/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u32 uint32_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct class; struct device; struct completion; struct gendisk; struct module; struct mutex; struct request_queue; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; struct task_struct; struct lockdep_map; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_10 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_11 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_9 { struct __anonstruct____missing_field_name_10 __annonCompField5 ; struct __anonstruct____missing_field_name_11 __annonCompField6 ; }; struct desc_struct { union __anonunion____missing_field_name_9 __annonCompField7 ; }; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_12 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_12 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_13 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_13 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned char flags ; }; struct file_operations; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_16 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_16 __annonCompField8 ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_21 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_22 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_20 { struct __anonstruct____missing_field_name_21 __annonCompField12 ; struct __anonstruct____missing_field_name_22 __annonCompField13 ; }; union __anonunion____missing_field_name_23 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_20 __annonCompField14 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_23 __annonCompField15 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndreg { u64 lower_bound ; u64 upper_bound ; }; struct bndcsr { u64 bndcfgu ; u64 bndstatus ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndreg bndreg[4U] ; struct bndcsr bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_27 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_26 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_27 __annonCompField17 ; }; struct spinlock { union __anonunion____missing_field_name_26 __annonCompField18 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_28 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_28 rwlock_t; struct optimistic_spin_queue { atomic_t tail ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct compat_timespec; struct __anonstruct_futex_30 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_31 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_32 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_29 { struct __anonstruct_futex_30 futex ; struct __anonstruct_nanosleep_31 nanosleep ; struct __anonstruct_poll_32 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_29 __annonCompField19 ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_45 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_45 seqlock_t; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; union __anonunion____missing_field_name_46 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_46 __annonCompField20 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_47 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_47 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct user_namespace; struct __anonstruct_kuid_t_48 { uid_t val ; }; typedef struct __anonstruct_kuid_t_48 kuid_t; struct __anonstruct_kgid_t_49 { gid_t val ; }; typedef struct __anonstruct_kgid_t_49 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct inode; struct cdev { struct kobject kobj ; struct module *owner ; struct file_operations const *ops ; struct list_head list ; dev_t dev ; unsigned int count ; }; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_53 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_53 nodemask_t; struct path; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; }; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct pci_dev; struct pci_bus; struct __anonstruct_mm_context_t_118 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_118 mm_context_t; struct bio_vec; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_151 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_152 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_150 { struct __anonstruct____missing_field_name_151 __annonCompField34 ; struct __anonstruct____missing_field_name_152 __annonCompField35 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_150 __annonCompField36 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; struct mem_cgroup; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_153 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_155 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_159 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_158 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_159 __annonCompField39 ; int units ; }; struct __anonstruct____missing_field_name_157 { union __anonunion____missing_field_name_158 __annonCompField40 ; atomic_t _count ; }; union __anonunion____missing_field_name_156 { unsigned long counters ; struct __anonstruct____missing_field_name_157 __annonCompField41 ; unsigned int active ; }; struct __anonstruct____missing_field_name_154 { union __anonunion____missing_field_name_155 __annonCompField38 ; union __anonunion____missing_field_name_156 __annonCompField42 ; }; struct __anonstruct____missing_field_name_161 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_162 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_160 { struct list_head lru ; struct __anonstruct____missing_field_name_161 __annonCompField44 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_162 __annonCompField45 ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_163 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_153 __annonCompField37 ; struct __anonstruct____missing_field_name_154 __annonCompField43 ; union __anonunion____missing_field_name_160 __annonCompField46 ; union __anonunion____missing_field_name_163 __annonCompField47 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_164 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_164 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; typedef unsigned long cputime_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct user_struct; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_166 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_166 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_168 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_169 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_170 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_171 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_173 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_172 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_173 _addr_bnd ; }; struct __anonstruct__sigpoll_174 { long _band ; int _fd ; }; struct __anonstruct__sigsys_175 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_167 { int _pad[28U] ; struct __anonstruct__kill_168 _kill ; struct __anonstruct__timer_169 _timer ; struct __anonstruct__rt_170 _rt ; struct __anonstruct__sigchld_171 _sigchld ; struct __anonstruct__sigfault_172 _sigfault ; struct __anonstruct__sigpoll_174 _sigpoll ; struct __anonstruct__sigsys_175 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_167 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int in_hrtirq ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct cred; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_180 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_181 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_183 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_182 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_183 __annonCompField52 ; }; union __anonunion_type_data_184 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_186 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_185 { union __anonunion_payload_186 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_180 __annonCompField50 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_181 __annonCompField51 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_182 __annonCompField53 ; union __anonunion_type_data_184 type_data ; union __anonunion____missing_field_name_185 __annonCompField54 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct io_context; struct pipe_inode_info; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned char brk_randomized : 1 ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct proc_dir_entry; struct pci_driver; union __anonunion____missing_field_name_191 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; unsigned char pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; u8 dma_alias_devfn ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned char pme_support : 5 ; unsigned char pme_interrupt : 1 ; unsigned char pme_poll : 1 ; unsigned char d1_support : 1 ; unsigned char d2_support : 1 ; unsigned char no_d1d2 : 1 ; unsigned char no_d3cold : 1 ; unsigned char d3cold_allowed : 1 ; unsigned char mmio_always_on : 1 ; unsigned char wakeup_prepared : 1 ; unsigned char runtime_d3cold : 1 ; unsigned char ignore_hotplug : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned char transparent : 1 ; unsigned char multifunction : 1 ; unsigned char is_added : 1 ; unsigned char is_busmaster : 1 ; unsigned char no_msi : 1 ; unsigned char no_64bit_msi : 1 ; unsigned char block_cfg_access : 1 ; unsigned char broken_parity_status : 1 ; unsigned char irq_reroute_variant : 2 ; unsigned char msi_enabled : 1 ; unsigned char msix_enabled : 1 ; unsigned char ari_enabled : 1 ; unsigned char is_managed : 1 ; unsigned char needs_freset : 1 ; unsigned char state_saved : 1 ; unsigned char is_physfn : 1 ; unsigned char is_virtfn : 1 ; unsigned char reset_fn : 1 ; unsigned char is_hotplug_bridge : 1 ; unsigned char __aer_firmware_first_valid : 1 ; unsigned char __aer_firmware_first : 1 ; unsigned char broken_intx_masking : 1 ; unsigned char io_window_1k : 1 ; unsigned char irq_managed : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_191 __annonCompField58 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; char *driver_override ; }; struct pci_ops; struct msi_controller; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_controller *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned char is_added : 1 ; }; struct pci_ops { void *(*map_bus)(struct pci_bus * , unsigned int , int ) ; int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*reset_notify)(struct pci_dev * , bool ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *cow_page ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; struct page *(*find_special_page)(struct vm_area_struct * , unsigned long ) ; }; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_193 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_192 { struct __anonstruct____missing_field_name_193 __annonCompField59 ; }; struct lockref { union __anonunion____missing_field_name_192 __annonCompField60 ; }; struct vfsmount; struct __anonstruct____missing_field_name_195 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_194 { struct __anonstruct____missing_field_name_195 __annonCompField61 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_194 __annonCompField62 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_196 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_196 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct __anonstruct____missing_field_name_198 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_197 { struct __anonstruct____missing_field_name_198 __annonCompField63 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_197 __annonCompField64 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct bio_set; struct bio; struct bio_integrity_payload; struct block_device; struct cgroup_subsys_state; typedef void bio_end_io_t(struct bio * , int ); struct bio_vec { struct page *bv_page ; unsigned int bv_len ; unsigned int bv_offset ; }; struct bvec_iter { sector_t bi_sector ; unsigned int bi_size ; unsigned int bi_idx ; unsigned int bi_bvec_done ; }; union __anonunion____missing_field_name_199 { struct bio_integrity_payload *bi_integrity ; }; struct bio { struct bio *bi_next ; struct block_device *bi_bdev ; unsigned long bi_flags ; unsigned long bi_rw ; struct bvec_iter bi_iter ; unsigned int bi_phys_segments ; unsigned int bi_seg_front_size ; unsigned int bi_seg_back_size ; atomic_t bi_remaining ; bio_end_io_t *bi_end_io ; void *bi_private ; struct io_context *bi_ioc ; struct cgroup_subsys_state *bi_css ; union __anonunion____missing_field_name_199 __annonCompField65 ; unsigned short bi_vcnt ; unsigned short bi_max_vecs ; atomic_t bi_cnt ; struct bio_vec *bi_io_vec ; struct bio_set *bi_pool ; struct bio_vec bi_inline_vecs[0U] ; }; struct export_operations; struct iovec; struct nameidata; struct kiocb; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iov_iter; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_200 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_200 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_201 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_201 __annonCompField66 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct hd_struct; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_204 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_205 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; union __anonunion____missing_field_name_206 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_204 __annonCompField67 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_205 __annonCompField68 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_206 __annonCompField69 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_207 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_207 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_get_owner)(struct file_lock * , struct file_lock * ) ; void (*lm_put_owner)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_209 { struct list_head link ; int state ; }; union __anonunion_fl_u_208 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_209 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_208 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; void (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; int (*dentry_open)(struct dentry * , struct file * , struct cred const * ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; typedef void *mempool_alloc_t(gfp_t , void * ); typedef void mempool_free_t(void * , void * ); struct mempool_s { spinlock_t lock ; int min_nr ; int curr_nr ; void **elements ; void *pool_data ; mempool_alloc_t *alloc ; mempool_free_t *free ; wait_queue_head_t wait ; }; typedef struct mempool_s mempool_t; union __anonunion____missing_field_name_214 { struct list_head q_node ; struct kmem_cache *__rcu_icq_cache ; }; union __anonunion____missing_field_name_215 { struct hlist_node ioc_node ; struct callback_head __rcu_head ; }; struct io_cq { struct request_queue *q ; struct io_context *ioc ; union __anonunion____missing_field_name_214 __annonCompField73 ; union __anonunion____missing_field_name_215 __annonCompField74 ; unsigned int flags ; }; struct io_context { atomic_long_t refcount ; atomic_t active_ref ; atomic_t nr_tasks ; spinlock_t lock ; unsigned short ioprio ; int nr_batch_requests ; unsigned long last_waited ; struct radix_tree_root icq_tree ; struct io_cq *icq_hint ; struct hlist_head icq_list ; struct work_struct release_work ; }; struct bio_integrity_payload { struct bio *bip_bio ; struct bvec_iter bip_iter ; bio_end_io_t *bip_end_io ; unsigned short bip_slab ; unsigned short bip_vcnt ; unsigned short bip_max_vcnt ; unsigned short bip_flags ; struct work_struct bip_work ; struct bio_vec *bip_vec ; struct bio_vec bip_inline_vecs[0U] ; }; struct bio_list { struct bio *head ; struct bio *tail ; }; struct bio_set { struct kmem_cache *bio_slab ; unsigned int front_pad ; mempool_t *bio_pool ; mempool_t *bvec_pool ; mempool_t *bio_integrity_pool ; mempool_t *bvec_integrity_pool ; spinlock_t rescue_lock ; struct bio_list rescue_list ; struct work_struct rescue_work ; struct workqueue_struct *rescue_workqueue ; }; struct card_cfg_hdr { __u32 version ; __u32 crc ; }; struct __anonstruct_intr_coal_216 { __u32 mode ; __u32 count ; __u32 latency ; }; struct card_cfg_data { __u32 block_size ; __u32 stripe_size ; __u32 vendor_id ; __u32 cache_order ; struct __anonstruct_intr_coal_216 intr_coal ; }; struct rsxx_card_cfg { struct card_cfg_hdr hdr ; struct card_cfg_data data ; }; struct dma_tracker_list; struct rsxx_cs_buffer { dma_addr_t dma_addr ; void *buf ; u32 idx ; }; struct rsxx_dma_stats { u32 crc_errors ; u32 hard_errors ; u32 soft_errors ; u32 writes_issued ; u32 writes_failed ; u32 reads_issued ; u32 reads_failed ; u32 reads_retried ; u32 discards_issued ; u32 discards_failed ; u32 done_rescheduled ; u32 issue_rescheduled ; u32 dma_sw_err ; u32 dma_hw_fault ; u32 dma_cancelled ; u32 sw_q_depth ; atomic_t hw_q_depth ; }; struct rsxx_cardinfo; struct rsxx_dma_ctrl { struct rsxx_cardinfo *card ; int id ; void *regmap ; struct rsxx_cs_buffer status ; struct rsxx_cs_buffer cmd ; u16 e_cnt ; spinlock_t queue_lock ; struct list_head queue ; struct workqueue_struct *issue_wq ; struct work_struct issue_dma_work ; struct workqueue_struct *done_wq ; struct work_struct dma_done_work ; struct timer_list activity_timer ; struct dma_tracker_list *trackers ; struct rsxx_dma_stats stats ; struct mutex work_lock ; }; struct creg_cmd; struct __anonstruct_creg_stats_218 { u32 stat ; u32 failed_cancel_timer ; u32 creg_timeout ; }; struct __anonstruct_creg_ctrl_217 { spinlock_t lock ; bool active ; struct creg_cmd *active_cmd ; struct workqueue_struct *creg_wq ; struct work_struct done_work ; struct list_head queue ; unsigned int q_depth ; struct __anonstruct_creg_stats_218 creg_stats ; struct timer_list cmd_timer ; struct mutex reset_lock ; int reset ; }; struct __anonstruct_log_219 { char tmp[32U] ; char buf[128U] ; int buf_len ; }; struct __anonstruct__stripe_220 { u64 lower_mask ; u64 upper_shift ; u64 upper_mask ; u64 target_mask ; u64 target_shift ; }; struct rsxx_cardinfo { struct pci_dev *dev ; unsigned int halt ; unsigned int eeh_state ; void *regmap ; spinlock_t irq_lock ; unsigned int isr_mask ; unsigned int ier_mask ; struct rsxx_card_cfg config ; int config_valid ; struct __anonstruct_creg_ctrl_217 creg_ctrl ; struct __anonstruct_log_219 log ; struct workqueue_struct *event_wq ; struct work_struct event_work ; unsigned int state ; u64 size8 ; struct mutex dev_lock ; bool bdev_attached ; int disk_id ; int major ; struct request_queue *queue ; struct gendisk *gendisk ; struct __anonstruct__stripe_220 _stripe ; unsigned int dma_fault ; int scrub_hard ; int n_targets ; struct rsxx_dma_ctrl *ctrl ; struct dentry *debugfs_dir ; }; typedef signed char s8; struct kernel_symbol { unsigned long value ; char const *name ; }; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; typedef void (*ctor_fn_t)(void); struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct ldv_thread; struct jump_entry; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; enum hrtimer_restart; struct hd_geometry; struct block_device_operations; struct exception_table_entry { int insn ; int fixup ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_218 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_218 __annonCompField73 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct disk_stats { unsigned long sectors[2U] ; unsigned long ios[2U] ; unsigned long merges[2U] ; unsigned long ticks[2U] ; unsigned long io_ticks ; unsigned long time_in_queue ; }; struct partition_meta_info { char uuid[37U] ; u8 volname[64U] ; }; struct hd_struct { sector_t start_sect ; sector_t nr_sects ; seqcount_t nr_sects_seq ; sector_t alignment_offset ; unsigned int discard_alignment ; struct device __dev ; struct kobject *holder_dir ; int policy ; int partno ; struct partition_meta_info *info ; int make_it_fail ; unsigned long stamp ; atomic_t in_flight[2U] ; struct disk_stats *dkstats ; atomic_t ref ; struct callback_head callback_head ; }; struct disk_part_tbl { struct callback_head callback_head ; int len ; struct hd_struct *last_lookup ; struct hd_struct *part[] ; }; struct disk_events; struct timer_rand_state; struct blk_integrity; struct gendisk { int major ; int first_minor ; int minors ; char disk_name[32U] ; char *(*devnode)(struct gendisk * , umode_t * ) ; unsigned int events ; unsigned int async_events ; struct disk_part_tbl *part_tbl ; struct hd_struct part0 ; struct block_device_operations const *fops ; struct request_queue *queue ; void *private_data ; int flags ; struct device *driverfs_dev ; struct kobject *slave_dir ; struct timer_rand_state *random ; atomic_t sync_io ; struct disk_events *ev ; struct blk_integrity *integrity ; int node_id ; }; struct ldv_struct_EMGentry_12 { int signal_pending ; }; struct ldv_struct_free_irq_7 { int arg0 ; int signal_pending ; }; struct ldv_struct_interrupt_instance_3 { int arg0 ; enum irqreturn (*arg1)(int , void * ) ; enum irqreturn (*arg2)(int , void * ) ; void *arg3 ; int signal_pending ; }; struct ldv_struct_pci_instance_4 { struct pci_driver *arg0 ; int signal_pending ; }; struct ldv_struct_timer_instance_5 { struct timer_list *arg0 ; int signal_pending ; }; typedef int ldv_func_ret_type___0; typedef int ldv_func_ret_type___1; enum hrtimer_restart; struct rsxx_reg_access { __u32 addr ; __u32 cnt ; __u32 stat ; __u32 stream ; __u32 data[8U] ; }; struct creg_cmd { struct list_head list ; void (*cb)(struct rsxx_cardinfo * , struct creg_cmd * , int ) ; void *cb_private ; unsigned int op ; unsigned int addr ; int cnt8 ; void *buf ; unsigned int stream ; unsigned int status ; }; struct creg_completion { struct completion *cmd_done ; int st ; u32 creg_status ; }; typedef int ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; typedef int ldv_func_ret_type___4; struct request; enum hrtimer_restart; struct call_single_data { struct llist_node llist ; void (*func)(void * ) ; void *info ; u16 flags ; }; struct hd_geometry { unsigned char heads ; unsigned char sectors ; unsigned short cylinders ; unsigned long start ; }; struct fprop_local_percpu { struct percpu_counter events ; unsigned int period ; raw_spinlock_t lock ; }; enum writeback_sync_modes { WB_SYNC_NONE = 0, WB_SYNC_ALL = 1 } ; struct writeback_control { long nr_to_write ; long pages_skipped ; loff_t range_start ; loff_t range_end ; enum writeback_sync_modes sync_mode ; unsigned char for_kupdate : 1 ; unsigned char for_background : 1 ; unsigned char tagged_writepages : 1 ; unsigned char for_reclaim : 1 ; unsigned char range_cyclic : 1 ; unsigned char for_sync : 1 ; }; struct bdi_writeback; typedef int congested_fn(void * , int ); struct bdi_writeback { struct backing_dev_info *bdi ; unsigned long last_old_flush ; struct delayed_work dwork ; struct list_head b_dirty ; struct list_head b_io ; struct list_head b_more_io ; struct list_head b_dirty_time ; spinlock_t list_lock ; }; struct backing_dev_info { struct list_head bdi_list ; unsigned long ra_pages ; unsigned long state ; unsigned int capabilities ; congested_fn *congested_fn ; void *congested_data ; char *name ; struct percpu_counter bdi_stat[4U] ; unsigned long bw_time_stamp ; unsigned long dirtied_stamp ; unsigned long written_stamp ; unsigned long write_bandwidth ; unsigned long avg_write_bandwidth ; unsigned long dirty_ratelimit ; unsigned long balanced_dirty_ratelimit ; struct fprop_local_percpu completions ; int dirty_exceeded ; unsigned int min_ratio ; unsigned int max_ratio ; unsigned int max_prop_frac ; struct bdi_writeback wb ; spinlock_t wb_lock ; struct list_head work_list ; struct device *dev ; struct timer_list laptop_mode_wb_timer ; struct dentry *debug_dir ; struct dentry *debug_stats ; }; struct bsg_class_device { struct device *class_dev ; struct device *parent ; int minor ; struct request_queue *queue ; struct kref ref ; void (*release)(struct device * ) ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_long_t count ; unsigned long percpu_count_ptr ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_switch ; bool force_atomic ; struct callback_head rcu ; }; struct elevator_queue; struct blk_trace; struct bsg_job; struct blkcg_gq; struct blk_flush_queue; typedef void rq_end_io_fn(struct request * , int ); struct request_list { struct request_queue *q ; struct blkcg_gq *blkg ; int count[2U] ; int starved[2U] ; mempool_t *rq_pool ; wait_queue_head_t wait[2U] ; unsigned int flags ; }; enum rq_cmd_type_bits { REQ_TYPE_FS = 1, REQ_TYPE_BLOCK_PC = 2, REQ_TYPE_SENSE = 3, REQ_TYPE_PM_SUSPEND = 4, REQ_TYPE_PM_RESUME = 5, REQ_TYPE_PM_SHUTDOWN = 6, REQ_TYPE_SPECIAL = 7, REQ_TYPE_ATA_TASKFILE = 8, REQ_TYPE_ATA_PC = 9 } ; union __anonunion____missing_field_name_222 { struct call_single_data csd ; unsigned long fifo_time ; }; struct blk_mq_ctx; union __anonunion____missing_field_name_223 { struct hlist_node hash ; struct list_head ipi_list ; }; union __anonunion____missing_field_name_224 { struct rb_node rb_node ; void *completion_data ; }; struct __anonstruct_elv_226 { struct io_cq *icq ; void *priv[2U] ; }; struct __anonstruct_flush_227 { unsigned int seq ; struct list_head list ; rq_end_io_fn *saved_end_io ; }; union __anonunion____missing_field_name_225 { struct __anonstruct_elv_226 elv ; struct __anonstruct_flush_227 flush ; }; struct request { struct list_head queuelist ; union __anonunion____missing_field_name_222 __annonCompField76 ; struct request_queue *q ; struct blk_mq_ctx *mq_ctx ; u64 cmd_flags ; enum rq_cmd_type_bits cmd_type ; unsigned long atomic_flags ; int cpu ; unsigned int __data_len ; sector_t __sector ; struct bio *bio ; struct bio *biotail ; union __anonunion____missing_field_name_223 __annonCompField77 ; union __anonunion____missing_field_name_224 __annonCompField78 ; union __anonunion____missing_field_name_225 __annonCompField79 ; struct gendisk *rq_disk ; struct hd_struct *part ; unsigned long start_time ; struct request_list *rl ; unsigned long long start_time_ns ; unsigned long long io_start_time_ns ; unsigned short nr_phys_segments ; unsigned short nr_integrity_segments ; unsigned short ioprio ; void *special ; int tag ; int errors ; unsigned char __cmd[16U] ; unsigned char *cmd ; unsigned short cmd_len ; unsigned int extra_len ; unsigned int sense_len ; unsigned int resid_len ; void *sense ; unsigned long deadline ; struct list_head timeout_list ; unsigned int timeout ; int retries ; rq_end_io_fn *end_io ; void *end_io_data ; struct request *next_rq ; }; struct elevator_type; typedef int elevator_merge_fn(struct request_queue * , struct request ** , struct bio * ); typedef void elevator_merge_req_fn(struct request_queue * , struct request * , struct request * ); typedef void elevator_merged_fn(struct request_queue * , struct request * , int ); typedef int elevator_allow_merge_fn(struct request_queue * , struct request * , struct bio * ); typedef void elevator_bio_merged_fn(struct request_queue * , struct request * , struct bio * ); typedef int elevator_dispatch_fn(struct request_queue * , int ); typedef void elevator_add_req_fn(struct request_queue * , struct request * ); typedef struct request *elevator_request_list_fn(struct request_queue * , struct request * ); typedef void elevator_completed_req_fn(struct request_queue * , struct request * ); typedef int elevator_may_queue_fn(struct request_queue * , int ); typedef void elevator_init_icq_fn(struct io_cq * ); typedef void elevator_exit_icq_fn(struct io_cq * ); typedef int elevator_set_req_fn(struct request_queue * , struct request * , struct bio * , gfp_t ); typedef void elevator_put_req_fn(struct request * ); typedef void elevator_activate_req_fn(struct request_queue * , struct request * ); typedef void elevator_deactivate_req_fn(struct request_queue * , struct request * ); typedef int elevator_init_fn(struct request_queue * , struct elevator_type * ); typedef void elevator_exit_fn(struct elevator_queue * ); struct elevator_ops { elevator_merge_fn *elevator_merge_fn ; elevator_merged_fn *elevator_merged_fn ; elevator_merge_req_fn *elevator_merge_req_fn ; elevator_allow_merge_fn *elevator_allow_merge_fn ; elevator_bio_merged_fn *elevator_bio_merged_fn ; elevator_dispatch_fn *elevator_dispatch_fn ; elevator_add_req_fn *elevator_add_req_fn ; elevator_activate_req_fn *elevator_activate_req_fn ; elevator_deactivate_req_fn *elevator_deactivate_req_fn ; elevator_completed_req_fn *elevator_completed_req_fn ; elevator_request_list_fn *elevator_former_req_fn ; elevator_request_list_fn *elevator_latter_req_fn ; elevator_init_icq_fn *elevator_init_icq_fn ; elevator_exit_icq_fn *elevator_exit_icq_fn ; elevator_set_req_fn *elevator_set_req_fn ; elevator_put_req_fn *elevator_put_req_fn ; elevator_may_queue_fn *elevator_may_queue_fn ; elevator_init_fn *elevator_init_fn ; elevator_exit_fn *elevator_exit_fn ; }; struct elv_fs_entry { struct attribute attr ; ssize_t (*show)(struct elevator_queue * , char * ) ; ssize_t (*store)(struct elevator_queue * , char const * , size_t ) ; }; struct elevator_type { struct kmem_cache *icq_cache ; struct elevator_ops ops ; size_t icq_size ; size_t icq_align ; struct elv_fs_entry *elevator_attrs ; char elevator_name[16U] ; struct module *elevator_owner ; char icq_cache_name[21U] ; struct list_head list ; }; struct elevator_queue { struct elevator_type *type ; void *elevator_data ; struct kobject kobj ; struct mutex sysfs_lock ; unsigned char registered : 1 ; struct hlist_head hash[64U] ; }; typedef void request_fn_proc(struct request_queue * ); typedef void make_request_fn(struct request_queue * , struct bio * ); typedef int prep_rq_fn(struct request_queue * , struct request * ); typedef void unprep_rq_fn(struct request_queue * , struct request * ); struct bvec_merge_data { struct block_device *bi_bdev ; sector_t bi_sector ; unsigned int bi_size ; unsigned long bi_rw ; }; typedef int merge_bvec_fn(struct request_queue * , struct bvec_merge_data * , struct bio_vec * ); typedef void softirq_done_fn(struct request * ); typedef int dma_drain_needed_fn(struct request * ); typedef int lld_busy_fn(struct request_queue * ); typedef int bsg_job_fn(struct bsg_job * ); enum blk_eh_timer_return { BLK_EH_NOT_HANDLED = 0, BLK_EH_HANDLED = 1, BLK_EH_RESET_TIMER = 2 } ; typedef enum blk_eh_timer_return rq_timed_out_fn(struct request * ); struct blk_queue_tag { struct request **tag_index ; unsigned long *tag_map ; int busy ; int max_depth ; int real_max_depth ; atomic_t refcnt ; int alloc_policy ; int next_tag ; }; struct queue_limits { unsigned long bounce_pfn ; unsigned long seg_boundary_mask ; unsigned int max_hw_sectors ; unsigned int chunk_sectors ; unsigned int max_sectors ; unsigned int max_segment_size ; unsigned int physical_block_size ; unsigned int alignment_offset ; unsigned int io_min ; unsigned int io_opt ; unsigned int max_discard_sectors ; unsigned int max_write_same_sectors ; unsigned int discard_granularity ; unsigned int discard_alignment ; unsigned short logical_block_size ; unsigned short max_segments ; unsigned short max_integrity_segments ; unsigned char misaligned ; unsigned char discard_misaligned ; unsigned char cluster ; unsigned char discard_zeroes_data ; unsigned char raid_partial_stripes_expensive ; }; struct blk_mq_ops; struct blk_mq_hw_ctx; struct throtl_data; struct blk_mq_tag_set; struct request_queue { struct list_head queue_head ; struct request *last_merge ; struct elevator_queue *elevator ; int nr_rqs[2U] ; int nr_rqs_elvpriv ; struct request_list root_rl ; request_fn_proc *request_fn ; make_request_fn *make_request_fn ; prep_rq_fn *prep_rq_fn ; unprep_rq_fn *unprep_rq_fn ; merge_bvec_fn *merge_bvec_fn ; softirq_done_fn *softirq_done_fn ; rq_timed_out_fn *rq_timed_out_fn ; dma_drain_needed_fn *dma_drain_needed ; lld_busy_fn *lld_busy_fn ; struct blk_mq_ops *mq_ops ; unsigned int *mq_map ; struct blk_mq_ctx *queue_ctx ; unsigned int nr_queues ; struct blk_mq_hw_ctx **queue_hw_ctx ; unsigned int nr_hw_queues ; sector_t end_sector ; struct request *boundary_rq ; struct delayed_work delay_work ; struct backing_dev_info backing_dev_info ; void *queuedata ; unsigned long queue_flags ; int id ; gfp_t bounce_gfp ; spinlock_t __queue_lock ; spinlock_t *queue_lock ; struct kobject kobj ; struct kobject mq_kobj ; struct device *dev ; int rpm_status ; unsigned int nr_pending ; unsigned long nr_requests ; unsigned int nr_congestion_on ; unsigned int nr_congestion_off ; unsigned int nr_batching ; unsigned int dma_drain_size ; void *dma_drain_buffer ; unsigned int dma_pad_mask ; unsigned int dma_alignment ; struct blk_queue_tag *queue_tags ; struct list_head tag_busy_list ; unsigned int nr_sorted ; unsigned int in_flight[2U] ; unsigned int request_fn_active ; unsigned int rq_timeout ; struct timer_list timeout ; struct list_head timeout_list ; struct list_head icq_list ; unsigned long blkcg_pols[1U] ; struct blkcg_gq *root_blkg ; struct list_head blkg_list ; struct queue_limits limits ; unsigned int sg_timeout ; unsigned int sg_reserved_size ; int node ; struct blk_trace *blk_trace ; unsigned int flush_flags ; unsigned char flush_not_queueable : 1 ; struct blk_flush_queue *fq ; struct list_head requeue_list ; spinlock_t requeue_lock ; struct work_struct requeue_work ; struct mutex sysfs_lock ; int bypass_depth ; int mq_freeze_depth ; bsg_job_fn *bsg_job_fn ; int bsg_job_size ; struct bsg_class_device bsg_dev ; struct throtl_data *td ; struct callback_head callback_head ; wait_queue_head_t mq_freeze_wq ; struct percpu_ref mq_usage_counter ; struct list_head all_q_node ; struct blk_mq_tag_set *tag_set ; struct list_head tag_set_list ; }; struct blk_plug { struct list_head list ; struct list_head mq_list ; struct list_head cb_list ; }; struct blk_integrity_iter { void *prot_buf ; void *data_buf ; sector_t seed ; unsigned int data_size ; unsigned short interval ; char const *disk_name ; }; typedef int integrity_processing_fn(struct blk_integrity_iter * ); struct blk_integrity { integrity_processing_fn *generate_fn ; integrity_processing_fn *verify_fn ; unsigned short flags ; unsigned short tuple_size ; unsigned short interval ; unsigned short tag_size ; char const *name ; struct kobject kobj ; }; struct block_device_operations { int (*open)(struct block_device * , fmode_t ) ; void (*release)(struct gendisk * , fmode_t ) ; int (*rw_page)(struct block_device * , sector_t , struct page * , int ) ; int (*ioctl)(struct block_device * , fmode_t , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct block_device * , fmode_t , unsigned int , unsigned long ) ; long (*direct_access)(struct block_device * , sector_t , void ** , unsigned long * , long ) ; unsigned int (*check_events)(struct gendisk * , unsigned int ) ; int (*media_changed)(struct gendisk * ) ; void (*unlock_native_capacity)(struct gendisk * ) ; int (*revalidate_disk)(struct gendisk * ) ; int (*getgeo)(struct block_device * , struct hd_geometry * ) ; void (*swap_slot_free_notify)(struct block_device * , unsigned long ) ; struct module *owner ; }; struct rsxx_bio_meta { struct bio *bio ; atomic_t pending_dmas ; atomic_t error ; unsigned long start_time ; }; typedef struct request_queue *ldv_func_ret_type___5; typedef struct gendisk *ldv_func_ret_type___6; typedef __u16 __le16; typedef __u32 __le32; typedef __u64 __le64; enum hrtimer_restart; struct __anonstruct_sub_page_221 { u32 off ; u32 cnt ; }; struct rsxx_dma { struct list_head list ; u8 cmd ; unsigned int laddr ; struct __anonstruct_sub_page_221 sub_page ; dma_addr_t dma_addr ; struct page *page ; unsigned int pg_off ; void (*cb)(struct rsxx_cardinfo * , void * , unsigned int ) ; void *cb_data ; }; struct hw_status { u8 status ; u8 tag ; __le16 count ; __le32 _rsvd2 ; __le64 _rsvd3 ; }; struct hw_cmd { u8 command ; u8 tag ; u8 _rsvd ; u8 sub_page ; __le32 device_addr ; __le64 host_addr ; }; struct dma_tracker { int next_tag ; struct rsxx_dma *dma ; }; struct dma_tracker_list { spinlock_t lock ; int head ; struct dma_tracker list[0U] ; }; typedef int ldv_func_ret_type___7; struct device_private { void *driver_data ; }; typedef short s16; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; struct kthread_worker *worker ; }; struct dma_chan; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool (*can_dma)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool idling ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; bool cur_msg_mapped ; struct completion xfer_completion ; size_t max_dma_len ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; struct dma_chan *dma_tx ; struct dma_chan *dma_rx ; void *dummy_rx ; void *dummy_tx ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; struct sg_table tx_sg ; struct sg_table rx_sg ; unsigned char cs_change : 1 ; unsigned char tx_nbits : 3 ; unsigned char rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned char is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; struct notifier_block; enum hrtimer_restart; struct ratelimit_state { raw_spinlock_t lock ; int interval ; int burst ; int printed ; int missed ; unsigned long begin ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; typedef unsigned int mmc_pm_flag_t; struct mmc_card; struct sdio_func; typedef void sdio_irq_handler_t(struct sdio_func * ); struct sdio_func_tuple { struct sdio_func_tuple *next ; unsigned char code ; unsigned char size ; unsigned char data[0U] ; }; struct sdio_func { struct mmc_card *card ; struct device dev ; sdio_irq_handler_t *irq_handler ; unsigned int num ; unsigned char class ; unsigned short vendor ; unsigned short device ; unsigned int max_blksize ; unsigned int cur_blksize ; unsigned int enable_timeout ; unsigned int state ; u8 tmpbuf[4U] ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; }; enum led_brightness { LED_OFF = 0, LED_HALF = 127, LED_FULL = 255 } ; struct led_trigger; struct led_classdev { char const *name ; enum led_brightness brightness ; enum led_brightness max_brightness ; int flags ; void (*brightness_set)(struct led_classdev * , enum led_brightness ) ; int (*brightness_set_sync)(struct led_classdev * , enum led_brightness ) ; enum led_brightness (*brightness_get)(struct led_classdev * ) ; int (*blink_set)(struct led_classdev * , unsigned long * , unsigned long * ) ; struct device *dev ; struct attribute_group const **groups ; struct list_head node ; char const *default_trigger ; unsigned long blink_delay_on ; unsigned long blink_delay_off ; struct timer_list blink_timer ; int blink_brightness ; void (*flash_resume)(struct led_classdev * ) ; struct work_struct set_brightness_work ; int delayed_set_value ; struct rw_semaphore trigger_lock ; struct led_trigger *trigger ; struct list_head trig_list ; void *trigger_data ; bool activated ; struct mutex led_access ; }; struct led_trigger { char const *name ; void (*activate)(struct led_classdev * ) ; void (*deactivate)(struct led_classdev * ) ; rwlock_t leddev_list_lock ; struct list_head led_cdevs ; struct list_head next_trig ; }; struct fault_attr { unsigned long probability ; unsigned long interval ; atomic_t times ; atomic_t space ; unsigned long verbose ; u32 task_filter ; unsigned long stacktrace_depth ; unsigned long require_start ; unsigned long require_end ; unsigned long reject_start ; unsigned long reject_end ; unsigned long count ; struct ratelimit_state ratelimit_state ; struct dentry *dname ; }; struct mmc_data; struct mmc_request; struct mmc_command { u32 opcode ; u32 arg ; u32 resp[4U] ; unsigned int flags ; unsigned int retries ; unsigned int error ; unsigned int busy_timeout ; bool sanitize_busy ; struct mmc_data *data ; struct mmc_request *mrq ; }; struct mmc_data { unsigned int timeout_ns ; unsigned int timeout_clks ; unsigned int blksz ; unsigned int blocks ; unsigned int error ; unsigned int flags ; unsigned int bytes_xfered ; struct mmc_command *stop ; struct mmc_request *mrq ; unsigned int sg_len ; struct scatterlist *sg ; s32 host_cookie ; }; struct mmc_host; struct mmc_request { struct mmc_command *sbc ; struct mmc_command *cmd ; struct mmc_data *data ; struct mmc_command *stop ; struct completion completion ; void (*done)(struct mmc_request * ) ; struct mmc_host *host ; }; struct mmc_async_req; struct mmc_cid { unsigned int manfid ; char prod_name[8U] ; unsigned char prv ; unsigned int serial ; unsigned short oemid ; unsigned short year ; unsigned char hwrev ; unsigned char fwrev ; unsigned char month ; }; struct mmc_csd { unsigned char structure ; unsigned char mmca_vsn ; unsigned short cmdclass ; unsigned short tacc_clks ; unsigned int tacc_ns ; unsigned int c_size ; unsigned int r2w_factor ; unsigned int max_dtr ; unsigned int erase_size ; unsigned int read_blkbits ; unsigned int write_blkbits ; unsigned int capacity ; unsigned char read_partial : 1 ; unsigned char read_misalign : 1 ; unsigned char write_partial : 1 ; unsigned char write_misalign : 1 ; unsigned char dsr_imp : 1 ; }; struct mmc_ext_csd { u8 rev ; u8 erase_group_def ; u8 sec_feature_support ; u8 rel_sectors ; u8 rel_param ; u8 part_config ; u8 cache_ctrl ; u8 rst_n_function ; u8 max_packed_writes ; u8 max_packed_reads ; u8 packed_event_en ; unsigned int part_time ; unsigned int sa_timeout ; unsigned int generic_cmd6_time ; unsigned int power_off_longtime ; u8 power_off_notification ; unsigned int hs_max_dtr ; unsigned int hs200_max_dtr ; unsigned int sectors ; unsigned int hc_erase_size ; unsigned int hc_erase_timeout ; unsigned int sec_trim_mult ; unsigned int sec_erase_mult ; unsigned int trim_timeout ; bool partition_setting_completed ; unsigned long long enhanced_area_offset ; unsigned int enhanced_area_size ; unsigned int cache_size ; bool hpi_en ; bool hpi ; unsigned int hpi_cmd ; bool bkops ; bool man_bkops_en ; unsigned int data_sector_size ; unsigned int data_tag_unit_size ; unsigned int boot_ro_lock ; bool boot_ro_lockable ; bool ffu_capable ; u8 fwrev[8U] ; u8 raw_exception_status ; u8 raw_partition_support ; u8 raw_rpmb_size_mult ; u8 raw_erased_mem_count ; u8 raw_ext_csd_structure ; u8 raw_card_type ; u8 out_of_int_time ; u8 raw_pwr_cl_52_195 ; u8 raw_pwr_cl_26_195 ; u8 raw_pwr_cl_52_360 ; u8 raw_pwr_cl_26_360 ; u8 raw_s_a_timeout ; u8 raw_hc_erase_gap_size ; u8 raw_erase_timeout_mult ; u8 raw_hc_erase_grp_size ; u8 raw_sec_trim_mult ; u8 raw_sec_erase_mult ; u8 raw_sec_feature_support ; u8 raw_trim_mult ; u8 raw_pwr_cl_200_195 ; u8 raw_pwr_cl_200_360 ; u8 raw_pwr_cl_ddr_52_195 ; u8 raw_pwr_cl_ddr_52_360 ; u8 raw_pwr_cl_ddr_200_360 ; u8 raw_bkops_status ; u8 raw_sectors[4U] ; unsigned int feature_support ; }; struct sd_scr { unsigned char sda_vsn ; unsigned char sda_spec3 ; unsigned char bus_widths ; unsigned char cmds ; }; struct sd_ssr { unsigned int au ; unsigned int erase_timeout ; unsigned int erase_offset ; }; struct sd_switch_caps { unsigned int hs_max_dtr ; unsigned int uhs_max_dtr ; unsigned int sd3_bus_mode ; unsigned int sd3_drv_type ; unsigned int sd3_curr_limit ; }; struct sdio_cccr { unsigned int sdio_vsn ; unsigned int sd_vsn ; unsigned char multi_block : 1 ; unsigned char low_speed : 1 ; unsigned char wide_bus : 1 ; unsigned char high_power : 1 ; unsigned char high_speed : 1 ; unsigned char disable_cd : 1 ; }; struct sdio_cis { unsigned short vendor ; unsigned short device ; unsigned short blksize ; unsigned int max_dtr ; }; struct mmc_ios; struct mmc_part { unsigned int size ; unsigned int part_cfg ; char name[20U] ; bool force_ro ; unsigned int area_type ; }; struct mmc_card { struct mmc_host *host ; struct device dev ; u32 ocr ; unsigned int rca ; unsigned int type ; unsigned int state ; unsigned int quirks ; unsigned int erase_size ; unsigned int erase_shift ; unsigned int pref_erase ; u8 erased_byte ; u32 raw_cid[4U] ; u32 raw_csd[4U] ; u32 raw_scr[2U] ; struct mmc_cid cid ; struct mmc_csd csd ; struct mmc_ext_csd ext_csd ; struct sd_scr scr ; struct sd_ssr ssr ; struct sd_switch_caps sw_caps ; unsigned int sdio_funcs ; struct sdio_cccr cccr ; struct sdio_cis cis ; struct sdio_func *sdio_func[7U] ; struct sdio_func *sdio_single_irq ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; unsigned int sd_bus_speed ; unsigned int mmc_avail_type ; struct dentry *debugfs_root ; struct mmc_part part[7U] ; unsigned int nr_parts ; }; struct mmc_ios { unsigned int clock ; unsigned short vdd ; unsigned char bus_mode ; unsigned char chip_select ; unsigned char power_mode ; unsigned char bus_width ; unsigned char timing ; unsigned char signal_voltage ; unsigned char drv_type ; }; struct mmc_host_ops { int (*enable)(struct mmc_host * ) ; int (*disable)(struct mmc_host * ) ; void (*post_req)(struct mmc_host * , struct mmc_request * , int ) ; void (*pre_req)(struct mmc_host * , struct mmc_request * , bool ) ; void (*request)(struct mmc_host * , struct mmc_request * ) ; void (*set_ios)(struct mmc_host * , struct mmc_ios * ) ; int (*get_ro)(struct mmc_host * ) ; int (*get_cd)(struct mmc_host * ) ; void (*enable_sdio_irq)(struct mmc_host * , int ) ; void (*init_card)(struct mmc_host * , struct mmc_card * ) ; int (*start_signal_voltage_switch)(struct mmc_host * , struct mmc_ios * ) ; int (*card_busy)(struct mmc_host * ) ; int (*execute_tuning)(struct mmc_host * , u32 ) ; int (*prepare_hs400_tuning)(struct mmc_host * , struct mmc_ios * ) ; int (*select_drive_strength)(unsigned int , int , int ) ; void (*hw_reset)(struct mmc_host * ) ; void (*card_event)(struct mmc_host * ) ; int (*multi_io_quirk)(struct mmc_card * , unsigned int , int ) ; }; struct mmc_async_req { struct mmc_request *mrq ; int (*err_check)(struct mmc_card * , struct mmc_async_req * ) ; }; struct mmc_slot { int cd_irq ; void *handler_priv ; }; struct mmc_context_info { bool is_done_rcv ; bool is_new_req ; bool is_waiting_last_req ; wait_queue_head_t wait ; spinlock_t lock ; }; struct regulator; struct mmc_pwrseq; struct mmc_supply { struct regulator *vmmc ; struct regulator *vqmmc ; }; struct mmc_bus_ops; struct mmc_host { struct device *parent ; struct device class_dev ; int index ; struct mmc_host_ops const *ops ; struct mmc_pwrseq *pwrseq ; unsigned int f_min ; unsigned int f_max ; unsigned int f_init ; u32 ocr_avail ; u32 ocr_avail_sdio ; u32 ocr_avail_sd ; u32 ocr_avail_mmc ; struct notifier_block pm_notify ; u32 max_current_330 ; u32 max_current_300 ; u32 max_current_180 ; u32 caps ; u32 caps2 ; mmc_pm_flag_t pm_caps ; int clk_requests ; unsigned int clk_delay ; bool clk_gated ; struct delayed_work clk_gate_work ; unsigned int clk_old ; spinlock_t clk_lock ; struct mutex clk_gate_mutex ; struct device_attribute clkgate_delay_attr ; unsigned long clkgate_delay ; unsigned int max_seg_size ; unsigned short max_segs ; unsigned short unused ; unsigned int max_req_size ; unsigned int max_blk_size ; unsigned int max_blk_count ; unsigned int max_busy_timeout ; spinlock_t lock ; struct mmc_ios ios ; unsigned char use_spi_crc : 1 ; unsigned char claimed : 1 ; unsigned char bus_dead : 1 ; unsigned char removed : 1 ; int rescan_disable ; int rescan_entered ; bool trigger_card_event ; struct mmc_card *card ; wait_queue_head_t wq ; struct task_struct *claimer ; int claim_cnt ; struct delayed_work detect ; int detect_change ; struct mmc_slot slot ; struct mmc_bus_ops const *bus_ops ; unsigned int bus_refs ; unsigned int sdio_irqs ; struct task_struct *sdio_irq_thread ; bool sdio_irq_pending ; atomic_t sdio_irq_thread_abort ; mmc_pm_flag_t pm_flags ; struct led_trigger *led ; bool regulator_enabled ; struct mmc_supply supply ; struct dentry *debugfs_root ; struct mmc_async_req *areq ; struct mmc_context_info context_info ; struct fault_attr fail_mmc_request ; unsigned int actual_clock ; unsigned int slotno ; int dsr_req ; u32 dsr ; unsigned long private[0U] ; }; typedef int ldv_map; struct usb_device; struct urb; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; typedef _Bool ldv_set; long ldv__builtin_expect(long exp , long c ) ; void ldv_assume(int expression ) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_irq_check_alloc_nonatomic(void) ; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) ; void *ldv_linux_drivers_base_class_create_class(void) ; int ldv_linux_drivers_base_class_register_class(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) ; void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) ; void *ldv_linux_usb_gadget_create_class(void) ; int ldv_linux_usb_gadget_register_class(void) ; void ldv_check_alloc_nonatomic(void) { { { ldv_linux_alloc_irq_check_alloc_nonatomic(); ldv_linux_alloc_usb_lock_check_alloc_nonatomic(); } return; } } void ldv_check_alloc_flags(gfp_t flags ) { { { ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return; } } void ldv_check_for_read_section(void) { { { ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_check_for_read_section(); ldv_linux_kernel_rcu_srcu_check_for_read_section(); } return; } } void *ldv_create_class(void) { void *res1 ; void *tmp ; void *res2 ; void *tmp___0 ; { { tmp = ldv_linux_drivers_base_class_create_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_create_class(); res2 = tmp___0; ldv_assume((unsigned long )res1 == (unsigned long )res2); } return (res1); } } int ldv_register_class(void) { int res1 ; int tmp ; int res2 ; int tmp___0 ; { { tmp = ldv_linux_drivers_base_class_register_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_register_class(); res2 = tmp___0; ldv_assume(res1 == res2); } return (res1); } } void *ldv_malloc_unknown_size(void) ; void *ldv_alloc_macro(gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } __inline static __u32 __fswab32(__u32 val ) { int tmp ; { { tmp = __builtin_bswap32(val); } return ((__u32 )tmp); } } extern void __dynamic_dev_dbg(struct _ddebug * , struct device const * , char const * , ...) ; extern void *__memcpy(void * , void const * , size_t ) ; extern void dev_err(struct device const * , char const * , ...) ; extern void _dev_info(struct device const * , char const * , ...) ; extern u32 crc32_le(u32 , unsigned char const * , size_t ) ; int rsxx_load_config(struct rsxx_cardinfo *card ) ; int rsxx_creg_write(struct rsxx_cardinfo *card , u32 addr , unsigned int size8 , void *data , int byte_stream ) ; int rsxx_creg_read(struct rsxx_cardinfo *card , u32 addr , unsigned int size8 , void *data , int byte_stream ) ; static void initialize_config(struct rsxx_card_cfg *cfg ) { { cfg->hdr.version = 4U; cfg->data.block_size = 4096U; cfg->data.stripe_size = 4096U; cfg->data.vendor_id = 0U; cfg->data.cache_order = 4294967295U; cfg->data.intr_coal.mode = 0U; cfg->data.intr_coal.count = 0U; cfg->data.intr_coal.latency = 0U; return; } } static u32 config_data_crc32(struct rsxx_card_cfg *cfg ) { u32 tmp ; { { tmp = crc32_le(4294967295U, (unsigned char const *)(& cfg->data), 28UL); } return (~ tmp); } } static void config_hdr_be_to_cpu(struct card_cfg_hdr *hdr ) { __u32 tmp ; __u32 tmp___0 ; { { tmp = __fswab32(hdr->version); hdr->version = tmp; tmp___0 = __fswab32(hdr->crc); hdr->crc = tmp___0; } return; } } static void config_hdr_cpu_to_be(struct card_cfg_hdr *hdr ) { __u32 tmp ; __u32 tmp___0 ; { { tmp = __fswab32(hdr->version); hdr->version = tmp; tmp___0 = __fswab32(hdr->crc); hdr->crc = tmp___0; } return; } } static void config_data_swab(struct rsxx_card_cfg *cfg ) { u32 *data ; int i ; __u32 tmp ; { data = (u32 *)(& cfg->data); i = 0; goto ldv_33699; ldv_33698: { tmp = __fswab32(*(data + (unsigned long )i)); *(data + (unsigned long )i) = tmp; i = i + 1; } ldv_33699: ; if ((unsigned int )i <= 6U) { goto ldv_33698; } else { } return; } } static void config_data_le_to_cpu(struct rsxx_card_cfg *cfg ) { u32 *data ; int i ; { data = (u32 *)(& cfg->data); i = 0; goto ldv_33707; ldv_33706: *(data + (unsigned long )i) = *(data + (unsigned long )i); i = i + 1; ldv_33707: ; if ((unsigned int )i <= 6U) { goto ldv_33706; } else { } return; } } static void config_data_cpu_to_le(struct rsxx_card_cfg *cfg ) { u32 *data ; int i ; { data = (u32 *)(& cfg->data); i = 0; goto ldv_33715; ldv_33714: *(data + (unsigned long )i) = *(data + (unsigned long )i); i = i + 1; ldv_33715: ; if ((unsigned int )i <= 6U) { goto ldv_33714; } else { } return; } } static int rsxx_save_config(struct rsxx_cardinfo *card ) { struct rsxx_card_cfg cfg ; int st ; long tmp ; { { __memcpy((void *)(& cfg), (void const *)(& card->config), 36UL); tmp = ldv__builtin_expect(cfg.hdr.version != 4U, 0L); } if (tmp != 0L) { { dev_err((struct device const *)(& (card->dev)->dev), "Cannot save config with invalid version %d\n", cfg.hdr.version); } return (-22); } else { } { config_data_cpu_to_le(& cfg); cfg.hdr.crc = config_data_crc32(& cfg); config_data_swab(& cfg); config_hdr_cpu_to_be(& cfg.hdr); st = rsxx_creg_write(card, 2952790016U, 36U, (void *)(& cfg), 1); } if (st != 0) { return (st); } else { } return (0); } } int rsxx_load_config(struct rsxx_cardinfo *card ) { int st ; u32 crc ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; long tmp___1 ; struct _ddebug descriptor___2 ; long tmp___2 ; struct _ddebug descriptor___3 ; long tmp___3 ; struct _ddebug descriptor___4 ; long tmp___4 ; struct _ddebug descriptor___5 ; long tmp___5 ; struct _ddebug descriptor___6 ; long tmp___6 ; struct _ddebug descriptor___7 ; long tmp___7 ; { { st = rsxx_creg_read(card, 2952790016U, 36U, (void *)(& card->config), 1); } if (st != 0) { { dev_err((struct device const *)(& (card->dev)->dev), "Failed reading card config.\n"); } return (st); } else { } { config_hdr_be_to_cpu(& card->config.hdr); } if (card->config.hdr.version == 4U) { { config_data_swab(& card->config); crc = config_data_crc32(& card->config); } if (crc != card->config.hdr.crc) { { dev_err((struct device const *)(& (card->dev)->dev), "Config corruption detected!\n"); _dev_info((struct device const *)(& (card->dev)->dev), "CRC (sb x%08x is x%08x)\n", card->config.hdr.crc, crc); } return (-5); } else { } { config_data_le_to_cpu(& card->config); } } else if (card->config.hdr.version != 0U) { { dev_err((struct device const *)(& (card->dev)->dev), "Invalid config version %d.\n", card->config.hdr.version); } return (-22); } else { { _dev_info((struct device const *)(& (card->dev)->dev), "Initializing card configuration.\n"); initialize_config(& card->config); st = rsxx_save_config(card); } if (st != 0) { return (st); } else { } } { card->config_valid = 1; descriptor.modname = "rsxx"; descriptor.function = "rsxx_load_config"; descriptor.filename = "drivers/block/rsxx/config.c"; descriptor.format = "version: x%08x\n"; descriptor.lineno = 191U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (card->dev)->dev), "version: x%08x\n", card->config.hdr.version); } } else { } { descriptor___0.modname = "rsxx"; descriptor___0.function = "rsxx_load_config"; descriptor___0.filename = "drivers/block/rsxx/config.c"; descriptor___0.format = "crc: x%08x\n"; descriptor___0.lineno = 193U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_dev_dbg(& descriptor___0, (struct device const *)(& (card->dev)->dev), "crc: x%08x\n", card->config.hdr.crc); } } else { } { descriptor___1.modname = "rsxx"; descriptor___1.function = "rsxx_load_config"; descriptor___1.filename = "drivers/block/rsxx/config.c"; descriptor___1.format = "block_size: x%08x\n"; descriptor___1.lineno = 195U; descriptor___1.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___1 != 0L) { { __dynamic_dev_dbg(& descriptor___1, (struct device const *)(& (card->dev)->dev), "block_size: x%08x\n", card->config.data.block_size); } } else { } { descriptor___2.modname = "rsxx"; descriptor___2.function = "rsxx_load_config"; descriptor___2.filename = "drivers/block/rsxx/config.c"; descriptor___2.format = "stripe_size: x%08x\n"; descriptor___2.lineno = 197U; descriptor___2.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___2 != 0L) { { __dynamic_dev_dbg(& descriptor___2, (struct device const *)(& (card->dev)->dev), "stripe_size: x%08x\n", card->config.data.stripe_size); } } else { } { descriptor___3.modname = "rsxx"; descriptor___3.function = "rsxx_load_config"; descriptor___3.filename = "drivers/block/rsxx/config.c"; descriptor___3.format = "vendor_id: x%08x\n"; descriptor___3.lineno = 199U; descriptor___3.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); } if (tmp___3 != 0L) { { __dynamic_dev_dbg(& descriptor___3, (struct device const *)(& (card->dev)->dev), "vendor_id: x%08x\n", card->config.data.vendor_id); } } else { } { descriptor___4.modname = "rsxx"; descriptor___4.function = "rsxx_load_config"; descriptor___4.filename = "drivers/block/rsxx/config.c"; descriptor___4.format = "cache_order: x%08x\n"; descriptor___4.lineno = 201U; descriptor___4.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___4.flags & 1L, 0L); } if (tmp___4 != 0L) { { __dynamic_dev_dbg(& descriptor___4, (struct device const *)(& (card->dev)->dev), "cache_order: x%08x\n", card->config.data.cache_order); } } else { } { descriptor___5.modname = "rsxx"; descriptor___5.function = "rsxx_load_config"; descriptor___5.filename = "drivers/block/rsxx/config.c"; descriptor___5.format = "mode: x%08x\n"; descriptor___5.lineno = 203U; descriptor___5.flags = 0U; tmp___5 = ldv__builtin_expect((long )descriptor___5.flags & 1L, 0L); } if (tmp___5 != 0L) { { __dynamic_dev_dbg(& descriptor___5, (struct device const *)(& (card->dev)->dev), "mode: x%08x\n", card->config.data.intr_coal.mode); } } else { } { descriptor___6.modname = "rsxx"; descriptor___6.function = "rsxx_load_config"; descriptor___6.filename = "drivers/block/rsxx/config.c"; descriptor___6.format = "count: x%08x\n"; descriptor___6.lineno = 205U; descriptor___6.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___6.flags & 1L, 0L); } if (tmp___6 != 0L) { { __dynamic_dev_dbg(& descriptor___6, (struct device const *)(& (card->dev)->dev), "count: x%08x\n", card->config.data.intr_coal.count); } } else { } { descriptor___7.modname = "rsxx"; descriptor___7.function = "rsxx_load_config"; descriptor___7.filename = "drivers/block/rsxx/config.c"; descriptor___7.format = "latency: x%08x\n"; descriptor___7.lineno = 207U; descriptor___7.flags = 0U; tmp___7 = ldv__builtin_expect((long )descriptor___7.flags & 1L, 0L); } if (tmp___7 != 0L) { { __dynamic_dev_dbg(& descriptor___7, (struct device const *)(& (card->dev)->dev), "latency: x%08x\n", card->config.data.intr_coal.latency); } } else { } return (0); } } void ldv_stop(void) ; void ldv_linux_arch_io_check_final_state(void) ; void ldv_linux_block_genhd_check_final_state(void) ; void ldv_linux_block_queue_check_final_state(void) ; void ldv_linux_block_request_check_final_state(void) ; void ldv_linux_drivers_base_class_check_final_state(void) ; void ldv_linux_fs_char_dev_check_final_state(void) ; void ldv_linux_fs_sysfs_check_final_state(void) ; void ldv_linux_kernel_locking_rwlock_check_final_state(void) ; void ldv_linux_kernel_module_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_check_final_state(void) ; void ldv_linux_kernel_rcu_srcu_check_final_state(void) ; void ldv_linux_lib_find_bit_initialize(void) ; void ldv_linux_lib_idr_check_final_state(void) ; void ldv_linux_mmc_sdio_func_check_final_state(void) ; void ldv_linux_net_register_reset_error_counter(void) ; void ldv_linux_net_register_check_return_value_probe(int retval ) ; void ldv_linux_net_rtnetlink_check_final_state(void) ; void ldv_linux_net_sock_check_final_state(void) ; void ldv_linux_usb_coherent_check_final_state(void) ; void ldv_linux_usb_gadget_check_final_state(void) ; void ldv_linux_usb_register_reset_error_counter(void) ; void ldv_linux_usb_register_check_return_value_probe(int retval ) ; void ldv_linux_usb_urb_check_final_state(void) ; void *ldv_kzalloc(size_t size , gfp_t flags ) ; int ldv_undef_int(void) ; static void ldv_ldv_initialize_135(void) ; int ldv_post_init(int init_ret_val ) ; static int ldv_ldv_post_init_132(int ldv_func_arg1 ) ; extern void ldv_pre_probe(void) ; static void ldv_ldv_pre_probe_136(void) ; int ldv_post_probe(int probe_ret_val ) ; static int ldv_ldv_post_probe_137(int retval ) ; int ldv_filter_err_code(int ret_val ) ; static void ldv_ldv_check_final_state_133(void) ; static void ldv_ldv_check_final_state_134(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; extern struct module __this_module ; extern struct pv_irq_ops pv_irq_ops ; __inline static int ffs(int x ) { int r ; { __asm__ ("bsfl %1,%0": "=r" (r): "rm" (x), "0" (-1)); return (r + 1); } } extern void might_fault(void) ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } __inline static int list_empty(struct list_head const *head ) { { return ((unsigned long )((struct list_head const *)head->next) == (unsigned long )head); } } extern void warn_slowpath_null(char const * , int const ) ; __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"./arch/x86/include/asm/paravirt.h"), "i" (804), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static bool IS_ERR_OR_NULL(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv__builtin_expect((unsigned long )ptr > 0xfffffffffffff000UL, 0L); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((bool )tmp___0); } } __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } __inline static int atomic_read(atomic_t const *v ) { int __var ; { __var = 0; return ((int )*((int const volatile *)(& v->counter))); } } extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern void __ldv_linux_kernel_locking_spinlock_spin_lock(spinlock_t * ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_98(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_102(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_121(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_123(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_125(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_128(spinlock_t *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_spinlock_spin_lock_irq_lock_of_rsxx_cardinfo(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_irq_lock_of_rsxx_cardinfo(void) ; void ldv_linux_kernel_locking_spinlock_spin_lock_queue_lock_of_rsxx_dma_ctrl(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_queue_lock_of_rsxx_dma_ctrl(void) ; void ldv_linux_kernel_locking_spinlock_spin_lock_rsxx_ida_lock(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_rsxx_ida_lock(void) ; void ldv_switch_to_interrupt_context(void) ; void ldv_switch_to_process_context(void) ; extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_lock_bh(raw_spinlock_t * ) ; extern void _raw_spin_lock_irq(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_bh(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irq(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField18.rlock); } } __inline static void spin_lock(spinlock_t *lock ) { { { _raw_spin_lock(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_lock_96(spinlock_t *lock ) ; __inline static void ldv_spin_lock_104(spinlock_t *lock ) ; __inline static void ldv_spin_lock_107(spinlock_t *lock ) ; __inline static void ldv_spin_lock_107(spinlock_t *lock ) ; __inline static void spin_lock_bh(spinlock_t *lock ) { { { _raw_spin_lock_bh(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_lock_bh_100(spinlock_t *lock ) ; __inline static void spin_lock_irq(spinlock_t *lock ) { { { _raw_spin_lock_irq(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_lock_irq_109(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_109(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_109(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_109(spinlock_t *lock ) ; __inline static void spin_unlock(spinlock_t *lock ) { { { _raw_spin_unlock(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_unlock_97(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_105(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_105(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_108(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_108(spinlock_t *lock ) ; __inline static void spin_unlock_bh(spinlock_t *lock ) { { { _raw_spin_unlock_bh(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_unlock_bh_101(spinlock_t *lock ) ; __inline static void spin_unlock_irq(spinlock_t *lock ) { { { _raw_spin_unlock_irq(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_unlock_irq_110(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_110(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_110(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_110(spinlock_t *lock ) ; __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField18.rlock, flags); } return; } } __inline static void ldv_spin_unlock_irqrestore_99(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_99(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_99(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_99(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_99(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_99(spinlock_t *lock , unsigned long flags ) ; extern int ida_pre_get(struct ida * , gfp_t ) ; extern int ida_get_new_above(struct ida * , int , int * ) ; extern void ida_remove(struct ida * , int ) ; __inline static int ida_get_new(struct ida *ida , int *p_id ) { int tmp ; { { tmp = ida_get_new_above(ida, 0, p_id); } return (tmp); } } extern unsigned long volatile jiffies ; extern unsigned long msecs_to_jiffies(unsigned int const ) ; extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *__alloc_workqueue_key(char const * , unsigned int , int , struct lock_class_key * , char const * , ...) ; extern void destroy_workqueue(struct workqueue_struct * ) ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; extern bool cancel_work_sync(struct work_struct * ) ; __inline static bool queue_work(struct workqueue_struct *wq , struct work_struct *work ) { bool tmp ; { { tmp = queue_work_on(8192, wq, work); } return (tmp); } } extern ssize_t seq_read(struct file * , char * , size_t , loff_t * ) ; extern loff_t seq_lseek(struct file * , loff_t , int ) ; extern int seq_printf(struct seq_file * , char const * , ...) ; extern int single_open(struct file * , int (*)(struct seq_file * , void * ) , void * ) ; extern int single_release(struct inode * , struct file * ) ; extern unsigned int ioread32(void * ) ; extern void iowrite32(u32 , void * ) ; extern void pci_iounmap(struct pci_dev * , void * ) ; extern void *pci_iomap(struct pci_dev * , int , unsigned long ) ; __inline static void *dev_get_drvdata(struct device const *dev ) { { return ((void *)dev->driver_data); } } __inline static void dev_set_drvdata(struct device *dev , void *data ) { { dev->driver_data = data; return; } } extern void dev_crit(struct device const * , char const * , ...) ; extern void dev_warn(struct device const * , char const * , ...) ; extern void kfree(void const * ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; extern int pci_bus_read_config_byte(struct pci_bus * , unsigned int , int , u8 * ) ; __inline static int pci_read_config_byte(struct pci_dev const *dev , int where , u8 *val ) { int tmp ; { { tmp = pci_bus_read_config_byte(dev->bus, dev->devfn, where, val); } return (tmp); } } extern int pci_enable_device(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pci_set_dma_max_seg_size(struct pci_dev * , unsigned int ) ; extern int pci_request_regions(struct pci_dev * , char const * ) ; extern void pci_release_regions(struct pci_dev * ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; static int ldv___pci_register_driver_130(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; static void ldv_pci_unregister_driver_131(struct pci_driver *ldv_func_arg1 ) ; extern void pci_disable_msi(struct pci_dev * ) ; extern int pci_enable_msi_range(struct pci_dev * , int , int ) ; __inline static int pci_enable_msi_exact(struct pci_dev *dev , int nvec ) { int rc ; int tmp ; { { tmp = pci_enable_msi_range(dev, nvec, nvec); rc = tmp; } if (rc < 0) { return (rc); } else { } return (0); } } extern void debug_dma_free_coherent(struct device * , size_t , void * , dma_addr_t ) ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); } if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } extern int dma_set_mask(struct device * , u64 ) ; __inline static void dma_free_attrs(struct device *dev , size_t size , void *vaddr , dma_addr_t bus , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int __ret_warn_on ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; _flags = arch_local_save_flags(); tmp___0 = arch_irqs_disabled_flags(_flags); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("./arch/x86/include/asm/dma-mapping.h", 166); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); debug_dma_free_coherent(dev, size, vaddr, bus); } if ((unsigned long )ops->free != (unsigned long )((void (*)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ))0)) { { (*(ops->free))(dev, size, vaddr, bus, attrs); } } else { } return; } } __inline static void pci_free_consistent(struct pci_dev *hwdev , size_t size , void *vaddr , dma_addr_t dma_handle ) { { { dma_free_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, vaddr, dma_handle, (struct dma_attrs *)0); } return; } } __inline static int pci_set_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_mask(& dev->dev, mask); } return (tmp); } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { { tmp = dev_get_drvdata((struct device const *)(& pdev->dev)); } return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { { dev_set_drvdata(& pdev->dev, data); } return; } } __inline static struct inode *file_inode(struct file const *f ) { { return ((struct inode *)f->f_inode); } } extern unsigned long _copy_from_user(void * , void const * , unsigned int ) ; extern unsigned long _copy_to_user(void * , void const * , unsigned int ) ; extern void __copy_from_user_overflow(void) ; extern void __copy_to_user_overflow(void) ; __inline static unsigned long copy_from_user(void *to , void const *from , unsigned long n ) { int sz ; long tmp ; long tmp___0 ; { { sz = -1; might_fault(); tmp = ldv__builtin_expect(sz < 0, 1L); } if (tmp != 0L) { { n = _copy_from_user(to, from, (unsigned int )n); } } else { { tmp___0 = ldv__builtin_expect((unsigned long )sz >= n, 1L); } if (tmp___0 != 0L) { { n = _copy_from_user(to, from, (unsigned int )n); } } else { { __copy_from_user_overflow(); } } } return (n); } } __inline static unsigned long copy_to_user(void *to , void const *from , unsigned long n ) { int sz ; long tmp ; long tmp___0 ; { { sz = -1; might_fault(); tmp = ldv__builtin_expect(sz < 0, 1L); } if (tmp != 0L) { { n = _copy_to_user(to, from, (unsigned int )n); } } else { { tmp___0 = ldv__builtin_expect((unsigned long )sz >= n, 1L); } if (tmp___0 != 0L) { { n = _copy_to_user(to, from, (unsigned int )n); } } else { { __copy_to_user_overflow(); } } } return (n); } } extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); } return (tmp); } } __inline static int ldv_request_irq_111(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; static void ldv_free_irq_118(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_127(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; extern void msleep(unsigned int ) ; __inline static void ssleep(unsigned int seconds ) { { { msleep(seconds * 1000U); } return; } } extern struct dentry *debugfs_create_file(char const * , umode_t , struct dentry * , void * , struct file_operations const * ) ; extern struct dentry *debugfs_create_dir(char const * , struct dentry * ) ; extern void debugfs_remove(struct dentry * ) ; extern void debugfs_remove_recursive(struct dentry * ) ; __inline static void set_capacity(struct gendisk *disk , sector_t size ) { { disk->part0.nr_sects = size; return; } } __inline static int CR_INTR_DMA(int N ) { unsigned int _CR_INTR_DMA[8U] ; { _CR_INTR_DMA[0] = 1U; _CR_INTR_DMA[1] = 4U; _CR_INTR_DMA[2] = 16U; _CR_INTR_DMA[3] = 32U; _CR_INTR_DMA[4] = 64U; _CR_INTR_DMA[5] = 128U; _CR_INTR_DMA[6] = 256U; _CR_INTR_DMA[7] = 512U; return ((int )_CR_INTR_DMA[N]); } } void rsxx_enable_ier(struct rsxx_cardinfo *card , unsigned int intr ) ; void rsxx_disable_ier(struct rsxx_cardinfo *card , unsigned int intr ) ; void rsxx_enable_ier_and_isr(struct rsxx_cardinfo *card , unsigned int intr ) ; void rsxx_disable_ier_and_isr(struct rsxx_cardinfo *card , unsigned int intr ) ; int rsxx_attach_dev(struct rsxx_cardinfo *card ) ; void rsxx_detach_dev(struct rsxx_cardinfo *card ) ; int rsxx_setup_dev(struct rsxx_cardinfo *card ) ; void rsxx_destroy_dev(struct rsxx_cardinfo *card ) ; int rsxx_dev_init(void) ; void rsxx_dev_cleanup(void) ; int rsxx_dma_setup(struct rsxx_cardinfo *card ) ; void rsxx_dma_destroy(struct rsxx_cardinfo *card ) ; int rsxx_dma_init(void) ; int rsxx_cleanup_dma_queue(struct rsxx_dma_ctrl *ctrl , struct list_head *q , unsigned int done ) ; int rsxx_dma_cancel(struct rsxx_dma_ctrl *ctrl ) ; void rsxx_dma_cleanup(void) ; void rsxx_dma_queue_reset(struct rsxx_cardinfo *card ) ; int rsxx_dma_configure(struct rsxx_cardinfo *card ) ; int rsxx_hw_buffers_init(struct pci_dev *dev , struct rsxx_dma_ctrl *ctrl ) ; int rsxx_eeh_save_issued_dmas(struct rsxx_cardinfo *card ) ; int rsxx_read_hw_log(struct rsxx_cardinfo *card ) ; int rsxx_get_card_state(struct rsxx_cardinfo *card , unsigned int *state ) ; int rsxx_get_card_size8(struct rsxx_cardinfo *card , u64 *size8 ) ; int rsxx_get_num_targets(struct rsxx_cardinfo *card , unsigned int *n_targets ) ; int rsxx_issue_card_cmd(struct rsxx_cardinfo *card , u32 cmd ) ; int rsxx_creg_setup(struct rsxx_cardinfo *card ) ; void rsxx_creg_destroy(struct rsxx_cardinfo *card ) ; int rsxx_creg_init(void) ; void rsxx_creg_cleanup(void) ; void rsxx_eeh_save_issued_creg(struct rsxx_cardinfo *card ) ; void rsxx_kick_creg_queue(struct rsxx_cardinfo *card ) ; static unsigned int force_legacy = 0U; static unsigned int sync_start = 1U; static struct ida rsxx_disk_ida = {{0, 0, 0, 0, {{{{{0U}}, 3735899821U, 4294967295U, (void *)-1, {0, {0, 0}, "(rsxx_disk_ida).idr.lock", 0, 0UL}}}}, 0, 0}, (struct ida_bitmap *)0}; static spinlock_t rsxx_ida_lock = {{{{{0U}}, 3735899821U, 4294967295U, (void *)-1, {0, {0, 0}, "rsxx_ida_lock", 0, 0UL}}}}; static int rsxx_attr_pci_regs_show(struct seq_file *m , void *p ) { struct rsxx_cardinfo *card ; unsigned int tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; unsigned int tmp___2 ; unsigned int tmp___3 ; unsigned int tmp___4 ; unsigned int tmp___5 ; unsigned int tmp___6 ; unsigned int tmp___7 ; unsigned int tmp___8 ; unsigned int tmp___9 ; unsigned int tmp___10 ; unsigned int tmp___11 ; unsigned int tmp___12 ; unsigned int tmp___13 ; unsigned int tmp___14 ; unsigned int tmp___15 ; unsigned int tmp___16 ; unsigned int tmp___17 ; unsigned int tmp___18 ; unsigned int tmp___19 ; unsigned int tmp___20 ; unsigned int tmp___21 ; unsigned int tmp___22 ; unsigned int tmp___23 ; unsigned int tmp___24 ; unsigned int tmp___25 ; { { card = (struct rsxx_cardinfo *)m->private; tmp = ioread32(card->regmap); seq_printf(m, "HWID\t\t0x%08x\n", tmp); tmp___0 = ioread32(card->regmap + 4UL); seq_printf(m, "SCRATCH\t\t0x%08x\n", tmp___0); tmp___1 = ioread32(card->regmap + 20UL); seq_printf(m, "IER\t\t0x%08x\n", tmp___1); tmp___2 = ioread32(card->regmap + 24UL); seq_printf(m, "IPR\t\t0x%08x\n", tmp___2); tmp___3 = ioread32(card->regmap + 64UL); seq_printf(m, "CREG_CMD\t\t0x%08x\n", tmp___3); tmp___4 = ioread32(card->regmap + 68UL); seq_printf(m, "CREG_ADD\t\t0x%08x\n", tmp___4); tmp___5 = ioread32(card->regmap + 72UL); seq_printf(m, "CREG_CNT\t\t0x%08x\n", tmp___5); tmp___6 = ioread32(card->regmap + 76UL); seq_printf(m, "CREG_STAT\t0x%08x\n", tmp___6); tmp___7 = ioread32(card->regmap + 80UL); seq_printf(m, "CREG_DATA0\t0x%08x\n", tmp___7); tmp___8 = ioread32(card->regmap + 84UL); seq_printf(m, "CREG_DATA1\t0x%08x\n", tmp___8); tmp___9 = ioread32(card->regmap + 88UL); seq_printf(m, "CREG_DATA2\t0x%08x\n", tmp___9); tmp___10 = ioread32(card->regmap + 92UL); seq_printf(m, "CREG_DATA3\t0x%08x\n", tmp___10); tmp___11 = ioread32(card->regmap + 96UL); seq_printf(m, "CREG_DATA4\t0x%08x\n", tmp___11); tmp___12 = ioread32(card->regmap + 100UL); seq_printf(m, "CREG_DATA5\t0x%08x\n", tmp___12); tmp___13 = ioread32(card->regmap + 104UL); seq_printf(m, "CREG_DATA6\t0x%08x\n", tmp___13); tmp___14 = ioread32(card->regmap + 108UL); seq_printf(m, "CREG_DATA7\t0x%08x\n", tmp___14); tmp___15 = ioread32(card->regmap + 112UL); seq_printf(m, "INTR_COAL\t0x%08x\n", tmp___15); tmp___16 = ioread32(card->regmap + 116UL); seq_printf(m, "HW_ERROR\t\t0x%08x\n", tmp___16); tmp___17 = ioread32(card->regmap + 120UL); seq_printf(m, "DEBUG0\t\t0x%08x\n", tmp___17); tmp___18 = ioread32(card->regmap + 124UL); seq_printf(m, "DEBUG1\t\t0x%08x\n", tmp___18); tmp___19 = ioread32(card->regmap + 128UL); seq_printf(m, "DEBUG2\t\t0x%08x\n", tmp___19); tmp___20 = ioread32(card->regmap + 132UL); seq_printf(m, "DEBUG3\t\t0x%08x\n", tmp___20); tmp___21 = ioread32(card->regmap + 136UL); seq_printf(m, "DEBUG4\t\t0x%08x\n", tmp___21); tmp___22 = ioread32(card->regmap + 140UL); seq_printf(m, "DEBUG5\t\t0x%08x\n", tmp___22); tmp___23 = ioread32(card->regmap + 144UL); seq_printf(m, "DEBUG6\t\t0x%08x\n", tmp___23); tmp___24 = ioread32(card->regmap + 148UL); seq_printf(m, "DEBUG7\t\t0x%08x\n", tmp___24); tmp___25 = ioread32(card->regmap + 184UL); seq_printf(m, "RECONFIG\t\t0x%08x\n", tmp___25); } return (0); } } static int rsxx_attr_stats_show(struct seq_file *m , void *p ) { struct rsxx_cardinfo *card ; int i ; int tmp ; { card = (struct rsxx_cardinfo *)m->private; i = 0; goto ldv_35327; ldv_35326: { seq_printf(m, "Ctrl %d CRC Errors\t= %d\n", i, (card->ctrl + (unsigned long )i)->stats.crc_errors); seq_printf(m, "Ctrl %d Hard Errors\t= %d\n", i, (card->ctrl + (unsigned long )i)->stats.hard_errors); seq_printf(m, "Ctrl %d Soft Errors\t= %d\n", i, (card->ctrl + (unsigned long )i)->stats.soft_errors); seq_printf(m, "Ctrl %d Writes Issued\t= %d\n", i, (card->ctrl + (unsigned long )i)->stats.writes_issued); seq_printf(m, "Ctrl %d Writes Failed\t= %d\n", i, (card->ctrl + (unsigned long )i)->stats.writes_failed); seq_printf(m, "Ctrl %d Reads Issued\t= %d\n", i, (card->ctrl + (unsigned long )i)->stats.reads_issued); seq_printf(m, "Ctrl %d Reads Failed\t= %d\n", i, (card->ctrl + (unsigned long )i)->stats.reads_failed); seq_printf(m, "Ctrl %d Reads Retried\t= %d\n", i, (card->ctrl + (unsigned long )i)->stats.reads_retried); seq_printf(m, "Ctrl %d Discards Issued\t= %d\n", i, (card->ctrl + (unsigned long )i)->stats.discards_issued); seq_printf(m, "Ctrl %d Discards Failed\t= %d\n", i, (card->ctrl + (unsigned long )i)->stats.discards_failed); seq_printf(m, "Ctrl %d DMA SW Errors\t= %d\n", i, (card->ctrl + (unsigned long )i)->stats.dma_sw_err); seq_printf(m, "Ctrl %d DMA HW Faults\t= %d\n", i, (card->ctrl + (unsigned long )i)->stats.dma_hw_fault); seq_printf(m, "Ctrl %d DMAs Cancelled\t= %d\n", i, (card->ctrl + (unsigned long )i)->stats.dma_cancelled); seq_printf(m, "Ctrl %d SW Queue Depth\t= %d\n", i, (card->ctrl + (unsigned long )i)->stats.sw_q_depth); tmp = atomic_read((atomic_t const *)(& (card->ctrl + (unsigned long )i)->stats.hw_q_depth)); seq_printf(m, "Ctrl %d HW Queue Depth\t= %d\n", i, tmp); i = i + 1; } ldv_35327: ; if (i < card->n_targets) { goto ldv_35326; } else { } return (0); } } static int rsxx_attr_stats_open(struct inode *inode , struct file *file ) { int tmp ; { { tmp = single_open(file, & rsxx_attr_stats_show, inode->i_private); } return (tmp); } } static int rsxx_attr_pci_regs_open(struct inode *inode , struct file *file ) { int tmp ; { { tmp = single_open(file, & rsxx_attr_pci_regs_show, inode->i_private); } return (tmp); } } static ssize_t rsxx_cram_read(struct file *fp , char *ubuf , size_t cnt , loff_t *ppos ) { struct rsxx_cardinfo *card ; struct inode *tmp ; char *buf ; ssize_t st ; void *tmp___0 ; int tmp___1 ; unsigned long tmp___2 ; { { tmp = file_inode((struct file const *)fp); card = (struct rsxx_cardinfo *)tmp->i_private; tmp___0 = kzalloc(cnt, 208U); buf = (char *)tmp___0; } if ((unsigned long )buf == (unsigned long )((char *)0)) { return (-12L); } else { } { tmp___1 = rsxx_creg_read(card, (unsigned int )*ppos + 2684354560U, (unsigned int )cnt, (void *)buf, 1); st = (ssize_t )tmp___1; } if (st == 0L) { { tmp___2 = copy_to_user((void *)ubuf, (void const *)buf, cnt); st = (ssize_t )tmp___2; } } else { } { kfree((void const *)buf); } if (st != 0L) { return (st); } else { } *ppos = (loff_t )((unsigned long long )*ppos + (unsigned long long )cnt); return ((ssize_t )cnt); } } static ssize_t rsxx_cram_write(struct file *fp , char const *ubuf , size_t cnt , loff_t *ppos ) { struct rsxx_cardinfo *card ; struct inode *tmp ; char *buf ; ssize_t st ; void *tmp___0 ; unsigned long tmp___1 ; int tmp___2 ; { { tmp = file_inode((struct file const *)fp); card = (struct rsxx_cardinfo *)tmp->i_private; tmp___0 = kzalloc(cnt, 208U); buf = (char *)tmp___0; } if ((unsigned long )buf == (unsigned long )((char *)0)) { return (-12L); } else { } { tmp___1 = copy_from_user((void *)buf, (void const *)ubuf, cnt); st = (ssize_t )tmp___1; } if (st == 0L) { { tmp___2 = rsxx_creg_write(card, (unsigned int )*ppos + 2684354560U, (unsigned int )cnt, (void *)buf, 1); st = (ssize_t )tmp___2; } } else { } { kfree((void const *)buf); } if (st != 0L) { return (st); } else { } *ppos = (loff_t )((unsigned long long )*ppos + (unsigned long long )cnt); return ((ssize_t )cnt); } } static struct file_operations const debugfs_cram_fops = {& __this_module, 0, & rsxx_cram_read, & rsxx_cram_write, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct file_operations const debugfs_stats_fops = {& __this_module, & seq_lseek, & seq_read, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & rsxx_attr_stats_open, 0, & single_release, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct file_operations const debugfs_pci_regs_fops = {& __this_module, & seq_lseek, & seq_read, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & rsxx_attr_pci_regs_open, 0, & single_release, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static void rsxx_debugfs_dev_new(struct rsxx_cardinfo *card ) { struct dentry *debugfs_stats ; struct dentry *debugfs_pci_regs ; struct dentry *debugfs_cram ; bool tmp ; bool tmp___0 ; bool tmp___1 ; bool tmp___2 ; { { card->debugfs_dir = debugfs_create_dir((char const *)(& (card->gendisk)->disk_name), (struct dentry *)0); tmp = IS_ERR_OR_NULL((void const *)card->debugfs_dir); } if ((int )tmp) { goto failed_debugfs_dir; } else { } { debugfs_stats = debugfs_create_file("stats", 292, card->debugfs_dir, (void *)card, & debugfs_stats_fops); tmp___0 = IS_ERR_OR_NULL((void const *)debugfs_stats); } if ((int )tmp___0) { goto failed_debugfs_stats; } else { } { debugfs_pci_regs = debugfs_create_file("pci_regs", 292, card->debugfs_dir, (void *)card, & debugfs_pci_regs_fops); tmp___1 = IS_ERR_OR_NULL((void const *)debugfs_pci_regs); } if ((int )tmp___1) { goto failed_debugfs_pci_regs; } else { } { debugfs_cram = debugfs_create_file("cram", 420, card->debugfs_dir, (void *)card, & debugfs_cram_fops); tmp___2 = IS_ERR_OR_NULL((void const *)debugfs_cram); } if ((int )tmp___2) { goto failed_debugfs_cram; } else { } return; failed_debugfs_cram: { debugfs_remove(debugfs_pci_regs); } failed_debugfs_pci_regs: { debugfs_remove(debugfs_stats); } failed_debugfs_stats: { debugfs_remove(card->debugfs_dir); } failed_debugfs_dir: card->debugfs_dir = (struct dentry *)0; return; } } static void rsxx_mask_interrupts(struct rsxx_cardinfo *card ) { { card->isr_mask = 0U; card->ier_mask = 0U; return; } } static void __enable_intr(unsigned int *mask , unsigned int intr ) { { *mask = *mask | intr; return; } } static void __disable_intr(unsigned int *mask , unsigned int intr ) { { *mask = *mask & ~ intr; return; } } void rsxx_enable_ier(struct rsxx_cardinfo *card , unsigned int intr ) { long tmp ; long tmp___0 ; { { tmp = ldv__builtin_expect(card->halt != 0U, 0L); } if (tmp != 0L) { return; } else { { tmp___0 = ldv__builtin_expect(card->eeh_state != 0U, 0L); } if (tmp___0 != 0L) { return; } else { } } { __enable_intr(& card->ier_mask, intr); iowrite32(card->ier_mask, card->regmap + 20UL); } return; } } void rsxx_disable_ier(struct rsxx_cardinfo *card , unsigned int intr ) { long tmp ; { { tmp = ldv__builtin_expect(card->eeh_state != 0U, 0L); } if (tmp != 0L) { return; } else { } { __disable_intr(& card->ier_mask, intr); iowrite32(card->ier_mask, card->regmap + 20UL); } return; } } void rsxx_enable_ier_and_isr(struct rsxx_cardinfo *card , unsigned int intr ) { long tmp ; long tmp___0 ; { { tmp = ldv__builtin_expect(card->halt != 0U, 0L); } if (tmp != 0L) { return; } else { { tmp___0 = ldv__builtin_expect(card->eeh_state != 0U, 0L); } if (tmp___0 != 0L) { return; } else { } } { __enable_intr(& card->isr_mask, intr); __enable_intr(& card->ier_mask, intr); iowrite32(card->ier_mask, card->regmap + 20UL); } return; } } void rsxx_disable_ier_and_isr(struct rsxx_cardinfo *card , unsigned int intr ) { long tmp ; { { tmp = ldv__builtin_expect(card->eeh_state != 0U, 0L); } if (tmp != 0L) { return; } else { } { __disable_intr(& card->isr_mask, intr); __disable_intr(& card->ier_mask, intr); iowrite32(card->ier_mask, card->regmap + 20UL); } return; } } static irqreturn_t rsxx_isr(int irq , void *pdata ) { struct rsxx_cardinfo *card ; unsigned int isr ; int handled ; int reread_isr ; int i ; long tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { card = (struct rsxx_cardinfo *)pdata; handled = 0; ldv_spin_lock_96(& card->irq_lock); } ldv_35408: { reread_isr = 0; tmp = ldv__builtin_expect(card->eeh_state != 0U, 0L); } if (tmp != 0L) { goto ldv_35404; } else { } { isr = ioread32(card->regmap + 16UL); } if (isr == 4294967295U) { { _dev_info((struct device const *)(& (card->dev)->dev), "ISR = 0xFFFFFFFF, retrying later\n"); } goto ldv_35404; } else { } isr = isr & card->isr_mask; if (isr == 0U) { goto ldv_35404; } else { } i = 0; goto ldv_35406; ldv_35405: { tmp___2 = CR_INTR_DMA(i); } if ((isr & (unsigned int )tmp___2) != 0U) { { tmp___1 = CR_INTR_DMA(i); } if ((card->ier_mask & (unsigned int )tmp___1) != 0U) { { tmp___0 = CR_INTR_DMA(i); rsxx_disable_ier(card, (unsigned int )tmp___0); reread_isr = 1; } } else { } { queue_work((card->ctrl + (unsigned long )i)->done_wq, & (card->ctrl + (unsigned long )i)->dma_done_work); handled = handled + 1; } } else { } i = i + 1; ldv_35406: ; if (i < card->n_targets) { goto ldv_35405; } else { } if ((isr & 2U) != 0U) { { queue_work(card->creg_ctrl.creg_wq, & card->creg_ctrl.done_work); handled = handled + 1; } } else { } if ((isr & 8U) != 0U) { { queue_work(card->event_wq, & card->event_work); rsxx_disable_ier_and_isr(card, 8U); handled = handled + 1; } } else { } if (reread_isr != 0) { goto ldv_35408; } else { } ldv_35404: { ldv_spin_unlock_97(& card->irq_lock); } return (handled != 0); } } static char const * const rsxx_card_state_to_str(unsigned int state ) { char const *state_strings[10U] ; int tmp ; { { state_strings[0] = "Unknown"; state_strings[1] = "Shutdown"; state_strings[2] = "Starting"; state_strings[3] = "Formatting"; state_strings[4] = "Uninitialized"; state_strings[5] = "Good"; state_strings[6] = "Shutting Down"; state_strings[7] = "Fault"; state_strings[8] = "Read Only Fault"; state_strings[9] = "dStroying"; tmp = ffs((int )state); } return (state_strings[tmp]); } } static void card_state_change(struct rsxx_cardinfo *card , unsigned int new_state ) { int st ; char const *tmp ; char const *tmp___0 ; { { tmp = (char const *)rsxx_card_state_to_str(new_state); tmp___0 = (char const *)rsxx_card_state_to_str(card->state); _dev_info((struct device const *)(& (card->dev)->dev), "card state change detected.(%s -> %s)\n", tmp___0, tmp); card->state = new_state; } if (card->config_valid == 0) { return; } else { } { if (new_state == 128U) { goto case_128; } else { } if (new_state == 16U) { goto case_16; } else { } if (new_state == 64U) { goto case_64; } else { } if (new_state == 1U) { goto case_1; } else { } if (new_state == 2U) { goto case_2; } else { } if (new_state == 4U) { goto case_4; } else { } if (new_state == 8U) { goto case_8; } else { } if (new_state == 32U) { goto case_32; } else { } if (new_state == 256U) { goto case_256; } else { } goto switch_break; case_128: /* CIL Label */ { dev_crit((struct device const *)(& (card->dev)->dev), "Hardware has entered read-only mode!\n"); } case_16: /* CIL Label */ { st = rsxx_get_card_size8(card, & card->size8); } if (st != 0) { { dev_err((struct device const *)(& (card->dev)->dev), "Failed attaching DMA devices\n"); } } else { } if (card->config_valid != 0) { { set_capacity(card->gendisk, (sector_t )(card->size8 >> 9)); } } else { } goto ldv_35420; case_64: /* CIL Label */ { dev_crit((struct device const *)(& (card->dev)->dev), "Hardware Fault reported!\n"); } case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; case_4: /* CIL Label */ ; case_8: /* CIL Label */ ; case_32: /* CIL Label */ ; case_256: /* CIL Label */ { set_capacity(card->gendisk, 0UL); } goto ldv_35420; switch_break: /* CIL Label */ ; } ldv_35420: ; return; } } static void card_event_handler(struct work_struct *work ) { struct rsxx_cardinfo *card ; unsigned int state ; unsigned long flags ; int st ; struct work_struct const *__mptr ; long tmp ; { { __mptr = (struct work_struct const *)work; card = (struct rsxx_cardinfo *)__mptr + 0xfffffffffffffcc8UL; tmp = ldv__builtin_expect(card->halt != 0U, 0L); } if (tmp != 0L) { return; } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_98(& card->irq_lock); rsxx_enable_ier_and_isr(card, 8U); ldv_spin_unlock_irqrestore_99(& card->irq_lock, flags); st = rsxx_get_card_state(card, & state); } if (st != 0) { { _dev_info((struct device const *)(& (card->dev)->dev), "Failed reading state after event.\n"); } return; } else { } if (card->state != state) { { card_state_change(card, state); } } else { } if ((card->creg_ctrl.creg_stats.stat & 8U) != 0U) { { rsxx_read_hw_log(card); } } else { } return; } } static int card_shutdown(struct rsxx_cardinfo *card ) { unsigned int state ; long start ; int timeout ; unsigned long tmp ; int st ; { { tmp = msecs_to_jiffies(120000U); timeout = (int const )tmp; start = (long )jiffies; } ldv_35444: { st = rsxx_get_card_state(card, & state); } if (st != 0) { return (st); } else { } if (state == 2U && (unsigned long )jiffies - (unsigned long )start < (unsigned long )timeout) { goto ldv_35444; } else { } if (state == 2U) { return (-110); } else { } if (state != 32U && state != 1U) { { st = rsxx_issue_card_cmd(card, 2U); } if (st != 0) { return (st); } else { } } else { } start = (long )jiffies; ldv_35446: { st = rsxx_get_card_state(card, & state); } if (st != 0) { return (st); } else { } if (state != 1U && (unsigned long )jiffies - (unsigned long )start < (unsigned long )timeout) { goto ldv_35446; } else { } if (state != 1U) { return (-110); } else { } return (0); } } static int rsxx_eeh_frozen(struct pci_dev *dev ) { struct rsxx_cardinfo *card ; void *tmp ; int i ; int st ; { { tmp = pci_get_drvdata(dev); card = (struct rsxx_cardinfo *)tmp; dev_warn((struct device const *)(& dev->dev), "IBM Flash Adapter PCI: preparing for slot reset.\n"); card->eeh_state = 1U; rsxx_mask_interrupts(card); __asm__ volatile ("sfence": : : "memory"); pci_disable_device(dev); st = rsxx_eeh_save_issued_dmas(card); } if (st != 0) { return (st); } else { } { rsxx_eeh_save_issued_creg(card); i = 0; } goto ldv_35455; ldv_35454: ; if ((unsigned long )(card->ctrl + (unsigned long )i)->status.buf != (unsigned long )((void *)0)) { { pci_free_consistent(card->dev, 4096UL, (card->ctrl + (unsigned long )i)->status.buf, (card->ctrl + (unsigned long )i)->status.dma_addr); } } else { } if ((unsigned long )(card->ctrl + (unsigned long )i)->cmd.buf != (unsigned long )((void *)0)) { { pci_free_consistent(card->dev, 4096UL, (card->ctrl + (unsigned long )i)->cmd.buf, (card->ctrl + (unsigned long )i)->cmd.dma_addr); } } else { } i = i + 1; ldv_35455: ; if (i < card->n_targets) { goto ldv_35454; } else { } return (0); } } static void rsxx_eeh_failure(struct pci_dev *dev ) { struct rsxx_cardinfo *card ; void *tmp ; int i ; int cnt ; int tmp___0 ; { { tmp = pci_get_drvdata(dev); card = (struct rsxx_cardinfo *)tmp; cnt = 0; dev_err((struct device const *)(& dev->dev), "IBM Flash Adapter PCI: disabling failed card.\n"); card->eeh_state = 1U; card->halt = 1U; i = 0; } goto ldv_35464; ldv_35463: { ldv_spin_lock_bh_100(& (card->ctrl + (unsigned long )i)->queue_lock); cnt = rsxx_cleanup_dma_queue(card->ctrl + (unsigned long )i, & (card->ctrl + (unsigned long )i)->queue, 1U); ldv_spin_unlock_bh_101(& (card->ctrl + (unsigned long )i)->queue_lock); tmp___0 = rsxx_dma_cancel(card->ctrl + (unsigned long )i); cnt = cnt + tmp___0; } if (cnt != 0) { { _dev_info((struct device const *)(& (card->dev)->dev), "Freed %d queued DMAs on channel %d\n", cnt, (card->ctrl + (unsigned long )i)->id); } } else { } i = i + 1; ldv_35464: ; if (i < card->n_targets) { goto ldv_35463; } else { } return; } } static int rsxx_eeh_fifo_flush_poll(struct rsxx_cardinfo *card ) { unsigned int status ; int iter ; int tmp ; { iter = 0; goto ldv_35471; ldv_35472: { status = ioread32(card->regmap + 184UL); } if ((status & 2U) != 0U) { { ssleep(1U); } goto ldv_35471; } else { } if ((status & 4U) != 0U) { { dev_warn((struct device const *)(& (card->dev)->dev), "HW: flash controller timeout\n"); } } else { } return (0); ldv_35471: tmp = iter; iter = iter + 1; if (tmp <= 9) { goto ldv_35472; } else { } return (-1); } } static pci_ers_result_t rsxx_error_detected(struct pci_dev *dev , enum pci_channel_state error ) { int st ; { if ((unsigned int )dev->revision <= 2U) { return (1U); } else { } if ((unsigned int )error == 3U) { { rsxx_eeh_failure(dev); } return (4U); } else { } { st = rsxx_eeh_frozen(dev); } if (st != 0) { { dev_err((struct device const *)(& dev->dev), "Slot reset setup failed\n"); rsxx_eeh_failure(dev); } return (4U); } else { } return (3U); } } static pci_ers_result_t rsxx_slot_reset(struct pci_dev *dev ) { struct rsxx_cardinfo *card ; void *tmp ; unsigned long flags ; int i ; int st ; unsigned int tmp___0 ; int tmp___1 ; { { tmp = pci_get_drvdata(dev); card = (struct rsxx_cardinfo *)tmp; dev_warn((struct device const *)(& dev->dev), "IBM Flash Adapter PCI: recovering from slot reset.\n"); st = pci_enable_device(dev); } if (st != 0) { goto failed_hw_setup; } else { } { pci_set_master(dev); st = rsxx_eeh_fifo_flush_poll(card); } if (st != 0) { goto failed_hw_setup; } else { } { rsxx_dma_queue_reset(card); i = 0; } goto ldv_35489; ldv_35488: { st = rsxx_hw_buffers_init(dev, card->ctrl + (unsigned long )i); } if (st != 0) { goto failed_hw_buffers_init; } else { } i = i + 1; ldv_35489: ; if (i < card->n_targets) { goto ldv_35488; } else { } if (card->config_valid != 0) { { rsxx_dma_configure(card); } } else { } { tmp___0 = ioread32(card->regmap + 16UL); st = (int )tmp___0; card->eeh_state = 0U; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_102(& card->irq_lock); } if ((card->n_targets & 8) != 0) { { rsxx_enable_ier_and_isr(card, 1023U); } } else { { rsxx_enable_ier_and_isr(card, 63U); } } { ldv_spin_unlock_irqrestore_99(& card->irq_lock, flags); rsxx_kick_creg_queue(card); i = 0; } goto ldv_35493; ldv_35492: { ldv_spin_lock_104(& (card->ctrl + (unsigned long )i)->queue_lock); tmp___1 = list_empty((struct list_head const *)(& (card->ctrl + (unsigned long )i)->queue)); } if (tmp___1 != 0) { { ldv_spin_unlock_105(& (card->ctrl + (unsigned long )i)->queue_lock); } goto ldv_35491; } else { } { ldv_spin_unlock_105(& (card->ctrl + (unsigned long )i)->queue_lock); queue_work((card->ctrl + (unsigned long )i)->issue_wq, & (card->ctrl + (unsigned long )i)->issue_dma_work); } ldv_35491: i = i + 1; ldv_35493: ; if (i < card->n_targets) { goto ldv_35492; } else { } { _dev_info((struct device const *)(& dev->dev), "IBM Flash Adapter PCI: recovery complete.\n"); } return (5U); failed_hw_buffers_init: i = 0; goto ldv_35496; ldv_35495: ; if ((unsigned long )(card->ctrl + (unsigned long )i)->status.buf != (unsigned long )((void *)0)) { { pci_free_consistent(card->dev, 4096UL, (card->ctrl + (unsigned long )i)->status.buf, (card->ctrl + (unsigned long )i)->status.dma_addr); } } else { } if ((unsigned long )(card->ctrl + (unsigned long )i)->cmd.buf != (unsigned long )((void *)0)) { { pci_free_consistent(card->dev, 4096UL, (card->ctrl + (unsigned long )i)->cmd.buf, (card->ctrl + (unsigned long )i)->cmd.dma_addr); } } else { } i = i + 1; ldv_35496: ; if (i < card->n_targets) { goto ldv_35495; } else { } failed_hw_setup: { rsxx_eeh_failure(dev); } return (4U); } } static int rsxx_compatibility_check(struct rsxx_cardinfo *card ) { unsigned char pci_rev ; { { pci_read_config_byte((struct pci_dev const *)card->dev, 8, & pci_rev); } if ((unsigned int )pci_rev > 4U) { return (-1); } else { } return (0); } } static int rsxx_pci_probe(struct pci_dev *dev , struct pci_device_id const *id ) { struct rsxx_cardinfo *card ; int st ; unsigned int sync_timeout ; void *tmp ; int tmp___0 ; struct lock_class_key __key ; void *tmp___1 ; struct lock_class_key __key___0 ; char const *__lock_name ; struct workqueue_struct *tmp___2 ; struct lock_class_key __key___1 ; atomic_long_t __constr_expr_0 ; char const *tmp___3 ; char const *tmp___4 ; { { _dev_info((struct device const *)(& dev->dev), "PCI-Flash SSD discovered\n"); tmp = kzalloc(1184UL, 208U); card = (struct rsxx_cardinfo *)tmp; } if ((unsigned long )card == (unsigned long )((struct rsxx_cardinfo *)0)) { return (-12); } else { } { card->dev = dev; pci_set_drvdata(dev, (void *)card); } ldv_35510: { tmp___0 = ida_pre_get(& rsxx_disk_ida, 208U); } if (tmp___0 == 0) { st = -12; goto failed_ida_get; } else { } { ldv_spin_lock_107(& rsxx_ida_lock); st = ida_get_new(& rsxx_disk_ida, & card->disk_id); ldv_spin_unlock_108(& rsxx_ida_lock); } if (st == -11) { goto ldv_35510; } else { } if (st != 0) { goto failed_ida_get; } else { } { st = pci_enable_device(dev); } if (st != 0) { goto failed_enable; } else { } { pci_set_master(dev); pci_set_dma_max_seg_size(dev, 4096U); st = pci_set_dma_mask(dev, 0xffffffffffffffffULL); } if (st != 0) { { dev_err((struct device const *)(& (card->dev)->dev), "No usable DMA configuration,aborting\n"); } goto failed_dma_mask; } else { } { st = pci_request_regions(dev, "rsxx"); } if (st != 0) { { dev_err((struct device const *)(& (card->dev)->dev), "Failed to request memory region\n"); } goto failed_request_regions; } else { } if ((dev->resource[0].start == 0ULL && dev->resource[0].end == dev->resource[0].start) || dev->resource[0].end - dev->resource[0].start == 0xffffffffffffffffULL) { { dev_err((struct device const *)(& (card->dev)->dev), "BAR0 has length 0!\n"); st = -12; } goto failed_iomap; } else { } { card->regmap = pci_iomap(dev, 0, 0UL); } if ((unsigned long )card->regmap == (unsigned long )((void *)0)) { { dev_err((struct device const *)(& (card->dev)->dev), "Failed to map BAR0\n"); st = -12; } goto failed_iomap; } else { } { spinlock_check(& card->irq_lock); __raw_spin_lock_init(& card->irq_lock.__annonCompField18.rlock, "&(&card->irq_lock)->rlock", & __key); card->halt = 0U; card->eeh_state = 0U; ldv_spin_lock_irq_109(& card->irq_lock); rsxx_disable_ier_and_isr(card, 4294967295U); ldv_spin_unlock_irq_110(& card->irq_lock); } if (force_legacy == 0U) { { st = pci_enable_msi_exact(dev, 1); } if (st != 0) { { dev_warn((struct device const *)(& (card->dev)->dev), "Failed to enable MSI\n"); } } else { } } else { } { st = ldv_request_irq_111(dev->irq, & rsxx_isr, 128UL, "rsxx", (void *)card); } if (st != 0) { { dev_err((struct device const *)(& (card->dev)->dev), "Failed requesting IRQ%d\n", dev->irq); } goto failed_irq; } else { } { st = rsxx_creg_setup(card); } if (st != 0) { { dev_err((struct device const *)(& (card->dev)->dev), "Failed to setup creg interface.\n"); } goto failed_creg_setup; } else { } { ldv_spin_lock_irq_109(& card->irq_lock); rsxx_enable_ier_and_isr(card, 2U); ldv_spin_unlock_irq_110(& card->irq_lock); st = rsxx_compatibility_check(card); } if (st != 0) { { dev_warn((struct device const *)(& (card->dev)->dev), "Incompatible driver detected. Please update the driver.\n"); st = -22; } goto failed_compatiblity_check; } else { } { st = rsxx_load_config(card); } if (st != 0) { { dev_err((struct device const *)(& (card->dev)->dev), "Failed loading card config\n"); } } else { } { st = rsxx_get_num_targets(card, (unsigned int *)(& card->n_targets)); } if (st != 0) { { _dev_info((struct device const *)(& (card->dev)->dev), "Failed reading the number of DMA targets\n"); } } else { } { tmp___1 = kzalloc((unsigned long )card->n_targets * 712UL, 208U); card->ctrl = (struct rsxx_dma_ctrl *)tmp___1; } if ((unsigned long )card->ctrl == (unsigned long )((struct rsxx_dma_ctrl *)0)) { st = -12; goto failed_dma_setup; } else { } { st = rsxx_dma_setup(card); } if (st != 0) { { _dev_info((struct device const *)(& (card->dev)->dev), "Failed to setup DMA engine\n"); } goto failed_dma_setup; } else { } { __lock_name = "\"%s\"\"rsxx\"\"_event\""; tmp___2 = __alloc_workqueue_key("%s", 131082U, 1, & __key___0, __lock_name, (char *)"rsxx_event"); card->event_wq = tmp___2; } if ((unsigned long )card->event_wq == (unsigned long )((struct workqueue_struct *)0)) { { dev_err((struct device const *)(& (card->dev)->dev), "Failed card event setup.\n"); } goto failed_event_handler; } else { } { __init_work(& card->event_work, 0); __constr_expr_0.counter = 137438953408L; card->event_work.data = __constr_expr_0; lockdep_init_map(& card->event_work.lockdep_map, "(&card->event_work)", & __key___1, 0); INIT_LIST_HEAD(& card->event_work.entry); card->event_work.func = & card_event_handler; st = rsxx_setup_dev(card); } if (st != 0) { goto failed_create_dev; } else { } { rsxx_get_card_state(card, & card->state); tmp___3 = (char const *)rsxx_card_state_to_str(card->state); _dev_info((struct device const *)(& (card->dev)->dev), "card state: %s\n", tmp___3); ldv_spin_lock_irq_109(& card->irq_lock); rsxx_enable_ier_and_isr(card, 8U); ldv_spin_unlock_irq_110(& card->irq_lock); } if (card->state == 1U) { { st = rsxx_issue_card_cmd(card, 1U); } if (st != 0) { { dev_crit((struct device const *)(& (card->dev)->dev), "Failed issuing card startup\n"); } } else { } if (sync_start != 0U) { { sync_timeout = 600U; _dev_info((struct device const *)(& (card->dev)->dev), "Waiting for card to startup\n"); } ldv_35528: { ssleep(1U); sync_timeout = sync_timeout - 1U; rsxx_get_card_state(card, & card->state); } if (sync_timeout != 0U && card->state == 2U) { goto ldv_35528; } else { } if (card->state == 2U) { { dev_warn((struct device const *)(& (card->dev)->dev), "Card startup timed out\n"); card->size8 = 0ULL; } } else { { tmp___4 = (char const *)rsxx_card_state_to_str(card->state); _dev_info((struct device const *)(& (card->dev)->dev), "card state: %s\n", tmp___4); st = rsxx_get_card_size8(card, & card->size8); } if (st != 0) { card->size8 = 0ULL; } else { } } } else { } } else if (card->state == 16U || card->state == 128U) { { st = rsxx_get_card_size8(card, & card->size8); } if (st != 0) { card->size8 = 0ULL; } else { } } else { } { rsxx_attach_dev(card); rsxx_debugfs_dev_new(card); } return (0); failed_create_dev: { destroy_workqueue(card->event_wq); card->event_wq = (struct workqueue_struct *)0; } failed_event_handler: { rsxx_dma_destroy(card); } failed_dma_setup: ; failed_compatiblity_check: { destroy_workqueue(card->creg_ctrl.creg_wq); card->creg_ctrl.creg_wq = (struct workqueue_struct *)0; } failed_creg_setup: { ldv_spin_lock_irq_109(& card->irq_lock); rsxx_disable_ier_and_isr(card, 4294967295U); ldv_spin_unlock_irq_110(& card->irq_lock); ldv_free_irq_118(dev->irq, (void *)card); } if (force_legacy == 0U) { { pci_disable_msi(dev); } } else { } failed_irq: { pci_iounmap(dev, card->regmap); } failed_iomap: { pci_release_regions(dev); } failed_request_regions: ; failed_dma_mask: { pci_disable_device(dev); } failed_enable: { ldv_spin_lock_107(& rsxx_ida_lock); ida_remove(& rsxx_disk_ida, card->disk_id); ldv_spin_unlock_108(& rsxx_ida_lock); } failed_ida_get: { kfree((void const *)card); } return (st); } } static void rsxx_pci_remove(struct pci_dev *dev ) { struct rsxx_cardinfo *card ; void *tmp ; unsigned long flags ; int st ; int i ; int tmp___0 ; { { tmp = pci_get_drvdata(dev); card = (struct rsxx_cardinfo *)tmp; } if ((unsigned long )card == (unsigned long )((struct rsxx_cardinfo *)0)) { return; } else { } { _dev_info((struct device const *)(& (card->dev)->dev), "Removing PCI-Flash SSD.\n"); rsxx_detach_dev(card); i = 0; } goto ldv_35538; ldv_35537: { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_121(& card->irq_lock); tmp___0 = CR_INTR_DMA(i); rsxx_disable_ier_and_isr(card, (unsigned int )tmp___0); ldv_spin_unlock_irqrestore_99(& card->irq_lock, flags); i = i + 1; } ldv_35538: ; if (i < card->n_targets) { goto ldv_35537; } else { } { st = card_shutdown(card); } if (st != 0) { { dev_crit((struct device const *)(& (card->dev)->dev), "Shutdown failed!\n"); } } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_123(& card->irq_lock); rsxx_disable_ier_and_isr(card, 8U); ldv_spin_unlock_irqrestore_99(& card->irq_lock, flags); cancel_work_sync(& card->event_work); rsxx_destroy_dev(card); rsxx_dma_destroy(card); ldv___ldv_linux_kernel_locking_spinlock_spin_lock_125(& card->irq_lock); rsxx_disable_ier_and_isr(card, 4294967295U); ldv_spin_unlock_irqrestore_99(& card->irq_lock, flags); card->halt = 1U; debugfs_remove_recursive(card->debugfs_dir); ldv_free_irq_127(dev->irq, (void *)card); } if (force_legacy == 0U) { { pci_disable_msi(dev); } } else { } { rsxx_creg_destroy(card); pci_iounmap(dev, card->regmap); pci_disable_device(dev); pci_release_regions(dev); kfree((void const *)card); } return; } } static int rsxx_pci_suspend(struct pci_dev *dev , pm_message_t state ) { { return (-38); } } static void rsxx_pci_shutdown(struct pci_dev *dev ) { struct rsxx_cardinfo *card ; void *tmp ; unsigned long flags ; int i ; int tmp___0 ; { { tmp = pci_get_drvdata(dev); card = (struct rsxx_cardinfo *)tmp; } if ((unsigned long )card == (unsigned long )((struct rsxx_cardinfo *)0)) { return; } else { } { _dev_info((struct device const *)(& (card->dev)->dev), "Shutting down PCI-Flash SSD.\n"); rsxx_detach_dev(card); i = 0; } goto ldv_35551; ldv_35550: { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_128(& card->irq_lock); tmp___0 = CR_INTR_DMA(i); rsxx_disable_ier_and_isr(card, (unsigned int )tmp___0); ldv_spin_unlock_irqrestore_99(& card->irq_lock, flags); i = i + 1; } ldv_35551: ; if (i < card->n_targets) { goto ldv_35550; } else { } { card_shutdown(card); } return; } } static struct pci_error_handlers const rsxx_err_handler = {& rsxx_error_detected, 0, 0, & rsxx_slot_reset, 0, 0}; static struct pci_device_id const rsxx_pci_ids[3U] = { {4116U, 1193U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4116U, 1194U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {0U, 0U, 0U, 0U, 0U, 0U, 0UL}}; struct pci_device_id const __mod_pci__rsxx_pci_ids_device_table[3U] ; static struct pci_driver rsxx_pci_driver = {{0, 0}, "rsxx", (struct pci_device_id const *)(& rsxx_pci_ids), & rsxx_pci_probe, & rsxx_pci_remove, & rsxx_pci_suspend, 0, 0, 0, & rsxx_pci_shutdown, 0, & rsxx_err_handler, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int rsxx_core_init(void) { int st ; int tmp ; { { st = rsxx_dev_init(); } if (st != 0) { return (st); } else { } { st = rsxx_dma_init(); } if (st != 0) { goto dma_init_failed; } else { } { st = rsxx_creg_init(); } if (st != 0) { goto creg_init_failed; } else { } { tmp = ldv___pci_register_driver_130(& rsxx_pci_driver, & __this_module, "rsxx"); } return (tmp); creg_init_failed: { rsxx_dma_cleanup(); } dma_init_failed: { rsxx_dev_cleanup(); } return (st); } } static void rsxx_core_cleanup(void) { { { ldv_pci_unregister_driver_131(& rsxx_pci_driver); rsxx_creg_cleanup(); rsxx_dma_cleanup(); rsxx_dev_cleanup(); } return; } } void ldv_EMGentry_exit_rsxx_core_cleanup_12_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_rsxx_core_init_12_9(int (*arg0)(void) ) ; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) ; void ldv_dispatch_deregister_10_1(struct pci_driver *arg0 ) ; void ldv_dispatch_deregister_file_operations_instance_5_12_4(void) ; void ldv_dispatch_irq_deregister_7_1(int arg0 ) ; void ldv_dispatch_irq_register_9_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_register_11_2(struct pci_driver *arg0 ) ; void ldv_dispatch_register_file_operations_instance_5_12_5(void) ; void ldv_entry_EMGentry_12(void *arg0 ) ; int main(void) ; void ldv_file_operations_file_operations_instance_0(void *arg0 ) ; void ldv_file_operations_file_operations_instance_1(void *arg0 ) ; void ldv_file_operations_file_operations_instance_2(void *arg0 ) ; void ldv_file_operations_instance_callback_0_20(int (*arg0)(struct block_device * , unsigned int , unsigned int , unsigned long ) , struct block_device *arg1 , unsigned int arg2 , unsigned int arg3 , unsigned long arg4 ) ; void ldv_file_operations_instance_callback_0_23(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) ; void ldv_file_operations_instance_callback_0_26(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_callback_0_5(int (*arg0)(struct block_device * , struct hd_geometry * ) , struct block_device *arg1 , struct hd_geometry *arg2 ) ; void ldv_file_operations_instance_callback_1_20(int (*arg0)(struct block_device * , unsigned int , unsigned int , unsigned long ) , struct block_device *arg1 , unsigned int arg2 , unsigned int arg3 , unsigned long arg4 ) ; void ldv_file_operations_instance_callback_1_23(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) ; void ldv_file_operations_instance_callback_1_26(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_callback_1_5(int (*arg0)(struct block_device * , struct hd_geometry * ) , struct block_device *arg1 , struct hd_geometry *arg2 ) ; void ldv_file_operations_instance_callback_2_20(int (*arg0)(struct block_device * , unsigned int , unsigned int , unsigned long ) , struct block_device *arg1 , unsigned int arg2 , unsigned int arg3 , unsigned long arg4 ) ; void ldv_file_operations_instance_callback_2_23(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) ; void ldv_file_operations_instance_callback_2_26(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_callback_2_5(int (*arg0)(struct block_device * , struct hd_geometry * ) , struct block_device *arg1 , struct hd_geometry *arg2 ) ; int ldv_file_operations_instance_probe_0_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; int ldv_file_operations_instance_probe_1_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; int ldv_file_operations_instance_probe_2_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_release_0_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_release_1_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_release_2_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_write_0_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_write_1_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_write_2_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) ; enum irqreturn ldv_interrupt_instance_handler_3_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_3_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_interrupt_instance_3(void *arg0 ) ; void ldv_pci_instance_callback_4_10(unsigned int (*arg0)(struct pci_dev * , enum pci_channel_state ) , struct pci_dev *arg1 , enum pci_channel_state arg2 ) ; void ldv_pci_instance_callback_4_23(unsigned int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_probe_4_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_4_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_4_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_4_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_4_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_4_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_4_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_4(void *arg0 ) ; void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) ; int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) ; void ldv_timer_instance_callback_5_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) ; void ldv_timer_timer_instance_5(void *arg0 ) ; struct ldv_thread ldv_thread_0 ; struct ldv_thread ldv_thread_1 ; struct ldv_thread ldv_thread_12 ; struct ldv_thread ldv_thread_2 ; struct ldv_thread ldv_thread_3 ; struct ldv_thread ldv_thread_4 ; struct ldv_thread ldv_thread_5 ; void ldv_EMGentry_exit_rsxx_core_cleanup_12_2(void (*arg0)(void) ) { { { rsxx_core_cleanup(); } return; } } int ldv_EMGentry_init_rsxx_core_init_12_9(int (*arg0)(void) ) { int tmp ; { { tmp = rsxx_core_init(); } return (tmp); } } int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) { struct pci_driver *ldv_11_pci_driver_pci_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_11_pci_driver_pci_driver = arg1; ldv_dispatch_register_11_2(ldv_11_pci_driver_pci_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_dispatch_deregister_10_1(struct pci_driver *arg0 ) { { return; } } void ldv_dispatch_deregister_file_operations_instance_5_12_4(void) { { return; } } void ldv_dispatch_irq_deregister_7_1(int arg0 ) { { return; } } void ldv_dispatch_irq_register_9_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { struct ldv_struct_interrupt_instance_3 *cf_arg_3 ; void *tmp ; { { tmp = ldv_xmalloc(40UL); cf_arg_3 = (struct ldv_struct_interrupt_instance_3 *)tmp; cf_arg_3->arg0 = arg0; cf_arg_3->arg1 = arg1; cf_arg_3->arg2 = arg2; cf_arg_3->arg3 = arg3; ldv_interrupt_interrupt_instance_3((void *)cf_arg_3); } return; } } void ldv_dispatch_register_11_2(struct pci_driver *arg0 ) { struct ldv_struct_pci_instance_4 *cf_arg_4 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_4 = (struct ldv_struct_pci_instance_4 *)tmp; cf_arg_4->arg0 = arg0; ldv_pci_pci_instance_4((void *)cf_arg_4); } return; } } void ldv_dispatch_register_file_operations_instance_5_12_5(void) { struct ldv_struct_EMGentry_12 *cf_arg_0 ; struct ldv_struct_EMGentry_12 *cf_arg_1 ; struct ldv_struct_EMGentry_12 *cf_arg_2 ; void *tmp ; void *tmp___0 ; void *tmp___1 ; { { tmp = ldv_xmalloc(4UL); cf_arg_0 = (struct ldv_struct_EMGentry_12 *)tmp; ldv_file_operations_file_operations_instance_0((void *)cf_arg_0); tmp___0 = ldv_xmalloc(4UL); cf_arg_1 = (struct ldv_struct_EMGentry_12 *)tmp___0; ldv_file_operations_file_operations_instance_1((void *)cf_arg_1); tmp___1 = ldv_xmalloc(4UL); cf_arg_2 = (struct ldv_struct_EMGentry_12 *)tmp___1; ldv_file_operations_file_operations_instance_2((void *)cf_arg_2); } return; } } void ldv_entry_EMGentry_12(void *arg0 ) { void (*ldv_12_exit_rsxx_core_cleanup_default)(void) ; int (*ldv_12_init_rsxx_core_init_default)(void) ; int ldv_12_ret_default ; int tmp ; int tmp___0 ; { { ldv_12_ret_default = ldv_EMGentry_init_rsxx_core_init_12_9(ldv_12_init_rsxx_core_init_default); ldv_12_ret_default = ldv_ldv_post_init_132(ldv_12_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_12_ret_default != 0); ldv_ldv_check_final_state_133(); ldv_stop(); } return; } else { { ldv_assume(ldv_12_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dispatch_register_file_operations_instance_5_12_5(); ldv_dispatch_deregister_file_operations_instance_5_12_4(); } } else { } { ldv_EMGentry_exit_rsxx_core_cleanup_12_2(ldv_12_exit_rsxx_core_cleanup_default); ldv_ldv_check_final_state_134(); ldv_stop(); } return; } return; } } int main(void) { { { ldv_ldv_initialize_135(); ldv_entry_EMGentry_12((void *)0); } return 0; } } void ldv_file_operations_file_operations_instance_0(void *arg0 ) { int (*ldv_0_callback_getgeo)(struct block_device * , struct hd_geometry * ) ; int (*ldv_0_callback_ioctl)(struct block_device * , unsigned int , unsigned int , unsigned long ) ; long long (*ldv_0_callback_llseek)(struct file * , long long , int ) ; long (*ldv_0_callback_read)(struct file * , char * , unsigned long , long long * ) ; struct file_operations *ldv_0_container_file_operations ; unsigned int ldv_0_ldv_param_20_1_default ; unsigned int ldv_0_ldv_param_20_2_default ; long long ldv_0_ldv_param_23_1_default ; int ldv_0_ldv_param_23_2_default ; char *ldv_0_ldv_param_26_1_default ; long long *ldv_0_ldv_param_26_3_default ; char *ldv_0_ldv_param_4_1_default ; long long *ldv_0_ldv_param_4_3_default ; struct file *ldv_0_resource_file ; struct inode *ldv_0_resource_inode ; struct block_device *ldv_0_resource_struct_block_device_ptr ; int ldv_0_ret_default ; struct hd_geometry *ldv_0_size_cnt_struct_hd_geometry_ptr ; unsigned long ldv_0_size_cnt_write_size ; void *tmp ; void *tmp___0 ; void *tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; void *tmp___6 ; void *tmp___7 ; void *tmp___8 ; void *tmp___9 ; { { ldv_0_ret_default = 1; tmp = ldv_xmalloc(504UL); ldv_0_resource_file = (struct file *)tmp; tmp___0 = ldv_xmalloc(976UL); ldv_0_resource_inode = (struct inode *)tmp___0; tmp___1 = ldv_xmalloc(480UL); ldv_0_resource_struct_block_device_ptr = (struct block_device *)tmp___1; tmp___2 = ldv_undef_int(); ldv_0_size_cnt_struct_hd_geometry_ptr = (struct hd_geometry *)((long )tmp___2); } goto ldv_main_0; return; ldv_main_0: { tmp___4 = ldv_undef_int(); } if (tmp___4 != 0) { if ((unsigned long )ldv_0_container_file_operations->open != (unsigned long )((int (*)(struct inode * , struct file * ))0)) { { ldv_0_ret_default = ldv_file_operations_instance_probe_0_12(ldv_0_container_file_operations->open, ldv_0_resource_inode, ldv_0_resource_file); } } else { } { ldv_0_ret_default = ldv_filter_err_code(ldv_0_ret_default); tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { ldv_assume(ldv_0_ret_default == 0); } goto ldv_call_0; } else { { ldv_assume(ldv_0_ret_default != 0); } goto ldv_main_0; } } else { { ldv_free((void *)ldv_0_resource_file); ldv_free((void *)ldv_0_resource_inode); ldv_free((void *)ldv_0_resource_struct_block_device_ptr); } return; } return; ldv_call_0: { tmp___5 = ldv_undef_int(); } { if (tmp___5 == 1) { goto case_1; } else { } if (tmp___5 == 2) { goto case_2; } else { } if (tmp___5 == 3) { goto case_3; } else { } if (tmp___5 == 4) { goto case_4; } else { } if (tmp___5 == 5) { goto case_5; } else { } if (tmp___5 == 6) { goto case_6; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___6 = ldv_xmalloc(1UL); ldv_0_ldv_param_26_1_default = (char *)tmp___6; tmp___7 = ldv_xmalloc(8UL); ldv_0_ldv_param_26_3_default = (long long *)tmp___7; ldv_file_operations_instance_callback_0_26(ldv_0_callback_read, ldv_0_resource_file, ldv_0_ldv_param_26_1_default, ldv_0_size_cnt_write_size, ldv_0_ldv_param_26_3_default); ldv_free((void *)ldv_0_ldv_param_26_1_default); ldv_free((void *)ldv_0_ldv_param_26_3_default); } goto ldv_call_0; case_2: /* CIL Label */ ; if ((unsigned long )ldv_0_callback_llseek != (unsigned long )((long long (*)(struct file * , long long , int ))0)) { { ldv_file_operations_instance_callback_0_23(ldv_0_callback_llseek, ldv_0_resource_file, ldv_0_ldv_param_23_1_default, ldv_0_ldv_param_23_2_default); } } else { } goto ldv_call_0; goto ldv_call_0; case_3: /* CIL Label */ { ldv_file_operations_instance_callback_0_20(ldv_0_callback_ioctl, ldv_0_resource_struct_block_device_ptr, ldv_0_ldv_param_20_1_default, ldv_0_ldv_param_20_2_default, ldv_0_size_cnt_write_size); } goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; case_4: /* CIL Label */ { tmp___8 = ldv_xmalloc(1UL); ldv_0_ldv_param_4_1_default = (char *)tmp___8; tmp___9 = ldv_xmalloc(8UL); ldv_0_ldv_param_4_3_default = (long long *)tmp___9; ldv_assume((unsigned long )ldv_0_size_cnt_struct_hd_geometry_ptr <= (unsigned long )((struct hd_geometry *)2147479552)); ldv_file_operations_instance_write_0_4((long (*)(struct file * , char * , unsigned long , long long * ))ldv_0_container_file_operations->write, ldv_0_resource_file, ldv_0_ldv_param_4_1_default, ldv_0_size_cnt_write_size, ldv_0_ldv_param_4_3_default); ldv_free((void *)ldv_0_ldv_param_4_1_default); ldv_free((void *)ldv_0_ldv_param_4_3_default); } goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; case_5: /* CIL Label */ { ldv_file_operations_instance_callback_0_5(ldv_0_callback_getgeo, ldv_0_resource_struct_block_device_ptr, ldv_0_size_cnt_struct_hd_geometry_ptr); } goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; goto ldv_call_0; case_6: /* CIL Label */ ; if ((unsigned long )ldv_0_container_file_operations->release != (unsigned long )((int (*)(struct inode * , struct file * ))0)) { { ldv_file_operations_instance_release_0_2(ldv_0_container_file_operations->release, ldv_0_resource_inode, ldv_0_resource_file); } } else { } goto ldv_main_0; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_file_operations_file_operations_instance_1(void *arg0 ) { int (*ldv_1_callback_getgeo)(struct block_device * , struct hd_geometry * ) ; int (*ldv_1_callback_ioctl)(struct block_device * , unsigned int , unsigned int , unsigned long ) ; long long (*ldv_1_callback_llseek)(struct file * , long long , int ) ; long (*ldv_1_callback_read)(struct file * , char * , unsigned long , long long * ) ; struct file_operations *ldv_1_container_file_operations ; unsigned int ldv_1_ldv_param_20_1_default ; unsigned int ldv_1_ldv_param_20_2_default ; long long ldv_1_ldv_param_23_1_default ; int ldv_1_ldv_param_23_2_default ; char *ldv_1_ldv_param_26_1_default ; long long *ldv_1_ldv_param_26_3_default ; char *ldv_1_ldv_param_4_1_default ; long long *ldv_1_ldv_param_4_3_default ; struct file *ldv_1_resource_file ; struct inode *ldv_1_resource_inode ; struct block_device *ldv_1_resource_struct_block_device_ptr ; int ldv_1_ret_default ; struct hd_geometry *ldv_1_size_cnt_struct_hd_geometry_ptr ; unsigned long ldv_1_size_cnt_write_size ; void *tmp ; void *tmp___0 ; void *tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; void *tmp___6 ; void *tmp___7 ; void *tmp___8 ; void *tmp___9 ; { { ldv_1_ret_default = 1; tmp = ldv_xmalloc(504UL); ldv_1_resource_file = (struct file *)tmp; tmp___0 = ldv_xmalloc(976UL); ldv_1_resource_inode = (struct inode *)tmp___0; tmp___1 = ldv_xmalloc(480UL); ldv_1_resource_struct_block_device_ptr = (struct block_device *)tmp___1; tmp___2 = ldv_undef_int(); ldv_1_size_cnt_struct_hd_geometry_ptr = (struct hd_geometry *)((long )tmp___2); } goto ldv_main_1; return; ldv_main_1: { tmp___4 = ldv_undef_int(); } if (tmp___4 != 0) { { ldv_1_ret_default = ldv_file_operations_instance_probe_1_12(ldv_1_container_file_operations->open, ldv_1_resource_inode, ldv_1_resource_file); ldv_1_ret_default = ldv_filter_err_code(ldv_1_ret_default); tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { ldv_assume(ldv_1_ret_default == 0); } goto ldv_call_1; } else { { ldv_assume(ldv_1_ret_default != 0); } goto ldv_main_1; } } else { { ldv_free((void *)ldv_1_resource_file); ldv_free((void *)ldv_1_resource_inode); ldv_free((void *)ldv_1_resource_struct_block_device_ptr); } return; } return; ldv_call_1: { tmp___5 = ldv_undef_int(); } { if (tmp___5 == 1) { goto case_1; } else { } if (tmp___5 == 2) { goto case_2; } else { } if (tmp___5 == 3) { goto case_3; } else { } if (tmp___5 == 4) { goto case_4; } else { } if (tmp___5 == 5) { goto case_5; } else { } if (tmp___5 == 6) { goto case_6; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___6 = ldv_xmalloc(1UL); ldv_1_ldv_param_26_1_default = (char *)tmp___6; tmp___7 = ldv_xmalloc(8UL); ldv_1_ldv_param_26_3_default = (long long *)tmp___7; ldv_file_operations_instance_callback_1_26(ldv_1_callback_read, ldv_1_resource_file, ldv_1_ldv_param_26_1_default, ldv_1_size_cnt_write_size, ldv_1_ldv_param_26_3_default); ldv_free((void *)ldv_1_ldv_param_26_1_default); ldv_free((void *)ldv_1_ldv_param_26_3_default); } goto ldv_call_1; case_2: /* CIL Label */ { ldv_file_operations_instance_callback_1_23(ldv_1_callback_llseek, ldv_1_resource_file, ldv_1_ldv_param_23_1_default, ldv_1_ldv_param_23_2_default); } goto ldv_call_1; goto ldv_call_1; case_3: /* CIL Label */ { ldv_file_operations_instance_callback_1_20(ldv_1_callback_ioctl, ldv_1_resource_struct_block_device_ptr, ldv_1_ldv_param_20_1_default, ldv_1_ldv_param_20_2_default, ldv_1_size_cnt_write_size); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_4: /* CIL Label */ { tmp___8 = ldv_xmalloc(1UL); ldv_1_ldv_param_4_1_default = (char *)tmp___8; tmp___9 = ldv_xmalloc(8UL); ldv_1_ldv_param_4_3_default = (long long *)tmp___9; ldv_assume((unsigned long )ldv_1_size_cnt_struct_hd_geometry_ptr <= (unsigned long )((struct hd_geometry *)2147479552)); } if ((unsigned long )ldv_1_container_file_operations->write != (unsigned long )((ssize_t (*)(struct file * , char const * , size_t , loff_t * ))0)) { { ldv_file_operations_instance_write_1_4((long (*)(struct file * , char * , unsigned long , long long * ))ldv_1_container_file_operations->write, ldv_1_resource_file, ldv_1_ldv_param_4_1_default, ldv_1_size_cnt_write_size, ldv_1_ldv_param_4_3_default); } } else { } { ldv_free((void *)ldv_1_ldv_param_4_1_default); ldv_free((void *)ldv_1_ldv_param_4_3_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_5: /* CIL Label */ { ldv_file_operations_instance_callback_1_5(ldv_1_callback_getgeo, ldv_1_resource_struct_block_device_ptr, ldv_1_size_cnt_struct_hd_geometry_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_6: /* CIL Label */ { ldv_file_operations_instance_release_1_2(ldv_1_container_file_operations->release, ldv_1_resource_inode, ldv_1_resource_file); } goto ldv_main_1; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_file_operations_file_operations_instance_2(void *arg0 ) { int (*ldv_2_callback_getgeo)(struct block_device * , struct hd_geometry * ) ; int (*ldv_2_callback_ioctl)(struct block_device * , unsigned int , unsigned int , unsigned long ) ; long long (*ldv_2_callback_llseek)(struct file * , long long , int ) ; long (*ldv_2_callback_read)(struct file * , char * , unsigned long , long long * ) ; struct file_operations *ldv_2_container_file_operations ; unsigned int ldv_2_ldv_param_20_1_default ; unsigned int ldv_2_ldv_param_20_2_default ; long long ldv_2_ldv_param_23_1_default ; int ldv_2_ldv_param_23_2_default ; char *ldv_2_ldv_param_26_1_default ; long long *ldv_2_ldv_param_26_3_default ; char *ldv_2_ldv_param_4_1_default ; long long *ldv_2_ldv_param_4_3_default ; struct file *ldv_2_resource_file ; struct inode *ldv_2_resource_inode ; struct block_device *ldv_2_resource_struct_block_device_ptr ; int ldv_2_ret_default ; struct hd_geometry *ldv_2_size_cnt_struct_hd_geometry_ptr ; unsigned long ldv_2_size_cnt_write_size ; void *tmp ; void *tmp___0 ; void *tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; void *tmp___6 ; void *tmp___7 ; void *tmp___8 ; void *tmp___9 ; { { ldv_2_ret_default = 1; tmp = ldv_xmalloc(504UL); ldv_2_resource_file = (struct file *)tmp; tmp___0 = ldv_xmalloc(976UL); ldv_2_resource_inode = (struct inode *)tmp___0; tmp___1 = ldv_xmalloc(480UL); ldv_2_resource_struct_block_device_ptr = (struct block_device *)tmp___1; tmp___2 = ldv_undef_int(); ldv_2_size_cnt_struct_hd_geometry_ptr = (struct hd_geometry *)((long )tmp___2); } goto ldv_main_2; return; ldv_main_2: { tmp___4 = ldv_undef_int(); } if (tmp___4 != 0) { { ldv_2_ret_default = ldv_file_operations_instance_probe_2_12(ldv_2_container_file_operations->open, ldv_2_resource_inode, ldv_2_resource_file); ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { ldv_assume(ldv_2_ret_default == 0); } goto ldv_call_2; } else { { ldv_assume(ldv_2_ret_default != 0); } goto ldv_main_2; } } else { { ldv_free((void *)ldv_2_resource_file); ldv_free((void *)ldv_2_resource_inode); ldv_free((void *)ldv_2_resource_struct_block_device_ptr); } return; } return; ldv_call_2: { tmp___5 = ldv_undef_int(); } { if (tmp___5 == 1) { goto case_1; } else { } if (tmp___5 == 2) { goto case_2; } else { } if (tmp___5 == 3) { goto case_3; } else { } if (tmp___5 == 4) { goto case_4; } else { } if (tmp___5 == 5) { goto case_5; } else { } if (tmp___5 == 6) { goto case_6; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___6 = ldv_xmalloc(1UL); ldv_2_ldv_param_26_1_default = (char *)tmp___6; tmp___7 = ldv_xmalloc(8UL); ldv_2_ldv_param_26_3_default = (long long *)tmp___7; ldv_file_operations_instance_callback_2_26(ldv_2_callback_read, ldv_2_resource_file, ldv_2_ldv_param_26_1_default, ldv_2_size_cnt_write_size, ldv_2_ldv_param_26_3_default); ldv_free((void *)ldv_2_ldv_param_26_1_default); ldv_free((void *)ldv_2_ldv_param_26_3_default); } goto ldv_call_2; case_2: /* CIL Label */ { ldv_file_operations_instance_callback_2_23(ldv_2_callback_llseek, ldv_2_resource_file, ldv_2_ldv_param_23_1_default, ldv_2_ldv_param_23_2_default); } goto ldv_call_2; goto ldv_call_2; case_3: /* CIL Label */ { ldv_file_operations_instance_callback_2_20(ldv_2_callback_ioctl, ldv_2_resource_struct_block_device_ptr, ldv_2_ldv_param_20_1_default, ldv_2_ldv_param_20_2_default, ldv_2_size_cnt_write_size); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_4: /* CIL Label */ { tmp___8 = ldv_xmalloc(1UL); ldv_2_ldv_param_4_1_default = (char *)tmp___8; tmp___9 = ldv_xmalloc(8UL); ldv_2_ldv_param_4_3_default = (long long *)tmp___9; ldv_assume((unsigned long )ldv_2_size_cnt_struct_hd_geometry_ptr <= (unsigned long )((struct hd_geometry *)2147479552)); } if ((unsigned long )ldv_2_container_file_operations->write != (unsigned long )((ssize_t (*)(struct file * , char const * , size_t , loff_t * ))0)) { { ldv_file_operations_instance_write_2_4((long (*)(struct file * , char * , unsigned long , long long * ))ldv_2_container_file_operations->write, ldv_2_resource_file, ldv_2_ldv_param_4_1_default, ldv_2_size_cnt_write_size, ldv_2_ldv_param_4_3_default); } } else { } { ldv_free((void *)ldv_2_ldv_param_4_1_default); ldv_free((void *)ldv_2_ldv_param_4_3_default); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_5: /* CIL Label */ { ldv_file_operations_instance_callback_2_5(ldv_2_callback_getgeo, ldv_2_resource_struct_block_device_ptr, ldv_2_size_cnt_struct_hd_geometry_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_6: /* CIL Label */ { ldv_file_operations_instance_release_2_2(ldv_2_container_file_operations->release, ldv_2_resource_inode, ldv_2_resource_file); } goto ldv_main_2; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_file_operations_instance_callback_0_23(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) { { { (*arg0)(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_0_26(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { rsxx_cram_read(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_1_23(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) { { { seq_lseek(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_1_26(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { seq_read(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_2_23(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) { { { seq_lseek(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_2_26(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { seq_read(arg1, arg2, arg3, arg4); } return; } } int ldv_file_operations_instance_probe_0_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } int ldv_file_operations_instance_probe_1_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { int tmp ; { { tmp = rsxx_attr_pci_regs_open(arg1, arg2); } return (tmp); } } int ldv_file_operations_instance_probe_2_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { int tmp ; { { tmp = rsxx_attr_stats_open(arg1, arg2); } return (tmp); } } void ldv_file_operations_instance_release_0_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_file_operations_instance_release_1_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { { { single_release(arg1, arg2); } return; } } void ldv_file_operations_instance_release_2_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { { { single_release(arg1, arg2); } return; } } void ldv_file_operations_instance_write_0_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { rsxx_cram_write(arg1, (char const *)arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_write_1_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { (*arg0)(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_write_2_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { (*arg0)(arg1, arg2, arg3, arg4); } return; } } void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) { int ldv_7_line_line ; { { ldv_7_line_line = arg1; ldv_dispatch_irq_deregister_7_1(ldv_7_line_line); } return; return; } } enum irqreturn ldv_interrupt_instance_handler_3_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = rsxx_isr(arg1, arg2); } return (tmp); } } void ldv_interrupt_instance_thread_3_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_interrupt_instance_3(void *arg0 ) { enum irqreturn (*ldv_3_callback_handler)(int , void * ) ; void *ldv_3_data_data ; int ldv_3_line_line ; enum irqreturn ldv_3_ret_val_default ; enum irqreturn (*ldv_3_thread_thread)(int , void * ) ; struct ldv_struct_interrupt_instance_3 *data ; int tmp ; { data = (struct ldv_struct_interrupt_instance_3 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_interrupt_instance_3 *)0)) { { ldv_3_line_line = data->arg0; ldv_3_callback_handler = data->arg1; ldv_3_thread_thread = data->arg2; ldv_3_data_data = data->arg3; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); ldv_3_ret_val_default = ldv_interrupt_instance_handler_3_5(ldv_3_callback_handler, ldv_3_line_line, ldv_3_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume((unsigned int )ldv_3_ret_val_default == 2U); } if ((unsigned long )ldv_3_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_3_3(ldv_3_thread_thread, ldv_3_line_line, ldv_3_data_data); } } else { } } else { { ldv_assume((unsigned int )ldv_3_ret_val_default != 2U); } } return; return; } } void ldv_pci_instance_callback_4_10(unsigned int (*arg0)(struct pci_dev * , enum pci_channel_state ) , struct pci_dev *arg1 , enum pci_channel_state arg2 ) { { { rsxx_error_detected(arg1, arg2); } return; } } void ldv_pci_instance_callback_4_23(unsigned int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { rsxx_slot_reset(arg1); } return; } } int ldv_pci_instance_probe_4_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = rsxx_pci_probe(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_4_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { rsxx_pci_remove(arg1); } return; } } void ldv_pci_instance_resume_4_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_resume_early_4_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_4_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { rsxx_pci_shutdown(arg1); } return; } } int ldv_pci_instance_suspend_4_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = rsxx_pci_suspend(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_4_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_4(void *arg0 ) { unsigned int (*ldv_4_callback_error_detected)(struct pci_dev * , enum pci_channel_state ) ; unsigned int (*ldv_4_callback_slot_reset)(struct pci_dev * ) ; struct pci_driver *ldv_4_container_pci_driver ; struct pci_dev *ldv_4_resource_dev ; enum pci_channel_state ldv_4_resource_enum_pci_channel_state ; struct pm_message ldv_4_resource_pm_message ; struct pci_device_id *ldv_4_resource_struct_pci_device_id_ptr ; int ldv_4_ret_default ; struct ldv_struct_pci_instance_4 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { data = (struct ldv_struct_pci_instance_4 *)arg0; ldv_4_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_pci_instance_4 *)0)) { { ldv_4_container_pci_driver = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(2968UL); ldv_4_resource_dev = (struct pci_dev *)tmp; tmp___0 = ldv_xmalloc(32UL); ldv_4_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___0; } goto ldv_main_4; return; ldv_main_4: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_ldv_pre_probe_136(); ldv_4_ret_default = ldv_pci_instance_probe_4_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_4_container_pci_driver->probe, ldv_4_resource_dev, ldv_4_resource_struct_pci_device_id_ptr); ldv_4_ret_default = ldv_ldv_post_probe_137(ldv_4_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { ldv_assume(ldv_4_ret_default == 0); } goto ldv_call_4; } else { { ldv_assume(ldv_4_ret_default != 0); } goto ldv_main_4; } } else { { ldv_free((void *)ldv_4_resource_dev); ldv_free((void *)ldv_4_resource_struct_pci_device_id_ptr); } return; } return; ldv_call_4: { tmp___3 = ldv_undef_int(); } { if (tmp___3 == 1) { goto case_1; } else { } if (tmp___3 == 2) { goto case_2; } else { } if (tmp___3 == 3) { goto case_3; } else { } if (tmp___3 == 4) { goto case_4; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_pci_instance_callback_4_23(ldv_4_callback_slot_reset, ldv_4_resource_dev); } goto ldv_call_4; case_2: /* CIL Label */ { ldv_pci_instance_callback_4_10(ldv_4_callback_error_detected, ldv_4_resource_dev, ldv_4_resource_enum_pci_channel_state); } goto ldv_call_4; goto ldv_call_4; case_3: /* CIL Label */ { ldv_4_ret_default = ldv_pci_instance_suspend_4_8(ldv_4_container_pci_driver->suspend, ldv_4_resource_dev, ldv_4_resource_pm_message); ldv_4_ret_default = ldv_filter_err_code(ldv_4_ret_default); } if ((unsigned long )ldv_4_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_4_ret_default = ldv_pci_instance_suspend_late_4_7(ldv_4_container_pci_driver->suspend_late, ldv_4_resource_dev, ldv_4_resource_pm_message); } } else { } { ldv_4_ret_default = ldv_filter_err_code(ldv_4_ret_default); } if ((unsigned long )ldv_4_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_4_6(ldv_4_container_pci_driver->resume_early, ldv_4_resource_dev); } } else { } if ((unsigned long )ldv_4_container_pci_driver->resume != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_4_5(ldv_4_container_pci_driver->resume, ldv_4_resource_dev); } } else { } goto ldv_call_4; case_4: /* CIL Label */ { ldv_pci_instance_shutdown_4_3(ldv_4_container_pci_driver->shutdown, ldv_4_resource_dev); ldv_pci_instance_release_4_2(ldv_4_container_pci_driver->remove, ldv_4_resource_dev); } goto ldv_main_4; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) { struct pci_driver *ldv_10_pci_driver_pci_driver ; { { ldv_10_pci_driver_pci_driver = arg1; ldv_dispatch_deregister_10_1(ldv_10_pci_driver_pci_driver); } return; return; } } int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) { enum irqreturn (*ldv_9_callback_handler)(int , void * ) ; void *ldv_9_data_data ; int ldv_9_line_line ; enum irqreturn (*ldv_9_thread_thread)(int , void * ) ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_9_line_line = (int )arg1; ldv_9_callback_handler = arg2; ldv_9_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_9_data_data = arg5; ldv_dispatch_irq_register_9_2(ldv_9_line_line, ldv_9_callback_handler, ldv_9_thread_thread, ldv_9_data_data); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_timer_instance_callback_5_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_timer_timer_instance_5(void *arg0 ) { struct timer_list *ldv_5_container_timer_list ; struct ldv_struct_timer_instance_5 *data ; { data = (struct ldv_struct_timer_instance_5 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_timer_instance_5 *)0)) { { ldv_5_container_timer_list = data->arg0; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); } if ((unsigned long )ldv_5_container_timer_list->function != (unsigned long )((void (*)(unsigned long ))0)) { { ldv_timer_instance_callback_5_2(ldv_5_container_timer_list->function, ldv_5_container_timer_list->data); } } else { } { ldv_switch_to_process_context(); } return; return; } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = ldv_kzalloc(size, flags); } return (tmp); } } __inline static void ldv_spin_lock_96(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_irq_lock_of_rsxx_cardinfo(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_97(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_irq_lock_of_rsxx_cardinfo(); spin_unlock(lock); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_98(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_irq_lock_of_rsxx_cardinfo(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_99(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_irq_lock_of_rsxx_cardinfo(); spin_unlock_irqrestore(lock, flags); } return; } } __inline static void ldv_spin_lock_bh_100(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_queue_lock_of_rsxx_dma_ctrl(); spin_lock_bh(lock); } return; } } __inline static void ldv_spin_unlock_bh_101(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_queue_lock_of_rsxx_dma_ctrl(); spin_unlock_bh(lock); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_102(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_irq_lock_of_rsxx_cardinfo(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_lock_104(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_queue_lock_of_rsxx_dma_ctrl(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_105(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_queue_lock_of_rsxx_dma_ctrl(); spin_unlock(lock); } return; } } __inline static void ldv_spin_lock_107(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_rsxx_ida_lock(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_108(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_rsxx_ida_lock(); spin_unlock(lock); } return; } } __inline static void ldv_spin_lock_irq_109(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_irq_lock_of_rsxx_cardinfo(); spin_lock_irq(lock); } return; } } __inline static void ldv_spin_unlock_irq_110(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_irq_lock_of_rsxx_cardinfo(); spin_unlock_irq(lock); } return; } } __inline static int ldv_request_irq_111(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_irq_118(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_121(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_irq_lock_of_rsxx_cardinfo(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_123(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_irq_lock_of_rsxx_cardinfo(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_125(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_irq_lock_of_rsxx_cardinfo(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv_free_irq_127(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_128(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_irq_lock_of_rsxx_cardinfo(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static int ldv___pci_register_driver_130(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___pci_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_pci_unregister_driver_131(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } static int ldv_ldv_post_init_132(int ldv_func_arg1 ) { int tmp ; { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); tmp = ldv_post_init(ldv_func_arg1); } return (tmp); } } static void ldv_ldv_check_final_state_133(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_check_final_state_134(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_initialize_135(void) { { { ldv_linux_lib_find_bit_initialize(); } return; } } static void ldv_ldv_pre_probe_136(void) { { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); ldv_pre_probe(); } return; } } static int ldv_ldv_post_probe_137(int retval ) { int tmp ; { { ldv_linux_net_register_check_return_value_probe(retval); ldv_linux_usb_register_check_return_value_probe(retval); tmp = ldv_post_probe(retval); } return (tmp); } } void ldv_linux_kernel_sched_completion_init_completion_cmd_done(void) ; void ldv_linux_kernel_sched_completion_wait_for_completion_cmd_done_of_creg_completion(void) ; int ldv_linux_kernel_locking_mutex_mutex_trylock_reset_lock_of_NOT_ARG_SIGN(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_reset_lock_of_NOT_ARG_SIGN(struct mutex *lock ) ; extern void __list_add(struct list_head * , struct list_head * , struct list_head * ) ; __inline static void list_add(struct list_head *new , struct list_head *head ) { { { __list_add(new, head, head->next); } return; } } __inline static void list_add_tail(struct list_head *new , struct list_head *head ) { { { __list_add(new, head->prev, head); } return; } } extern void list_del(struct list_head * ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_110(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_115(spinlock_t *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_NOT_ARG_SIGN(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_NOT_ARG_SIGN(void) ; extern void __mutex_init(struct mutex * , char const * , struct lock_class_key * ) ; static int ldv_mutex_trylock_109(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_117(struct mutex *ldv_func_arg1 ) ; __inline static void ldv_spin_lock_100(spinlock_t *lock ) ; __inline static void ldv_spin_lock_100(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_98(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_98(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_98(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_98(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_98(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_98(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_98(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_101(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_101(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_99(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_99(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_99(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_99(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_99(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_99(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_99(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irqrestore_99(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_99(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_init_completion_118(struct completion *x ) ; extern unsigned long wait_for_completion_timeout(struct completion * , unsigned long ) ; static unsigned long ldv_wait_for_completion_timeout_119(struct completion *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; extern void complete(struct completion * ) ; extern void init_timer_key(struct timer_list * , unsigned int , char const * , struct lock_class_key * ) ; __inline static int timer_pending(struct timer_list const *timer ) { { return ((unsigned long )timer->entry.next != (unsigned long )((struct list_head */* const */)0)); } } extern int mod_timer(struct timer_list * , unsigned long ) ; static int ldv_mod_timer_96(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; extern int del_timer_sync(struct timer_list * ) ; static int ldv_del_timer_sync_104(struct timer_list *ldv_func_arg1 ) ; static int ldv_del_timer_sync_113(struct timer_list *ldv_func_arg1 ) ; static int ldv_del_timer_sync_120(struct timer_list *ldv_func_arg1 ) ; static int ldv_del_timer_sync_126(struct timer_list *ldv_func_arg1 ) ; extern unsigned int ioread32be(void * ) ; extern void iowrite32be(u32 , void * ) ; extern void dev_emerg(struct device const * , char const * , ...) ; extern void dev_alert(struct device const * , char const * , ...) ; extern void dev_notice(struct device const * , char const * , ...) ; extern struct kmem_cache *kmem_cache_create(char const * , size_t , size_t , unsigned long , void (*)(void * ) ) ; extern void kmem_cache_destroy(struct kmem_cache * ) ; static void *ldv_kmem_cache_alloc_97(struct kmem_cache *ldv_func_arg1 , gfp_t flags ) ; extern void kmem_cache_free(struct kmem_cache * , void * ) ; __inline static unsigned int CREG_DATA(int N ) { { return ((unsigned int )((N << 2) + 80)); } } int rsxx_get_card_capabilities(struct rsxx_cardinfo *card , u32 *capabilities ) ; int rsxx_reg_access(struct rsxx_cardinfo *card , struct rsxx_reg_access *ucmd , int read ) ; static struct kmem_cache *creg_cmd_pool ; static int copy_to_creg_data(struct rsxx_cardinfo *card , int cnt8 , void *buf , unsigned int stream ) { int i ; u32 *data ; long tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; { { i = 0; data = (u32 *)buf; tmp = ldv__builtin_expect(card->eeh_state != 0U, 0L); } if (tmp != 0L) { return (-5); } else { } i = 0; goto ldv_33827; ldv_33826: ; if (stream != 0U) { { tmp___0 = CREG_DATA(i); iowrite32be(*(data + (unsigned long )i), card->regmap + (unsigned long )tmp___0); } } else { { tmp___1 = CREG_DATA(i); iowrite32(*(data + (unsigned long )i), card->regmap + (unsigned long )tmp___1); } } i = i + 1; cnt8 = cnt8 + -4; ldv_33827: ; if (cnt8 > 0) { goto ldv_33826; } else { } return (0); } } static int copy_from_creg_data(struct rsxx_cardinfo *card , int cnt8 , void *buf , unsigned int stream ) { int i ; u32 *data ; long tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; { { i = 0; data = (u32 *)buf; tmp = ldv__builtin_expect(card->eeh_state != 0U, 0L); } if (tmp != 0L) { return (-5); } else { } i = 0; goto ldv_33838; ldv_33837: ; if (stream != 0U) { { tmp___0 = CREG_DATA(i); *(data + (unsigned long )i) = ioread32be(card->regmap + (unsigned long )tmp___0); } } else { { tmp___1 = CREG_DATA(i); *(data + (unsigned long )i) = ioread32(card->regmap + (unsigned long )tmp___1); } } i = i + 1; cnt8 = cnt8 + -4; ldv_33838: ; if (cnt8 > 0) { goto ldv_33837; } else { } return (0); } } static void creg_issue_cmd(struct rsxx_cardinfo *card , struct creg_cmd *cmd ) { int st ; long tmp ; long tmp___0 ; { { tmp = ldv__builtin_expect(card->eeh_state != 0U, 0L); } if (tmp != 0L) { return; } else { } { iowrite32(cmd->addr, card->regmap + 68UL); iowrite32((u32 )cmd->cnt8, card->regmap + 72UL); } if (cmd->op == 192U) { if ((unsigned long )cmd->buf != (unsigned long )((void *)0)) { { st = copy_to_creg_data(card, cmd->cnt8, cmd->buf, cmd->stream); } if (st != 0) { return; } else { } } else { } } else { } { tmp___0 = ldv__builtin_expect(card->eeh_state != 0U, 0L); } if (tmp___0 != 0L) { return; } else { } { iowrite32(cmd->op, card->regmap + 64UL); } return; } } static void creg_kick_queue(struct rsxx_cardinfo *card ) { int tmp ; struct list_head const *__mptr ; unsigned long tmp___0 ; { if ((int )card->creg_ctrl.active) { return; } else { { tmp = list_empty((struct list_head const *)(& card->creg_ctrl.queue)); } if (tmp != 0) { return; } else { } } { card->creg_ctrl.active = 1; __mptr = (struct list_head const *)card->creg_ctrl.queue.next; card->creg_ctrl.active_cmd = (struct creg_cmd *)__mptr; list_del(& (card->creg_ctrl.active_cmd)->list); card->creg_ctrl.q_depth = card->creg_ctrl.q_depth - 1U; tmp___0 = msecs_to_jiffies(10000U); ldv_mod_timer_96(& card->creg_ctrl.cmd_timer, (unsigned long )jiffies + tmp___0); creg_issue_cmd(card, card->creg_ctrl.active_cmd); } return; } } static int creg_queue_cmd(struct rsxx_cardinfo *card , unsigned int op , unsigned int addr , unsigned int cnt8 , void *buf , int stream , void (*callback)(struct rsxx_cardinfo * , struct creg_cmd * , int ) , void *cb_private ) { struct creg_cmd *cmd ; long tmp ; void *tmp___0 ; { { tmp = ldv__builtin_expect(card->halt != 0U, 0L); } if (tmp != 0L) { return (-22); } else { } if (card->creg_ctrl.reset != 0) { return (-11); } else { } if (cnt8 > 32U) { return (-22); } else { } { tmp___0 = ldv_kmem_cache_alloc_97(creg_cmd_pool, 208U); cmd = (struct creg_cmd *)tmp___0; } if ((unsigned long )cmd == (unsigned long )((struct creg_cmd *)0)) { return (-12); } else { } { INIT_LIST_HEAD(& cmd->list); cmd->op = op; cmd->addr = addr; cmd->cnt8 = (int )cnt8; cmd->buf = buf; cmd->stream = (unsigned int )stream; cmd->cb = callback; cmd->cb_private = cb_private; cmd->status = 0U; ldv_spin_lock_bh_98(& card->creg_ctrl.lock); list_add_tail(& cmd->list, & card->creg_ctrl.queue); card->creg_ctrl.q_depth = card->creg_ctrl.q_depth + 1U; creg_kick_queue(card); ldv_spin_unlock_bh_99(& card->creg_ctrl.lock); } return (0); } } static void creg_cmd_timed_out(unsigned long data ) { struct rsxx_cardinfo *card ; struct creg_cmd *cmd ; { { card = (struct rsxx_cardinfo *)data; ldv_spin_lock_100(& card->creg_ctrl.lock); cmd = card->creg_ctrl.active_cmd; card->creg_ctrl.active_cmd = (struct creg_cmd *)0; ldv_spin_unlock_101(& card->creg_ctrl.lock); } if ((unsigned long )cmd == (unsigned long )((struct creg_cmd *)0)) { { card->creg_ctrl.creg_stats.creg_timeout = card->creg_ctrl.creg_stats.creg_timeout + 1U; dev_warn((struct device const *)(& (card->dev)->dev), "No active command associated with timeout!\n"); } return; } else { } if ((unsigned long )cmd->cb != (unsigned long )((void (*)(struct rsxx_cardinfo * , struct creg_cmd * , int ))0)) { { (*(cmd->cb))(card, cmd, -110); } } else { } { kmem_cache_free(creg_cmd_pool, (void *)cmd); ldv_spin_lock_100(& card->creg_ctrl.lock); card->creg_ctrl.active = 0; creg_kick_queue(card); ldv_spin_unlock_101(& card->creg_ctrl.lock); } return; } } static void creg_cmd_done(struct work_struct *work ) { struct rsxx_cardinfo *card ; struct creg_cmd *cmd ; int st ; struct work_struct const *__mptr ; int tmp ; unsigned int cnt8 ; unsigned int tmp___0 ; { { st = 0; __mptr = (struct work_struct const *)work; card = (struct rsxx_cardinfo *)__mptr + 0xffffffffffffff10UL; tmp = ldv_del_timer_sync_104(& card->creg_ctrl.cmd_timer); } if (tmp == 0) { card->creg_ctrl.creg_stats.failed_cancel_timer = card->creg_ctrl.creg_stats.failed_cancel_timer + 1U; } else { } { ldv_spin_lock_bh_98(& card->creg_ctrl.lock); cmd = card->creg_ctrl.active_cmd; card->creg_ctrl.active_cmd = (struct creg_cmd *)0; ldv_spin_unlock_bh_99(& card->creg_ctrl.lock); } if ((unsigned long )cmd == (unsigned long )((struct creg_cmd *)0)) { { dev_err((struct device const *)(& (card->dev)->dev), "Spurious creg interrupt!\n"); } return; } else { } { card->creg_ctrl.creg_stats.stat = ioread32(card->regmap + 76UL); cmd->status = card->creg_ctrl.creg_stats.stat; } if ((cmd->status & 3U) == 0U) { { dev_err((struct device const *)(& (card->dev)->dev), "Invalid status on creg command\n"); st = -5; } goto creg_done; } else if ((cmd->status & 2U) != 0U) { st = -5; } else { } if (cmd->op == 224U) { { tmp___0 = ioread32(card->regmap + 72UL); cnt8 = tmp___0; } if ((unsigned long )cmd->buf == (unsigned long )((void *)0)) { { dev_err((struct device const *)(& (card->dev)->dev), "Buffer not given for read.\n"); st = -5; } goto creg_done; } else { } if (cnt8 != (unsigned int )cmd->cnt8) { { dev_err((struct device const *)(& (card->dev)->dev), "count mismatch\n"); st = -5; } goto creg_done; } else { } { st = copy_from_creg_data(card, (int )cnt8, cmd->buf, cmd->stream); } } else { } creg_done: ; if ((unsigned long )cmd->cb != (unsigned long )((void (*)(struct rsxx_cardinfo * , struct creg_cmd * , int ))0)) { { (*(cmd->cb))(card, cmd, st); } } else { } { kmem_cache_free(creg_cmd_pool, (void *)cmd); ldv_spin_lock_bh_98(& card->creg_ctrl.lock); card->creg_ctrl.active = 0; creg_kick_queue(card); ldv_spin_unlock_bh_99(& card->creg_ctrl.lock); } return; } } static void creg_reset(struct rsxx_cardinfo *card ) { struct creg_cmd *cmd ; struct creg_cmd *tmp ; unsigned long flags ; int tmp___0 ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; int tmp___1 ; { { cmd = (struct creg_cmd *)0; tmp___0 = ldv_mutex_trylock_109(& card->creg_ctrl.reset_lock); } if (tmp___0 == 0) { return; } else { } { card->creg_ctrl.reset = 1; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_110(& card->irq_lock); rsxx_disable_ier_and_isr(card, 10U); ldv_spin_unlock_irqrestore_99(& card->irq_lock, flags); dev_warn((struct device const *)(& (card->dev)->dev), "Resetting creg interface for recovery\n"); ldv_spin_lock_bh_98(& card->creg_ctrl.lock); __mptr = (struct list_head const *)card->creg_ctrl.queue.next; cmd = (struct creg_cmd *)__mptr; __mptr___0 = (struct list_head const *)cmd->list.next; tmp = (struct creg_cmd *)__mptr___0; } goto ldv_33889; ldv_33888: { list_del(& cmd->list); card->creg_ctrl.q_depth = card->creg_ctrl.q_depth - 1U; } if ((unsigned long )cmd->cb != (unsigned long )((void (*)(struct rsxx_cardinfo * , struct creg_cmd * , int ))0)) { { (*(cmd->cb))(card, cmd, -125); } } else { } { kmem_cache_free(creg_cmd_pool, (void *)cmd); cmd = tmp; __mptr___1 = (struct list_head const *)tmp->list.next; tmp = (struct creg_cmd *)__mptr___1; } ldv_33889: ; if ((unsigned long )(& cmd->list) != (unsigned long )(& card->creg_ctrl.queue)) { goto ldv_33888; } else { } cmd = card->creg_ctrl.active_cmd; card->creg_ctrl.active_cmd = (struct creg_cmd *)0; if ((unsigned long )cmd != (unsigned long )((struct creg_cmd *)0)) { { tmp___1 = timer_pending((struct timer_list const *)(& card->creg_ctrl.cmd_timer)); } if (tmp___1 != 0) { { ldv_del_timer_sync_113(& card->creg_ctrl.cmd_timer); } } else { } if ((unsigned long )cmd->cb != (unsigned long )((void (*)(struct rsxx_cardinfo * , struct creg_cmd * , int ))0)) { { (*(cmd->cb))(card, cmd, -125); } } else { } { kmem_cache_free(creg_cmd_pool, (void *)cmd); card->creg_ctrl.active = 0; } } else { } { ldv_spin_unlock_bh_99(& card->creg_ctrl.lock); card->creg_ctrl.reset = 0; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_115(& card->irq_lock); rsxx_enable_ier_and_isr(card, 10U); ldv_spin_unlock_irqrestore_99(& card->irq_lock, flags); ldv_mutex_unlock_117(& card->creg_ctrl.reset_lock); } return; } } static void creg_cmd_done_cb(struct rsxx_cardinfo *card , struct creg_cmd *cmd , int st ) { struct creg_completion *cmd_completion ; long tmp ; { { cmd_completion = (struct creg_completion *)cmd->cb_private; tmp = ldv__builtin_expect((unsigned long )cmd_completion == (unsigned long )((struct creg_completion *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/block/rsxx/cregs.c"), "i" (378), "i" (12UL)); __builtin_unreachable(); } } else { } { cmd_completion->st = st; cmd_completion->creg_status = cmd->status; complete(cmd_completion->cmd_done); } return; } } static int __issue_creg_rw(struct rsxx_cardinfo *card , unsigned int op , unsigned int addr , unsigned int cnt8 , void *buf , int stream , unsigned int *hw_stat ) { struct completion cmd_done ; struct creg_completion completion ; unsigned long timeout ; int st ; unsigned long tmp ; { { ldv_init_completion_118(& cmd_done); cmd_done = cmd_done; completion.cmd_done = & cmd_done; completion.st = 0; completion.creg_status = 0U; st = creg_queue_cmd(card, op, addr, cnt8, buf, stream, & creg_cmd_done_cb, (void *)(& completion)); } if (st != 0) { return (st); } else { } { timeout = msecs_to_jiffies(card->creg_ctrl.q_depth * 10000U + 20000U); tmp = ldv_wait_for_completion_timeout_119(completion.cmd_done, timeout); st = (int )tmp; } if (st == 0) { { dev_crit((struct device const *)(& (card->dev)->dev), "cregs timer failed\n"); creg_reset(card); } return (-5); } else { } *hw_stat = completion.creg_status; if (completion.st != 0) { { ioread32(card->regmap + 4UL); dev_warn((struct device const *)(& (card->dev)->dev), "creg command failed(%d x%08x)\n", completion.st, addr); } return (completion.st); } else { } return (0); } } static int issue_creg_rw(struct rsxx_cardinfo *card , u32 addr , unsigned int size8 , void *data , int stream , int read ) { unsigned int hw_stat ; unsigned int xfer ; unsigned int op ; int st ; unsigned int __min1 ; unsigned int __min2 ; { op = read != 0 ? 224U : 192U; ldv_33930: { __min1 = size8; __min2 = 32U; xfer = __min1 < __min2 ? __min1 : __min2; st = __issue_creg_rw(card, op, addr, xfer, data, stream, & hw_stat); } if (st != 0) { return (st); } else { } data = data + (unsigned long )xfer; addr = addr + xfer; size8 = size8 - xfer; if (size8 != 0U) { goto ldv_33930; } else { } return (0); } } int rsxx_creg_write(struct rsxx_cardinfo *card , u32 addr , unsigned int size8 , void *data , int byte_stream ) { int tmp ; { { tmp = issue_creg_rw(card, addr, size8, data, byte_stream, 0); } return (tmp); } } int rsxx_creg_read(struct rsxx_cardinfo *card , u32 addr , unsigned int size8 , void *data , int byte_stream ) { int tmp ; { { tmp = issue_creg_rw(card, addr, size8, data, byte_stream, 1); } return (tmp); } } int rsxx_get_card_state(struct rsxx_cardinfo *card , unsigned int *state ) { int tmp ; { { tmp = rsxx_creg_read(card, 2147487748U, 4U, (void *)state, 0); } return (tmp); } } int rsxx_get_card_size8(struct rsxx_cardinfo *card , u64 *size8 ) { unsigned int size ; int st ; { { st = rsxx_creg_read(card, 2147487756U, 4U, (void *)(& size), 0); } if (st != 0) { return (st); } else { } *size8 = (unsigned long long )size * 4096ULL; return (0); } } int rsxx_get_num_targets(struct rsxx_cardinfo *card , unsigned int *n_targets ) { int tmp ; { { tmp = rsxx_creg_read(card, 2147495936U, 4U, (void *)n_targets, 0); } return (tmp); } } int rsxx_get_card_capabilities(struct rsxx_cardinfo *card , u32 *capabilities ) { int tmp ; { { tmp = rsxx_creg_read(card, 2147487824U, 4U, (void *)capabilities, 0); } return (tmp); } } int rsxx_issue_card_cmd(struct rsxx_cardinfo *card , u32 cmd ) { int tmp ; { { tmp = rsxx_creg_write(card, 2147487744U, 4U, (void *)(& cmd), 0); } return (tmp); } } static void hw_log_msg(struct rsxx_cardinfo *card , char const *str , int len ) { char level ; struct _ddebug descriptor ; long tmp ; { if ((len > 3 && (int )((signed char )*str) == 60) && (int )((signed char )*(str + 2UL)) == 62) { level = *(str + 1UL); str = str + 3UL; len = len + -3; } else { } { if ((int )level == 48) { goto case_48; } else { } if ((int )level == 49) { goto case_49; } else { } if ((int )level == 50) { goto case_50; } else { } if ((int )level == 51) { goto case_51; } else { } if ((int )level == 52) { goto case_52; } else { } if ((int )level == 53) { goto case_53; } else { } if ((int )level == 54) { goto case_54; } else { } if ((int )level == 55) { goto case_55; } else { } goto switch_default; case_48: /* CIL Label */ { dev_emerg((struct device const *)(& (card->dev)->dev), "HW: %.*s", len, str); } goto ldv_33975; case_49: /* CIL Label */ { dev_alert((struct device const *)(& (card->dev)->dev), "HW: %.*s", len, str); } goto ldv_33975; case_50: /* CIL Label */ { dev_crit((struct device const *)(& (card->dev)->dev), "HW: %.*s", len, str); } goto ldv_33975; case_51: /* CIL Label */ { dev_err((struct device const *)(& (card->dev)->dev), "HW: %.*s", len, str); } goto ldv_33975; case_52: /* CIL Label */ { dev_warn((struct device const *)(& (card->dev)->dev), "HW: %.*s", len, str); } goto ldv_33975; case_53: /* CIL Label */ { dev_notice((struct device const *)(& (card->dev)->dev), "HW: %.*s", len, str); } goto ldv_33975; case_54: /* CIL Label */ { _dev_info((struct device const *)(& (card->dev)->dev), "HW: %.*s", len, str); } goto ldv_33975; case_55: /* CIL Label */ { descriptor.modname = "rsxx"; descriptor.function = "hw_log_msg"; descriptor.filename = "drivers/block/rsxx/cregs.c"; descriptor.format = "HW: %.*s"; descriptor.lineno = 580U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (card->dev)->dev), "HW: %.*s", len, str); } } else { } goto ldv_33975; switch_default: /* CIL Label */ { _dev_info((struct device const *)(& (card->dev)->dev), "HW: %.*s", len, str); } goto ldv_33975; switch_break: /* CIL Label */ ; } ldv_33975: ; return; } } static int substrncpy(char *dest , char const *src , int count ) { int max_cnt ; { max_cnt = count; goto ldv_33994; ldv_33993: count = count - 1; *dest = *src; if ((int )((signed char )*dest) == 0) { goto ldv_33992; } else { } src = src + 1; dest = dest + 1; ldv_33994: ; if (count != 0) { goto ldv_33993; } else { } ldv_33992: ; return (max_cnt - count); } } static void read_hw_log_done(struct rsxx_cardinfo *card , struct creg_cmd *cmd , int st ) { char *buf ; char *log_str ; int cnt ; int len ; int off ; int _min1 ; int _min2 ; { buf = (char *)cmd->buf; off = 0; if (st != 0) { return; } else { } goto ldv_34009; ldv_34008: { log_str = (char *)(& card->log.buf) + (unsigned long )card->log.buf_len; _min1 = cmd->cnt8 - off; _min2 = 128 - card->log.buf_len; cnt = _min1 < _min2 ? _min1 : _min2; len = substrncpy(log_str, (char const *)buf + (unsigned long )off, cnt); off = off + len; card->log.buf_len = card->log.buf_len + len; } if ((int )((signed char )*(log_str + ((unsigned long )len + 0xffffffffffffffffUL))) == 0 || card->log.buf_len == 128) { if (card->log.buf_len != 1) { { hw_log_msg(card, (char const *)(& card->log.buf), card->log.buf_len); } } else { } card->log.buf_len = 0; } else { } ldv_34009: ; if (off < cmd->cnt8) { goto ldv_34008; } else { } if ((cmd->status & 8U) != 0U) { { rsxx_read_hw_log(card); } } else { } return; } } int rsxx_read_hw_log(struct rsxx_cardinfo *card ) { int st ; { { st = creg_queue_cmd(card, 224U, 2147491840U, 32U, (void *)(& card->log.tmp), 1, & read_hw_log_done, (void *)0); } if (st != 0) { { dev_err((struct device const *)(& (card->dev)->dev), "Failed getting log text\n"); } } else { } return (st); } } static int issue_reg_cmd(struct rsxx_cardinfo *card , struct rsxx_reg_access *cmd , int read ) { unsigned int op ; int tmp ; { { op = read != 0 ? 224U : 192U; tmp = __issue_creg_rw(card, op, cmd->addr, cmd->cnt, (void *)(& cmd->data), (int )cmd->stream, & cmd->stat); } return (tmp); } } int rsxx_reg_access(struct rsxx_cardinfo *card , struct rsxx_reg_access *ucmd , int read ) { struct rsxx_reg_access cmd ; int st ; unsigned long tmp ; int __ret_pu ; __u32 __pu_val ; unsigned long tmp___0 ; { { tmp = copy_from_user((void *)(& cmd), (void const *)ucmd, 48UL); st = (int )tmp; } if (st != 0) { return (-14); } else { } if (cmd.cnt > 32U) { return (-14); } else { } { st = issue_reg_cmd(card, & cmd, read); } if (st != 0) { return (st); } else { } { might_fault(); __pu_val = cmd.stat; } { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ volatile ("call __put_user_1": "=a" (__ret_pu): "0" (__pu_val), "c" (& ucmd->stat): "ebx"); goto ldv_34031; case_2: /* CIL Label */ __asm__ volatile ("call __put_user_2": "=a" (__ret_pu): "0" (__pu_val), "c" (& ucmd->stat): "ebx"); goto ldv_34031; case_4: /* CIL Label */ __asm__ volatile ("call __put_user_4": "=a" (__ret_pu): "0" (__pu_val), "c" (& ucmd->stat): "ebx"); goto ldv_34031; case_8: /* CIL Label */ __asm__ volatile ("call __put_user_8": "=a" (__ret_pu): "0" (__pu_val), "c" (& ucmd->stat): "ebx"); goto ldv_34031; switch_default: /* CIL Label */ __asm__ volatile ("call __put_user_X": "=a" (__ret_pu): "0" (__pu_val), "c" (& ucmd->stat): "ebx"); goto ldv_34031; switch_break: /* CIL Label */ ; } ldv_34031: st = __ret_pu; if (st != 0) { return (-14); } else { } if (read != 0) { { tmp___0 = copy_to_user((void *)(& ucmd->data), (void const *)(& cmd.data), (unsigned long )cmd.cnt); st = (int )tmp___0; } if (st != 0) { return (-14); } else { } } else { } return (0); } } void rsxx_eeh_save_issued_creg(struct rsxx_cardinfo *card ) { struct creg_cmd *cmd ; { cmd = (struct creg_cmd *)0; cmd = card->creg_ctrl.active_cmd; card->creg_ctrl.active_cmd = (struct creg_cmd *)0; if ((unsigned long )cmd != (unsigned long )((struct creg_cmd *)0)) { { ldv_del_timer_sync_120(& card->creg_ctrl.cmd_timer); ldv_spin_lock_bh_98(& card->creg_ctrl.lock); list_add(& cmd->list, & card->creg_ctrl.queue); card->creg_ctrl.q_depth = card->creg_ctrl.q_depth + 1U; card->creg_ctrl.active = 0; ldv_spin_unlock_bh_99(& card->creg_ctrl.lock); } } else { } return; } } void rsxx_kick_creg_queue(struct rsxx_cardinfo *card ) { int tmp ; { { ldv_spin_lock_bh_98(& card->creg_ctrl.lock); tmp = list_empty((struct list_head const *)(& card->creg_ctrl.queue)); } if (tmp == 0) { { creg_kick_queue(card); } } else { } { ldv_spin_unlock_bh_99(& card->creg_ctrl.lock); } return; } } int rsxx_creg_setup(struct rsxx_cardinfo *card ) { struct lock_class_key __key ; char const *__lock_name ; struct workqueue_struct *tmp ; struct lock_class_key __key___0 ; atomic_long_t __constr_expr_0 ; struct lock_class_key __key___1 ; struct lock_class_key __key___2 ; struct lock_class_key __key___3 ; { { card->creg_ctrl.active_cmd = (struct creg_cmd *)0; __lock_name = "\"%s\"\"rsxx\"\"_creg\""; tmp = __alloc_workqueue_key("%s", 131082U, 1, & __key, __lock_name, (char *)"rsxx_creg"); card->creg_ctrl.creg_wq = tmp; } if ((unsigned long )card->creg_ctrl.creg_wq == (unsigned long )((struct workqueue_struct *)0)) { return (-12); } else { } { __init_work(& card->creg_ctrl.done_work, 0); __constr_expr_0.counter = 137438953408L; card->creg_ctrl.done_work.data = __constr_expr_0; lockdep_init_map(& card->creg_ctrl.done_work.lockdep_map, "(&card->creg_ctrl.done_work)", & __key___0, 0); INIT_LIST_HEAD(& card->creg_ctrl.done_work.entry); card->creg_ctrl.done_work.func = & creg_cmd_done; __mutex_init(& card->creg_ctrl.reset_lock, "&card->creg_ctrl.reset_lock", & __key___1); INIT_LIST_HEAD(& card->creg_ctrl.queue); spinlock_check(& card->creg_ctrl.lock); __raw_spin_lock_init(& card->creg_ctrl.lock.__annonCompField18.rlock, "&(&card->creg_ctrl.lock)->rlock", & __key___2); init_timer_key(& card->creg_ctrl.cmd_timer, 0U, "((&card->creg_ctrl.cmd_timer))", & __key___3); card->creg_ctrl.cmd_timer.function = & creg_cmd_timed_out; card->creg_ctrl.cmd_timer.data = (unsigned long )card; } return (0); } } void rsxx_creg_destroy(struct rsxx_cardinfo *card ) { struct creg_cmd *cmd ; struct creg_cmd *tmp ; int cnt ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; int tmp___0 ; { { cnt = 0; ldv_spin_lock_bh_98(& card->creg_ctrl.lock); __mptr = (struct list_head const *)card->creg_ctrl.queue.next; cmd = (struct creg_cmd *)__mptr; __mptr___0 = (struct list_head const *)cmd->list.next; tmp = (struct creg_cmd *)__mptr___0; } goto ldv_34068; ldv_34067: { list_del(& cmd->list); } if ((unsigned long )cmd->cb != (unsigned long )((void (*)(struct rsxx_cardinfo * , struct creg_cmd * , int ))0)) { { (*(cmd->cb))(card, cmd, -125); } } else { } { kmem_cache_free(creg_cmd_pool, (void *)cmd); cnt = cnt + 1; cmd = tmp; __mptr___1 = (struct list_head const *)tmp->list.next; tmp = (struct creg_cmd *)__mptr___1; } ldv_34068: ; if ((unsigned long )(& cmd->list) != (unsigned long )(& card->creg_ctrl.queue)) { goto ldv_34067; } else { } if (cnt != 0) { { _dev_info((struct device const *)(& (card->dev)->dev), "Canceled %d queue creg commands\n", cnt); } } else { } cmd = card->creg_ctrl.active_cmd; card->creg_ctrl.active_cmd = (struct creg_cmd *)0; if ((unsigned long )cmd != (unsigned long )((struct creg_cmd *)0)) { { tmp___0 = timer_pending((struct timer_list const *)(& card->creg_ctrl.cmd_timer)); } if (tmp___0 != 0) { { ldv_del_timer_sync_126(& card->creg_ctrl.cmd_timer); } } else { } if ((unsigned long )cmd->cb != (unsigned long )((void (*)(struct rsxx_cardinfo * , struct creg_cmd * , int ))0)) { { (*(cmd->cb))(card, cmd, -125); } } else { } { _dev_info((struct device const *)(& (card->dev)->dev), "Canceled active creg command\n"); kmem_cache_free(creg_cmd_pool, (void *)cmd); } } else { } { ldv_spin_unlock_bh_99(& card->creg_ctrl.lock); cancel_work_sync(& card->creg_ctrl.done_work); } return; } } int rsxx_creg_init(void) { { { creg_cmd_pool = kmem_cache_create("creg_cmd", 64UL, 8UL, 8192UL, (void (*)(void * ))0); } if ((unsigned long )creg_cmd_pool == (unsigned long )((struct kmem_cache *)0)) { return (-12); } else { } return (0); } } void rsxx_creg_cleanup(void) { { { kmem_cache_destroy(creg_cmd_pool); } return; } } int ldv_del_timer_sync(int arg0 , struct timer_list *arg1 ) ; void ldv_dispatch_instance_deregister_6_1(struct timer_list *arg0 ) ; void ldv_dispatch_instance_register_8_2(struct timer_list *arg0 ) ; int ldv_mod_timer(int arg0 , struct timer_list *arg1 , unsigned long arg2 ) ; int ldv_del_timer_sync(int arg0 , struct timer_list *arg1 ) { struct timer_list *ldv_6_timer_list_timer_list ; { { ldv_6_timer_list_timer_list = arg1; ldv_dispatch_instance_deregister_6_1(ldv_6_timer_list_timer_list); } return (arg0); return (arg0); } } void ldv_dispatch_instance_deregister_6_1(struct timer_list *arg0 ) { { return; } } void ldv_dispatch_instance_register_8_2(struct timer_list *arg0 ) { struct ldv_struct_timer_instance_5 *cf_arg_5 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_5 = (struct ldv_struct_timer_instance_5 *)tmp; cf_arg_5->arg0 = arg0; ldv_timer_timer_instance_5((void *)cf_arg_5); } return; } } int ldv_mod_timer(int arg0 , struct timer_list *arg1 , unsigned long arg2 ) { struct timer_list *ldv_8_timer_list_timer_list ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_8_timer_list_timer_list = arg1; ldv_dispatch_instance_register_8_2(ldv_8_timer_list_timer_list); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } static int ldv_mod_timer_96(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static void *ldv_kmem_cache_alloc_97(struct kmem_cache *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } __inline static void ldv_spin_lock_bh_98(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_NOT_ARG_SIGN(); spin_lock_bh(lock); } return; } } __inline static void ldv_spin_unlock_bh_99(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_NOT_ARG_SIGN(); spin_unlock_bh(lock); } return; } } __inline static void ldv_spin_lock_100(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_NOT_ARG_SIGN(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_101(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_NOT_ARG_SIGN(); spin_unlock(lock); } return; } } static int ldv_del_timer_sync_104(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static int ldv_mutex_trylock_109(struct mutex *ldv_func_arg1 ) { int tmp ; { { tmp = ldv_linux_kernel_locking_mutex_mutex_trylock_reset_lock_of_NOT_ARG_SIGN(ldv_func_arg1); } return (tmp); } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_110(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_irq_lock_of_rsxx_cardinfo(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static int ldv_del_timer_sync_113(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_115(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_irq_lock_of_rsxx_cardinfo(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_117(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_reset_lock_of_NOT_ARG_SIGN(ldv_func_arg1); } return; } } __inline static void ldv_init_completion_118(struct completion *x ) { { { ldv_linux_kernel_sched_completion_init_completion_cmd_done(); } return; } } static unsigned long ldv_wait_for_completion_timeout_119(struct completion *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { unsigned long tmp ; { { ldv_linux_kernel_sched_completion_wait_for_completion_cmd_done_of_creg_completion(); tmp = wait_for_completion_timeout(ldv_func_arg1, ldv_func_arg2); } return (tmp); } } static int ldv_del_timer_sync_120(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static int ldv_del_timer_sync_126(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } int ldv_linux_usb_dev_atomic_dec_and_test(atomic_t *v ) ; struct gendisk *ldv_linux_block_genhd_alloc_disk(void) ; void ldv_linux_block_genhd_add_disk(void) ; void ldv_linux_block_genhd_del_gendisk(void) ; void ldv_linux_block_genhd_put_disk(struct gendisk *disk ) ; static void ldv_mutex_lock_97(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_100(struct mutex *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_mutex_mutex_lock_dev_lock_of_rsxx_cardinfo(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_dev_lock_of_rsxx_cardinfo(struct mutex *lock ) ; struct request_queue *ldv_linux_block_queue_request_queue(void) ; void ldv_linux_block_queue_blk_cleanup_queue(void) ; __inline static void __set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void __clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } extern void __might_sleep(char const * , int , int ) ; extern int snprintf(char * , size_t , char const * , ...) ; __inline static void atomic_set(atomic_t *v , int i ) { { v->counter = i; return; } } __inline static int atomic_dec_and_test(atomic_t *v ) ; static void ldv_mutex_unlock_99(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_102(struct mutex *ldv_func_arg1 ) ; static void *ldv_kmem_cache_alloc_96(struct kmem_cache *ldv_func_arg1 , gfp_t flags ) ; extern int register_blkdev(unsigned int , char const * ) ; extern void unregister_blkdev(unsigned int , char const * ) ; extern void add_disk(struct gendisk * ) ; static void ldv_add_disk_98(struct gendisk *disk ) ; extern void del_gendisk(struct gendisk * ) ; static void ldv_del_gendisk_101(struct gendisk *gp ) ; __inline static sector_t get_capacity(struct gendisk *disk ) { { return (disk->part0.nr_sects); } } extern struct gendisk *alloc_disk(int ) ; static struct gendisk *ldv_alloc_disk_104(int minors ) ; extern void put_disk(struct gendisk * ) ; static void ldv_put_disk_106(struct gendisk *disk ) ; extern void bio_endio(struct bio * , int ) ; extern void generic_start_io_acct(int , unsigned long , struct hd_struct * ) ; extern void generic_end_io_acct(int , struct hd_struct * , unsigned long ) ; __inline static void queue_flag_set_unlocked(unsigned int flag , struct request_queue *q ) { { { __set_bit((long )flag, (unsigned long volatile *)(& q->queue_flags)); } return; } } __inline static void queue_flag_clear_unlocked(unsigned int flag , struct request_queue *q ) { { { __clear_bit((long )flag, (unsigned long volatile *)(& q->queue_flags)); } return; } } extern void blk_cleanup_queue(struct request_queue * ) ; static void ldv_blk_cleanup_queue_105(struct request_queue *ldv_func_arg1 ) ; static void ldv_blk_cleanup_queue_107(struct request_queue *ldv_func_arg1 ) ; extern void blk_queue_make_request(struct request_queue * , make_request_fn * ) ; extern void blk_queue_bounce_limit(struct request_queue * , u64 ) ; extern void blk_queue_max_hw_sectors(struct request_queue * , unsigned int ) ; extern void blk_queue_max_discard_sectors(struct request_queue * , unsigned int ) ; extern void blk_queue_logical_block_size(struct request_queue * , unsigned short ) ; extern void blk_queue_physical_block_size(struct request_queue * , unsigned int ) ; extern void blk_queue_dma_alignment(struct request_queue * , int ) ; extern struct request_queue *blk_alloc_queue(gfp_t ) ; static struct request_queue *ldv_blk_alloc_queue_103(gfp_t ldv_func_arg1 ) ; int rsxx_dma_queue_bio(struct rsxx_cardinfo *card , struct bio *bio , atomic_t *n_dmas , void (*cb)(struct rsxx_cardinfo * , void * , unsigned int ) , void *cb_data ) ; static unsigned int blkdev_minors = 64U; static unsigned int blkdev_max_hw_sectors = 1024U; static unsigned int enable_blkdev = 1U; static struct kmem_cache *bio_meta_pool ; static int rsxx_blkdev_ioctl(struct block_device *bdev , fmode_t mode , unsigned int cmd , unsigned long arg ) { struct rsxx_cardinfo *card ; int tmp ; int tmp___0 ; { card = (struct rsxx_cardinfo *)(bdev->bd_disk)->private_data; { if (cmd == 3224400416U) { goto case_3224400416; } else { } if (cmd == 3224400417U) { goto case_3224400417; } else { } goto switch_break; case_3224400416: /* CIL Label */ { tmp = rsxx_reg_access(card, (struct rsxx_reg_access *)arg, 1); } return (tmp); case_3224400417: /* CIL Label */ { tmp___0 = rsxx_reg_access(card, (struct rsxx_reg_access *)arg, 0); } return (tmp___0); switch_break: /* CIL Label */ ; } return (-25); } } static int rsxx_getgeo(struct block_device *bdev , struct hd_geometry *geo ) { struct rsxx_cardinfo *card ; u64 blocks ; uint32_t __base ; uint32_t __rem ; { card = (struct rsxx_cardinfo *)(bdev->bd_disk)->private_data; blocks = card->size8 >> 9; if (card->size8 != 0ULL) { geo->heads = 64U; geo->sectors = 16U; __base = (uint32_t )((int )geo->heads * (int )geo->sectors); __rem = (uint32_t )(blocks % (u64 )__base); blocks = blocks / (u64 )__base; geo->cylinders = (unsigned short )blocks; } else { geo->heads = 0U; geo->sectors = 0U; geo->cylinders = 0U; } return (0); } } static struct block_device_operations const rsxx_fops = {0, 0, 0, & rsxx_blkdev_ioctl, 0, 0, 0, 0, 0, 0, & rsxx_getgeo, 0, & __this_module}; static void disk_stats_start(struct rsxx_cardinfo *card , struct bio *bio ) { { { generic_start_io_acct((int )bio->bi_rw & 1, (unsigned long )(bio->bi_iter.bi_size >> 9), & (card->gendisk)->part0); } return; } } static void disk_stats_complete(struct rsxx_cardinfo *card , struct bio *bio , unsigned long start_time ) { { { generic_end_io_acct((int )bio->bi_rw & 1, & (card->gendisk)->part0, start_time); } return; } } static void bio_dma_done_cb(struct rsxx_cardinfo *card , void *cb_data , unsigned int error ) { struct rsxx_bio_meta *meta ; int tmp ; int tmp___0 ; { meta = (struct rsxx_bio_meta *)cb_data; if (error != 0U) { { atomic_set(& meta->error, 1); } } else { } { tmp___0 = atomic_dec_and_test(& meta->pending_dmas); } if (tmp___0 != 0) { if (card->eeh_state == 0U && (unsigned long )card->gendisk != (unsigned long )((struct gendisk *)0)) { { disk_stats_complete(card, meta->bio, meta->start_time); } } else { } { tmp = atomic_read((atomic_t const *)(& meta->error)); bio_endio(meta->bio, tmp != 0 ? -5 : 0); kmem_cache_free(bio_meta_pool, (void *)meta); } } else { } return; } } static void rsxx_make_request(struct request_queue *q , struct bio *bio ) { struct rsxx_cardinfo *card ; struct rsxx_bio_meta *bio_meta ; int st ; sector_t tmp ; long tmp___0 ; long tmp___1 ; void *tmp___2 ; long tmp___3 ; struct _ddebug descriptor ; long tmp___4 ; { { card = (struct rsxx_cardinfo *)q->queuedata; st = -22; __might_sleep("drivers/block/rsxx/dev.c", 151, 0); } if ((unsigned long )card == (unsigned long )((struct rsxx_cardinfo *)0)) { goto req_err; } else { } { tmp = get_capacity(card->gendisk); } if (bio->bi_iter.bi_sector + (sector_t )(bio->bi_iter.bi_size >> 9) > tmp) { goto req_err; } else { } { tmp___0 = ldv__builtin_expect(card->halt != 0U, 0L); } if (tmp___0 != 0L) { st = -14; goto req_err; } else { } { tmp___1 = ldv__builtin_expect(card->dma_fault != 0U, 0L); } if (tmp___1 != 0L) { st = -14; goto req_err; } else { } if (bio->bi_iter.bi_size == 0U) { { dev_err((struct device const *)(& (card->dev)->dev), "size zero BIO!\n"); } goto req_err; } else { } { tmp___2 = ldv_kmem_cache_alloc_96(bio_meta_pool, 208U); bio_meta = (struct rsxx_bio_meta *)tmp___2; } if ((unsigned long )bio_meta == (unsigned long )((struct rsxx_bio_meta *)0)) { st = -12; goto req_err; } else { } { bio_meta->bio = bio; atomic_set(& bio_meta->error, 0); atomic_set(& bio_meta->pending_dmas, 0); bio_meta->start_time = jiffies; tmp___3 = ldv__builtin_expect(card->halt != 0U, 0L); } if (tmp___3 == 0L) { { disk_stats_start(card, bio); } } else { } { descriptor.modname = "rsxx"; descriptor.function = "rsxx_make_request"; descriptor.filename = "drivers/block/rsxx/dev.c"; descriptor.format = "BIO[%c]: meta: %p addr8: x%llx size: %d\n"; descriptor.lineno = 190U; descriptor.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___4 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (card->dev)->dev), "BIO[%c]: meta: %p addr8: x%llx size: %d\n", (int )bio->bi_rw & 1 ? 87 : 82, bio_meta, (unsigned long long )bio->bi_iter.bi_sector << 9, bio->bi_iter.bi_size); } } else { } { st = rsxx_dma_queue_bio(card, bio, & bio_meta->pending_dmas, & bio_dma_done_cb, (void *)bio_meta); } if (st != 0) { goto queue_err; } else { } return; queue_err: { kmem_cache_free(bio_meta_pool, (void *)bio_meta); } req_err: { bio_endio(bio, st); } return; } } static bool rsxx_discard_supported(struct rsxx_cardinfo *card ) { unsigned char pci_rev ; { { pci_read_config_byte((struct pci_dev const *)card->dev, 8, & pci_rev); } return ((unsigned int )pci_rev > 1U); } } int rsxx_attach_dev(struct rsxx_cardinfo *card ) { { { ldv_mutex_lock_97(& card->dev_lock); } if (enable_blkdev != 0U) { if (card->config_valid != 0) { { set_capacity(card->gendisk, (sector_t )(card->size8 >> 9)); } } else { { set_capacity(card->gendisk, 0UL); } } { ldv_add_disk_98(card->gendisk); card->bdev_attached = 1; } } else { } { ldv_mutex_unlock_99(& card->dev_lock); } return (0); } } void rsxx_detach_dev(struct rsxx_cardinfo *card ) { { { ldv_mutex_lock_100(& card->dev_lock); } if ((int )card->bdev_attached) { { ldv_del_gendisk_101(card->gendisk); card->bdev_attached = 0; } } else { } { ldv_mutex_unlock_102(& card->dev_lock); } return; } } int rsxx_setup_dev(struct rsxx_cardinfo *card ) { unsigned short blk_size ; struct lock_class_key __key ; bool tmp ; { { __mutex_init(& card->dev_lock, "&card->dev_lock", & __key); } if (enable_blkdev == 0U) { return (0); } else { } { card->major = register_blkdev(0U, "rsxx"); } if (card->major < 0) { { dev_err((struct device const *)(& (card->dev)->dev), "Failed to get major number\n"); } return (-12); } else { } { card->queue = ldv_blk_alloc_queue_103(208U); } if ((unsigned long )card->queue == (unsigned long )((struct request_queue *)0)) { { dev_err((struct device const *)(& (card->dev)->dev), "Failed queue alloc\n"); unregister_blkdev((unsigned int )card->major, "rsxx"); } return (-12); } else { } { card->gendisk = ldv_alloc_disk_104((int )blkdev_minors); } if ((unsigned long )card->gendisk == (unsigned long )((struct gendisk *)0)) { { dev_err((struct device const *)(& (card->dev)->dev), "Failed disk alloc\n"); ldv_blk_cleanup_queue_105(card->queue); unregister_blkdev((unsigned int )card->major, "rsxx"); } return (-12); } else { } if (card->config_valid != 0) { { blk_size = (unsigned short )card->config.data.block_size; blk_queue_dma_alignment(card->queue, (int )blk_size + -1); blk_queue_logical_block_size(card->queue, (int )blk_size); } } else { } { blk_queue_make_request(card->queue, & rsxx_make_request); blk_queue_bounce_limit(card->queue, 0xffffffffffffffffULL); blk_queue_max_hw_sectors(card->queue, blkdev_max_hw_sectors); blk_queue_physical_block_size(card->queue, 4096U); queue_flag_set_unlocked(12U, card->queue); queue_flag_clear_unlocked(16U, card->queue); tmp = rsxx_discard_supported(card); } if ((int )tmp) { { queue_flag_set_unlocked(14U, card->queue); blk_queue_max_discard_sectors(card->queue, 8U); (card->queue)->limits.discard_granularity = 4096U; (card->queue)->limits.discard_alignment = 4096U; (card->queue)->limits.discard_zeroes_data = 1U; } } else { } { (card->queue)->queuedata = (void *)card; snprintf((char *)(& (card->gendisk)->disk_name), 32UL, "rsxx%d", card->disk_id); (card->gendisk)->driverfs_dev = & (card->dev)->dev; (card->gendisk)->major = card->major; (card->gendisk)->first_minor = 0; (card->gendisk)->fops = & rsxx_fops; (card->gendisk)->private_data = (void *)card; (card->gendisk)->queue = card->queue; } return (0); } } void rsxx_destroy_dev(struct rsxx_cardinfo *card ) { { if (enable_blkdev == 0U) { return; } else { } { ldv_put_disk_106(card->gendisk); card->gendisk = (struct gendisk *)0; ldv_blk_cleanup_queue_107(card->queue); (card->queue)->queuedata = (void *)0; unregister_blkdev((unsigned int )card->major, "rsxx"); } return; } } int rsxx_dev_init(void) { { { bio_meta_pool = kmem_cache_create("rsxx_bio_meta", 24UL, 8UL, 8192UL, (void (*)(void * ))0); } if ((unsigned long )bio_meta_pool == (unsigned long )((struct kmem_cache *)0)) { return (-12); } else { } return (0); } } void rsxx_dev_cleanup(void) { { { kmem_cache_destroy(bio_meta_pool); } return; } } void ldv_file_operations_instance_callback_0_20(int (*arg0)(struct block_device * , unsigned int , unsigned int , unsigned long ) , struct block_device *arg1 , unsigned int arg2 , unsigned int arg3 , unsigned long arg4 ) { { { rsxx_blkdev_ioctl(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_0_5(int (*arg0)(struct block_device * , struct hd_geometry * ) , struct block_device *arg1 , struct hd_geometry *arg2 ) { { { rsxx_getgeo(arg1, arg2); } return; } } void ldv_file_operations_instance_callback_1_20(int (*arg0)(struct block_device * , unsigned int , unsigned int , unsigned long ) , struct block_device *arg1 , unsigned int arg2 , unsigned int arg3 , unsigned long arg4 ) { { { rsxx_blkdev_ioctl(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_1_5(int (*arg0)(struct block_device * , struct hd_geometry * ) , struct block_device *arg1 , struct hd_geometry *arg2 ) { { { rsxx_getgeo(arg1, arg2); } return; } } void ldv_file_operations_instance_callback_2_20(int (*arg0)(struct block_device * , unsigned int , unsigned int , unsigned long ) , struct block_device *arg1 , unsigned int arg2 , unsigned int arg3 , unsigned long arg4 ) { { { rsxx_blkdev_ioctl(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_2_5(int (*arg0)(struct block_device * , struct hd_geometry * ) , struct block_device *arg1 , struct hd_geometry *arg2 ) { { { rsxx_getgeo(arg1, arg2); } return; } } __inline static int atomic_dec_and_test(atomic_t *v ) { int tmp ; { { tmp = ldv_linux_usb_dev_atomic_dec_and_test(v); } return (tmp); } } static void *ldv_kmem_cache_alloc_96(struct kmem_cache *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } static void ldv_mutex_lock_97(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_dev_lock_of_rsxx_cardinfo(ldv_func_arg1); } return; } } static void ldv_add_disk_98(struct gendisk *disk ) { { { ldv_linux_block_genhd_add_disk(); add_disk(disk); } return; } } static void ldv_mutex_unlock_99(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_dev_lock_of_rsxx_cardinfo(ldv_func_arg1); } return; } } static void ldv_mutex_lock_100(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_dev_lock_of_rsxx_cardinfo(ldv_func_arg1); } return; } } static void ldv_del_gendisk_101(struct gendisk *gp ) { { { ldv_linux_block_genhd_del_gendisk(); del_gendisk(gp); } return; } } static void ldv_mutex_unlock_102(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_dev_lock_of_rsxx_cardinfo(ldv_func_arg1); } return; } } static struct request_queue *ldv_blk_alloc_queue_103(gfp_t ldv_func_arg1 ) { ldv_func_ret_type___5 ldv_func_res ; struct request_queue *tmp ; struct request_queue *tmp___0 ; { { tmp = blk_alloc_queue(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_linux_block_queue_request_queue(); } return (tmp___0); return (ldv_func_res); } } static struct gendisk *ldv_alloc_disk_104(int minors ) { ldv_func_ret_type___6 ldv_func_res ; struct gendisk *tmp ; struct gendisk *tmp___0 ; { { tmp = alloc_disk(minors); ldv_func_res = tmp; tmp___0 = ldv_linux_block_genhd_alloc_disk(); } return (tmp___0); return (ldv_func_res); } } static void ldv_blk_cleanup_queue_105(struct request_queue *ldv_func_arg1 ) { { { ldv_linux_block_queue_blk_cleanup_queue(); blk_cleanup_queue(ldv_func_arg1); } return; } } static void ldv_put_disk_106(struct gendisk *disk ) { { { ldv_linux_block_genhd_put_disk(disk); put_disk(disk); } return; } } static void ldv_blk_cleanup_queue_107(struct request_queue *ldv_func_arg1 ) { { { ldv_linux_block_queue_blk_cleanup_queue(); blk_cleanup_queue(ldv_func_arg1); } return; } } void ldv_linux_usb_dev_atomic_add(int i , atomic_t *v ) ; void ldv_linux_usb_dev_atomic_sub(int i , atomic_t *v ) ; void ldv_linux_usb_dev_atomic_inc(atomic_t *v ) ; void ldv_linux_usb_dev_atomic_dec(atomic_t *v ) ; static void ldv_mutex_lock_120(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_122(struct mutex *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_mutex_mutex_lock_work_lock_of_rsxx_dma_ctrl(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_work_lock_of_rsxx_dma_ctrl(struct mutex *lock ) ; __inline static bool is_power_of_2(unsigned long n ) { { return ((bool )(n != 0UL && (n & (n - 1UL)) == 0UL)); } } __inline static void __list_splice(struct list_head const *list , struct list_head *prev , struct list_head *next ) { struct list_head *first ; struct list_head *last ; { first = list->next; last = list->prev; first->prev = prev; prev->next = first; last->next = next; next->prev = last; return; } } __inline static void list_splice(struct list_head const *list , struct list_head *head ) { int tmp ; { { tmp = list_empty(list); } if (tmp == 0) { { __list_splice(list, head, head->next); } } else { } return; } } __inline static void list_splice_tail(struct list_head *list , struct list_head *head ) { int tmp ; { { tmp = list_empty((struct list_head const *)list); } if (tmp == 0) { { __list_splice((struct list_head const *)list, head->prev, head); } } else { } return; } } extern void *__memset(void * , int , size_t ) ; extern void warn_slowpath_fmt(char const * , int const , char const * , ...) ; __inline static void atomic_add(int i , atomic_t *v ) ; __inline static void atomic_sub(int i , atomic_t *v ) ; __inline static void atomic_inc(atomic_t *v ) ; __inline static void atomic_dec(atomic_t *v ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_112(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_116(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_129(spinlock_t *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_dma_tracker_list(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_dma_tracker_list(void) ; static void ldv_mutex_unlock_121(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_123(struct mutex *ldv_func_arg1 ) ; __inline static void ldv_spin_lock_96___0(spinlock_t *lock ) ; __inline static void ldv_spin_lock_96___0(spinlock_t *lock ) ; __inline static void ldv_spin_lock_104(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_100(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_100(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_100(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_100(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_100(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_100(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_100(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_97___0(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_97___0(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_105(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_101(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_101(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_101(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_101(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_101(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_101(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_101(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_101(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irqrestore_99(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_99(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_99(spinlock_t *lock , unsigned long flags ) ; static int ldv_mod_timer_102(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static int ldv_mod_timer_110(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static int ldv_mod_timer_114(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static int ldv_del_timer_sync_111(struct timer_list *ldv_func_arg1 ) ; static int ldv_del_timer_sync_115(struct timer_list *ldv_func_arg1 ) ; static int ldv_del_timer_sync_131(struct timer_list *ldv_func_arg1 ) ; static void *ldv_vmalloc_128(unsigned long ldv_func_arg1 ) ; extern void vfree(void const * ) ; static void *ldv_kmem_cache_alloc_124(struct kmem_cache *ldv_func_arg1 , gfp_t flags ) ; static void *ldv_kmem_cache_alloc_125(struct kmem_cache *ldv_func_arg1 , gfp_t flags ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; __inline static void *lowmem_page_address(struct page const *page ) { { return ((void *)((unsigned long )((unsigned long long )(((long )page + 24189255811072L) / 64L) << 12) + 0xffff880000000000UL)); } } __inline static int valid_dma_direction(int dma_direction ) { { return ((unsigned int )dma_direction <= 2U); } } __inline static int is_device_dma_capable(struct device *dev ) { { return ((unsigned long )dev->dma_mask != (unsigned long )((u64 *)0ULL) && *(dev->dma_mask) != 0ULL); } } __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_mapping_error(struct device * , dma_addr_t ) ; extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern void debug_dma_alloc_coherent(struct device * , size_t , dma_addr_t , void * ) ; extern struct device x86_dma_fallback_dev ; __inline static dma_addr_t dma_map_page(struct device *dev , struct page *page , size_t offset , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; void *tmp___0 ; int tmp___1 ; long tmp___2 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = lowmem_page_address((struct page const *)page); kmemcheck_mark_initialized(tmp___0 + offset, (unsigned int )size); tmp___1 = valid_dma_direction((int )dir); tmp___2 = ldv__builtin_expect(tmp___1 == 0, 0L); } if (tmp___2 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (79), "i" (12UL)); __builtin_unreachable(); } } else { } { addr = (*(ops->map_page))(dev, page, offset, size, dir, (struct dma_attrs *)0); debug_dma_map_page(dev, page, offset, size, (int )dir, addr, 0); } return (addr); } } __inline static void dma_unmap_page(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (91), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, (struct dma_attrs *)0); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 0); } return; } } __inline static int dma_mapping_error(struct device *dev , dma_addr_t dma_addr ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; { { tmp = get_dma_ops(dev); ops = tmp; debug_dma_mapping_error(dev, dma_addr); } if ((unsigned long )ops->mapping_error != (unsigned long )((int (*)(struct device * , dma_addr_t ))0)) { { tmp___0 = (*(ops->mapping_error))(dev, dma_addr); } return (tmp___0); } else { } return (dma_addr == 0ULL); } } __inline static unsigned long dma_alloc_coherent_mask(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; { dma_mask = 0UL; dma_mask = (unsigned long )dev->coherent_dma_mask; if (dma_mask == 0UL) { dma_mask = (int )gfp & 1 ? 16777215UL : 4294967295UL; } else { } return (dma_mask); } } __inline static gfp_t dma_alloc_coherent_gfp_flags(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; unsigned long tmp ; { { tmp = dma_alloc_coherent_mask(dev, gfp); dma_mask = tmp; } if ((unsigned long long )dma_mask <= 16777215ULL) { gfp = gfp | 1U; } else { } if ((unsigned long long )dma_mask <= 4294967295ULL && (gfp & 1U) == 0U) { gfp = gfp | 4U; } else { } return (gfp); } } __inline static void *dma_alloc_attrs(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t gfp , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; void *memory ; int tmp___0 ; gfp_t tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; gfp = gfp & 4294967288U; } if ((unsigned long )dev == (unsigned long )((struct device *)0)) { dev = & x86_dma_fallback_dev; } else { } { tmp___0 = is_device_dma_capable(dev); } if (tmp___0 == 0) { return ((void *)0); } else { } if ((unsigned long )ops->alloc == (unsigned long )((void *(*)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ))0)) { return ((void *)0); } else { } { tmp___1 = dma_alloc_coherent_gfp_flags(dev, gfp); memory = (*(ops->alloc))(dev, size, dma_handle, tmp___1, attrs); debug_dma_alloc_coherent(dev, size, *dma_handle, memory); } return (memory); } } __inline static void *pci_alloc_consistent(struct pci_dev *hwdev , size_t size , dma_addr_t *dma_handle ) { void *tmp ; { { tmp = dma_alloc_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, dma_handle, 32U, (struct dma_attrs *)0); } return (tmp); } } __inline static dma_addr_t pci_map_page(struct pci_dev *hwdev , struct page *page , unsigned long offset , size_t size , int direction ) { dma_addr_t tmp ; { { tmp = dma_map_page((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, page, offset, size, (enum dma_data_direction )direction); } return (tmp); } } __inline static void pci_unmap_page(struct pci_dev *hwdev , dma_addr_t dma_address , size_t size , int direction ) { { { dma_unmap_page((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_address, size, (enum dma_data_direction )direction); } return; } } __inline static int pci_dma_mapping_error(struct pci_dev *pdev , dma_addr_t dma_addr ) { int tmp ; { { tmp = dma_mapping_error(& pdev->dev, dma_addr); } return (tmp); } } __inline static void bvec_iter_advance(struct bio_vec *bv , struct bvec_iter *iter , unsigned int bytes ) { bool __warned ; int __ret_warn_once ; int __ret_warn_on ; long tmp ; long tmp___0 ; long tmp___1 ; unsigned int len ; unsigned int _min1 ; unsigned int _min2 ; unsigned int _min1___0 ; unsigned int _min2___0 ; { { __ret_warn_once = bytes > iter->bi_size; tmp___1 = ldv__builtin_expect(__ret_warn_once != 0, 0L); } if (tmp___1 != 0L) { { __ret_warn_on = ! __warned; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_fmt("include/linux/bio.h", 211, "Attempted to advance past end of bvec iter\n"); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { __warned = 1; } else { } } else { } { ldv__builtin_expect(__ret_warn_once != 0, 0L); } goto ldv_33144; ldv_33143: _min1 = bytes; _min1___0 = iter->bi_size; _min2___0 = (bv + (unsigned long )iter->bi_idx)->bv_len - iter->bi_bvec_done; _min2 = _min1___0 < _min2___0 ? _min1___0 : _min2___0; len = _min1 < _min2 ? _min1 : _min2; bytes = bytes - len; iter->bi_size = iter->bi_size - len; iter->bi_bvec_done = iter->bi_bvec_done + len; if (iter->bi_bvec_done == (bv + (unsigned long )iter->bi_idx)->bv_len) { iter->bi_bvec_done = 0U; iter->bi_idx = iter->bi_idx + 1U; } else { } ldv_33144: ; if (bytes != 0U) { goto ldv_33143; } else { } return; } } __inline static void bio_advance_iter(struct bio *bio , struct bvec_iter *iter , unsigned int bytes ) { { iter->bi_sector = iter->bi_sector + (sector_t )(bytes >> 9); if (((unsigned long long )bio->bi_rw & 640ULL) != 0ULL) { iter->bi_size = iter->bi_size - bytes; } else { { bvec_iter_advance(bio->bi_io_vec, iter, bytes); } } return; } } static struct kmem_cache *rsxx_dma_pool ; static unsigned int rsxx_addr8_to_laddr(u64 addr8 , struct rsxx_cardinfo *card ) { unsigned long long tgt_addr8 ; uint32_t __base ; uint32_t __rem ; { tgt_addr8 = ((addr8 >> (int )card->_stripe.upper_shift) & card->_stripe.upper_mask) | (addr8 & card->_stripe.lower_mask); __base = 4096U; __rem = (uint32_t )(tgt_addr8 % (unsigned long long )__base); tgt_addr8 = tgt_addr8 / (unsigned long long )__base; return ((unsigned int )tgt_addr8); } } static unsigned int rsxx_get_dma_tgt(struct rsxx_cardinfo *card , u64 addr8 ) { unsigned int tgt ; { tgt = (unsigned int )(addr8 >> (int )card->_stripe.target_shift) & (unsigned int )card->_stripe.target_mask; return (tgt); } } void rsxx_dma_queue_reset(struct rsxx_cardinfo *card ) { { { iowrite32(1U, card->regmap + 8UL); } return; } } static unsigned int get_dma_size(struct rsxx_dma *dma ) { { if (dma->sub_page.cnt != 0U) { return (dma->sub_page.cnt << 9); } else { return (4096U); } } } static void set_tracker_dma(struct dma_tracker_list *trackers , int tag , struct rsxx_dma *dma ) { { trackers->list[tag].dma = dma; return; } } static struct rsxx_dma *get_tracker_dma(struct dma_tracker_list *trackers , int tag ) { { return (trackers->list[tag].dma); } } static int pop_tracker(struct dma_tracker_list *trackers ) { int tag ; { { ldv_spin_lock_96___0(& trackers->lock); tag = trackers->head; } if (tag != -1) { trackers->head = trackers->list[tag].next_tag; trackers->list[tag].next_tag = -1; } else { } { ldv_spin_unlock_97___0(& trackers->lock); } return (tag); } } static void push_tracker(struct dma_tracker_list *trackers , int tag ) { { { ldv_spin_lock_96___0(& trackers->lock); trackers->list[tag].next_tag = trackers->head; trackers->head = tag; trackers->list[tag].dma = (struct rsxx_dma *)0; ldv_spin_unlock_97___0(& trackers->lock); } return; } } static u32 dma_intr_coal_val(u32 mode , u32 count , u32 latency ) { u32 latency_units ; { latency_units = latency / 64U; if (mode == 0U) { return (0U); } else { } return (((count << 16) & 33488896U) | (latency_units & 65535U)); } } static void dma_intr_coal_auto_tune(struct rsxx_cardinfo *card ) { int i ; u32 q_depth ; u32 intr_coal ; long tmp ; int tmp___0 ; { q_depth = 0U; if (card->config.data.intr_coal.mode != 2U) { return; } else { { tmp = ldv__builtin_expect(card->eeh_state != 0U, 0L); } if (tmp != 0L) { return; } else { } } i = 0; goto ldv_33942; ldv_33941: { tmp___0 = atomic_read((atomic_t const *)(& (card->ctrl + (unsigned long )i)->stats.hw_q_depth)); q_depth = q_depth + (u32 )tmp___0; i = i + 1; } ldv_33942: ; if (i < card->n_targets) { goto ldv_33941; } else { } { intr_coal = dma_intr_coal_val(card->config.data.intr_coal.mode, q_depth / 2U, card->config.data.intr_coal.latency); iowrite32(intr_coal, card->regmap + 112UL); } return; } } static void rsxx_free_dma(struct rsxx_dma_ctrl *ctrl , struct rsxx_dma *dma ) { unsigned int tmp ; int tmp___0 ; { if ((unsigned int )dma->cmd != 112U) { { tmp___0 = pci_dma_mapping_error((ctrl->card)->dev, dma->dma_addr); } if (tmp___0 == 0) { { tmp = get_dma_size(dma); pci_unmap_page((ctrl->card)->dev, dma->dma_addr, (size_t )tmp, (unsigned int )dma->cmd == 128U ? 1 : 2); } } else { } } else { } { kmem_cache_free(rsxx_dma_pool, (void *)dma); } return; } } static void rsxx_complete_dma(struct rsxx_dma_ctrl *ctrl , struct rsxx_dma *dma , unsigned int status ) { { if ((int )status & 1) { ctrl->stats.dma_sw_err = ctrl->stats.dma_sw_err + 1U; } else { } if ((status & 2U) != 0U) { ctrl->stats.dma_hw_fault = ctrl->stats.dma_hw_fault + 1U; } else { } if ((status & 4U) != 0U) { ctrl->stats.dma_cancelled = ctrl->stats.dma_cancelled + 1U; } else { } if ((unsigned long )dma->cb != (unsigned long )((void (*)(struct rsxx_cardinfo * , void * , unsigned int ))0)) { { (*(dma->cb))(ctrl->card, dma->cb_data, status != 0U); } } else { } { rsxx_free_dma(ctrl, dma); } return; } } int rsxx_cleanup_dma_queue(struct rsxx_dma_ctrl *ctrl , struct list_head *q , unsigned int done ) { struct rsxx_dma *dma ; struct rsxx_dma *tmp ; int cnt ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; { cnt = 0; __mptr = (struct list_head const *)q->next; dma = (struct rsxx_dma *)__mptr; __mptr___0 = (struct list_head const *)dma->list.next; tmp = (struct rsxx_dma *)__mptr___0; goto ldv_33968; ldv_33967: { list_del(& dma->list); } if ((int )done & 1) { { rsxx_complete_dma(ctrl, dma, 4U); } } else { { rsxx_free_dma(ctrl, dma); } } cnt = cnt + 1; dma = tmp; __mptr___1 = (struct list_head const *)tmp->list.next; tmp = (struct rsxx_dma *)__mptr___1; ldv_33968: ; if ((unsigned long )(& dma->list) != (unsigned long )q) { goto ldv_33967; } else { } return (cnt); } } static void rsxx_requeue_dma(struct rsxx_dma_ctrl *ctrl , struct rsxx_dma *dma ) { { { ldv_spin_lock_bh_100(& ctrl->queue_lock); ctrl->stats.sw_q_depth = ctrl->stats.sw_q_depth + 1U; list_add(& dma->list, & ctrl->queue); ldv_spin_unlock_bh_101(& ctrl->queue_lock); } return; } } static void rsxx_handle_dma_error(struct rsxx_dma_ctrl *ctrl , struct rsxx_dma *dma , u8 hw_st ) { unsigned int status ; int requeue_cmd ; struct _ddebug descriptor ; long tmp ; { { status = 0U; requeue_cmd = 0; descriptor.modname = "rsxx"; descriptor.function = "rsxx_handle_dma_error"; descriptor.filename = "drivers/block/rsxx/dma.c"; descriptor.format = "Handling DMA error(cmd x%02x, laddr x%08x st:x%02x)\n"; descriptor.lineno = 297U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& ((ctrl->card)->dev)->dev), "Handling DMA error(cmd x%02x, laddr x%08x st:x%02x)\n", (int )dma->cmd, dma->laddr, (int )hw_st); } } else { } if ((int )hw_st & 1) { ctrl->stats.crc_errors = ctrl->stats.crc_errors + 1U; } else { } if (((int )hw_st & 2) != 0) { ctrl->stats.hard_errors = ctrl->stats.hard_errors + 1U; } else { } if (((int )hw_st & 4) != 0) { ctrl->stats.soft_errors = ctrl->stats.soft_errors + 1U; } else { } { if ((int )dma->cmd == 192) { goto case_192; } else { } if ((int )dma->cmd == 224) { goto case_224; } else { } if ((int )dma->cmd == 128) { goto case_128; } else { } if ((int )dma->cmd == 112) { goto case_112; } else { } goto switch_default; case_192: /* CIL Label */ ; if (((int )hw_st & 3) != 0) { if ((ctrl->card)->scrub_hard != 0) { dma->cmd = 224U; requeue_cmd = 1; ctrl->stats.reads_retried = ctrl->stats.reads_retried + 1U; } else { status = status | 2U; ctrl->stats.reads_failed = ctrl->stats.reads_failed + 1U; } } else if (((int )hw_st & 8) != 0) { status = status | 2U; ctrl->stats.reads_failed = ctrl->stats.reads_failed + 1U; } else { } goto ldv_33984; case_224: /* CIL Label */ ; if (((int )hw_st & 3) != 0) { status = status | 2U; ctrl->stats.reads_failed = ctrl->stats.reads_failed + 1U; } else { } goto ldv_33984; case_128: /* CIL Label */ status = status | 2U; ctrl->stats.writes_failed = ctrl->stats.writes_failed + 1U; goto ldv_33984; case_112: /* CIL Label */ status = status | 2U; ctrl->stats.discards_failed = ctrl->stats.discards_failed + 1U; goto ldv_33984; switch_default: /* CIL Label */ { dev_err((struct device const *)(& ((ctrl->card)->dev)->dev), "Unknown command in DMA!(cmd: x%02x laddr x%08x st: x%02x\n", (int )dma->cmd, dma->laddr, (int )hw_st); status = status | 1U; } goto ldv_33984; switch_break: /* CIL Label */ ; } ldv_33984: ; if (requeue_cmd != 0) { { rsxx_requeue_dma(ctrl, dma); } } else { { rsxx_complete_dma(ctrl, dma, status); } } return; } } static void dma_engine_stalled(unsigned long data ) { struct rsxx_dma_ctrl *ctrl ; int cnt ; int tmp ; long tmp___0 ; unsigned long tmp___1 ; int tmp___2 ; unsigned int tmp___3 ; { { ctrl = (struct rsxx_dma_ctrl *)data; tmp = atomic_read((atomic_t const *)(& ctrl->stats.hw_q_depth)); } if (tmp == 0) { return; } else { { tmp___0 = ldv__builtin_expect((ctrl->card)->eeh_state != 0U, 0L); } if (tmp___0 != 0L) { return; } else { } } { tmp___3 = ioread32(ctrl->regmap + 44UL); } if (ctrl->cmd.idx != tmp___3) { { dev_warn((struct device const *)(& ((ctrl->card)->dev)->dev), "SW_CMD_IDX write was lost, re-writing...\n"); iowrite32(ctrl->cmd.idx, ctrl->regmap + 44UL); tmp___1 = msecs_to_jiffies(10000U); ldv_mod_timer_102(& ctrl->activity_timer, (unsigned long )jiffies + tmp___1); } } else { { dev_warn((struct device const *)(& ((ctrl->card)->dev)->dev), "DMA channel %d has stalled, faulting interface.\n", ctrl->id); (ctrl->card)->dma_fault = 1U; ldv_spin_lock_104(& ctrl->queue_lock); cnt = rsxx_cleanup_dma_queue(ctrl, & ctrl->queue, 1U); ldv_spin_unlock_105(& ctrl->queue_lock); tmp___2 = rsxx_dma_cancel(ctrl); cnt = cnt + tmp___2; } if (cnt != 0) { { _dev_info((struct device const *)(& ((ctrl->card)->dev)->dev), "Freed %d queued DMAs on channel %d\n", cnt, ctrl->id); } } else { } } return; } } static void rsxx_issue_dmas(struct rsxx_dma_ctrl *ctrl ) { struct rsxx_dma *dma ; int tag ; int cmds_pending ; struct hw_cmd *hw_cmd_buf ; int dir ; long tmp ; long tmp___0 ; int tmp___1 ; struct list_head const *__mptr ; long tmp___2 ; int tmp___3 ; struct _ddebug descriptor ; long tmp___4 ; unsigned long tmp___5 ; long tmp___6 ; { { cmds_pending = 0; hw_cmd_buf = (struct hw_cmd *)ctrl->cmd.buf; tmp = ldv__builtin_expect((ctrl->card)->halt != 0U, 0L); } if (tmp != 0L) { return; } else { { tmp___0 = ldv__builtin_expect((ctrl->card)->eeh_state != 0U, 0L); } if (tmp___0 != 0L) { return; } else { } } ldv_34008: { ldv_spin_lock_bh_100(& ctrl->queue_lock); tmp___1 = list_empty((struct list_head const *)(& ctrl->queue)); } if (tmp___1 != 0) { { ldv_spin_unlock_bh_101(& ctrl->queue_lock); } goto ldv_34002; } else { } { ldv_spin_unlock_bh_101(& ctrl->queue_lock); tag = pop_tracker(ctrl->trackers); } if (tag == -1) { goto ldv_34002; } else { } { ldv_spin_lock_bh_100(& ctrl->queue_lock); __mptr = (struct list_head const *)ctrl->queue.next; dma = (struct rsxx_dma *)__mptr; list_del(& dma->list); ctrl->stats.sw_q_depth = ctrl->stats.sw_q_depth - 1U; ldv_spin_unlock_bh_101(& ctrl->queue_lock); tmp___2 = ldv__builtin_expect((ctrl->card)->dma_fault != 0U, 0L); } if (tmp___2 != 0L) { { push_tracker(ctrl->trackers, tag); rsxx_complete_dma(ctrl, dma, 4U); } goto ldv_34005; } else { } if ((unsigned int )dma->cmd != 112U) { if ((unsigned int )dma->cmd == 128U) { dir = 1; } else { dir = 2; } { dma->dma_addr = pci_map_page((ctrl->card)->dev, dma->page, (unsigned long )dma->pg_off, (size_t )(dma->sub_page.cnt << 9), dir); tmp___3 = pci_dma_mapping_error((ctrl->card)->dev, dma->dma_addr); } if (tmp___3 != 0) { { push_tracker(ctrl->trackers, tag); rsxx_complete_dma(ctrl, dma, 4U); } goto ldv_34005; } else { } } else { } { set_tracker_dma(ctrl->trackers, tag, dma); (hw_cmd_buf + (unsigned long )ctrl->cmd.idx)->command = dma->cmd; (hw_cmd_buf + (unsigned long )ctrl->cmd.idx)->tag = (u8 )tag; (hw_cmd_buf + (unsigned long )ctrl->cmd.idx)->_rsvd = 0U; (hw_cmd_buf + (unsigned long )ctrl->cmd.idx)->sub_page = (((unsigned int )((u8 )dma->sub_page.cnt) & 7U) << 4U) | ((unsigned int )((u8 )dma->sub_page.off) & 7U); (hw_cmd_buf + (unsigned long )ctrl->cmd.idx)->device_addr = dma->laddr; (hw_cmd_buf + (unsigned long )ctrl->cmd.idx)->host_addr = dma->dma_addr; descriptor.modname = "rsxx"; descriptor.function = "rsxx_issue_dmas"; descriptor.filename = "drivers/block/rsxx/dma.c"; descriptor.format = "Issue DMA%d(laddr %d tag %d) to idx %d\n"; descriptor.lineno = 480U; descriptor.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___4 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& ((ctrl->card)->dev)->dev), "Issue DMA%d(laddr %d tag %d) to idx %d\n", ctrl->id, dma->laddr, tag, ctrl->cmd.idx); } } else { } ctrl->cmd.idx = (ctrl->cmd.idx + 1U) & 255U; cmds_pending = cmds_pending + 1; if ((unsigned int )dma->cmd == 128U) { ctrl->stats.writes_issued = ctrl->stats.writes_issued + 1U; } else if ((unsigned int )dma->cmd == 112U) { ctrl->stats.discards_issued = ctrl->stats.discards_issued + 1U; } else { ctrl->stats.reads_issued = ctrl->stats.reads_issued + 1U; } ldv_34005: ; goto ldv_34008; ldv_34002: ; if (cmds_pending != 0) { { atomic_add(cmds_pending, & ctrl->stats.hw_q_depth); tmp___5 = msecs_to_jiffies(10000U); ldv_mod_timer_110(& ctrl->activity_timer, (unsigned long )jiffies + tmp___5); tmp___6 = ldv__builtin_expect((ctrl->card)->eeh_state != 0U, 0L); } if (tmp___6 != 0L) { { ldv_del_timer_sync_111(& ctrl->activity_timer); } return; } else { } { iowrite32(ctrl->cmd.idx, ctrl->regmap + 44UL); } } else { } return; } } static void rsxx_dma_done(struct rsxx_dma_ctrl *ctrl ) { struct rsxx_dma *dma ; unsigned long flags ; u16 count ; u8 status ; u8 tag ; struct hw_status *hw_st_buf ; long tmp ; long tmp___0 ; long tmp___1 ; struct _ddebug descriptor ; long tmp___2 ; unsigned long tmp___3 ; int tmp___4 ; int tmp___5 ; { { hw_st_buf = (struct hw_status *)ctrl->status.buf; tmp = ldv__builtin_expect((ctrl->card)->halt != 0U, 0L); } if (tmp != 0L) { return; } else { { tmp___0 = ldv__builtin_expect((ctrl->card)->dma_fault != 0U, 0L); } if (tmp___0 != 0L) { return; } else { { tmp___1 = ldv__builtin_expect((ctrl->card)->eeh_state != 0U, 0L); } if (tmp___1 != 0L) { return; } else { } } } count = (hw_st_buf + (unsigned long )ctrl->status.idx)->count; goto ldv_34021; ldv_34020: { __asm__ volatile ("lfence": : : "memory"); status = (hw_st_buf + (unsigned long )ctrl->status.idx)->status; tag = (hw_st_buf + (unsigned long )ctrl->status.idx)->tag; dma = get_tracker_dma(ctrl->trackers, (int )tag); } if ((unsigned long )dma == (unsigned long )((struct rsxx_dma *)0)) { { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_112(& (ctrl->card)->irq_lock); rsxx_disable_ier(ctrl->card, 1013U); ldv_spin_unlock_irqrestore_99(& (ctrl->card)->irq_lock, flags); dev_err((struct device const *)(& ((ctrl->card)->dev)->dev), "No tracker for tag %d (idx %d id %d)\n", (int )tag, ctrl->status.idx, ctrl->id); } return; } else { } { descriptor.modname = "rsxx"; descriptor.function = "rsxx_dma_done"; descriptor.filename = "drivers/block/rsxx/dma.c"; descriptor.format = "Completing DMA%d(laddr x%x tag %d st: x%x cnt: x%04x) from idx %d.\n"; descriptor.lineno = 556U; descriptor.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___2 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& ((ctrl->card)->dev)->dev), "Completing DMA%d(laddr x%x tag %d st: x%x cnt: x%04x) from idx %d.\n", ctrl->id, dma->laddr, (int )tag, (int )status, (int )count, ctrl->status.idx); } } else { } { atomic_dec(& ctrl->stats.hw_q_depth); tmp___3 = msecs_to_jiffies(10000U); ldv_mod_timer_114(& ctrl->activity_timer, (unsigned long )jiffies + tmp___3); } if ((unsigned int )status != 0U) { { rsxx_handle_dma_error(ctrl, dma, (int )status); } } else { { rsxx_complete_dma(ctrl, dma, 0U); } } { push_tracker(ctrl->trackers, (int )tag); ctrl->status.idx = (ctrl->status.idx + 1U) & 255U; ctrl->e_cnt = (u16 )((int )ctrl->e_cnt + 1); count = (hw_st_buf + (unsigned long )ctrl->status.idx)->count; } ldv_34021: ; if ((int )count == (int )ctrl->e_cnt) { goto ldv_34020; } else { } { dma_intr_coal_auto_tune(ctrl->card); tmp___4 = atomic_read((atomic_t const *)(& ctrl->stats.hw_q_depth)); } if (tmp___4 == 0) { { ldv_del_timer_sync_115(& ctrl->activity_timer); } } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_116(& (ctrl->card)->irq_lock); tmp___5 = CR_INTR_DMA(ctrl->id); rsxx_enable_ier(ctrl->card, (unsigned int )tmp___5); ldv_spin_unlock_irqrestore_99(& (ctrl->card)->irq_lock, flags); ldv_spin_lock_bh_100(& ctrl->queue_lock); } if (ctrl->stats.sw_q_depth != 0U) { { queue_work(ctrl->issue_wq, & ctrl->issue_dma_work); } } else { } { ldv_spin_unlock_bh_101(& ctrl->queue_lock); } return; } } static void rsxx_schedule_issue(struct work_struct *work ) { struct rsxx_dma_ctrl *ctrl ; struct work_struct const *__mptr ; { { __mptr = (struct work_struct const *)work; ctrl = (struct rsxx_dma_ctrl *)__mptr + 0xffffffffffffff50UL; ldv_mutex_lock_120(& ctrl->work_lock); rsxx_issue_dmas(ctrl); ldv_mutex_unlock_121(& ctrl->work_lock); } return; } } static void rsxx_schedule_done(struct work_struct *work ) { struct rsxx_dma_ctrl *ctrl ; struct work_struct const *__mptr ; { { __mptr = (struct work_struct const *)work; ctrl = (struct rsxx_dma_ctrl *)__mptr + 0xfffffffffffffef8UL; ldv_mutex_lock_122(& ctrl->work_lock); rsxx_dma_done(ctrl); ldv_mutex_unlock_123(& ctrl->work_lock); } return; } } static int rsxx_queue_discard(struct rsxx_cardinfo *card , struct list_head *q , unsigned int laddr , void (*cb)(struct rsxx_cardinfo * , void * , unsigned int ) , void *cb_data ) { struct rsxx_dma *dma ; void *tmp ; struct _ddebug descriptor ; long tmp___0 ; { { tmp = ldv_kmem_cache_alloc_124(rsxx_dma_pool, 208U); dma = (struct rsxx_dma *)tmp; } if ((unsigned long )dma == (unsigned long )((struct rsxx_dma *)0)) { return (-12); } else { } { dma->cmd = 112U; dma->laddr = laddr; dma->dma_addr = 0ULL; dma->sub_page.off = 0U; dma->sub_page.cnt = 0U; dma->page = (struct page *)0; dma->pg_off = 0U; dma->cb = cb; dma->cb_data = cb_data; descriptor.modname = "rsxx"; descriptor.function = "rsxx_queue_discard"; descriptor.filename = "drivers/block/rsxx/dma.c"; descriptor.format = "Queuing[D] laddr %x\n"; descriptor.lineno = 636U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (card->dev)->dev), "Queuing[D] laddr %x\n", dma->laddr); } } else { } { list_add_tail(& dma->list, q); } return (0); } } static int rsxx_queue_dma(struct rsxx_cardinfo *card , struct list_head *q , int dir , unsigned int dma_off , unsigned int dma_len , unsigned int laddr , struct page *page , unsigned int pg_off , void (*cb)(struct rsxx_cardinfo * , void * , unsigned int ) , void *cb_data ) { struct rsxx_dma *dma ; void *tmp ; struct _ddebug descriptor ; long tmp___0 ; { { tmp = ldv_kmem_cache_alloc_125(rsxx_dma_pool, 208U); dma = (struct rsxx_dma *)tmp; } if ((unsigned long )dma == (unsigned long )((struct rsxx_dma *)0)) { return (-12); } else { } { dma->cmd = dir != 0 ? 128U : 192U; dma->laddr = laddr; dma->sub_page.off = dma_off >> 9; dma->sub_page.cnt = dma_len >> 9; dma->page = page; dma->pg_off = pg_off; dma->cb = cb; dma->cb_data = cb_data; descriptor.modname = "rsxx"; descriptor.function = "rsxx_queue_dma"; descriptor.filename = "drivers/block/rsxx/dma.c"; descriptor.format = "Queuing[%c] laddr %x off %d cnt %d page %p pg_off %d\n"; descriptor.lineno = 672U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (card->dev)->dev), "Queuing[%c] laddr %x off %d cnt %d page %p pg_off %d\n", dir != 0 ? 87 : 82, dma->laddr, dma->sub_page.off, dma->sub_page.cnt, dma->page, dma->pg_off); } } else { } { list_add_tail(& dma->list, q); } return (0); } } int rsxx_dma_queue_bio(struct rsxx_cardinfo *card , struct bio *bio , atomic_t *n_dmas , void (*cb)(struct rsxx_cardinfo * , void * , unsigned int ) , void *cb_data ) { struct list_head dma_list[8U] ; struct bio_vec bvec ; struct bvec_iter iter ; unsigned long long addr8 ; unsigned int laddr ; unsigned int bv_len ; unsigned int bv_off ; unsigned int dma_off ; unsigned int dma_len ; int dma_cnt[8U] ; int tgt ; int st ; int i ; unsigned int tmp ; unsigned int tmp___0 ; unsigned int _min1 ; unsigned int _min2 ; struct bio_vec __constr_expr_0 ; unsigned int _min1___0 ; unsigned int _min2___0 ; int tmp___1 ; { { addr8 = (unsigned long long )(bio->bi_iter.bi_sector << 9); atomic_set(n_dmas, 0); i = 0; } goto ldv_34081; ldv_34080: { INIT_LIST_HEAD((struct list_head *)(& dma_list) + (unsigned long )i); dma_cnt[i] = 0; i = i + 1; } ldv_34081: ; if (i < card->n_targets) { goto ldv_34080; } else { } if (((unsigned long long )bio->bi_rw & 128ULL) != 0ULL) { bv_len = bio->bi_iter.bi_size; goto ldv_34085; ldv_34084: { tmp = rsxx_get_dma_tgt(card, addr8); tgt = (int )tmp; laddr = rsxx_addr8_to_laddr(addr8, card); st = rsxx_queue_discard(card, (struct list_head *)(& dma_list) + (unsigned long )tgt, laddr, cb, cb_data); } if (st != 0) { goto bvec_err; } else { } { dma_cnt[tgt] = dma_cnt[tgt] + 1; atomic_inc(n_dmas); addr8 = addr8 + 4096ULL; bv_len = bv_len - 4096U; } ldv_34085: ; if (bv_len != 0U) { goto ldv_34084; } else { } } else { iter = bio->bi_iter; goto ldv_34098; ldv_34097: bv_len = bvec.bv_len; bv_off = bvec.bv_offset; goto ldv_34095; ldv_34094: { tmp___0 = rsxx_get_dma_tgt(card, addr8); tgt = (int )tmp___0; laddr = rsxx_addr8_to_laddr(addr8, card); dma_off = (unsigned int )addr8 & 4095U; _min1 = bv_len; _min2 = 4096U - dma_off; dma_len = _min1 < _min2 ? _min1 : _min2; st = rsxx_queue_dma(card, (struct list_head *)(& dma_list) + (unsigned long )tgt, (int )bio->bi_rw & 1, dma_off, dma_len, laddr, bvec.bv_page, bv_off, cb, cb_data); } if (st != 0) { goto bvec_err; } else { } { dma_cnt[tgt] = dma_cnt[tgt] + 1; atomic_inc(n_dmas); addr8 = addr8 + (unsigned long long )dma_len; bv_off = bv_off + dma_len; bv_len = bv_len - dma_len; } ldv_34095: ; if (bv_len != 0U) { goto ldv_34094; } else { } { bio_advance_iter(bio, & iter, bvec.bv_len); } ldv_34098: ; if (iter.bi_size != 0U) { _min1___0 = iter.bi_size; _min2___0 = (bio->bi_io_vec + (unsigned long )iter.bi_idx)->bv_len - iter.bi_bvec_done; __constr_expr_0.bv_page = (bio->bi_io_vec + (unsigned long )iter.bi_idx)->bv_page; __constr_expr_0.bv_len = _min1___0 < _min2___0 ? _min1___0 : _min2___0; __constr_expr_0.bv_offset = (bio->bi_io_vec + (unsigned long )iter.bi_idx)->bv_offset + iter.bi_bvec_done; bvec = __constr_expr_0; goto ldv_34097; } else { } } i = 0; goto ldv_34101; ldv_34100: { tmp___1 = list_empty((struct list_head const *)(& dma_list) + (unsigned long )i); } if (tmp___1 == 0) { { ldv_spin_lock_bh_100(& (card->ctrl + (unsigned long )i)->queue_lock); (card->ctrl + (unsigned long )i)->stats.sw_q_depth = (card->ctrl + (unsigned long )i)->stats.sw_q_depth + (u32 )dma_cnt[i]; list_splice_tail((struct list_head *)(& dma_list) + (unsigned long )i, & (card->ctrl + (unsigned long )i)->queue); ldv_spin_unlock_bh_101(& (card->ctrl + (unsigned long )i)->queue_lock); queue_work((card->ctrl + (unsigned long )i)->issue_wq, & (card->ctrl + (unsigned long )i)->issue_dma_work); } } else { } i = i + 1; ldv_34101: ; if (i < card->n_targets) { goto ldv_34100; } else { } return (0); bvec_err: i = 0; goto ldv_34104; ldv_34103: { rsxx_cleanup_dma_queue(card->ctrl + (unsigned long )i, (struct list_head *)(& dma_list) + (unsigned long )i, 0U); i = i + 1; } ldv_34104: ; if (i < card->n_targets) { goto ldv_34103; } else { } return (st); } } int rsxx_hw_buffers_init(struct pci_dev *dev , struct rsxx_dma_ctrl *ctrl ) { { { ctrl->status.buf = pci_alloc_consistent(dev, 4096UL, & ctrl->status.dma_addr); ctrl->cmd.buf = pci_alloc_consistent(dev, 4096UL, & ctrl->cmd.dma_addr); } if ((unsigned long )ctrl->status.buf == (unsigned long )((void *)0) || (unsigned long )ctrl->cmd.buf == (unsigned long )((void *)0)) { return (-12); } else { } { __memset(ctrl->status.buf, 172, 4096UL); iowrite32((unsigned int )ctrl->status.dma_addr, ctrl->regmap + 48UL); iowrite32((unsigned int )(ctrl->status.dma_addr >> 32ULL), ctrl->regmap + 52UL); __memset(ctrl->cmd.buf, 131, 4096UL); iowrite32((unsigned int )ctrl->cmd.dma_addr, ctrl->regmap + 32UL); iowrite32((unsigned int )(ctrl->cmd.dma_addr >> 32ULL), ctrl->regmap + 36UL); ctrl->status.idx = ioread32(ctrl->regmap + 56UL); } if (ctrl->status.idx > 255U) { { dev_crit((struct device const *)(& dev->dev), "Failed reading status cnt x%x\n", ctrl->status.idx); } return (-22); } else { } { iowrite32(ctrl->status.idx, ctrl->regmap + 56UL); iowrite32(ctrl->status.idx, ctrl->regmap + 60UL); ctrl->cmd.idx = ioread32(ctrl->regmap + 40UL); } if (ctrl->cmd.idx > 255U) { { dev_crit((struct device const *)(& dev->dev), "Failed reading cmd cnt x%x\n", ctrl->status.idx); } return (-22); } else { } { iowrite32(ctrl->cmd.idx, ctrl->regmap + 40UL); iowrite32(ctrl->cmd.idx, ctrl->regmap + 44UL); } return (0); } } static int rsxx_dma_ctrl_init(struct pci_dev *dev , struct rsxx_dma_ctrl *ctrl ) { int i ; int st ; void *tmp ; struct lock_class_key __key ; struct lock_class_key __key___0 ; struct lock_class_key __key___1 ; struct lock_class_key __key___2 ; struct lock_class_key __key___3 ; char const *__lock_name ; struct workqueue_struct *tmp___0 ; struct lock_class_key __key___4 ; char const *__lock_name___0 ; struct workqueue_struct *tmp___1 ; struct lock_class_key __key___5 ; atomic_long_t __constr_expr_0 ; struct lock_class_key __key___6 ; atomic_long_t __constr_expr_1 ; { { __memset((void *)(& ctrl->stats), 0, 68UL); tmp = ldv_vmalloc_128(4160UL); ctrl->trackers = (struct dma_tracker_list *)tmp; } if ((unsigned long )ctrl->trackers == (unsigned long )((struct dma_tracker_list *)0)) { return (-12); } else { } (ctrl->trackers)->head = 0; i = 0; goto ldv_34117; ldv_34116: (ctrl->trackers)->list[i].next_tag = i + 1; (ctrl->trackers)->list[i].dma = (struct rsxx_dma *)0; i = i + 1; ldv_34117: ; if (i <= 254) { goto ldv_34116; } else { } { (ctrl->trackers)->list[254].next_tag = -1; spinlock_check(& (ctrl->trackers)->lock); __raw_spin_lock_init(& (ctrl->trackers)->lock.__annonCompField18.rlock, "&(&ctrl->trackers->lock)->rlock", & __key); spinlock_check(& ctrl->queue_lock); __raw_spin_lock_init(& ctrl->queue_lock.__annonCompField18.rlock, "&(&ctrl->queue_lock)->rlock", & __key___0); __mutex_init(& ctrl->work_lock, "&ctrl->work_lock", & __key___1); INIT_LIST_HEAD(& ctrl->queue); init_timer_key(& ctrl->activity_timer, 0U, "((&ctrl->activity_timer))", & __key___2); ctrl->activity_timer.function = & dma_engine_stalled; ctrl->activity_timer.data = (unsigned long )ctrl; __lock_name = "\"rsxx\"\"_issue\""; tmp___0 = __alloc_workqueue_key("rsxx_issue", 131074U, 1, & __key___3, __lock_name); ctrl->issue_wq = tmp___0; } if ((unsigned long )ctrl->issue_wq == (unsigned long )((struct workqueue_struct *)0)) { return (-12); } else { } { __lock_name___0 = "\"rsxx\"\"_done\""; tmp___1 = __alloc_workqueue_key("rsxx_done", 131074U, 1, & __key___4, __lock_name___0); ctrl->done_wq = tmp___1; } if ((unsigned long )ctrl->done_wq == (unsigned long )((struct workqueue_struct *)0)) { return (-12); } else { } { __init_work(& ctrl->issue_dma_work, 0); __constr_expr_0.counter = 137438953408L; ctrl->issue_dma_work.data = __constr_expr_0; lockdep_init_map(& ctrl->issue_dma_work.lockdep_map, "(&ctrl->issue_dma_work)", & __key___5, 0); INIT_LIST_HEAD(& ctrl->issue_dma_work.entry); ctrl->issue_dma_work.func = & rsxx_schedule_issue; __init_work(& ctrl->dma_done_work, 0); __constr_expr_1.counter = 137438953408L; ctrl->dma_done_work.data = __constr_expr_1; lockdep_init_map(& ctrl->dma_done_work.lockdep_map, "(&ctrl->dma_done_work)", & __key___6, 0); INIT_LIST_HEAD(& ctrl->dma_done_work.entry); ctrl->dma_done_work.func = & rsxx_schedule_done; st = rsxx_hw_buffers_init(dev, ctrl); } if (st != 0) { return (st); } else { } return (0); } } static int rsxx_dma_stripe_setup(struct rsxx_cardinfo *card , unsigned int stripe_size8 ) { bool tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; struct _ddebug descriptor ; long tmp___3 ; struct _ddebug descriptor___0 ; long tmp___4 ; struct _ddebug descriptor___1 ; long tmp___5 ; struct _ddebug descriptor___2 ; long tmp___6 ; struct _ddebug descriptor___3 ; long tmp___7 ; { { tmp = is_power_of_2((unsigned long )stripe_size8); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { dev_err((struct device const *)(& (card->dev)->dev), "stripe_size is NOT a power of 2!\n"); } return (-22); } else { } { card->_stripe.lower_mask = (u64 )(stripe_size8 - 1U); card->_stripe.upper_mask = ~ card->_stripe.lower_mask; tmp___1 = ffs(card->n_targets); card->_stripe.upper_shift = (u64 )(tmp___1 + -1); card->_stripe.target_mask = (u64 )(card->n_targets + -1); tmp___2 = ffs((int )stripe_size8); card->_stripe.target_shift = (u64 )(tmp___2 + -1); descriptor.modname = "rsxx"; descriptor.function = "rsxx_dma_stripe_setup"; descriptor.filename = "drivers/block/rsxx/dma.c"; descriptor.format = "_stripe.lower_mask = x%016llx\n"; descriptor.lineno = 881U; descriptor.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___3 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (card->dev)->dev), "_stripe.lower_mask = x%016llx\n", card->_stripe.lower_mask); } } else { } { descriptor___0.modname = "rsxx"; descriptor___0.function = "rsxx_dma_stripe_setup"; descriptor___0.filename = "drivers/block/rsxx/dma.c"; descriptor___0.format = "_stripe.upper_shift = x%016llx\n"; descriptor___0.lineno = 883U; descriptor___0.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___4 != 0L) { { __dynamic_dev_dbg(& descriptor___0, (struct device const *)(& (card->dev)->dev), "_stripe.upper_shift = x%016llx\n", card->_stripe.upper_shift); } } else { } { descriptor___1.modname = "rsxx"; descriptor___1.function = "rsxx_dma_stripe_setup"; descriptor___1.filename = "drivers/block/rsxx/dma.c"; descriptor___1.format = "_stripe.upper_mask = x%016llx\n"; descriptor___1.lineno = 885U; descriptor___1.flags = 0U; tmp___5 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___5 != 0L) { { __dynamic_dev_dbg(& descriptor___1, (struct device const *)(& (card->dev)->dev), "_stripe.upper_mask = x%016llx\n", card->_stripe.upper_mask); } } else { } { descriptor___2.modname = "rsxx"; descriptor___2.function = "rsxx_dma_stripe_setup"; descriptor___2.filename = "drivers/block/rsxx/dma.c"; descriptor___2.format = "_stripe.target_mask = x%016llx\n"; descriptor___2.lineno = 887U; descriptor___2.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___6 != 0L) { { __dynamic_dev_dbg(& descriptor___2, (struct device const *)(& (card->dev)->dev), "_stripe.target_mask = x%016llx\n", card->_stripe.target_mask); } } else { } { descriptor___3.modname = "rsxx"; descriptor___3.function = "rsxx_dma_stripe_setup"; descriptor___3.filename = "drivers/block/rsxx/dma.c"; descriptor___3.format = "_stripe.target_shift = x%016llx\n"; descriptor___3.lineno = 889U; descriptor___3.flags = 0U; tmp___7 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); } if (tmp___7 != 0L) { { __dynamic_dev_dbg(& descriptor___3, (struct device const *)(& (card->dev)->dev), "_stripe.target_shift = x%016llx\n", card->_stripe.target_shift); } } else { } return (0); } } int rsxx_dma_configure(struct rsxx_cardinfo *card ) { u32 intr_coal ; int tmp ; { { intr_coal = dma_intr_coal_val(card->config.data.intr_coal.mode, card->config.data.intr_coal.count, card->config.data.intr_coal.latency); iowrite32(intr_coal, card->regmap + 112UL); tmp = rsxx_dma_stripe_setup(card, card->config.data.stripe_size); } return (tmp); } } int rsxx_dma_setup(struct rsxx_cardinfo *card ) { unsigned long flags ; int st ; int i ; int tmp ; struct rsxx_dma_ctrl *ctrl ; { { _dev_info((struct device const *)(& (card->dev)->dev), "Initializing %d DMA targets\n", card->n_targets); i = 0; } goto ldv_34154; ldv_34153: (card->ctrl + (unsigned long )i)->regmap = card->regmap + (unsigned long )(i * 4096); i = i + 1; ldv_34154: ; if (i < card->n_targets) { goto ldv_34153; } else { } { card->dma_fault = 0U; rsxx_dma_queue_reset(card); i = 0; } goto ldv_34158; ldv_34157: { st = rsxx_dma_ctrl_init(card->dev, card->ctrl + (unsigned long )i); } if (st != 0) { goto failed_dma_setup; } else { } (card->ctrl + (unsigned long )i)->card = card; (card->ctrl + (unsigned long )i)->id = i; i = i + 1; ldv_34158: ; if (i < card->n_targets) { goto ldv_34157; } else { } card->scrub_hard = 1; if (card->config_valid != 0) { { rsxx_dma_configure(card); } } else { } i = 0; goto ldv_34161; ldv_34160: { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_129(& card->irq_lock); tmp = CR_INTR_DMA(i); rsxx_enable_ier_and_isr(card, (unsigned int )tmp); ldv_spin_unlock_irqrestore_99(& card->irq_lock, flags); i = i + 1; } ldv_34161: ; if (i < card->n_targets) { goto ldv_34160; } else { } return (0); failed_dma_setup: i = 0; goto ldv_34165; ldv_34164: ctrl = card->ctrl + (unsigned long )i; if ((unsigned long )ctrl->issue_wq != (unsigned long )((struct workqueue_struct *)0)) { { destroy_workqueue(ctrl->issue_wq); ctrl->issue_wq = (struct workqueue_struct *)0; } } else { } if ((unsigned long )ctrl->done_wq != (unsigned long )((struct workqueue_struct *)0)) { { destroy_workqueue(ctrl->done_wq); ctrl->done_wq = (struct workqueue_struct *)0; } } else { } if ((unsigned long )ctrl->trackers != (unsigned long )((struct dma_tracker_list *)0)) { { vfree((void const *)ctrl->trackers); } } else { } if ((unsigned long )ctrl->status.buf != (unsigned long )((void *)0)) { { pci_free_consistent(card->dev, 4096UL, ctrl->status.buf, ctrl->status.dma_addr); } } else { } if ((unsigned long )ctrl->cmd.buf != (unsigned long )((void *)0)) { { pci_free_consistent(card->dev, 4096UL, ctrl->cmd.buf, ctrl->cmd.dma_addr); } } else { } i = i + 1; ldv_34165: ; if (i < card->n_targets) { goto ldv_34164; } else { } return (st); } } int rsxx_dma_cancel(struct rsxx_dma_ctrl *ctrl ) { struct rsxx_dma *dma ; int i ; int cnt ; { cnt = 0; i = 0; goto ldv_34174; ldv_34173: { dma = get_tracker_dma(ctrl->trackers, i); } if ((unsigned long )dma != (unsigned long )((struct rsxx_dma *)0)) { { atomic_dec(& ctrl->stats.hw_q_depth); rsxx_complete_dma(ctrl, dma, 4U); push_tracker(ctrl->trackers, i); cnt = cnt + 1; } } else { } i = i + 1; ldv_34174: ; if (i <= 254) { goto ldv_34173; } else { } return (cnt); } } void rsxx_dma_destroy(struct rsxx_cardinfo *card ) { struct rsxx_dma_ctrl *ctrl ; int i ; int tmp ; { i = 0; goto ldv_34182; ldv_34181: ctrl = card->ctrl + (unsigned long )i; if ((unsigned long )ctrl->issue_wq != (unsigned long )((struct workqueue_struct *)0)) { { destroy_workqueue(ctrl->issue_wq); ctrl->issue_wq = (struct workqueue_struct *)0; } } else { } if ((unsigned long )ctrl->done_wq != (unsigned long )((struct workqueue_struct *)0)) { { destroy_workqueue(ctrl->done_wq); ctrl->done_wq = (struct workqueue_struct *)0; } } else { } { tmp = timer_pending((struct timer_list const *)(& ctrl->activity_timer)); } if (tmp != 0) { { ldv_del_timer_sync_131(& ctrl->activity_timer); } } else { } { ldv_spin_lock_bh_100(& ctrl->queue_lock); rsxx_cleanup_dma_queue(ctrl, & ctrl->queue, 1U); ldv_spin_unlock_bh_101(& ctrl->queue_lock); rsxx_dma_cancel(ctrl); vfree((void const *)ctrl->trackers); pci_free_consistent(card->dev, 4096UL, ctrl->status.buf, ctrl->status.dma_addr); pci_free_consistent(card->dev, 4096UL, ctrl->cmd.buf, ctrl->cmd.dma_addr); i = i + 1; } ldv_34182: ; if (i < card->n_targets) { goto ldv_34181; } else { } return; } } int rsxx_eeh_save_issued_dmas(struct rsxx_cardinfo *card ) { int i ; int j ; int cnt ; struct rsxx_dma *dma ; struct list_head *issued_dmas ; void *tmp ; unsigned int tmp___0 ; { { tmp = kzalloc((unsigned long )card->n_targets * 16UL, 208U); issued_dmas = (struct list_head *)tmp; } if ((unsigned long )issued_dmas == (unsigned long )((struct list_head *)0)) { return (-12); } else { } i = 0; goto ldv_34197; ldv_34196: { INIT_LIST_HEAD(issued_dmas + (unsigned long )i); cnt = 0; j = 0; } goto ldv_34194; ldv_34193: { dma = get_tracker_dma((card->ctrl + (unsigned long )i)->trackers, j); } if ((unsigned long )dma == (unsigned long )((struct rsxx_dma *)0)) { goto ldv_34192; } else { } if ((unsigned int )dma->cmd == 128U) { (card->ctrl + (unsigned long )i)->stats.writes_issued = (card->ctrl + (unsigned long )i)->stats.writes_issued - 1U; } else if ((unsigned int )dma->cmd == 112U) { (card->ctrl + (unsigned long )i)->stats.discards_issued = (card->ctrl + (unsigned long )i)->stats.discards_issued - 1U; } else { (card->ctrl + (unsigned long )i)->stats.reads_issued = (card->ctrl + (unsigned long )i)->stats.reads_issued - 1U; } if ((unsigned int )dma->cmd != 112U) { { tmp___0 = get_dma_size(dma); pci_unmap_page(card->dev, dma->dma_addr, (size_t )tmp___0, (unsigned int )dma->cmd == 128U ? 1 : 2); } } else { } { list_add_tail(& dma->list, issued_dmas + (unsigned long )i); push_tracker((card->ctrl + (unsigned long )i)->trackers, j); cnt = cnt + 1; } ldv_34192: j = j + 1; ldv_34194: ; if (j <= 254) { goto ldv_34193; } else { } { ldv_spin_lock_bh_100(& (card->ctrl + (unsigned long )i)->queue_lock); list_splice((struct list_head const *)issued_dmas + (unsigned long )i, & (card->ctrl + (unsigned long )i)->queue); atomic_sub(cnt, & (card->ctrl + (unsigned long )i)->stats.hw_q_depth); (card->ctrl + (unsigned long )i)->stats.sw_q_depth = (card->ctrl + (unsigned long )i)->stats.sw_q_depth + (u32 )cnt; (card->ctrl + (unsigned long )i)->e_cnt = 0U; ldv_spin_unlock_bh_101(& (card->ctrl + (unsigned long )i)->queue_lock); i = i + 1; } ldv_34197: ; if (i < card->n_targets) { goto ldv_34196; } else { } { kfree((void const *)issued_dmas); } return (0); } } int rsxx_dma_init(void) { { { rsxx_dma_pool = kmem_cache_create("rsxx_dma", 72UL, 8UL, 8192UL, (void (*)(void * ))0); } if ((unsigned long )rsxx_dma_pool == (unsigned long )((struct kmem_cache *)0)) { return (-12); } else { } return (0); } } void rsxx_dma_cleanup(void) { { { kmem_cache_destroy(rsxx_dma_pool); } return; } } __inline static void atomic_add(int i , atomic_t *v ) { { { ldv_linux_usb_dev_atomic_add(i, v); } return; } } __inline static void atomic_sub(int i , atomic_t *v ) { { { ldv_linux_usb_dev_atomic_sub(i, v); } return; } } __inline static void atomic_inc(atomic_t *v ) { { { ldv_linux_usb_dev_atomic_inc(v); } return; } } __inline static void atomic_dec(atomic_t *v ) { { { ldv_linux_usb_dev_atomic_dec(v); } return; } } __inline static void ldv_spin_lock_96___0(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_dma_tracker_list(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_97___0(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_dma_tracker_list(); spin_unlock(lock); } return; } } static int ldv_mod_timer_102(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static int ldv_mod_timer_110(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static int ldv_del_timer_sync_111(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_112(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_irq_lock_of_rsxx_cardinfo(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static int ldv_mod_timer_114(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static int ldv_del_timer_sync_115(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_116(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_irq_lock_of_rsxx_cardinfo(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv_mutex_lock_120(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_work_lock_of_rsxx_dma_ctrl(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_121(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_work_lock_of_rsxx_dma_ctrl(ldv_func_arg1); } return; } } static void ldv_mutex_lock_122(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_work_lock_of_rsxx_dma_ctrl(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_123(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_work_lock_of_rsxx_dma_ctrl(ldv_func_arg1); } return; } } static void *ldv_kmem_cache_alloc_124(struct kmem_cache *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } static void *ldv_kmem_cache_alloc_125(struct kmem_cache *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } static void *ldv_vmalloc_128(unsigned long ldv_func_arg1 ) { void *tmp ; { { ldv_check_alloc_nonatomic(); tmp = ldv_malloc_unknown_size(); } return (tmp); } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_129(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_irq_lock_of_rsxx_cardinfo(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static int ldv_del_timer_sync_131(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___7 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) ; bool ldv_in_interrupt_context(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) { bool tmp ; int tmp___0 ; { { tmp = ldv_in_interrupt_context(); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } { ldv_assert_linux_alloc_irq__wrong_flags(tmp___0 || flags == 32U); } return; } } void ldv_linux_alloc_irq_check_alloc_nonatomic(void) { bool tmp ; { { tmp = ldv_in_interrupt_context(); } if ((int )tmp) { { ldv_assert_linux_alloc_irq__nonatomic(0); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_linux_alloc_spinlock_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_linux_alloc_spinlock_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) ; int ldv_linux_alloc_usb_lock_lock = 1; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) { { if (ldv_linux_alloc_usb_lock_lock == 2) { { ldv_assert_linux_alloc_usb_lock__wrong_flags(flags == 16U || flags == 32U); } } else { } return; } } void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) { { { ldv_assert_linux_alloc_usb_lock__nonatomic(ldv_linux_alloc_usb_lock_lock == 1); } return; } } void ldv_linux_alloc_usb_lock_usb_lock_device(void) { { ldv_linux_alloc_usb_lock_lock = 2; return; } } int ldv_linux_alloc_usb_lock_usb_trylock_device(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_alloc_usb_lock_usb_lock_device_for_reset(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (0); } else { return (-1); } } else { return (-1); } } } void ldv_linux_alloc_usb_lock_usb_unlock_device(void) { { ldv_linux_alloc_usb_lock_lock = 1; return; } } void ldv_linux_usb_dev_atomic_add(int i , atomic_t *v ) { { v->counter = v->counter + i; return; } } void ldv_linux_usb_dev_atomic_sub(int i , atomic_t *v ) { { v->counter = v->counter - i; return; } } int ldv_linux_usb_dev_atomic_sub_and_test(int i , atomic_t *v ) { { v->counter = v->counter - i; if (v->counter != 0) { return (0); } else { } return (1); } } void ldv_linux_usb_dev_atomic_inc(atomic_t *v ) { { v->counter = v->counter + 1; return; } } void ldv_linux_usb_dev_atomic_dec(atomic_t *v ) { { v->counter = v->counter - 1; return; } } int ldv_linux_usb_dev_atomic_dec_and_test(atomic_t *v ) { { v->counter = v->counter - 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_inc_and_test(atomic_t *v ) { { v->counter = v->counter + 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_add_return(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter); } } int ldv_linux_usb_dev_atomic_add_negative(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter < 0); } } int ldv_linux_usb_dev_atomic_inc_short(short *v ) { { *v = (short )((unsigned int )((unsigned short )*v) + 1U); return ((int )*v); } } void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) ; void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) ; void *ldv_undef_ptr(void) ; int ldv_linux_arch_io_iomem = 0; void *ldv_linux_arch_io_io_mem_remap(void) { void *ptr ; void *tmp ; { { tmp = ldv_undef_ptr(); ptr = tmp; } if ((unsigned long )ptr != (unsigned long )((void *)0)) { ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem + 1; return (ptr); } else { } return (ptr); } } void ldv_linux_arch_io_io_mem_unmap(void) { { { ldv_assert_linux_arch_io__less_initial_decrement(ldv_linux_arch_io_iomem > 0); ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem - 1; } return; } } void ldv_linux_arch_io_check_final_state(void) { { { ldv_assert_linux_arch_io__more_initial_at_exit(ldv_linux_arch_io_iomem == 0); } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) ; void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) ; void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) ; static int ldv_linux_block_genhd_disk_state = 0; struct gendisk *ldv_linux_block_genhd_alloc_disk(void) { struct gendisk *res ; void *tmp ; { { tmp = ldv_undef_ptr(); res = (struct gendisk *)tmp; ldv_assert_linux_block_genhd__double_allocation(ldv_linux_block_genhd_disk_state == 0); } if ((unsigned long )res != (unsigned long )((struct gendisk *)0)) { ldv_linux_block_genhd_disk_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_genhd_add_disk(void) { { { ldv_assert_linux_block_genhd__use_before_allocation(ldv_linux_block_genhd_disk_state == 1); ldv_linux_block_genhd_disk_state = 2; } return; } } void ldv_linux_block_genhd_del_gendisk(void) { { { ldv_assert_linux_block_genhd__delete_before_add(ldv_linux_block_genhd_disk_state == 2); ldv_linux_block_genhd_disk_state = 1; } return; } } void ldv_linux_block_genhd_put_disk(struct gendisk *disk ) { { if ((unsigned long )disk != (unsigned long )((struct gendisk *)0)) { { ldv_assert_linux_block_genhd__free_before_allocation(ldv_linux_block_genhd_disk_state > 0); ldv_linux_block_genhd_disk_state = 0; } } else { } return; } } void ldv_linux_block_genhd_check_final_state(void) { { { ldv_assert_linux_block_genhd__more_initial_at_exit(ldv_linux_block_genhd_disk_state == 0); } return; } } void ldv_assert_linux_block_queue__double_allocation(int expr ) ; void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_queue__use_before_allocation(int expr ) ; static int ldv_linux_block_queue_queue_state = 0; struct request_queue *ldv_linux_block_queue_request_queue(void) { struct request_queue *res ; void *tmp ; { { tmp = ldv_undef_ptr(); res = (struct request_queue *)tmp; ldv_assert_linux_block_queue__double_allocation(ldv_linux_block_queue_queue_state == 0); } if ((unsigned long )res != (unsigned long )((struct request_queue *)0)) { ldv_linux_block_queue_queue_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_queue_blk_cleanup_queue(void) { { { ldv_assert_linux_block_queue__use_before_allocation(ldv_linux_block_queue_queue_state == 1); ldv_linux_block_queue_queue_state = 0; } return; } } void ldv_linux_block_queue_check_final_state(void) { { { ldv_assert_linux_block_queue__more_initial_at_exit(ldv_linux_block_queue_queue_state == 0); } return; } } void ldv_assert_linux_block_request__double_get(int expr ) ; void ldv_assert_linux_block_request__double_put(int expr ) ; void ldv_assert_linux_block_request__get_at_exit(int expr ) ; long ldv_is_err(void const *ptr ) ; int ldv_linux_block_request_blk_rq = 0; struct request *ldv_linux_block_request_blk_get_request(gfp_t mask ) { struct request *res ; void *tmp ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_undef_ptr(); res = (struct request *)tmp; } if ((mask == 16U || mask == 208U) || mask == 16U) { { ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); } } else { } if ((unsigned long )res != (unsigned long )((struct request *)0)) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } struct request *ldv_linux_block_request_blk_make_request(gfp_t mask ) { struct request *res ; void *tmp ; long tmp___0 ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_undef_ptr(); res = (struct request *)tmp; ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); tmp___0 = ldv_is_err((void const *)res); } if (tmp___0 == 0L) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } void ldv_linux_block_request_put_blk_rq(void) { { { ldv_assert_linux_block_request__double_put(ldv_linux_block_request_blk_rq == 1); ldv_linux_block_request_blk_rq = 0; } return; } } void ldv_linux_block_request_check_final_state(void) { { { ldv_assert_linux_block_request__get_at_exit(ldv_linux_block_request_blk_rq == 0); } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) ; void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) ; int ldv_undef_int_nonpositive(void) ; int ldv_linux_drivers_base_class_usb_gadget_class = 0; void *ldv_linux_drivers_base_class_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_undef_ptr(); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_got); } } int ldv_linux_drivers_base_class_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_reg); } } void ldv_linux_drivers_base_class_unregister_class(void) { { { ldv_assert_linux_drivers_base_class__double_deregistration(ldv_linux_drivers_base_class_usb_gadget_class == 1); ldv_linux_drivers_base_class_usb_gadget_class = 0; } return; } } void ldv_linux_drivers_base_class_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_drivers_base_class_unregister_class(); } return; } } void ldv_linux_drivers_base_class_check_final_state(void) { { { ldv_assert_linux_drivers_base_class__registered_at_exit(ldv_linux_drivers_base_class_usb_gadget_class == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2176UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) ; void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) ; int ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; int ldv_linux_fs_char_dev_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_fs_char_dev_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } } else { } return (is_reg); } } void ldv_linux_fs_char_dev_unregister_chrdev_region(void) { { { ldv_assert_linux_fs_char_dev__double_deregistration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 1); ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; } return; } } void ldv_linux_fs_char_dev_check_final_state(void) { { { ldv_assert_linux_fs_char_dev__registered_at_exit(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); } return; } } void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) ; void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) ; int ldv_linux_fs_sysfs_sysfs = 0; int ldv_linux_fs_sysfs_sysfs_create_group(void) { int res ; int tmp ; { { tmp = ldv_undef_int_nonpositive(); res = tmp; } if (res == 0) { ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs + 1; return (0); } else { } return (res); } } void ldv_linux_fs_sysfs_sysfs_remove_group(void) { { { ldv_assert_linux_fs_sysfs__less_initial_decrement(ldv_linux_fs_sysfs_sysfs > 0); ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs - 1; } return; } } void ldv_linux_fs_sysfs_check_final_state(void) { { { ldv_assert_linux_fs_sysfs__more_initial_at_exit(ldv_linux_fs_sysfs_sysfs == 0); } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) ; int ldv_linux_kernel_locking_rwlock_rlock = 1; int ldv_linux_kernel_locking_rwlock_wlock = 1; void ldv_linux_kernel_locking_rwlock_read_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; } return; } } void ldv_linux_kernel_locking_rwlock_read_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(ldv_linux_kernel_locking_rwlock_rlock > 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + -1; } return; } } void ldv_linux_kernel_locking_rwlock_write_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_wlock = 2; } return; } } void ldv_linux_kernel_locking_rwlock_write_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(ldv_linux_kernel_locking_rwlock_wlock != 1); ldv_linux_kernel_locking_rwlock_wlock = 1; } return; } } int ldv_linux_kernel_locking_rwlock_read_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_kernel_locking_rwlock_write_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_wlock = 2; return (1); } else { return (0); } } else { return (0); } } } void ldv_linux_kernel_locking_rwlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(ldv_linux_kernel_locking_rwlock_rlock == 1); ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(ldv_linux_kernel_locking_rwlock_wlock == 1); } return; } } void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) ; void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) ; int ldv_linux_kernel_module_module_refcounter = 1; void ldv_linux_kernel_module_module_get(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; } else { } return; } } int ldv_linux_kernel_module_try_module_get(struct module *module ) { int tmp ; { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { tmp = ldv_undef_int(); } if (tmp == 1) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; return (1); } else { return (0); } } else { } return (0); } } void ldv_linux_kernel_module_module_put(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { ldv_assert_linux_kernel_module__less_initial_decrement(ldv_linux_kernel_module_module_refcounter > 1); ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter - 1; } } else { } return; } } void ldv_linux_kernel_module_module_put_and_exit(void) { { { ldv_linux_kernel_module_module_put((struct module *)1); } LDV_LINUX_KERNEL_MODULE_STOP: ; goto LDV_LINUX_KERNEL_MODULE_STOP; } } unsigned int ldv_linux_kernel_module_module_refcount(void) { { return ((unsigned int )(ldv_linux_kernel_module_module_refcounter + -1)); } } void ldv_linux_kernel_module_check_final_state(void) { { { ldv_assert_linux_kernel_module__more_initial_at_exit(ldv_linux_kernel_module_module_refcounter == 1); } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_srcu_srcu_nested = 0; void ldv_linux_kernel_rcu_srcu_srcu_read_lock(void) { { ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested + 1; return; } } void ldv_linux_kernel_rcu_srcu_srcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_srcu__more_unlocks(ldv_linux_kernel_rcu_srcu_srcu_nested > 0); ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_srcu_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = 0; void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_lock_bh(void) { { ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh + 1; return; } } void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_unlock_bh(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh > 0); ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = 0; void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_lock_sched(void) { { ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched + 1; return; } } void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_unlock_sched(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched > 0); ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_rcu_nested = 0; void ldv_linux_kernel_rcu_update_lock_rcu_read_lock(void) { { ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested + 1; return; } } void ldv_linux_kernel_rcu_update_lock_rcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(ldv_linux_kernel_rcu_update_lock_rcu_nested > 0); ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } static bool __ldv_in_interrupt_context = 0; void ldv_switch_to_interrupt_context(void) { { __ldv_in_interrupt_context = 1; return; } } void ldv_switch_to_process_context(void) { { __ldv_in_interrupt_context = 0; return; } } bool ldv_in_interrupt_context(void) { { return (__ldv_in_interrupt_context); } } void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) ; extern int nr_cpu_ids ; unsigned long ldv_undef_ulong(void) ; unsigned long ldv_linux_lib_find_bit_find_next_bit(unsigned long size , unsigned long offset ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assert_linux_lib_find_bit__offset_out_of_range(offset <= size); ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } unsigned long ldv_linux_lib_find_bit_find_first_bit(unsigned long size ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } void ldv_linux_lib_find_bit_initialize(void) { { { ldv_assume(nr_cpu_ids > 0); } return; } } extern void ldv_after_alloc(void * ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) ; unsigned short ldv_linux_mmc_sdio_func_sdio_element = 0U; void ldv_linux_mmc_sdio_func_check_context(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__wrong_params((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); } return; } } void ldv_linux_mmc_sdio_func_sdio_claim_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__double_claim((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); ldv_linux_mmc_sdio_func_sdio_element = (unsigned short )((func->card)->host)->index; } return; } } void ldv_linux_mmc_sdio_func_sdio_release_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__release_without_claim((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); ldv_linux_mmc_sdio_func_sdio_element = 0U; } return; } } void ldv_linux_mmc_sdio_func_check_final_state(void) { { { ldv_assert_linux_mmc_sdio_func__unreleased_at_exit((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); } return; } } void ldv_assert_linux_net_register__wrong_return_value(int expr ) ; int ldv_pre_register_netdev(void) ; int ldv_linux_net_register_probe_state = 0; int ldv_pre_register_netdev(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_net_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_net_register_reset_error_counter(void) { { ldv_linux_net_register_probe_state = 0; return; } } void ldv_linux_net_register_check_return_value_probe(int retval ) { { if (ldv_linux_net_register_probe_state == 1) { { ldv_assert_linux_net_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_net_register_reset_error_counter(); } return; } } void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) ; void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) ; void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) ; int rtnllocknumber = 0; void ldv_linux_net_rtnetlink_past_rtnl_unlock(void) { { { ldv_assert_linux_net_rtnetlink__double_unlock(rtnllocknumber == 1); rtnllocknumber = 0; } return; } } void ldv_linux_net_rtnetlink_past_rtnl_lock(void) { { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); rtnllocknumber = 1; } return; } } void ldv_linux_net_rtnetlink_before_ieee80211_unregister_hw(void) { { { ldv_linux_net_rtnetlink_past_rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } int ldv_linux_net_rtnetlink_rtnl_is_locked(void) { int tmp ; { if (rtnllocknumber != 0) { return (rtnllocknumber); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_net_rtnetlink_rtnl_trylock(void) { int tmp ; { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); tmp = ldv_linux_net_rtnetlink_rtnl_is_locked(); } if (tmp == 0) { rtnllocknumber = 1; return (1); } else { return (0); } } } void ldv_linux_net_rtnetlink_check_final_state(void) { { { ldv_assert_linux_net_rtnetlink__lock_on_exit(rtnllocknumber == 0); } return; } } void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) ; void ldv_assert_linux_net_sock__double_release(int expr ) ; int locksocknumber = 0; void ldv_linux_net_sock_past_lock_sock_nested(void) { { locksocknumber = locksocknumber + 1; return; } } bool ldv_linux_net_sock_lock_sock_fast(void) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { locksocknumber = locksocknumber + 1; return (1); } else { } return (0); } } void ldv_linux_net_sock_unlock_sock_fast(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_before_release_sock(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_check_final_state(void) { { { ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(locksocknumber == 0); } return; } } void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) ; int ldv_linux_usb_coherent_coherent_state = 0; void *ldv_linux_usb_coherent_usb_alloc_coherent(void) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return (arbitrary_memory); } else { } ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + 1; return (arbitrary_memory); } } void ldv_linux_usb_coherent_usb_free_coherent(void *addr ) { { if ((unsigned long )addr != (unsigned long )((void *)0)) { { ldv_assert_linux_usb_coherent__less_initial_decrement(ldv_linux_usb_coherent_coherent_state > 0); ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + -1; } } else { } return; } } void ldv_linux_usb_coherent_check_final_state(void) { { { ldv_assert_linux_usb_coherent__more_initial_at_exit(ldv_linux_usb_coherent_coherent_state == 0); } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) ; void ldv_assert_linux_usb_dev__probe_failed(int expr ) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) ; ldv_map LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS ; struct usb_device *ldv_linux_usb_dev_usb_get_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0 ? LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + 1 : 1; } else { } return (dev); } } void ldv_linux_usb_dev_usb_put_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { { ldv_assert_linux_usb_dev__unincremented_counter_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0); ldv_assert_linux_usb_dev__less_initial_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 0); } if (LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 1) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + -1; } else { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; } } else { } return; } } void ldv_linux_usb_dev_check_return_value_probe(int retval ) { { if (retval != 0) { { ldv_assert_linux_usb_dev__probe_failed(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } } else { } return; } } void ldv_linux_usb_dev_initialize(void) { { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; return; } } void ldv_linux_usb_dev_check_final_state(void) { { { ldv_assert_linux_usb_dev__more_initial_at_exit(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) ; void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) ; int ldv_linux_usb_gadget_usb_gadget = 0; void *ldv_linux_usb_gadget_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_undef_ptr(); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_got); } } int ldv_linux_usb_gadget_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_class(void) { { { ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_linux_usb_gadget_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_usb_gadget_unregister_class(); } return; } } int ldv_linux_usb_gadget_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_usb_gadget_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_chrdev_region(void) { { { ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } int ldv_linux_usb_gadget_register_usb_gadget(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__double_usb_gadget_registration(ldv_linux_usb_gadget_usb_gadget == 0); ldv_linux_usb_gadget_usb_gadget = 1; } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_usb_gadget(void) { { { ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(ldv_linux_usb_gadget_usb_gadget == 1); ldv_linux_usb_gadget_usb_gadget = 0; } return; } } void ldv_linux_usb_gadget_check_final_state(void) { { { ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_assert_linux_usb_register__wrong_return_value(int expr ) ; int ldv_pre_usb_register_driver(void) ; int ldv_linux_usb_register_probe_state = 0; int ldv_pre_usb_register_driver(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_usb_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_usb_register_reset_error_counter(void) { { ldv_linux_usb_register_probe_state = 0; return; } } void ldv_linux_usb_register_check_return_value_probe(int retval ) { { if (ldv_linux_usb_register_probe_state == 1) { { ldv_assert_linux_usb_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_usb_register_reset_error_counter(); } return; } } void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) ; int ldv_linux_usb_urb_urb_state = 0; struct urb *ldv_linux_usb_urb_usb_alloc_urb(void) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return ((struct urb *)arbitrary_memory); } else { } ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + 1; return ((struct urb *)arbitrary_memory); } } void ldv_linux_usb_urb_usb_free_urb(struct urb *urb ) { { if ((unsigned long )urb != (unsigned long )((struct urb *)0)) { { ldv_assert_linux_usb_urb__less_initial_decrement(ldv_linux_usb_urb_urb_state > 0); ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + -1; } } else { } return; } } void ldv_linux_usb_urb_check_final_state(void) { { { ldv_assert_linux_usb_urb__more_initial_at_exit(ldv_linux_usb_urb_urb_state == 0); } return; } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *external_allocated_data(void) ; void *ldv_calloc_unknown_size(void) ; void *ldv_zalloc_unknown_size(void) ; void *ldv_xmalloc_unknown_size(size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; extern void *memset(void * , int , size_t ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_malloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; memset(res, 0, 8UL); ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc_unknown_size(void) { void *tmp ; { { tmp = ldv_calloc_unknown_size(); } return (tmp); } } void *ldv_xmalloc_unknown_size(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } int ldv_undef_int_negative(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { { tmp = __VERIFIER_nondet_pointer(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) ; ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_dev_lock_of_rsxx_cardinfo ; void ldv_linux_kernel_locking_mutex_mutex_lock_dev_lock_of_rsxx_cardinfo(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_dev_lock_of_rsxx_cardinfo); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_dev_lock_of_rsxx_cardinfo = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_dev_lock_of_rsxx_cardinfo(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_dev_lock_of_rsxx_cardinfo); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_dev_lock_of_rsxx_cardinfo = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_dev_lock_of_rsxx_cardinfo(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_dev_lock_of_rsxx_cardinfo) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_dev_lock_of_rsxx_cardinfo(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_dev_lock_of_rsxx_cardinfo); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_dev_lock_of_rsxx_cardinfo(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_dev_lock_of_rsxx_cardinfo = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_dev_lock_of_rsxx_cardinfo(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_dev_lock_of_rsxx_cardinfo(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_dev_lock_of_rsxx_cardinfo(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_dev_lock_of_rsxx_cardinfo); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_dev_lock_of_rsxx_cardinfo = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode ; void ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock ; void ldv_linux_kernel_locking_mutex_mutex_lock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_lock(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device ; void ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_reset_lock_of_NOT_ARG_SIGN ; void ldv_linux_kernel_locking_mutex_mutex_lock_reset_lock_of_NOT_ARG_SIGN(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_reset_lock_of_NOT_ARG_SIGN); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_reset_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_reset_lock_of_NOT_ARG_SIGN(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_reset_lock_of_NOT_ARG_SIGN); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_reset_lock_of_NOT_ARG_SIGN = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_reset_lock_of_NOT_ARG_SIGN(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_reset_lock_of_NOT_ARG_SIGN) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_reset_lock_of_NOT_ARG_SIGN(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_reset_lock_of_NOT_ARG_SIGN); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_reset_lock_of_NOT_ARG_SIGN(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_reset_lock_of_NOT_ARG_SIGN = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_reset_lock_of_NOT_ARG_SIGN(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_reset_lock_of_NOT_ARG_SIGN(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_reset_lock_of_NOT_ARG_SIGN(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_reset_lock_of_NOT_ARG_SIGN); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_reset_lock_of_NOT_ARG_SIGN = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_work_lock_of_rsxx_dma_ctrl ; void ldv_linux_kernel_locking_mutex_mutex_lock_work_lock_of_rsxx_dma_ctrl(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_work_lock_of_rsxx_dma_ctrl); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_work_lock_of_rsxx_dma_ctrl = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_work_lock_of_rsxx_dma_ctrl(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_work_lock_of_rsxx_dma_ctrl); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_work_lock_of_rsxx_dma_ctrl = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_work_lock_of_rsxx_dma_ctrl(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_work_lock_of_rsxx_dma_ctrl) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_work_lock_of_rsxx_dma_ctrl(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_work_lock_of_rsxx_dma_ctrl); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_work_lock_of_rsxx_dma_ctrl(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_work_lock_of_rsxx_dma_ctrl = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_work_lock_of_rsxx_dma_ctrl(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_work_lock_of_rsxx_dma_ctrl(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_work_lock_of_rsxx_dma_ctrl(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_work_lock_of_rsxx_dma_ctrl); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_work_lock_of_rsxx_dma_ctrl = 0; } return; } } void ldv_linux_kernel_locking_mutex_initialize(void) { { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_dev_lock_of_rsxx_cardinfo = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_reset_lock_of_NOT_ARG_SIGN = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_work_lock_of_rsxx_dma_ctrl = 0; return; } } void ldv_linux_kernel_locking_mutex_check_final_state(void) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_dev_lock_of_rsxx_cardinfo); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_reset_lock_of_NOT_ARG_SIGN); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_work_lock_of_rsxx_dma_ctrl); } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_irq_lock_of_rsxx_cardinfo = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_irq_lock_of_rsxx_cardinfo(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_irq_lock_of_rsxx_cardinfo == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_irq_lock_of_rsxx_cardinfo == 1); ldv_linux_kernel_locking_spinlock_spin_irq_lock_of_rsxx_cardinfo = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_irq_lock_of_rsxx_cardinfo(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_irq_lock_of_rsxx_cardinfo == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_irq_lock_of_rsxx_cardinfo == 2); ldv_linux_kernel_locking_spinlock_spin_irq_lock_of_rsxx_cardinfo = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_irq_lock_of_rsxx_cardinfo(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_irq_lock_of_rsxx_cardinfo == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_irq_lock_of_rsxx_cardinfo == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_irq_lock_of_rsxx_cardinfo = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_irq_lock_of_rsxx_cardinfo(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_irq_lock_of_rsxx_cardinfo == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_irq_lock_of_rsxx_cardinfo == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_irq_lock_of_rsxx_cardinfo(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_irq_lock_of_rsxx_cardinfo == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_irq_lock_of_rsxx_cardinfo(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_irq_lock_of_rsxx_cardinfo(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_irq_lock_of_rsxx_cardinfo(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_irq_lock_of_rsxx_cardinfo(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_irq_lock_of_rsxx_cardinfo == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_irq_lock_of_rsxx_cardinfo == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_irq_lock_of_rsxx_cardinfo = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_linux_kernel_locking_spinlock_spin_lock = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_linux_kernel_locking_spinlock_spin_lock = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_dma_tracker_list = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_dma_tracker_list(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_dma_tracker_list == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_dma_tracker_list == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_dma_tracker_list = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_dma_tracker_list(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_dma_tracker_list == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_dma_tracker_list == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_dma_tracker_list = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_dma_tracker_list(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_dma_tracker_list == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_dma_tracker_list == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_dma_tracker_list = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_dma_tracker_list(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_dma_tracker_list == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_dma_tracker_list == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_dma_tracker_list(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_dma_tracker_list == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_dma_tracker_list(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_dma_tracker_list(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_dma_tracker_list(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_dma_tracker_list(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_dma_tracker_list == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_dma_tracker_list == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_dma_tracker_list = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_ptl = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_linux_kernel_locking_spinlock_spin_ptl = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_linux_kernel_locking_spinlock_spin_ptl = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_rsxx_dma_ctrl = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_queue_lock_of_rsxx_dma_ctrl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_rsxx_dma_ctrl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_rsxx_dma_ctrl == 1); ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_rsxx_dma_ctrl = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_queue_lock_of_rsxx_dma_ctrl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_rsxx_dma_ctrl == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_rsxx_dma_ctrl == 2); ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_rsxx_dma_ctrl = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_queue_lock_of_rsxx_dma_ctrl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_rsxx_dma_ctrl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_rsxx_dma_ctrl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_rsxx_dma_ctrl = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_queue_lock_of_rsxx_dma_ctrl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_rsxx_dma_ctrl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_rsxx_dma_ctrl == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_queue_lock_of_rsxx_dma_ctrl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_rsxx_dma_ctrl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_queue_lock_of_rsxx_dma_ctrl(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_queue_lock_of_rsxx_dma_ctrl(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_queue_lock_of_rsxx_dma_ctrl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_queue_lock_of_rsxx_dma_ctrl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_rsxx_dma_ctrl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_rsxx_dma_ctrl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_rsxx_dma_ctrl = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_rsxx_ida_lock = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_rsxx_ida_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_rsxx_ida_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_rsxx_ida_lock == 1); ldv_linux_kernel_locking_spinlock_spin_rsxx_ida_lock = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_rsxx_ida_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_rsxx_ida_lock == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_rsxx_ida_lock == 2); ldv_linux_kernel_locking_spinlock_spin_rsxx_ida_lock = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_rsxx_ida_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_rsxx_ida_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_rsxx_ida_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_rsxx_ida_lock = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_rsxx_ida_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_rsxx_ida_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_rsxx_ida_lock == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_rsxx_ida_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_rsxx_ida_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_rsxx_ida_lock(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_rsxx_ida_lock(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_rsxx_ida_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_rsxx_ida_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_rsxx_ida_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_rsxx_ida_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_rsxx_ida_lock = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } void ldv_linux_kernel_locking_spinlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_irq_lock_of_rsxx_cardinfo == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_dma_tracker_list == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_rsxx_dma_ctrl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_rsxx_ida_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_irq_lock_of_rsxx_cardinfo == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_dma_tracker_list == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_queue_lock_of_rsxx_dma_ctrl == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_rsxx_ida_lock == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2) { return (1); } else { } return (0); } } void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) ; void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) ; static int ldv_linux_kernel_sched_completion_completion_cmd_done = 0; void ldv_linux_kernel_sched_completion_init_completion_cmd_done(void) { { ldv_linux_kernel_sched_completion_completion_cmd_done = 1; return; } } void ldv_linux_kernel_sched_completion_init_completion_macro_cmd_done(void) { { { ldv_assert_linux_kernel_sched_completion__double_init(ldv_linux_kernel_sched_completion_completion_cmd_done != 0); ldv_linux_kernel_sched_completion_completion_cmd_done = 1; } return; } } void ldv_linux_kernel_sched_completion_wait_for_completion_cmd_done(void) { { { ldv_assert_linux_kernel_sched_completion__wait_without_init(ldv_linux_kernel_sched_completion_completion_cmd_done != 0); ldv_linux_kernel_sched_completion_completion_cmd_done = 2; } return; } } static int ldv_linux_kernel_sched_completion_completion_cmd_done_of_creg_completion = 0; void ldv_linux_kernel_sched_completion_init_completion_cmd_done_of_creg_completion(void) { { ldv_linux_kernel_sched_completion_completion_cmd_done_of_creg_completion = 1; return; } } void ldv_linux_kernel_sched_completion_init_completion_macro_cmd_done_of_creg_completion(void) { { { ldv_assert_linux_kernel_sched_completion__double_init(ldv_linux_kernel_sched_completion_completion_cmd_done_of_creg_completion != 0); ldv_linux_kernel_sched_completion_completion_cmd_done_of_creg_completion = 1; } return; } } void ldv_linux_kernel_sched_completion_wait_for_completion_cmd_done_of_creg_completion(void) { { { ldv_assert_linux_kernel_sched_completion__wait_without_init(ldv_linux_kernel_sched_completion_completion_cmd_done_of_creg_completion != 0); ldv_linux_kernel_sched_completion_completion_cmd_done_of_creg_completion = 2; } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) ; void ldv_assert_linux_lib_idr__double_init(int expr ) ; void ldv_assert_linux_lib_idr__more_at_exit(int expr ) ; void ldv_assert_linux_lib_idr__not_initialized(int expr ) ; static int ldv_linux_lib_idr_idr = 0; void ldv_linux_lib_idr_idr_init(void) { { { ldv_assert_linux_lib_idr__double_init(ldv_linux_lib_idr_idr == 0); ldv_linux_lib_idr_idr = 1; } return; } } void ldv_linux_lib_idr_idr_alloc(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_find(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_remove(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_destroy(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 3; } return; } } void ldv_linux_lib_idr_check_final_state(void) { { { ldv_assert_linux_lib_idr__more_at_exit(ldv_linux_lib_idr_idr == 0 || ldv_linux_lib_idr_idr == 3); } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_lib_idr__double_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__not_initialized(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__more_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_register__wrong_return_value(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_sock__double_release(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__probe_failed(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_request__double_get(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_request__double_put(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_request__get_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_queue__double_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_queue__use_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_register__wrong_return_value(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } }