL, 0L); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((bool )tmp___0); } } __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } extern void __xchg_wrong_size(void) ; extern void __cmpxchg_wrong_size(void) ; __inline static int atomic_read(atomic_t const *v ) { int __var ; { __var = 0; return ((int )*((int const volatile *)(& v->counter))); } } __inline static void atomic_set(atomic_t *v , int i ) { { v->counter = i; return; } } __inline static int atomic_sub_and_test(int i , atomic_t *v ) ; __inline static void atomic_inc(atomic_t *v ) ; __inline static void atomic_dec(atomic_t *v ) ; __inline static int atomic_add_return(int i , atomic_t *v ) ; __inline static int atomic_cmpxchg(atomic_t *v , int old , int new ) { int __ret ; int __old ; int __new ; u8 volatile *__ptr ; u16 volatile *__ptr___0 ; u32 volatile *__ptr___1 ; u64 volatile *__ptr___2 ; { __old = old; __new = new; { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __ptr = (u8 volatile *)(& v->counter); __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; cmpxchgb %2,%1": "=a" (__ret), "+m" (*__ptr): "q" (__new), "0" (__old): "memory"); goto ldv_6194; case_2: /* CIL Label */ __ptr___0 = (u16 volatile *)(& v->counter); __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; cmpxchgw %2,%1": "=a" (__ret), "+m" (*__ptr___0): "r" (__new), "0" (__old): "memory"); goto ldv_6194; case_4: /* CIL Label */ __ptr___1 = (u32 volatile *)(& v->counter); __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; cmpxchgl %2,%1": "=a" (__ret), "+m" (*__ptr___1): "r" (__new), "0" (__old): "memory"); goto ldv_6194; case_8: /* CIL Label */ __ptr___2 = (u64 volatile *)(& v->counter); __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; cmpxchgq %2,%1": "=a" (__ret), "+m" (*__ptr___2): "r" (__new), "0" (__old): "memory"); goto ldv_6194; switch_default: /* CIL Label */ { __cmpxchg_wrong_size(); } switch_break: /* CIL Label */ ; } ldv_6194: ; return (__ret); } } __inline static int __atomic_add_unless(atomic_t *v , int a , int u ) { int c ; int old ; long tmp ; long tmp___0 ; { { c = atomic_read((atomic_t const *)v); } ldv_6223: { tmp = ldv__builtin_expect(c == u, 0L); } if (tmp != 0L) { goto ldv_6222; } else { } { old = atomic_cmpxchg(v, c, c + a); tmp___0 = ldv__builtin_expect(old == c, 1L); } if (tmp___0 != 0L) { goto ldv_6222; } else { } c = old; goto ldv_6223; ldv_6222: ; return (c); } } __inline static int atomic_add_unless(atomic_t *v , int a , int u ) { int tmp ; { { tmp = __atomic_add_unless(v, a, u); } return (tmp != u); } } extern int debug_locks ; extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern int lock_is_held(struct lockdep_map * ) ; extern void __ldv_linux_kernel_locking_spinlock_spin_lock(spinlock_t * ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_98(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_100(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_109(spinlock_t *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_spinlock_spin_lock_dev_list_lock(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_dev_list_lock(void) ; void ldv_linux_kernel_locking_spinlock_spin_lock_q_lock_of_nvme_queue(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_q_lock_of_nvme_queue(void) ; void ldv_linux_kernel_locking_spinlock_spin_lock_queue_lock_of_request_queue(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_queue_lock_of_request_queue(void) ; void ldv_switch_to_interrupt_context(void) ; void ldv_switch_to_process_context(void) ; __inline static int test_ti_thread_flag(struct thread_info *ti , int flag ) { int tmp___0 ; { { tmp___0 = variable_test_bit((long )flag, (unsigned long const volatile *)(& ti->flags)); } return (tmp___0); } } extern int __preempt_count ; __inline static void __preempt_count_add(int val ) { int pao_ID__ ; { pao_ID__ = 0; { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incb %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decb %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addb %1, %%gs:%0": "+m" (__preempt_count): "qi" (val)); } goto ldv_7170; case_2: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incw %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decw %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addw %1, %%gs:%0": "+m" (__preempt_count): "ri" (val)); } goto ldv_7170; case_4: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incl %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decl %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addl %1, %%gs:%0": "+m" (__preempt_count): "ri" (val)); } goto ldv_7170; case_8: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incq %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decq %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addq %1, %%gs:%0": "+m" (__preempt_count): "re" (val)); } goto ldv_7170; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_7170: ; return; } } __inline static void __preempt_count_sub(int val ) { int pao_ID__ ; { pao_ID__ = 0; { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incb %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decb %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addb %1, %%gs:%0": "+m" (__preempt_count): "qi" (- val)); } goto ldv_7182; case_2: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incw %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decw %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addw %1, %%gs:%0": "+m" (__preempt_count): "ri" (- val)); } goto ldv_7182; case_4: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incl %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decl %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addl %1, %%gs:%0": "+m" (__preempt_count): "ri" (- val)); } goto ldv_7182; case_8: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incq %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decq %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addq %1, %%gs:%0": "+m" (__preempt_count): "re" (- val)); } goto ldv_7182; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_7182: ; return; } } extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_lock_irq(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irq(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField18.rlock); } } __inline static void spin_lock(spinlock_t *lock ) { { { _raw_spin_lock(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_lock_107(spinlock_t *lock ) ; __inline static void ldv_spin_lock_126(spinlock_t *lock ) ; __inline static void ldv_spin_lock_126(spinlock_t *lock ) ; __inline static void ldv_spin_lock_126(spinlock_t *lock ) ; __inline static void ldv_spin_lock_140(spinlock_t *lock ) ; __inline static void ldv_spin_lock_126(spinlock_t *lock ) ; __inline static void ldv_spin_lock_126(spinlock_t *lock ) ; __inline static void ldv_spin_lock_126(spinlock_t *lock ) ; __inline static void ldv_spin_lock_126(spinlock_t *lock ) ; __inline static void ldv_spin_lock_126(spinlock_t *lock ) ; __inline static void ldv_spin_lock_126(spinlock_t *lock ) ; __inline static void ldv_spin_lock_126(spinlock_t *lock ) ; __inline static void spin_lock_irq(spinlock_t *lock ) { { { _raw_spin_lock_irq(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_lock_irq_105(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_105(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_105(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_105(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_105(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_105(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_105(spinlock_t *lock ) ; __inline static void spin_unlock(spinlock_t *lock ) { { { _raw_spin_unlock(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_unlock_108(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_127(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_127(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_127(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_141(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_127(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_127(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_127(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_127(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_127(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_127(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_127(spinlock_t *lock ) ; __inline static void spin_unlock_irq(spinlock_t *lock ) { { { _raw_spin_unlock_irq(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_unlock_irq_106(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_106(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_106(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_106(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_106(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_106(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_106(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_106(spinlock_t *lock ) ; __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField18.rlock, flags); } return; } } __inline static void ldv_spin_unlock_irqrestore_99(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_101(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_110(spinlock_t *lock , unsigned long flags ) ; extern void __init_waitqueue_head(wait_queue_head_t * , char const * , struct lock_class_key * ) ; extern void __wake_up(wait_queue_head_t * , unsigned int , int , void * ) ; extern long prepare_to_wait_event(wait_queue_head_t * , wait_queue_t * , int ) ; extern void finish_wait(wait_queue_head_t * , wait_queue_t * ) ; extern int ida_pre_get(struct ida * , gfp_t ) ; extern int ida_get_new_above(struct ida * , int , int * ) ; extern void ida_remove(struct ida * , int ) ; __inline static int ida_get_new(struct ida *ida , int *p_id ) { int tmp ; { { tmp = ida_get_new_above(ida, 0, p_id); } return (tmp); } } __inline static void kref_init(struct kref *kref ) { { { atomic_set(& kref->refcount, 1); } return; } } __inline static void kref_get(struct kref *kref ) { bool __warned ; int __ret_warn_once ; int tmp ; int __ret_warn_on ; long tmp___0 ; long tmp___1 ; long tmp___2 ; { { tmp = atomic_add_return(1, & kref->refcount); __ret_warn_once = tmp <= 1; tmp___2 = ldv__builtin_expect(__ret_warn_once != 0, 0L); } if (tmp___2 != 0L) { { __ret_warn_on = ! __warned; tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("include/linux/kref.h", 47); } } else { } { tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { __warned = 1; } else { } } else { } { ldv__builtin_expect(__ret_warn_once != 0, 0L); } return; } } __inline static int kref_sub(struct kref *kref , unsigned int count , void (*release)(struct kref * ) ) { int __ret_warn_on ; long tmp ; int tmp___0 ; { { __ret_warn_on = (unsigned long )release == (unsigned long )((void (*)(struct kref * ))0); tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("include/linux/kref.h", 71); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); tmp___0 = atomic_sub_and_test((int )count, & kref->refcount); } if (tmp___0 != 0) { { (*release)(kref); } return (1); } else { } return (0); } } __inline static int kref_put(struct kref *kref , void (*release)(struct kref * ) ) { int tmp ; { { tmp = kref_sub(kref, 1U, release); } return (tmp); } } __inline static int kref_get_unless_zero(struct kref *kref ) { int tmp ; { { tmp = atomic_add_unless(& kref->refcount, 1, 0); } return (tmp); } } extern unsigned long volatile jiffies ; extern unsigned long msecs_to_jiffies(unsigned int const ) ; extern unsigned long round_jiffies_relative(unsigned long ) ; extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *system_wq ; extern struct workqueue_struct *__alloc_workqueue_key(char const * , unsigned int , int , struct lock_class_key * , char const * , ...) ; extern void destroy_workqueue(struct workqueue_struct * ) ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; extern bool flush_work(struct work_struct * ) ; extern unsigned int work_busy(struct work_struct * ) ; __inline static bool queue_work(struct workqueue_struct *wq , struct work_struct *work ) { bool tmp ; { { tmp = queue_work_on(8192, wq, work); } return (tmp); } } __inline static bool schedule_work(struct work_struct *work ) { bool tmp ; { { tmp = queue_work(system_wq, work); } return (tmp); } } __inline static unsigned int readl(void const volatile *addr ) { unsigned int ret ; { __asm__ volatile ("movl %1,%0": "=r" (ret): "m" (*((unsigned int volatile *)addr)): "memory"); return (ret); } } __inline static void writel(unsigned int val , void volatile *addr ) { { __asm__ volatile ("movl %0,%1": : "r" (val), "m" (*((unsigned int volatile *)addr)): "memory"); return; } } __inline static unsigned long readq(void const volatile *addr ) { unsigned long ret ; { __asm__ volatile ("movq %1,%0": "=r" (ret): "m" (*((unsigned long volatile *)addr)): "memory"); return (ret); } } __inline static void writeq(unsigned long val , void volatile *addr ) { { __asm__ volatile ("movq %0,%1": : "r" (val), "m" (*((unsigned long volatile *)addr)): "memory"); return; } } __inline static void *ioremap(resource_size_t offset , unsigned long size ) ; static void ldv_iounmap_134(void volatile *ldv_func_arg1 ) ; static void ldv_iounmap_136(void volatile *ldv_func_arg1 ) ; static void ldv_iounmap_137(void volatile *ldv_func_arg1 ) ; static void ldv_class_destroy_161(struct class *cls ) ; static void ldv_class_destroy_163(struct class *cls ) ; __inline static int dev_to_node(struct device *dev ) { { return (dev->numa_node); } } __inline static void set_dev_node(struct device *dev , int node ) { { dev->numa_node = node; return; } } __inline static void *dev_get_drvdata(struct device const *dev ) { { return ((void *)dev->driver_data); } } __inline static void dev_set_drvdata(struct device *dev , void *data ) { { dev->driver_data = data; return; } } extern struct device *device_create(struct class * , struct device * , dev_t , void * , char const * , ...) ; extern void device_destroy(struct class * , dev_t ) ; extern struct device *get_device(struct device * ) ; extern void put_device(struct device * ) ; extern void dev_err(struct device const * , char const * , ...) ; extern void dev_warn(struct device const * , char const * , ...) ; extern void _dev_info(struct device const * , char const * , ...) ; extern bool capable(int ) ; __inline static int sigismember(sigset_t *set , int _sig ) { unsigned long sig ; { sig = (unsigned long )(_sig + -1); return ((int )(set->sig[0] >> (int )sig) & 1); } } extern long schedule_timeout(long ) ; extern void schedule(void) ; extern int wake_up_process(struct task_struct * ) ; __inline static int test_tsk_thread_flag(struct task_struct *tsk , int flag ) { int tmp ; { { tmp = test_ti_thread_flag((struct thread_info *)tsk->stack, flag); } return (tmp); } } __inline static int signal_pending(struct task_struct *p ) { int tmp ; long tmp___0 ; { { tmp = test_tsk_thread_flag(p, 2); tmp___0 = ldv__builtin_expect(tmp != 0, 0L); } return ((int )tmp___0); } } __inline static int __fatal_signal_pending(struct task_struct *p ) { int tmp ; long tmp___0 ; { { tmp = sigismember(& p->pending.signal, 9); tmp___0 = ldv__builtin_expect(tmp != 0, 0L); } return ((int )tmp___0); } } __inline static int fatal_signal_pending(struct task_struct *p ) { int tmp ; int tmp___0 ; int tmp___1 ; { { tmp = signal_pending(p); } if (tmp != 0) { { tmp___0 = __fatal_signal_pending(p); } if (tmp___0 != 0) { tmp___1 = 1; } else { tmp___1 = 0; } } else { tmp___1 = 0; } return (tmp___1); } } extern void kfree(void const * ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) ; __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; __inline static void *kzalloc_node(size_t size , gfp_t flags , int node ) ; extern struct pci_dev *pci_dev_get(struct pci_dev * ) ; extern void pci_dev_put(struct pci_dev * ) ; extern void pci_stop_and_remove_bus_device_locked(struct pci_dev * ) ; extern int pci_enable_device_mem(struct pci_dev * ) ; __inline static int pci_is_enabled(struct pci_dev *pdev ) { int tmp ; { { tmp = atomic_read((atomic_t const *)(& pdev->enable_cnt)); } return (tmp > 0); } } extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pci_select_bars(struct pci_dev * , unsigned long ) ; extern void pci_release_regions(struct pci_dev * ) ; extern int pci_request_selected_regions(struct pci_dev * , int , char const * ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; static int ldv___pci_register_driver_160(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; static void ldv_pci_unregister_driver_162(struct pci_driver *ldv_func_arg1 ) ; extern struct dma_pool *dma_pool_create(char const * , struct device * , size_t , size_t , size_t ) ; extern void dma_pool_destroy(struct dma_pool * ) ; static void *ldv_dma_pool_alloc_102(struct dma_pool *ldv_func_arg1 , gfp_t flags , dma_addr_t *ldv_func_arg3 ) ; static void *ldv_dma_pool_alloc_103(struct dma_pool *ldv_func_arg1 , gfp_t flags , dma_addr_t *ldv_func_arg3 ) ; static void *ldv_dma_pool_alloc_104(struct dma_pool *ldv_func_arg1 , gfp_t flags , dma_addr_t *ldv_func_arg3 ) ; extern void dma_pool_free(struct dma_pool * , void * , dma_addr_t ) ; extern void pci_disable_msi(struct pci_dev * ) ; extern int pci_enable_msix(struct pci_dev * , struct msix_entry * , int ) ; extern void pci_disable_msix(struct pci_dev * ) ; extern int pci_enable_msi_range(struct pci_dev * , int , int ) ; extern int pci_enable_msix_range(struct pci_dev * , struct msix_entry * , int , int ) ; extern void put_page(struct page * ) ; __inline static void *lowmem_page_address(struct page const *page ) { { return ((void *)((unsigned long )((unsigned long long )(((long )page + 24189255811072L) / 64L) << 12) + 0xffff880000000000UL)); } } extern int get_user_pages_fast(unsigned long , int , int , struct page ** ) ; __inline static void sg_assign_page(struct scatterlist *sg , struct page *page ) { unsigned long page_link ; long tmp ; long tmp___0 ; long tmp___1 ; { { page_link = sg->page_link & 3UL; tmp = ldv__builtin_expect(((unsigned long )page & 3UL) != 0UL, 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/scatterlist.h"), "i" (65), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___0 = ldv__builtin_expect(sg->sg_magic != 2271560481UL, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/scatterlist.h"), "i" (67), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___1 = ldv__builtin_expect((long )((int )sg->page_link) & 1L, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/scatterlist.h"), "i" (68), "i" (12UL)); __builtin_unreachable(); } } else { } sg->page_link = page_link | (unsigned long )page; return; } } __inline static void sg_set_page(struct scatterlist *sg , struct page *page , unsigned int len , unsigned int offset ) { { { sg_assign_page(sg, page); sg->offset = offset; sg->length = len; } return; } } __inline static struct page *sg_page(struct scatterlist *sg ) { long tmp ; long tmp___0 ; { { tmp = ldv__builtin_expect(sg->sg_magic != 2271560481UL, 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/scatterlist.h"), "i" (98), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___0 = ldv__builtin_expect((long )((int )sg->page_link) & 1L, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/scatterlist.h"), "i" (99), "i" (12UL)); __builtin_unreachable(); } } else { } return ((struct page *)(sg->page_link & 0xfffffffffffffffcUL)); } } __inline static void sg_mark_end(struct scatterlist *sg ) { long tmp ; { { tmp = ldv__builtin_expect(sg->sg_magic != 2271560481UL, 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/scatterlist.h"), "i" (168), "i" (12UL)); __builtin_unreachable(); } } else { } sg->page_link = sg->page_link | 2UL; sg->page_link = sg->page_link & 0xfffffffffffffffeUL; return; } } __inline static void *sg_virt(struct scatterlist *sg ) { struct page *tmp ; void *tmp___0 ; { { tmp = sg_page(sg); tmp___0 = lowmem_page_address((struct page const *)tmp); } return (tmp___0 + (unsigned long )sg->offset); } } extern struct scatterlist *sg_next(struct scatterlist * ) ; extern void sg_init_table(struct scatterlist * , unsigned int ) ; __inline static int valid_dma_direction(int dma_direction ) { { return ((unsigned int )dma_direction <= 2U); } } __inline static int is_device_dma_capable(struct device *dev ) { { return ((unsigned long )dev->dma_mask != (unsigned long )((u64 *)0ULL) && *(dev->dma_mask) != 0ULL); } } __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } extern void debug_dma_map_sg(struct device * , struct scatterlist * , int , int , int ) ; extern void debug_dma_unmap_sg(struct device * , struct scatterlist * , int , int ) ; extern void debug_dma_alloc_coherent(struct device * , size_t , dma_addr_t , void * ) ; extern void debug_dma_free_coherent(struct device * , size_t , void * , dma_addr_t ) ; extern struct device x86_dma_fallback_dev ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); } if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static int dma_map_sg_attrs(struct device *dev , struct scatterlist *sg , int nents , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int i ; int ents ; struct scatterlist *s ; void *tmp___0 ; int tmp___1 ; long tmp___2 ; { { tmp = get_dma_ops(dev); ops = tmp; i = 0; s = sg; } goto ldv_26378; ldv_26377: { tmp___0 = sg_virt(s); kmemcheck_mark_initialized(tmp___0, s->length); i = i + 1; s = sg_next(s); } ldv_26378: ; if (i < nents) { goto ldv_26377; } else { } { tmp___1 = valid_dma_direction((int )dir); tmp___2 = ldv__builtin_expect(tmp___1 == 0, 0L); } if (tmp___2 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (52), "i" (12UL)); __builtin_unreachable(); } } else { } { ents = (*(ops->map_sg))(dev, sg, nents, dir, attrs); debug_dma_map_sg(dev, sg, nents, ents, (int )dir); } return (ents); } } __inline static void dma_unmap_sg_attrs(struct device *dev , struct scatterlist *sg , int nents , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (65), "i" (12UL)); __builtin_unreachable(); } } else { } { debug_dma_unmap_sg(dev, sg, nents, (int )dir); } if ((unsigned long )ops->unmap_sg != (unsigned long )((void (*)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_sg))(dev, sg, nents, dir, attrs); } } else { } return; } } extern int dma_supported(struct device * , u64 ) ; extern int dma_set_mask(struct device * , u64 ) ; __inline static unsigned long dma_alloc_coherent_mask(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; { dma_mask = 0UL; dma_mask = (unsigned long )dev->coherent_dma_mask; if (dma_mask == 0UL) { dma_mask = (int )gfp & 1 ? 16777215UL : 4294967295UL; } else { } return (dma_mask); } } __inline static gfp_t dma_alloc_coherent_gfp_flags(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; unsigned long tmp ; { { tmp = dma_alloc_coherent_mask(dev, gfp); dma_mask = tmp; } if ((unsigned long long )dma_mask <= 16777215ULL) { gfp = gfp | 1U; } else { } if ((unsigned long long )dma_mask <= 4294967295ULL && (gfp & 1U) == 0U) { gfp = gfp | 4U; } else { } return (gfp); } } __inline static void *dma_alloc_attrs(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t gfp , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; void *memory ; int tmp___0 ; gfp_t tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; gfp = gfp & 4294967288U; } if ((unsigned long )dev == (unsigned long )((struct device *)0)) { dev = & x86_dma_fallback_dev; } else { } { tmp___0 = is_device_dma_capable(dev); } if (tmp___0 == 0) { return ((void *)0); } else { } if ((unsigned long )ops->alloc == (unsigned long )((void *(*)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ))0)) { return ((void *)0); } else { } { tmp___1 = dma_alloc_coherent_gfp_flags(dev, gfp); memory = (*(ops->alloc))(dev, size, dma_handle, tmp___1, attrs); debug_dma_alloc_coherent(dev, size, *dma_handle, memory); } return (memory); } } __inline static void dma_free_attrs(struct device *dev , size_t size , void *vaddr , dma_addr_t bus , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int __ret_warn_on ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; _flags = arch_local_save_flags(); tmp___0 = arch_irqs_disabled_flags(_flags); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("./arch/x86/include/asm/dma-mapping.h", 166); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); debug_dma_free_coherent(dev, size, vaddr, bus); } if ((unsigned long )ops->free != (unsigned long )((void (*)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ))0)) { { (*(ops->free))(dev, size, vaddr, bus, attrs); } } else { } return; } } __inline static int dma_set_coherent_mask(struct device *dev , u64 mask ) { int tmp ; { { tmp = dma_supported(dev, mask); } if (tmp == 0) { return (-5); } else { } dev->coherent_dma_mask = mask; return (0); } } __inline static int dma_set_mask_and_coherent(struct device *dev , u64 mask ) { int rc ; int tmp ; { { tmp = dma_set_mask(dev, mask); rc = tmp; } if (rc == 0) { { dma_set_coherent_mask(dev, mask); } } else { } return (rc); } } __inline static void *dma_zalloc_coherent(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t flags ) ; __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { { tmp = dev_get_drvdata((struct device const *)(& pdev->dev)); } return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { { dev_set_drvdata(& pdev->dev, data); } return; } } __inline static unsigned int iminor(struct inode const *inode ) { { return ((unsigned int )inode->i_rdev & 1048575U); } } extern int register_blkdev(unsigned int , char const * ) ; extern void unregister_blkdev(unsigned int , char const * ) ; extern int __register_chrdev(unsigned int , unsigned int , unsigned int , char const * , struct file_operations const * ) ; static int ldv___register_chrdev_159(unsigned int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 , char const *ldv_func_arg4 , struct file_operations const *ldv_func_arg5 ) ; extern void __unregister_chrdev(unsigned int , unsigned int , unsigned int , char const * ) ; extern int revalidate_disk(struct gendisk * ) ; extern unsigned long _copy_from_user(void * , void const * , unsigned int ) ; extern unsigned long _copy_to_user(void * , void const * , unsigned int ) ; extern void __copy_from_user_overflow(void) ; extern void __copy_to_user_overflow(void) ; __inline static unsigned long copy_from_user(void *to , void const *from , unsigned long n ) { int sz ; long tmp ; long tmp___0 ; { { sz = -1; might_fault(); tmp = ldv__builtin_expect(sz < 0, 1L); } if (tmp != 0L) { { n = _copy_from_user(to, from, (unsigned int )n); } } else { { tmp___0 = ldv__builtin_expect((unsigned long )sz >= n, 1L); } if (tmp___0 != 0L) { { n = _copy_from_user(to, from, (unsigned int )n); } } else { { __copy_from_user_overflow(); } } } return (n); } } __inline static unsigned long copy_to_user(void *to , void const *from , unsigned long n ) { int sz ; long tmp ; long tmp___0 ; { { sz = -1; might_fault(); tmp = ldv__builtin_expect(sz < 0, 1L); } if (tmp != 0L) { { n = _copy_to_user(to, from, (unsigned int )n); } } else { { tmp___0 = ldv__builtin_expect((unsigned long )sz >= n, 1L); } if (tmp___0 != 0L) { { n = _copy_to_user(to, from, (unsigned int )n); } } else { { __copy_to_user_overflow(); } } } return (n); } } __inline static void pagefault_disable(void) { { { __preempt_count_add(1); __asm__ volatile ("": : : "memory"); } return; } } __inline static void pagefault_enable(void) { { { __asm__ volatile ("": : : "memory"); __preempt_count_sub(1); } return; } } __inline static void *kmap_atomic(struct page *page ) { void *tmp ; { { pagefault_disable(); tmp = lowmem_page_address((struct page const *)page); } return (tmp); } } __inline static void __kunmap_atomic(void *addr ) { { { pagefault_enable(); } return; } } extern void __compiletime_assert_136(void) ; extern void add_disk(struct gendisk * ) ; static void ldv_add_disk_132(struct gendisk *disk ) ; extern void del_gendisk(struct gendisk * ) ; static void ldv_del_gendisk_142(struct gendisk *gp ) ; __inline static sector_t get_capacity(struct gendisk *disk ) { { return (disk->part0.nr_sects); } } __inline static void set_capacity(struct gendisk *disk , sector_t size ) { { disk->part0.nr_sects = size; return; } } extern struct gendisk *alloc_disk_node(int , int ) ; extern void put_disk(struct gendisk * ) ; static void ldv_put_disk_150(struct gendisk *disk ) ; __inline static struct bio_integrity_payload *bio_integrity(struct bio *bio ) { { if (((unsigned long long )bio->bi_rw & 2048ULL) != 0ULL) { return (bio->__annonCompField65.bi_integrity); } else { } return ((struct bio_integrity_payload *)0); } } __inline static sector_t bip_get_seed(struct bio_integrity_payload *bip ) { { return (bip->bip_iter.bi_sector); } } __inline static void queue_lockdep_assert_held(struct request_queue *q ) { int __ret_warn_on ; int tmp ; int tmp___0 ; long tmp___1 ; { if ((unsigned long )q->queue_lock != (unsigned long )((spinlock_t *)0)) { if (debug_locks != 0) { { tmp = lock_is_held(& (q->queue_lock)->__annonCompField18.__annonCompField17.dep_map); } if (tmp == 0) { tmp___0 = 1; } else { tmp___0 = 0; } } else { tmp___0 = 0; } { __ret_warn_on = tmp___0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("include/linux/blkdev.h", 529); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } } else { } return; } } __inline static void queue_flag_set_unlocked(unsigned int flag , struct request_queue *q ) { { { __set_bit((long )flag, (unsigned long volatile *)(& q->queue_flags)); } return; } } __inline static void queue_flag_set(unsigned int flag , struct request_queue *q ) { { { queue_lockdep_assert_held(q); __set_bit((long )flag, (unsigned long volatile *)(& q->queue_flags)); } return; } } __inline static void queue_flag_clear_unlocked(unsigned int flag , struct request_queue *q ) { { { __clear_bit((long )flag, (unsigned long volatile *)(& q->queue_flags)); } return; } } __inline static sector_t blk_rq_pos(struct request const *rq ) { { return ((sector_t )rq->__sector); } } __inline static unsigned int blk_rq_bytes(struct request const *rq ) { { return ((unsigned int )rq->__data_len); } } extern void blk_cleanup_queue(struct request_queue * ) ; static void ldv_blk_cleanup_queue_125(struct request_queue *ldv_func_arg1 ) ; static void ldv_blk_cleanup_queue_133(struct request_queue *ldv_func_arg1 ) ; static void ldv_blk_cleanup_queue_143(struct request_queue *ldv_func_arg1 ) ; extern void blk_queue_max_hw_sectors(struct request_queue * , unsigned int ) ; extern void blk_queue_chunk_sectors(struct request_queue * , unsigned int ) ; extern void blk_queue_logical_block_size(struct request_queue * , unsigned short ) ; extern void blk_queue_flush(struct request_queue * , unsigned int ) ; extern int blk_rq_map_sg(struct request_queue * , struct request * , struct scatterlist * ) ; extern bool blk_get_queue(struct request_queue * ) ; extern void blk_put_queue(struct request_queue * ) ; __inline static unsigned short queue_logical_block_size(struct request_queue *q ) { int retval ; { retval = 512; if ((unsigned long )q != (unsigned long )((struct request_queue *)0) && (unsigned int )q->limits.logical_block_size != 0U) { retval = (int )q->limits.logical_block_size; } else { } return ((unsigned short )retval); } } extern int blk_integrity_register(struct gendisk * , struct blk_integrity * ) ; extern void blk_integrity_unregister(struct gendisk * ) ; extern int blk_rq_map_integrity_sg(struct request_queue * , struct bio * , struct scatterlist * ) ; extern int blk_rq_count_integrity_sg(struct request_queue * , struct bio * ) ; __inline static bool blk_integrity_rq(struct request *rq ) { { return ((rq->cmd_flags & 2048ULL) != 0ULL); } } __inline static void blk_queue_max_integrity_segments(struct request_queue *q , unsigned int segs ) { { q->limits.max_integrity_segments = (unsigned short )segs; return; } } extern struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set * ) ; extern int blk_mq_alloc_tag_set(struct blk_mq_tag_set * ) ; extern void blk_mq_free_tag_set(struct blk_mq_tag_set * ) ; extern void blk_mq_free_request(struct request * ) ; extern void blk_mq_free_hctx_request(struct blk_mq_hw_ctx * , struct request * ) ; extern struct request *blk_mq_alloc_request(struct request_queue * , int , gfp_t , bool ) ; extern struct request *blk_mq_tag_to_rq(struct blk_mq_tags * , unsigned int ) ; extern struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue * , int const ) ; extern int blk_mq_request_started(struct request * ) ; extern void blk_mq_start_request(struct request * ) ; extern void blk_mq_requeue_request(struct request * ) ; extern void blk_mq_cancel_requeue_work(struct request_queue * ) ; extern void blk_mq_kick_requeue_list(struct request_queue * ) ; extern void blk_mq_abort_requeue_list(struct request_queue * ) ; extern void blk_mq_complete_request(struct request * ) ; extern void blk_mq_stop_hw_queues(struct request_queue * ) ; extern void blk_mq_start_stopped_hw_queues(struct request_queue * , bool ) ; extern void blk_mq_tag_busy_iter(struct blk_mq_hw_ctx * , busy_iter_fn * , void * ) ; extern void blk_mq_unfreeze_queue(struct request_queue * ) ; extern void blk_mq_freeze_queue_start(struct request_queue * ) ; __inline static struct request *blk_mq_rq_from_pdu(void *pdu ) { { return ((struct request *)pdu + 0xfffffffffffffe90UL); } } __inline static void *blk_mq_rq_to_pdu(struct request *rq ) { { return ((void *)rq + 368UL); } } unsigned char nvme_io_timeout ; __inline static u64 nvme_block_nr(struct nvme_ns *ns , sector_t sector ) { { return ((u64 )(sector >> (ns->lba_shift + -9))); } } void nvme_free_iod(struct nvme_dev *dev , struct nvme_iod *iod ) ; int nvme_setup_prps(struct nvme_dev *dev , struct nvme_iod *iod , int total_len , gfp_t gfp ) ; struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev , int write , unsigned long addr , unsigned int length ) ; void nvme_unmap_user_pages(struct nvme_dev *dev , int write , struct nvme_iod *iod ) ; int nvme_submit_io_cmd(struct nvme_dev *dev , struct nvme_ns *ns , struct nvme_command *cmd , u32 *result ) ; int nvme_submit_admin_cmd(struct nvme_dev *dev , struct nvme_command *cmd , u32 *result ) ; int nvme_identify(struct nvme_dev *dev , unsigned int nsid , unsigned int cns , dma_addr_t dma_addr ) ; int nvme_get_features(struct nvme_dev *dev , unsigned int fid , unsigned int nsid , dma_addr_t dma_addr , u32 *result ) ; int nvme_set_features(struct nvme_dev *dev , unsigned int fid , unsigned int dword11 , dma_addr_t dma_addr , u32 *result ) ; int nvme_sg_io(struct nvme_ns *ns , struct sg_io_hdr *u_hdr ) ; int nvme_sg_get_version_num(int *ip ) ; extern void msleep(unsigned int ) ; extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; static int ldv_request_threaded_irq_97(unsigned int ldv_func_arg1 , irqreturn_t (*ldv_func_arg2)(int , void * ) , irqreturn_t (*ldv_func_arg3)(int , void * ) , unsigned long ldv_func_arg4 , char const *ldv_func_arg5 , void *ldv_func_arg6 ) ; static int ldv_request_threaded_irq_121(unsigned int ldv_func_arg1 , irqreturn_t (*ldv_func_arg2)(int , void * ) , irqreturn_t (*ldv_func_arg3)(int , void * ) , unsigned long ldv_func_arg4 , char const *ldv_func_arg5 , void *ldv_func_arg6 ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { { tmp = ldv_request_threaded_irq_97(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); } return (tmp); } } __inline static int ldv_request_irq_122(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; static void ldv_free_irq_116(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_135(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; extern int irq_set_affinity_hint(unsigned int , struct cpumask const * ) ; extern struct task_struct *kthread_create_on_node(int (*)(void * ) , void * , int , char const * , ...) ; extern int kthread_stop(struct task_struct * ) ; extern bool kthread_should_stop(void) ; extern void __init_kthread_worker(struct kthread_worker * , char const * , struct lock_class_key * ) ; extern int kthread_worker_fn(void * ) ; extern bool queue_kthread_work(struct kthread_worker * , struct kthread_work * ) ; extern void flush_kthread_worker(struct kthread_worker * ) ; extern struct blk_integrity t10_pi_type1_crc ; extern struct blk_integrity t10_pi_type3_crc ; static unsigned char admin_timeout = 60U; unsigned char nvme_io_timeout = 30U; static unsigned char shutdown_timeout = 5U; static int nvme_major ; static int nvme_char_major ; static int use_threaded_interrupts ; static spinlock_t dev_list_lock = {{{{{0U}}, 3735899821U, 4294967295U, (void *)-1, {0, {0, 0}, "dev_list_lock", 0, 0UL}}}}; static struct list_head dev_list = {& dev_list, & dev_list}; static struct task_struct *nvme_thread ; static struct workqueue_struct *nvme_workq ; static wait_queue_head_t nvme_kthread_wait ; static struct class *nvme_class ; static void nvme_reset_failed_dev(struct work_struct *ws ) ; static int nvme_process_cq(struct nvme_queue *nvmeq ) ; extern void __compiletime_assert_125(void) ; extern void __compiletime_assert_126(void) ; extern void __compiletime_assert_127(void) ; extern void __compiletime_assert_128(void) ; extern void __compiletime_assert_129(void) ; extern void __compiletime_assert_130(void) ; extern void __compiletime_assert_131(void) ; extern void __compiletime_assert_132(void) ; extern void __compiletime_assert_133(void) ; extern void __compiletime_assert_134(void) ; extern void __compiletime_assert_135(void) ; __inline static void _nvme_check_size(void) { bool __cond ; bool __cond___0 ; bool __cond___1 ; bool __cond___2 ; bool __cond___3 ; bool __cond___4 ; bool __cond___5 ; bool __cond___6 ; bool __cond___7 ; bool __cond___8 ; bool __cond___9 ; bool __cond___10 ; { __cond = 0; if ((int )__cond) { { __compiletime_assert_125(); } } else { } __cond___0 = 0; if ((int )__cond___0) { { __compiletime_assert_126(); } } else { } __cond___1 = 0; if ((int )__cond___1) { { __compiletime_assert_127(); } } else { } __cond___2 = 0; if ((int )__cond___2) { { __compiletime_assert_128(); } } else { } __cond___3 = 0; if ((int )__cond___3) { { __compiletime_assert_129(); } } else { } __cond___4 = 0; if ((int )__cond___4) { { __compiletime_assert_130(); } } else { } __cond___5 = 0; if ((int )__cond___5) { { __compiletime_assert_131(); } } else { } __cond___6 = 0; if ((int )__cond___6) { { __compiletime_assert_132(); } } else { } __cond___7 = 0; if ((int )__cond___7) { { __compiletime_assert_133(); } } else { } __cond___8 = 0; if ((int )__cond___8) { { __compiletime_assert_134(); } } else { } __cond___9 = 0; if ((int )__cond___9) { { __compiletime_assert_135(); } } else { } __cond___10 = 0; if ((int )__cond___10) { { __compiletime_assert_136(); } } else { } return; } } static int nvme_npages(unsigned int size , struct nvme_dev *dev ) { unsigned int nprps ; { nprps = (((size + dev->page_size) + dev->page_size) - 1U) / dev->page_size; return ((int )(((unsigned long )(nprps * 8U) + 4087UL) / 4088UL)); } } static unsigned int nvme_cmd_size(struct nvme_dev *dev ) { unsigned int ret ; int tmp ; { { ret = 32U; ret = ret + 72U; tmp = nvme_npages(dev->page_size * 2U, dev); ret = ret + (unsigned int )((unsigned long )tmp) * 8U; ret = ret + 80U; } return (ret); } } static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx , void *data , unsigned int hctx_idx ) { struct nvme_dev *dev ; struct nvme_queue *nvmeq ; int __ret_warn_on ; long tmp ; { { dev = (struct nvme_dev *)data; nvmeq = *(dev->queues); __ret_warn_on = (unsigned long )nvmeq->hctx != (unsigned long )((struct blk_mq_hw_ctx *)0); tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/block/nvme-core.c", 184); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); nvmeq->hctx = hctx; hctx->driver_data = (void *)nvmeq; } return (0); } } static int nvme_admin_init_request(void *data , struct request *req , unsigned int hctx_idx , unsigned int rq_idx , unsigned int numa_node___0 ) { struct nvme_dev *dev ; struct nvme_cmd_info *cmd ; void *tmp ; struct nvme_queue *nvmeq ; long tmp___0 ; { { dev = (struct nvme_dev *)data; tmp = blk_mq_rq_to_pdu(req); cmd = (struct nvme_cmd_info *)tmp; nvmeq = *(dev->queues); tmp___0 = ldv__builtin_expect((unsigned long )nvmeq == (unsigned long )((struct nvme_queue *)0), 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/block/nvme-core.c"), "i" (198), "i" (12UL)); __builtin_unreachable(); } } else { } cmd->nvmeq = nvmeq; return (0); } } static void nvme_exit_hctx(struct blk_mq_hw_ctx *hctx , unsigned int hctx_idx ) { struct nvme_queue *nvmeq ; { nvmeq = (struct nvme_queue *)hctx->driver_data; nvmeq->hctx = (struct blk_mq_hw_ctx *)0; return; } } static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx , void *data , unsigned int hctx_idx ) { struct nvme_dev *dev ; struct nvme_queue *nvmeq ; int __ret_warn_on ; long tmp ; { dev = (struct nvme_dev *)data; nvmeq = *(dev->queues + (unsigned long )(hctx_idx % dev->queue_count + 1U)); if ((unsigned long )nvmeq->hctx == (unsigned long )((struct blk_mq_hw_ctx *)0)) { nvmeq->hctx = hctx; } else { } { __ret_warn_on = (unsigned long )(nvmeq->hctx)->tags != (unsigned long )hctx->tags; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/block/nvme-core.c", 222); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); hctx->driver_data = (void *)nvmeq; } return (0); } } static int nvme_init_request(void *data , struct request *req , unsigned int hctx_idx , unsigned int rq_idx , unsigned int numa_node___0 ) { struct nvme_dev *dev ; struct nvme_cmd_info *cmd ; void *tmp ; struct nvme_queue *nvmeq ; long tmp___0 ; { { dev = (struct nvme_dev *)data; tmp = blk_mq_rq_to_pdu(req); cmd = (struct nvme_cmd_info *)tmp; nvmeq = *(dev->queues + (unsigned long )(hctx_idx + 1U)); tmp___0 = ldv__builtin_expect((unsigned long )nvmeq == (unsigned long )((struct nvme_queue *)0), 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/block/nvme-core.c"), "i" (236), "i" (12UL)); __builtin_unreachable(); } } else { } cmd->nvmeq = nvmeq; return (0); } } static void nvme_set_info(struct nvme_cmd_info *cmd , void *ctx , void (*handler)(struct nvme_queue * , void * , struct nvme_completion * ) ) { struct request *tmp ; { { cmd->fn = handler; cmd->ctx = ctx; cmd->aborted = 0; tmp = blk_mq_rq_from_pdu((void *)cmd); blk_mq_start_request(tmp); } return; } } static void *iod_get_private(struct nvme_iod *iod ) { { return ((void *)(iod->private & 0xfffffffffffffffeUL)); } } static bool iod_should_kfree(struct nvme_iod *iod ) { { return ((iod->private & 1UL) == 0UL); } } static void special_completion(struct nvme_queue *nvmeq , void *ctx , struct nvme_completion *cqe ) { __u16 tmp ; __u16 tmp___0 ; { if ((unsigned long )ctx == (unsigned long )((void *)-2401263026318605556L)) { return; } else { } if ((unsigned long )ctx == (unsigned long )((void *)-2401263026318605552L)) { { tmp = __le16_to_cpup((__le16 const *)(& cqe->sq_id)); dev_warn((struct device const *)nvmeq->q_dmadev, "completed id %d twice on queue %d\n", (int )cqe->command_id, (int )tmp); } return; } else { } if ((unsigned long )ctx == (unsigned long )((void *)-2401263026318605548L)) { { tmp___0 = __le16_to_cpup((__le16 const *)(& cqe->sq_id)); dev_warn((struct device const *)nvmeq->q_dmadev, "invalid id %d completed on queue %d\n", (int )cqe->command_id, (int )tmp___0); } return; } else { } { dev_warn((struct device const *)nvmeq->q_dmadev, "Unknown special completion %p\n", ctx); } return; } } static void *cancel_cmd_info(struct nvme_cmd_info *cmd , nvme_completion_fn (**fn)(struct nvme_queue * , void * , struct nvme_completion * ) ) { void *ctx ; { if ((unsigned long )fn != (unsigned long )((nvme_completion_fn (**)(struct nvme_queue * , void * , struct nvme_completion * ))0)) { *fn = cmd->fn; } else { } ctx = cmd->ctx; cmd->fn = & special_completion; cmd->ctx = (void *)-2401263026318605556L; return (ctx); } } static void async_req_completion(struct nvme_queue *nvmeq , void *ctx , struct nvme_completion *cqe ) { struct request *req ; u32 result ; __u32 tmp ; u16 status ; __u16 tmp___0 ; { { req = (struct request *)ctx; tmp = __le32_to_cpup((__le32 const *)(& cqe->result)); result = tmp; tmp___0 = __le16_to_cpup((__le16 const *)(& cqe->status)); status = (u16 )((int )tmp___0 >> 1); } if ((unsigned int )status == 0U || (unsigned int )status == 7U) { (nvmeq->dev)->event_limit = (u8 )((int )(nvmeq->dev)->event_limit + 1); } else { } if ((unsigned int )status == 0U) { { dev_warn((struct device const *)nvmeq->q_dmadev, "async event result %08x\n", result); } } else { } { blk_mq_free_hctx_request(nvmeq->hctx, req); } return; } } static void abort_completion(struct nvme_queue *nvmeq , void *ctx , struct nvme_completion *cqe ) { struct request *req ; u16 status ; __u16 tmp ; u32 result ; __u32 tmp___0 ; { { req = (struct request *)ctx; tmp = __le16_to_cpup((__le16 const *)(& cqe->status)); status = (u16 )((int )tmp >> 1); tmp___0 = __le32_to_cpup((__le32 const *)(& cqe->result)); result = tmp___0; blk_mq_free_hctx_request(nvmeq->hctx, req); dev_warn((struct device const *)nvmeq->q_dmadev, "Abort status:%x result:%x", (int )status, result); (nvmeq->dev)->abort_limit = (u16 )((int )(nvmeq->dev)->abort_limit + 1); } return; } } static void async_completion(struct nvme_queue *nvmeq , void *ctx , struct nvme_completion *cqe ) { struct async_cmd_info *cmdinfo ; __u16 tmp ; { { cmdinfo = (struct async_cmd_info *)ctx; cmdinfo->result = __le32_to_cpup((__le32 const *)(& cqe->result)); tmp = __le16_to_cpup((__le16 const *)(& cqe->status)); cmdinfo->status = (int )tmp >> 1; queue_kthread_work(cmdinfo->worker, & cmdinfo->work); blk_mq_free_hctx_request(nvmeq->hctx, cmdinfo->req); } return; } } __inline static struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq , unsigned int tag ) { struct blk_mq_hw_ctx *hctx ; struct request *req ; struct request *tmp ; void *tmp___0 ; { { hctx = nvmeq->hctx; tmp = blk_mq_tag_to_rq(hctx->tags, tag); req = tmp; tmp___0 = blk_mq_rq_to_pdu(req); } return ((struct nvme_cmd_info *)tmp___0); } } static void *nvme_finish_cmd(struct nvme_queue *nvmeq , int tag , nvme_completion_fn (**fn)(struct nvme_queue * , void * , struct nvme_completion * ) ) { struct nvme_cmd_info *cmd ; struct nvme_cmd_info *tmp ; void *ctx ; { { tmp = get_cmd_from_tag(nvmeq, (unsigned int )tag); cmd = tmp; } if (tag >= (int )nvmeq->q_depth) { *fn = & special_completion; return ((void *)-2401263026318605548L); } else { } if ((unsigned long )fn != (unsigned long )((nvme_completion_fn (**)(struct nvme_queue * , void * , struct nvme_completion * ))0)) { *fn = cmd->fn; } else { } ctx = cmd->ctx; cmd->fn = & special_completion; cmd->ctx = (void *)-2401263026318605552L; return (ctx); } } static int __nvme_submit_cmd(struct nvme_queue *nvmeq , struct nvme_command *cmd ) { u16 tail ; { { tail = nvmeq->sq_tail; __memcpy((void *)nvmeq->sq_cmds + (unsigned long )tail, (void const *)cmd, 64UL); tail = (u16 )((int )tail + 1); } if ((int )tail == (int )nvmeq->q_depth) { tail = 0U; } else { } { writel((unsigned int )tail, (void volatile *)nvmeq->q_db); nvmeq->sq_tail = tail; } return (0); } } static int nvme_submit_cmd(struct nvme_queue *nvmeq , struct nvme_command *cmd ) { unsigned long flags ; int ret ; { { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_98(& nvmeq->q_lock); ret = __nvme_submit_cmd(nvmeq, cmd); ldv_spin_unlock_irqrestore_99(& nvmeq->q_lock, flags); } return (ret); } } static __le64 **iod_list(struct nvme_iod *iod ) { { return ((__le64 **)iod + (unsigned long )iod->offset); } } __inline static void iod_init(struct nvme_iod *iod , unsigned int nbytes , unsigned int nseg , unsigned long private ) { { iod->private = private; iod->offset = (int )(nseg * 40U + 72U); iod->npages = -1; iod->length = (int )nbytes; iod->nents = 0; return; } } static struct nvme_iod *__nvme_alloc_iod(unsigned int nseg , unsigned int bytes , struct nvme_dev *dev , unsigned long priv , gfp_t gfp ) { struct nvme_iod *iod ; int tmp ; void *tmp___0 ; { { tmp = nvme_npages(bytes, dev); tmp___0 = kmalloc((((unsigned long )tmp + (unsigned long )nseg * 5UL) + 9UL) * 8UL, gfp); iod = (struct nvme_iod *)tmp___0; } if ((unsigned long )iod != (unsigned long )((struct nvme_iod *)0)) { { iod_init(iod, bytes, nseg, priv); } } else { } return (iod); } } static struct nvme_iod *nvme_alloc_iod(struct request *rq , struct nvme_dev *dev , gfp_t gfp ) { unsigned int size ; unsigned int tmp ; unsigned int tmp___0 ; unsigned long mask ; struct nvme_iod *iod ; struct nvme_cmd_info *cmd ; void *tmp___1 ; struct nvme_iod *tmp___2 ; { if ((rq->cmd_flags & 128ULL) == 0ULL) { { tmp = blk_rq_bytes((struct request const *)rq); tmp___0 = tmp; } } else { tmp___0 = 16U; } size = tmp___0; mask = 0UL; if ((unsigned int )rq->nr_phys_segments <= 2U && size <= dev->page_size * 2U) { { tmp___1 = blk_mq_rq_to_pdu(rq); cmd = (struct nvme_cmd_info *)tmp___1; iod = (struct nvme_iod *)(& cmd->iod); mask = 1UL; iod_init(iod, size, (unsigned int )rq->nr_phys_segments, (unsigned long )rq | 1UL); } return (iod); } else { } { tmp___2 = __nvme_alloc_iod((unsigned int )rq->nr_phys_segments, size, dev, (unsigned long )rq, gfp); } return (tmp___2); } } void nvme_free_iod(struct nvme_dev *dev , struct nvme_iod *iod ) { int last_prp ; int i ; __le64 **list ; __le64 **tmp ; dma_addr_t prp_dma ; __le64 *prp_list ; dma_addr_t next_prp_dma ; bool tmp___0 ; { { last_prp = (int const )(dev->page_size / 8U - 1U); tmp = iod_list(iod); list = tmp; prp_dma = iod->first_dma; } if (iod->npages == 0) { { dma_pool_free(dev->prp_small_pool, (void *)*list, prp_dma); } } else { } i = 0; goto ldv_38854; ldv_38853: { prp_list = *(list + (unsigned long )i); next_prp_dma = *(prp_list + (unsigned long )last_prp); dma_pool_free(dev->prp_page_pool, (void *)prp_list, prp_dma); prp_dma = next_prp_dma; i = i + 1; } ldv_38854: ; if (i < iod->npages) { goto ldv_38853; } else { } { tmp___0 = iod_should_kfree(iod); } if ((int )tmp___0) { { kfree((void const *)iod); } } else { } return; } } static int nvme_error_status(u16 status ) { { { if (((int )status & 2047) == 0) { goto case_0; } else { } if (((int )status & 2047) == 129) { goto case_129; } else { } goto switch_default; case_0: /* CIL Label */ ; return (0); case_129: /* CIL Label */ ; return (-28); switch_default: /* CIL Label */ ; return (-5); switch_break: /* CIL Label */ ; } } } static void nvme_dif_prep(u32 p , u32 v , struct t10_pi_tuple *pi ) { __u32 tmp ; __u32 tmp___0 ; { { tmp___0 = __fswab32(pi->ref_tag); } if (tmp___0 == v) { { tmp = __fswab32(p); pi->ref_tag = tmp; } } else { } return; } } static void nvme_dif_complete(u32 p , u32 v , struct t10_pi_tuple *pi ) { __u32 tmp ; __u32 tmp___0 ; { { tmp___0 = __fswab32(pi->ref_tag); } if (tmp___0 == p) { { tmp = __fswab32(v); pi->ref_tag = tmp; } } else { } return; } } extern void __compiletime_assert_538(void) ; static void nvme_dif_remap(struct request *req , void (*dif_swap)(u32 , u32 , struct t10_pi_tuple * ) ) { struct nvme_ns *ns ; struct bio_integrity_payload *bip ; struct t10_pi_tuple *pi ; void *p ; void *pmap ; u32 i ; u32 nlb ; u32 ts ; u32 phys ; u32 virt ; void *tmp ; sector_t tmp___0 ; sector_t tmp___1 ; u64 tmp___2 ; unsigned int tmp___3 ; bool __cond ; { ns = (struct nvme_ns *)(req->rq_disk)->private_data; if (ns->pi_type == 0 || ns->pi_type == 3) { return; } else { } { bip = bio_integrity(req->bio); } if ((unsigned long )bip == (unsigned long )((struct bio_integrity_payload *)0)) { return; } else { } { tmp = kmap_atomic((bip->bip_vec)->bv_page); pmap = tmp + (unsigned long )(bip->bip_vec)->bv_offset; } if ((unsigned long )pmap == (unsigned long )((void *)0)) { return; } else { } { p = pmap; tmp___0 = bip_get_seed(bip); virt = (u32 )tmp___0; tmp___1 = blk_rq_pos((struct request const *)req); tmp___2 = nvme_block_nr(ns, tmp___1); phys = (u32 )tmp___2; tmp___3 = blk_rq_bytes((struct request const *)req); nlb = tmp___3 >> ns->lba_shift; ts = (u32 )((ns->disk)->integrity)->tuple_size; i = 0U; } goto ldv_38890; ldv_38889: { pi = (struct t10_pi_tuple *)p; (*dif_swap)(phys, virt, pi); p = p + (unsigned long )ts; i = i + 1U; virt = virt + 1U; phys = phys + 1U; } ldv_38890: ; if (i < nlb) { goto ldv_38889; } else { } __cond = 0; if ((int )__cond) { { __compiletime_assert_538(); } } else { } { __kunmap_atomic(pmap); } return; } } static void req_completion(struct nvme_queue *nvmeq , void *ctx , struct nvme_completion *cqe ) { struct nvme_iod *iod ; struct request *req ; void *tmp ; struct nvme_cmd_info *cmd_rq ; void *tmp___0 ; u16 status ; __u16 tmp___1 ; unsigned long flags ; int tmp___2 ; long tmp___3 ; bool tmp___4 ; { { iod = (struct nvme_iod *)ctx; tmp = iod_get_private(iod); req = (struct request *)tmp; tmp___0 = blk_mq_rq_to_pdu(req); cmd_rq = (struct nvme_cmd_info *)tmp___0; tmp___1 = __le16_to_cpup((__le16 const *)(& cqe->status)); status = (u16 )((int )tmp___1 >> 1); tmp___3 = ldv__builtin_expect((unsigned int )status != 0U, 0L); } if (tmp___3 != 0L) { if ((((int )status & 16384) == 0 && (req->cmd_flags & 14ULL) == 0ULL) && (unsigned long )jiffies - req->start_time < (unsigned long )req->timeout) { { blk_mq_requeue_request(req); ldv___ldv_linux_kernel_locking_spinlock_spin_lock_100((req->q)->queue_lock); tmp___2 = constant_test_bit(2L, (unsigned long const volatile *)(& (req->q)->queue_flags)); } if (tmp___2 == 0) { { blk_mq_kick_requeue_list(req->q); } } else { } { ldv_spin_unlock_irqrestore_101((req->q)->queue_lock, flags); } return; } else { } { req->errors = nvme_error_status((int )status); } } else { req->errors = 0; } if (cmd_rq->aborted != 0) { { dev_warn((struct device const *)(& ((nvmeq->dev)->pci_dev)->dev), "completing aborted command with status:%04x\n", (int )status); } } else { } if (iod->nents != 0) { { dma_unmap_sg_attrs(& ((nvmeq->dev)->pci_dev)->dev, (struct scatterlist *)(& iod->sg), iod->nents, (int )req->cmd_flags & 1 ? 1 : 2, (struct dma_attrs *)0); tmp___4 = blk_integrity_rq(req); } if ((int )tmp___4) { if ((req->cmd_flags & 1ULL) == 0ULL) { { nvme_dif_remap(req, & nvme_dif_complete); } } else { } { dma_unmap_sg_attrs(& ((nvmeq->dev)->pci_dev)->dev, (struct scatterlist *)(& iod->meta_sg), 1, (int )req->cmd_flags & 1 ? 1 : 2, (struct dma_attrs *)0); } } else { } } else { } { nvme_free_iod(nvmeq->dev, iod); blk_mq_complete_request(req); } return; } } int nvme_setup_prps(struct nvme_dev *dev , struct nvme_iod *iod , int total_len , gfp_t gfp ) { struct dma_pool *pool ; int length ; struct scatterlist *sg ; int dma_len ; u64 dma_addr ; int offset ; __le64 *prp_list ; __le64 **list ; __le64 **tmp ; dma_addr_t prp_dma ; int nprps ; int i ; u32 page_size ; void *tmp___0 ; __le64 *old_prp_list ; void *tmp___1 ; int tmp___2 ; int tmp___3 ; long tmp___4 ; { { length = total_len; sg = (struct scatterlist *)(& iod->sg); dma_len = (int )sg->dma_length; dma_addr = sg->dma_address; offset = (int )dma_addr & 4095; tmp = iod_list(iod); list = tmp; page_size = dev->page_size; length = (int )((u32 )length + ((u32 )offset - page_size)); } if (length <= 0) { return (total_len); } else { } dma_len = (int )((u32 )dma_len + ((u32 )offset - page_size)); if (dma_len != 0) { dma_addr = dma_addr + (u64 )(page_size - (u32 )offset); } else { { sg = sg_next(sg); dma_addr = sg->dma_address; dma_len = (int )sg->dma_length; } } if ((u32 )length <= page_size) { iod->first_dma = dma_addr; return (total_len); } else { } nprps = (int )((((u32 )length + page_size) - 1U) / page_size); if (nprps <= 32) { pool = dev->prp_small_pool; iod->npages = 0; } else { pool = dev->prp_page_pool; iod->npages = 1; } { tmp___0 = ldv_dma_pool_alloc_102(pool, gfp, & prp_dma); prp_list = (__le64 *)tmp___0; } if ((unsigned long )prp_list == (unsigned long )((__le64 *)0ULL)) { iod->first_dma = dma_addr; iod->npages = -1; return ((int )((u32 )(total_len - length) + page_size)); } else { } *list = prp_list; iod->first_dma = prp_dma; i = 0; ldv_38927: ; if ((u32 )i == page_size >> 3) { { old_prp_list = prp_list; tmp___1 = ldv_dma_pool_alloc_103(pool, gfp, & prp_dma); prp_list = (__le64 *)tmp___1; } if ((unsigned long )prp_list == (unsigned long )((__le64 *)0ULL)) { return (total_len - length); } else { } tmp___2 = iod->npages; iod->npages = iod->npages + 1; *(list + (unsigned long )tmp___2) = prp_list; *prp_list = *(old_prp_list + ((unsigned long )i + 0xffffffffffffffffUL)); *(old_prp_list + ((unsigned long )i + 0xffffffffffffffffUL)) = prp_dma; i = 1; } else { } tmp___3 = i; i = i + 1; *(prp_list + (unsigned long )tmp___3) = dma_addr; dma_len = (int )((u32 )dma_len - page_size); dma_addr = dma_addr + (u64 )page_size; length = (int )((u32 )length - page_size); if (length <= 0) { goto ldv_38925; } else { } if (dma_len > 0) { goto ldv_38926; } else { } { tmp___4 = ldv__builtin_expect(dma_len < 0, 0L); } if (tmp___4 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/block/nvme-core.c"), "i" (657), "i" (12UL)); __builtin_unreachable(); } } else { } { sg = sg_next(sg); dma_addr = sg->dma_address; dma_len = (int )sg->dma_length; } ldv_38926: ; goto ldv_38927; ldv_38925: ; return (total_len); } } static void nvme_submit_discard(struct nvme_queue *nvmeq , struct nvme_ns *ns , struct request *req , struct nvme_iod *iod ) { struct nvme_dsm_range *range ; __le64 **tmp ; struct nvme_command *cmnd ; unsigned int tmp___0 ; sector_t tmp___1 ; { { tmp = iod_list(iod); range = (struct nvme_dsm_range *)*tmp; cmnd = nvmeq->sq_cmds + (unsigned long )nvmeq->sq_tail; range->cattr = 0U; tmp___0 = blk_rq_bytes((struct request const *)req); range->nlb = tmp___0 >> ns->lba_shift; tmp___1 = blk_rq_pos((struct request const *)req); range->slba = nvme_block_nr(ns, tmp___1); __memset((void *)cmnd, 0, 64UL); cmnd->__annonCompField73.dsm.opcode = 9U; cmnd->__annonCompField73.dsm.command_id = (__u16 )req->tag; cmnd->__annonCompField73.dsm.nsid = ns->ns_id; cmnd->__annonCompField73.dsm.prp1 = iod->first_dma; cmnd->__annonCompField73.dsm.nr = 0U; cmnd->__annonCompField73.dsm.attributes = 4U; nvmeq->sq_tail = (u16 )((int )nvmeq->sq_tail + 1); } if ((int )nvmeq->sq_tail == (int )nvmeq->q_depth) { nvmeq->sq_tail = 0U; } else { } { writel((unsigned int )nvmeq->sq_tail, (void volatile *)nvmeq->q_db); } return; } } static void nvme_submit_flush(struct nvme_queue *nvmeq , struct nvme_ns *ns , int cmdid ) { struct nvme_command *cmnd ; { { cmnd = nvmeq->sq_cmds + (unsigned long )nvmeq->sq_tail; __memset((void *)cmnd, 0, 64UL); cmnd->__annonCompField73.common.opcode = 0U; cmnd->__annonCompField73.common.command_id = (__u16 )cmdid; cmnd->__annonCompField73.common.nsid = ns->ns_id; nvmeq->sq_tail = (u16 )((int )nvmeq->sq_tail + 1); } if ((int )nvmeq->sq_tail == (int )nvmeq->q_depth) { nvmeq->sq_tail = 0U; } else { } { writel((unsigned int )nvmeq->sq_tail, (void volatile *)nvmeq->q_db); } return; } } static int nvme_submit_iod(struct nvme_queue *nvmeq , struct nvme_iod *iod , struct nvme_ns *ns ) { struct request *req ; void *tmp ; struct nvme_command *cmnd ; u16 control ; u32 dsmgmt ; sector_t tmp___0 ; unsigned int tmp___1 ; sector_t tmp___2 ; u64 tmp___3 ; bool tmp___4 ; { { tmp = iod_get_private(iod); req = (struct request *)tmp; control = 0U; dsmgmt = 0U; } if ((req->cmd_flags & 4096ULL) != 0ULL) { control = (u16 )((unsigned int )control | 16384U); } else { } if ((req->cmd_flags & 16386ULL) != 0ULL) { control = (u16 )((unsigned int )control | 32768U); } else { } if ((req->cmd_flags & 16384ULL) != 0ULL) { dsmgmt = dsmgmt | 7U; } else { } { cmnd = nvmeq->sq_cmds + (unsigned long )nvmeq->sq_tail; __memset((void *)cmnd, 0, 64UL); cmnd->__annonCompField73.rw.opcode = (int )req->cmd_flags & 1 ? 1U : 2U; cmnd->__annonCompField73.rw.command_id = (__u16 )req->tag; cmnd->__annonCompField73.rw.nsid = ns->ns_id; cmnd->__annonCompField73.rw.prp1 = ((struct scatterlist *)(& iod->sg))->dma_address; cmnd->__annonCompField73.rw.prp2 = iod->first_dma; tmp___0 = blk_rq_pos((struct request const *)req); cmnd->__annonCompField73.rw.slba = nvme_block_nr(ns, tmp___0); tmp___1 = blk_rq_bytes((struct request const *)req); cmnd->__annonCompField73.rw.length = (unsigned int )((unsigned short )(tmp___1 >> ns->lba_shift)) - 1U; tmp___4 = blk_integrity_rq(req); } if ((int )tmp___4) { cmnd->__annonCompField73.rw.metadata = ((struct scatterlist *)(& iod->meta_sg))->dma_address; { if (ns->pi_type == 3) { goto case_3; } else { } if (ns->pi_type == 1) { goto case_1; } else { } if (ns->pi_type == 2) { goto case_2; } else { } goto switch_break; case_3: /* CIL Label */ control = (u16 )((unsigned int )control | 4096U); goto ldv_38952; case_1: /* CIL Label */ ; case_2: /* CIL Label */ { control = (u16 )((unsigned int )control | 5120U); tmp___2 = blk_rq_pos((struct request const *)req); tmp___3 = nvme_block_nr(ns, tmp___2); cmnd->__annonCompField73.rw.reftag = (unsigned int )tmp___3; } goto ldv_38952; switch_break: /* CIL Label */ ; } ldv_38952: ; } else if (ns->ms != 0) { control = (u16 )((unsigned int )control | 8192U); } else { } cmnd->__annonCompField73.rw.control = control; cmnd->__annonCompField73.rw.dsmgmt = dsmgmt; nvmeq->sq_tail = (u16 )((int )nvmeq->sq_tail + 1); if ((int )nvmeq->sq_tail == (int )nvmeq->q_depth) { nvmeq->sq_tail = 0U; } else { } { writel((unsigned int )nvmeq->sq_tail, (void volatile *)nvmeq->q_db); } return (0); } } static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx , struct blk_mq_queue_data const *bd ) { struct nvme_ns *ns ; struct nvme_queue *nvmeq ; struct request *req ; struct nvme_cmd_info *cmd ; void *tmp ; struct nvme_iod *iod ; enum dma_data_direction dma_dir ; bool tmp___0 ; int tmp___1 ; void *range ; __le64 **tmp___2 ; int tmp___3 ; unsigned int tmp___4 ; unsigned int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; bool tmp___10 ; { { ns = (struct nvme_ns *)(hctx->queue)->queuedata; nvmeq = (struct nvme_queue *)hctx->driver_data; req = bd->rq; tmp = blk_mq_rq_to_pdu(req); cmd = (struct nvme_cmd_info *)tmp; } if (ns->ms != 0) { { tmp___0 = blk_integrity_rq(req); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { if (ns->pi_type == 0 || ns->ms != 8) { { req->errors = -14; blk_mq_complete_request(req); } return (0); } else { } } else { } } else { } { iod = nvme_alloc_iod(req, ns->dev, 32U); } if ((unsigned long )iod == (unsigned long )((struct nvme_iod *)0)) { return (1); } else { } if ((req->cmd_flags & 128ULL) != 0ULL) { { range = ldv_dma_pool_alloc_104((nvmeq->dev)->prp_small_pool, 32U, & iod->first_dma); } if ((unsigned long )range == (unsigned long )((void *)0)) { goto retry_cmd; } else { } { tmp___2 = iod_list(iod); *tmp___2 = (__le64 *)range; iod->npages = 0; } } else if ((unsigned int )req->nr_phys_segments != 0U) { { dma_dir = (int )req->cmd_flags & 1 ? 1 : 2; sg_init_table((struct scatterlist *)(& iod->sg), (unsigned int )req->nr_phys_segments); iod->nents = blk_rq_map_sg(req->q, req, (struct scatterlist *)(& iod->sg)); } if (iod->nents == 0) { goto error_cmd; } else { } { tmp___3 = dma_map_sg_attrs(nvmeq->q_dmadev, (struct scatterlist *)(& iod->sg), iod->nents, dma_dir, (struct dma_attrs *)0); } if (tmp___3 == 0) { goto retry_cmd; } else { } { tmp___4 = blk_rq_bytes((struct request const *)req); tmp___5 = blk_rq_bytes((struct request const *)req); tmp___6 = nvme_setup_prps(nvmeq->dev, iod, (int )tmp___5, 32U); } if (tmp___4 != (unsigned int )tmp___6) { { dma_unmap_sg_attrs(& ((nvmeq->dev)->pci_dev)->dev, (struct scatterlist *)(& iod->sg), iod->nents, dma_dir, (struct dma_attrs *)0); } goto retry_cmd; } else { } { tmp___10 = blk_integrity_rq(req); } if ((int )tmp___10) { { tmp___7 = blk_rq_count_integrity_sg(req->q, req->bio); } if (tmp___7 != 1) { goto error_cmd; } else { } { sg_init_table((struct scatterlist *)(& iod->meta_sg), 1U); tmp___8 = blk_rq_map_integrity_sg(req->q, req->bio, (struct scatterlist *)(& iod->meta_sg)); } if (tmp___8 != 1) { goto error_cmd; } else { } if ((int )req->cmd_flags & 1) { { nvme_dif_remap(req, & nvme_dif_prep); } } else { } { tmp___9 = dma_map_sg_attrs(nvmeq->q_dmadev, (struct scatterlist *)(& iod->meta_sg), 1, dma_dir, (struct dma_attrs *)0); } if (tmp___9 == 0) { goto error_cmd; } else { } } else { } } else { } { nvme_set_info(cmd, (void *)iod, & req_completion); ldv_spin_lock_irq_105(& nvmeq->q_lock); } if ((req->cmd_flags & 128ULL) != 0ULL) { { nvme_submit_discard(nvmeq, ns, req, iod); } } else if ((req->cmd_flags & 8192ULL) != 0ULL) { { nvme_submit_flush(nvmeq, ns, req->tag); } } else { { nvme_submit_iod(nvmeq, iod, ns); } } { nvme_process_cq(nvmeq); ldv_spin_unlock_irq_106(& nvmeq->q_lock); } return (0); error_cmd: { nvme_free_iod(nvmeq->dev, iod); } return (2); retry_cmd: { nvme_free_iod(nvmeq->dev, iod); } return (1); } } static int nvme_process_cq(struct nvme_queue *nvmeq ) { u16 head ; u16 phase ; void *ctx ; void (*fn)(struct nvme_queue * , void * , struct nvme_completion * ) ; struct nvme_completion cqe ; { head = nvmeq->cq_head; phase = (u16 )nvmeq->cq_phase; ldv_38977: cqe = *(nvmeq->cqes + (unsigned long )head); if (((int )cqe.status & 1) != (int )phase) { goto ldv_38976; } else { } nvmeq->sq_head = cqe.sq_head; head = (u16 )((int )head + 1); if ((int )head == (int )nvmeq->q_depth) { head = 0U; phase = (unsigned int )phase == 0U; } else { } { ctx = nvme_finish_cmd(nvmeq, (int )cqe.command_id, & fn); (*fn)(nvmeq, ctx, & cqe); } goto ldv_38977; ldv_38976: ; if ((int )head == (int )nvmeq->cq_head && (int )phase == (int )((unsigned short )nvmeq->cq_phase)) { return (0); } else { } { writel((unsigned int )head, (void volatile *)nvmeq->q_db + (unsigned long )(nvmeq->dev)->db_stride); nvmeq->cq_head = head; nvmeq->cq_phase = (u8 )phase; nvmeq->cqe_seen = 1U; } return (1); } } static int nvme_admin_queue_rq(struct blk_mq_hw_ctx *hctx , struct blk_mq_queue_data const *bd ) { bool __warned ; int __ret_warn_once ; int __ret_warn_on ; long tmp ; long tmp___0 ; long tmp___1 ; { { __ret_warn_once = 1; tmp___1 = ldv__builtin_expect(__ret_warn_once != 0, 0L); } if (tmp___1 != 0L) { { __ret_warn_on = ! __warned; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/block/nvme-core.c", 904); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { __warned = 1; } else { } } else { } { ldv__builtin_expect(__ret_warn_once != 0, 0L); } return (2); } } static irqreturn_t nvme_irq(int irq , void *data ) { irqreturn_t result ; struct nvme_queue *nvmeq ; { { nvmeq = (struct nvme_queue *)data; ldv_spin_lock_107(& nvmeq->q_lock); nvme_process_cq(nvmeq); result = (unsigned int )nvmeq->cqe_seen != 0U; nvmeq->cqe_seen = 0U; ldv_spin_unlock_108(& nvmeq->q_lock); } return (result); } } static irqreturn_t nvme_irq_check(int irq , void *data ) { struct nvme_queue *nvmeq ; struct nvme_completion cqe ; { nvmeq = (struct nvme_queue *)data; cqe = *(nvmeq->cqes + (unsigned long )nvmeq->cq_head); if (((int )cqe.status & 1) != (int )nvmeq->cq_phase) { return (0); } else { } return (2); } } static void sync_completion(struct nvme_queue *nvmeq , void *ctx , struct nvme_completion *cqe ) { struct sync_cmd_info *cmdinfo ; __u16 tmp ; { { cmdinfo = (struct sync_cmd_info *)ctx; cmdinfo->result = __le32_to_cpup((__le32 const *)(& cqe->result)); tmp = __le16_to_cpup((__le16 const *)(& cqe->status)); cmdinfo->status = (int )tmp >> 1; wake_up_process(cmdinfo->task); } return; } } static int nvme_submit_sync_cmd(struct request *req , struct nvme_command *cmd , u32 *result , unsigned int timeout ) { struct sync_cmd_info cmdinfo ; struct nvme_cmd_info *cmd_rq ; void *tmp ; struct nvme_queue *nvmeq ; struct task_struct *tmp___0 ; long volatile __ret ; struct task_struct *tmp___1 ; struct task_struct *tmp___2 ; struct task_struct *tmp___3 ; struct task_struct *tmp___4 ; { { tmp = blk_mq_rq_to_pdu(req); cmd_rq = (struct nvme_cmd_info *)tmp; nvmeq = cmd_rq->nvmeq; cmdinfo.task = get_current(); cmdinfo.status = -4; cmd->__annonCompField73.common.command_id = (__u16 )req->tag; nvme_set_info(cmd_rq, (void *)(& cmdinfo), & sync_completion); tmp___0 = get_current(); } tmp___0->task_state_change = (unsigned long )((void *)0); __ret = 2L; { if (8UL == 1UL) { goto case_1; } else { } if (8UL == 2UL) { goto case_2; } else { } if (8UL == 4UL) { goto case_4; } else { } if (8UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___1 = get_current(); __asm__ volatile ("xchgb %b0, %1\n": "+q" (__ret), "+m" (tmp___1->state): : "memory", "cc"); } goto ldv_39022; case_2: /* CIL Label */ { tmp___2 = get_current(); __asm__ volatile ("xchgw %w0, %1\n": "+r" (__ret), "+m" (tmp___2->state): : "memory", "cc"); } goto ldv_39022; case_4: /* CIL Label */ { tmp___3 = get_current(); __asm__ volatile ("xchgl %0, %1\n": "+r" (__ret), "+m" (tmp___3->state): : "memory", "cc"); } goto ldv_39022; case_8: /* CIL Label */ { tmp___4 = get_current(); __asm__ volatile ("xchgq %q0, %1\n": "+r" (__ret), "+m" (tmp___4->state): : "memory", "cc"); } goto ldv_39022; switch_default: /* CIL Label */ { __xchg_wrong_size(); } switch_break: /* CIL Label */ ; } ldv_39022: { nvme_submit_cmd(nvmeq, cmd); schedule(); } if ((unsigned long )result != (unsigned long )((u32 *)0U)) { *result = cmdinfo.result; } else { } return (cmdinfo.status); } } static int nvme_submit_async_admin_req(struct nvme_dev *dev ) { struct nvme_queue *nvmeq ; struct nvme_command c ; struct nvme_cmd_info *cmd_info ; struct request *req ; long tmp ; bool tmp___0 ; void *tmp___1 ; int tmp___2 ; { { nvmeq = *(dev->queues); req = blk_mq_alloc_request(dev->admin_q, 1, 32U, 0); tmp___0 = IS_ERR((void const *)req); } if ((int )tmp___0) { { tmp = PTR_ERR((void const *)req); } return ((int )tmp); } else { } { req->cmd_flags = req->cmd_flags | 17179869184ULL; tmp___1 = blk_mq_rq_to_pdu(req); cmd_info = (struct nvme_cmd_info *)tmp___1; nvme_set_info(cmd_info, (void *)req, & async_req_completion); __memset((void *)(& c), 0, 64UL); c.__annonCompField73.common.opcode = 12U; c.__annonCompField73.common.command_id = (__u16 )req->tag; tmp___2 = __nvme_submit_cmd(nvmeq, & c); } return (tmp___2); } } static int nvme_submit_admin_async_cmd(struct nvme_dev *dev , struct nvme_command *cmd , struct async_cmd_info *cmdinfo , unsigned int timeout ) { struct nvme_queue *nvmeq ; struct request *req ; struct nvme_cmd_info *cmd_rq ; long tmp ; bool tmp___0 ; void *tmp___1 ; int tmp___2 ; { { nvmeq = *(dev->queues); req = blk_mq_alloc_request(dev->admin_q, 1, 208U, 0); tmp___0 = IS_ERR((void const *)req); } if ((int )tmp___0) { { tmp = PTR_ERR((void const *)req); } return ((int )tmp); } else { } { req->timeout = timeout; tmp___1 = blk_mq_rq_to_pdu(req); cmd_rq = (struct nvme_cmd_info *)tmp___1; cmdinfo->req = req; nvme_set_info(cmd_rq, (void *)cmdinfo, & async_completion); cmdinfo->status = -4; cmd->__annonCompField73.common.command_id = (__u16 )req->tag; tmp___2 = nvme_submit_cmd(nvmeq, cmd); } return (tmp___2); } } static int __nvme_submit_admin_cmd(struct nvme_dev *dev , struct nvme_command *cmd , u32 *result , unsigned int timeout ) { int res ; struct request *req ; long tmp ; bool tmp___0 ; { { req = blk_mq_alloc_request(dev->admin_q, 1, 208U, 0); tmp___0 = IS_ERR((void const *)req); } if ((int )tmp___0) { { tmp = PTR_ERR((void const *)req); } return ((int )tmp); } else { } { res = nvme_submit_sync_cmd(req, cmd, result, timeout); blk_mq_free_request(req); } return (res); } } int nvme_submit_admin_cmd(struct nvme_dev *dev , struct nvme_command *cmd , u32 *result ) { int tmp ; { { tmp = __nvme_submit_admin_cmd(dev, cmd, result, (unsigned int )((int )admin_timeout * 250)); } return (tmp); } } int nvme_submit_io_cmd(struct nvme_dev *dev , struct nvme_ns *ns , struct nvme_command *cmd , u32 *result ) { int res ; struct request *req ; long tmp ; bool tmp___0 ; { { req = blk_mq_alloc_request(ns->queue, 1, 208U, 0); tmp___0 = IS_ERR((void const *)req); } if ((int )tmp___0) { { tmp = PTR_ERR((void const *)req); } return ((int )tmp); } else { } { res = nvme_submit_sync_cmd(req, cmd, result, (unsigned int )((int )nvme_io_timeout * 250)); blk_mq_free_request(req); } return (res); } } static int adapter_delete_queue(struct nvme_dev *dev , u8 opcode , u16 id ) { struct nvme_command c ; int tmp ; { { __memset((void *)(& c), 0, 64UL); c.__annonCompField73.delete_queue.opcode = opcode; c.__annonCompField73.delete_queue.qid = id; tmp = nvme_submit_admin_cmd(dev, & c, (u32 *)0U); } return (tmp); } } static int adapter_alloc_cq(struct nvme_dev *dev , u16 qid , struct nvme_queue *nvmeq ) { struct nvme_command c ; int flags ; int tmp ; { { flags = 3; __memset((void *)(& c), 0, 64UL); c.__annonCompField73.create_cq.opcode = 5U; c.__annonCompField73.create_cq.prp1 = nvmeq->cq_dma_addr; c.__annonCompField73.create_cq.cqid = qid; c.__annonCompField73.create_cq.qsize = (unsigned int )nvmeq->q_depth - 1U; c.__annonCompField73.create_cq.cq_flags = (unsigned short )flags; c.__annonCompField73.create_cq.irq_vector = (unsigned short )nvmeq->cq_vector; tmp = nvme_submit_admin_cmd(dev, & c, (u32 *)0U); } return (tmp); } } static int adapter_alloc_sq(struct nvme_dev *dev , u16 qid , struct nvme_queue *nvmeq ) { struct nvme_command c ; int flags ; int tmp ; { { flags = 5; __memset((void *)(& c), 0, 64UL); c.__annonCompField73.create_sq.opcode = 1U; c.__annonCompField73.create_sq.prp1 = nvmeq->sq_dma_addr; c.__annonCompField73.create_sq.sqid = qid; c.__annonCompField73.create_sq.qsize = (unsigned int )nvmeq->q_depth - 1U; c.__annonCompField73.create_sq.sq_flags = (unsigned short )flags; c.__annonCompField73.create_sq.cqid = qid; tmp = nvme_submit_admin_cmd(dev, & c, (u32 *)0U); } return (tmp); } } static int adapter_delete_cq(struct nvme_dev *dev , u16 cqid ) { int tmp ; { { tmp = adapter_delete_queue(dev, 4, (int )cqid); } return (tmp); } } static int adapter_delete_sq(struct nvme_dev *dev , u16 sqid ) { int tmp ; { { tmp = adapter_delete_queue(dev, 0, (int )sqid); } return (tmp); } } int nvme_identify(struct nvme_dev *dev , unsigned int nsid , unsigned int cns , dma_addr_t dma_addr ) { struct nvme_command c ; int tmp ; { { __memset((void *)(& c), 0, 64UL); c.__annonCompField73.identify.opcode = 6U; c.__annonCompField73.identify.nsid = nsid; c.__annonCompField73.identify.prp1 = dma_addr; c.__annonCompField73.identify.cns = cns; tmp = nvme_submit_admin_cmd(dev, & c, (u32 *)0U); } return (tmp); } } int nvme_get_features(struct nvme_dev *dev , unsigned int fid , unsigned int nsid , dma_addr_t dma_addr , u32 *result ) { struct nvme_command c ; int tmp ; { { __memset((void *)(& c), 0, 64UL); c.__annonCompField73.features.opcode = 10U; c.__annonCompField73.features.nsid = nsid; c.__annonCompField73.features.prp1 = dma_addr; c.__annonCompField73.features.fid = fid; tmp = nvme_submit_admin_cmd(dev, & c, result); } return (tmp); } } int nvme_set_features(struct nvme_dev *dev , unsigned int fid , unsigned int dword11 , dma_addr_t dma_addr , u32 *result ) { struct nvme_command c ; int tmp ; { { __memset((void *)(& c), 0, 64UL); c.__annonCompField73.features.opcode = 9U; c.__annonCompField73.features.prp1 = dma_addr; c.__annonCompField73.features.fid = fid; c.__annonCompField73.features.dword11 = dword11; tmp = nvme_submit_admin_cmd(dev, & c, result); } return (tmp); } } static void nvme_abort_req(struct request *req ) { struct nvme_cmd_info *cmd_rq ; void *tmp ; struct nvme_queue *nvmeq ; struct nvme_dev *dev ; struct request *abort_req ; struct nvme_cmd_info *abort_cmd ; struct nvme_command cmd ; unsigned long flags ; unsigned int tmp___0 ; bool tmp___1 ; void *tmp___2 ; int tmp___3 ; { { tmp = blk_mq_rq_to_pdu(req); cmd_rq = (struct nvme_cmd_info *)tmp; nvmeq = cmd_rq->nvmeq; dev = nvmeq->dev; } if ((unsigned int )nvmeq->qid == 0U || cmd_rq->aborted != 0) { { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_109(& dev_list_lock); tmp___0 = work_busy(& dev->reset_work); } if (tmp___0 != 0U) { goto out; } else { } { list_del_init(& dev->node); dev_warn((struct device const *)(& (dev->pci_dev)->dev), "I/O %d QID %d timeout, reset controller\n", req->tag, (int )nvmeq->qid); dev->reset_workfn = & nvme_reset_failed_dev; queue_work(nvme_workq, & dev->reset_work); } out: { ldv_spin_unlock_irqrestore_110(& dev_list_lock, flags); } return; } else { } if ((unsigned int )dev->abort_limit == 0U) { return; } else { } { abort_req = blk_mq_alloc_request(dev->admin_q, 1, 32U, 0); tmp___1 = IS_ERR((void const *)abort_req); } if ((int )tmp___1) { return; } else { } { tmp___2 = blk_mq_rq_to_pdu(abort_req); abort_cmd = (struct nvme_cmd_info *)tmp___2; nvme_set_info(abort_cmd, (void *)abort_req, & abort_completion); __memset((void *)(& cmd), 0, 64UL); cmd.__annonCompField73.abort.opcode = 8U; cmd.__annonCompField73.abort.cid = (__u16 )req->tag; cmd.__annonCompField73.abort.sqid = nvmeq->qid; cmd.__annonCompField73.abort.command_id = (__u16 )abort_req->tag; dev->abort_limit = (u16 )((int )dev->abort_limit - 1); cmd_rq->aborted = 1; dev_warn((struct device const *)nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag, (int )nvmeq->qid); tmp___3 = nvme_submit_cmd(*(dev->queues), & cmd); } if (tmp___3 < 0) { { dev_warn((struct device const *)nvmeq->q_dmadev, "Could not abort I/O %d QID %d", req->tag, (int )nvmeq->qid); blk_mq_free_request(abort_req); } } else { } return; } } static void nvme_cancel_queue_ios(struct blk_mq_hw_ctx *hctx , struct request *req , void *data , bool reserved ) { struct nvme_queue *nvmeq ; void *ctx ; void (*fn)(struct nvme_queue * , void * , struct nvme_completion * ) ; struct nvme_cmd_info *cmd ; struct nvme_completion cqe ; int tmp ; void *tmp___0 ; int tmp___1 ; { { nvmeq = (struct nvme_queue *)data; tmp = blk_mq_request_started(req); } if (tmp == 0) { return; } else { } { tmp___0 = blk_mq_rq_to_pdu(req); cmd = (struct nvme_cmd_info *)tmp___0; } if ((unsigned long )cmd->ctx == (unsigned long )((void *)-2401263026318605556L)) { return; } else { } { tmp___1 = constant_test_bit(5L, (unsigned long const volatile *)(& (req->q)->queue_flags)); } if (tmp___1 != 0) { cqe.status = 32782U; } else { cqe.status = 14U; } { dev_warn((struct device const *)nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n", req->tag, (int )nvmeq->qid); ctx = cancel_cmd_info(cmd, & fn); (*fn)(nvmeq, ctx, & cqe); } return; } } static enum blk_eh_timer_return nvme_timeout(struct request *req , bool reserved ) { struct nvme_cmd_info *cmd ; void *tmp ; struct nvme_queue *nvmeq ; { { tmp = blk_mq_rq_to_pdu(req); cmd = (struct nvme_cmd_info *)tmp; nvmeq = cmd->nvmeq; dev_warn((struct device const *)nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag, (int )nvmeq->qid); ldv_spin_lock_irq_105(& nvmeq->q_lock); nvme_abort_req(req); ldv_spin_unlock_irq_106(& nvmeq->q_lock); } return (2); } } static void nvme_free_queue(struct nvme_queue *nvmeq ) { { { dma_free_attrs(nvmeq->q_dmadev, (unsigned long )nvmeq->q_depth * 16UL, (void *)nvmeq->cqes, nvmeq->cq_dma_addr, (struct dma_attrs *)0); dma_free_attrs(nvmeq->q_dmadev, (unsigned long )nvmeq->q_depth * 64UL, (void *)nvmeq->sq_cmds, nvmeq->sq_dma_addr, (struct dma_attrs *)0); kfree((void const *)nvmeq); } return; } } static void nvme_free_queues(struct nvme_dev *dev , int lowest ) { int i ; struct nvme_queue *nvmeq ; { i = (int )(dev->queue_count - 1U); goto ldv_39154; ldv_39153: { nvmeq = *(dev->queues + (unsigned long )i); dev->queue_count = dev->queue_count - 1U; *(dev->queues + (unsigned long )i) = (struct nvme_queue *)0; nvme_free_queue(nvmeq); i = i - 1; } ldv_39154: ; if (i >= lowest) { goto ldv_39153; } else { } return; } } static int nvme_suspend_queue(struct nvme_queue *nvmeq ) { int vector ; { { ldv_spin_lock_irq_105(& nvmeq->q_lock); } if ((int )nvmeq->cq_vector == -1) { { ldv_spin_unlock_irq_106(& nvmeq->q_lock); } return (1); } else { } { vector = (int )((nvmeq->dev)->entry + (unsigned long )nvmeq->cq_vector)->vector; (nvmeq->dev)->online_queues = (nvmeq->dev)->online_queues - 1U; nvmeq->cq_vector = -1; ldv_spin_unlock_irq_106(& nvmeq->q_lock); irq_set_affinity_hint((unsigned int )vector, (struct cpumask const *)0); ldv_free_irq_116((unsigned int )vector, (void *)nvmeq); } return (0); } } static void nvme_clear_queue(struct nvme_queue *nvmeq ) { struct blk_mq_hw_ctx *hctx ; { { hctx = nvmeq->hctx; ldv_spin_lock_irq_105(& nvmeq->q_lock); } if ((unsigned long )hctx != (unsigned long )((struct blk_mq_hw_ctx *)0) && (unsigned long )hctx->tags != (unsigned long )((struct blk_mq_tags *)0)) { { blk_mq_tag_busy_iter(hctx, & nvme_cancel_queue_ios, (void *)nvmeq); } } else { } { ldv_spin_unlock_irq_106(& nvmeq->q_lock); } return; } } static void nvme_disable_queue(struct nvme_dev *dev , int qid ) { struct nvme_queue *nvmeq ; int tmp ; unsigned int tmp___0 ; { nvmeq = *(dev->queues + (unsigned long )qid); if ((unsigned long )nvmeq == (unsigned long )((struct nvme_queue *)0)) { return; } else { } { tmp = nvme_suspend_queue(nvmeq); } if (tmp != 0) { return; } else { } if (qid != 0) { { tmp___0 = readl((void const volatile *)(& (dev->bar)->csts)); } if (tmp___0 != 4294967295U) { { adapter_delete_sq(dev, (int )((u16 )qid)); adapter_delete_cq(dev, (int )((u16 )qid)); } } else { } } else { } if (qid == 0 && (unsigned long )dev->admin_q != (unsigned long )((struct request_queue *)0)) { { blk_mq_freeze_queue_start(dev->admin_q); } } else { } { ldv_spin_lock_irq_105(& nvmeq->q_lock); nvme_process_cq(nvmeq); ldv_spin_unlock_irq_106(& nvmeq->q_lock); } return; } } static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev , int qid , int depth ) { struct device *dmadev ; struct nvme_queue *nvmeq ; void *tmp ; void *tmp___0 ; void *tmp___1 ; struct lock_class_key __key ; { { dmadev = & (dev->pci_dev)->dev; tmp = kzalloc(240UL, 208U); nvmeq = (struct nvme_queue *)tmp; } if ((unsigned long )nvmeq == (unsigned long )((struct nvme_queue *)0)) { return ((struct nvme_queue *)0); } else { } { tmp___0 = dma_zalloc_coherent(dmadev, (unsigned long )depth * 16UL, & nvmeq->cq_dma_addr, 208U); nvmeq->cqes = (struct nvme_completion volatile *)tmp___0; } if ((unsigned long )nvmeq->cqes == (unsigned long )((struct nvme_completion volatile *)0)) { goto free_nvmeq; } else { } { tmp___1 = dma_alloc_attrs(dmadev, (unsigned long )depth * 64UL, & nvmeq->sq_dma_addr, 208U, (struct dma_attrs *)0); nvmeq->sq_cmds = (struct nvme_command *)tmp___1; } if ((unsigned long )nvmeq->sq_cmds == (unsigned long )((struct nvme_command *)0)) { goto free_cqdma; } else { } { nvmeq->q_dmadev = dmadev; nvmeq->dev = dev; snprintf((char *)(& nvmeq->irqname), 24UL, "nvme%dq%d", dev->instance, qid); spinlock_check(& nvmeq->q_lock); __raw_spin_lock_init(& nvmeq->q_lock.__annonCompField18.rlock, "&(&nvmeq->q_lock)->rlock", & __key); nvmeq->cq_head = 0U; nvmeq->cq_phase = 1U; nvmeq->q_db = dev->dbs + (unsigned long )(((u32 )qid * dev->db_stride) * 2U); nvmeq->q_depth = (u16 )depth; nvmeq->qid = (u16 )qid; dev->queue_count = dev->queue_count + 1U; *(dev->queues + (unsigned long )qid) = nvmeq; } return (nvmeq); free_cqdma: { dma_free_attrs(dmadev, (unsigned long )depth * 16UL, (void *)nvmeq->cqes, nvmeq->cq_dma_addr, (struct dma_attrs *)0); } free_nvmeq: { kfree((void const *)nvmeq); } return ((struct nvme_queue *)0); } } static int queue_request_irq(struct nvme_dev *dev , struct nvme_queue *nvmeq , char const *name ) { int tmp ; int tmp___0 ; { if (use_threaded_interrupts != 0) { { tmp = ldv_request_threaded_irq_121((dev->entry + (unsigned long )nvmeq->cq_vector)->vector, & nvme_irq_check, & nvme_irq, 128UL, name, (void *)nvmeq); } return (tmp); } else { } { tmp___0 = ldv_request_irq_122((dev->entry + (unsigned long )nvmeq->cq_vector)->vector, & nvme_irq, 128UL, name, (void *)nvmeq); } return (tmp___0); } } static void nvme_init_queue(struct nvme_queue *nvmeq , u16 qid ) { struct nvme_dev *dev ; { { dev = nvmeq->dev; ldv_spin_lock_irq_105(& nvmeq->q_lock); nvmeq->sq_tail = 0U; nvmeq->cq_head = 0U; nvmeq->cq_phase = 1U; nvmeq->q_db = dev->dbs + (unsigned long )(((u32 )qid * dev->db_stride) * 2U); __memset((void *)nvmeq->cqes, 0, (unsigned long )nvmeq->q_depth * 16UL); dev->online_queues = dev->online_queues + 1U; ldv_spin_unlock_irq_106(& nvmeq->q_lock); } return; } } static int nvme_create_queue(struct nvme_queue *nvmeq , int qid ) { struct nvme_dev *dev ; int result ; { { dev = nvmeq->dev; nvmeq->cq_vector = (s16 )((unsigned int )((unsigned short )qid) + 65535U); result = adapter_alloc_cq(dev, (int )((u16 )qid), nvmeq); } if (result < 0) { return (result); } else { } { result = adapter_alloc_sq(dev, (int )((u16 )qid), nvmeq); } if (result < 0) { goto release_cq; } else { } { result = queue_request_irq(dev, nvmeq, (char const *)(& nvmeq->irqname)); } if (result < 0) { goto release_sq; } else { } { nvme_init_queue(nvmeq, (int )((u16 )qid)); } return (result); release_sq: { adapter_delete_sq(dev, (int )((u16 )qid)); } release_cq: { adapter_delete_cq(dev, (int )((u16 )qid)); } return (result); } } static int nvme_wait_ready(struct nvme_dev *dev , u64 cap , bool enabled ) { unsigned long timeout ; u32 bit ; struct task_struct *tmp ; int tmp___0 ; unsigned int tmp___1 ; { bit = (u32 )enabled; timeout = (unsigned long )(((((cap >> 24) & 255ULL) + 1ULL) * 250ULL) / 2ULL + (unsigned long long )jiffies); goto ldv_39211; ldv_39210: { msleep(100U); tmp = get_current(); tmp___0 = fatal_signal_pending(tmp); } if (tmp___0 != 0) { return (-4); } else { } if ((long )(timeout - (unsigned long )jiffies) < 0L) { { dev_err((struct device const *)(& (dev->pci_dev)->dev), "Device not ready; aborting %s\n", (int )enabled ? (char *)"initialisation" : (char *)"reset"); } return (-19); } else { } ldv_39211: { tmp___1 = readl((void const volatile *)(& (dev->bar)->csts)); } if ((tmp___1 & 1U) != bit) { goto ldv_39210; } else { } return (0); } } static int nvme_disable_ctrl(struct nvme_dev *dev , u64 cap ) { int tmp ; { { dev->ctrl_config = dev->ctrl_config & 4294918143U; dev->ctrl_config = dev->ctrl_config & 4294967294U; writel(dev->ctrl_config, (void volatile *)(& (dev->bar)->cc)); tmp = nvme_wait_ready(dev, cap, 0); } return (tmp); } } static int nvme_enable_ctrl(struct nvme_dev *dev , u64 cap ) { int tmp ; { { dev->ctrl_config = dev->ctrl_config & 4294918143U; dev->ctrl_config = dev->ctrl_config | 1U; writel(dev->ctrl_config, (void volatile *)(& (dev->bar)->cc)); tmp = nvme_wait_ready(dev, cap, 1); } return (tmp); } } static int nvme_shutdown_ctrl(struct nvme_dev *dev ) { unsigned long timeout ; struct task_struct *tmp ; int tmp___0 ; unsigned int tmp___1 ; { { dev->ctrl_config = dev->ctrl_config & 4294918143U; dev->ctrl_config = dev->ctrl_config | 16384U; writel(dev->ctrl_config, (void volatile *)(& (dev->bar)->cc)); timeout = (unsigned long )((int )shutdown_timeout * 250) + (unsigned long )jiffies; } goto ldv_39232; ldv_39231: { msleep(100U); tmp = get_current(); tmp___0 = fatal_signal_pending(tmp); } if (tmp___0 != 0) { return (-4); } else { } if ((long )(timeout - (unsigned long )jiffies) < 0L) { { dev_err((struct device const *)(& (dev->pci_dev)->dev), "Device shutdown incomplete; abort shutdown\n"); } return (-19); } else { } ldv_39232: { tmp___1 = readl((void const volatile *)(& (dev->bar)->csts)); } if ((tmp___1 & 12U) != 8U) { goto ldv_39231; } else { } return (0); } } static struct blk_mq_ops nvme_mq_admin_ops = {& nvme_admin_queue_rq, & blk_mq_map_queue, & nvme_timeout, 0, & nvme_admin_init_hctx, & nvme_exit_hctx, & nvme_admin_init_request, 0}; static struct blk_mq_ops nvme_mq_ops = {& nvme_queue_rq, & blk_mq_map_queue, & nvme_timeout, 0, & nvme_init_hctx, & nvme_exit_hctx, & nvme_init_request, 0}; static void nvme_dev_remove_admin(struct nvme_dev *dev ) { int tmp ; { if ((unsigned long )dev->admin_q != (unsigned long )((struct request_queue *)0)) { { tmp = constant_test_bit(5L, (unsigned long const volatile *)(& (dev->admin_q)->queue_flags)); } if (tmp == 0) { { ldv_blk_cleanup_queue_125(dev->admin_q); blk_mq_free_tag_set(& dev->admin_tagset); } } else { } } else { } return; } } static int nvme_alloc_admin_tags(struct nvme_dev *dev ) { int tmp ; bool tmp___0 ; bool tmp___1 ; int tmp___2 ; { if ((unsigned long )dev->admin_q == (unsigned long )((struct request_queue *)0)) { { dev->admin_tagset.ops = & nvme_mq_admin_ops; dev->admin_tagset.nr_hw_queues = 1U; dev->admin_tagset.queue_depth = 63U; dev->admin_tagset.timeout = (unsigned int )((int )admin_timeout * 250); dev->admin_tagset.numa_node = dev_to_node(& (dev->pci_dev)->dev); dev->admin_tagset.cmd_size = nvme_cmd_size(dev); dev->admin_tagset.driver_data = (void *)dev; tmp = blk_mq_alloc_tag_set(& dev->admin_tagset); } if (tmp != 0) { return (-12); } else { } { dev->admin_q = blk_mq_init_queue(& dev->admin_tagset); tmp___0 = IS_ERR((void const *)dev->admin_q); } if ((int )tmp___0) { { blk_mq_free_tag_set(& dev->admin_tagset); } return (-12); } else { } { tmp___1 = blk_get_queue(dev->admin_q); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { { nvme_dev_remove_admin(dev); } return (-19); } else { } } else { { blk_mq_unfreeze_queue(dev->admin_q); } } return (0); } } static int nvme_configure_admin_queue(struct nvme_dev *dev ) { int result ; u32 aqa ; u64 cap ; unsigned long tmp ; struct nvme_queue *nvmeq ; unsigned int page_shift ; unsigned int dev_page_min ; unsigned int dev_page_max ; { { tmp = readq((void const volatile *)(& (dev->bar)->cap)); cap = (u64 )tmp; page_shift = 12U; dev_page_min = ((unsigned int )(cap >> 48) & 15U) + 12U; dev_page_max = ((unsigned int )(cap >> 52) & 15U) + 12U; } if (page_shift < dev_page_min) { { dev_err((struct device const *)(& (dev->pci_dev)->dev), "Minimum device page size (%u) too large for host (%u)\n", 1 << (int )dev_page_min, 1 << (int )page_shift); } return (-19); } else { } if (page_shift > dev_page_max) { { _dev_info((struct device const *)(& (dev->pci_dev)->dev), "Device maximum page size (%u) smaller than host (%u); enabling work-around\n", 1 << (int )dev_page_max, 1 << (int )page_shift); page_shift = dev_page_max; } } else { } { result = nvme_disable_ctrl(dev, cap); } if (result < 0) { return (result); } else { } nvmeq = *(dev->queues); if ((unsigned long )nvmeq == (unsigned long )((struct nvme_queue *)0)) { { nvmeq = nvme_alloc_queue(dev, 0, 64); } if ((unsigned long )nvmeq == (unsigned long )((struct nvme_queue *)0)) { return (-12); } else { } } else { } { aqa = (u32 )((int )nvmeq->q_depth + -1); aqa = aqa | (aqa << 16); dev->page_size = (u32 )(1 << (int )page_shift); dev->ctrl_config = 0U; dev->ctrl_config = dev->ctrl_config | ((page_shift - 12U) << 7); dev->ctrl_config = dev->ctrl_config; dev->ctrl_config = dev->ctrl_config | 4587520U; writel(aqa, (void volatile *)(& (dev->bar)->aqa)); writeq((unsigned long )nvmeq->sq_dma_addr, (void volatile *)(& (dev->bar)->asq)); writeq((unsigned long )nvmeq->cq_dma_addr, (void volatile *)(& (dev->bar)->acq)); result = nvme_enable_ctrl(dev, cap); } if (result != 0) { goto free_nvmeq; } else { } { nvmeq->cq_vector = 0; result = queue_request_irq(dev, nvmeq, (char const *)(& nvmeq->irqname)); } if (result != 0) { goto free_nvmeq; } else { } return (result); free_nvmeq: { nvme_free_queues(dev, 0); } return (result); } } struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev , int write , unsigned long addr , unsigned int length ) { int i ; int err ; int count ; int nents ; int offset ; struct scatterlist *sg ; struct page **pages ; struct nvme_iod *iod ; void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; unsigned int __min1 ; unsigned int __min2 ; void *tmp___3 ; { if ((addr & 3UL) != 0UL) { { tmp = ERR_PTR(-22L); } return ((struct nvme_iod *)tmp); } else { } if (length - 1U > 2147479550U) { { tmp___0 = ERR_PTR(-22L); } return ((struct nvme_iod *)tmp___0); } else { } { offset = (int )addr & 4095; count = (int )(((unsigned long )((unsigned int )offset + length) + 4095UL) / 4096UL); tmp___1 = kcalloc((size_t )count, 8UL, 208U); pages = (struct page **)tmp___1; } if ((unsigned long )pages == (unsigned long )((struct page **)0)) { { tmp___2 = ERR_PTR(-12L); } return ((struct nvme_iod *)tmp___2); } else { } { err = get_user_pages_fast(addr, count, 1, pages); } if (err < count) { count = err; err = -14; goto put_pages; } else { } { err = -12; iod = __nvme_alloc_iod((unsigned int )count, length, dev, 0UL, 208U); } if ((unsigned long )iod == (unsigned long )((struct nvme_iod *)0)) { goto put_pages; } else { } { sg = (struct scatterlist *)(& iod->sg); sg_init_table(sg, (unsigned int )count); i = 0; } goto ldv_39272; ldv_39271: { __min1 = length; __min2 = 4096U - (unsigned int )offset; sg_set_page(sg + (unsigned long )i, *(pages + (unsigned long )i), __min1 < __min2 ? __min1 : __min2, (unsigned int )offset); length = (length + (unsigned int )offset) - 4096U; offset = 0; i = i + 1; } ldv_39272: ; if (i < count) { goto ldv_39271; } else { } { sg_mark_end(sg + ((unsigned long )i + 0xffffffffffffffffUL)); iod->nents = count; nents = dma_map_sg_attrs(& (dev->pci_dev)->dev, sg, count, write != 0 ? 1 : 2, (struct dma_attrs *)0); } if (nents == 0) { goto free_iod; } else { } { kfree((void const *)pages); } return (iod); free_iod: { kfree((void const *)iod); } put_pages: i = 0; goto ldv_39276; ldv_39275: { put_page(*(pages + (unsigned long )i)); i = i + 1; } ldv_39276: ; if (i < count) { goto ldv_39275; } else { } { kfree((void const *)pages); tmp___3 = ERR_PTR((long )err); } return ((struct nvme_iod *)tmp___3); } } void nvme_unmap_user_pages(struct nvme_dev *dev , int write , struct nvme_iod *iod ) { int i ; struct page *tmp ; { { dma_unmap_sg_attrs(& (dev->pci_dev)->dev, (struct scatterlist *)(& iod->sg), iod->nents, write != 0 ? 1 : 2, (struct dma_attrs *)0); i = 0; } goto ldv_39285; ldv_39284: { tmp = sg_page((struct scatterlist *)(& iod->sg) + (unsigned long )i); put_page(tmp); i = i + 1; } ldv_39285: ; if (i < iod->nents) { goto ldv_39284; } else { } return; } } extern void __compiletime_assert_1762(void) ; extern void __compiletime_assert_1788(void) ; static int nvme_submit_io(struct nvme_ns *ns , struct nvme_user_io *uio ) { struct nvme_dev *dev ; struct nvme_user_io io ; struct nvme_command c ; unsigned int length ; unsigned int meta_len ; int status ; int i ; struct nvme_iod *iod ; struct nvme_iod *meta_iod ; dma_addr_t meta_dma_addr ; void *meta ; void *meta_mem ; unsigned long tmp ; long tmp___0 ; bool tmp___1 ; long tmp___2 ; bool tmp___3 ; int meta_offset ; struct page *tmp___4 ; void *tmp___5 ; bool __cond ; int tmp___6 ; int meta_offset___0 ; struct page *tmp___7 ; void *tmp___8 ; bool __cond___0 ; { { dev = ns->dev; meta_iod = (struct nvme_iod *)0; meta_mem = meta_mem; tmp = copy_from_user((void *)(& io), (void const *)uio, 48UL); } if (tmp != 0UL) { return (-14); } else { } length = (unsigned int )(((int )io.nblocks + 1) << ns->lba_shift); meta_len = (unsigned int )(((int )io.nblocks + 1) * ns->ms); if (meta_len != 0U && ((io.metadata & 3ULL) != 0ULL || io.metadata == 0ULL)) { return (-22); } else { } { if ((int )io.opcode == 1) { goto case_1; } else { } if ((int )io.opcode == 2) { goto case_2; } else { } if ((int )io.opcode == 5) { goto case_5; } else { } goto switch_default; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; case_5: /* CIL Label */ { iod = nvme_map_user_pages(dev, (int )io.opcode & 1, (unsigned long )io.addr, length); } goto ldv_39306; switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } ldv_39306: { tmp___1 = IS_ERR((void const *)iod); } if ((int )tmp___1) { { tmp___0 = PTR_ERR((void const *)iod); } return ((int )tmp___0); } else { } { __memset((void *)(& c), 0, 64UL); c.__annonCompField73.rw.opcode = io.opcode; c.__annonCompField73.rw.flags = io.flags; c.__annonCompField73.rw.nsid = ns->ns_id; c.__annonCompField73.rw.slba = io.slba; c.__annonCompField73.rw.length = io.nblocks; c.__annonCompField73.rw.control = io.control; c.__annonCompField73.rw.dsmgmt = io.dsmgmt; c.__annonCompField73.rw.reftag = io.reftag; c.__annonCompField73.rw.apptag = io.apptag; c.__annonCompField73.rw.appmask = io.appmask; } if (meta_len != 0U) { { meta_iod = nvme_map_user_pages(dev, (int )io.opcode & 1, (unsigned long )io.metadata, meta_len); tmp___3 = IS_ERR((void const *)meta_iod); } if ((int )tmp___3) { { tmp___2 = PTR_ERR((void const *)meta_iod); status = (int )tmp___2; meta_iod = (struct nvme_iod *)0; } goto unmap; } else { } { meta_mem = dma_alloc_attrs(& (dev->pci_dev)->dev, (size_t )meta_len, & meta_dma_addr, 208U, (struct dma_attrs *)0); } if ((unsigned long )meta_mem == (unsigned long )((void *)0)) { status = -12; goto unmap; } else { } if ((int )io.opcode & 1) { meta_offset = 0; i = 0; goto ldv_39315; ldv_39314: { tmp___4 = sg_page((struct scatterlist *)(& meta_iod->sg) + (unsigned long )i); tmp___5 = kmap_atomic(tmp___4); meta = tmp___5 + (unsigned long )meta_iod->sg[i].offset; __memcpy(meta_mem + (unsigned long )meta_offset, (void const *)meta, (size_t )meta_iod->sg[i].length); __cond = 0; } if ((int )__cond) { { __compiletime_assert_1762(); } } else { } { __kunmap_atomic(meta); meta_offset = (int )((unsigned int )meta_offset + meta_iod->sg[i].length); i = i + 1; } ldv_39315: ; if (i < meta_iod->nents) { goto ldv_39314; } else { } } else { } c.__annonCompField73.rw.metadata = meta_dma_addr; } else { } { tmp___6 = nvme_setup_prps(dev, iod, (int )length, 208U); length = (unsigned int )tmp___6; c.__annonCompField73.rw.prp1 = ((struct scatterlist *)(& iod->sg))->dma_address; c.__annonCompField73.rw.prp2 = iod->first_dma; } if (length != (unsigned int )(((int )io.nblocks + 1) << ns->lba_shift)) { status = -12; } else { { status = nvme_submit_io_cmd(dev, ns, & c, (u32 *)0U); } } if (meta_len != 0U) { if (status == 0 && ((int )io.opcode & 1) == 0) { meta_offset___0 = 0; i = 0; goto ldv_39323; ldv_39322: { tmp___7 = sg_page((struct scatterlist *)(& meta_iod->sg) + (unsigned long )i); tmp___8 = kmap_atomic(tmp___7); meta = tmp___8 + (unsigned long )meta_iod->sg[i].offset; __memcpy(meta, (void const *)meta_mem + (unsigned long )meta_offset___0, (size_t )meta_iod->sg[i].length); __cond___0 = 0; } if ((int )__cond___0) { { __compiletime_assert_1788(); } } else { } { __kunmap_atomic(meta); meta_offset___0 = (int )((unsigned int )meta_offset___0 + meta_iod->sg[i].length); i = i + 1; } ldv_39323: ; if (i < meta_iod->nents) { goto ldv_39322; } else { } } else { } { dma_free_attrs(& (dev->pci_dev)->dev, (size_t )meta_len, meta_mem, meta_dma_addr, (struct dma_attrs *)0); } } else { } unmap: { nvme_unmap_user_pages(dev, (int )io.opcode & 1, iod); nvme_free_iod(dev, iod); } if ((unsigned long )meta_iod != (unsigned long )((struct nvme_iod *)0)) { { nvme_unmap_user_pages(dev, (int )io.opcode & 1, meta_iod); nvme_free_iod(dev, meta_iod); } } else { } return (status); } } static int nvme_user_cmd(struct nvme_dev *dev , struct nvme_ns *ns , struct nvme_passthru_cmd *ucmd ) { struct nvme_passthru_cmd cmd ; struct nvme_command c ; int status ; int length ; struct nvme_iod *iod ; unsigned int timeout ; bool tmp ; int tmp___0 ; unsigned long tmp___1 ; long tmp___2 ; bool tmp___3 ; unsigned long tmp___4 ; struct request *req ; long tmp___5 ; bool tmp___6 ; unsigned long tmp___7 ; { { iod = iod; tmp = capable(21); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (-13); } else { } { tmp___1 = copy_from_user((void *)(& cmd), (void const *)ucmd, 72UL); } if (tmp___1 != 0UL) { return (-14); } else { } { __memset((void *)(& c), 0, 64UL); c.__annonCompField73.common.opcode = cmd.opcode; c.__annonCompField73.common.flags = cmd.flags; c.__annonCompField73.common.nsid = cmd.nsid; c.__annonCompField73.common.cdw2[0] = cmd.cdw2; c.__annonCompField73.common.cdw2[1] = cmd.cdw3; c.__annonCompField73.common.cdw10[0] = cmd.cdw10; c.__annonCompField73.common.cdw10[1] = cmd.cdw11; c.__annonCompField73.common.cdw10[2] = cmd.cdw12; c.__annonCompField73.common.cdw10[3] = cmd.cdw13; c.__annonCompField73.common.cdw10[4] = cmd.cdw14; c.__annonCompField73.common.cdw10[5] = cmd.cdw15; length = (int )cmd.data_len; } if (cmd.data_len != 0U) { { iod = nvme_map_user_pages(dev, (int )cmd.opcode & 1, (unsigned long )cmd.addr, (unsigned int )length); tmp___3 = IS_ERR((void const *)iod); } if ((int )tmp___3) { { tmp___2 = PTR_ERR((void const *)iod); } return ((int )tmp___2); } else { } { length = nvme_setup_prps(dev, iod, length, 208U); c.__annonCompField73.common.prp1 = ((struct scatterlist *)(& iod->sg))->dma_address; c.__annonCompField73.common.prp2 = iod->first_dma; } } else { } if (cmd.timeout_ms != 0U) { { tmp___4 = msecs_to_jiffies(cmd.timeout_ms); timeout = (unsigned int )tmp___4; } } else { timeout = (unsigned int )((int )admin_timeout * 250); } if ((__u32 )length != cmd.data_len) { status = -12; } else if ((unsigned long )ns != (unsigned long )((struct nvme_ns *)0)) { { req = blk_mq_alloc_request(ns->queue, 1, 208U, 0); tmp___6 = IS_ERR((void const *)req); } if ((int )tmp___6) { { tmp___5 = PTR_ERR((void const *)req); status = (int )tmp___5; } } else { { status = nvme_submit_sync_cmd(req, & c, & cmd.result, timeout); blk_mq_free_request(req); } } } else { { status = __nvme_submit_admin_cmd(dev, & c, & cmd.result, timeout); } } if (cmd.data_len != 0U) { { nvme_unmap_user_pages(dev, (int )cmd.opcode & 1, iod); nvme_free_iod(dev, iod); } } else { } if (status >= 0) { { tmp___7 = copy_to_user((void *)(& ucmd->result), (void const *)(& cmd.result), 4UL); } if (tmp___7 != 0UL) { status = -14; } else { } } else { } return (status); } } static int nvme_ioctl(struct block_device *bdev , fmode_t mode , unsigned int cmd , unsigned long arg ) { struct nvme_ns *ns ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { ns = (struct nvme_ns *)(bdev->bd_disk)->private_data; { if (cmd == 20032U) { goto case_20032; } else { } if (cmd == 3225964097U) { goto case_3225964097; } else { } if (cmd == 3225964099U) { goto case_3225964099; } else { } if (cmd == 1076907586U) { goto case_1076907586; } else { } if (cmd == 8834U) { goto case_8834; } else { } if (cmd == 8837U) { goto case_8837; } else { } goto switch_default; case_20032: /* CIL Label */ ; return ((int )ns->ns_id); case_3225964097: /* CIL Label */ { tmp = nvme_user_cmd(ns->dev, (struct nvme_ns *)0, (struct nvme_passthru_cmd *)arg); } return (tmp); case_3225964099: /* CIL Label */ { tmp___0 = nvme_user_cmd(ns->dev, ns, (struct nvme_passthru_cmd *)arg); } return (tmp___0); case_1076907586: /* CIL Label */ { tmp___1 = nvme_submit_io(ns, (struct nvme_user_io *)arg); } return (tmp___1); case_8834: /* CIL Label */ { tmp___2 = nvme_sg_get_version_num((int *)arg); } return (tmp___2); case_8837: /* CIL Label */ { tmp___3 = nvme_sg_io(ns, (struct sg_io_hdr *)arg); } return (tmp___3); switch_default: /* CIL Label */ ; return (-25); switch_break: /* CIL Label */ ; } } } static int nvme_compat_ioctl(struct block_device *bdev , fmode_t mode , unsigned int cmd , unsigned long arg ) { int tmp ; { { if (cmd == 8837U) { goto case_8837; } else { } goto switch_break; case_8837: /* CIL Label */ ; return (-515); switch_break: /* CIL Label */ ; } { tmp = nvme_ioctl(bdev, mode, cmd, arg); } return (tmp); } } static int nvme_open(struct block_device *bdev , fmode_t mode ) { int ret ; struct nvme_ns *ns ; int tmp ; { { ret = 0; ldv_spin_lock_126(& dev_list_lock); ns = (struct nvme_ns *)(bdev->bd_disk)->private_data; } if ((unsigned long )ns == (unsigned long )((struct nvme_ns *)0)) { ret = -6; } else { { tmp = kref_get_unless_zero(& (ns->dev)->kref); } if (tmp == 0) { ret = -6; } else { } } { ldv_spin_unlock_127(& dev_list_lock); } return (ret); } } static void nvme_free_dev(struct kref *kref ) ; static void nvme_release(struct gendisk *disk , fmode_t mode ) { struct nvme_ns *ns ; struct nvme_dev *dev ; { { ns = (struct nvme_ns *)disk->private_data; dev = ns->dev; kref_put(& dev->kref, & nvme_free_dev); } return; } } static int nvme_getgeo(struct block_device *bd , struct hd_geometry *geo ) { sector_t tmp ; { { geo->heads = 64U; geo->sectors = 32U; tmp = get_capacity(bd->bd_disk); geo->cylinders = (unsigned short )(tmp >> 11); } return (0); } } static void nvme_config_discard(struct nvme_ns *ns ) { u32 logical_block_size ; unsigned short tmp ; { { tmp = queue_logical_block_size(ns->queue); logical_block_size = (u32 )tmp; (ns->queue)->limits.discard_zeroes_data = 0U; (ns->queue)->limits.discard_alignment = logical_block_size; (ns->queue)->limits.discard_granularity = logical_block_size; (ns->queue)->limits.max_discard_sectors = 4294967295U; queue_flag_set_unlocked(14U, ns->queue); } return; } } static int nvme_noop_verify(struct blk_integrity_iter *iter ) { { return (0); } } static int nvme_noop_generate(struct blk_integrity_iter *iter ) { { return (0); } } struct blk_integrity nvme_meta_noop = {& nvme_noop_generate, & nvme_noop_verify, (unsigned short)0, (unsigned short)0, (unsigned short)0, (unsigned short)0, "NVME_META_NOOP", {0, {0, 0}, 0, 0, 0, 0, {{0}}, {{{0L}, {0, 0}, 0, {0, {0, 0}, 0, 0, 0UL}}, {{0, 0}, 0UL, 0, 0, 0UL, 0, 0, 0, {(char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0}, {0, {0, 0}, 0, 0, 0UL}}, 0, 0}, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0}}; static void nvme_init_integrity(struct nvme_ns *ns ) { struct blk_integrity integrity ; { { if (ns->pi_type == 3) { goto case_3; } else { } if (ns->pi_type == 1) { goto case_1; } else { } if (ns->pi_type == 2) { goto case_2; } else { } goto switch_default; case_3: /* CIL Label */ integrity = t10_pi_type3_crc; goto ldv_39392; case_1: /* CIL Label */ ; case_2: /* CIL Label */ integrity = t10_pi_type1_crc; goto ldv_39392; switch_default: /* CIL Label */ integrity = nvme_meta_noop; goto ldv_39392; switch_break: /* CIL Label */ ; } ldv_39392: { integrity.tuple_size = (unsigned short )ns->ms; blk_integrity_register(ns->disk, & integrity); blk_queue_max_integrity_segments(ns->queue, 1U); } return; } } static int nvme_revalidate_disk(struct gendisk *disk ) { struct nvme_ns *ns ; struct nvme_dev *dev ; struct nvme_id_ns *id ; dma_addr_t dma_addr ; int lbaf ; int pi_type ; int old_ms ; unsigned short bs ; void *tmp ; int tmp___0 ; unsigned short tmp___1 ; __u64 tmp___2 ; { { ns = (struct nvme_ns *)disk->private_data; dev = ns->dev; tmp = dma_alloc_attrs(& (dev->pci_dev)->dev, 4096UL, & dma_addr, 208U, (struct dma_attrs *)0); id = (struct nvme_id_ns *)tmp; } if ((unsigned long )id == (unsigned long )((struct nvme_id_ns *)0)) { { dev_warn((struct device const *)(& (dev->pci_dev)->dev), "%s: Memory alocation failure\n", "nvme_revalidate_disk"); } return (0); } else { } { tmp___0 = nvme_identify(dev, ns->ns_id, 0U, dma_addr); } if (tmp___0 != 0) { { dev_warn((struct device const *)(& (dev->pci_dev)->dev), "identify failed ns:%d, setting capacity to 0\n", ns->ns_id); __memset((void *)id, 0, 4096UL); } } else { } old_ms = ns->ms; lbaf = (int )id->flbas & 15; ns->lba_shift = (int )id->lbaf[lbaf].ds; ns->ms = (int )id->lbaf[lbaf].ms; if (ns->lba_shift == 0) { ns->lba_shift = 9; } else { } bs = (unsigned short )(1 << ns->lba_shift); pi_type = ns->ms == 8 ? (int )id->dps & 7 : 0; if ((unsigned long )disk->integrity != (unsigned long )((struct blk_integrity *)0)) { if (ns->pi_type != pi_type || ns->ms != old_ms) { { blk_integrity_unregister(disk); } } else { { tmp___1 = queue_logical_block_size(disk->queue); } if ((int )bs != (int )tmp___1) { { blk_integrity_unregister(disk); } } else if (ns->ms != 0 && ((int )id->flbas & 16) != 0) { { blk_integrity_unregister(disk); } } else { } } } else { } { ns->pi_type = pi_type; blk_queue_logical_block_size(ns->queue, (int )bs); } if (((ns->ms != 0 && (unsigned long )disk->integrity == (unsigned long )((struct blk_integrity *)0)) && (disk->flags & 16) != 0) && ((int )id->flbas & 16) == 0) { { nvme_init_integrity(ns); } } else { } if (id->ncap == 0ULL || (ns->ms != 0 && (unsigned long )disk->integrity == (unsigned long )((struct blk_integrity *)0))) { { set_capacity(disk, 0UL); } } else { { tmp___2 = __le64_to_cpup((__le64 const *)(& id->nsze)); set_capacity(disk, (sector_t )(tmp___2 << (ns->lba_shift + -9))); } } if (((int )dev->oncs & 4) != 0) { { nvme_config_discard(ns); } } else { } { dma_free_attrs(& (dev->pci_dev)->dev, 4096UL, (void *)id, dma_addr, (struct dma_attrs *)0); } return (0); } } static struct block_device_operations const nvme_fops = {& nvme_open, & nvme_release, 0, & nvme_ioctl, & nvme_compat_ioctl, 0, 0, 0, 0, & nvme_revalidate_disk, & nvme_getgeo, 0, & __this_module}; static int nvme_kthread(void *data ) { struct nvme_dev *dev ; struct nvme_dev *next ; struct task_struct *tmp ; long volatile __ret ; struct task_struct *tmp___0 ; struct task_struct *tmp___1 ; struct task_struct *tmp___2 ; struct task_struct *tmp___3 ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; int i ; unsigned int tmp___4 ; unsigned int tmp___5 ; unsigned int tmp___6 ; struct nvme_queue *nvmeq ; int tmp___7 ; struct list_head const *__mptr___1 ; unsigned long tmp___8 ; bool tmp___9 ; int tmp___10 ; { goto ldv_39444; ldv_39443: { tmp = get_current(); } tmp->task_state_change = (unsigned long )((void *)0); __ret = 1L; { if (8UL == 1UL) { goto case_1; } else { } if (8UL == 2UL) { goto case_2; } else { } if (8UL == 4UL) { goto case_4; } else { } if (8UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___0 = get_current(); __asm__ volatile ("xchgb %b0, %1\n": "+q" (__ret), "+m" (tmp___0->state): : "memory", "cc"); } goto ldv_39418; case_2: /* CIL Label */ { tmp___1 = get_current(); __asm__ volatile ("xchgw %w0, %1\n": "+r" (__ret), "+m" (tmp___1->state): : "memory", "cc"); } goto ldv_39418; case_4: /* CIL Label */ { tmp___2 = get_current(); __asm__ volatile ("xchgl %0, %1\n": "+r" (__ret), "+m" (tmp___2->state): : "memory", "cc"); } goto ldv_39418; case_8: /* CIL Label */ { tmp___3 = get_current(); __asm__ volatile ("xchgq %q0, %1\n": "+r" (__ret), "+m" (tmp___3->state): : "memory", "cc"); } goto ldv_39418; switch_default: /* CIL Label */ { __xchg_wrong_size(); } switch_break: /* CIL Label */ ; } ldv_39418: { ldv_spin_lock_126(& dev_list_lock); __mptr = (struct list_head const *)dev_list.next; dev = (struct nvme_dev *)__mptr; __mptr___0 = (struct list_head const *)dev->node.next; next = (struct nvme_dev *)__mptr___0; } goto ldv_39441; ldv_39440: { tmp___6 = readl((void const volatile *)(& (dev->bar)->csts)); } if ((tmp___6 & 2U) != 0U) { { tmp___4 = work_busy(& dev->reset_work); } if (tmp___4 != 0U) { goto ldv_39431; } else { } { list_del_init(& dev->node); tmp___5 = readl((void const volatile *)(& (dev->bar)->csts)); dev_warn((struct device const *)(& (dev->pci_dev)->dev), "Failed status: %x, reset controller\n", tmp___5); dev->reset_workfn = & nvme_reset_failed_dev; queue_work(nvme_workq, & dev->reset_work); } goto ldv_39431; } else { } i = 0; goto ldv_39438; ldv_39437: nvmeq = *(dev->queues + (unsigned long )i); if ((unsigned long )nvmeq == (unsigned long )((struct nvme_queue *)0)) { goto ldv_39433; } else { } { ldv_spin_lock_irq_105(& nvmeq->q_lock); nvme_process_cq(nvmeq); } goto ldv_39436; ldv_39435: { tmp___7 = nvme_submit_async_admin_req(dev); } if (tmp___7 != 0) { goto ldv_39434; } else { } dev->event_limit = (u8 )((int )dev->event_limit - 1); ldv_39436: ; if (i == 0 && (unsigned int )dev->event_limit != 0U) { goto ldv_39435; } else { } ldv_39434: { ldv_spin_unlock_irq_106(& nvmeq->q_lock); } ldv_39433: i = i + 1; ldv_39438: ; if ((unsigned int )i < dev->queue_count) { goto ldv_39437; } else { } ldv_39431: dev = next; __mptr___1 = (struct list_head const *)next->node.next; next = (struct nvme_dev *)__mptr___1; ldv_39441: ; if ((unsigned long )(& dev->node) != (unsigned long )(& dev_list)) { goto ldv_39440; } else { } { ldv_spin_unlock_127(& dev_list_lock); tmp___8 = round_jiffies_relative(250UL); schedule_timeout((long )tmp___8); } ldv_39444: { tmp___9 = kthread_should_stop(); } if (tmp___9) { tmp___10 = 0; } else { tmp___10 = 1; } if (tmp___10) { goto ldv_39443; } else { } return (0); } } static void nvme_alloc_ns(struct nvme_dev *dev , unsigned int nsid ) { struct nvme_ns *ns ; struct gendisk *disk ; int node ; int tmp ; void *tmp___0 ; bool tmp___1 ; { { tmp = dev_to_node(& (dev->pci_dev)->dev); node = tmp; tmp___0 = kzalloc_node(72UL, 208U, node); ns = (struct nvme_ns *)tmp___0; } if ((unsigned long )ns == (unsigned long )((struct nvme_ns *)0)) { return; } else { } { ns->queue = blk_mq_init_queue(& dev->tagset); tmp___1 = IS_ERR((void const *)ns->queue); } if ((int )tmp___1) { goto out_free_ns; } else { } { queue_flag_set_unlocked(8U, ns->queue); queue_flag_set_unlocked(12U, ns->queue); queue_flag_set_unlocked(22U, ns->queue); ns->dev = dev; (ns->queue)->queuedata = (void *)ns; disk = alloc_disk_node(0, node); } if ((unsigned long )disk == (unsigned long )((struct gendisk *)0)) { goto out_free_queue; } else { } { ns->ns_id = nsid; ns->disk = disk; ns->lba_shift = 9; list_add_tail(& ns->list, & dev->namespaces); blk_queue_logical_block_size(ns->queue, (int )((unsigned short )(1 << ns->lba_shift))); } if (dev->max_hw_sectors != 0U) { { blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors); } } else { } if (dev->stripe_size != 0U) { { blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9); } } else { } if ((int )dev->vwc & 1) { { blk_queue_flush(ns->queue, 12288U); } } else { } { disk->major = nvme_major; disk->first_minor = 0; disk->fops = & nvme_fops; disk->private_data = (void *)ns; disk->queue = ns->queue; disk->driverfs_dev = dev->device; disk->flags = 64; sprintf((char *)(& disk->disk_name), "nvme%dn%d", dev->instance, nsid); set_capacity(disk, 0UL); nvme_revalidate_disk(ns->disk); ldv_add_disk_132(ns->disk); } if (ns->ms != 0) { { revalidate_disk(ns->disk); } } else { } return; out_free_queue: { ldv_blk_cleanup_queue_133(ns->queue); } out_free_ns: { kfree((void const *)ns); } return; } } static void nvme_create_io_queues(struct nvme_dev *dev ) { unsigned int i ; struct nvme_queue *tmp ; int tmp___0 ; { i = dev->queue_count; goto ldv_39461; ldv_39460: { tmp = nvme_alloc_queue(dev, (int )i, dev->q_depth); } if ((unsigned long )tmp == (unsigned long )((struct nvme_queue *)0)) { goto ldv_39459; } else { } i = i + 1U; ldv_39461: ; if (i <= dev->max_qid) { goto ldv_39460; } else { } ldv_39459: i = dev->online_queues; goto ldv_39464; ldv_39463: { tmp___0 = nvme_create_queue(*(dev->queues + (unsigned long )i), (int )i); } if (tmp___0 != 0) { goto ldv_39462; } else { } i = i + 1U; ldv_39464: ; if (i <= dev->queue_count - 1U) { goto ldv_39463; } else { } ldv_39462: ; return; } } static int set_queue_count(struct nvme_dev *dev , int count ) { int status ; u32 result ; u32 q_count ; u32 _min1 ; u32 _min2 ; { { q_count = (u32 )((count + -1) | ((count + -1) << 16)); status = nvme_set_features(dev, 7U, q_count, 0ULL, & result); } if (status < 0) { return (status); } else { } if (status > 0) { { dev_err((struct device const *)(& (dev->pci_dev)->dev), "Could not set queue count (%d)\n", status); } return (0); } else { } _min1 = result & 65535U; _min2 = result >> 16; return ((int )((_min1 < _min2 ? _min1 : _min2) + 1U)); } } static size_t db_bar_size(struct nvme_dev *dev , unsigned int nr_io_queues ) { { return ((size_t )(((nr_io_queues + 1U) * dev->db_stride + 512U) * 8U)); } } static int nvme_setup_io_queues(struct nvme_dev *dev ) { struct nvme_queue *adminq ; struct pci_dev *pdev ; int result ; int i ; int vecs ; int nr_io_queues ; int size ; unsigned int tmp ; size_t tmp___0 ; void *tmp___1 ; size_t tmp___2 ; int _min1 ; int _min2 ; { { adminq = *(dev->queues); pdev = dev->pci_dev; tmp = cpumask_weight(cpu_possible_mask); nr_io_queues = (int )tmp; result = set_queue_count(dev, nr_io_queues); } if (result <= 0) { return (result); } else { } if (result < nr_io_queues) { nr_io_queues = result; } else { } { tmp___0 = db_bar_size(dev, (unsigned int )nr_io_queues); size = (int )tmp___0; } if (size > 8192) { { ldv_iounmap_134((void volatile *)dev->bar); } ldv_39490: { tmp___1 = ioremap(pdev->resource[0].start, (unsigned long )size); dev->bar = (struct nvme_bar *)tmp___1; } if ((unsigned long )dev->bar != (unsigned long )((struct nvme_bar *)0)) { goto ldv_39489; } else { } nr_io_queues = nr_io_queues - 1; if (nr_io_queues == 0) { return (-12); } else { } { tmp___2 = db_bar_size(dev, (unsigned int )nr_io_queues); size = (int )tmp___2; } goto ldv_39490; ldv_39489: dev->dbs = (u32 *)dev->bar + 4096U; adminq->q_db = dev->dbs; } else { } { ldv_free_irq_135((dev->entry)->vector, (void *)adminq); } if (pdev->irq == 0U) { { pci_disable_msix(pdev); } } else { } i = 0; goto ldv_39492; ldv_39491: (dev->entry + (unsigned long )i)->entry = (u16 )i; i = i + 1; ldv_39492: ; if (i < nr_io_queues) { goto ldv_39491; } else { } { vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues); } if (vecs < 0) { { _min1 = nr_io_queues; _min2 = 32; vecs = pci_enable_msi_range(pdev, 1, _min1 < _min2 ? _min1 : _min2); } if (vecs < 0) { vecs = 1; } else { i = 0; goto ldv_39498; ldv_39497: (dev->entry + (unsigned long )i)->vector = (unsigned int )i + pdev->irq; i = i + 1; ldv_39498: ; if (i < vecs) { goto ldv_39497; } else { } } } else { } { nr_io_queues = vecs; dev->max_qid = (unsigned int )nr_io_queues; result = queue_request_irq(dev, adminq, (char const *)(& adminq->irqname)); } if (result != 0) { goto free_queues; } else { } { nvme_free_queues(dev, nr_io_queues + 1); nvme_create_io_queues(dev); } return (0); free_queues: { nvme_free_queues(dev, 1); } return (result); } } static int nvme_dev_add(struct nvme_dev *dev ) { struct pci_dev *pdev ; int res ; unsigned int nn ; unsigned int i ; struct nvme_id_ctrl *ctrl ; void *mem ; dma_addr_t dma_addr ; int shift ; unsigned long tmp ; int _min1 ; int _min2 ; unsigned int max_hw_sectors ; unsigned int _min1___0 ; u32 _min2___0 ; int __min1 ; int __min2 ; int tmp___0 ; { { pdev = dev->pci_dev; tmp = readq((void const volatile *)(& (dev->bar)->cap)); shift = (int )(((unsigned int )(tmp >> 48) & 15U) + 12U); mem = dma_alloc_attrs(& pdev->dev, 4096UL, & dma_addr, 208U, (struct dma_attrs *)0); } if ((unsigned long )mem == (unsigned long )((void *)0)) { return (-12); } else { } { res = nvme_identify(dev, 0U, 1U, dma_addr); } if (res != 0) { { dev_err((struct device const *)(& pdev->dev), "Identify Controller failed (%d)\n", res); dma_free_attrs(& (dev->pci_dev)->dev, 4096UL, mem, dma_addr, (struct dma_attrs *)0); } return (-5); } else { } { ctrl = (struct nvme_id_ctrl *)mem; nn = __le32_to_cpup((__le32 const *)(& ctrl->nn)); dev->oncs = __le16_to_cpup((__le16 const *)(& ctrl->oncs)); dev->abort_limit = (unsigned int )((u16 )ctrl->acl) + 1U; dev->vwc = ctrl->vwc; _min1 = (int )ctrl->aerl + 1; _min2 = 8; dev->event_limit = (u8 )(_min1 < _min2 ? _min1 : _min2); __memcpy((void *)(& dev->serial), (void const *)(& ctrl->sn), 20UL); __memcpy((void *)(& dev->model), (void const *)(& ctrl->mn), 40UL); __memcpy((void *)(& dev->firmware_rev), (void const *)(& ctrl->fr), 8UL); } if ((unsigned int )ctrl->mdts != 0U) { dev->max_hw_sectors = (u32 )(1 << (((int )ctrl->mdts + shift) + -9)); } else { } if (*((unsigned int *)pdev + 15UL) == 156467334U && (unsigned int )ctrl->vs[3] != 0U) { dev->stripe_size = (u32 )(1 << ((int )ctrl->vs[3] + shift)); max_hw_sectors = dev->stripe_size >> (shift + -9); if (dev->max_hw_sectors != 0U) { _min1___0 = max_hw_sectors; _min2___0 = dev->max_hw_sectors; dev->max_hw_sectors = _min1___0 < _min2___0 ? _min1___0 : _min2___0; } else { dev->max_hw_sectors = max_hw_sectors; } } else { } { dma_free_attrs(& (dev->pci_dev)->dev, 4096UL, mem, dma_addr, (struct dma_attrs *)0); dev->tagset.ops = & nvme_mq_ops; dev->tagset.nr_hw_queues = dev->online_queues - 1U; dev->tagset.timeout = (unsigned int )((int )nvme_io_timeout * 250); dev->tagset.numa_node = dev_to_node(& (dev->pci_dev)->dev); __min1 = dev->q_depth; __min2 = 10240; dev->tagset.queue_depth = (unsigned int )((__min1 < __min2 ? __min1 : __min2) + -1); dev->tagset.cmd_size = nvme_cmd_size(dev); dev->tagset.flags = 1U; dev->tagset.driver_data = (void *)dev; tmp___0 = blk_mq_alloc_tag_set(& dev->tagset); } if (tmp___0 != 0) { return (0); } else { } i = 1U; goto ldv_39523; ldv_39522: { nvme_alloc_ns(dev, i); i = i + 1U; } ldv_39523: ; if (i <= nn) { goto ldv_39522; } else { } return (0); } } static int nvme_dev_map(struct nvme_dev *dev ) { u64 cap ; int bars ; int result ; struct pci_dev *pdev ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; void *tmp___3 ; unsigned int tmp___4 ; unsigned long tmp___5 ; int __min1 ; int __min2 ; { { result = -12; pdev = dev->pci_dev; tmp = pci_enable_device_mem(pdev); } if (tmp != 0) { return (result); } else { } { (dev->entry)->vector = pdev->irq; pci_set_master(pdev); bars = pci_select_bars(pdev, 512UL); } if (bars == 0) { goto disable_pci; } else { } { tmp___0 = pci_request_selected_regions(pdev, bars, "nvme"); } if (tmp___0 != 0) { goto disable_pci; } else { } { tmp___1 = dma_set_mask_and_coherent(& pdev->dev, 0xffffffffffffffffULL); } if (tmp___1 != 0) { { tmp___2 = dma_set_mask_and_coherent(& pdev->dev, 4294967295ULL); } if (tmp___2 != 0) { goto disable; } else { } } else { } { tmp___3 = ioremap(pdev->resource[0].start, 8192UL); dev->bar = (struct nvme_bar *)tmp___3; } if ((unsigned long )dev->bar == (unsigned long )((struct nvme_bar *)0)) { goto disable; } else { } { tmp___4 = readl((void const volatile *)(& (dev->bar)->csts)); } if (tmp___4 == 4294967295U) { result = -19; goto unmap; } else { } if (pdev->irq == 0U) { { result = pci_enable_msix(pdev, dev->entry, 1); } if (result < 0) { goto unmap; } else { } } else { } { tmp___5 = readq((void const volatile *)(& (dev->bar)->cap)); cap = (u64 )tmp___5; __min1 = (int )(((unsigned int )cap & 65535U) + 1U); __min2 = 1024; dev->q_depth = __min1 < __min2 ? __min1 : __min2; dev->db_stride = (u32 )(1 << ((int )(cap >> 32) & 15)); dev->dbs = (u32 *)dev->bar + 4096U; } return (0); unmap: { ldv_iounmap_136((void volatile *)dev->bar); dev->bar = (struct nvme_bar *)0; } disable: { pci_release_regions(pdev); } disable_pci: { pci_disable_device(pdev); } return (result); } } static void nvme_dev_unmap(struct nvme_dev *dev ) { int tmp ; { if ((unsigned int )*((unsigned char *)dev->pci_dev + 2522UL) != 0U) { { pci_disable_msi(dev->pci_dev); } } else if ((unsigned int )*((unsigned char *)dev->pci_dev + 2522UL) != 0U) { { pci_disable_msix(dev->pci_dev); } } else { } if ((unsigned long )dev->bar != (unsigned long )((struct nvme_bar *)0)) { { ldv_iounmap_137((void volatile *)dev->bar); dev->bar = (struct nvme_bar *)0; pci_release_regions(dev->pci_dev); } } else { } { tmp = pci_is_enabled(dev->pci_dev); } if (tmp != 0) { { pci_disable_device(dev->pci_dev); } } else { } return; } } static void nvme_wait_dq(struct nvme_delq_ctx *dq , struct nvme_dev *dev ) { struct task_struct *tmp ; long volatile __ret ; struct task_struct *tmp___0 ; struct task_struct *tmp___1 ; struct task_struct *tmp___2 ; struct task_struct *tmp___3 ; int tmp___4 ; struct task_struct *tmp___5 ; long volatile __ret___0 ; struct task_struct *tmp___6 ; struct task_struct *tmp___7 ; struct task_struct *tmp___8 ; struct task_struct *tmp___9 ; unsigned long tmp___10 ; long tmp___11 ; struct task_struct *tmp___12 ; int tmp___13 ; struct task_struct *tmp___14 ; long volatile __ret___1 ; struct task_struct *tmp___15 ; struct task_struct *tmp___16 ; struct task_struct *tmp___17 ; struct task_struct *tmp___18 ; { { dq->waiter = get_current(); __asm__ volatile ("mfence": : : "memory"); } ldv_39570: { tmp = get_current(); } tmp->task_state_change = (unsigned long )((void *)0); __ret = 130L; { if (8UL == 1UL) { goto case_1; } else { } if (8UL == 2UL) { goto case_2; } else { } if (8UL == 4UL) { goto case_4; } else { } if (8UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___0 = get_current(); __asm__ volatile ("xchgb %b0, %1\n": "+q" (__ret), "+m" (tmp___0->state): : "memory", "cc"); } goto ldv_39553; case_2: /* CIL Label */ { tmp___1 = get_current(); __asm__ volatile ("xchgw %w0, %1\n": "+r" (__ret), "+m" (tmp___1->state): : "memory", "cc"); } goto ldv_39553; case_4: /* CIL Label */ { tmp___2 = get_current(); __asm__ volatile ("xchgl %0, %1\n": "+r" (__ret), "+m" (tmp___2->state): : "memory", "cc"); } goto ldv_39553; case_8: /* CIL Label */ { tmp___3 = get_current(); __asm__ volatile ("xchgq %q0, %1\n": "+r" (__ret), "+m" (tmp___3->state): : "memory", "cc"); } goto ldv_39553; switch_default: /* CIL Label */ { __xchg_wrong_size(); } switch_break: /* CIL Label */ ; } ldv_39553: { tmp___4 = atomic_read((atomic_t const *)(& dq->refcount)); } if (tmp___4 == 0) { goto ldv_39559; } else { } { tmp___11 = schedule_timeout((long )((int )admin_timeout * 250)); } if (tmp___11 == 0L) { goto _L; } else { { tmp___12 = get_current(); tmp___13 = fatal_signal_pending(tmp___12); } if (tmp___13 != 0) { _L: /* CIL Label */ { tmp___5 = get_current(); } tmp___5->task_state_change = (unsigned long )((void *)1); __ret___0 = 0L; { if (8UL == 1UL) { goto case_1___0; } else { } if (8UL == 2UL) { goto case_2___0; } else { } if (8UL == 4UL) { goto case_4___0; } else { } if (8UL == 8UL) { goto case_8___0; } else { } goto switch_default___0; case_1___0: /* CIL Label */ { tmp___6 = get_current(); __asm__ volatile ("xchgb %b0, %1\n": "+q" (__ret___0), "+m" (tmp___6->state): : "memory", "cc"); } goto ldv_39564; case_2___0: /* CIL Label */ { tmp___7 = get_current(); __asm__ volatile ("xchgw %w0, %1\n": "+r" (__ret___0), "+m" (tmp___7->state): : "memory", "cc"); } goto ldv_39564; case_4___0: /* CIL Label */ { tmp___8 = get_current(); __asm__ volatile ("xchgl %0, %1\n": "+r" (__ret___0), "+m" (tmp___8->state): : "memory", "cc"); } goto ldv_39564; case_8___0: /* CIL Label */ { tmp___9 = get_current(); __asm__ volatile ("xchgq %q0, %1\n": "+r" (__ret___0), "+m" (tmp___9->state): : "memory", "cc"); } goto ldv_39564; switch_default___0: /* CIL Label */ { __xchg_wrong_size(); } switch_break___0: /* CIL Label */ ; } ldv_39564: { tmp___10 = readq((void const volatile *)(& (dev->bar)->cap)); nvme_disable_ctrl(dev, (u64 )tmp___10); nvme_clear_queue(*(dev->queues)); flush_kthread_worker(dq->worker); nvme_disable_queue(dev, 0); } return; } else { } } goto ldv_39570; ldv_39559: { tmp___14 = get_current(); } tmp___14->task_state_change = (unsigned long )((void *)2); __ret___1 = 0L; { if (8UL == 1UL) { goto case_1___1; } else { } if (8UL == 2UL) { goto case_2___1; } else { } if (8UL == 4UL) { goto case_4___1; } else { } if (8UL == 8UL) { goto case_8___1; } else { } goto switch_default___1; case_1___1: /* CIL Label */ { tmp___15 = get_current(); __asm__ volatile ("xchgb %b0, %1\n": "+q" (__ret___1), "+m" (tmp___15->state): : "memory", "cc"); } goto ldv_39575; case_2___1: /* CIL Label */ { tmp___16 = get_current(); __asm__ volatile ("xchgw %w0, %1\n": "+r" (__ret___1), "+m" (tmp___16->state): : "memory", "cc"); } goto ldv_39575; case_4___1: /* CIL Label */ { tmp___17 = get_current(); __asm__ volatile ("xchgl %0, %1\n": "+r" (__ret___1), "+m" (tmp___17->state): : "memory", "cc"); } goto ldv_39575; case_8___1: /* CIL Label */ { tmp___18 = get_current(); __asm__ volatile ("xchgq %q0, %1\n": "+r" (__ret___1), "+m" (tmp___18->state): : "memory", "cc"); } goto ldv_39575; switch_default___1: /* CIL Label */ { __xchg_wrong_size(); } switch_break___1: /* CIL Label */ ; } ldv_39575: ; return; } } static void nvme_put_dq(struct nvme_delq_ctx *dq ) { { { atomic_dec(& dq->refcount); } if ((unsigned long )dq->waiter != (unsigned long )((struct task_struct *)0)) { { wake_up_process(dq->waiter); } } else { } return; } } static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq ) { { { atomic_inc(& dq->refcount); } return (dq); } } static void nvme_del_queue_end(struct nvme_queue *nvmeq ) { struct nvme_delq_ctx *dq ; { { dq = (struct nvme_delq_ctx *)nvmeq->cmdinfo.ctx; nvme_put_dq(dq); } return; } } static int adapter_async_del_queue(struct nvme_queue *nvmeq , u8 opcode , void (*fn)(struct kthread_work * ) ) { struct nvme_command c ; int tmp ; { { __memset((void *)(& c), 0, 64UL); c.__annonCompField73.delete_queue.opcode = opcode; c.__annonCompField73.delete_queue.qid = nvmeq->qid; __memset((void *)(& nvmeq->cmdinfo.work), 0, 32UL); INIT_LIST_HEAD(& nvmeq->cmdinfo.work.node); nvmeq->cmdinfo.work.func = fn; tmp = nvme_submit_admin_async_cmd(nvmeq->dev, & c, & nvmeq->cmdinfo, (unsigned int )((int )admin_timeout * 250)); } return (tmp); } } static void nvme_del_cq_work_handler(struct kthread_work *work ) { struct nvme_queue *nvmeq ; struct kthread_work const *__mptr ; { { __mptr = (struct kthread_work const *)work; nvmeq = (struct nvme_queue *)__mptr + 0xffffffffffffff58UL; nvme_del_queue_end(nvmeq); } return; } } static int nvme_delete_cq(struct nvme_queue *nvmeq ) { int tmp ; { { tmp = adapter_async_del_queue(nvmeq, 4, & nvme_del_cq_work_handler); } return (tmp); } } static void nvme_del_sq_work_handler(struct kthread_work *work ) { struct nvme_queue *nvmeq ; struct kthread_work const *__mptr ; int status ; { __mptr = (struct kthread_work const *)work; nvmeq = (struct nvme_queue *)__mptr + 0xffffffffffffff58UL; status = nvmeq->cmdinfo.status; if (status == 0) { { status = nvme_delete_cq(nvmeq); } } else { } if (status != 0) { { nvme_del_queue_end(nvmeq); } } else { } return; } } static int nvme_delete_sq(struct nvme_queue *nvmeq ) { int tmp ; { { tmp = adapter_async_del_queue(nvmeq, 0, & nvme_del_sq_work_handler); } return (tmp); } } static void nvme_del_queue_start(struct kthread_work *work ) { struct nvme_queue *nvmeq ; struct kthread_work const *__mptr ; int tmp ; { { __mptr = (struct kthread_work const *)work; nvmeq = (struct nvme_queue *)__mptr + 0xffffffffffffff58UL; tmp = nvme_delete_sq(nvmeq); } if (tmp != 0) { { nvme_del_queue_end(nvmeq); } } else { } return; } } static void nvme_disable_io_queues(struct nvme_dev *dev ) { int i ; struct kthread_worker worker ; struct lock_class_key __key ; struct nvme_delq_ctx dq ; struct task_struct *kworker_task ; struct task_struct *__k ; struct task_struct *tmp ; bool tmp___0 ; int tmp___1 ; bool tmp___2 ; struct nvme_queue *nvmeq ; int tmp___3 ; struct nvme_delq_ctx *tmp___4 ; { { __init_kthread_worker(& worker, "(&worker)->lock", & __key); worker = worker; tmp = kthread_create_on_node(& kthread_worker_fn, (void *)(& worker), -1, "nvme%d", dev->instance); __k = tmp; tmp___0 = IS_ERR((void const *)__k); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { { wake_up_process(__k); } } else { } { kworker_task = __k; tmp___2 = IS_ERR((void const *)kworker_task); } if ((int )tmp___2) { { dev_err((struct device const *)(& (dev->pci_dev)->dev), "Failed to create queue del task\n"); i = (int )(dev->queue_count - 1U); } goto ldv_39634; ldv_39633: { nvme_disable_queue(dev, i); i = i - 1; } ldv_39634: ; if (i > 0) { goto ldv_39633; } else { } return; } else { } { dq.waiter = (struct task_struct *)0; atomic_set(& dq.refcount, 0); dq.worker = & worker; i = (int )(dev->queue_count - 1U); } goto ldv_39639; ldv_39638: { nvmeq = *(dev->queues + (unsigned long )i); tmp___3 = nvme_suspend_queue(nvmeq); } if (tmp___3 != 0) { goto ldv_39637; } else { } { tmp___4 = nvme_get_dq(& dq); nvmeq->cmdinfo.ctx = (void *)tmp___4; nvmeq->cmdinfo.worker = dq.worker; __memset((void *)(& nvmeq->cmdinfo.work), 0, 32UL); INIT_LIST_HEAD(& nvmeq->cmdinfo.work.node); nvmeq->cmdinfo.work.func = & nvme_del_queue_start; queue_kthread_work(dq.worker, & nvmeq->cmdinfo.work); } ldv_39637: i = i - 1; ldv_39639: ; if (i > 0) { goto ldv_39638; } else { } { nvme_wait_dq(& dq, dev); kthread_stop(kworker_task); } return; } } static void nvme_dev_list_remove(struct nvme_dev *dev ) { struct task_struct *tmp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; { { tmp = (struct task_struct *)0; ldv_spin_lock_126(& dev_list_lock); list_del_init(& dev->node); tmp___0 = list_empty((struct list_head const *)(& dev_list)); } if (tmp___0 != 0) { { tmp___1 = IS_ERR_OR_NULL((void const *)nvme_thread); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { tmp = nvme_thread; nvme_thread = (struct task_struct *)0; } else { } } else { } { ldv_spin_unlock_127(& dev_list_lock); } if ((unsigned long )tmp != (unsigned long )((struct task_struct *)0)) { { kthread_stop(tmp); } } else { } return; } } static void nvme_freeze_queues(struct nvme_dev *dev ) { struct nvme_ns *ns ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { __mptr = (struct list_head const *)dev->namespaces.next; ns = (struct nvme_ns *)__mptr; goto ldv_39654; ldv_39653: { blk_mq_freeze_queue_start(ns->queue); ldv_spin_lock_140((ns->queue)->queue_lock); queue_flag_set(2U, ns->queue); ldv_spin_unlock_141((ns->queue)->queue_lock); blk_mq_cancel_requeue_work(ns->queue); blk_mq_stop_hw_queues(ns->queue); __mptr___0 = (struct list_head const *)ns->list.next; ns = (struct nvme_ns *)__mptr___0; } ldv_39654: ; if ((unsigned long )(& ns->list) != (unsigned long )(& dev->namespaces)) { goto ldv_39653; } else { } return; } } static void nvme_unfreeze_queues(struct nvme_dev *dev ) { struct nvme_ns *ns ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { __mptr = (struct list_head const *)dev->namespaces.next; ns = (struct nvme_ns *)__mptr; goto ldv_39665; ldv_39664: { queue_flag_clear_unlocked(2U, ns->queue); blk_mq_unfreeze_queue(ns->queue); blk_mq_start_stopped_hw_queues(ns->queue, 1); blk_mq_kick_requeue_list(ns->queue); __mptr___0 = (struct list_head const *)ns->list.next; ns = (struct nvme_ns *)__mptr___0; } ldv_39665: ; if ((unsigned long )(& ns->list) != (unsigned long )(& dev->namespaces)) { goto ldv_39664; } else { } return; } } static void nvme_dev_shutdown(struct nvme_dev *dev ) { int i ; u32 csts ; struct nvme_queue *nvmeq ; { { csts = 4294967295U; nvme_dev_list_remove(dev); } if ((unsigned long )dev->bar != (unsigned long )((struct nvme_bar *)0)) { { nvme_freeze_queues(dev); csts = readl((void const volatile *)(& (dev->bar)->csts)); } } else { } if ((csts & 3U) != 1U) { i = (int )(dev->queue_count - 1U); goto ldv_39674; ldv_39673: { nvmeq = *(dev->queues + (unsigned long )i); nvme_suspend_queue(nvmeq); i = i - 1; } ldv_39674: ; if (i >= 0) { goto ldv_39673; } else { } } else { { nvme_disable_io_queues(dev); nvme_shutdown_ctrl(dev); nvme_disable_queue(dev, 0); } } { nvme_dev_unmap(dev); i = (int )(dev->queue_count - 1U); } goto ldv_39677; ldv_39676: { nvme_clear_queue(*(dev->queues + (unsigned long )i)); i = i - 1; } ldv_39677: ; if (i >= 0) { goto ldv_39676; } else { } return; } } static void nvme_dev_remove(struct nvme_dev *dev ) { struct nvme_ns *ns ; struct list_head const *__mptr ; int tmp ; struct list_head const *__mptr___0 ; { __mptr = (struct list_head const *)dev->namespaces.next; ns = (struct nvme_ns *)__mptr; goto ldv_39688; ldv_39687: ; if (((ns->disk)->flags & 16) != 0) { if ((unsigned long )(ns->disk)->integrity != (unsigned long )((struct blk_integrity *)0)) { { blk_integrity_unregister(ns->disk); } } else { } { ldv_del_gendisk_142(ns->disk); } } else { } { tmp = constant_test_bit(5L, (unsigned long const volatile *)(& (ns->queue)->queue_flags)); } if (tmp == 0) { { blk_mq_abort_requeue_list(ns->queue); ldv_blk_cleanup_queue_143(ns->queue); } } else { } __mptr___0 = (struct list_head const *)ns->list.next; ns = (struct nvme_ns *)__mptr___0; ldv_39688: ; if ((unsigned long )(& ns->list) != (unsigned long )(& dev->namespaces)) { goto ldv_39687; } else { } return; } } static int nvme_setup_prp_pools(struct nvme_dev *dev ) { struct device *dmadev ; { { dmadev = & (dev->pci_dev)->dev; dev->prp_page_pool = dma_pool_create("prp list page", dmadev, 4096UL, 4096UL, 0UL); } if ((unsigned long )dev->prp_page_pool == (unsigned long )((struct dma_pool *)0)) { return (-12); } else { } { dev->prp_small_pool = dma_pool_create("prp list 256", dmadev, 256UL, 256UL, 0UL); } if ((unsigned long )dev->prp_small_pool == (unsigned long )((struct dma_pool *)0)) { { dma_pool_destroy(dev->prp_page_pool); } return (-12); } else { } return (0); } } static void nvme_release_prp_pools(struct nvme_dev *dev ) { { { dma_pool_destroy(dev->prp_page_pool); dma_pool_destroy(dev->prp_small_pool); } return; } } static struct ida nvme_instance_ida = {{0, 0, 0, 0, {{{{{0U}}, 3735899821U, 4294967295U, (void *)-1, {0, {0, 0}, "(nvme_instance_ida).idr.lock", 0, 0UL}}}}, 0, 0}, (struct ida_bitmap *)0}; static int nvme_set_instance(struct nvme_dev *dev ) { int instance ; int error ; int tmp ; { ldv_39704: { tmp = ida_pre_get(& nvme_instance_ida, 208U); } if (tmp == 0) { return (-19); } else { } { ldv_spin_lock_126(& dev_list_lock); error = ida_get_new(& nvme_instance_ida, & instance); ldv_spin_unlock_127(& dev_list_lock); } if (error == -11) { goto ldv_39704; } else { } if (error != 0) { return (-19); } else { } dev->instance = instance; return (0); } } static void nvme_release_instance(struct nvme_dev *dev ) { { { ldv_spin_lock_126(& dev_list_lock); ida_remove(& nvme_instance_ida, dev->instance); ldv_spin_unlock_127(& dev_list_lock); } return; } } static void nvme_free_namespaces(struct nvme_dev *dev ) { struct nvme_ns *ns ; struct nvme_ns *next ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; { __mptr = (struct list_head const *)dev->namespaces.next; ns = (struct nvme_ns *)__mptr; __mptr___0 = (struct list_head const *)ns->list.next; next = (struct nvme_ns *)__mptr___0; goto ldv_39721; ldv_39720: { list_del(& ns->list); ldv_spin_lock_126(& dev_list_lock); (ns->disk)->private_data = (void *)0; ldv_spin_unlock_127(& dev_list_lock); ldv_put_disk_150(ns->disk); kfree((void const *)ns); ns = next; __mptr___1 = (struct list_head const *)next->list.next; next = (struct nvme_ns *)__mptr___1; } ldv_39721: ; if ((unsigned long )(& ns->list) != (unsigned long )(& dev->namespaces)) { goto ldv_39720; } else { } return; } } static void nvme_free_dev(struct kref *kref ) { struct nvme_dev *dev ; struct kref const *__mptr ; { { __mptr = (struct kref const *)kref; dev = (struct nvme_dev *)__mptr + 0xfffffffffffffdb0UL; pci_dev_put(dev->pci_dev); put_device(dev->device); nvme_free_namespaces(dev); nvme_release_instance(dev); blk_mq_free_tag_set(& dev->tagset); blk_put_queue(dev->admin_q); kfree((void const *)dev->queues); kfree((void const *)dev->entry); kfree((void const *)dev); } return; } } static int nvme_dev_open(struct inode *inode , struct file *f ) { struct nvme_dev *dev ; int instance ; unsigned int tmp ; int ret ; struct list_head const *__mptr ; int tmp___0 ; struct list_head const *__mptr___0 ; { { tmp = iminor((struct inode const *)inode); instance = (int )tmp; ret = -19; ldv_spin_lock_126(& dev_list_lock); __mptr = (struct list_head const *)dev_list.next; dev = (struct nvme_dev *)__mptr; } goto ldv_39742; ldv_39741: ; if (dev->instance == instance) { if ((unsigned long )dev->admin_q == (unsigned long )((struct request_queue *)0)) { ret = -11; goto ldv_39740; } else { } { tmp___0 = kref_get_unless_zero(& dev->kref); } if (tmp___0 == 0) { goto ldv_39740; } else { } f->private_data = (void *)dev; ret = 0; goto ldv_39740; } else { } __mptr___0 = (struct list_head const *)dev->node.next; dev = (struct nvme_dev *)__mptr___0; ldv_39742: ; if ((unsigned long )(& dev->node) != (unsigned long )(& dev_list)) { goto ldv_39741; } else { } ldv_39740: { ldv_spin_unlock_127(& dev_list_lock); } return (ret); } } static int nvme_dev_release(struct inode *inode , struct file *f ) { struct nvme_dev *dev ; { { dev = (struct nvme_dev *)f->private_data; kref_put(& dev->kref, & nvme_free_dev); } return (0); } } static long nvme_dev_ioctl(struct file *f , unsigned int cmd , unsigned long arg ) { struct nvme_dev *dev ; struct nvme_ns *ns ; int tmp ; int tmp___0 ; struct list_head const *__mptr ; int tmp___1 ; { dev = (struct nvme_dev *)f->private_data; { if (cmd == 3225964097U) { goto case_3225964097; } else { } if (cmd == 3225964099U) { goto case_3225964099; } else { } goto switch_default; case_3225964097: /* CIL Label */ { tmp = nvme_user_cmd(dev, (struct nvme_ns *)0, (struct nvme_passthru_cmd *)arg); } return ((long )tmp); case_3225964099: /* CIL Label */ { tmp___0 = list_empty((struct list_head const *)(& dev->namespaces)); } if (tmp___0 != 0) { return (-25L); } else { } { __mptr = (struct list_head const *)dev->namespaces.next; ns = (struct nvme_ns *)__mptr; tmp___1 = nvme_user_cmd(dev, ns, (struct nvme_passthru_cmd *)arg); } return ((long )tmp___1); switch_default: /* CIL Label */ ; return (-25L); switch_break: /* CIL Label */ ; } } } static struct file_operations const nvme_dev_fops = {& __this_module, 0, 0, 0, 0, 0, 0, 0, 0, 0, & nvme_dev_ioctl, & nvme_dev_ioctl, 0, 0, & nvme_dev_open, 0, & nvme_dev_release, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static void nvme_set_irq_hints(struct nvme_dev *dev ) { struct nvme_queue *nvmeq ; int i ; { i = 0; goto ldv_39768; ldv_39767: nvmeq = *(dev->queues + (unsigned long )i); if ((unsigned long )nvmeq->hctx == (unsigned long )((struct blk_mq_hw_ctx *)0)) { goto ldv_39766; } else { } { irq_set_affinity_hint((dev->entry + (unsigned long )nvmeq->cq_vector)->vector, (struct cpumask const *)(nvmeq->hctx)->cpumask); } ldv_39766: i = i + 1; ldv_39768: ; if ((unsigned int )i < dev->online_queues) { goto ldv_39767; } else { } return; } } static int nvme_dev_start(struct nvme_dev *dev ) { int result ; bool start_thread___0 ; int tmp ; bool tmp___0 ; struct task_struct *__k ; struct task_struct *tmp___1 ; bool tmp___2 ; int tmp___3 ; int __ret ; wait_queue_t __wait ; long __ret___0 ; long __int ; long tmp___4 ; long tmp___5 ; bool tmp___6 ; { { start_thread___0 = 0; result = nvme_dev_map(dev); } if (result != 0) { return (result); } else { } { result = nvme_configure_admin_queue(dev); } if (result != 0) { goto unmap; } else { } { ldv_spin_lock_126(& dev_list_lock); tmp = list_empty((struct list_head const *)(& dev_list)); } if (tmp != 0) { { tmp___0 = IS_ERR_OR_NULL((void const *)nvme_thread); } if ((int )tmp___0) { start_thread___0 = 1; nvme_thread = (struct task_struct *)0; } else { } } else { } { list_add(& dev->node, & dev_list); ldv_spin_unlock_127(& dev_list_lock); } if ((int )start_thread___0) { { tmp___1 = kthread_create_on_node(& nvme_kthread, (void *)0, -1, "nvme"); __k = tmp___1; tmp___2 = IS_ERR((void const *)__k); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { { wake_up_process(__k); } } else { } { nvme_thread = __k; __wake_up(& nvme_kthread_wait, 3U, 0, (void *)0); } } else { { __ret = 0; __might_sleep("drivers/block/nvme-core.c", 2849, 0); } if ((unsigned long )nvme_thread == (unsigned long )((struct task_struct *)0)) { { __ret___0 = 0L; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; } ldv_39784: { tmp___4 = prepare_to_wait_event(& nvme_kthread_wait, & __wait, 130); __int = tmp___4; } if ((unsigned long )nvme_thread != (unsigned long )((struct task_struct *)0)) { goto ldv_39783; } else { } if (__int != 0L) { __ret___0 = __int; goto ldv_39783; } else { } { schedule(); } goto ldv_39784; ldv_39783: { finish_wait(& nvme_kthread_wait, & __wait); } __ret = (int )__ret___0; } else { } } { tmp___6 = IS_ERR_OR_NULL((void const *)nvme_thread); } if ((int )tmp___6) { if ((unsigned long )nvme_thread != (unsigned long )((struct task_struct *)0)) { { tmp___5 = PTR_ERR((void const *)nvme_thread); result = (int )tmp___5; } } else { result = -4; } goto disable; } else { } { nvme_init_queue(*(dev->queues), 0); result = nvme_alloc_admin_tags(dev); } if (result != 0) { goto disable; } else { } { result = nvme_setup_io_queues(dev); } if (result != 0) { goto free_tags; } else { } { nvme_set_irq_hints(dev); } return (result); free_tags: { nvme_dev_remove_admin(dev); } disable: { nvme_disable_queue(dev, 0); nvme_dev_list_remove(dev); } unmap: { nvme_dev_unmap(dev); } return (result); } } static int nvme_remove_dead_ctrl(void *arg ) { struct nvme_dev *dev ; struct pci_dev *pdev ; void *tmp ; { { dev = (struct nvme_dev *)arg; pdev = dev->pci_dev; tmp = pci_get_drvdata(pdev); } if ((unsigned long )tmp != (unsigned long )((void *)0)) { { pci_stop_and_remove_bus_device_locked(pdev); } } else { } { kref_put(& dev->kref, & nvme_free_dev); } return (0); } } static void nvme_remove_disks(struct work_struct *ws ) { struct nvme_dev *dev ; struct work_struct const *__mptr ; { { __mptr = (struct work_struct const *)ws; dev = (struct nvme_dev *)__mptr + 0xfffffffffffffd98UL; nvme_free_queues(dev, 1); nvme_dev_remove(dev); } return; } } static int nvme_dev_resume(struct nvme_dev *dev ) { int ret ; { { ret = nvme_dev_start(dev); } if (ret != 0) { return (ret); } else { } if (dev->online_queues <= 1U) { { ldv_spin_lock_126(& dev_list_lock); dev->reset_workfn = & nvme_remove_disks; queue_work(nvme_workq, & dev->reset_work); ldv_spin_unlock_127(& dev_list_lock); } } else { { nvme_unfreeze_queues(dev); nvme_set_irq_hints(dev); } } return (0); } } static void nvme_dev_reset(struct nvme_dev *dev ) { struct task_struct *__k ; struct task_struct *tmp ; bool tmp___0 ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; { { nvme_dev_shutdown(dev); tmp___3 = nvme_dev_resume(dev); } if (tmp___3 != 0) { { dev_warn((struct device const *)(& (dev->pci_dev)->dev), "Device failed to resume\n"); kref_get(& dev->kref); tmp = kthread_create_on_node(& nvme_remove_dead_ctrl, (void *)dev, -1, "nvme%d", dev->instance); __k = tmp; tmp___0 = IS_ERR((void const *)__k); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { { wake_up_process(__k); } } else { } { tmp___2 = IS_ERR((void const *)__k); } if ((int )tmp___2) { { dev_err((struct device const *)(& (dev->pci_dev)->dev), "Failed to start controller remove task\n"); kref_put(& dev->kref, & nvme_free_dev); } } else { } } else { } return; } } static void nvme_reset_failed_dev(struct work_struct *ws ) { struct nvme_dev *dev ; struct work_struct const *__mptr ; { { __mptr = (struct work_struct const *)ws; dev = (struct nvme_dev *)__mptr + 0xfffffffffffffd98UL; nvme_dev_reset(dev); } return; } } static void nvme_reset_workfn(struct work_struct *work ) { struct nvme_dev *dev ; struct work_struct const *__mptr ; { { __mptr = (struct work_struct const *)work; dev = (struct nvme_dev *)__mptr + 0xfffffffffffffd98UL; (*(dev->reset_workfn))(work); } return; } } static void nvme_async_probe(struct work_struct *work ) ; static int nvme_probe(struct pci_dev *pdev , struct pci_device_id const *id ) { int node ; int result ; struct nvme_dev *dev ; void *tmp ; unsigned int tmp___0 ; void *tmp___1 ; unsigned int tmp___2 ; void *tmp___3 ; struct lock_class_key __key ; atomic_long_t __constr_expr_0 ; long tmp___4 ; bool tmp___5 ; struct lock_class_key __key___0 ; atomic_long_t __constr_expr_1 ; { { result = -12; node = dev_to_node(& pdev->dev); } if (node == -1) { { set_dev_node(& pdev->dev, 0); } } else { } { tmp = kzalloc_node(880UL, 208U, node); dev = (struct nvme_dev *)tmp; } if ((unsigned long )dev == (unsigned long )((struct nvme_dev *)0)) { return (-12); } else { } { tmp___0 = cpumask_weight(cpu_possible_mask); tmp___1 = kzalloc_node((unsigned long )tmp___0 * 8UL, 208U, node); dev->entry = (struct msix_entry *)tmp___1; } if ((unsigned long )dev->entry == (unsigned long )((struct msix_entry *)0)) { goto free; } else { } { tmp___2 = cpumask_weight(cpu_possible_mask); tmp___3 = kzalloc_node((unsigned long )(tmp___2 + 1U) * 8UL, 208U, node); dev->queues = (struct nvme_queue **)tmp___3; } if ((unsigned long )dev->queues == (unsigned long )((struct nvme_queue **)0)) { goto free; } else { } { INIT_LIST_HEAD(& dev->namespaces); dev->reset_workfn = & nvme_reset_failed_dev; __init_work(& dev->reset_work, 0); __constr_expr_0.counter = 137438953408L; dev->reset_work.data = __constr_expr_0; lockdep_init_map(& dev->reset_work.lockdep_map, "(&dev->reset_work)", & __key, 0); INIT_LIST_HEAD(& dev->reset_work.entry); dev->reset_work.func = & nvme_reset_workfn; dev->pci_dev = pci_dev_get(pdev); pci_set_drvdata(pdev, (void *)dev); result = nvme_set_instance(dev); } if (result != 0) { goto put_pci; } else { } { result = nvme_setup_prp_pools(dev); } if (result != 0) { goto release; } else { } { kref_init(& dev->kref); dev->device = device_create(nvme_class, & pdev->dev, (dev_t )((nvme_char_major << 20) | dev->instance), (void *)dev, "nvme%d", dev->instance); tmp___5 = IS_ERR((void const *)dev->device); } if ((int )tmp___5) { { tmp___4 = PTR_ERR((void const *)dev->device); result = (int )tmp___4; } goto release_pools; } else { } { get_device(dev->device); __init_work(& dev->probe_work, 0); __constr_expr_1.counter = 137438953408L; dev->probe_work.data = __constr_expr_1; lockdep_init_map(& dev->probe_work.lockdep_map, "(&dev->probe_work)", & __key___0, 0); INIT_LIST_HEAD(& dev->probe_work.entry); dev->probe_work.func = & nvme_async_probe; schedule_work(& dev->probe_work); } return (0); release_pools: { nvme_release_prp_pools(dev); } release: { nvme_release_instance(dev); } put_pci: { pci_dev_put(dev->pci_dev); } free: { kfree((void const *)dev->queues); kfree((void const *)dev->entry); kfree((void const *)dev); } return (result); } } static void nvme_async_probe(struct work_struct *work ) { struct nvme_dev *dev ; struct work_struct const *__mptr ; int result ; unsigned int tmp ; { { __mptr = (struct work_struct const *)work; dev = (struct nvme_dev *)__mptr + 0xfffffffffffffd48UL; result = nvme_dev_start(dev); } if (result != 0) { goto reset; } else { } if (dev->online_queues > 1U) { { result = nvme_dev_add(dev); } } else { } if (result != 0) { goto reset; } else { } { nvme_set_irq_hints(dev); } return; reset: { tmp = work_busy(& dev->reset_work); } if (tmp == 0U) { { dev->reset_workfn = & nvme_reset_failed_dev; queue_work(nvme_workq, & dev->reset_work); } } else { } return; } } static void nvme_reset_notify(struct pci_dev *pdev , bool prepare ) { struct nvme_dev *dev ; void *tmp ; { { tmp = pci_get_drvdata(pdev); dev = (struct nvme_dev *)tmp; } if ((int )prepare) { { nvme_dev_shutdown(dev); } } else { { nvme_dev_resume(dev); } } return; } } static void nvme_shutdown(struct pci_dev *pdev ) { struct nvme_dev *dev ; void *tmp ; { { tmp = pci_get_drvdata(pdev); dev = (struct nvme_dev *)tmp; nvme_dev_shutdown(dev); } return; } } static void nvme_remove(struct pci_dev *pdev ) { struct nvme_dev *dev ; void *tmp ; { { tmp = pci_get_drvdata(pdev); dev = (struct nvme_dev *)tmp; ldv_spin_lock_126(& dev_list_lock); list_del_init(& dev->node); ldv_spin_unlock_127(& dev_list_lock); pci_set_drvdata(pdev, (void *)0); flush_work(& dev->probe_work); flush_work(& dev->reset_work); nvme_dev_shutdown(dev); nvme_dev_remove(dev); nvme_dev_remove_admin(dev); device_destroy(nvme_class, (dev_t )((nvme_char_major << 20) | dev->instance)); nvme_free_queues(dev, 0); nvme_release_prp_pools(dev); kref_put(& dev->kref, & nvme_free_dev); } return; } } static int nvme_suspend(struct device *dev ) { struct pci_dev *pdev ; struct device const *__mptr ; struct nvme_dev *ndev ; void *tmp ; { { __mptr = (struct device const *)dev; pdev = (struct pci_dev *)__mptr + 0xffffffffffffff68UL; tmp = pci_get_drvdata(pdev); ndev = (struct nvme_dev *)tmp; nvme_dev_shutdown(ndev); } return (0); } } static int nvme_resume(struct device *dev ) { struct pci_dev *pdev ; struct device const *__mptr ; struct nvme_dev *ndev ; void *tmp ; int tmp___0 ; unsigned int tmp___1 ; { { __mptr = (struct device const *)dev; pdev = (struct pci_dev *)__mptr + 0xffffffffffffff68UL; tmp = pci_get_drvdata(pdev); ndev = (struct nvme_dev *)tmp; tmp___0 = nvme_dev_resume(ndev); } if (tmp___0 != 0) { { tmp___1 = work_busy(& ndev->reset_work); } if (tmp___1 == 0U) { { ndev->reset_workfn = & nvme_reset_failed_dev; queue_work(nvme_workq, & ndev->reset_work); } } else { } } else { } return (0); } } static struct dev_pm_ops const nvme_dev_pm_ops = {0, 0, & nvme_suspend, & nvme_resume, & nvme_suspend, & nvme_resume, & nvme_suspend, & nvme_resume, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct pci_error_handlers const nvme_err_handler = {(pci_ers_result_t (*)(struct pci_dev * , enum pci_channel_state ))0, (pci_ers_result_t (*)(struct pci_dev * ))0, (pci_ers_result_t (*)(struct pci_dev * ))0, (pci_ers_result_t (*)(struct pci_dev * ))0, & nvme_reset_notify, (void (*)(struct pci_dev * ))0}; static struct pci_device_id const nvme_id_table[2U] = { {4294967295U, 4294967295U, 4294967295U, 4294967295U, 67586U, 16777215U, 0UL}, {0U, 0U, 0U, 0U, 0U, 0U, 0UL}}; struct pci_device_id const __mod_pci__nvme_id_table_device_table[2U] ; static struct pci_driver nvme_driver = {{0, 0}, "nvme", (struct pci_device_id const *)(& nvme_id_table), & nvme_probe, & nvme_remove, 0, 0, 0, 0, & nvme_shutdown, 0, & nvme_err_handler, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, & nvme_dev_pm_ops, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int nvme_init(void) { int result ; struct lock_class_key __key ; struct lock_class_key __key___0 ; char const *__lock_name ; struct workqueue_struct *tmp ; void *tmp___0 ; { { __init_waitqueue_head(& nvme_kthread_wait, "&nvme_kthread_wait", & __key); __lock_name = "\"%s\"\"nvme\""; tmp = __alloc_workqueue_key("%s", 131082U, 1, & __key___0, __lock_name, (char *)"nvme"); nvme_workq = tmp; } if ((unsigned long )nvme_workq == (unsigned long )((struct workqueue_struct *)0)) { return (-12); } else { } { result = register_blkdev((unsigned int )nvme_major, "nvme"); } if (result < 0) { goto kill_workq; } else if (result > 0) { nvme_major = result; } else { } { result = ldv___register_chrdev_159((unsigned int )nvme_char_major, 0U, 1048576U, "nvme", & nvme_dev_fops); } if (result < 0) { goto unregister_blkdev; } else if (result > 0) { nvme_char_major = result; } else { } { tmp___0 = ldv_create_class(); nvme_class = (struct class *)tmp___0; } if ((unsigned long )nvme_class == (unsigned long )((struct class *)0)) { goto unregister_chrdev; } else { } { result = ldv___pci_register_driver_160(& nvme_driver, & __this_module, "nvme"); } if (result != 0) { goto destroy_class; } else { } return (0); destroy_class: { ldv_class_destroy_161(nvme_class); } unregister_chrdev: { __unregister_chrdev((unsigned int )nvme_char_major, 0U, 1048576U, "nvme"); } unregister_blkdev: { unregister_blkdev((unsigned int )nvme_major, "nvme"); } kill_workq: { destroy_workqueue(nvme_workq); } return (result); } } static void nvme_exit(void) { long tmp ; bool tmp___0 ; int tmp___1 ; long tmp___2 ; { { ldv_pci_unregister_driver_162(& nvme_driver); unregister_blkdev((unsigned int )nvme_major, "nvme"); destroy_workqueue(nvme_workq); ldv_class_destroy_163(nvme_class); __unregister_chrdev((unsigned int )nvme_char_major, 0U, 1048576U, "nvme"); tmp = ldv__builtin_expect((unsigned long )nvme_thread != (unsigned long )((struct task_struct *)0), 0L); } if (tmp != 0L) { { tmp___0 = IS_ERR((void const *)nvme_thread); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } { tmp___2 = ldv__builtin_expect((long )tmp___1, 0L); } if (tmp___2 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/block/nvme-core.c"), "i" (3177), "i" (12UL)); __builtin_unreachable(); } } else { } } else { } { _nvme_check_size(); } return; } } void ldv_EMGentry_exit_nvme_exit_14_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_nvme_init_14_10(int (*arg0)(void) ) ; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) ; int ldv___register_chrdev(int arg0 , unsigned int arg1 , unsigned int arg2 , unsigned int arg3 , char *arg4 , struct file_operations *arg5 ) ; void ldv_dispatch_deregister_12_1(struct pci_driver *arg0 ) ; void ldv_dispatch_deregister_file_operations_instance_4_14_4(void) ; void ldv_dispatch_deregister_platform_instance_11_14_5(void) ; void ldv_dispatch_irq_deregister_6_1(int arg0 ) ; void ldv_dispatch_irq_register_7_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_irq_register_8_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_pm_deregister_5_5(void) ; void ldv_dispatch_pm_register_5_6(void) ; void ldv_dispatch_register_11_2(struct file_operations *arg0 ) ; void ldv_dispatch_register_13_2(struct pci_driver *arg0 ) ; void ldv_dispatch_register_platform_instance_11_14_6(void) ; void ldv_entry_EMGentry_14(void *arg0 ) ; int main(void) ; void ldv_file_operations_file_operations_instance_0(void *arg0 ) ; void ldv_file_operations_instance_callback_0_22(int (*arg0)(struct block_device * , struct hd_geometry * ) , struct block_device *arg1 , struct hd_geometry *arg2 ) ; void ldv_file_operations_instance_callback_0_23(int (*arg0)(struct block_device * , unsigned int , unsigned int , unsigned long ) , struct block_device *arg1 , unsigned int arg2 , unsigned int arg3 , unsigned long arg4 ) ; void ldv_file_operations_instance_callback_0_26(int (*arg0)(struct gendisk * ) , struct gendisk *arg1 ) ; void ldv_file_operations_instance_callback_0_29(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) ; void ldv_file_operations_instance_callback_0_5(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) ; int ldv_file_operations_instance_probe_0_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_release_0_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_write_0_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) ; enum irqreturn ldv_interrupt_instance_handler_1_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; enum irqreturn ldv_interrupt_instance_handler_2_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_1_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_2_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_interrupt_instance_1(void *arg0 ) ; void ldv_interrupt_interrupt_instance_2(void *arg0 ) ; void ldv_pci_instance_callback_3_10(void (*arg0)(struct pci_dev * , _Bool ) , struct pci_dev *arg1 , _Bool arg2 ) ; int ldv_pci_instance_probe_3_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_3_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_3_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_3_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_3_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_3_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_3_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_3(void *arg0 ) ; void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) ; int ldv_platform_instance_probe_5_14(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) ; void ldv_platform_instance_release_5_3(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) ; void ldv_pm_ops_instance_complete_4_3(void (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_4_15(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_late_4_14(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_noirq_4_12(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_4_9(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_late_4_8(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_noirq_4_6(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_prepare_4_22(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_4_4(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_early_4_7(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_noirq_4_5(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_4_16(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_early_4_17(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_noirq_4_19(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_idle_4_27(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_resume_4_24(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_suspend_4_25(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_4_21(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_late_4_18(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_noirq_4_20(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_4_10(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_early_4_13(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_noirq_4_11(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_platform_instance_5(void *arg0 ) ; void ldv_pm_pm_ops_instance_4(void *arg0 ) ; int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) ; int ldv_request_threaded_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , enum irqreturn (*arg3)(int , void * ) , unsigned long arg4 , char *arg5 , void *arg6 ) ; struct ldv_thread ldv_thread_0 ; struct ldv_thread ldv_thread_1 ; struct ldv_thread ldv_thread_14 ; struct ldv_thread ldv_thread_2 ; struct ldv_thread ldv_thread_3 ; struct ldv_thread ldv_thread_4 ; struct ldv_thread ldv_thread_5 ; void ldv_EMGentry_exit_nvme_exit_14_2(void (*arg0)(void) ) { { { nvme_exit(); } return; } } int ldv_EMGentry_init_nvme_init_14_10(int (*arg0)(void) ) { int tmp ; { { tmp = nvme_init(); } return (tmp); } } int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) { struct pci_driver *ldv_13_pci_driver_pci_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_13_pci_driver_pci_driver = arg1; ldv_dispatch_register_13_2(ldv_13_pci_driver_pci_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } int ldv___register_chrdev(int arg0 , unsigned int arg1 , unsigned int arg2 , unsigned int arg3 , char *arg4 , struct file_operations *arg5 ) { struct file_operations *ldv_11_file_operations_file_operations ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_11_file_operations_file_operations = arg5; ldv_dispatch_register_11_2(ldv_11_file_operations_file_operations); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_dispatch_deregister_12_1(struct pci_driver *arg0 ) { { return; } } void ldv_dispatch_deregister_file_operations_instance_4_14_4(void) { { return; } } void ldv_dispatch_deregister_platform_instance_11_14_5(void) { { return; } } void ldv_dispatch_irq_deregister_6_1(int arg0 ) { int tmp ; { { tmp = ldv_undef_int(); } return; } } void ldv_dispatch_irq_register_7_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { struct ldv_struct_interrupt_instance_1 *cf_arg_1 ; struct ldv_struct_interrupt_instance_1 *cf_arg_2 ; void *tmp ; void *tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = ldv_xmalloc(40UL); cf_arg_1 = (struct ldv_struct_interrupt_instance_1 *)tmp; cf_arg_1->arg0 = arg0; cf_arg_1->arg1 = arg1; cf_arg_1->arg2 = arg2; cf_arg_1->arg3 = arg3; ldv_interrupt_interrupt_instance_1((void *)cf_arg_1); } } else { { tmp___0 = ldv_xmalloc(40UL); cf_arg_2 = (struct ldv_struct_interrupt_instance_1 *)tmp___0; cf_arg_2->arg0 = arg0; cf_arg_2->arg1 = arg1; cf_arg_2->arg2 = arg2; cf_arg_2->arg3 = arg3; ldv_interrupt_interrupt_instance_2((void *)cf_arg_2); } } return; } } void ldv_dispatch_irq_register_8_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { struct ldv_struct_interrupt_instance_1 *cf_arg_1 ; struct ldv_struct_interrupt_instance_1 *cf_arg_2 ; void *tmp ; void *tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = ldv_xmalloc(40UL); cf_arg_1 = (struct ldv_struct_interrupt_instance_1 *)tmp; cf_arg_1->arg0 = arg0; cf_arg_1->arg1 = arg1; cf_arg_1->arg2 = arg2; cf_arg_1->arg3 = arg3; ldv_interrupt_interrupt_instance_1((void *)cf_arg_1); } } else { { tmp___0 = ldv_xmalloc(40UL); cf_arg_2 = (struct ldv_struct_interrupt_instance_1 *)tmp___0; cf_arg_2->arg0 = arg0; cf_arg_2->arg1 = arg1; cf_arg_2->arg2 = arg2; cf_arg_2->arg3 = arg3; ldv_interrupt_interrupt_instance_2((void *)cf_arg_2); } } return; } } void ldv_dispatch_pm_deregister_5_5(void) { { return; } } void ldv_dispatch_pm_register_5_6(void) { struct ldv_struct_platform_instance_5 *cf_arg_4 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_4 = (struct ldv_struct_platform_instance_5 *)tmp; ldv_pm_pm_ops_instance_4((void *)cf_arg_4); } return; } } void ldv_dispatch_register_11_2(struct file_operations *arg0 ) { struct ldv_struct_file_operations_instance_0 *cf_arg_0 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_0 = (struct ldv_struct_file_operations_instance_0 *)tmp; cf_arg_0->arg0 = arg0; ldv_file_operations_file_operations_instance_0((void *)cf_arg_0); } return; } } void ldv_dispatch_register_13_2(struct pci_driver *arg0 ) { struct ldv_struct_pci_instance_3 *cf_arg_3 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_3 = (struct ldv_struct_pci_instance_3 *)tmp; cf_arg_3->arg0 = arg0; ldv_pci_pci_instance_3((void *)cf_arg_3); } return; } } void ldv_dispatch_register_platform_instance_11_14_6(void) { struct ldv_struct_platform_instance_5 *cf_arg_5 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_5 = (struct ldv_struct_platform_instance_5 *)tmp; ldv_pm_platform_instance_5((void *)cf_arg_5); } return; } } void ldv_entry_EMGentry_14(void *arg0 ) { void (*ldv_14_exit_nvme_exit_default)(void) ; int (*ldv_14_init_nvme_init_default)(void) ; int ldv_14_ret_default ; int tmp ; int tmp___0 ; { { ldv_14_ret_default = ldv_EMGentry_init_nvme_init_14_10(ldv_14_init_nvme_init_default); ldv_14_ret_default = ldv_ldv_post_init_164(ldv_14_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_14_ret_default != 0); ldv_ldv_check_final_state_165(); ldv_stop(); } return; } else { { ldv_assume(ldv_14_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dispatch_register_platform_instance_11_14_6(); ldv_dispatch_deregister_platform_instance_11_14_5(); ldv_dispatch_deregister_file_operations_instance_4_14_4(); } } else { } { ldv_EMGentry_exit_nvme_exit_14_2(ldv_14_exit_nvme_exit_default); ldv_ldv_check_final_state_166(); ldv_stop(); } return; } return; } } int main(void) { { { ldv_ldv_initialize_167(); ldv_entry_EMGentry_14((void *)0); } return 0; } } void ldv_file_operations_file_operations_instance_0(void *arg0 ) { long (*ldv_0_callback_compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*ldv_0_callback_getgeo)(struct block_device * , struct hd_geometry * ) ; int (*ldv_0_callback_ioctl)(struct block_device * , unsigned int , unsigned int , unsigned long ) ; int (*ldv_0_callback_revalidate_disk)(struct gendisk * ) ; long (*ldv_0_callback_unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; struct file_operations *ldv_0_container_file_operations ; unsigned int ldv_0_ldv_param_23_1_default ; unsigned int ldv_0_ldv_param_23_2_default ; struct gendisk *ldv_0_ldv_param_26_0_default ; unsigned int ldv_0_ldv_param_29_1_default ; char *ldv_0_ldv_param_4_1_default ; long long *ldv_0_ldv_param_4_3_default ; unsigned int ldv_0_ldv_param_5_1_default ; struct file *ldv_0_resource_file ; struct inode *ldv_0_resource_inode ; struct block_device *ldv_0_resource_struct_block_device_ptr ; int ldv_0_ret_default ; struct gendisk *ldv_0_size_cnt_struct_gendisk_ptr ; struct hd_geometry *ldv_0_size_cnt_struct_hd_geometry_ptr ; unsigned long ldv_0_size_cnt_write_size ; struct ldv_struct_file_operations_instance_0 *data ; void *tmp ; void *tmp___0 ; void *tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; void *tmp___6 ; void *tmp___7 ; int tmp___8 ; void *tmp___9 ; { data = (struct ldv_struct_file_operations_instance_0 *)arg0; ldv_0_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_file_operations_instance_0 *)0)) { { ldv_0_container_file_operations = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(504UL); ldv_0_resource_file = (struct file *)tmp; tmp___0 = ldv_xmalloc(976UL); ldv_0_resource_inode = (struct inode *)tmp___0; tmp___1 = ldv_xmalloc(480UL); ldv_0_resource_struct_block_device_ptr = (struct block_device *)tmp___1; tmp___2 = ldv_undef_int(); ldv_0_size_cnt_struct_gendisk_ptr = (struct gendisk *)((long )tmp___2); } goto ldv_main_0; return; ldv_main_0: { tmp___4 = ldv_undef_int(); } if (tmp___4 != 0) { { ldv_0_ret_default = ldv_file_operations_instance_probe_0_12(ldv_0_container_file_operations->open, ldv_0_resource_inode, ldv_0_resource_file); ldv_0_ret_default = ldv_filter_err_code(ldv_0_ret_default); tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { ldv_assume(ldv_0_ret_default == 0); } goto ldv_call_0; } else { { ldv_assume(ldv_0_ret_default != 0); } goto ldv_main_0; } } else { { ldv_free((void *)ldv_0_resource_file); ldv_free((void *)ldv_0_resource_inode); ldv_free((void *)ldv_0_resource_struct_block_device_ptr); } return; } return; ldv_call_0: { tmp___5 = ldv_undef_int(); } { if (tmp___5 == 1) { goto case_1; } else { } if (tmp___5 == 2) { goto case_2; } else { } if (tmp___5 == 3) { goto case_3; } else { } goto switch_default___0; case_1: /* CIL Label */ { tmp___6 = ldv_xmalloc(1UL); ldv_0_ldv_param_4_1_default = (char *)tmp___6; tmp___7 = ldv_xmalloc(8UL); ldv_0_ldv_param_4_3_default = (long long *)tmp___7; ldv_assume((unsigned long )ldv_0_size_cnt_struct_gendisk_ptr <= (unsigned long )((struct gendisk *)2147479552)); } if ((unsigned long )ldv_0_container_file_operations->write != (unsigned long )((ssize_t (*)(struct file * , char const * , size_t , loff_t * ))0)) { { ldv_file_operations_instance_write_0_4((long (*)(struct file * , char * , unsigned long , long long * ))ldv_0_container_file_operations->write, ldv_0_resource_file, ldv_0_ldv_param_4_1_default, ldv_0_size_cnt_write_size, ldv_0_ldv_param_4_3_default); } } else { } { ldv_free((void *)ldv_0_ldv_param_4_1_default); ldv_free((void *)ldv_0_ldv_param_4_3_default); } goto ldv_call_0; case_2: /* CIL Label */ { ldv_file_operations_instance_release_0_2(ldv_0_container_file_operations->release, ldv_0_resource_inode, ldv_0_resource_file); } goto ldv_main_0; case_3: /* CIL Label */ { tmp___8 = ldv_undef_int(); } { if (tmp___8 == 1) { goto case_1___0; } else { } if (tmp___8 == 2) { goto case_2___0; } else { } if (tmp___8 == 3) { goto case_3___0; } else { } if (tmp___8 == 4) { goto case_4; } else { } if (tmp___8 == 5) { goto case_5; } else { } goto switch_default; case_1___0: /* CIL Label */ { ldv_file_operations_instance_callback_0_29(ldv_0_callback_unlocked_ioctl, ldv_0_resource_file, ldv_0_ldv_param_29_1_default, ldv_0_size_cnt_write_size); } goto ldv_40398; case_2___0: /* CIL Label */ { tmp___9 = ldv_xmalloc(1736UL); ldv_0_ldv_param_26_0_default = (struct gendisk *)tmp___9; ldv_file_operations_instance_callback_0_26(ldv_0_callback_revalidate_disk, ldv_0_ldv_param_26_0_default); ldv_free((void *)ldv_0_ldv_param_26_0_default); } goto ldv_40398; case_3___0: /* CIL Label */ { ldv_file_operations_instance_callback_0_23(ldv_0_callback_ioctl, ldv_0_resource_struct_block_device_ptr, ldv_0_ldv_param_23_1_default, ldv_0_ldv_param_23_2_default, ldv_0_size_cnt_write_size); } goto ldv_40398; case_4: /* CIL Label */ { ldv_file_operations_instance_callback_0_22(ldv_0_callback_getgeo, ldv_0_resource_struct_block_device_ptr, ldv_0_size_cnt_struct_hd_geometry_ptr); } goto ldv_40398; case_5: /* CIL Label */ { ldv_file_operations_instance_callback_0_5(ldv_0_callback_compat_ioctl, ldv_0_resource_file, ldv_0_ldv_param_5_1_default, ldv_0_size_cnt_write_size); } goto ldv_40398; switch_default: /* CIL Label */ { ldv_stop(); } switch_break___0: /* CIL Label */ ; } ldv_40398: ; goto ldv_40404; switch_default___0: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_40404: ; goto ldv_call_0; goto ldv_call_0; return; } } void ldv_file_operations_instance_callback_0_22(int (*arg0)(struct block_device * , struct hd_geometry * ) , struct block_device *arg1 , struct hd_geometry *arg2 ) { { { nvme_getgeo(arg1, arg2); } return; } } void ldv_file_operations_instance_callback_0_23(int (*arg0)(struct block_device * , unsigned int , unsigned int , unsigned long ) , struct block_device *arg1 , unsigned int arg2 , unsigned int arg3 , unsigned long arg4 ) { { { nvme_ioctl(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_0_26(int (*arg0)(struct gendisk * ) , struct gendisk *arg1 ) { { { nvme_revalidate_disk(arg1); } return; } } void ldv_file_operations_instance_callback_0_29(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) { { { nvme_dev_ioctl(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_0_5(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) { { { nvme_dev_ioctl(arg1, arg2, arg3); } return; } } int ldv_file_operations_instance_probe_0_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { int tmp ; { { tmp = nvme_dev_open(arg1, arg2); } return (tmp); } } void ldv_file_operations_instance_release_0_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { { { nvme_dev_release(arg1, arg2); } return; } } void ldv_file_operations_instance_write_0_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { (*arg0)(arg1, arg2, arg3, arg4); } return; } } void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) { int ldv_6_line_line ; { { ldv_6_line_line = arg1; ldv_dispatch_irq_deregister_6_1(ldv_6_line_line); } return; return; } } enum irqreturn ldv_interrupt_instance_handler_1_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = nvme_irq(arg1, arg2); } return (tmp); } } enum irqreturn ldv_interrupt_instance_handler_2_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = nvme_irq_check(arg1, arg2); } return (tmp); } } void ldv_interrupt_instance_thread_1_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_instance_thread_2_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_interrupt_instance_1(void *arg0 ) { enum irqreturn (*ldv_1_callback_handler)(int , void * ) ; void *ldv_1_data_data ; int ldv_1_line_line ; enum irqreturn ldv_1_ret_val_default ; enum irqreturn (*ldv_1_thread_thread)(int , void * ) ; struct ldv_struct_interrupt_instance_1 *data ; int tmp ; { data = (struct ldv_struct_interrupt_instance_1 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_interrupt_instance_1 *)0)) { { ldv_1_line_line = data->arg0; ldv_1_callback_handler = data->arg1; ldv_1_thread_thread = data->arg2; ldv_1_data_data = data->arg3; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); ldv_1_ret_val_default = ldv_interrupt_instance_handler_1_5(ldv_1_callback_handler, ldv_1_line_line, ldv_1_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume((unsigned int )ldv_1_ret_val_default == 2U); } if ((unsigned long )ldv_1_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_1_3(ldv_1_thread_thread, ldv_1_line_line, ldv_1_data_data); } } else { } } else { { ldv_assume((unsigned int )ldv_1_ret_val_default != 2U); } } return; return; } } void ldv_interrupt_interrupt_instance_2(void *arg0 ) { enum irqreturn (*ldv_2_callback_handler)(int , void * ) ; void *ldv_2_data_data ; int ldv_2_line_line ; enum irqreturn ldv_2_ret_val_default ; enum irqreturn (*ldv_2_thread_thread)(int , void * ) ; struct ldv_struct_interrupt_instance_1 *data ; int tmp ; { data = (struct ldv_struct_interrupt_instance_1 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_interrupt_instance_1 *)0)) { { ldv_2_line_line = data->arg0; ldv_2_callback_handler = data->arg1; ldv_2_thread_thread = data->arg2; ldv_2_data_data = data->arg3; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); ldv_2_ret_val_default = ldv_interrupt_instance_handler_2_5(ldv_2_callback_handler, ldv_2_line_line, ldv_2_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume((unsigned int )ldv_2_ret_val_default == 2U); } if ((unsigned long )ldv_2_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_2_3(ldv_2_thread_thread, ldv_2_line_line, ldv_2_data_data); } } else { } } else { { ldv_assume((unsigned int )ldv_2_ret_val_default != 2U); } } return; return; } } void ldv_pci_instance_callback_3_10(void (*arg0)(struct pci_dev * , _Bool ) , struct pci_dev *arg1 , _Bool arg2 ) { { { nvme_reset_notify(arg1, (int )arg2); } return; } } int ldv_pci_instance_probe_3_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = nvme_probe(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_3_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { nvme_remove(arg1); } return; } } void ldv_pci_instance_resume_3_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_resume_early_3_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_3_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { nvme_shutdown(arg1); } return; } } int ldv_pci_instance_suspend_3_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_3_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_3(void *arg0 ) { void (*ldv_3_callback_reset_notify)(struct pci_dev * , _Bool ) ; struct pci_driver *ldv_3_container_pci_driver ; _Bool ldv_3_ldv_param_10_1_default ; struct pci_dev *ldv_3_resource_dev ; struct pm_message ldv_3_resource_pm_message ; struct pci_device_id *ldv_3_resource_struct_pci_device_id_ptr ; int ldv_3_ret_default ; struct ldv_struct_pci_instance_3 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { data = (struct ldv_struct_pci_instance_3 *)arg0; ldv_3_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_pci_instance_3 *)0)) { { ldv_3_container_pci_driver = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(2968UL); ldv_3_resource_dev = (struct pci_dev *)tmp; tmp___0 = ldv_xmalloc(32UL); ldv_3_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___0; } goto ldv_main_3; return; ldv_main_3: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_ldv_pre_probe_168(); ldv_3_ret_default = ldv_pci_instance_probe_3_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_3_container_pci_driver->probe, ldv_3_resource_dev, ldv_3_resource_struct_pci_device_id_ptr); ldv_3_ret_default = ldv_ldv_post_probe_169(ldv_3_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { ldv_assume(ldv_3_ret_default == 0); } goto ldv_call_3; } else { { ldv_assume(ldv_3_ret_default != 0); } goto ldv_main_3; } } else { { ldv_free((void *)ldv_3_resource_dev); ldv_free((void *)ldv_3_resource_struct_pci_device_id_ptr); } return; } return; ldv_call_3: { tmp___3 = ldv_undef_int(); } { if (tmp___3 == 1) { goto case_1; } else { } if (tmp___3 == 2) { goto case_2; } else { } if (tmp___3 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_pci_instance_callback_3_10(ldv_3_callback_reset_notify, ldv_3_resource_dev, (int )ldv_3_ldv_param_10_1_default); } goto ldv_call_3; case_2: /* CIL Label */ ; if ((unsigned long )ldv_3_container_pci_driver->suspend != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_3_ret_default = ldv_pci_instance_suspend_3_8(ldv_3_container_pci_driver->suspend, ldv_3_resource_dev, ldv_3_resource_pm_message); } } else { } { ldv_3_ret_default = ldv_filter_err_code(ldv_3_ret_default); } if ((unsigned long )ldv_3_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_3_ret_default = ldv_pci_instance_suspend_late_3_7(ldv_3_container_pci_driver->suspend_late, ldv_3_resource_dev, ldv_3_resource_pm_message); } } else { } { ldv_3_ret_default = ldv_filter_err_code(ldv_3_ret_default); } if ((unsigned long )ldv_3_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_3_6(ldv_3_container_pci_driver->resume_early, ldv_3_resource_dev); } } else { } if ((unsigned long )ldv_3_container_pci_driver->resume != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_3_5(ldv_3_container_pci_driver->resume, ldv_3_resource_dev); } } else { } goto ldv_call_3; case_3: /* CIL Label */ { ldv_pci_instance_shutdown_3_3(ldv_3_container_pci_driver->shutdown, ldv_3_resource_dev); ldv_pci_instance_release_3_2(ldv_3_container_pci_driver->remove, ldv_3_resource_dev); } goto ldv_main_3; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) { struct pci_driver *ldv_12_pci_driver_pci_driver ; { { ldv_12_pci_driver_pci_driver = arg1; ldv_dispatch_deregister_12_1(ldv_12_pci_driver_pci_driver); } return; return; } } int ldv_platform_instance_probe_5_14(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) { int tmp ; { { tmp = (*arg0)(arg1); } return (tmp); } } void ldv_platform_instance_release_5_3(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_complete_4_3(void (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_freeze_4_15(int (*arg0)(struct device * ) , struct device *arg1 ) { { { nvme_suspend(arg1); } return; } } void ldv_pm_ops_instance_freeze_late_4_14(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_freeze_noirq_4_12(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_poweroff_4_9(int (*arg0)(struct device * ) , struct device *arg1 ) { { { nvme_suspend(arg1); } return; } } void ldv_pm_ops_instance_poweroff_late_4_8(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_poweroff_noirq_4_6(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_prepare_4_22(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_restore_4_4(int (*arg0)(struct device * ) , struct device *arg1 ) { { { nvme_resume(arg1); } return; } } void ldv_pm_ops_instance_restore_early_4_7(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_restore_noirq_4_5(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_resume_4_16(int (*arg0)(struct device * ) , struct device *arg1 ) { { { nvme_resume(arg1); } return; } } void ldv_pm_ops_instance_resume_early_4_17(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_resume_noirq_4_19(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_idle_4_27(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_resume_4_24(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_suspend_4_25(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_suspend_4_21(int (*arg0)(struct device * ) , struct device *arg1 ) { { { nvme_suspend(arg1); } return; } } void ldv_pm_ops_instance_suspend_late_4_18(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_suspend_noirq_4_20(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_thaw_4_10(int (*arg0)(struct device * ) , struct device *arg1 ) { { { nvme_resume(arg1); } return; } } void ldv_pm_ops_instance_thaw_early_4_13(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_thaw_noirq_4_11(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_platform_instance_5(void *arg0 ) { struct platform_driver *ldv_5_container_platform_driver ; struct platform_device *ldv_5_ldv_param_14_0_default ; struct platform_device *ldv_5_ldv_param_3_0_default ; int ldv_5_probed_default ; void *tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; void *tmp___3 ; { ldv_5_probed_default = 1; goto ldv_main_5; return; ldv_main_5: { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = ldv_xmalloc(1464UL); ldv_5_ldv_param_14_0_default = (struct platform_device *)tmp; ldv_ldv_pre_probe_170(); } if ((unsigned long )ldv_5_container_platform_driver->probe != (unsigned long )((int (*)(struct platform_device * ))0)) { { ldv_5_probed_default = ldv_platform_instance_probe_5_14(ldv_5_container_platform_driver->probe, ldv_5_ldv_param_14_0_default); } } else { } { ldv_5_probed_default = ldv_ldv_post_probe_171(ldv_5_probed_default); ldv_free((void *)ldv_5_ldv_param_14_0_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_5_probed_default == 0); } goto ldv_call_5; } else { { ldv_assume(ldv_5_probed_default != 0); } goto ldv_main_5; } } else { return; } return; ldv_call_5: { tmp___2 = ldv_undef_int(); } { if (tmp___2 == 1) { goto case_1; } else { } if (tmp___2 == 2) { goto case_2; } else { } if (tmp___2 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___3 = ldv_xmalloc(1464UL); ldv_5_ldv_param_3_0_default = (struct platform_device *)tmp___3; } if ((unsigned long )ldv_5_container_platform_driver->remove != (unsigned long )((int (*)(struct platform_device * ))0)) { { ldv_platform_instance_release_5_3(ldv_5_container_platform_driver->remove, ldv_5_ldv_param_3_0_default); } } else { } { ldv_free((void *)ldv_5_ldv_param_3_0_default); ldv_5_probed_default = 1; } goto ldv_main_5; case_2: /* CIL Label */ ; goto ldv_call_5; case_3: /* CIL Label */ { ldv_dispatch_pm_register_5_6(); ldv_dispatch_pm_deregister_5_5(); } goto ldv_call_5; goto ldv_call_5; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_pm_pm_ops_instance_4(void *arg0 ) { struct device *ldv_4_device_device ; struct dev_pm_ops *ldv_4_pm_ops_dev_pm_ops ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { goto ldv_do_4; return; ldv_do_4: { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } goto switch_default___0; case_1: /* CIL Label */ ; if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->runtime_idle != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_idle_4_27(ldv_4_pm_ops_dev_pm_ops->runtime_idle, ldv_4_device_device); } } else { } goto ldv_do_4; case_2: /* CIL Label */ ; if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->runtime_suspend != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_suspend_4_25(ldv_4_pm_ops_dev_pm_ops->runtime_suspend, ldv_4_device_device); } } else { } if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->runtime_resume != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_resume_4_24(ldv_4_pm_ops_dev_pm_ops->runtime_resume, ldv_4_device_device); } } else { } goto ldv_do_4; case_3: /* CIL Label */ ; if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->prepare != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_prepare_4_22(ldv_4_pm_ops_dev_pm_ops->prepare, ldv_4_device_device); } } else { } { tmp___0 = ldv_undef_int(); } { if (tmp___0 == 1) { goto case_1___0; } else { } if (tmp___0 == 2) { goto case_2___0; } else { } if (tmp___0 == 3) { goto case_3___0; } else { } goto switch_default; case_1___0: /* CIL Label */ { ldv_pm_ops_instance_suspend_4_21(ldv_4_pm_ops_dev_pm_ops->suspend, ldv_4_device_device); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->suspend_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_suspend_noirq_4_20(ldv_4_pm_ops_dev_pm_ops->suspend_noirq, ldv_4_device_device); } } else { } if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->resume_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_resume_noirq_4_19(ldv_4_pm_ops_dev_pm_ops->resume_noirq, ldv_4_device_device); } } else { } } else { if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->suspend_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_suspend_late_4_18(ldv_4_pm_ops_dev_pm_ops->suspend_late, ldv_4_device_device); } } else { } if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->resume_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_resume_early_4_17(ldv_4_pm_ops_dev_pm_ops->resume_early, ldv_4_device_device); } } else { } } { ldv_pm_ops_instance_resume_4_16(ldv_4_pm_ops_dev_pm_ops->resume, ldv_4_device_device); } goto ldv_40752; case_2___0: /* CIL Label */ { ldv_pm_ops_instance_freeze_4_15(ldv_4_pm_ops_dev_pm_ops->freeze, ldv_4_device_device); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->freeze_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_freeze_late_4_14(ldv_4_pm_ops_dev_pm_ops->freeze_late, ldv_4_device_device); } } else { } if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->thaw_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_thaw_early_4_13(ldv_4_pm_ops_dev_pm_ops->thaw_early, ldv_4_device_device); } } else { } } else { if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->freeze_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_freeze_noirq_4_12(ldv_4_pm_ops_dev_pm_ops->freeze_noirq, ldv_4_device_device); } } else { } if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->thaw_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_thaw_noirq_4_11(ldv_4_pm_ops_dev_pm_ops->thaw_noirq, ldv_4_device_device); } } else { } } { ldv_pm_ops_instance_thaw_4_10(ldv_4_pm_ops_dev_pm_ops->thaw, ldv_4_device_device); } goto ldv_40752; case_3___0: /* CIL Label */ { ldv_pm_ops_instance_poweroff_4_9(ldv_4_pm_ops_dev_pm_ops->poweroff, ldv_4_device_device); tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->poweroff_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_poweroff_late_4_8(ldv_4_pm_ops_dev_pm_ops->poweroff_late, ldv_4_device_device); } } else { } if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->restore_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_restore_early_4_7(ldv_4_pm_ops_dev_pm_ops->restore_early, ldv_4_device_device); } } else { } } else { if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->poweroff_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_poweroff_noirq_4_6(ldv_4_pm_ops_dev_pm_ops->poweroff_noirq, ldv_4_device_device); } } else { } if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->restore_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_restore_noirq_4_5(ldv_4_pm_ops_dev_pm_ops->restore_noirq, ldv_4_device_device); } } else { } } { ldv_pm_ops_instance_restore_4_4(ldv_4_pm_ops_dev_pm_ops->restore, ldv_4_device_device); } goto ldv_40752; switch_default: /* CIL Label */ { ldv_stop(); } switch_break___0: /* CIL Label */ ; } ldv_40752: ; if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->complete != (unsigned long )((void (*)(struct device * ))0)) { { ldv_pm_ops_instance_complete_4_3(ldv_4_pm_ops_dev_pm_ops->complete, ldv_4_device_device); } } else { } goto ldv_do_4; case_4: /* CIL Label */ ; return; switch_default___0: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) { enum irqreturn (*ldv_8_callback_handler)(int , void * ) ; void *ldv_8_data_data ; int ldv_8_line_line ; enum irqreturn (*ldv_8_thread_thread)(int , void * ) ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_8_line_line = (int )arg1; ldv_8_callback_handler = arg2; ldv_8_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_8_data_data = arg5; ldv_dispatch_irq_register_8_2(ldv_8_line_line, ldv_8_callback_handler, ldv_8_thread_thread, ldv_8_data_data); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } int ldv_request_threaded_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , enum irqreturn (*arg3)(int , void * ) , unsigned long arg4 , char *arg5 , void *arg6 ) { enum irqreturn (*ldv_10_callback_handler)(int , void * ) ; void *ldv_10_data_data ; int ldv_10_line_line ; enum irqreturn (*ldv_10_thread_thread)(int , void * ) ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_10_line_line = (int )arg1; ldv_10_callback_handler = arg2; ldv_10_thread_thread = arg3; ldv_10_data_data = arg6; } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } __inline static void *ERR_PTR(long error ) { void *tmp ; { { tmp = ldv_err_ptr(error); } return (tmp); } } __inline static long PTR_ERR(void const *ptr ) { long tmp ; { { tmp = ldv_ptr_err(ptr); } return (tmp); } } __inline static int atomic_sub_and_test(int i , atomic_t *v ) { int tmp ; { { tmp = ldv_linux_usb_dev_atomic_sub_and_test(i, v); } return (tmp); } } __inline static void atomic_inc(atomic_t *v ) { { { ldv_linux_usb_dev_atomic_inc(v); } return; } } __inline static void atomic_dec(atomic_t *v ) { { { ldv_linux_usb_dev_atomic_dec(v); } return; } } __inline static int atomic_add_return(int i , atomic_t *v ) { int tmp ; { { tmp = ldv_linux_usb_dev_atomic_add_return(i, v); } return (tmp); } } __inline static void *ioremap(resource_size_t offset , unsigned long size ) { void *tmp ; { { tmp = ldv_linux_arch_io_io_mem_remap(); } return (tmp); } } __inline static void *kmalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_malloc_unknown_size(); ldv_after_alloc(res); } return (res); } } __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_malloc_unknown_size(); ldv_after_alloc(res); } return (res); } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = ldv_kzalloc(size, flags); } return (tmp); } } __inline static void *kzalloc_node(size_t size , gfp_t flags , int node ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc_unknown_size(); ldv_after_alloc(res); } return (res); } } __inline static void *dma_zalloc_coherent(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } static int ldv_request_threaded_irq_97(unsigned int ldv_func_arg1 , irqreturn_t (*ldv_func_arg2)(int , void * ) , irqreturn_t (*ldv_func_arg3)(int , void * ) , unsigned long ldv_func_arg4 , char const *ldv_func_arg5 , void *ldv_func_arg6 ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_threaded_irq(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4, ldv_func_arg5, ldv_func_arg6); ldv_func_res = tmp; tmp___0 = ldv_request_threaded_irq(ldv_func_res, ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4, (char *)ldv_func_arg5, ldv_func_arg6); } return (tmp___0); return (ldv_func_res); } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_98(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_q_lock_of_nvme_queue(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_99(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_q_lock_of_nvme_queue(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_100(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_queue_lock_of_request_queue(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_101(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_queue_lock_of_request_queue(); spin_unlock_irqrestore(lock, flags); } return; } } static void *ldv_dma_pool_alloc_102(struct dma_pool *ldv_func_arg1 , gfp_t flags , dma_addr_t *ldv_func_arg3 ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } static void *ldv_dma_pool_alloc_103(struct dma_pool *ldv_func_arg1 , gfp_t flags , dma_addr_t *ldv_func_arg3 ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } static void *ldv_dma_pool_alloc_104(struct dma_pool *ldv_func_arg1 , gfp_t flags , dma_addr_t *ldv_func_arg3 ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } __inline static void ldv_spin_lock_irq_105(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_q_lock_of_nvme_queue(); spin_lock_irq(lock); } return; } } __inline static void ldv_spin_unlock_irq_106(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_q_lock_of_nvme_queue(); spin_unlock_irq(lock); } return; } } __inline static void ldv_spin_lock_107(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_q_lock_of_nvme_queue(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_108(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_q_lock_of_nvme_queue(); spin_unlock(lock); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_109(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_dev_list_lock(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_110(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_dev_list_lock(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv_free_irq_116(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static int ldv_request_threaded_irq_121(unsigned int ldv_func_arg1 , irqreturn_t (*ldv_func_arg2)(int , void * ) , irqreturn_t (*ldv_func_arg3)(int , void * ) , unsigned long ldv_func_arg4 , char const *ldv_func_arg5 , void *ldv_func_arg6 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_threaded_irq(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4, ldv_func_arg5, ldv_func_arg6); ldv_func_res = tmp; tmp___0 = ldv_request_threaded_irq(ldv_func_res, ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4, (char *)ldv_func_arg5, ldv_func_arg6); } return (tmp___0); return (ldv_func_res); } } __inline static int ldv_request_irq_122(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static void ldv_blk_cleanup_queue_125(struct request_queue *ldv_func_arg1 ) { { { ldv_linux_block_queue_blk_cleanup_queue(); blk_cleanup_queue(ldv_func_arg1); } return; } } __inline static void ldv_spin_lock_126(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_dev_list_lock(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_127(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_dev_list_lock(); spin_unlock(lock); } return; } } static void ldv_add_disk_132(struct gendisk *disk ) { { { ldv_linux_block_genhd_add_disk(); add_disk(disk); } return; } } static void ldv_blk_cleanup_queue_133(struct request_queue *ldv_func_arg1 ) { { { ldv_linux_block_queue_blk_cleanup_queue(); blk_cleanup_queue(ldv_func_arg1); } return; } } static void ldv_iounmap_134(void volatile *ldv_func_arg1 ) { { { ldv_linux_arch_io_io_mem_unmap(); } return; } } static void ldv_free_irq_135(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv_iounmap_136(void volatile *ldv_func_arg1 ) { { { ldv_linux_arch_io_io_mem_unmap(); } return; } } static void ldv_iounmap_137(void volatile *ldv_func_arg1 ) { { { ldv_linux_arch_io_io_mem_unmap(); } return; } } __inline static void ldv_spin_lock_140(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_queue_lock_of_request_queue(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_141(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_queue_lock_of_request_queue(); spin_unlock(lock); } return; } } static void ldv_del_gendisk_142(struct gendisk *gp ) { { { ldv_linux_block_genhd_del_gendisk(); del_gendisk(gp); } return; } } static void ldv_blk_cleanup_queue_143(struct request_queue *ldv_func_arg1 ) { { { ldv_linux_block_queue_blk_cleanup_queue(); blk_cleanup_queue(ldv_func_arg1); } return; } } static void ldv_put_disk_150(struct gendisk *disk ) { { { ldv_linux_block_genhd_put_disk(disk); put_disk(disk); } return; } } static int ldv___register_chrdev_159(unsigned int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 , char const *ldv_func_arg4 , struct file_operations const *ldv_func_arg5 ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __register_chrdev(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4, ldv_func_arg5); ldv_func_res = tmp; tmp___0 = ldv___register_chrdev(ldv_func_res, ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, (char *)ldv_func_arg4, (struct file_operations *)ldv_func_arg5); } return (tmp___0); return (ldv_func_res); } } static int ldv___pci_register_driver_160(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___5 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___pci_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_class_destroy_161(struct class *cls ) { { { ldv_linux_drivers_base_class_destroy_class(cls); ldv_linux_usb_gadget_destroy_class(cls); } return; } } static void ldv_pci_unregister_driver_162(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } static void ldv_class_destroy_163(struct class *cls ) { { { ldv_linux_drivers_base_class_destroy_class(cls); ldv_linux_usb_gadget_destroy_class(cls); } return; } } static int ldv_ldv_post_init_164(int ldv_func_arg1 ) { int tmp ; { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); tmp = ldv_post_init(ldv_func_arg1); } return (tmp); } } static void ldv_ldv_check_final_state_165(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_check_final_state_166(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_initialize_167(void) { { { ldv_linux_lib_find_bit_initialize(); } return; } } static void ldv_ldv_pre_probe_168(void) { { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); ldv_pre_probe(); } return; } } static int ldv_ldv_post_probe_169(int retval ) { int tmp ; { { ldv_linux_net_register_check_return_value_probe(retval); ldv_linux_usb_register_check_return_value_probe(retval); tmp = ldv_post_probe(retval); } return (tmp); } } static void ldv_ldv_pre_probe_170(void) { { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); ldv_pre_probe(); } return; } } static int ldv_ldv_post_probe_171(int retval ) { int tmp ; { { ldv_linux_net_register_check_return_value_probe(retval); ldv_linux_usb_register_check_return_value_probe(retval); tmp = ldv_post_probe(retval); } return (tmp); } } __inline static __u16 __fswab16(__u16 val ) { { return ((__u16 )((int )((short )((int )val << 8)) | (int )((short )((int )val >> 8)))); } } __inline static __u64 __fswab64(__u64 val ) { long tmp ; { { tmp = __builtin_bswap64((unsigned long )val); } return ((__u64 )tmp); } } extern char *strncpy(char * , char const * , __kernel_size_t ) ; extern int __bitmap_empty(unsigned long const * , unsigned int ) ; __inline static int bitmap_empty(unsigned long const *src , unsigned int nbits ) { int tmp ; { { tmp = __bitmap_empty(src, nbits); } return (tmp); } } __inline static long PTR_ERR(void const *ptr ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; __inline static unsigned int queue_max_hw_sectors(struct request_queue *q ) { { return (q->limits.max_hw_sectors); } } __inline static int scsi_status_is_good(int status ) { { status = status & 254; return ((status == 0 || status == 16) || (status == 20 || status == 34)); } } static int sg_version_num = 30534; static int nvme_trans_copy_to_user(struct sg_io_hdr *hdr , void *from , unsigned long n ) { int res ; unsigned long not_copied ; int i ; void *index ; size_t remaining ; size_t xfer_len ; struct sg_iovec sgl ; size_t _min1 ; size_t _min2 ; { res = 0; index = from; remaining = n; if ((unsigned int )hdr->iovec_count != 0U) { i = 0; goto ldv_39218; ldv_39217: { not_copied = copy_from_user((void *)(& sgl), (void const *)(hdr->dxferp + (unsigned long )i * 16UL), 16UL); } if (not_copied != 0UL) { return (-14); } else { } { _min1 = remaining; _min2 = sgl.iov_len; xfer_len = _min1 < _min2 ? _min1 : _min2; not_copied = copy_to_user(sgl.iov_base, (void const *)index, xfer_len); } if (not_copied != 0UL) { res = -14; goto ldv_39216; } else { } index = index + xfer_len; remaining = remaining - xfer_len; if (remaining == 0UL) { goto ldv_39216; } else { } i = i + 1; ldv_39218: ; if (i < (int )hdr->iovec_count) { goto ldv_39217; } else { } ldv_39216: ; return (res); } else { } { not_copied = copy_to_user(hdr->dxferp, (void const *)from, n); } if (not_copied != 0UL) { res = -14; } else { } return (res); } } static int nvme_trans_copy_from_user(struct sg_io_hdr *hdr , void *to , unsigned long n ) { int res ; unsigned long not_copied ; int i ; void *index ; size_t remaining ; size_t xfer_len ; struct sg_iovec sgl ; size_t _min1 ; size_t _min2 ; { res = 0; index = to; remaining = n; if ((unsigned int )hdr->iovec_count != 0U) { i = 0; goto ldv_39236; ldv_39235: { not_copied = copy_from_user((void *)(& sgl), (void const *)(hdr->dxferp + (unsigned long )i * 16UL), 16UL); } if (not_copied != 0UL) { return (-14); } else { } { _min1 = remaining; _min2 = sgl.iov_len; xfer_len = _min1 < _min2 ? _min1 : _min2; not_copied = copy_from_user(index, (void const *)sgl.iov_base, xfer_len); } if (not_copied != 0UL) { res = -14; goto ldv_39234; } else { } index = index + xfer_len; remaining = remaining - xfer_len; if (remaining == 0UL) { goto ldv_39234; } else { } i = i + 1; ldv_39236: ; if (i < (int )hdr->iovec_count) { goto ldv_39235; } else { } ldv_39234: ; return (res); } else { } { not_copied = copy_from_user(to, (void const *)hdr->dxferp, n); } if (not_copied != 0UL) { res = -14; } else { } return (res); } } static int nvme_trans_completion(struct sg_io_hdr *hdr , u8 status , u8 sense_key , u8 asc , u8 ascq ) { int res ; u8 xfer_len ; u8 resp[8U] ; u8 __min1 ; u8 __min2 ; unsigned long tmp ; int tmp___0 ; { { res = 0; tmp___0 = scsi_status_is_good((int )status); } if (tmp___0 != 0) { hdr->status = 0U; hdr->masked_status = 0U; hdr->host_status = 0U; hdr->driver_status = 0U; hdr->sb_len_wr = 0U; } else { { hdr->status = status; hdr->masked_status = (int )status >> 1; hdr->host_status = 0U; hdr->driver_status = 0U; __memset((void *)(& resp), 0, 8UL); resp[0] = 114U; resp[1] = sense_key; resp[2] = asc; resp[3] = ascq; __min1 = hdr->mx_sb_len; __min2 = 8U; xfer_len = (u8 )((int )__min1 < (int )__min2 ? __min1 : __min2); hdr->sb_len_wr = xfer_len; tmp = copy_to_user(hdr->sbp, (void const *)(& resp), (unsigned long )xfer_len); } if (tmp != 0UL) { res = -14; } else { } } return (res); } } static int nvme_trans_status_code(struct sg_io_hdr *hdr , int nvme_sc ) { u8 status ; u8 sense_key ; u8 asc ; u8 ascq ; int res ; { res = 0; if (nvme_sc < 0) { return (nvme_sc); } else { } nvme_sc = nvme_sc & 2047; { if (nvme_sc == 0) { goto case_0; } else { } if (nvme_sc == 1) { goto case_1; } else { } if (nvme_sc == 2) { goto case_2; } else { } if (nvme_sc == 4) { goto case_4; } else { } if (nvme_sc == 5) { goto case_5; } else { } if (nvme_sc == 6) { goto case_6; } else { } if (nvme_sc == 7) { goto case_7; } else { } if (nvme_sc == 8) { goto case_8; } else { } if (nvme_sc == 9) { goto case_9; } else { } if (nvme_sc == 10) { goto case_10; } else { } if (nvme_sc == 11) { goto case_11; } else { } if (nvme_sc == 128) { goto case_128; } else { } if (nvme_sc == 129) { goto case_129; } else { } if (nvme_sc == 130) { goto case_130; } else { } if (nvme_sc == 266) { goto case_266; } else { } if (nvme_sc == 384) { goto case_384; } else { } if (nvme_sc == 640) { goto case_640; } else { } if (nvme_sc == 641) { goto case_641; } else { } if (nvme_sc == 642) { goto case_642; } else { } if (nvme_sc == 643) { goto case_643; } else { } if (nvme_sc == 644) { goto case_644; } else { } if (nvme_sc == 645) { goto case_645; } else { } if (nvme_sc == 646) { goto case_646; } else { } if (nvme_sc == 3) { goto case_3; } else { } if (nvme_sc == 12) { goto case_12; } else { } if (nvme_sc == 256) { goto case_256; } else { } if (nvme_sc == 257) { goto case_257; } else { } if (nvme_sc == 258) { goto case_258; } else { } if (nvme_sc == 259) { goto case_259; } else { } if (nvme_sc == 260) { goto case_260; } else { } if (nvme_sc == 261) { goto case_261; } else { } if (nvme_sc == 262) { goto case_262; } else { } if (nvme_sc == 263) { goto case_263; } else { } if (nvme_sc == 264) { goto case_264; } else { } if (nvme_sc == 265) { goto case_265; } else { } goto switch_default; case_0: /* CIL Label */ status = 0U; sense_key = 0U; asc = 0U; ascq = 0U; goto ldv_39260; case_1: /* CIL Label */ status = 2U; sense_key = 5U; asc = 32U; ascq = 0U; goto ldv_39260; case_2: /* CIL Label */ status = 2U; sense_key = 5U; asc = 36U; ascq = 0U; goto ldv_39260; case_4: /* CIL Label */ status = 2U; sense_key = 3U; asc = 0U; ascq = 0U; goto ldv_39260; case_5: /* CIL Label */ status = 64U; sense_key = 11U; asc = 11U; ascq = 8U; goto ldv_39260; case_6: /* CIL Label */ status = 2U; sense_key = 4U; asc = 68U; ascq = 0U; goto ldv_39260; case_7: /* CIL Label */ status = 64U; sense_key = 11U; asc = 0U; ascq = 0U; goto ldv_39260; case_8: /* CIL Label */ status = 64U; sense_key = 11U; asc = 0U; ascq = 0U; goto ldv_39260; case_9: /* CIL Label */ status = 64U; sense_key = 11U; asc = 0U; ascq = 0U; goto ldv_39260; case_10: /* CIL Label */ status = 64U; sense_key = 11U; asc = 0U; ascq = 0U; goto ldv_39260; case_11: /* CIL Label */ status = 2U; sense_key = 5U; asc = 32U; ascq = 9U; goto ldv_39260; case_128: /* CIL Label */ status = 2U; sense_key = 5U; asc = 33U; ascq = 0U; goto ldv_39260; case_129: /* CIL Label */ status = 2U; sense_key = 3U; asc = 0U; ascq = 0U; goto ldv_39260; case_130: /* CIL Label */ status = 2U; sense_key = 2U; asc = 4U; ascq = 0U; goto ldv_39260; case_266: /* CIL Label */ status = 2U; sense_key = 5U; asc = 49U; ascq = 1U; goto ldv_39260; case_384: /* CIL Label */ status = 2U; sense_key = 5U; asc = 36U; ascq = 0U; goto ldv_39260; case_640: /* CIL Label */ status = 2U; sense_key = 3U; asc = 3U; ascq = 0U; goto ldv_39260; case_641: /* CIL Label */ status = 2U; sense_key = 3U; asc = 17U; ascq = 0U; goto ldv_39260; case_642: /* CIL Label */ status = 2U; sense_key = 3U; asc = 16U; ascq = 1U; goto ldv_39260; case_643: /* CIL Label */ status = 2U; sense_key = 3U; asc = 16U; ascq = 2U; goto ldv_39260; case_644: /* CIL Label */ status = 2U; sense_key = 3U; asc = 16U; ascq = 3U; goto ldv_39260; case_645: /* CIL Label */ status = 2U; sense_key = 14U; asc = 29U; ascq = 0U; goto ldv_39260; case_646: /* CIL Label */ status = 2U; sense_key = 5U; asc = 32U; ascq = 9U; goto ldv_39260; case_3: /* CIL Label */ ; case_12: /* CIL Label */ ; case_256: /* CIL Label */ ; case_257: /* CIL Label */ ; case_258: /* CIL Label */ ; case_259: /* CIL Label */ ; case_260: /* CIL Label */ ; case_261: /* CIL Label */ ; case_262: /* CIL Label */ ; case_263: /* CIL Label */ ; case_264: /* CIL Label */ ; case_265: /* CIL Label */ ; switch_default: /* CIL Label */ status = 2U; sense_key = 5U; asc = 0U; ascq = 0U; goto ldv_39260; switch_break: /* CIL Label */ ; } ldv_39260: { res = nvme_trans_completion(hdr, (int )status, (int )sense_key, (int )asc, (int )ascq); } return (res); } } static int nvme_trans_standard_inquiry_page(struct nvme_ns *ns , struct sg_io_hdr *hdr , u8 *inq_response , int alloc_len ) { struct nvme_dev *dev ; dma_addr_t dma_addr ; void *mem ; struct nvme_id_ns *id_ns ; int res ; int nvme_sc ; int xfer_len ; u8 resp_data_format ; u8 protect ; u8 cmdque ; u8 fw_offset ; int _min1 ; int _min2 ; { { dev = ns->dev; res = 0; resp_data_format = 2U; cmdque = 2U; fw_offset = 8U; mem = dma_alloc_attrs(& (dev->pci_dev)->dev, 4096UL, & dma_addr, 208U, (struct dma_attrs *)0); } if ((unsigned long )mem == (unsigned long )((void *)0)) { res = -12; goto out_dma; } else { } { nvme_sc = nvme_identify(dev, ns->ns_id, 0U, dma_addr); res = nvme_trans_status_code(hdr, nvme_sc); } if (res != 0) { goto out_free; } else { } if (nvme_sc != 0) { res = nvme_sc; goto out_free; } else { } id_ns = (struct nvme_id_ns *)mem; if ((unsigned int )id_ns->dps != 0U) { protect = 1U; } else { protect = 0U; } { __memset((void *)inq_response, 0, 36UL); *(inq_response + 2UL) = 6U; *(inq_response + 3UL) = resp_data_format; *(inq_response + 4UL) = 31U; *(inq_response + 5UL) = protect; *(inq_response + 7UL) = cmdque; strncpy((char *)inq_response + 8U, "NVMe ", 8UL); strncpy((char *)inq_response + 16U, (char const *)(& dev->model), 16UL); } goto ldv_39316; ldv_39315: fw_offset = (u8 )((int )fw_offset - 1); ldv_39316: ; if ((int )((signed char )dev->firmware_rev[(int )fw_offset + -1]) == 32 && (unsigned int )fw_offset > 4U) { goto ldv_39315; } else { } { fw_offset = (unsigned int )fw_offset + 252U; strncpy((char *)inq_response + 32U, (char const *)(& dev->firmware_rev) + (unsigned long )fw_offset, 4UL); _min1 = alloc_len; _min2 = 36; xfer_len = _min1 < _min2 ? _min1 : _min2; res = nvme_trans_copy_to_user(hdr, (void *)inq_response, (unsigned long )xfer_len); } out_free: { dma_free_attrs(& (dev->pci_dev)->dev, 4096UL, mem, dma_addr, (struct dma_attrs *)0); } out_dma: ; return (res); } } static int nvme_trans_supported_vpd_pages(struct nvme_ns *ns , struct sg_io_hdr *hdr , u8 *inq_response , int alloc_len ) { int res ; int xfer_len ; int _min1 ; int _min2 ; { { res = 0; __memset((void *)inq_response, 0, 36UL); *(inq_response + 1UL) = 0U; *(inq_response + 3UL) = 5U; *(inq_response + 4UL) = 0U; *(inq_response + 5UL) = 128U; *(inq_response + 6UL) = 131U; *(inq_response + 7UL) = 134U; *(inq_response + 8UL) = 177U; _min1 = alloc_len; _min2 = 36; xfer_len = _min1 < _min2 ? _min1 : _min2; res = nvme_trans_copy_to_user(hdr, (void *)inq_response, (unsigned long )xfer_len); } return (res); } } static int nvme_trans_unit_serial_page(struct nvme_ns *ns , struct sg_io_hdr *hdr , u8 *inq_response , int alloc_len ) { struct nvme_dev *dev ; int res ; int xfer_len ; int _min1 ; int _min2 ; { { dev = ns->dev; res = 0; __memset((void *)inq_response, 0, 36UL); *(inq_response + 1UL) = 128U; *(inq_response + 3UL) = 20U; strncpy((char *)inq_response + 4U, (char const *)(& dev->serial), 20UL); _min1 = alloc_len; _min2 = 36; xfer_len = _min1 < _min2 ? _min1 : _min2; res = nvme_trans_copy_to_user(hdr, (void *)inq_response, (unsigned long )xfer_len); } return (res); } } static int nvme_trans_device_id_page(struct nvme_ns *ns , struct sg_io_hdr *hdr , u8 *inq_response , int alloc_len ) { struct nvme_dev *dev ; dma_addr_t dma_addr ; void *mem ; int res ; int nvme_sc ; int xfer_len ; __be32 tmp_id ; __u32 tmp ; struct nvme_id_ns *id_ns ; void *eui ; int len ; int tmp___0 ; unsigned int tmp___1 ; int tmp___2 ; unsigned int tmp___3 ; { { dev = ns->dev; res = 0; tmp = __fswab32(ns->ns_id); tmp_id = tmp; mem = dma_alloc_attrs(& (dev->pci_dev)->dev, 4096UL, & dma_addr, 208U, (struct dma_attrs *)0); } if ((unsigned long )mem == (unsigned long )((void *)0)) { res = -12; goto out_dma; } else { } { __memset((void *)inq_response, 0, (size_t )alloc_len); *(inq_response + 1UL) = 131U; tmp___3 = readl((void const volatile *)(& (dev->bar)->vs)); } if (tmp___3 > 65791U) { { id_ns = (struct nvme_id_ns *)mem; eui = (void *)(& id_ns->eui64); len = 8; nvme_sc = nvme_identify(dev, ns->ns_id, 0U, dma_addr); res = nvme_trans_status_code(hdr, nvme_sc); } if (res != 0) { goto out_free; } else { } if (nvme_sc != 0) { res = nvme_sc; goto out_free; } else { } { tmp___1 = readl((void const volatile *)(& (dev->bar)->vs)); } if (tmp___1 > 66047U) { { tmp___0 = bitmap_empty((unsigned long const *)eui, (unsigned int )(len * 8)); } if (tmp___0 != 0) { eui = (void *)(& id_ns->nguid); len = 16; } else { } } else { } { tmp___2 = bitmap_empty((unsigned long const *)eui, (unsigned int )(len * 8)); } if (tmp___2 != 0) { goto scsi_string; } else { } { *(inq_response + 3UL) = (unsigned int )((u8 )len) + 4U; *(inq_response + 4UL) = 1U; *(inq_response + 5UL) = 2U; *(inq_response + 6UL) = 0U; *(inq_response + 7UL) = (u8 )len; __memcpy((void *)inq_response + 8U, (void const *)eui, (size_t )len); } } else { scsi_string: ; if (alloc_len <= 71) { { res = nvme_trans_completion(hdr, 2, 5, 36, 0); } goto out_free; } else { } { *(inq_response + 3UL) = 72U; *(inq_response + 4UL) = 3U; *(inq_response + 5UL) = 8U; *(inq_response + 6UL) = 0U; *(inq_response + 7UL) = 68U; sprintf((char *)inq_response + 8U, "%04x", (int )(dev->pci_dev)->vendor); __memcpy((void *)inq_response + 12U, (void const *)(& dev->model), 40UL); sprintf((char *)inq_response + 52U, "%04x", tmp_id); __memcpy((void *)inq_response + 56U, (void const *)(& dev->serial), 20UL); } } { xfer_len = alloc_len; res = nvme_trans_copy_to_user(hdr, (void *)inq_response, (unsigned long )xfer_len); } out_free: { dma_free_attrs(& (dev->pci_dev)->dev, 4096UL, mem, dma_addr, (struct dma_attrs *)0); } out_dma: ; return (res); } } static int nvme_trans_ext_inq_page(struct nvme_ns *ns , struct sg_io_hdr *hdr , int alloc_len ) { u8 *inq_response ; int res ; int nvme_sc ; struct nvme_dev *dev ; dma_addr_t dma_addr ; void *mem ; struct nvme_id_ctrl *id_ctrl ; struct nvme_id_ns *id_ns ; int xfer_len ; u8 microcode ; u8 spt ; u8 spt_lut[8U] ; u8 grd_chk ; u8 app_chk ; u8 ref_chk ; u8 protect ; u8 uask_sup ; u8 v_sup ; u8 luiclr ; void *tmp ; int _min1 ; int _min2 ; { { res = 0; dev = ns->dev; microcode = 128U; spt_lut[0] = 0U; spt_lut[1] = 0U; spt_lut[2] = 2U; spt_lut[3] = 1U; spt_lut[4] = 4U; spt_lut[5] = 6U; spt_lut[6] = 5U; spt_lut[7] = 7U; uask_sup = 32U; luiclr = 1U; tmp = kmalloc(60UL, 208U); inq_response = (u8 *)tmp; } if ((unsigned long )inq_response == (unsigned long )((u8 *)0U)) { res = -12; goto out_mem; } else { } { mem = dma_alloc_attrs(& (dev->pci_dev)->dev, 4096UL, & dma_addr, 208U, (struct dma_attrs *)0); } if ((unsigned long )mem == (unsigned long )((void *)0)) { res = -12; goto out_dma; } else { } { nvme_sc = nvme_identify(dev, ns->ns_id, 0U, dma_addr); res = nvme_trans_status_code(hdr, nvme_sc); } if (res != 0) { goto out_free; } else { } if (nvme_sc != 0) { res = nvme_sc; goto out_free; } else { } id_ns = (struct nvme_id_ns *)mem; spt = (int )spt_lut[(int )id_ns->dpc & 7] << 3U; if ((unsigned int )id_ns->dps != 0U) { protect = 1U; } else { protect = 0U; } { grd_chk = (int )protect << 2U; app_chk = (int )protect << 1U; ref_chk = protect; nvme_sc = nvme_identify(dev, 0U, 1U, dma_addr); res = nvme_trans_status_code(hdr, nvme_sc); } if (res != 0) { goto out_free; } else { } if (nvme_sc != 0) { res = nvme_sc; goto out_free; } else { } { id_ctrl = (struct nvme_id_ctrl *)mem; v_sup = id_ctrl->vwc; __memset((void *)inq_response, 0, 60UL); *(inq_response + 1UL) = 134U; *(inq_response + 2UL) = 0U; *(inq_response + 3UL) = 60U; *(inq_response + 4UL) = (u8 )(((((int )microcode | (int )spt) | (int )grd_chk) | (int )app_chk) | (int )ref_chk); *(inq_response + 5UL) = uask_sup; *(inq_response + 6UL) = v_sup; *(inq_response + 7UL) = luiclr; *(inq_response + 8UL) = 0U; *(inq_response + 9UL) = 0U; _min1 = alloc_len; _min2 = 60; xfer_len = _min1 < _min2 ? _min1 : _min2; res = nvme_trans_copy_to_user(hdr, (void *)inq_response, (unsigned long )xfer_len); } out_free: { dma_free_attrs(& (dev->pci_dev)->dev, 4096UL, mem, dma_addr, (struct dma_attrs *)0); } out_dma: { kfree((void const *)inq_response); } out_mem: ; return (res); } } static int nvme_trans_bdev_char_page(struct nvme_ns *ns , struct sg_io_hdr *hdr , int alloc_len ) { u8 *inq_response ; int res ; int xfer_len ; void *tmp ; int _min1 ; int _min2 ; { { res = 0; tmp = kzalloc(60UL, 208U); inq_response = (u8 *)tmp; } if ((unsigned long )inq_response == (unsigned long )((u8 *)0U)) { res = -12; goto out_mem; } else { } { *(inq_response + 1UL) = 177U; *(inq_response + 2UL) = 0U; *(inq_response + 3UL) = 60U; *(inq_response + 4UL) = 0U; *(inq_response + 5UL) = 1U; *(inq_response + 6UL) = 0U; _min1 = alloc_len; _min2 = 60; xfer_len = _min1 < _min2 ? _min1 : _min2; res = nvme_trans_copy_to_user(hdr, (void *)inq_response, (unsigned long )xfer_len); kfree((void const *)inq_response); } out_mem: ; return (res); } } static int nvme_trans_log_supp_pages(struct nvme_ns *ns , struct sg_io_hdr *hdr , int alloc_len ) { int res ; int xfer_len ; u8 *log_response ; void *tmp ; int _min1 ; int _min2 ; { { res = 0; tmp = kzalloc(7UL, 208U); log_response = (u8 *)tmp; } if ((unsigned long )log_response == (unsigned long )((u8 *)0U)) { res = -12; goto out_mem; } else { } { *log_response = 0U; *(log_response + 3UL) = 3U; *(log_response + 4UL) = 0U; *(log_response + 5UL) = 47U; *(log_response + 6UL) = 13U; _min1 = alloc_len; _min2 = 7; xfer_len = _min1 < _min2 ? _min1 : _min2; res = nvme_trans_copy_to_user(hdr, (void *)log_response, (unsigned long )xfer_len); kfree((void const *)log_response); } out_mem: ; return (res); } } static int nvme_trans_log_info_exceptions(struct nvme_ns *ns , struct sg_io_hdr *hdr , int alloc_len ) { int res ; int xfer_len ; u8 *log_response ; struct nvme_command c ; struct nvme_dev *dev ; struct nvme_smart_log *smart_log ; dma_addr_t dma_addr ; void *mem ; u8 temp_c ; u16 temp_k ; void *tmp ; int _min1 ; int _min2 ; { { res = 0; dev = ns->dev; tmp = kzalloc(12UL, 208U); log_response = (u8 *)tmp; } if ((unsigned long )log_response == (unsigned long )((u8 *)0U)) { res = -12; goto out_mem; } else { } { mem = dma_alloc_attrs(& (dev->pci_dev)->dev, 512UL, & dma_addr, 208U, (struct dma_attrs *)0); } if ((unsigned long )mem == (unsigned long )((void *)0)) { res = -12; goto out_dma; } else { } { __memset((void *)(& c), 0, 64UL); c.__annonCompField73.common.opcode = 2U; c.__annonCompField73.common.nsid = 4294967295U; c.__annonCompField73.common.prp1 = dma_addr; c.__annonCompField73.common.cdw10[0] = 8323074U; res = nvme_submit_admin_cmd(dev, & c, (u32 *)0U); } if (res != 0) { temp_c = 255U; } else { smart_log = (struct nvme_smart_log *)mem; temp_k = ((int )((u16 )smart_log->temperature[1]) << 8U) + (int )((u16 )smart_log->temperature[0]); temp_c = (unsigned int )((u8 )temp_k) + 239U; } { *log_response = 47U; *(log_response + 3UL) = 8U; *(log_response + 6UL) = 35U; *(log_response + 7UL) = 4U; *(log_response + 10UL) = temp_c; _min1 = alloc_len; _min2 = 12; xfer_len = _min1 < _min2 ? _min1 : _min2; res = nvme_trans_copy_to_user(hdr, (void *)log_response, (unsigned long )xfer_len); dma_free_attrs(& (dev->pci_dev)->dev, 512UL, mem, dma_addr, (struct dma_attrs *)0); } out_dma: { kfree((void const *)log_response); } out_mem: ; return (res); } } static int nvme_trans_log_temperature(struct nvme_ns *ns , struct sg_io_hdr *hdr , int alloc_len ) { int res ; int xfer_len ; u8 *log_response ; struct nvme_command c ; struct nvme_dev *dev ; struct nvme_smart_log *smart_log ; dma_addr_t dma_addr ; void *mem ; u32 feature_resp ; u8 temp_c_cur ; u8 temp_c_thresh ; u16 temp_k ; void *tmp ; int _min1 ; int _min2 ; { { res = 0; dev = ns->dev; tmp = kzalloc(16UL, 208U); log_response = (u8 *)tmp; } if ((unsigned long )log_response == (unsigned long )((u8 *)0U)) { res = -12; goto out_mem; } else { } { mem = dma_alloc_attrs(& (dev->pci_dev)->dev, 512UL, & dma_addr, 208U, (struct dma_attrs *)0); } if ((unsigned long )mem == (unsigned long )((void *)0)) { res = -12; goto out_dma; } else { } { __memset((void *)(& c), 0, 64UL); c.__annonCompField73.common.opcode = 2U; c.__annonCompField73.common.nsid = 4294967295U; c.__annonCompField73.common.prp1 = dma_addr; c.__annonCompField73.common.cdw10[0] = 8323074U; res = nvme_submit_admin_cmd(dev, & c, (u32 *)0U); } if (res != 0) { temp_c_cur = 255U; } else { smart_log = (struct nvme_smart_log *)mem; temp_k = ((int )((u16 )smart_log->temperature[1]) << 8U) + (int )((u16 )smart_log->temperature[0]); temp_c_cur = (unsigned int )((u8 )temp_k) + 239U; } { res = nvme_get_features(dev, 4U, 0U, 0ULL, & feature_resp); } if (res != 0) { temp_c_thresh = 255U; } else { temp_c_thresh = (unsigned int )((u8 )feature_resp) - 17U; } { *log_response = 13U; *(log_response + 3UL) = 12U; *(log_response + 6UL) = 1U; *(log_response + 7UL) = 2U; *(log_response + 9UL) = temp_c_cur; *(log_response + 11UL) = 1U; *(log_response + 12UL) = 1U; *(log_response + 13UL) = 2U; *(log_response + 15UL) = temp_c_thresh; _min1 = alloc_len; _min2 = 16; xfer_len = _min1 < _min2 ? _min1 : _min2; res = nvme_trans_copy_to_user(hdr, (void *)log_response, (unsigned long )xfer_len); dma_free_attrs(& (dev->pci_dev)->dev, 512UL, mem, dma_addr, (struct dma_attrs *)0); } out_dma: { kfree((void const *)log_response); } out_mem: ; return (res); } } static int nvme_trans_fill_mode_parm_hdr(u8 *resp , int len , u8 cdb10 , u8 llbaa , u16 mode_data_length , u16 blk_desc_len ) { { if (((unsigned int )cdb10 != 0U && len <= 7) || ((unsigned int )cdb10 == 0U && len <= 3)) { return (1); } else { } if ((unsigned int )cdb10 != 0U) { *resp = (u8 )((int )mode_data_length >> 8); *(resp + 1UL) = (u8 )mode_data_length; *(resp + 4UL) = llbaa; *(resp + 5UL) = 0U; *(resp + 6UL) = (u8 )((int )blk_desc_len >> 8); *(resp + 7UL) = (u8 )blk_desc_len; } else { *resp = (u8 )mode_data_length; *(resp + 3UL) = (u8 )blk_desc_len; } return (0); } } static int nvme_trans_fill_blk_desc(struct nvme_ns *ns , struct sg_io_hdr *hdr , u8 *resp , int len , u8 llbaa ) { int res ; int nvme_sc ; struct nvme_dev *dev ; dma_addr_t dma_addr ; void *mem ; struct nvme_id_ns *id_ns ; u8 flbas ; u32 lba_length ; __be32 tmp_cap ; __u32 tmp ; __be32 tmp_len ; __u32 tmp___0 ; __be64 tmp_cap___0 ; __u64 tmp___1 ; __be32 tmp_len___0 ; __u32 tmp___2 ; { res = 0; dev = ns->dev; if ((unsigned int )llbaa == 0U && len <= 7) { return (1); } else if ((unsigned int )llbaa != 0U && len <= 15) { return (1); } else { } { mem = dma_alloc_attrs(& (dev->pci_dev)->dev, 4096UL, & dma_addr, 208U, (struct dma_attrs *)0); } if ((unsigned long )mem == (unsigned long )((void *)0)) { res = -12; goto out; } else { } { nvme_sc = nvme_identify(dev, ns->ns_id, 0U, dma_addr); res = nvme_trans_status_code(hdr, nvme_sc); } if (res != 0) { goto out_dma; } else { } if (nvme_sc != 0) { res = nvme_sc; goto out_dma; } else { } id_ns = (struct nvme_id_ns *)mem; flbas = (unsigned int )id_ns->flbas & 15U; lba_length = (u32 )(1 << (int )id_ns->lbaf[(int )flbas].ds); if ((unsigned int )llbaa == 0U) { { tmp = __fswab32((__u32 )id_ns->ncap); tmp_cap = tmp; tmp___0 = __fswab32(lba_length & 16777215U); tmp_len = tmp___0; __memcpy((void *)resp, (void const *)(& tmp_cap), 4UL); __memcpy((void *)resp + 4U, (void const *)(& tmp_len), 4UL); } } else { { tmp___1 = __fswab64(id_ns->ncap); tmp_cap___0 = tmp___1; tmp___2 = __fswab32(lba_length); tmp_len___0 = tmp___2; __memcpy((void *)resp, (void const *)(& tmp_cap___0), 8UL); __memcpy((void *)resp + 12U, (void const *)(& tmp_len___0), 4UL); } } out_dma: { dma_free_attrs(& (dev->pci_dev)->dev, 4096UL, mem, dma_addr, (struct dma_attrs *)0); } out: ; return (res); } } static int nvme_trans_fill_control_page(struct nvme_ns *ns , struct sg_io_hdr *hdr , u8 *resp , int len ) { { if (len <= 11) { return (1); } else { } *resp = 10U; *(resp + 1UL) = 10U; *(resp + 2UL) = 14U; *(resp + 3UL) = 18U; *(resp + 5UL) = 64U; *(resp + 8UL) = 255U; *(resp + 9UL) = 255U; return (0); } } static int nvme_trans_fill_caching_page(struct nvme_ns *ns , struct sg_io_hdr *hdr , u8 *resp , int len ) { int res ; int nvme_sc ; struct nvme_dev *dev ; u32 feature_resp ; u8 vwc ; { res = 0; dev = ns->dev; if (len <= 19) { return (1); } else { } { nvme_sc = nvme_get_features(dev, 6U, 0U, 0ULL, & feature_resp); res = nvme_trans_status_code(hdr, nvme_sc); } if (res != 0) { goto out; } else { } if (nvme_sc != 0) { res = nvme_sc; goto out; } else { } vwc = (unsigned int )((u8 )feature_resp) & 1U; *resp = 8U; *(resp + 1UL) = 18U; *(resp + 2UL) = (int )vwc << 2U; out: ; return (res); } } static int nvme_trans_fill_pow_cnd_page(struct nvme_ns *ns , struct sg_io_hdr *hdr , u8 *resp , int len ) { int res ; { res = 0; if (len <= 39) { return (1); } else { } *resp = 26U; *(resp + 1UL) = 38U; return (res); } } static int nvme_trans_fill_inf_exc_page(struct nvme_ns *ns , struct sg_io_hdr *hdr , u8 *resp , int len ) { int res ; { res = 0; if (len <= 11) { return (1); } else { } *resp = 28U; *(resp + 1UL) = 10U; *(resp + 2UL) = 136U; return (res); } } static int nvme_trans_fill_all_pages(struct nvme_ns *ns , struct sg_io_hdr *hdr , u8 *resp , int len ) { int res ; u16 mode_pages_offset_1 ; u16 mode_pages_offset_2 ; u16 mode_pages_offset_3 ; u16 mode_pages_offset_4 ; { { res = 0; mode_pages_offset_1 = 0U; mode_pages_offset_2 = (unsigned int )mode_pages_offset_1 + 20U; mode_pages_offset_3 = (unsigned int )mode_pages_offset_2 + 12U; mode_pages_offset_4 = (unsigned int )mode_pages_offset_3 + 40U; res = nvme_trans_fill_caching_page(ns, hdr, resp + (unsigned long )mode_pages_offset_1, 20); } if (res != 0) { goto out; } else { } { res = nvme_trans_fill_control_page(ns, hdr, resp + (unsigned long )mode_pages_offset_2, 12); } if (res != 0) { goto out; } else { } { res = nvme_trans_fill_pow_cnd_page(ns, hdr, resp + (unsigned long )mode_pages_offset_3, 40); } if (res != 0) { goto out; } else { } { res = nvme_trans_fill_inf_exc_page(ns, hdr, resp + (unsigned long )mode_pages_offset_4, 12); } if (res != 0) { } else { } out: ; return (res); } } __inline static int nvme_trans_get_blk_desc_len(u8 dbd , u8 llbaa ) { { if ((unsigned int )dbd == 0U) { return (((int )llbaa + 1) * 8); } else { return (0); } } } static int nvme_trans_mode_page_create(struct nvme_ns *ns , struct sg_io_hdr *hdr , u8 *cmd , u16 alloc_len , u8 cdb10 , int (*mode_page_fill_func)(struct nvme_ns * , struct sg_io_hdr * , u8 * , int ) , u16 mode_pages_tot_len ) { int res ; int xfer_len ; u8 *response ; u8 dbd ; u8 llbaa ; u16 resp_size ; int mph_size ; u16 mode_pages_offset_1 ; u16 blk_desc_len ; u16 blk_desc_offset ; u16 mode_data_length ; int tmp ; void *tmp___0 ; u16 _min1 ; u16 _min2 ; { { res = 0; dbd = (u8 )(((int )*(cmd + 1UL) & 8) >> 3); llbaa = (u8 )(((int )*(cmd + 1UL) & 16) >> 4); mph_size = (unsigned int )cdb10 != 0U ? 8 : 4; tmp = nvme_trans_get_blk_desc_len((int )dbd, (int )llbaa); blk_desc_len = (u16 )tmp; resp_size = ((int )((u16 )mph_size) + (int )blk_desc_len) + (int )mode_pages_tot_len; mode_data_length = ((unsigned int )((u16 )((int )cdb10 + 1)) * 3U + (unsigned int )blk_desc_len) + (unsigned int )mode_pages_tot_len; blk_desc_offset = (u16 )mph_size; mode_pages_offset_1 = (int )blk_desc_offset + (int )blk_desc_len; tmp___0 = kzalloc((size_t )resp_size, 208U); response = (u8 *)tmp___0; } if ((unsigned long )response == (unsigned long )((u8 *)0U)) { res = -12; goto out_mem; } else { } { res = nvme_trans_fill_mode_parm_hdr(response, mph_size, (int )cdb10, (int )llbaa, (int )mode_data_length, (int )blk_desc_len); } if (res != 0) { goto out_free; } else { } if ((unsigned int )blk_desc_len != 0U) { { res = nvme_trans_fill_blk_desc(ns, hdr, response + (unsigned long )blk_desc_offset, (int )blk_desc_len, (int )llbaa); } if (res != 0) { goto out_free; } else { } } else { } { res = (*mode_page_fill_func)(ns, hdr, response + (unsigned long )mode_pages_offset_1, (int )mode_pages_tot_len); } if (res != 0) { goto out_free; } else { } { _min1 = alloc_len; _min2 = resp_size; xfer_len = (int )_min1 < (int )_min2 ? _min1 : _min2; res = nvme_trans_copy_to_user(hdr, (void *)response, (unsigned long )xfer_len); } out_free: { kfree((void const *)response); } out_mem: ; return (res); } } static void nvme_trans_fill_read_cap(u8 *response , struct nvme_id_ns *id_ns , u8 cdb16 ) { u8 flbas ; u32 lba_length ; u64 rlba ; u8 prot_en ; u8 p_type_lut[4U] ; __be64 tmp_rlba ; __be32 tmp_rlba_32 ; __be32 tmp_len ; __u64 tmp ; __u32 tmp___0 ; __u32 tmp___1 ; __u64 tmp___2 ; __u32 tmp___3 ; { { p_type_lut[0] = 0U; p_type_lut[1] = 0U; p_type_lut[2] = 1U; p_type_lut[3] = 2U; flbas = (unsigned int )id_ns->flbas & 15U; lba_length = (u32 )(1 << (int )id_ns->lbaf[(int )flbas].ds); tmp = __le64_to_cpup((__le64 const *)(& id_ns->nsze)); rlba = tmp - 1ULL; } if ((unsigned int )id_ns->dps != 0U) { prot_en = 1U; } else { prot_en = 0U; } if ((unsigned int )cdb16 == 0U) { if (rlba > 4294967295ULL) { rlba = 4294967295ULL; } else { } { tmp___0 = __fswab32((__u32 )rlba); tmp_rlba_32 = tmp___0; tmp___1 = __fswab32(lba_length); tmp_len = tmp___1; __memcpy((void *)response, (void const *)(& tmp_rlba_32), 4UL); __memcpy((void *)response + 4U, (void const *)(& tmp_len), 4UL); } } else { { tmp___2 = __fswab64(rlba); tmp_rlba = tmp___2; tmp___3 = __fswab32(lba_length); tmp_len = tmp___3; __memcpy((void *)response, (void const *)(& tmp_rlba), 8UL); __memcpy((void *)response + 8U, (void const *)(& tmp_len), 4UL); *(response + 12UL) = (u8 )((int )((signed char )((int )p_type_lut[(int )id_ns->dps & 3] << 1)) | (int )((signed char )prot_en)); } } return; } } static int nvme_trans_power_state(struct nvme_ns *ns , struct sg_io_hdr *hdr , u8 pc , u8 pcmod , u8 start ) { int res ; int nvme_sc ; struct nvme_dev *dev ; dma_addr_t dma_addr ; void *mem ; struct nvme_id_ctrl *id_ctrl ; int lowest_pow_st ; unsigned int ps_desired ; int _max1 ; int _max2 ; int _max1___0 ; int _max2___0 ; int _max1___1 ; int _max2___1 ; { { res = 0; dev = ns->dev; ps_desired = 0U; mem = dma_alloc_attrs(& (dev->pci_dev)->dev, 4096UL, & dma_addr, 208U, (struct dma_attrs *)0); } if ((unsigned long )mem == (unsigned long )((void *)0)) { res = -12; goto out; } else { } { nvme_sc = nvme_identify(dev, 0U, 1U, dma_addr); res = nvme_trans_status_code(hdr, nvme_sc); } if (res != 0) { goto out_dma; } else { } if (nvme_sc != 0) { res = nvme_sc; goto out_dma; } else { } id_ctrl = (struct nvme_id_ctrl *)mem; _max1 = 0; _max2 = (int )id_ctrl->npss + -1; lowest_pow_st = _max1 > _max2 ? _max1 : _max2; { if ((int )pc == 0) { goto case_0; } else { } if ((int )pc == 1) { goto case_1; } else { } if ((int )pc == 2) { goto case_2; } else { } if ((int )pc == 3) { goto case_3; } else { } if ((int )pc == 7) { goto case_7; } else { } goto switch_default; case_0: /* CIL Label */ ; if ((unsigned int )pcmod == 0U && (unsigned int )start == 1U) { ps_desired = 0U; } else { } if ((unsigned int )((int )pcmod | (int )start) == 0U) { ps_desired = (unsigned int )lowest_pow_st; } else { } goto ldv_39599; case_1: /* CIL Label */ ; if ((unsigned int )pcmod == 0U) { ps_desired = 0U; } else { } goto ldv_39599; case_2: /* CIL Label */ ; if ((unsigned int )pcmod == 0U) { ps_desired = 1U; } else if ((unsigned int )pcmod == 1U) { ps_desired = 2U; } else if ((unsigned int )pcmod == 2U) { ps_desired = 3U; } else { } goto ldv_39599; case_3: /* CIL Label */ ; if ((unsigned int )pcmod == 0U) { _max1___0 = 0; _max2___0 = lowest_pow_st + -2; ps_desired = (unsigned int )(_max1___0 > _max2___0 ? _max1___0 : _max2___0); } else if ((unsigned int )pcmod == 1U) { _max1___1 = 0; _max2___1 = lowest_pow_st + -1; ps_desired = (unsigned int )(_max1___1 > _max2___1 ? _max1___1 : _max2___1); } else { } goto ldv_39599; case_7: /* CIL Label */ ; switch_default: /* CIL Label */ { res = nvme_trans_completion(hdr, 2, 5, 36, 0); } goto ldv_39599; switch_break: /* CIL Label */ ; } ldv_39599: { nvme_sc = nvme_set_features(dev, 2U, ps_desired, 0ULL, (u32 *)0U); res = nvme_trans_status_code(hdr, nvme_sc); } if (res != 0) { goto out_dma; } else { } if (nvme_sc != 0) { res = nvme_sc; } else { } out_dma: { dma_free_attrs(& (dev->pci_dev)->dev, 4096UL, mem, dma_addr, (struct dma_attrs *)0); } out: ; return (res); } } static int nvme_trans_send_fw_cmd(struct nvme_ns *ns , struct sg_io_hdr *hdr , u8 opcode , u32 tot_len , u32 offset , u8 buffer_id ) { int res ; int nvme_sc ; struct nvme_dev *dev ; struct nvme_command c ; struct nvme_iod *iod ; unsigned int length ; long tmp ; bool tmp___0 ; int tmp___1 ; u32 cdw10 ; { { res = 0; dev = ns->dev; iod = (struct nvme_iod *)0; __memset((void *)(& c), 0, 64UL); c.__annonCompField73.common.opcode = opcode; } if ((unsigned int )opcode == 17U) { if ((unsigned int )hdr->iovec_count != 0U) { { res = nvme_trans_completion(hdr, 2, 5, 36, 0); } goto out; } else { } { iod = nvme_map_user_pages(dev, 1, (unsigned long )hdr->dxferp, tot_len); tmp___0 = IS_ERR((void const *)iod); } if ((int )tmp___0) { { tmp = PTR_ERR((void const *)iod); res = (int )tmp; } goto out; } else { } { tmp___1 = nvme_setup_prps(dev, iod, (int )tot_len, 208U); length = (unsigned int )tmp___1; } if (length != tot_len) { res = -12; goto out_unmap; } else { } c.__annonCompField73.dlfw.prp1 = ((struct scatterlist *)(& iod->sg))->dma_address; c.__annonCompField73.dlfw.prp2 = iod->first_dma; c.__annonCompField73.dlfw.numd = tot_len / 4U - 1U; c.__annonCompField73.dlfw.offset = offset / 4U; } else if ((unsigned int )opcode == 16U) { cdw10 = (unsigned int )buffer_id | 8U; c.__annonCompField73.common.cdw10[0] = cdw10; } else { } { nvme_sc = nvme_submit_admin_cmd(dev, & c, (u32 *)0U); res = nvme_trans_status_code(hdr, nvme_sc); } if (res != 0) { goto out_unmap; } else { } if (nvme_sc != 0) { res = nvme_sc; } else { } out_unmap: ; if ((unsigned int )opcode == 17U) { { nvme_unmap_user_pages(dev, 1, iod); nvme_free_iod(dev, iod); } } else { } out: ; return (res); } } __inline static void nvme_trans_modesel_get_bd_len(u8 *parm_list , u8 cdb10 , u16 *bd_len , u8 *llbaa ) { { if ((unsigned int )cdb10 != 0U) { *bd_len = ((int )((u16 )*(parm_list + 6UL)) << 8U) + (int )((u16 )*(parm_list + 7UL)); *llbaa = (unsigned int )*(parm_list + 4UL) & 1U; } else { *bd_len = (u16 )*(parm_list + 3UL); } return; } } static void nvme_trans_modesel_save_bd(struct nvme_ns *ns , u8 *parm_list , u16 idx , u16 bd_len , u8 llbaa ) { u16 bd_num ; { bd_num = (u16 )((int )bd_len / ((unsigned int )llbaa == 0U ? 8 : 16)); if ((unsigned int )llbaa == 0U) { ns->mode_select_num_blocks = (u64 )((((int )*(parm_list + ((unsigned long )idx + 1UL)) << 16) + ((int )*(parm_list + ((unsigned long )idx + 2UL)) << 8)) + (int )*(parm_list + ((unsigned long )idx + 3UL))); ns->mode_select_block_len = (u32 )((((int )*(parm_list + ((unsigned long )idx + 5UL)) << 16) + ((int )*(parm_list + ((unsigned long )idx + 6UL)) << 8)) + (int )*(parm_list + ((unsigned long )idx + 7UL))); } else { ns->mode_select_num_blocks = ((((((((unsigned long long )*(parm_list + (unsigned long )idx) << 56) + ((unsigned long long )*(parm_list + ((unsigned long )idx + 1UL)) << 48)) + ((unsigned long long )*(parm_list + ((unsigned long )idx + 2UL)) << 40)) + ((unsigned long long )*(parm_list + ((unsigned long )idx + 3UL)) << 32)) + ((unsigned long long )*(parm_list + ((unsigned long )idx + 4UL)) << 24)) + ((unsigned long long )*(parm_list + ((unsigned long )idx + 5UL)) << 16)) + ((unsigned long long )*(parm_list + ((unsigned long )idx + 6UL)) << 8)) + (unsigned long long )*(parm_list + ((unsigned long )idx + 7UL)); ns->mode_select_block_len = (u32 )(((((int )*(parm_list + ((unsigned long )idx + 12UL)) << 24) + ((int )*(parm_list + ((unsigned long )idx + 13UL)) << 16)) + ((int )*(parm_list + ((unsigned long )idx + 14UL)) << 8)) + (int )*(parm_list + ((unsigned long )idx + 15UL))); } return; } } static int nvme_trans_modesel_get_mp(struct nvme_ns *ns , struct sg_io_hdr *hdr , u8 *mode_page , u8 page_code ) { int res ; int nvme_sc ; struct nvme_dev *dev ; unsigned int dword11 ; { res = 0; dev = ns->dev; { if ((int )page_code == 8) { goto case_8; } else { } if ((int )page_code == 10) { goto case_10; } else { } if ((int )page_code == 26) { goto case_26; } else { } goto switch_default; case_8: /* CIL Label */ { dword11 = ((int )*(mode_page + 2UL) & 4) != 0; nvme_sc = nvme_set_features(dev, 6U, dword11, 0ULL, (u32 *)0U); res = nvme_trans_status_code(hdr, nvme_sc); } if (res != 0) { goto ldv_39653; } else { } if (nvme_sc != 0) { res = nvme_sc; goto ldv_39653; } else { } goto ldv_39653; case_10: /* CIL Label */ ; goto ldv_39653; case_26: /* CIL Label */ ; if ((int )*(mode_page + 2UL) & 1 || ((int )*(mode_page + 3UL) & 15) != 0) { { res = nvme_trans_completion(hdr, 2, 5, 38, 0); } if (res == 0) { res = 1; } else { } goto ldv_39653; } else { } goto ldv_39653; switch_default: /* CIL Label */ { res = nvme_trans_completion(hdr, 2, 5, 36, 0); } if (res == 0) { res = 1; } else { } goto ldv_39653; switch_break: /* CIL Label */ ; } ldv_39653: ; return (res); } } static int nvme_trans_modesel_data(struct nvme_ns *ns , struct sg_io_hdr *hdr , u8 *cmd , u16 parm_list_len , u8 pf , u8 sp , u8 cdb10 ) { int res ; u8 *parm_list ; u16 bd_len ; u8 llbaa ; u16 index ; u16 saved_index ; u8 page_code ; u16 mp_size ; void *tmp ; { { res = 0; llbaa = 0U; tmp = kmalloc((size_t )parm_list_len, 208U); parm_list = (u8 *)tmp; } if ((unsigned long )parm_list == (unsigned long )((u8 *)0U)) { res = -12; goto out; } else { } { res = nvme_trans_copy_from_user(hdr, (void *)parm_list, (unsigned long )parm_list_len); } if (res != 0) { goto out_mem; } else { } { nvme_trans_modesel_get_bd_len(parm_list, (int )cdb10, & bd_len, & llbaa); index = (unsigned int )cdb10 != 0U ? 8U : 4U; } if ((unsigned int )bd_len != 0U) { { nvme_trans_modesel_save_bd(ns, parm_list, (int )index, (int )bd_len, (int )llbaa); index = (int )index + (int )bd_len; } } else { } saved_index = index; ldv_39676: page_code = (unsigned int )*(parm_list + (unsigned long )index) & 63U; mp_size = (unsigned int )((u16 )*(parm_list + ((unsigned long )index + 1UL))) + 2U; if (((unsigned int )page_code != 8U && (unsigned int )page_code != 10U) && (unsigned int )page_code != 26U) { { res = nvme_trans_completion(hdr, 2, 5, 36, 0); } goto out_mem; } else { } index = (int )index + (int )mp_size; if ((int )index < (int )parm_list_len) { goto ldv_39676; } else { } index = saved_index; ldv_39679: { page_code = (unsigned int )*(parm_list + (unsigned long )index) & 63U; mp_size = (unsigned int )((u16 )*(parm_list + ((unsigned long )index + 1UL))) + 2U; res = nvme_trans_modesel_get_mp(ns, hdr, parm_list + (unsigned long )index, (int )page_code); } if (res != 0) { goto ldv_39678; } else { } index = (int )index + (int )mp_size; if ((int )index < (int )parm_list_len) { goto ldv_39679; } else { } ldv_39678: ; out_mem: { kfree((void const *)parm_list); } out: ; return (res); } } static int nvme_trans_fmt_set_blk_size_count(struct nvme_ns *ns , struct sg_io_hdr *hdr ) { int res ; int nvme_sc ; struct nvme_dev *dev ; dma_addr_t dma_addr ; void *mem ; struct nvme_id_ns *id_ns ; u8 flbas ; { res = 0; dev = ns->dev; if (ns->mode_select_num_blocks == 0ULL || ns->mode_select_block_len == 0U) { { mem = dma_alloc_attrs(& (dev->pci_dev)->dev, 4096UL, & dma_addr, 208U, (struct dma_attrs *)0); } if ((unsigned long )mem == (unsigned long )((void *)0)) { res = -12; goto out; } else { } { nvme_sc = nvme_identify(dev, ns->ns_id, 0U, dma_addr); res = nvme_trans_status_code(hdr, nvme_sc); } if (res != 0) { goto out_dma; } else { } if (nvme_sc != 0) { res = nvme_sc; goto out_dma; } else { } id_ns = (struct nvme_id_ns *)mem; if (ns->mode_select_num_blocks == 0ULL) { ns->mode_select_num_blocks = id_ns->ncap; } else { } if (ns->mode_select_block_len == 0U) { flbas = (unsigned int )id_ns->flbas & 15U; ns->mode_select_block_len = (u32 )(1 << (int )id_ns->lbaf[(int )flbas].ds); } else { } out_dma: { dma_free_attrs(& (dev->pci_dev)->dev, 4096UL, mem, dma_addr, (struct dma_attrs *)0); } } else { } out: ; return (res); } } static int nvme_trans_fmt_get_parm_header(struct sg_io_hdr *hdr , u8 len , u8 format_prot_info , u8 *nvme_pf_code ) { int res ; u8 *parm_list ; u8 pf_usage ; u8 pf_code ; void *tmp ; { { res = 0; tmp = kmalloc((size_t )len, 208U); parm_list = (u8 *)tmp; } if ((unsigned long )parm_list == (unsigned long )((u8 *)0U)) { res = -12; goto out; } else { } { res = nvme_trans_copy_from_user(hdr, (void *)parm_list, (unsigned long )len); } if (res != 0) { goto out_mem; } else { } if (((int )*(parm_list + 1UL) & 2) != 0) { { res = nvme_trans_completion(hdr, 2, 5, 36, 0); } goto out_mem; } else { } if ((unsigned int )len == 8U && ((int )*(parm_list + 3UL) & 15) != 0) { { res = nvme_trans_completion(hdr, 2, 5, 36, 0); } goto out_mem; } else { } pf_usage = (unsigned int )*parm_list & 7U; pf_code = (u8 )((int )((signed char )((int )pf_usage << 2)) | (int )((signed char )format_prot_info)); { if ((int )pf_code == 0) { goto case_0; } else { } if ((int )pf_code == 2) { goto case_2; } else { } if ((int )pf_code == 3) { goto case_3; } else { } if ((int )pf_code == 7) { goto case_7; } else { } goto switch_default; case_0: /* CIL Label */ *nvme_pf_code = 0U; goto ldv_39706; case_2: /* CIL Label */ *nvme_pf_code = 1U; goto ldv_39706; case_3: /* CIL Label */ *nvme_pf_code = 2U; goto ldv_39706; case_7: /* CIL Label */ *nvme_pf_code = 3U; goto ldv_39706; switch_default: /* CIL Label */ { res = nvme_trans_completion(hdr, 2, 5, 36, 0); } goto ldv_39706; switch_break: /* CIL Label */ ; } ldv_39706: ; out_mem: { kfree((void const *)parm_list); } out: ; return (res); } } static int nvme_trans_fmt_send_cmd(struct nvme_ns *ns , struct sg_io_hdr *hdr , u8 prot_info ) { int res ; int nvme_sc ; struct nvme_dev *dev ; dma_addr_t dma_addr ; void *mem ; struct nvme_id_ns *id_ns ; u8 i ; u8 flbas ; u8 nlbaf ; u8 selected_lbaf ; u32 cdw10 ; struct nvme_command c ; { { res = 0; dev = ns->dev; selected_lbaf = 255U; cdw10 = 0U; mem = dma_alloc_attrs(& (dev->pci_dev)->dev, 4096UL, & dma_addr, 208U, (struct dma_attrs *)0); } if ((unsigned long )mem == (unsigned long )((void *)0)) { res = -12; goto out; } else { } { nvme_sc = nvme_identify(dev, ns->ns_id, 0U, dma_addr); res = nvme_trans_status_code(hdr, nvme_sc); } if (res != 0) { goto out_dma; } else { } if (nvme_sc != 0) { res = nvme_sc; goto out_dma; } else { } id_ns = (struct nvme_id_ns *)mem; flbas = (unsigned int )id_ns->flbas & 15U; nlbaf = id_ns->nlbaf; i = 0U; goto ldv_39732; ldv_39731: ; if (ns->mode_select_block_len == (u32 )(1 << (int )id_ns->lbaf[(int )i].ds)) { selected_lbaf = i; goto ldv_39730; } else { } i = (u8 )((int )i + 1); ldv_39732: ; if ((int )i < (int )nlbaf) { goto ldv_39731; } else { } ldv_39730: ; if ((unsigned int )selected_lbaf > 15U) { { res = nvme_trans_completion(hdr, 2, 5, 38, 0); } } else { } if (ns->mode_select_num_blocks != id_ns->ncap) { { res = nvme_trans_completion(hdr, 2, 5, 38, 0); } } else { } { cdw10 = cdw10 | (u32 )((int )prot_info << 5); cdw10 = cdw10 | ((u32 )selected_lbaf & 15U); __memset((void *)(& c), 0, 64UL); c.__annonCompField73.format.opcode = 128U; c.__annonCompField73.format.nsid = ns->ns_id; c.__annonCompField73.format.cdw10 = cdw10; nvme_sc = nvme_submit_admin_cmd(dev, & c, (u32 *)0U); res = nvme_trans_status_code(hdr, nvme_sc); } if (res != 0) { goto out_dma; } else { } if (nvme_sc != 0) { res = nvme_sc; } else { } out_dma: { dma_free_attrs(& (dev->pci_dev)->dev, 4096UL, mem, dma_addr, (struct dma_attrs *)0); } out: ; return (res); } } __inline static void nvme_trans_get_io_cdb6(u8 *cmd , struct nvme_trans_io_cdb *cdb_info ) { { cdb_info->fua = 0U; cdb_info->prot_info = 0U; cdb_info->lba = (u64 )(((((int )*cmd << 24) | ((int )*(cmd + 1UL) << 16)) | ((int )*(cmd + 2UL) << 8)) | (int )*(cmd + 3UL)) & 2097151ULL; cdb_info->xfer_len = (u32 )*(cmd + 4UL); if (cdb_info->xfer_len == 0U) { cdb_info->xfer_len = 256U; } else { } return; } } __inline static void nvme_trans_get_io_cdb10(u8 *cmd , struct nvme_trans_io_cdb *cdb_info ) { { cdb_info->fua = (unsigned int )*(cmd + 1UL) & 8U; cdb_info->prot_info = (unsigned int )*(cmd + 1UL) & 7U; cdb_info->lba = (u64 )(((((int )*(cmd + 2UL) << 24) | ((int )*(cmd + 3UL) << 16)) | ((int )*(cmd + 4UL) << 8)) | (int )*(cmd + 5UL)); cdb_info->xfer_len = (u32 )(((int )*(cmd + 7UL) << 8) | (int )*(cmd + 8UL)); return; } } __inline static void nvme_trans_get_io_cdb12(u8 *cmd , struct nvme_trans_io_cdb *cdb_info ) { { cdb_info->fua = (unsigned int )*(cmd + 1UL) & 8U; cdb_info->prot_info = (unsigned int )*(cmd + 1UL) & 7U; cdb_info->lba = (u64 )(((((int )*(cmd + 2UL) << 24) | ((int )*(cmd + 3UL) << 16)) | ((int )*(cmd + 4UL) << 8)) | (int )*(cmd + 5UL)); cdb_info->xfer_len = (u32 )(((((int )*(cmd + 6UL) << 24) | ((int )*(cmd + 7UL) << 16)) | ((int )*(cmd + 8UL) << 8)) | (int )*(cmd + 9UL)); return; } } __inline static void nvme_trans_get_io_cdb16(u8 *cmd , struct nvme_trans_io_cdb *cdb_info ) { { cdb_info->fua = (unsigned int )*(cmd + 1UL) & 8U; cdb_info->prot_info = (unsigned int )*(cmd + 1UL) & 7U; cdb_info->lba = ((((((((unsigned long long )*(cmd + 2UL) << 56) | ((unsigned long long )*(cmd + 3UL) << 48)) | ((unsigned long long )*(cmd + 4UL) << 40)) | ((unsigned long long )*(cmd + 5UL) << 32)) | ((unsigned long long )*(cmd + 6UL) << 24)) | ((unsigned long long )*(cmd + 7UL) << 16)) | ((unsigned long long )*(cmd + 8UL) << 8)) | (unsigned long long )*(cmd + 9UL); cdb_info->xfer_len = (u32 )(((((int )*(cmd + 10UL) << 24) | ((int )*(cmd + 11UL) << 16)) | ((int )*(cmd + 12UL) << 8)) | (int )*(cmd + 13UL)); return; } } __inline static u32 nvme_trans_io_get_num_cmds(struct sg_io_hdr *hdr , struct nvme_trans_io_cdb *cdb_info , u32 max_blocks ) { { if ((unsigned int )hdr->iovec_count != 0U) { return ((u32 )hdr->iovec_count); } else if (cdb_info->xfer_len > max_blocks) { return ((cdb_info->xfer_len - 1U) / max_blocks + 1U); } else { return (1U); } } } static u16 nvme_trans_io_get_control(struct nvme_ns *ns , struct nvme_trans_io_cdb *cdb_info ) { u16 control ; { control = 0U; if ((unsigned int )cdb_info->fua != 0U) { control = (u16 )((unsigned int )control | 16384U); } else { } return (control); } } static int nvme_trans_do_nvme_io(struct nvme_ns *ns , struct sg_io_hdr *hdr , struct nvme_trans_io_cdb *cdb_info , u8 is_write ) { int res ; int nvme_sc ; struct nvme_dev *dev ; u32 num_cmds ; struct nvme_iod *iod ; u64 unit_len ; u64 unit_num_blocks ; u32 retcode ; u32 i ; u64 nvme_offset ; void *next_mapping_addr ; struct nvme_command c ; u8 opcode ; u16 control ; u32 max_blocks ; unsigned int tmp ; struct sg_iovec sgl ; unsigned long tmp___0 ; unsigned long long _min1 ; u64 _min2 ; long tmp___1 ; bool tmp___2 ; int tmp___3 ; { { res = 0; dev = ns->dev; i = 0U; nvme_offset = 0ULL; opcode = (unsigned int )is_write != 0U ? 1U : 2U; tmp = queue_max_hw_sectors(ns->queue); max_blocks = tmp; num_cmds = nvme_trans_io_get_num_cmds(hdr, cdb_info, max_blocks); i = 0U; } goto ldv_39786; ldv_39785: { __memset((void *)(& c), 0, 64UL); } if ((unsigned int )hdr->iovec_count != 0U) { { tmp___0 = copy_from_user((void *)(& sgl), (void const *)(hdr->dxferp + (unsigned long )i * 16UL), 16UL); retcode = (u32 )tmp___0; } if (retcode != 0U) { return (-14); } else { } unit_len = (u64 )sgl.iov_len; unit_num_blocks = unit_len >> ns->lba_shift; next_mapping_addr = sgl.iov_base; } else { _min1 = (unsigned long long )max_blocks; _min2 = (u64 )cdb_info->xfer_len - nvme_offset; unit_num_blocks = _min1 < _min2 ? _min1 : _min2; unit_len = unit_num_blocks << ns->lba_shift; next_mapping_addr = hdr->dxferp + (u64 )(1 << ns->lba_shift) * nvme_offset; } { c.__annonCompField73.rw.opcode = opcode; c.__annonCompField73.rw.nsid = ns->ns_id; c.__annonCompField73.rw.slba = cdb_info->lba + nvme_offset; c.__annonCompField73.rw.length = (unsigned int )((unsigned short )unit_num_blocks) - 1U; control = nvme_trans_io_get_control(ns, cdb_info); c.__annonCompField73.rw.control = control; iod = nvme_map_user_pages(dev, (unsigned int )is_write != 0U ? 1 : 2, (unsigned long )next_mapping_addr, (unsigned int )unit_len); tmp___2 = IS_ERR((void const *)iod); } if ((int )tmp___2) { { tmp___1 = PTR_ERR((void const *)iod); res = (int )tmp___1; } goto out; } else { } { tmp___3 = nvme_setup_prps(dev, iod, (int )unit_len, 208U); retcode = (u32 )tmp___3; } if ((u64 )retcode != unit_len) { { nvme_unmap_user_pages(dev, (unsigned int )is_write != 0U ? 1 : 2, iod); nvme_free_iod(dev, iod); res = -12; } goto out; } else { } { c.__annonCompField73.rw.prp1 = ((struct scatterlist *)(& iod->sg))->dma_address; c.__annonCompField73.rw.prp2 = iod->first_dma; nvme_offset = nvme_offset + unit_num_blocks; nvme_sc = nvme_submit_io_cmd(dev, ns, & c, (u32 *)0U); } if (nvme_sc != 0) { { nvme_unmap_user_pages(dev, (unsigned int )is_write != 0U ? 1 : 2, iod); nvme_free_iod(dev, iod); res = nvme_trans_status_code(hdr, nvme_sc); } goto out; } else { } { nvme_unmap_user_pages(dev, (unsigned int )is_write != 0U ? 1 : 2, iod); nvme_free_iod(dev, iod); i = i + 1U; } ldv_39786: ; if (i < num_cmds) { goto ldv_39785; } else { } { res = nvme_trans_status_code(hdr, 0); } out: ; return (res); } } static int nvme_trans_io(struct nvme_ns *ns , struct sg_io_hdr *hdr , u8 is_write , u8 *cmd ) { int res ; struct nvme_trans_io_cdb cdb_info ; u8 opcode ; u64 xfer_bytes ; u64 sum_iov_len ; struct sg_iovec sgl ; int i ; size_t not_copied ; unsigned long long _min1 ; u64 _min2 ; { res = 0; opcode = *cmd; sum_iov_len = 0ULL; { if ((int )opcode == 10) { goto case_10; } else { } if ((int )opcode == 8) { goto case_8; } else { } if ((int )opcode == 42) { goto case_42; } else { } if ((int )opcode == 40) { goto case_40; } else { } if ((int )opcode == 170) { goto case_170; } else { } if ((int )opcode == 168) { goto case_168; } else { } if ((int )opcode == 138) { goto case_138; } else { } if ((int )opcode == 136) { goto case_136; } else { } goto switch_default; case_10: /* CIL Label */ ; case_8: /* CIL Label */ { nvme_trans_get_io_cdb6(cmd, & cdb_info); } goto ldv_39804; case_42: /* CIL Label */ ; case_40: /* CIL Label */ { nvme_trans_get_io_cdb10(cmd, & cdb_info); } goto ldv_39804; case_170: /* CIL Label */ ; case_168: /* CIL Label */ { nvme_trans_get_io_cdb12(cmd, & cdb_info); } goto ldv_39804; case_138: /* CIL Label */ ; case_136: /* CIL Label */ { nvme_trans_get_io_cdb16(cmd, & cdb_info); } goto ldv_39804; switch_default: /* CIL Label */ res = 1; goto out; switch_break: /* CIL Label */ ; } ldv_39804: ; if ((unsigned int )hdr->iovec_count != 0U) { i = 0; goto ldv_39814; ldv_39813: { not_copied = copy_from_user((void *)(& sgl), (void const *)(hdr->dxferp + (unsigned long )i * 16UL), 16UL); } if (not_copied != 0UL) { return (-14); } else { } sum_iov_len = sum_iov_len + (unsigned long long )sgl.iov_len; if (sgl.iov_len % (size_t )(1 << ns->lba_shift) != 0UL) { { res = nvme_trans_completion(hdr, 2, 5, 38, 0); } goto out; } else { } i = i + 1; ldv_39814: ; if (i < (int )hdr->iovec_count) { goto ldv_39813; } else { } } else { sum_iov_len = (u64 )hdr->dxfer_len; } _min1 = (unsigned long long )hdr->dxfer_len; _min2 = sum_iov_len; xfer_bytes = _min1 < _min2 ? _min1 : _min2; if (xfer_bytes != (u64 )(cdb_info.xfer_len << ns->lba_shift)) { res = -22; goto out; } else { } if (cdb_info.xfer_len == 0U) { goto out; } else { } { res = nvme_trans_do_nvme_io(ns, hdr, & cdb_info, (int )is_write); } if (res != 0) { } else { } out: ; return (res); } } static int nvme_trans_inquiry(struct nvme_ns *ns , struct sg_io_hdr *hdr , u8 *cmd ) { int res ; u8 evpd ; u8 page_code ; int alloc_len ; u8 *inq_response ; void *tmp ; { { res = 0; evpd = (unsigned int )*(cmd + 1UL) & 1U; page_code = *(cmd + 2UL); alloc_len = ((int )*(cmd + 3UL) << 8) | (int )*(cmd + 4UL); tmp = kmalloc((size_t )alloc_len, 208U); inq_response = (u8 *)tmp; } if ((unsigned long )inq_response == (unsigned long )((u8 *)0U)) { res = -12; goto out_mem; } else { } if ((unsigned int )evpd == 0U) { if ((unsigned int )page_code == 0U) { { res = nvme_trans_standard_inquiry_page(ns, hdr, inq_response, alloc_len); } } else { { res = nvme_trans_completion(hdr, 2, 5, 36, 0); } } } else { { if ((int )page_code == 0) { goto case_0; } else { } if ((int )page_code == 128) { goto case_128; } else { } if ((int )page_code == 131) { goto case_131; } else { } if ((int )page_code == 134) { goto case_134; } else { } if ((int )page_code == 177) { goto case_177; } else { } goto switch_default; case_0: /* CIL Label */ { res = nvme_trans_supported_vpd_pages(ns, hdr, inq_response, alloc_len); } goto ldv_39831; case_128: /* CIL Label */ { res = nvme_trans_unit_serial_page(ns, hdr, inq_response, alloc_len); } goto ldv_39831; case_131: /* CIL Label */ { res = nvme_trans_device_id_page(ns, hdr, inq_response, alloc_len); } goto ldv_39831; case_134: /* CIL Label */ { res = nvme_trans_ext_inq_page(ns, hdr, alloc_len); } goto ldv_39831; case_177: /* CIL Label */ { res = nvme_trans_bdev_char_page(ns, hdr, alloc_len); } goto ldv_39831; switch_default: /* CIL Label */ { res = nvme_trans_completion(hdr, 2, 5, 36, 0); } goto ldv_39831; switch_break: /* CIL Label */ ; } ldv_39831: ; } { kfree((void const *)inq_response); } out_mem: ; return (res); } } static int nvme_trans_log_sense(struct nvme_ns *ns , struct sg_io_hdr *hdr , u8 *cmd ) { int res ; u16 alloc_len ; u8 sp ; u8 pc ; u8 page_code ; { res = 0; sp = *(cmd + 1UL); if ((unsigned int )sp != 0U) { { res = nvme_trans_completion(hdr, 2, 5, 36, 0); } goto out; } else { } pc = *(cmd + 2UL); page_code = (unsigned int )pc & 63U; pc = (int )pc >> 6; if ((unsigned int )pc != 1U) { { res = nvme_trans_completion(hdr, 2, 5, 36, 0); } goto out; } else { } alloc_len = (u16 )((int )((short )((int )*(cmd + 7UL) << 8)) | (int )((short )*(cmd + 8UL))); { if ((int )page_code == 0) { goto case_0; } else { } if ((int )page_code == 47) { goto case_47; } else { } if ((int )page_code == 13) { goto case_13; } else { } goto switch_default; case_0: /* CIL Label */ { res = nvme_trans_log_supp_pages(ns, hdr, (int )alloc_len); } goto ldv_39849; case_47: /* CIL Label */ { res = nvme_trans_log_info_exceptions(ns, hdr, (int )alloc_len); } goto ldv_39849; case_13: /* CIL Label */ { res = nvme_trans_log_temperature(ns, hdr, (int )alloc_len); } goto ldv_39849; switch_default: /* CIL Label */ { res = nvme_trans_completion(hdr, 2, 5, 36, 0); } goto ldv_39849; switch_break: /* CIL Label */ ; } ldv_39849: ; out: ; return (res); } } static int nvme_trans_mode_select(struct nvme_ns *ns , struct sg_io_hdr *hdr , u8 *cmd ) { int res ; u8 cdb10 ; u16 parm_list_len ; u8 page_format ; u8 save_pages ; { res = 0; cdb10 = 0U; page_format = *(cmd + 1UL); page_format = (unsigned int )page_format & 16U; save_pages = *(cmd + 1UL); save_pages = (unsigned int )save_pages & 1U; if ((unsigned int )*cmd == 21U) { parm_list_len = (u16 )*(cmd + 4UL); } else { parm_list_len = (u16 )((int )((short )((int )*(cmd + 7UL) << 8)) | (int )((short )*(cmd + 8UL))); cdb10 = 1U; } if ((unsigned int )parm_list_len != 0U) { { res = nvme_trans_modesel_data(ns, hdr, cmd, (int )parm_list_len, (int )page_format, (int )save_pages, (int )cdb10); } } else { } return (res); } } static int nvme_trans_mode_sense(struct nvme_ns *ns , struct sg_io_hdr *hdr , u8 *cmd ) { int res ; u16 alloc_len ; u8 cdb10 ; u8 page_code ; u8 pc ; { res = 0; cdb10 = 0U; if ((unsigned int )*cmd == 26U) { alloc_len = (u16 )*(cmd + 4UL); } else { alloc_len = (u16 )((int )((short )((int )*(cmd + 7UL) << 8)) | (int )((short )*(cmd + 8UL))); cdb10 = 1U; } pc = (unsigned int )*(cmd + 2UL) & 192U; if ((unsigned int )pc != 0U) { { res = nvme_trans_completion(hdr, 2, 5, 36, 0); } goto out; } else { } page_code = (unsigned int )*(cmd + 2UL) & 63U; { if ((int )page_code == 8) { goto case_8; } else { } if ((int )page_code == 10) { goto case_10; } else { } if ((int )page_code == 26) { goto case_26; } else { } if ((int )page_code == 28) { goto case_28; } else { } if ((int )page_code == 63) { goto case_63; } else { } goto switch_default; case_8: /* CIL Label */ { res = nvme_trans_mode_page_create(ns, hdr, cmd, (int )alloc_len, (int )cdb10, & nvme_trans_fill_caching_page, 20); } goto ldv_39875; case_10: /* CIL Label */ { res = nvme_trans_mode_page_create(ns, hdr, cmd, (int )alloc_len, (int )cdb10, & nvme_trans_fill_control_page, 12); } goto ldv_39875; case_26: /* CIL Label */ { res = nvme_trans_mode_page_create(ns, hdr, cmd, (int )alloc_len, (int )cdb10, & nvme_trans_fill_pow_cnd_page, 40); } goto ldv_39875; case_28: /* CIL Label */ { res = nvme_trans_mode_page_create(ns, hdr, cmd, (int )alloc_len, (int )cdb10, & nvme_trans_fill_inf_exc_page, 12); } goto ldv_39875; case_63: /* CIL Label */ { res = nvme_trans_mode_page_create(ns, hdr, cmd, (int )alloc_len, (int )cdb10, & nvme_trans_fill_all_pages, 84); } goto ldv_39875; switch_default: /* CIL Label */ { res = nvme_trans_completion(hdr, 2, 5, 36, 0); } goto ldv_39875; switch_break: /* CIL Label */ ; } ldv_39875: ; out: ; return (res); } } static int nvme_trans_read_capacity(struct nvme_ns *ns , struct sg_io_hdr *hdr , u8 *cmd ) { int res ; int nvme_sc ; u32 alloc_len ; u32 resp_size ; u32 xfer_len ; u8 cdb16 ; struct nvme_dev *dev ; dma_addr_t dma_addr ; void *mem ; struct nvme_id_ns *id_ns ; u8 *response ; void *tmp ; u32 _min1 ; u32 _min2 ; { res = 0; alloc_len = 8U; resp_size = 8U; dev = ns->dev; cdb16 = (u8 )((unsigned int )*cmd == 158U && (unsigned int )*(cmd + 1UL) == 16U); if ((unsigned int )cdb16 != 0U) { alloc_len = (u32 )(((((int )*(cmd + 10UL) << 24) | ((int )*(cmd + 11UL) << 16)) | ((int )*(cmd + 12UL) << 8)) | (int )*(cmd + 13UL)); resp_size = 32U; } else { } { mem = dma_alloc_attrs(& (dev->pci_dev)->dev, 4096UL, & dma_addr, 208U, (struct dma_attrs *)0); } if ((unsigned long )mem == (unsigned long )((void *)0)) { res = -12; goto out; } else { } { nvme_sc = nvme_identify(dev, ns->ns_id, 0U, dma_addr); res = nvme_trans_status_code(hdr, nvme_sc); } if (res != 0) { goto out_dma; } else { } if (nvme_sc != 0) { res = nvme_sc; goto out_dma; } else { } { id_ns = (struct nvme_id_ns *)mem; tmp = kzalloc((size_t )resp_size, 208U); response = (u8 *)tmp; } if ((unsigned long )response == (unsigned long )((u8 *)0U)) { res = -12; goto out_dma; } else { } { nvme_trans_fill_read_cap(response, id_ns, (int )cdb16); _min1 = alloc_len; _min2 = resp_size; xfer_len = _min1 < _min2 ? _min1 : _min2; res = nvme_trans_copy_to_user(hdr, (void *)response, (unsigned long )xfer_len); kfree((void const *)response); } out_dma: { dma_free_attrs(& (dev->pci_dev)->dev, 4096UL, mem, dma_addr, (struct dma_attrs *)0); } out: ; return (res); } } static int nvme_trans_report_luns(struct nvme_ns *ns , struct sg_io_hdr *hdr , u8 *cmd ) { int res ; int nvme_sc ; u32 alloc_len ; u32 xfer_len ; u32 resp_size ; u8 select_report ; u8 *response ; struct nvme_dev *dev ; dma_addr_t dma_addr ; void *mem ; struct nvme_id_ctrl *id_ctrl ; u32 ll_length ; u32 lun_id ; u8 lun_id_offset ; __be32 tmp_len ; void *tmp ; __be64 tmp_id ; __u64 tmp___0 ; __u32 tmp___1 ; u32 _min1 ; u32 _min2 ; { res = 0; dev = ns->dev; lun_id_offset = 8U; alloc_len = (u32 )(((((int )*(cmd + 6UL) << 24) | ((int )*(cmd + 7UL) << 16)) | ((int )*(cmd + 8UL) << 8)) | (int )*(cmd + 9UL)); select_report = *(cmd + 2UL); if ((unsigned int )select_report > 2U) { { res = nvme_trans_completion(hdr, 2, 5, 36, 0); } goto out; } else { { mem = dma_alloc_attrs(& (dev->pci_dev)->dev, 4096UL, & dma_addr, 208U, (struct dma_attrs *)0); } if ((unsigned long )mem == (unsigned long )((void *)0)) { res = -12; goto out; } else { } { nvme_sc = nvme_identify(dev, 0U, 1U, dma_addr); res = nvme_trans_status_code(hdr, nvme_sc); } if (res != 0) { goto out_dma; } else { } if (nvme_sc != 0) { res = nvme_sc; goto out_dma; } else { } id_ctrl = (struct nvme_id_ctrl *)mem; ll_length = id_ctrl->nn * 8U; resp_size = ll_length + 8U; if (alloc_len < resp_size) { { res = nvme_trans_completion(hdr, 2, 5, 36, 0); } goto out_dma; } else { } { tmp = kzalloc((size_t )resp_size, 208U); response = (u8 *)tmp; } if ((unsigned long )response == (unsigned long )((u8 *)0U)) { res = -12; goto out_dma; } else { } lun_id = 0U; goto ldv_39926; ldv_39925: { tmp___0 = __fswab64((__u64 )lun_id); tmp_id = tmp___0; __memcpy((void *)response + (unsigned long )lun_id_offset, (void const *)(& tmp_id), 8UL); lun_id_offset = (unsigned int )lun_id_offset + 8U; lun_id = lun_id + 1U; } ldv_39926: ; if (lun_id < id_ctrl->nn) { goto ldv_39925; } else { } { tmp___1 = __fswab32(ll_length); tmp_len = tmp___1; __memcpy((void *)response, (void const *)(& tmp_len), 4UL); } } { _min1 = alloc_len; _min2 = resp_size; xfer_len = _min1 < _min2 ? _min1 : _min2; res = nvme_trans_copy_to_user(hdr, (void *)response, (unsigned long )xfer_len); kfree((void const *)response); } out_dma: { dma_free_attrs(& (dev->pci_dev)->dev, 4096UL, mem, dma_addr, (struct dma_attrs *)0); } out: ; return (res); } } static int nvme_trans_request_sense(struct nvme_ns *ns , struct sg_io_hdr *hdr , u8 *cmd ) { int res ; u8 alloc_len ; u8 xfer_len ; u8 resp_size ; u8 desc_format ; u8 *response ; void *tmp ; u8 _min1 ; u8 _min2 ; { { res = 0; alloc_len = *(cmd + 4UL); desc_format = *(cmd + 1UL); desc_format = (unsigned int )desc_format & 1U; resp_size = (unsigned int )desc_format != 0U ? 8U : 18U; tmp = kzalloc((size_t )resp_size, 208U); response = (u8 *)tmp; } if ((unsigned long )response == (unsigned long )((u8 *)0U)) { res = -12; goto out; } else { } if ((unsigned int )desc_format == 1U) { *response = 114U; *(response + 1UL) = 0U; *(response + 2UL) = 0U; *(response + 3UL) = 0U; } else { *response = 112U; *(response + 2UL) = 0U; *(response + 7UL) = 10U; *(response + 12UL) = 0U; *(response + 13UL) = 0U; } { _min1 = alloc_len; _min2 = resp_size; xfer_len = (u8 )((int )_min1 < (int )_min2 ? _min1 : _min2); res = nvme_trans_copy_to_user(hdr, (void *)response, (unsigned long )xfer_len); kfree((void const *)response); } out: ; return (res); } } static int nvme_trans_security_protocol(struct nvme_ns *ns , struct sg_io_hdr *hdr , u8 *cmd ) { int tmp ; { { tmp = nvme_trans_completion(hdr, 2, 5, 32, 0); } return (tmp); } } static int nvme_trans_start_stop(struct nvme_ns *ns , struct sg_io_hdr *hdr , u8 *cmd ) { int res ; int nvme_sc ; struct nvme_command c ; u8 immed ; u8 pcmod ; u8 pc ; u8 no_flush ; u8 start ; { res = 0; immed = *(cmd + 1UL); pcmod = *(cmd + 3UL); pc = *(cmd + 4UL); no_flush = *(cmd + 4UL); start = *(cmd + 4UL); immed = (unsigned int )immed & 1U; pcmod = (unsigned int )pcmod & 15U; pc = (int )pc >> 4; no_flush = (unsigned int )no_flush & 4U; start = (unsigned int )start & 1U; if ((unsigned int )immed != 0U) { { res = nvme_trans_completion(hdr, 2, 5, 36, 0); } } else { if ((unsigned int )no_flush == 0U) { { __memset((void *)(& c), 0, 64UL); c.__annonCompField73.common.opcode = 0U; c.__annonCompField73.common.nsid = ns->ns_id; nvme_sc = nvme_submit_io_cmd(ns->dev, ns, & c, (u32 *)0U); res = nvme_trans_status_code(hdr, nvme_sc); } if (res != 0) { goto out; } else { } if (nvme_sc != 0) { res = nvme_sc; goto out; } else { } } else { } { res = nvme_trans_power_state(ns, hdr, (int )pc, (int )pcmod, (int )start); } } out: ; return (res); } } static int nvme_trans_synchronize_cache(struct nvme_ns *ns , struct sg_io_hdr *hdr , u8 *cmd ) { int res ; int nvme_sc ; struct nvme_command c ; { { res = 0; __memset((void *)(& c), 0, 64UL); c.__annonCompField73.common.opcode = 0U; c.__annonCompField73.common.nsid = ns->ns_id; nvme_sc = nvme_submit_io_cmd(ns->dev, ns, & c, (u32 *)0U); res = nvme_trans_status_code(hdr, nvme_sc); } if (res != 0) { goto out; } else { } if (nvme_sc != 0) { res = nvme_sc; } else { } out: ; return (res); } } static int nvme_trans_format_unit(struct nvme_ns *ns , struct sg_io_hdr *hdr , u8 *cmd ) { int res ; u8 parm_hdr_len ; u8 nvme_pf_code ; u8 format_prot_info ; u8 long_list ; u8 format_data ; { res = 0; parm_hdr_len = 0U; nvme_pf_code = 0U; format_prot_info = *(cmd + 1UL); long_list = *(cmd + 1UL); format_data = *(cmd + 1UL); format_prot_info = (int )format_prot_info >> 6; long_list = (unsigned int )long_list & 32U; format_data = (unsigned int )format_data & 16U; if ((unsigned int )format_data != 0U) { if ((unsigned int )format_prot_info != 0U) { if ((unsigned int )long_list == 0U) { parm_hdr_len = 4U; } else { parm_hdr_len = 8U; } } else { } } else if ((unsigned int )format_data == 0U && (unsigned int )format_prot_info != 0U) { { res = nvme_trans_completion(hdr, 2, 5, 36, 0); } goto out; } else { } if ((unsigned int )parm_hdr_len != 0U) { { res = nvme_trans_fmt_get_parm_header(hdr, (int )parm_hdr_len, (int )format_prot_info, & nvme_pf_code); } if (res != 0) { goto out; } else { } } else { } { res = nvme_trans_send_fw_cmd(ns, hdr, 16, 0U, 0U, 0); res = nvme_trans_fmt_set_blk_size_count(ns, hdr); } if (res != 0) { goto out; } else { } { res = nvme_trans_fmt_send_cmd(ns, hdr, (int )nvme_pf_code); } out: ; return (res); } } static int nvme_trans_test_unit_ready(struct nvme_ns *ns , struct sg_io_hdr *hdr , u8 *cmd ) { int res ; struct nvme_dev *dev ; unsigned int tmp ; { { res = 0; dev = ns->dev; tmp = readl((void const volatile *)(& (dev->bar)->csts)); } if ((tmp & 1U) == 0U) { { res = nvme_trans_completion(hdr, 2, 2, 4, 0); } } else { { res = nvme_trans_completion(hdr, 0, 0, 0, 0); } } return (res); } } static int nvme_trans_write_buffer(struct nvme_ns *ns , struct sg_io_hdr *hdr , u8 *cmd ) { int res ; u32 buffer_offset ; u32 parm_list_length ; u8 buffer_id ; u8 mode ; { res = 0; parm_list_length = (u32 )((((int )*(cmd + 6UL) << 16) | ((int )*(cmd + 7UL) << 8)) | (int )*(cmd + 8UL)); if ((parm_list_length & 3U) != 0U) { { res = nvme_trans_completion(hdr, 2, 5, 36, 0); } goto out; } else { } buffer_id = *(cmd + 2UL); if ((unsigned int )buffer_id > 7U) { { res = nvme_trans_completion(hdr, 2, 5, 36, 0); } goto out; } else { } mode = (unsigned int )*(cmd + 1UL) & 31U; buffer_offset = (u32 )((((int )*(cmd + 3UL) << 16) | ((int )*(cmd + 4UL) << 8)) | (int )*(cmd + 5UL)); { if ((int )mode == 5) { goto case_5; } else { } if ((int )mode == 14) { goto case_14; } else { } if ((int )mode == 15) { goto case_15; } else { } goto switch_default; case_5: /* CIL Label */ { res = nvme_trans_send_fw_cmd(ns, hdr, 17, parm_list_length, buffer_offset, (int )buffer_id); } if (res != 0) { goto out; } else { } { res = nvme_trans_send_fw_cmd(ns, hdr, 16, parm_list_length, buffer_offset, (int )buffer_id); } goto ldv_40005; case_14: /* CIL Label */ { res = nvme_trans_send_fw_cmd(ns, hdr, 17, parm_list_length, buffer_offset, (int )buffer_id); } goto ldv_40005; case_15: /* CIL Label */ { res = nvme_trans_send_fw_cmd(ns, hdr, 16, parm_list_length, buffer_offset, (int )buffer_id); } goto ldv_40005; switch_default: /* CIL Label */ { res = nvme_trans_completion(hdr, 2, 5, 36, 0); } goto ldv_40005; switch_break: /* CIL Label */ ; } ldv_40005: ; out: ; return (res); } } static int nvme_trans_unmap(struct nvme_ns *ns , struct sg_io_hdr *hdr , u8 *cmd ) { struct nvme_dev *dev ; struct scsi_unmap_parm_list *plist ; struct nvme_dsm_range *range ; struct nvme_command c ; int i ; int nvme_sc ; int res ; u16 ndesc ; u16 list_len ; dma_addr_t dma_addr ; void *tmp ; __u16 tmp___0 ; void *tmp___1 ; __u32 tmp___2 ; __u64 tmp___3 ; { dev = ns->dev; res = -12; list_len = (u16 )((int )((short )((int )*(cmd + 7UL) << 8)) | (int )((short )*(cmd + 8UL))); if ((unsigned int )list_len == 0U) { return (-22); } else { } { tmp = kmalloc((size_t )list_len, 208U); plist = (struct scsi_unmap_parm_list *)tmp; } if ((unsigned long )plist == (unsigned long )((struct scsi_unmap_parm_list *)0)) { return (-12); } else { } { res = nvme_trans_copy_from_user(hdr, (void *)plist, (unsigned long )list_len); } if (res != 0) { goto out; } else { } { tmp___0 = __fswab16((int )plist->unmap_blk_desc_data_len); ndesc = (u16 )((int )tmp___0 >> 4); } if ((unsigned int )ndesc - 1U > 255U) { res = -22; goto out; } else { } { tmp___1 = dma_alloc_attrs(& (dev->pci_dev)->dev, (unsigned long )ndesc * 16UL, & dma_addr, 208U, (struct dma_attrs *)0); range = (struct nvme_dsm_range *)tmp___1; } if ((unsigned long )range == (unsigned long )((struct nvme_dsm_range *)0)) { goto out; } else { } i = 0; goto ldv_40035; ldv_40034: { tmp___2 = __fswab32(plist->desc[i].nlb); (range + (unsigned long )i)->nlb = tmp___2; tmp___3 = __fswab64(plist->desc[i].slba); (range + (unsigned long )i)->slba = tmp___3; (range + (unsigned long )i)->cattr = 0U; i = i + 1; } ldv_40035: ; if (i < (int )ndesc) { goto ldv_40034; } else { } { __memset((void *)(& c), 0, 64UL); c.__annonCompField73.dsm.opcode = 9U; c.__annonCompField73.dsm.nsid = ns->ns_id; c.__annonCompField73.dsm.prp1 = dma_addr; c.__annonCompField73.dsm.nr = (unsigned int )((int )ndesc + -1); c.__annonCompField73.dsm.attributes = 4U; nvme_sc = nvme_submit_io_cmd(dev, ns, & c, (u32 *)0U); res = nvme_trans_status_code(hdr, nvme_sc); dma_free_attrs(& (dev->pci_dev)->dev, (unsigned long )ndesc * 16UL, (void *)range, dma_addr, (struct dma_attrs *)0); } out: { kfree((void const *)plist); } return (res); } } static int nvme_scsi_translate(struct nvme_ns *ns , struct sg_io_hdr *hdr ) { u8 cmd[16U] ; int retcode ; unsigned int opcode ; unsigned long tmp ; { if ((unsigned long )hdr->cmdp == (unsigned long )((unsigned char *)0U)) { return (-90); } else { } { tmp = copy_from_user((void *)(& cmd), (void const *)hdr->cmdp, (unsigned long )hdr->cmd_len); } if (tmp != 0UL) { return (-14); } else { } { retcode = nvme_trans_status_code(hdr, 0); } if (retcode != 0) { return (retcode); } else { } opcode = (unsigned int )cmd[0]; { if (opcode == 8U) { goto case_8; } else { } if (opcode == 40U) { goto case_40; } else { } if (opcode == 168U) { goto case_168; } else { } if (opcode == 136U) { goto case_136; } else { } if (opcode == 10U) { goto case_10; } else { } if (opcode == 42U) { goto case_42; } else { } if (opcode == 170U) { goto case_170; } else { } if (opcode == 138U) { goto case_138; } else { } if (opcode == 18U) { goto case_18; } else { } if (opcode == 77U) { goto case_77; } else { } if (opcode == 21U) { goto case_21; } else { } if (opcode == 85U) { goto case_85; } else { } if (opcode == 26U) { goto case_26; } else { } if (opcode == 90U) { goto case_90; } else { } if (opcode == 37U) { goto case_37; } else { } if (opcode == 158U) { goto case_158; } else { } if (opcode == 160U) { goto case_160; } else { } if (opcode == 3U) { goto case_3; } else { } if (opcode == 162U) { goto case_162; } else { } if (opcode == 181U) { goto case_181; } else { } if (opcode == 27U) { goto case_27; } else { } if (opcode == 53U) { goto case_53; } else { } if (opcode == 4U) { goto case_4; } else { } if (opcode == 0U) { goto case_0; } else { } if (opcode == 59U) { goto case_59; } else { } if (opcode == 66U) { goto case_66; } else { } goto switch_default; case_8: /* CIL Label */ ; case_40: /* CIL Label */ ; case_168: /* CIL Label */ ; case_136: /* CIL Label */ { retcode = nvme_trans_io(ns, hdr, 0, (u8 *)(& cmd)); } goto ldv_40048; case_10: /* CIL Label */ ; case_42: /* CIL Label */ ; case_170: /* CIL Label */ ; case_138: /* CIL Label */ { retcode = nvme_trans_io(ns, hdr, 1, (u8 *)(& cmd)); } goto ldv_40048; case_18: /* CIL Label */ { retcode = nvme_trans_inquiry(ns, hdr, (u8 *)(& cmd)); } goto ldv_40048; case_77: /* CIL Label */ { retcode = nvme_trans_log_sense(ns, hdr, (u8 *)(& cmd)); } goto ldv_40048; case_21: /* CIL Label */ ; case_85: /* CIL Label */ { retcode = nvme_trans_mode_select(ns, hdr, (u8 *)(& cmd)); } goto ldv_40048; case_26: /* CIL Label */ ; case_90: /* CIL Label */ { retcode = nvme_trans_mode_sense(ns, hdr, (u8 *)(& cmd)); } goto ldv_40048; case_37: /* CIL Label */ { retcode = nvme_trans_read_capacity(ns, hdr, (u8 *)(& cmd)); } goto ldv_40048; case_158: /* CIL Label */ ; if ((unsigned int )cmd[0] == 158U && (unsigned int )cmd[1] == 16U) { { retcode = nvme_trans_read_capacity(ns, hdr, (u8 *)(& cmd)); } } else { goto out; } goto ldv_40048; case_160: /* CIL Label */ { retcode = nvme_trans_report_luns(ns, hdr, (u8 *)(& cmd)); } goto ldv_40048; case_3: /* CIL Label */ { retcode = nvme_trans_request_sense(ns, hdr, (u8 *)(& cmd)); } goto ldv_40048; case_162: /* CIL Label */ ; case_181: /* CIL Label */ { retcode = nvme_trans_security_protocol(ns, hdr, (u8 *)(& cmd)); } goto ldv_40048; case_27: /* CIL Label */ { retcode = nvme_trans_start_stop(ns, hdr, (u8 *)(& cmd)); } goto ldv_40048; case_53: /* CIL Label */ { retcode = nvme_trans_synchronize_cache(ns, hdr, (u8 *)(& cmd)); } goto ldv_40048; case_4: /* CIL Label */ { retcode = nvme_trans_format_unit(ns, hdr, (u8 *)(& cmd)); } goto ldv_40048; case_0: /* CIL Label */ { retcode = nvme_trans_test_unit_ready(ns, hdr, (u8 *)(& cmd)); } goto ldv_40048; case_59: /* CIL Label */ { retcode = nvme_trans_write_buffer(ns, hdr, (u8 *)(& cmd)); } goto ldv_40048; case_66: /* CIL Label */ { retcode = nvme_trans_unmap(ns, hdr, (u8 *)(& cmd)); } goto ldv_40048; switch_default: /* CIL Label */ ; out: { retcode = nvme_trans_completion(hdr, 2, 5, 32, 0); } goto ldv_40048; switch_break: /* CIL Label */ ; } ldv_40048: ; return (retcode); } } int nvme_sg_io(struct nvme_ns *ns , struct sg_io_hdr *u_hdr ) { struct sg_io_hdr hdr ; int retcode ; bool tmp ; int tmp___0 ; unsigned long tmp___1 ; unsigned long tmp___2 ; { { tmp = capable(21); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (-13); } else { } { tmp___1 = copy_from_user((void *)(& hdr), (void const *)u_hdr, 88UL); } if (tmp___1 != 0UL) { return (-14); } else { } if (hdr.interface_id != 83) { return (-22); } else { } if ((unsigned int )hdr.cmd_len > 16U) { return (-22); } else { } { retcode = nvme_scsi_translate(ns, & hdr); } if (retcode < 0) { return (retcode); } else { } if (retcode > 0) { retcode = 0; } else { } { tmp___2 = copy_to_user((void *)u_hdr, (void const *)(& hdr), 88UL); } if (tmp___2 != 0UL) { return (-14); } else { } return (retcode); } } int nvme_sg_get_version_num(int *ip ) { int __ret_pu ; int __pu_val ; { { might_fault(); __pu_val = sg_version_num; } { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ volatile ("call __put_user_1": "=a" (__ret_pu): "0" (__pu_val), "c" (ip): "ebx"); goto ldv_40085; case_2: /* CIL Label */ __asm__ volatile ("call __put_user_2": "=a" (__ret_pu): "0" (__pu_val), "c" (ip): "ebx"); goto ldv_40085; case_4: /* CIL Label */ __asm__ volatile ("call __put_user_4": "=a" (__ret_pu): "0" (__pu_val), "c" (ip): "ebx"); goto ldv_40085; case_8: /* CIL Label */ __asm__ volatile ("call __put_user_8": "=a" (__ret_pu): "0" (__pu_val), "c" (ip): "ebx"); goto ldv_40085; switch_default: /* CIL Label */ __asm__ volatile ("call __put_user_X": "=a" (__ret_pu): "0" (__pu_val), "c" (ip): "ebx"); goto ldv_40085; switch_break: /* CIL Label */ ; } ldv_40085: ; return (__ret_pu); } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) ; bool ldv_in_interrupt_context(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) { bool tmp ; int tmp___0 ; { { tmp = ldv_in_interrupt_context(); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } { ldv_assert_linux_alloc_irq__wrong_flags(tmp___0 || flags == 32U); } return; } } void ldv_linux_alloc_irq_check_alloc_nonatomic(void) { bool tmp ; { { tmp = ldv_in_interrupt_context(); } if ((int )tmp) { { ldv_assert_linux_alloc_irq__nonatomic(0); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_linux_alloc_spinlock_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_linux_alloc_spinlock_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) ; int ldv_linux_alloc_usb_lock_lock = 1; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) { { if (ldv_linux_alloc_usb_lock_lock == 2) { { ldv_assert_linux_alloc_usb_lock__wrong_flags(flags == 16U || flags == 32U); } } else { } return; } } void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) { { { ldv_assert_linux_alloc_usb_lock__nonatomic(ldv_linux_alloc_usb_lock_lock == 1); } return; } } void ldv_linux_alloc_usb_lock_usb_lock_device(void) { { ldv_linux_alloc_usb_lock_lock = 2; return; } } int ldv_linux_alloc_usb_lock_usb_trylock_device(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_alloc_usb_lock_usb_lock_device_for_reset(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (0); } else { return (-1); } } else { return (-1); } } } void ldv_linux_alloc_usb_lock_usb_unlock_device(void) { { ldv_linux_alloc_usb_lock_lock = 1; return; } } void ldv_linux_usb_dev_atomic_add(int i , atomic_t *v ) { { v->counter = v->counter + i; return; } } void ldv_linux_usb_dev_atomic_sub(int i , atomic_t *v ) { { v->counter = v->counter - i; return; } } int ldv_linux_usb_dev_atomic_sub_and_test(int i , atomic_t *v ) { { v->counter = v->counter - i; if (v->counter != 0) { return (0); } else { } return (1); } } void ldv_linux_usb_dev_atomic_inc(atomic_t *v ) { { v->counter = v->counter + 1; return; } } void ldv_linux_usb_dev_atomic_dec(atomic_t *v ) { { v->counter = v->counter - 1; return; } } int ldv_linux_usb_dev_atomic_dec_and_test(atomic_t *v ) { { v->counter = v->counter - 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_inc_and_test(atomic_t *v ) { { v->counter = v->counter + 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_add_return(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter); } } int ldv_linux_usb_dev_atomic_add_negative(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter < 0); } } int ldv_linux_usb_dev_atomic_inc_short(short *v ) { { *v = (short )((unsigned int )((unsigned short )*v) + 1U); return ((int )*v); } } void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) ; void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) ; void *ldv_undef_ptr(void) ; int ldv_linux_arch_io_iomem = 0; void *ldv_linux_arch_io_io_mem_remap(void) { void *ptr ; void *tmp ; { { tmp = ldv_undef_ptr(); ptr = tmp; } if ((unsigned long )ptr != (unsigned long )((void *)0)) { ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem + 1; return (ptr); } else { } return (ptr); } } void ldv_linux_arch_io_io_mem_unmap(void) { { { ldv_assert_linux_arch_io__less_initial_decrement(ldv_linux_arch_io_iomem > 0); ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem - 1; } return; } } void ldv_linux_arch_io_check_final_state(void) { { { ldv_assert_linux_arch_io__more_initial_at_exit(ldv_linux_arch_io_iomem == 0); } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) ; void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) ; void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) ; static int ldv_linux_block_genhd_disk_state = 0; struct gendisk *ldv_linux_block_genhd_alloc_disk(void) { struct gendisk *res ; void *tmp ; { { tmp = ldv_undef_ptr(); res = (struct gendisk *)tmp; ldv_assert_linux_block_genhd__double_allocation(ldv_linux_block_genhd_disk_state == 0); } if ((unsigned long )res != (unsigned long )((struct gendisk *)0)) { ldv_linux_block_genhd_disk_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_genhd_add_disk(void) { { { ldv_assert_linux_block_genhd__use_before_allocation(ldv_linux_block_genhd_disk_state == 1); ldv_linux_block_genhd_disk_state = 2; } return; } } void ldv_linux_block_genhd_del_gendisk(void) { { { ldv_assert_linux_block_genhd__delete_before_add(ldv_linux_block_genhd_disk_state == 2); ldv_linux_block_genhd_disk_state = 1; } return; } } void ldv_linux_block_genhd_put_disk(struct gendisk *disk ) { { if ((unsigned long )disk != (unsigned long )((struct gendisk *)0)) { { ldv_assert_linux_block_genhd__free_before_allocation(ldv_linux_block_genhd_disk_state > 0); ldv_linux_block_genhd_disk_state = 0; } } else { } return; } } void ldv_linux_block_genhd_check_final_state(void) { { { ldv_assert_linux_block_genhd__more_initial_at_exit(ldv_linux_block_genhd_disk_state == 0); } return; } } void ldv_assert_linux_block_queue__double_allocation(int expr ) ; void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_queue__use_before_allocation(int expr ) ; static int ldv_linux_block_queue_queue_state = 0; struct request_queue *ldv_linux_block_queue_request_queue(void) { struct request_queue *res ; void *tmp ; { { tmp = ldv_undef_ptr(); res = (struct request_queue *)tmp; ldv_assert_linux_block_queue__double_allocation(ldv_linux_block_queue_queue_state == 0); } if ((unsigned long )res != (unsigned long )((struct request_queue *)0)) { ldv_linux_block_queue_queue_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_queue_blk_cleanup_queue(void) { { { ldv_assert_linux_block_queue__use_before_allocation(ldv_linux_block_queue_queue_state == 1); ldv_linux_block_queue_queue_state = 0; } return; } } void ldv_linux_block_queue_check_final_state(void) { { { ldv_assert_linux_block_queue__more_initial_at_exit(ldv_linux_block_queue_queue_state == 0); } return; } } void ldv_assert_linux_block_request__double_get(int expr ) ; void ldv_assert_linux_block_request__double_put(int expr ) ; void ldv_assert_linux_block_request__get_at_exit(int expr ) ; long ldv_is_err(void const *ptr ) ; int ldv_linux_block_request_blk_rq = 0; struct request *ldv_linux_block_request_blk_get_request(gfp_t mask ) { struct request *res ; void *tmp ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_undef_ptr(); res = (struct request *)tmp; } if ((mask == 16U || mask == 208U) || mask == 16U) { { ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); } } else { } if ((unsigned long )res != (unsigned long )((struct request *)0)) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } struct request *ldv_linux_block_request_blk_make_request(gfp_t mask ) { struct request *res ; void *tmp ; long tmp___0 ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_undef_ptr(); res = (struct request *)tmp; ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); tmp___0 = ldv_is_err((void const *)res); } if (tmp___0 == 0L) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } void ldv_linux_block_request_put_blk_rq(void) { { { ldv_assert_linux_block_request__double_put(ldv_linux_block_request_blk_rq == 1); ldv_linux_block_request_blk_rq = 0; } return; } } void ldv_linux_block_request_check_final_state(void) { { { ldv_assert_linux_block_request__get_at_exit(ldv_linux_block_request_blk_rq == 0); } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) ; void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) ; int ldv_undef_int_nonpositive(void) ; int ldv_linux_drivers_base_class_usb_gadget_class = 0; void *ldv_linux_drivers_base_class_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_undef_ptr(); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_got); } } int ldv_linux_drivers_base_class_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_reg); } } void ldv_linux_drivers_base_class_unregister_class(void) { { { ldv_assert_linux_drivers_base_class__double_deregistration(ldv_linux_drivers_base_class_usb_gadget_class == 1); ldv_linux_drivers_base_class_usb_gadget_class = 0; } return; } } void ldv_linux_drivers_base_class_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_drivers_base_class_unregister_class(); } return; } } void ldv_linux_drivers_base_class_check_final_state(void) { { { ldv_assert_linux_drivers_base_class__registered_at_exit(ldv_linux_drivers_base_class_usb_gadget_class == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2176UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) ; void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) ; int ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; int ldv_linux_fs_char_dev_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_fs_char_dev_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } } else { } return (is_reg); } } void ldv_linux_fs_char_dev_unregister_chrdev_region(void) { { { ldv_assert_linux_fs_char_dev__double_deregistration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 1); ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; } return; } } void ldv_linux_fs_char_dev_check_final_state(void) { { { ldv_assert_linux_fs_char_dev__registered_at_exit(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); } return; } } void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) ; void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) ; int ldv_linux_fs_sysfs_sysfs = 0; int ldv_linux_fs_sysfs_sysfs_create_group(void) { int res ; int tmp ; { { tmp = ldv_undef_int_nonpositive(); res = tmp; } if (res == 0) { ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs + 1; return (0); } else { } return (res); } } void ldv_linux_fs_sysfs_sysfs_remove_group(void) { { { ldv_assert_linux_fs_sysfs__less_initial_decrement(ldv_linux_fs_sysfs_sysfs > 0); ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs - 1; } return; } } void ldv_linux_fs_sysfs_check_final_state(void) { { { ldv_assert_linux_fs_sysfs__more_initial_at_exit(ldv_linux_fs_sysfs_sysfs == 0); } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) ; int ldv_linux_kernel_locking_rwlock_rlock = 1; int ldv_linux_kernel_locking_rwlock_wlock = 1; void ldv_linux_kernel_locking_rwlock_read_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; } return; } } void ldv_linux_kernel_locking_rwlock_read_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(ldv_linux_kernel_locking_rwlock_rlock > 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + -1; } return; } } void ldv_linux_kernel_locking_rwlock_write_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_wlock = 2; } return; } } void ldv_linux_kernel_locking_rwlock_write_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(ldv_linux_kernel_locking_rwlock_wlock != 1); ldv_linux_kernel_locking_rwlock_wlock = 1; } return; } } int ldv_linux_kernel_locking_rwlock_read_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_kernel_locking_rwlock_write_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_wlock = 2; return (1); } else { return (0); } } else { return (0); } } } void ldv_linux_kernel_locking_rwlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(ldv_linux_kernel_locking_rwlock_rlock == 1); ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(ldv_linux_kernel_locking_rwlock_wlock == 1); } return; } } void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) ; void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) ; int ldv_linux_kernel_module_module_refcounter = 1; void ldv_linux_kernel_module_module_get(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; } else { } return; } } int ldv_linux_kernel_module_try_module_get(struct module *module ) { int tmp ; { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { tmp = ldv_undef_int(); } if (tmp == 1) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; return (1); } else { return (0); } } else { } return (0); } } void ldv_linux_kernel_module_module_put(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { ldv_assert_linux_kernel_module__less_initial_decrement(ldv_linux_kernel_module_module_refcounter > 1); ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter - 1; } } else { } return; } } void ldv_linux_kernel_module_module_put_and_exit(void) { { { ldv_linux_kernel_module_module_put((struct module *)1); } LDV_LINUX_KERNEL_MODULE_STOP: ; goto LDV_LINUX_KERNEL_MODULE_STOP; } } unsigned int ldv_linux_kernel_module_module_refcount(void) { { return ((unsigned int )(ldv_linux_kernel_module_module_refcounter + -1)); } } void ldv_linux_kernel_module_check_final_state(void) { { { ldv_assert_linux_kernel_module__more_initial_at_exit(ldv_linux_kernel_module_module_refcounter == 1); } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_srcu_srcu_nested = 0; void ldv_linux_kernel_rcu_srcu_srcu_read_lock(void) { { ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested + 1; return; } } void ldv_linux_kernel_rcu_srcu_srcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_srcu__more_unlocks(ldv_linux_kernel_rcu_srcu_srcu_nested > 0); ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_srcu_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = 0; void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_lock_bh(void) { { ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh + 1; return; } } void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_unlock_bh(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh > 0); ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = 0; void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_lock_sched(void) { { ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched + 1; return; } } void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_unlock_sched(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched > 0); ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_rcu_nested = 0; void ldv_linux_kernel_rcu_update_lock_rcu_read_lock(void) { { ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested + 1; return; } } void ldv_linux_kernel_rcu_update_lock_rcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(ldv_linux_kernel_rcu_update_lock_rcu_nested > 0); ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } static bool __ldv_in_interrupt_context = 0; void ldv_switch_to_interrupt_context(void) { { __ldv_in_interrupt_context = 1; return; } } void ldv_switch_to_process_context(void) { { __ldv_in_interrupt_context = 0; return; } } bool ldv_in_interrupt_context(void) { { return (__ldv_in_interrupt_context); } } void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) ; unsigned long ldv_undef_ulong(void) ; unsigned long ldv_linux_lib_find_bit_find_next_bit(unsigned long size , unsigned long offset ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assert_linux_lib_find_bit__offset_out_of_range(offset <= size); ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } unsigned long ldv_linux_lib_find_bit_find_first_bit(unsigned long size ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } void ldv_linux_lib_find_bit_initialize(void) { { { ldv_assume(nr_cpu_ids > 0); } return; } } void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) ; unsigned short ldv_linux_mmc_sdio_func_sdio_element = 0U; void ldv_linux_mmc_sdio_func_check_context(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__wrong_params((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); } return; } } void ldv_linux_mmc_sdio_func_sdio_claim_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__double_claim((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); ldv_linux_mmc_sdio_func_sdio_element = (unsigned short )((func->card)->host)->index; } return; } } void ldv_linux_mmc_sdio_func_sdio_release_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__release_without_claim((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); ldv_linux_mmc_sdio_func_sdio_element = 0U; } return; } } void ldv_linux_mmc_sdio_func_check_final_state(void) { { { ldv_assert_linux_mmc_sdio_func__unreleased_at_exit((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); } return; } } void ldv_assert_linux_net_register__wrong_return_value(int expr ) ; int ldv_pre_register_netdev(void) ; int ldv_linux_net_register_probe_state = 0; int ldv_pre_register_netdev(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_net_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_net_register_reset_error_counter(void) { { ldv_linux_net_register_probe_state = 0; return; } } void ldv_linux_net_register_check_return_value_probe(int retval ) { { if (ldv_linux_net_register_probe_state == 1) { { ldv_assert_linux_net_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_net_register_reset_error_counter(); } return; } } void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) ; void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) ; void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) ; int rtnllocknumber = 0; void ldv_linux_net_rtnetlink_past_rtnl_unlock(void) { { { ldv_assert_linux_net_rtnetlink__double_unlock(rtnllocknumber == 1); rtnllocknumber = 0; } return; } } void ldv_linux_net_rtnetlink_past_rtnl_lock(void) { { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); rtnllocknumber = 1; } return; } } void ldv_linux_net_rtnetlink_before_ieee80211_unregister_hw(void) { { { ldv_linux_net_rtnetlink_past_rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } int ldv_linux_net_rtnetlink_rtnl_is_locked(void) { int tmp ; { if (rtnllocknumber != 0) { return (rtnllocknumber); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_net_rtnetlink_rtnl_trylock(void) { int tmp ; { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); tmp = ldv_linux_net_rtnetlink_rtnl_is_locked(); } if (tmp == 0) { rtnllocknumber = 1; return (1); } else { return (0); } } } void ldv_linux_net_rtnetlink_check_final_state(void) { { { ldv_assert_linux_net_rtnetlink__lock_on_exit(rtnllocknumber == 0); } return; } } void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) ; void ldv_assert_linux_net_sock__double_release(int expr ) ; int locksocknumber = 0; void ldv_linux_net_sock_past_lock_sock_nested(void) { { locksocknumber = locksocknumber + 1; return; } } bool ldv_linux_net_sock_lock_sock_fast(void) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { locksocknumber = locksocknumber + 1; return (1); } else { } return (0); } } void ldv_linux_net_sock_unlock_sock_fast(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_before_release_sock(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_check_final_state(void) { { { ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(locksocknumber == 0); } return; } } void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) ; int ldv_linux_usb_coherent_coherent_state = 0; void *ldv_linux_usb_coherent_usb_alloc_coherent(void) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return (arbitrary_memory); } else { } ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + 1; return (arbitrary_memory); } } void ldv_linux_usb_coherent_usb_free_coherent(void *addr ) { { if ((unsigned long )addr != (unsigned long )((void *)0)) { { ldv_assert_linux_usb_coherent__less_initial_decrement(ldv_linux_usb_coherent_coherent_state > 0); ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + -1; } } else { } return; } } void ldv_linux_usb_coherent_check_final_state(void) { { { ldv_assert_linux_usb_coherent__more_initial_at_exit(ldv_linux_usb_coherent_coherent_state == 0); } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) ; void ldv_assert_linux_usb_dev__probe_failed(int expr ) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) ; ldv_map LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS ; struct usb_device *ldv_linux_usb_dev_usb_get_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0 ? LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + 1 : 1; } else { } return (dev); } } void ldv_linux_usb_dev_usb_put_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { { ldv_assert_linux_usb_dev__unincremented_counter_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0); ldv_assert_linux_usb_dev__less_initial_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 0); } if (LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 1) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + -1; } else { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; } } else { } return; } } void ldv_linux_usb_dev_check_return_value_probe(int retval ) { { if (retval != 0) { { ldv_assert_linux_usb_dev__probe_failed(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } } else { } return; } } void ldv_linux_usb_dev_initialize(void) { { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; return; } } void ldv_linux_usb_dev_check_final_state(void) { { { ldv_assert_linux_usb_dev__more_initial_at_exit(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) ; void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) ; int ldv_linux_usb_gadget_usb_gadget = 0; void *ldv_linux_usb_gadget_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_undef_ptr(); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_got); } } int ldv_linux_usb_gadget_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_class(void) { { { ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_linux_usb_gadget_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_usb_gadget_unregister_class(); } return; } } int ldv_linux_usb_gadget_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_usb_gadget_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_chrdev_region(void) { { { ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } int ldv_linux_usb_gadget_register_usb_gadget(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__double_usb_gadget_registration(ldv_linux_usb_gadget_usb_gadget == 0); ldv_linux_usb_gadget_usb_gadget = 1; } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_usb_gadget(void) { { { ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(ldv_linux_usb_gadget_usb_gadget == 1); ldv_linux_usb_gadget_usb_gadget = 0; } return; } } void ldv_linux_usb_gadget_check_final_state(void) { { { ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_assert_linux_usb_register__wrong_return_value(int expr ) ; int ldv_pre_usb_register_driver(void) ; int ldv_linux_usb_register_probe_state = 0; int ldv_pre_usb_register_driver(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_usb_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_usb_register_reset_error_counter(void) { { ldv_linux_usb_register_probe_state = 0; return; } } void ldv_linux_usb_register_check_return_value_probe(int retval ) { { if (ldv_linux_usb_register_probe_state == 1) { { ldv_assert_linux_usb_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_usb_register_reset_error_counter(); } return; } } void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) ; int ldv_linux_usb_urb_urb_state = 0; struct urb *ldv_linux_usb_urb_usb_alloc_urb(void) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return ((struct urb *)arbitrary_memory); } else { } ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + 1; return ((struct urb *)arbitrary_memory); } } void ldv_linux_usb_urb_usb_free_urb(struct urb *urb ) { { if ((unsigned long )urb != (unsigned long )((struct urb *)0)) { { ldv_assert_linux_usb_urb__less_initial_decrement(ldv_linux_usb_urb_urb_state > 0); ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + -1; } } else { } return; } } void ldv_linux_usb_urb_check_final_state(void) { { { ldv_assert_linux_usb_urb__more_initial_at_exit(ldv_linux_usb_urb_urb_state == 0); } return; } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *external_allocated_data(void) ; void *ldv_calloc_unknown_size(void) ; void *ldv_xmalloc_unknown_size(size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; extern void *memset(void * , int , size_t ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_malloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; memset(res, 0, 8UL); ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc_unknown_size(void) { void *tmp ; { { tmp = ldv_calloc_unknown_size(); } return (tmp); } } void *ldv_xmalloc_unknown_size(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } int ldv_undef_int_negative(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { { tmp = __VERIFIER_nondet_pointer(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) ; ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode ; void ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock ; void ldv_linux_kernel_locking_mutex_mutex_lock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_lock(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device ; void ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; } return; } } void ldv_linux_kernel_locking_mutex_initialize(void) { { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; return; } } void ldv_linux_kernel_locking_mutex_check_final_state(void) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_dev_list_lock = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_dev_list_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_dev_list_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_dev_list_lock == 1); ldv_linux_kernel_locking_spinlock_spin_dev_list_lock = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_dev_list_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_dev_list_lock == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_dev_list_lock == 2); ldv_linux_kernel_locking_spinlock_spin_dev_list_lock = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_dev_list_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_dev_list_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_dev_list_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_dev_list_lock = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_dev_list_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_dev_list_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_dev_list_lock == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_dev_list_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_dev_list_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_dev_list_lock(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_dev_list_lock(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_dev_list_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_dev_list_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_dev_list_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_dev_list_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_dev_list_lock = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_linux_kernel_locking_spinlock_spin_lock = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_linux_kernel_locking_spinlock_spin_lock = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_ptl = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_linux_kernel_locking_spinlock_spin_ptl = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_linux_kernel_locking_spinlock_spin_ptl = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_q_lock_of_nvme_queue = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_q_lock_of_nvme_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_q_lock_of_nvme_queue == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_q_lock_of_nvme_queue == 1); ldv_linux_kernel_locking_spinlock_spin_q_lock_of_nvme_queue = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_q_lock_of_nvme_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_q_lock_of_nvme_queue == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_q_lock_of_nvme_queue == 2); ldv_linux_kernel_locking_spinlock_spin_q_lock_of_nvme_queue = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_q_lock_of_nvme_queue(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_q_lock_of_nvme_queue == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_q_lock_of_nvme_queue == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_q_lock_of_nvme_queue = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_q_lock_of_nvme_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_q_lock_of_nvme_queue == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_q_lock_of_nvme_queue == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_q_lock_of_nvme_queue(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_q_lock_of_nvme_queue == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_q_lock_of_nvme_queue(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_q_lock_of_nvme_queue(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_q_lock_of_nvme_queue(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_q_lock_of_nvme_queue(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_q_lock_of_nvme_queue == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_q_lock_of_nvme_queue == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_q_lock_of_nvme_queue = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_request_queue = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_queue_lock_of_request_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_request_queue == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_request_queue == 1); ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_request_queue = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_queue_lock_of_request_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_request_queue == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_request_queue == 2); ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_request_queue = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_queue_lock_of_request_queue(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_request_queue == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_request_queue == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_request_queue = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_queue_lock_of_request_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_request_queue == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_request_queue == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_queue_lock_of_request_queue(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_request_queue == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_queue_lock_of_request_queue(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_queue_lock_of_request_queue(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_queue_lock_of_request_queue(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_queue_lock_of_request_queue(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_request_queue == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_request_queue == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_request_queue = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } void ldv_linux_kernel_locking_spinlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_dev_list_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_q_lock_of_nvme_queue == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_request_queue == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_dev_list_lock == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_q_lock_of_nvme_queue == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_request_queue == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2) { return (1); } else { } return (0); } } void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) ; void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) ; static int ldv_linux_kernel_sched_completion_completion = 0; void ldv_linux_kernel_sched_completion_init_completion(void) { { ldv_linux_kernel_sched_completion_completion = 1; return; } } void ldv_linux_kernel_sched_completion_init_completion_macro(void) { { { ldv_assert_linux_kernel_sched_completion__double_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 1; } return; } } void ldv_linux_kernel_sched_completion_wait_for_completion(void) { { { ldv_assert_linux_kernel_sched_completion__wait_without_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 2; } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) ; void ldv_assert_linux_lib_idr__double_init(int expr ) ; void ldv_assert_linux_lib_idr__more_at_exit(int expr ) ; void ldv_assert_linux_lib_idr__not_initialized(int expr ) ; static int ldv_linux_lib_idr_idr = 0; void ldv_linux_lib_idr_idr_init(void) { { { ldv_assert_linux_lib_idr__double_init(ldv_linux_lib_idr_idr == 0); ldv_linux_lib_idr_idr = 1; } return; } } void ldv_linux_lib_idr_idr_alloc(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_find(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_remove(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_destroy(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 3; } return; } } void ldv_linux_lib_idr_check_final_state(void) { { { ldv_assert_linux_lib_idr__more_at_exit(ldv_linux_lib_idr_idr == 0 || ldv_linux_lib_idr_idr == 3); } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_lib_idr__double_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__not_initialized(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__more_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_register__wrong_return_value(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_sock__double_release(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__probe_failed(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_request__double_get(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_request__double_put(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_request__get_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_queue__double_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_queue__use_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_register__wrong_return_value(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } }