/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef unsigned long uintptr_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s16 int16_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u16 uint16_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct class; struct device; struct completion; struct gendisk; struct module; struct mutex; struct request_queue; struct request; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_10 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_11 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_9 { struct __anonstruct____missing_field_name_10 __annonCompField5 ; struct __anonstruct____missing_field_name_11 __annonCompField6 ; }; struct desc_struct { union __anonunion____missing_field_name_9 __annonCompField7 ; }; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_12 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_12 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_13 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_13 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; typedef void (*ctor_fn_t)(void); struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned char flags ; }; struct file_operations; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_16 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_16 __annonCompField8 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct static_key; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_21 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_22 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_20 { struct __anonstruct____missing_field_name_21 __annonCompField12 ; struct __anonstruct____missing_field_name_22 __annonCompField13 ; }; union __anonunion____missing_field_name_23 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_20 __annonCompField14 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_23 __annonCompField15 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndreg { u64 lower_bound ; u64 upper_bound ; }; struct bndcsr { u64 bndcfgu ; u64 bndstatus ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndreg bndreg[4U] ; struct bndcsr bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_27 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_26 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_27 __annonCompField17 ; }; struct spinlock { union __anonunion____missing_field_name_26 __annonCompField18 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_28 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_28 rwlock_t; struct ldv_thread; struct optimistic_spin_queue { atomic_t tail ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct compat_timespec; struct __anonstruct_futex_30 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_31 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_32 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_29 { struct __anonstruct_futex_30 futex ; struct __anonstruct_nanosleep_31 nanosleep ; struct __anonstruct_poll_32 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_29 __annonCompField19 ; }; typedef int pao_T__; typedef int pao_T_____0; struct jump_entry; struct static_key_mod; struct static_key { atomic_t enabled ; struct jump_entry *entries ; struct static_key_mod *next ; }; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_45 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_45 seqlock_t; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; union __anonunion____missing_field_name_46 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_46 __annonCompField20 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_47 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_47 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct user_namespace; struct __anonstruct_kuid_t_48 { uid_t val ; }; typedef struct __anonstruct_kuid_t_48 kuid_t; struct __anonstruct_kgid_t_49 { gid_t val ; }; typedef struct __anonstruct_kgid_t_49 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_50 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_50 nodemask_t; struct path; struct inode; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; }; struct ratelimit_state { raw_spinlock_t lock ; int interval ; int burst ; int printed ; int missed ; unsigned long begin ; }; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct __anonstruct_mm_context_t_115 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_115 mm_context_t; enum xen_domain_type { XEN_NATIVE = 0, XEN_PV_DOMAIN = 1, XEN_HVM_DOMAIN = 2 } ; typedef uint16_t domid_t; struct bio_vec; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct call_single_data { struct llist_node llist ; void (*func)(void * ) ; void *info ; u16 flags ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct cdev { struct kobject kobj ; struct module *owner ; struct file_operations const *ops ; struct list_head list ; dev_t dev ; unsigned int count ; }; enum iio_chan_type { IIO_VOLTAGE = 0, IIO_CURRENT = 1, IIO_POWER = 2, IIO_ACCEL = 3, IIO_ANGL_VEL = 4, IIO_MAGN = 5, IIO_LIGHT = 6, IIO_INTENSITY = 7, IIO_PROXIMITY = 8, IIO_TEMP = 9, IIO_INCLI = 10, IIO_ROT = 11, IIO_ANGL = 12, IIO_TIMESTAMP = 13, IIO_CAPACITANCE = 14, IIO_ALTVOLTAGE = 15, IIO_CCT = 16, IIO_PRESSURE = 17, IIO_HUMIDITYRELATIVE = 18, IIO_ACTIVITY = 19, IIO_STEPS = 20, IIO_ENERGY = 21, IIO_DISTANCE = 22, IIO_VELOCITY = 23 } ; enum iio_event_type { IIO_EV_TYPE_THRESH = 0, IIO_EV_TYPE_MAG = 1, IIO_EV_TYPE_ROC = 2, IIO_EV_TYPE_THRESH_ADAPTIVE = 3, IIO_EV_TYPE_MAG_ADAPTIVE = 4, IIO_EV_TYPE_CHANGE = 5 } ; enum iio_event_info { IIO_EV_INFO_ENABLE = 0, IIO_EV_INFO_VALUE = 1, IIO_EV_INFO_HYSTERESIS = 2, IIO_EV_INFO_PERIOD = 3 } ; enum iio_event_direction { IIO_EV_DIR_EITHER = 0, IIO_EV_DIR_RISING = 1, IIO_EV_DIR_FALLING = 2, IIO_EV_DIR_NONE = 3 } ; typedef unsigned long kernel_ulong_t; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; enum fwnode_type { FWNODE_INVALID = 0, FWNODE_OF = 1, FWNODE_ACPI = 2 } ; struct fwnode_handle { enum fwnode_type type ; }; typedef u32 phandle; struct property { char *name ; int length ; void *value ; struct property *next ; unsigned long _flags ; unsigned int unique_id ; struct bin_attribute attr ; }; struct device_node { char const *name ; char const *type ; phandle phandle ; char const *full_name ; struct fwnode_handle fwnode ; struct property *properties ; struct property *deadprops ; struct device_node *parent ; struct device_node *child ; struct device_node *sibling ; struct kobject kobj ; unsigned long _flags ; void *data ; }; struct of_phandle_args { struct device_node *np ; int args_count ; uint32_t args[16U] ; }; enum iio_shared_by { IIO_SEPARATE = 0, IIO_SHARED_BY_TYPE = 1, IIO_SHARED_BY_DIR = 2, IIO_SHARED_BY_ALL = 3 } ; enum iio_endian { IIO_CPU = 0, IIO_BE = 1, IIO_LE = 2 } ; struct iio_chan_spec; struct iio_dev; struct iio_chan_spec_ext_info { char const *name ; enum iio_shared_by shared ; ssize_t (*read)(struct iio_dev * , uintptr_t , struct iio_chan_spec const * , char * ) ; ssize_t (*write)(struct iio_dev * , uintptr_t , struct iio_chan_spec const * , char const * , size_t ) ; uintptr_t private ; }; struct iio_event_spec { enum iio_event_type type ; enum iio_event_direction dir ; unsigned long mask_separate ; unsigned long mask_shared_by_type ; unsigned long mask_shared_by_dir ; unsigned long mask_shared_by_all ; }; struct __anonstruct_scan_type_145 { char sign ; u8 realbits ; u8 storagebits ; u8 shift ; u8 repeat ; enum iio_endian endianness ; }; struct iio_chan_spec { enum iio_chan_type type ; int channel ; int channel2 ; unsigned long address ; int scan_index ; struct __anonstruct_scan_type_145 scan_type ; long info_mask_separate ; long info_mask_shared_by_type ; long info_mask_shared_by_dir ; long info_mask_shared_by_all ; struct iio_event_spec const *event_spec ; unsigned int num_event_specs ; struct iio_chan_spec_ext_info const *ext_info ; char const *extend_name ; char const *datasheet_name ; unsigned char modified : 1 ; unsigned char indexed : 1 ; unsigned char output : 1 ; unsigned char differential : 1 ; }; struct iio_trigger; struct iio_info { struct module *driver_module ; struct attribute_group *event_attrs ; struct attribute_group const *attrs ; int (*read_raw)(struct iio_dev * , struct iio_chan_spec const * , int * , int * , long ) ; int (*read_raw_multi)(struct iio_dev * , struct iio_chan_spec const * , int , int * , int * , long ) ; int (*write_raw)(struct iio_dev * , struct iio_chan_spec const * , int , int , long ) ; int (*write_raw_get_fmt)(struct iio_dev * , struct iio_chan_spec const * , long ) ; int (*read_event_config)(struct iio_dev * , struct iio_chan_spec const * , enum iio_event_type , enum iio_event_direction ) ; int (*write_event_config)(struct iio_dev * , struct iio_chan_spec const * , enum iio_event_type , enum iio_event_direction , int ) ; int (*read_event_value)(struct iio_dev * , struct iio_chan_spec const * , enum iio_event_type , enum iio_event_direction , enum iio_event_info , int * , int * ) ; int (*write_event_value)(struct iio_dev * , struct iio_chan_spec const * , enum iio_event_type , enum iio_event_direction , enum iio_event_info , int , int ) ; int (*validate_trigger)(struct iio_dev * , struct iio_trigger * ) ; int (*update_scan_mode)(struct iio_dev * , unsigned long const * ) ; int (*debugfs_reg_access)(struct iio_dev * , unsigned int , unsigned int , unsigned int * ) ; int (*of_xlate)(struct iio_dev * , struct of_phandle_args const * ) ; }; struct iio_buffer_setup_ops { int (*preenable)(struct iio_dev * ) ; int (*postenable)(struct iio_dev * ) ; int (*predisable)(struct iio_dev * ) ; int (*postdisable)(struct iio_dev * ) ; bool (*validate_scan_mask)(struct iio_dev * , unsigned long const * ) ; }; struct iio_event_interface; struct iio_buffer; struct iio_poll_func; struct iio_dev { int id ; int modes ; int currentmode ; struct device dev ; struct iio_event_interface *event_interface ; struct iio_buffer *buffer ; struct list_head buffer_list ; int scan_bytes ; struct mutex mlock ; unsigned long const *available_scan_masks ; unsigned int masklength ; unsigned long const *active_scan_mask ; bool scan_timestamp ; unsigned int scan_index_timestamp ; struct iio_trigger *trig ; struct iio_poll_func *pollfunc ; struct iio_chan_spec const *channels ; int num_channels ; struct list_head channel_attr_list ; struct attribute_group chan_attr_group ; char const *name ; struct iio_info const *info ; struct mutex info_exist_lock ; struct iio_buffer_setup_ops const *setup_ops ; struct cdev chrdev ; struct attribute_group const *groups[7U] ; int groupcounter ; unsigned long flags ; struct dentry *debugfs_dentry ; unsigned int cached_reg_addr ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct exception_table_entry { int insn ; int fixup ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int in_hrtirq ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_156 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_157 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_155 { struct __anonstruct____missing_field_name_156 __annonCompField37 ; struct __anonstruct____missing_field_name_157 __annonCompField38 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_155 __annonCompField39 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; struct mem_cgroup; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_158 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_160 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_164 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_163 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_164 __annonCompField42 ; int units ; }; struct __anonstruct____missing_field_name_162 { union __anonunion____missing_field_name_163 __annonCompField43 ; atomic_t _count ; }; union __anonunion____missing_field_name_161 { unsigned long counters ; struct __anonstruct____missing_field_name_162 __annonCompField44 ; unsigned int active ; }; struct __anonstruct____missing_field_name_159 { union __anonunion____missing_field_name_160 __annonCompField41 ; union __anonunion____missing_field_name_161 __annonCompField45 ; }; struct __anonstruct____missing_field_name_166 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_167 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_165 { struct list_head lru ; struct __anonstruct____missing_field_name_166 __annonCompField47 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_167 __annonCompField48 ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_168 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_158 __annonCompField40 ; struct __anonstruct____missing_field_name_159 __annonCompField46 ; union __anonunion____missing_field_name_165 __annonCompField49 ; union __anonunion____missing_field_name_168 __annonCompField50 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_169 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_169 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; typedef unsigned long cputime_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct user_struct; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_171 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_171 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_173 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_174 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_175 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_176 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_178 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_177 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_178 _addr_bnd ; }; struct __anonstruct__sigpoll_179 { long _band ; int _fd ; }; struct __anonstruct__sigsys_180 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_172 { int _pad[28U] ; struct __anonstruct__kill_173 _kill ; struct __anonstruct__timer_174 _timer ; struct __anonstruct__rt_175 _rt ; struct __anonstruct__sigchld_176 _sigchld ; struct __anonstruct__sigfault_177 _sigfault ; struct __anonstruct__sigpoll_179 _sigpoll ; struct __anonstruct__sigsys_180 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_172 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct cred; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_185 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_186 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_188 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_187 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_188 __annonCompField55 ; }; union __anonunion_type_data_189 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_191 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_190 { union __anonunion_payload_191 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_185 __annonCompField53 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_186 __annonCompField54 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_187 __annonCompField56 ; union __anonunion_type_data_189 type_data ; union __anonunion____missing_field_name_190 __annonCompField57 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct io_context; struct pipe_inode_info; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned char brk_randomized : 1 ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_197 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_196 { struct __anonstruct____missing_field_name_197 __annonCompField61 ; }; struct lockref { union __anonunion____missing_field_name_196 __annonCompField62 ; }; struct vfsmount; struct __anonstruct____missing_field_name_199 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_198 { struct __anonstruct____missing_field_name_199 __annonCompField63 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_198 __annonCompField64 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_200 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_200 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct __anonstruct____missing_field_name_202 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_201 { struct __anonstruct____missing_field_name_202 __annonCompField65 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_201 __annonCompField66 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct bio_set; struct bio; struct bio_integrity_payload; struct block_device; struct cgroup_subsys_state; typedef void bio_end_io_t(struct bio * , int ); struct bio_vec { struct page *bv_page ; unsigned int bv_len ; unsigned int bv_offset ; }; struct bvec_iter { sector_t bi_sector ; unsigned int bi_size ; unsigned int bi_idx ; unsigned int bi_bvec_done ; }; union __anonunion____missing_field_name_203 { struct bio_integrity_payload *bi_integrity ; }; struct bio { struct bio *bi_next ; struct block_device *bi_bdev ; unsigned long bi_flags ; unsigned long bi_rw ; struct bvec_iter bi_iter ; unsigned int bi_phys_segments ; unsigned int bi_seg_front_size ; unsigned int bi_seg_back_size ; atomic_t bi_remaining ; bio_end_io_t *bi_end_io ; void *bi_private ; struct io_context *bi_ioc ; struct cgroup_subsys_state *bi_css ; union __anonunion____missing_field_name_203 __annonCompField67 ; unsigned short bi_vcnt ; unsigned short bi_max_vecs ; atomic_t bi_cnt ; struct bio_vec *bi_io_vec ; struct bio_set *bi_pool ; struct bio_vec bi_inline_vecs[0U] ; }; struct export_operations; struct hd_geometry; struct iovec; struct nameidata; struct kiocb; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iov_iter; struct vm_fault; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_204 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_204 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_205 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_205 __annonCompField68 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; struct writeback_control; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct hd_struct; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_208 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_209 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; union __anonunion____missing_field_name_210 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_208 __annonCompField69 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_209 __annonCompField70 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_210 __annonCompField71 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_211 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_211 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_get_owner)(struct file_lock * , struct file_lock * ) ; void (*lm_put_owner)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_213 { struct list_head link ; int state ; }; union __anonunion_fl_u_212 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_213 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_212 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct block_device_operations; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; void (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; int (*dentry_open)(struct dentry * , struct file * , struct cred const * ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; struct disk_stats { unsigned long sectors[2U] ; unsigned long ios[2U] ; unsigned long merges[2U] ; unsigned long ticks[2U] ; unsigned long io_ticks ; unsigned long time_in_queue ; }; struct partition_meta_info { char uuid[37U] ; u8 volname[64U] ; }; struct hd_struct { sector_t start_sect ; sector_t nr_sects ; seqcount_t nr_sects_seq ; sector_t alignment_offset ; unsigned int discard_alignment ; struct device __dev ; struct kobject *holder_dir ; int policy ; int partno ; struct partition_meta_info *info ; int make_it_fail ; unsigned long stamp ; atomic_t in_flight[2U] ; struct disk_stats *dkstats ; atomic_t ref ; struct callback_head callback_head ; }; struct disk_part_tbl { struct callback_head callback_head ; int len ; struct hd_struct *last_lookup ; struct hd_struct *part[] ; }; struct disk_events; struct timer_rand_state; struct blk_integrity; struct gendisk { int major ; int first_minor ; int minors ; char disk_name[32U] ; char *(*devnode)(struct gendisk * , umode_t * ) ; unsigned int events ; unsigned int async_events ; struct disk_part_tbl *part_tbl ; struct hd_struct part0 ; struct block_device_operations const *fops ; struct request_queue *queue ; void *private_data ; int flags ; struct device *driverfs_dev ; struct kobject *slave_dir ; struct timer_rand_state *random ; atomic_t sync_io ; struct disk_events *ev ; struct blk_integrity *integrity ; int node_id ; }; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *cow_page ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; struct page *(*find_special_page)(struct vm_area_struct * , unsigned long ) ; }; struct fprop_local_percpu { struct percpu_counter events ; unsigned int period ; raw_spinlock_t lock ; }; enum writeback_sync_modes { WB_SYNC_NONE = 0, WB_SYNC_ALL = 1 } ; struct writeback_control { long nr_to_write ; long pages_skipped ; loff_t range_start ; loff_t range_end ; enum writeback_sync_modes sync_mode ; unsigned char for_kupdate : 1 ; unsigned char for_background : 1 ; unsigned char tagged_writepages : 1 ; unsigned char for_reclaim : 1 ; unsigned char range_cyclic : 1 ; unsigned char for_sync : 1 ; }; struct bdi_writeback; typedef int congested_fn(void * , int ); struct bdi_writeback { struct backing_dev_info *bdi ; unsigned long last_old_flush ; struct delayed_work dwork ; struct list_head b_dirty ; struct list_head b_io ; struct list_head b_more_io ; struct list_head b_dirty_time ; spinlock_t list_lock ; }; struct backing_dev_info { struct list_head bdi_list ; unsigned long ra_pages ; unsigned long state ; unsigned int capabilities ; congested_fn *congested_fn ; void *congested_data ; char *name ; struct percpu_counter bdi_stat[4U] ; unsigned long bw_time_stamp ; unsigned long dirtied_stamp ; unsigned long written_stamp ; unsigned long write_bandwidth ; unsigned long avg_write_bandwidth ; unsigned long dirty_ratelimit ; unsigned long balanced_dirty_ratelimit ; struct fprop_local_percpu completions ; int dirty_exceeded ; unsigned int min_ratio ; unsigned int max_ratio ; unsigned int max_prop_frac ; struct bdi_writeback wb ; spinlock_t wb_lock ; struct list_head work_list ; struct device *dev ; struct timer_list laptop_mode_wb_timer ; struct dentry *debug_dir ; struct dentry *debug_stats ; }; typedef void *mempool_alloc_t(gfp_t , void * ); typedef void mempool_free_t(void * , void * ); struct mempool_s { spinlock_t lock ; int min_nr ; int curr_nr ; void **elements ; void *pool_data ; mempool_alloc_t *alloc ; mempool_free_t *free ; wait_queue_head_t wait ; }; typedef struct mempool_s mempool_t; union __anonunion____missing_field_name_214 { struct list_head q_node ; struct kmem_cache *__rcu_icq_cache ; }; union __anonunion____missing_field_name_215 { struct hlist_node ioc_node ; struct callback_head __rcu_head ; }; struct io_cq { struct request_queue *q ; struct io_context *ioc ; union __anonunion____missing_field_name_214 __annonCompField72 ; union __anonunion____missing_field_name_215 __annonCompField73 ; unsigned int flags ; }; struct io_context { atomic_long_t refcount ; atomic_t active_ref ; atomic_t nr_tasks ; spinlock_t lock ; unsigned short ioprio ; int nr_batch_requests ; unsigned long last_waited ; struct radix_tree_root icq_tree ; struct io_cq *icq_hint ; struct hlist_head icq_list ; struct work_struct release_work ; }; struct bio_integrity_payload { struct bio *bip_bio ; struct bvec_iter bip_iter ; bio_end_io_t *bip_end_io ; unsigned short bip_slab ; unsigned short bip_vcnt ; unsigned short bip_max_vcnt ; unsigned short bip_flags ; struct work_struct bip_work ; struct bio_vec *bip_vec ; struct bio_vec bip_inline_vecs[0U] ; }; struct bio_list { struct bio *head ; struct bio *tail ; }; struct bio_set { struct kmem_cache *bio_slab ; unsigned int front_pad ; mempool_t *bio_pool ; mempool_t *bvec_pool ; mempool_t *bio_integrity_pool ; mempool_t *bvec_integrity_pool ; spinlock_t rescue_lock ; struct bio_list rescue_list ; struct work_struct rescue_work ; struct workqueue_struct *rescue_workqueue ; }; struct bsg_class_device { struct device *class_dev ; struct device *parent ; int minor ; struct request_queue *queue ; struct kref ref ; void (*release)(struct device * ) ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_long_t count ; unsigned long percpu_count_ptr ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_switch ; bool force_atomic ; struct callback_head rcu ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct elevator_queue; struct blk_trace; struct bsg_job; struct blkcg_gq; struct blk_flush_queue; typedef void rq_end_io_fn(struct request * , int ); struct request_list { struct request_queue *q ; struct blkcg_gq *blkg ; int count[2U] ; int starved[2U] ; mempool_t *rq_pool ; wait_queue_head_t wait[2U] ; unsigned int flags ; }; enum rq_cmd_type_bits { REQ_TYPE_FS = 1, REQ_TYPE_BLOCK_PC = 2, REQ_TYPE_SENSE = 3, REQ_TYPE_PM_SUSPEND = 4, REQ_TYPE_PM_RESUME = 5, REQ_TYPE_PM_SHUTDOWN = 6, REQ_TYPE_SPECIAL = 7, REQ_TYPE_ATA_TASKFILE = 8, REQ_TYPE_ATA_PC = 9 } ; union __anonunion____missing_field_name_216 { struct call_single_data csd ; unsigned long fifo_time ; }; struct blk_mq_ctx; union __anonunion____missing_field_name_217 { struct hlist_node hash ; struct list_head ipi_list ; }; union __anonunion____missing_field_name_218 { struct rb_node rb_node ; void *completion_data ; }; struct __anonstruct_elv_220 { struct io_cq *icq ; void *priv[2U] ; }; struct __anonstruct_flush_221 { unsigned int seq ; struct list_head list ; rq_end_io_fn *saved_end_io ; }; union __anonunion____missing_field_name_219 { struct __anonstruct_elv_220 elv ; struct __anonstruct_flush_221 flush ; }; struct request { struct list_head queuelist ; union __anonunion____missing_field_name_216 __annonCompField74 ; struct request_queue *q ; struct blk_mq_ctx *mq_ctx ; u64 cmd_flags ; enum rq_cmd_type_bits cmd_type ; unsigned long atomic_flags ; int cpu ; unsigned int __data_len ; sector_t __sector ; struct bio *bio ; struct bio *biotail ; union __anonunion____missing_field_name_217 __annonCompField75 ; union __anonunion____missing_field_name_218 __annonCompField76 ; union __anonunion____missing_field_name_219 __annonCompField77 ; struct gendisk *rq_disk ; struct hd_struct *part ; unsigned long start_time ; struct request_list *rl ; unsigned long long start_time_ns ; unsigned long long io_start_time_ns ; unsigned short nr_phys_segments ; unsigned short nr_integrity_segments ; unsigned short ioprio ; void *special ; int tag ; int errors ; unsigned char __cmd[16U] ; unsigned char *cmd ; unsigned short cmd_len ; unsigned int extra_len ; unsigned int sense_len ; unsigned int resid_len ; void *sense ; unsigned long deadline ; struct list_head timeout_list ; unsigned int timeout ; int retries ; rq_end_io_fn *end_io ; void *end_io_data ; struct request *next_rq ; }; struct elevator_type; typedef int elevator_merge_fn(struct request_queue * , struct request ** , struct bio * ); typedef void elevator_merge_req_fn(struct request_queue * , struct request * , struct request * ); typedef void elevator_merged_fn(struct request_queue * , struct request * , int ); typedef int elevator_allow_merge_fn(struct request_queue * , struct request * , struct bio * ); typedef void elevator_bio_merged_fn(struct request_queue * , struct request * , struct bio * ); typedef int elevator_dispatch_fn(struct request_queue * , int ); typedef void elevator_add_req_fn(struct request_queue * , struct request * ); typedef struct request *elevator_request_list_fn(struct request_queue * , struct request * ); typedef void elevator_completed_req_fn(struct request_queue * , struct request * ); typedef int elevator_may_queue_fn(struct request_queue * , int ); typedef void elevator_init_icq_fn(struct io_cq * ); typedef void elevator_exit_icq_fn(struct io_cq * ); typedef int elevator_set_req_fn(struct request_queue * , struct request * , struct bio * , gfp_t ); typedef void elevator_put_req_fn(struct request * ); typedef void elevator_activate_req_fn(struct request_queue * , struct request * ); typedef void elevator_deactivate_req_fn(struct request_queue * , struct request * ); typedef int elevator_init_fn(struct request_queue * , struct elevator_type * ); typedef void elevator_exit_fn(struct elevator_queue * ); struct elevator_ops { elevator_merge_fn *elevator_merge_fn ; elevator_merged_fn *elevator_merged_fn ; elevator_merge_req_fn *elevator_merge_req_fn ; elevator_allow_merge_fn *elevator_allow_merge_fn ; elevator_bio_merged_fn *elevator_bio_merged_fn ; elevator_dispatch_fn *elevator_dispatch_fn ; elevator_add_req_fn *elevator_add_req_fn ; elevator_activate_req_fn *elevator_activate_req_fn ; elevator_deactivate_req_fn *elevator_deactivate_req_fn ; elevator_completed_req_fn *elevator_completed_req_fn ; elevator_request_list_fn *elevator_former_req_fn ; elevator_request_list_fn *elevator_latter_req_fn ; elevator_init_icq_fn *elevator_init_icq_fn ; elevator_exit_icq_fn *elevator_exit_icq_fn ; elevator_set_req_fn *elevator_set_req_fn ; elevator_put_req_fn *elevator_put_req_fn ; elevator_may_queue_fn *elevator_may_queue_fn ; elevator_init_fn *elevator_init_fn ; elevator_exit_fn *elevator_exit_fn ; }; struct elv_fs_entry { struct attribute attr ; ssize_t (*show)(struct elevator_queue * , char * ) ; ssize_t (*store)(struct elevator_queue * , char const * , size_t ) ; }; struct elevator_type { struct kmem_cache *icq_cache ; struct elevator_ops ops ; size_t icq_size ; size_t icq_align ; struct elv_fs_entry *elevator_attrs ; char elevator_name[16U] ; struct module *elevator_owner ; char icq_cache_name[21U] ; struct list_head list ; }; struct elevator_queue { struct elevator_type *type ; void *elevator_data ; struct kobject kobj ; struct mutex sysfs_lock ; unsigned char registered : 1 ; struct hlist_head hash[64U] ; }; typedef void request_fn_proc(struct request_queue * ); typedef void make_request_fn(struct request_queue * , struct bio * ); typedef int prep_rq_fn(struct request_queue * , struct request * ); typedef void unprep_rq_fn(struct request_queue * , struct request * ); struct bvec_merge_data { struct block_device *bi_bdev ; sector_t bi_sector ; unsigned int bi_size ; unsigned long bi_rw ; }; typedef int merge_bvec_fn(struct request_queue * , struct bvec_merge_data * , struct bio_vec * ); typedef void softirq_done_fn(struct request * ); typedef int dma_drain_needed_fn(struct request * ); typedef int lld_busy_fn(struct request_queue * ); typedef int bsg_job_fn(struct bsg_job * ); enum blk_eh_timer_return { BLK_EH_NOT_HANDLED = 0, BLK_EH_HANDLED = 1, BLK_EH_RESET_TIMER = 2 } ; typedef enum blk_eh_timer_return rq_timed_out_fn(struct request * ); struct blk_queue_tag { struct request **tag_index ; unsigned long *tag_map ; int busy ; int max_depth ; int real_max_depth ; atomic_t refcnt ; int alloc_policy ; int next_tag ; }; struct queue_limits { unsigned long bounce_pfn ; unsigned long seg_boundary_mask ; unsigned int max_hw_sectors ; unsigned int chunk_sectors ; unsigned int max_sectors ; unsigned int max_segment_size ; unsigned int physical_block_size ; unsigned int alignment_offset ; unsigned int io_min ; unsigned int io_opt ; unsigned int max_discard_sectors ; unsigned int max_write_same_sectors ; unsigned int discard_granularity ; unsigned int discard_alignment ; unsigned short logical_block_size ; unsigned short max_segments ; unsigned short max_integrity_segments ; unsigned char misaligned ; unsigned char discard_misaligned ; unsigned char cluster ; unsigned char discard_zeroes_data ; unsigned char raid_partial_stripes_expensive ; }; struct blk_mq_ops; struct blk_mq_hw_ctx; struct throtl_data; struct blk_mq_tag_set; struct request_queue { struct list_head queue_head ; struct request *last_merge ; struct elevator_queue *elevator ; int nr_rqs[2U] ; int nr_rqs_elvpriv ; struct request_list root_rl ; request_fn_proc *request_fn ; make_request_fn *make_request_fn ; prep_rq_fn *prep_rq_fn ; unprep_rq_fn *unprep_rq_fn ; merge_bvec_fn *merge_bvec_fn ; softirq_done_fn *softirq_done_fn ; rq_timed_out_fn *rq_timed_out_fn ; dma_drain_needed_fn *dma_drain_needed ; lld_busy_fn *lld_busy_fn ; struct blk_mq_ops *mq_ops ; unsigned int *mq_map ; struct blk_mq_ctx *queue_ctx ; unsigned int nr_queues ; struct blk_mq_hw_ctx **queue_hw_ctx ; unsigned int nr_hw_queues ; sector_t end_sector ; struct request *boundary_rq ; struct delayed_work delay_work ; struct backing_dev_info backing_dev_info ; void *queuedata ; unsigned long queue_flags ; int id ; gfp_t bounce_gfp ; spinlock_t __queue_lock ; spinlock_t *queue_lock ; struct kobject kobj ; struct kobject mq_kobj ; struct device *dev ; int rpm_status ; unsigned int nr_pending ; unsigned long nr_requests ; unsigned int nr_congestion_on ; unsigned int nr_congestion_off ; unsigned int nr_batching ; unsigned int dma_drain_size ; void *dma_drain_buffer ; unsigned int dma_pad_mask ; unsigned int dma_alignment ; struct blk_queue_tag *queue_tags ; struct list_head tag_busy_list ; unsigned int nr_sorted ; unsigned int in_flight[2U] ; unsigned int request_fn_active ; unsigned int rq_timeout ; struct timer_list timeout ; struct list_head timeout_list ; struct list_head icq_list ; unsigned long blkcg_pols[1U] ; struct blkcg_gq *root_blkg ; struct list_head blkg_list ; struct queue_limits limits ; unsigned int sg_timeout ; unsigned int sg_reserved_size ; int node ; struct blk_trace *blk_trace ; unsigned int flush_flags ; unsigned char flush_not_queueable : 1 ; struct blk_flush_queue *fq ; struct list_head requeue_list ; spinlock_t requeue_lock ; struct work_struct requeue_work ; struct mutex sysfs_lock ; int bypass_depth ; int mq_freeze_depth ; bsg_job_fn *bsg_job_fn ; int bsg_job_size ; struct bsg_class_device bsg_dev ; struct throtl_data *td ; struct callback_head callback_head ; wait_queue_head_t mq_freeze_wq ; struct percpu_ref mq_usage_counter ; struct list_head all_q_node ; struct blk_mq_tag_set *tag_set ; struct list_head tag_set_list ; }; struct blk_plug { struct list_head list ; struct list_head mq_list ; struct list_head cb_list ; }; struct blk_integrity_iter { void *prot_buf ; void *data_buf ; sector_t seed ; unsigned int data_size ; unsigned short interval ; char const *disk_name ; }; typedef int integrity_processing_fn(struct blk_integrity_iter * ); struct blk_integrity { integrity_processing_fn *generate_fn ; integrity_processing_fn *verify_fn ; unsigned short flags ; unsigned short tuple_size ; unsigned short interval ; unsigned short tag_size ; char const *name ; struct kobject kobj ; }; struct block_device_operations { int (*open)(struct block_device * , fmode_t ) ; void (*release)(struct gendisk * , fmode_t ) ; int (*rw_page)(struct block_device * , sector_t , struct page * , int ) ; int (*ioctl)(struct block_device * , fmode_t , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct block_device * , fmode_t , unsigned int , unsigned long ) ; long (*direct_access)(struct block_device * , sector_t , void ** , unsigned long * , long ) ; unsigned int (*check_events)(struct gendisk * , unsigned int ) ; int (*media_changed)(struct gendisk * ) ; void (*unlock_native_capacity)(struct gendisk * ) ; int (*revalidate_disk)(struct gendisk * ) ; int (*getgeo)(struct block_device * , struct hd_geometry * ) ; void (*swap_slot_free_notify)(struct block_device * , unsigned long ) ; struct module *owner ; }; struct hd_geometry { unsigned char heads ; unsigned char sectors ; unsigned short cylinders ; unsigned long start ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_235 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_235 __annonCompField78 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; typedef uint32_t grant_ref_t; enum xenbus_state { XenbusStateUnknown = 0, XenbusStateInitialising = 1, XenbusStateInitWait = 2, XenbusStateInitialised = 3, XenbusStateConnected = 4, XenbusStateClosing = 5, XenbusStateClosed = 6, XenbusStateReconfiguring = 7, XenbusStateReconfigured = 8 } ; struct xenbus_watch { struct list_head list ; char const *node ; void (*callback)(struct xenbus_watch * , char const ** , unsigned int ) ; }; struct xenbus_device { char const *devicetype ; char const *nodename ; char const *otherend ; int otherend_id ; struct xenbus_watch otherend_watch ; struct device dev ; enum xenbus_state state ; struct completion down ; struct work_struct work ; }; struct xenbus_device_id { char devicetype[32U] ; }; struct xenbus_driver { char const *name ; struct xenbus_device_id const *ids ; int (*probe)(struct xenbus_device * , struct xenbus_device_id const * ) ; void (*otherend_changed)(struct xenbus_device * , enum xenbus_state ) ; int (*remove)(struct xenbus_device * ) ; int (*suspend)(struct xenbus_device * ) ; int (*resume)(struct xenbus_device * ) ; int (*uevent)(struct xenbus_device * , struct kobj_uevent_env * ) ; struct device_driver driver ; int (*read_otherend_details)(struct xenbus_device * ) ; int (*is_ready)(struct xenbus_device * ) ; }; struct xenbus_transaction { u32 id ; }; struct gnttab_free_callback { struct gnttab_free_callback *next ; void (*fn)(void * ) ; void *arg ; u16 count ; }; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct static_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; typedef unsigned int RING_IDX; typedef uint16_t blkif_vdev_t; typedef uint64_t blkif_sector_t; struct blkif_request_segment { grant_ref_t gref ; uint8_t first_sect ; uint8_t last_sect ; }; struct blkif_request_rw { uint8_t nr_segments ; blkif_vdev_t handle ; uint32_t _pad1 ; uint64_t id ; blkif_sector_t sector_number ; struct blkif_request_segment seg[11U] ; }; struct blkif_request_discard { uint8_t flag ; blkif_vdev_t _pad1 ; uint32_t _pad2 ; uint64_t id ; blkif_sector_t sector_number ; uint64_t nr_sectors ; uint8_t _pad3 ; }; struct blkif_request_other { uint8_t _pad1 ; blkif_vdev_t _pad2 ; uint32_t _pad3 ; uint64_t id ; }; struct blkif_request_indirect { uint8_t indirect_op ; uint16_t nr_segments ; uint32_t _pad1 ; uint64_t id ; blkif_sector_t sector_number ; blkif_vdev_t handle ; uint16_t _pad2 ; grant_ref_t indirect_grefs[8U] ; uint32_t _pad3 ; }; union __anonunion_u_276 { struct blkif_request_rw rw ; struct blkif_request_discard discard ; struct blkif_request_other other ; struct blkif_request_indirect indirect ; }; struct blkif_request { uint8_t operation ; union __anonunion_u_276 u ; }; struct blkif_response { uint64_t id ; uint8_t operation ; int16_t status ; }; union blkif_sring_entry { struct blkif_request req ; struct blkif_response rsp ; }; struct blkif_sring { RING_IDX req_prod ; RING_IDX req_event ; RING_IDX rsp_prod ; RING_IDX rsp_event ; uint8_t pad[48U] ; union blkif_sring_entry ring[1U] ; }; struct blkif_front_ring { RING_IDX req_prod_pvt ; RING_IDX rsp_cons ; unsigned int nr_ents ; struct blkif_sring *sring ; }; enum blkif_state { BLKIF_STATE_DISCONNECTED = 0, BLKIF_STATE_CONNECTED = 1, BLKIF_STATE_SUSPENDED = 2 } ; struct grant { grant_ref_t gref ; unsigned long pfn ; struct list_head node ; }; struct blk_shadow { struct blkif_request req ; struct request *request ; struct grant **grants_used ; struct grant **indirect_grants ; struct scatterlist *sg ; }; struct split_bio { struct bio *bio ; atomic_t pending ; int err ; }; struct blkfront_info { spinlock_t io_lock ; struct mutex mutex ; struct xenbus_device *xbdev ; struct gendisk *gd ; int vdevice ; blkif_vdev_t handle ; enum blkif_state connected ; int ring_ref ; struct blkif_front_ring ring ; unsigned int evtchn ; unsigned int irq ; struct request_queue *rq ; struct work_struct work ; struct gnttab_free_callback callback ; struct blk_shadow shadow[32U] ; struct list_head grants ; struct list_head indirect_pages ; unsigned int persistent_gnts_c ; unsigned long shadow_free ; unsigned int feature_flush ; unsigned char feature_discard : 1 ; unsigned char feature_secdiscard : 1 ; unsigned int discard_granularity ; unsigned int discard_alignment ; unsigned char feature_persistent : 1 ; unsigned int max_indirect_segments ; int is_ready ; }; struct ldv_struct_EMGentry_6 { int signal_pending ; }; struct ldv_struct_io_instance_3 { struct xenbus_driver *arg0 ; int signal_pending ; }; typedef struct request_queue *ldv_func_ret_type___0; typedef struct gendisk *ldv_func_ret_type___1; typedef int ldv_func_ret_type___2; struct device_private { void *driver_data ; }; typedef short s16; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; struct kthread_worker *worker ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; struct dma_chan; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool (*can_dma)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool idling ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; bool cur_msg_mapped ; struct completion xfer_completion ; size_t max_dma_len ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; struct dma_chan *dma_tx ; struct dma_chan *dma_rx ; void *dummy_rx ; void *dummy_tx ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; struct sg_table tx_sg ; struct sg_table rx_sg ; unsigned char cs_change : 1 ; unsigned char tx_nbits : 3 ; unsigned char rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned char is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; struct notifier_block; enum hrtimer_restart; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; typedef unsigned int mmc_pm_flag_t; struct mmc_card; struct sdio_func; typedef void sdio_irq_handler_t(struct sdio_func * ); struct sdio_func_tuple { struct sdio_func_tuple *next ; unsigned char code ; unsigned char size ; unsigned char data[0U] ; }; struct sdio_func { struct mmc_card *card ; struct device dev ; sdio_irq_handler_t *irq_handler ; unsigned int num ; unsigned char class ; unsigned short vendor ; unsigned short device ; unsigned int max_blksize ; unsigned int cur_blksize ; unsigned int enable_timeout ; unsigned int state ; u8 tmpbuf[4U] ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; }; enum led_brightness { LED_OFF = 0, LED_HALF = 127, LED_FULL = 255 } ; struct led_trigger; struct led_classdev { char const *name ; enum led_brightness brightness ; enum led_brightness max_brightness ; int flags ; void (*brightness_set)(struct led_classdev * , enum led_brightness ) ; int (*brightness_set_sync)(struct led_classdev * , enum led_brightness ) ; enum led_brightness (*brightness_get)(struct led_classdev * ) ; int (*blink_set)(struct led_classdev * , unsigned long * , unsigned long * ) ; struct device *dev ; struct attribute_group const **groups ; struct list_head node ; char const *default_trigger ; unsigned long blink_delay_on ; unsigned long blink_delay_off ; struct timer_list blink_timer ; int blink_brightness ; void (*flash_resume)(struct led_classdev * ) ; struct work_struct set_brightness_work ; int delayed_set_value ; struct rw_semaphore trigger_lock ; struct led_trigger *trigger ; struct list_head trig_list ; void *trigger_data ; bool activated ; struct mutex led_access ; }; struct led_trigger { char const *name ; void (*activate)(struct led_classdev * ) ; void (*deactivate)(struct led_classdev * ) ; rwlock_t leddev_list_lock ; struct list_head led_cdevs ; struct list_head next_trig ; }; struct fault_attr { unsigned long probability ; unsigned long interval ; atomic_t times ; atomic_t space ; unsigned long verbose ; u32 task_filter ; unsigned long stacktrace_depth ; unsigned long require_start ; unsigned long require_end ; unsigned long reject_start ; unsigned long reject_end ; unsigned long count ; struct ratelimit_state ratelimit_state ; struct dentry *dname ; }; struct mmc_data; struct mmc_request; struct mmc_command { u32 opcode ; u32 arg ; u32 resp[4U] ; unsigned int flags ; unsigned int retries ; unsigned int error ; unsigned int busy_timeout ; bool sanitize_busy ; struct mmc_data *data ; struct mmc_request *mrq ; }; struct mmc_data { unsigned int timeout_ns ; unsigned int timeout_clks ; unsigned int blksz ; unsigned int blocks ; unsigned int error ; unsigned int flags ; unsigned int bytes_xfered ; struct mmc_command *stop ; struct mmc_request *mrq ; unsigned int sg_len ; struct scatterlist *sg ; s32 host_cookie ; }; struct mmc_host; struct mmc_request { struct mmc_command *sbc ; struct mmc_command *cmd ; struct mmc_data *data ; struct mmc_command *stop ; struct completion completion ; void (*done)(struct mmc_request * ) ; struct mmc_host *host ; }; struct mmc_async_req; struct mmc_cid { unsigned int manfid ; char prod_name[8U] ; unsigned char prv ; unsigned int serial ; unsigned short oemid ; unsigned short year ; unsigned char hwrev ; unsigned char fwrev ; unsigned char month ; }; struct mmc_csd { unsigned char structure ; unsigned char mmca_vsn ; unsigned short cmdclass ; unsigned short tacc_clks ; unsigned int tacc_ns ; unsigned int c_size ; unsigned int r2w_factor ; unsigned int max_dtr ; unsigned int erase_size ; unsigned int read_blkbits ; unsigned int write_blkbits ; unsigned int capacity ; unsigned char read_partial : 1 ; unsigned char read_misalign : 1 ; unsigned char write_partial : 1 ; unsigned char write_misalign : 1 ; unsigned char dsr_imp : 1 ; }; struct mmc_ext_csd { u8 rev ; u8 erase_group_def ; u8 sec_feature_support ; u8 rel_sectors ; u8 rel_param ; u8 part_config ; u8 cache_ctrl ; u8 rst_n_function ; u8 max_packed_writes ; u8 max_packed_reads ; u8 packed_event_en ; unsigned int part_time ; unsigned int sa_timeout ; unsigned int generic_cmd6_time ; unsigned int power_off_longtime ; u8 power_off_notification ; unsigned int hs_max_dtr ; unsigned int hs200_max_dtr ; unsigned int sectors ; unsigned int hc_erase_size ; unsigned int hc_erase_timeout ; unsigned int sec_trim_mult ; unsigned int sec_erase_mult ; unsigned int trim_timeout ; bool partition_setting_completed ; unsigned long long enhanced_area_offset ; unsigned int enhanced_area_size ; unsigned int cache_size ; bool hpi_en ; bool hpi ; unsigned int hpi_cmd ; bool bkops ; bool man_bkops_en ; unsigned int data_sector_size ; unsigned int data_tag_unit_size ; unsigned int boot_ro_lock ; bool boot_ro_lockable ; bool ffu_capable ; u8 fwrev[8U] ; u8 raw_exception_status ; u8 raw_partition_support ; u8 raw_rpmb_size_mult ; u8 raw_erased_mem_count ; u8 raw_ext_csd_structure ; u8 raw_card_type ; u8 out_of_int_time ; u8 raw_pwr_cl_52_195 ; u8 raw_pwr_cl_26_195 ; u8 raw_pwr_cl_52_360 ; u8 raw_pwr_cl_26_360 ; u8 raw_s_a_timeout ; u8 raw_hc_erase_gap_size ; u8 raw_erase_timeout_mult ; u8 raw_hc_erase_grp_size ; u8 raw_sec_trim_mult ; u8 raw_sec_erase_mult ; u8 raw_sec_feature_support ; u8 raw_trim_mult ; u8 raw_pwr_cl_200_195 ; u8 raw_pwr_cl_200_360 ; u8 raw_pwr_cl_ddr_52_195 ; u8 raw_pwr_cl_ddr_52_360 ; u8 raw_pwr_cl_ddr_200_360 ; u8 raw_bkops_status ; u8 raw_sectors[4U] ; unsigned int feature_support ; }; struct sd_scr { unsigned char sda_vsn ; unsigned char sda_spec3 ; unsigned char bus_widths ; unsigned char cmds ; }; struct sd_ssr { unsigned int au ; unsigned int erase_timeout ; unsigned int erase_offset ; }; struct sd_switch_caps { unsigned int hs_max_dtr ; unsigned int uhs_max_dtr ; unsigned int sd3_bus_mode ; unsigned int sd3_drv_type ; unsigned int sd3_curr_limit ; }; struct sdio_cccr { unsigned int sdio_vsn ; unsigned int sd_vsn ; unsigned char multi_block : 1 ; unsigned char low_speed : 1 ; unsigned char wide_bus : 1 ; unsigned char high_power : 1 ; unsigned char high_speed : 1 ; unsigned char disable_cd : 1 ; }; struct sdio_cis { unsigned short vendor ; unsigned short device ; unsigned short blksize ; unsigned int max_dtr ; }; struct mmc_ios; struct mmc_part { unsigned int size ; unsigned int part_cfg ; char name[20U] ; bool force_ro ; unsigned int area_type ; }; struct mmc_card { struct mmc_host *host ; struct device dev ; u32 ocr ; unsigned int rca ; unsigned int type ; unsigned int state ; unsigned int quirks ; unsigned int erase_size ; unsigned int erase_shift ; unsigned int pref_erase ; u8 erased_byte ; u32 raw_cid[4U] ; u32 raw_csd[4U] ; u32 raw_scr[2U] ; struct mmc_cid cid ; struct mmc_csd csd ; struct mmc_ext_csd ext_csd ; struct sd_scr scr ; struct sd_ssr ssr ; struct sd_switch_caps sw_caps ; unsigned int sdio_funcs ; struct sdio_cccr cccr ; struct sdio_cis cis ; struct sdio_func *sdio_func[7U] ; struct sdio_func *sdio_single_irq ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; unsigned int sd_bus_speed ; unsigned int mmc_avail_type ; struct dentry *debugfs_root ; struct mmc_part part[7U] ; unsigned int nr_parts ; }; struct mmc_ios { unsigned int clock ; unsigned short vdd ; unsigned char bus_mode ; unsigned char chip_select ; unsigned char power_mode ; unsigned char bus_width ; unsigned char timing ; unsigned char signal_voltage ; unsigned char drv_type ; }; struct mmc_host_ops { int (*enable)(struct mmc_host * ) ; int (*disable)(struct mmc_host * ) ; void (*post_req)(struct mmc_host * , struct mmc_request * , int ) ; void (*pre_req)(struct mmc_host * , struct mmc_request * , bool ) ; void (*request)(struct mmc_host * , struct mmc_request * ) ; void (*set_ios)(struct mmc_host * , struct mmc_ios * ) ; int (*get_ro)(struct mmc_host * ) ; int (*get_cd)(struct mmc_host * ) ; void (*enable_sdio_irq)(struct mmc_host * , int ) ; void (*init_card)(struct mmc_host * , struct mmc_card * ) ; int (*start_signal_voltage_switch)(struct mmc_host * , struct mmc_ios * ) ; int (*card_busy)(struct mmc_host * ) ; int (*execute_tuning)(struct mmc_host * , u32 ) ; int (*prepare_hs400_tuning)(struct mmc_host * , struct mmc_ios * ) ; int (*select_drive_strength)(unsigned int , int , int ) ; void (*hw_reset)(struct mmc_host * ) ; void (*card_event)(struct mmc_host * ) ; int (*multi_io_quirk)(struct mmc_card * , unsigned int , int ) ; }; struct mmc_async_req { struct mmc_request *mrq ; int (*err_check)(struct mmc_card * , struct mmc_async_req * ) ; }; struct mmc_slot { int cd_irq ; void *handler_priv ; }; struct mmc_context_info { bool is_done_rcv ; bool is_new_req ; bool is_waiting_last_req ; wait_queue_head_t wait ; spinlock_t lock ; }; struct regulator; struct mmc_pwrseq; struct mmc_supply { struct regulator *vmmc ; struct regulator *vqmmc ; }; struct mmc_bus_ops; struct mmc_host { struct device *parent ; struct device class_dev ; int index ; struct mmc_host_ops const *ops ; struct mmc_pwrseq *pwrseq ; unsigned int f_min ; unsigned int f_max ; unsigned int f_init ; u32 ocr_avail ; u32 ocr_avail_sdio ; u32 ocr_avail_sd ; u32 ocr_avail_mmc ; struct notifier_block pm_notify ; u32 max_current_330 ; u32 max_current_300 ; u32 max_current_180 ; u32 caps ; u32 caps2 ; mmc_pm_flag_t pm_caps ; int clk_requests ; unsigned int clk_delay ; bool clk_gated ; struct delayed_work clk_gate_work ; unsigned int clk_old ; spinlock_t clk_lock ; struct mutex clk_gate_mutex ; struct device_attribute clkgate_delay_attr ; unsigned long clkgate_delay ; unsigned int max_seg_size ; unsigned short max_segs ; unsigned short unused ; unsigned int max_req_size ; unsigned int max_blk_size ; unsigned int max_blk_count ; unsigned int max_busy_timeout ; spinlock_t lock ; struct mmc_ios ios ; unsigned char use_spi_crc : 1 ; unsigned char claimed : 1 ; unsigned char bus_dead : 1 ; unsigned char removed : 1 ; int rescan_disable ; int rescan_entered ; bool trigger_card_event ; struct mmc_card *card ; wait_queue_head_t wq ; struct task_struct *claimer ; int claim_cnt ; struct delayed_work detect ; int detect_change ; struct mmc_slot slot ; struct mmc_bus_ops const *bus_ops ; unsigned int bus_refs ; unsigned int sdio_irqs ; struct task_struct *sdio_irq_thread ; bool sdio_irq_pending ; atomic_t sdio_irq_thread_abort ; mmc_pm_flag_t pm_flags ; struct led_trigger *led ; bool regulator_enabled ; struct mmc_supply supply ; struct dentry *debugfs_root ; struct mmc_async_req *areq ; struct mmc_context_info context_info ; struct fault_attr fail_mmc_request ; unsigned int actual_clock ; unsigned int slotno ; int dsr_req ; u32 dsr ; unsigned long private[0U] ; }; typedef int ldv_map; struct usb_device; struct urb; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; typedef _Bool ldv_set; long ldv__builtin_expect(long exp , long c ) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_irq_check_alloc_nonatomic(void) ; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) ; void ldv_linux_arch_io_check_final_state(void) ; void ldv_linux_block_genhd_check_final_state(void) ; void ldv_linux_block_queue_check_final_state(void) ; void ldv_linux_block_request_check_final_state(void) ; void *ldv_linux_drivers_base_class_create_class(void) ; int ldv_linux_drivers_base_class_register_class(void) ; void ldv_linux_drivers_base_class_check_final_state(void) ; void ldv_linux_fs_char_dev_check_final_state(void) ; void ldv_linux_fs_sysfs_check_final_state(void) ; void ldv_linux_kernel_locking_rwlock_check_final_state(void) ; void ldv_linux_kernel_module_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_check_final_state(void) ; void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) ; void ldv_linux_kernel_rcu_srcu_check_final_state(void) ; void ldv_linux_lib_find_bit_initialize(void) ; void ldv_linux_lib_idr_check_final_state(void) ; void ldv_linux_mmc_sdio_func_check_final_state(void) ; void ldv_linux_net_register_reset_error_counter(void) ; void ldv_linux_net_rtnetlink_check_final_state(void) ; void ldv_linux_net_sock_check_final_state(void) ; void ldv_linux_usb_coherent_check_final_state(void) ; void *ldv_linux_usb_gadget_create_class(void) ; int ldv_linux_usb_gadget_register_class(void) ; void ldv_linux_usb_gadget_check_final_state(void) ; void ldv_linux_usb_register_reset_error_counter(void) ; void ldv_linux_usb_urb_check_final_state(void) ; void ldv_check_alloc_nonatomic(void) { { { ldv_linux_alloc_irq_check_alloc_nonatomic(); ldv_linux_alloc_usb_lock_check_alloc_nonatomic(); } return; } } void ldv_check_alloc_flags(gfp_t flags ) { { { ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return; } } void ldv_check_for_read_section(void) { { { ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_check_for_read_section(); ldv_linux_kernel_rcu_srcu_check_for_read_section(); } return; } } void *ldv_create_class(void) { void *res1 ; void *tmp ; void *res2 ; void *tmp___0 ; { { tmp = ldv_linux_drivers_base_class_create_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_create_class(); res2 = tmp___0; ldv_assume((unsigned long )res1 == (unsigned long )res2); } return (res1); } } int ldv_register_class(void) { int res1 ; int tmp ; int res2 ; int tmp___0 ; { { tmp = ldv_linux_drivers_base_class_register_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_register_class(); res2 = tmp___0; ldv_assume(res1 == res2); } return (res1); } } void *ldv_kzalloc(size_t size , gfp_t flags ) ; int ldv_linux_usb_dev_atomic_dec_and_test(atomic_t *v ) ; unsigned long ldv_linux_lib_find_bit_find_next_bit(unsigned long size , unsigned long offset ) ; struct gendisk *ldv_linux_block_genhd_alloc_disk(void) ; void ldv_linux_block_genhd_add_disk(void) ; void ldv_linux_block_genhd_del_gendisk(void) ; void ldv_linux_block_genhd_put_disk(struct gendisk *disk ) ; int ldv_undef_int(void) ; static void ldv_ldv_initialize_148(void) ; int ldv_post_init(int init_ret_val ) ; static int ldv_ldv_post_init_145(int ldv_func_arg1 ) ; int ldv_filter_err_code(int ret_val ) ; static void ldv_ldv_check_final_state_146(void) ; static void ldv_ldv_check_final_state_147(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; void *ldv_malloc_unknown_size(void) ; extern void ldv_after_alloc(void * ) ; void *ldv_alloc_macro(gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } static void ldv_mutex_lock_123(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_126(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_131(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_133(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_135(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_136(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_139(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_140(struct mutex *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_mutex_mutex_lock_bd_mutex_of_block_device(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_bd_mutex_of_block_device(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_lock_blkfront_mutex(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_blkfront_mutex(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_blkfront_info(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_blkfront_info(struct mutex *lock ) ; struct request_queue *ldv_linux_block_queue_request_queue(void) ; void ldv_linux_block_queue_blk_cleanup_queue(void) ; extern struct module __this_module ; __inline static void __set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void __clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } static unsigned long ldv_find_next_bit_99(unsigned long const *addr , unsigned long size , unsigned long offset ) ; extern int printk(char const * , ...) ; extern void __dynamic_pr_debug(struct _ddebug * , char const * , ...) ; extern void __dynamic_dev_dbg(struct _ddebug * , struct device const * , char const * , ...) ; extern void might_fault(void) ; extern unsigned long simple_strtoul(char const * , char ** , unsigned int ) ; extern int snprintf(char * , size_t , char const * , ...) ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void __list_add(struct list_head * , struct list_head * , struct list_head * ) ; __inline static void list_add(struct list_head *new , struct list_head *head ) { { { __list_add(new, head, head->next); } return; } } __inline static void list_add_tail(struct list_head *new , struct list_head *head ) { { { __list_add(new, head->prev, head); } return; } } extern void __list_del_entry(struct list_head * ) ; extern void list_del(struct list_head * ) ; __inline static void list_del_init(struct list_head *entry ) { { { __list_del_entry(entry); INIT_LIST_HEAD(entry); } return; } } __inline static int list_empty(struct list_head const *head ) { { return ((unsigned long )((struct list_head const *)head->next) == (unsigned long )head); } } extern void __bad_percpu_size(void) ; extern unsigned long __phys_addr(unsigned long ) ; extern void *__memcpy(void * , void const * , size_t ) ; extern void *__memset(void * , int , size_t ) ; extern char *strcpy(char * , char const * ) ; extern int strncmp(char const * , char const * , __kernel_size_t ) ; extern char *strrchr(char const * , int ) ; extern void *kmemdup(void const * , size_t , gfp_t ) ; extern void bitmap_set(unsigned long * , unsigned int , int ) ; extern void bitmap_clear(unsigned long * , unsigned int , int ) ; extern void warn_slowpath_fmt(char const * , int const , char const * , ...) ; extern void warn_slowpath_null(char const * , int const ) ; __inline static bool IS_ERR(void const *ptr ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )ptr > 0xfffffffffffff000UL, 0L); } return (tmp != 0L); } } __inline static void atomic_set(atomic_t *v , int i ) { { v->counter = i; return; } } __inline static int atomic_dec_and_test(atomic_t *v ) ; extern int debug_locks ; extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern int lock_is_held(struct lockdep_map * ) ; extern void __ldv_linux_kernel_locking_spinlock_spin_lock(spinlock_t * ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_106(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_115(spinlock_t *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_spinlock_spin_lock_io_lock_of_blkfront_info(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_io_lock_of_blkfront_info(void) ; void ldv_linux_kernel_locking_spinlock_spin_lock_minor_lock(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_minor_lock(void) ; void ldv_switch_to_interrupt_context(void) ; void ldv_switch_to_process_context(void) ; extern void __mutex_init(struct mutex * , char const * , struct lock_class_key * ) ; static void ldv_mutex_unlock_124(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_125(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_127(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_132(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_134(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_137(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_138(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_141(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_142(struct mutex *ldv_func_arg1 ) ; extern int __preempt_count ; __inline static void __preempt_count_add(int val ) { int pao_ID__ ; { pao_ID__ = 0; { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incb %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decb %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addb %1, %%gs:%0": "+m" (__preempt_count): "qi" (val)); } goto ldv_7401; case_2: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incw %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decw %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addw %1, %%gs:%0": "+m" (__preempt_count): "ri" (val)); } goto ldv_7401; case_4: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incl %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decl %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addl %1, %%gs:%0": "+m" (__preempt_count): "ri" (val)); } goto ldv_7401; case_8: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incq %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decq %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addq %1, %%gs:%0": "+m" (__preempt_count): "re" (val)); } goto ldv_7401; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_7401: ; return; } } __inline static void __preempt_count_sub(int val ) { int pao_ID__ ; { pao_ID__ = 0; { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incb %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decb %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addb %1, %%gs:%0": "+m" (__preempt_count): "qi" (- val)); } goto ldv_7413; case_2: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incw %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decw %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addw %1, %%gs:%0": "+m" (__preempt_count): "ri" (- val)); } goto ldv_7413; case_4: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incl %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decl %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addl %1, %%gs:%0": "+m" (__preempt_count): "ri" (- val)); } goto ldv_7413; case_8: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incq %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decq %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addq %1, %%gs:%0": "+m" (__preempt_count): "re" (- val)); } goto ldv_7413; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_7413: ; return; } } extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_lock_irq(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irq(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField18.rlock); } } __inline static void spin_lock(spinlock_t *lock ) { { { _raw_spin_lock(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_lock_96(spinlock_t *lock ) ; __inline static void ldv_spin_lock_96(spinlock_t *lock ) ; __inline static void ldv_spin_lock_96(spinlock_t *lock ) ; __inline static void spin_lock_irq(spinlock_t *lock ) { { { _raw_spin_lock_irq(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_lock_irq_111(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_111(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_111(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_111(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_111(spinlock_t *lock ) ; __inline static void spin_unlock(spinlock_t *lock ) { { { _raw_spin_unlock(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_unlock_97(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_97(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_97(spinlock_t *lock ) ; __inline static void spin_unlock_irq(spinlock_t *lock ) { { { _raw_spin_unlock_irq(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_unlock_irq_112(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_112(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_112(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_112(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_112(spinlock_t *lock ) ; __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField18.rlock, flags); } return; } } __inline static void ldv_spin_unlock_irqrestore_107(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_107(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_107(spinlock_t *lock , unsigned long flags ) ; extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *system_wq ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; extern bool flush_work(struct work_struct * ) ; __inline static bool queue_work(struct workqueue_struct *wq , struct work_struct *work ) { bool tmp ; { { tmp = queue_work_on(8192, wq, work); } return (tmp); } } __inline static bool schedule_work(struct work_struct *work ) { bool tmp ; { { tmp = queue_work(system_wq, work); } return (tmp); } } extern int ___ratelimit(struct ratelimit_state * , char const * ) ; extern enum xen_domain_type xen_domain_type ; extern u8 xen_features[32U] ; __inline static int xen_feature(int flag ) { { return ((int )xen_features[flag]); } } __inline static struct page *alloc_pages(gfp_t flags , unsigned int order ) ; static unsigned long ldv___get_free_pages_118(gfp_t flags , unsigned int ldv_func_arg2 ) ; extern void __free_pages(struct page * , unsigned int ) ; extern void free_pages(unsigned long , unsigned int ) ; __inline static void *dev_get_drvdata(struct device const *dev ) { { return ((void *)dev->driver_data); } } __inline static void dev_set_drvdata(struct device *dev , void *data ) { { dev->driver_data = data; return; } } extern void dev_warn(struct device const * , char const * , ...) ; extern void _dev_info(struct device const * , char const * , ...) ; extern void kfree(void const * ) ; __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; extern int register_blkdev(unsigned int , char const * ) ; extern void unregister_blkdev(unsigned int , char const * ) ; extern void bdput(struct block_device * ) ; extern int revalidate_disk(struct gendisk * ) ; extern void submit_bio(int , struct bio * ) ; extern void add_disk(struct gendisk * ) ; static void ldv_add_disk_130(struct gendisk *disk ) ; extern void del_gendisk(struct gendisk * ) ; static void ldv_del_gendisk_105(struct gendisk *gp ) ; static void ldv_del_gendisk_108(struct gendisk *gp ) ; extern struct block_device *bdget_disk(struct gendisk * , int ) ; extern void set_disk_ro(struct gendisk * , int ) ; __inline static sector_t get_capacity(struct gendisk *disk ) { { return (disk->part0.nr_sects); } } __inline static void set_capacity(struct gendisk *disk , sector_t size ) { { disk->part0.nr_sects = size; return; } } extern struct gendisk *alloc_disk(int ) ; static struct gendisk *ldv_alloc_disk_104(int minors___0 ) ; extern void put_disk(struct gendisk * ) ; static void ldv_put_disk_110(struct gendisk *disk ) ; __inline static void *lowmem_page_address(struct page const *page ) { { return ((void *)((unsigned long )((unsigned long long )(((long )page + 24189255811072L) / 64L) << 12) + 0xffff880000000000UL)); } } __inline static void pagefault_disable(void) { { { __preempt_count_add(1); __asm__ volatile ("": : : "memory"); } return; } } __inline static void pagefault_enable(void) { { { __asm__ volatile ("": : : "memory"); __preempt_count_sub(1); } return; } } __inline static void *kmap_atomic(struct page *page ) { void *tmp ; { { pagefault_disable(); tmp = lowmem_page_address((struct page const *)page); } return (tmp); } } __inline static void __kunmap_atomic(void *addr ) { { { pagefault_enable(); } return; } } __inline static bool bio_has_data(struct bio *bio ) { { if (((unsigned long )bio != (unsigned long )((struct bio *)0) && bio->bi_iter.bi_size != 0U) && ((unsigned long long )bio->bi_rw & 128ULL) == 0ULL) { return (1); } else { } return (0); } } __inline static unsigned int bio_cur_bytes(struct bio *bio ) { struct bio_vec __constr_expr_0 ; unsigned int _min1 ; unsigned int _min2 ; bool tmp ; { { tmp = bio_has_data(bio); } if ((int )tmp) { _min1 = bio->bi_iter.bi_size; _min2 = (bio->bi_io_vec + (unsigned long )bio->bi_iter.bi_idx)->bv_len - bio->bi_iter.bi_bvec_done; __constr_expr_0.bv_page = (bio->bi_io_vec + (unsigned long )bio->bi_iter.bi_idx)->bv_page; __constr_expr_0.bv_len = _min1 < _min2 ? _min1 : _min2; __constr_expr_0.bv_offset = (bio->bi_io_vec + (unsigned long )bio->bi_iter.bi_idx)->bv_offset + bio->bi_iter.bi_bvec_done; return (__constr_expr_0.bv_len); } else { return (bio->bi_iter.bi_size); } } } __inline static void bvec_iter_advance(struct bio_vec *bv , struct bvec_iter *iter , unsigned int bytes ) { bool __warned ; int __ret_warn_once ; int __ret_warn_on ; long tmp ; long tmp___0 ; long tmp___1 ; unsigned int len ; unsigned int _min1 ; unsigned int _min2 ; unsigned int _min1___0 ; unsigned int _min2___0 ; { { __ret_warn_once = bytes > iter->bi_size; tmp___1 = ldv__builtin_expect(__ret_warn_once != 0, 0L); } if (tmp___1 != 0L) { { __ret_warn_on = ! __warned; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_fmt("include/linux/bio.h", 211, "Attempted to advance past end of bvec iter\n"); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { __warned = 1; } else { } } else { } { ldv__builtin_expect(__ret_warn_once != 0, 0L); } goto ldv_32299; ldv_32298: _min1 = bytes; _min1___0 = iter->bi_size; _min2___0 = (bv + (unsigned long )iter->bi_idx)->bv_len - iter->bi_bvec_done; _min2 = _min1___0 < _min2___0 ? _min1___0 : _min2___0; len = _min1 < _min2 ? _min1 : _min2; bytes = bytes - len; iter->bi_size = iter->bi_size - len; iter->bi_bvec_done = iter->bi_bvec_done + len; if (iter->bi_bvec_done == (bv + (unsigned long )iter->bi_idx)->bv_len) { iter->bi_bvec_done = 0U; iter->bi_idx = iter->bi_idx + 1U; } else { } ldv_32299: ; if (bytes != 0U) { goto ldv_32298; } else { } return; } } __inline static void bio_advance_iter(struct bio *bio , struct bvec_iter *iter , unsigned int bytes ) { { iter->bi_sector = iter->bi_sector + (sector_t )(bytes >> 9); if (((unsigned long long )bio->bi_rw & 640ULL) != 0ULL) { iter->bi_size = iter->bi_size - bytes; } else { { bvec_iter_advance(bio->bi_io_vec, iter, bytes); } } return; } } __inline static unsigned int bio_segments(struct bio *bio ) { unsigned int segs ; struct bio_vec bv ; struct bvec_iter iter ; struct bio_vec __constr_expr_0 ; unsigned int _min1 ; unsigned int _min2 ; { segs = 0U; if (((unsigned long long )bio->bi_rw & 128ULL) != 0ULL) { return (1U); } else { } if (((unsigned long long )bio->bi_rw & 512ULL) != 0ULL) { return (1U); } else { } iter = bio->bi_iter; goto ldv_32317; ldv_32316: { segs = segs + 1U; bio_advance_iter(bio, & iter, bv.bv_len); } ldv_32317: ; if (iter.bi_size != 0U) { _min1 = iter.bi_size; _min2 = (bio->bi_io_vec + (unsigned long )iter.bi_idx)->bv_len - iter.bi_bvec_done; __constr_expr_0.bv_page = (bio->bi_io_vec + (unsigned long )iter.bi_idx)->bv_page; __constr_expr_0.bv_len = _min1 < _min2 ? _min1 : _min2; __constr_expr_0.bv_offset = (bio->bi_io_vec + (unsigned long )iter.bi_idx)->bv_offset + iter.bi_bvec_done; bv = __constr_expr_0; goto ldv_32316; } else { } return (segs); } } extern void bio_trim(struct bio * , int , int ) ; extern void bio_put(struct bio * ) ; extern struct bio *bio_clone_bioset(struct bio * , gfp_t , struct bio_set * ) ; extern struct bio_set *fs_bio_set ; __inline static struct bio *bio_clone(struct bio *bio , gfp_t gfp_mask ) { struct bio *tmp ; { { tmp = bio_clone_bioset(bio, gfp_mask, fs_bio_set); } return (tmp); } } extern void bio_endio(struct bio * , int ) ; __inline static void bio_list_init(struct bio_list *bl ) { struct bio *tmp ; { tmp = (struct bio *)0; bl->tail = tmp; bl->head = tmp; return; } } __inline static void bio_list_merge(struct bio_list *bl , struct bio_list *bl2 ) { { if ((unsigned long )bl2->head == (unsigned long )((struct bio *)0)) { return; } else { } if ((unsigned long )bl->tail != (unsigned long )((struct bio *)0)) { (bl->tail)->bi_next = bl2->head; } else { bl->head = bl2->head; } bl->tail = bl2->tail; return; } } __inline static struct bio *bio_list_pop(struct bio_list *bl ) { struct bio *bio ; { bio = bl->head; if ((unsigned long )bio != (unsigned long )((struct bio *)0)) { bl->head = (bl->head)->bi_next; if ((unsigned long )bl->head == (unsigned long )((struct bio *)0)) { bl->tail = (struct bio *)0; } else { } bio->bi_next = (struct bio *)0; } else { } return (bio); } } __inline static void queue_lockdep_assert_held(struct request_queue *q ) { int __ret_warn_on ; int tmp ; int tmp___0 ; long tmp___1 ; { if ((unsigned long )q->queue_lock != (unsigned long )((spinlock_t *)0)) { if (debug_locks != 0) { { tmp = lock_is_held(& (q->queue_lock)->__annonCompField18.__annonCompField17.dep_map); } if (tmp == 0) { tmp___0 = 1; } else { tmp___0 = 0; } } else { tmp___0 = 0; } { __ret_warn_on = tmp___0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("include/linux/blkdev.h", 529); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } } else { } return; } } __inline static void queue_flag_set_unlocked(unsigned int flag , struct request_queue *q ) { { { __set_bit((long )flag, (unsigned long volatile *)(& q->queue_flags)); } return; } } __inline static void queue_flag_clear(unsigned int flag , struct request_queue *q ) { { { queue_lockdep_assert_held(q); __clear_bit((long )flag, (unsigned long volatile *)(& q->queue_flags)); } return; } } extern void blk_requeue_request(struct request_queue * , struct request * ) ; extern void blk_start_queue(struct request_queue * ) ; extern void blk_stop_queue(struct request_queue * ) ; __inline static sector_t blk_rq_pos(struct request const *rq ) { { return ((sector_t )rq->__sector); } } __inline static unsigned int blk_rq_bytes(struct request const *rq ) { { return ((unsigned int )rq->__data_len); } } __inline static int blk_rq_cur_bytes(struct request const *rq ) { unsigned int tmp ; int tmp___0 ; { if ((unsigned long )rq->bio != (unsigned long )((struct bio */* const */)0)) { { tmp = bio_cur_bytes(rq->bio); tmp___0 = (int )tmp; } } else { tmp___0 = 0; } return (tmp___0); } } __inline static unsigned int blk_rq_sectors(struct request const *rq ) { unsigned int tmp ; { { tmp = blk_rq_bytes(rq); } return (tmp >> 9); } } __inline static unsigned int blk_rq_cur_sectors(struct request const *rq ) { int tmp ; { { tmp = blk_rq_cur_bytes(rq); } return ((unsigned int )(tmp >> 9)); } } extern struct request *blk_peek_request(struct request_queue * ) ; extern void blk_start_request(struct request * ) ; extern struct request *blk_fetch_request(struct request_queue * ) ; extern void blk_end_request_all(struct request * , int ) ; extern void __blk_end_request_all(struct request * , int ) ; extern struct request_queue *blk_init_queue(void (*)(struct request_queue * ) , spinlock_t * ) ; static struct request_queue *ldv_blk_init_queue_103(void (*ldv_func_arg1)(struct request_queue * ) , spinlock_t *ldv_func_arg2 ) ; extern void blk_cleanup_queue(struct request_queue * ) ; static void ldv_blk_cleanup_queue_109(struct request_queue *ldv_func_arg1 ) ; extern void blk_queue_bounce_limit(struct request_queue * , u64 ) ; extern void blk_queue_max_hw_sectors(struct request_queue * , unsigned int ) ; extern void blk_queue_max_segments(struct request_queue * , unsigned short ) ; extern void blk_queue_max_segment_size(struct request_queue * , unsigned int ) ; extern void blk_queue_max_discard_sectors(struct request_queue * , unsigned int ) ; extern void blk_queue_logical_block_size(struct request_queue * , unsigned short ) ; extern void blk_queue_physical_block_size(struct request_queue * , unsigned int ) ; extern void blk_queue_segment_boundary(struct request_queue * , unsigned long ) ; extern void blk_queue_dma_alignment(struct request_queue * , int ) ; extern void blk_queue_flush(struct request_queue * , unsigned int ) ; extern int blk_rq_map_sg(struct request_queue * , struct request * , struct scatterlist * ) ; __inline static struct page *sg_page(struct scatterlist *sg ) { long tmp ; long tmp___0 ; { { tmp = ldv__builtin_expect(sg->sg_magic != 2271560481UL, 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/scatterlist.h"), "i" (98), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___0 = ldv__builtin_expect((long )((int )sg->page_link) & 1L, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/scatterlist.h"), "i" (99), "i" (12UL)); __builtin_unreachable(); } } else { } return ((struct page *)(sg->page_link & 0xfffffffffffffffcUL)); } } extern struct scatterlist *sg_next(struct scatterlist * ) ; extern void sg_init_table(struct scatterlist * , unsigned int ) ; extern int __xenbus_register_frontend(struct xenbus_driver * , struct module * , char const * ) ; static int ldv___xenbus_register_frontend_143(struct xenbus_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void xenbus_unregister_driver(struct xenbus_driver * ) ; static void ldv_xenbus_unregister_driver_144(struct xenbus_driver *ldv_func_arg1 ) ; extern void *xenbus_read(struct xenbus_transaction , char const * , char const * , unsigned int * ) ; extern int xenbus_transaction_start(struct xenbus_transaction * ) ; extern int xenbus_transaction_end(struct xenbus_transaction , int ) ; extern int xenbus_scanf(struct xenbus_transaction , char const * , char const * , char const * , ...) ; extern int xenbus_printf(struct xenbus_transaction , char const * , char const * , char const * , ...) ; extern int xenbus_gather(struct xenbus_transaction , char const * , ...) ; extern int xenbus_switch_state(struct xenbus_device * , enum xenbus_state ) ; extern int xenbus_grant_ring(struct xenbus_device * , unsigned long ) ; extern int xenbus_alloc_evtchn(struct xenbus_device * , int * ) ; extern void xenbus_dev_error(struct xenbus_device * , int , char const * , ...) ; extern void xenbus_dev_fatal(struct xenbus_device * , int , char const * , ...) ; extern int xenbus_frontend_closed(struct xenbus_device * ) ; extern void gnttab_end_foreign_access(grant_ref_t , int , unsigned long ) ; extern int gnttab_query_foreign_access(grant_ref_t ) ; extern int gnttab_alloc_grant_references(u16 , grant_ref_t * ) ; extern void gnttab_free_grant_references(grant_ref_t ) ; extern int gnttab_claim_grant_reference(grant_ref_t * ) ; extern void gnttab_request_free_callback(struct gnttab_free_callback * , void (*)(void * ) , void * , u16 ) ; extern void gnttab_cancel_free_callback(struct gnttab_free_callback * ) ; extern void gnttab_grant_foreign_access_ref(grant_ref_t , domid_t , unsigned long , int ) ; extern int bind_evtchn_to_irqhandler(unsigned int , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; extern void unbind_from_irqhandler(unsigned int , void * ) ; extern void notify_remote_via_irq(int ) ; extern unsigned long *xen_p2m_addr ; extern unsigned long xen_p2m_size ; extern unsigned long xen_max_p2m_pfn ; extern unsigned long get_phys_to_machine(unsigned long ) ; __inline static unsigned long __pfn_to_mfn(unsigned long pfn ) { unsigned long mfn ; unsigned long tmp ; long tmp___0 ; unsigned long tmp___1 ; long tmp___2 ; { if (pfn < xen_p2m_size) { mfn = *(xen_p2m_addr + pfn); } else { { tmp___0 = ldv__builtin_expect(pfn < xen_max_p2m_pfn, 0L); } if (tmp___0 != 0L) { { tmp = get_phys_to_machine(pfn); } return (tmp); } else { return (pfn | 4611686018427387904UL); } } { tmp___2 = ldv__builtin_expect(mfn == 0xffffffffffffffffUL, 0L); } if (tmp___2 != 0L) { { tmp___1 = get_phys_to_machine(pfn); } return (tmp___1); } else { } return (mfn); } } __inline static unsigned long pfn_to_mfn(unsigned long pfn ) { unsigned long mfn ; int tmp ; { { tmp = xen_feature(2); } if (tmp != 0) { return (pfn); } else { } { mfn = __pfn_to_mfn(pfn); } if (mfn != 0xffffffffffffffffUL) { mfn = mfn & 4611686018427387903UL; } else { } return (mfn); } } extern bool xen_has_pv_disk_devices(void) ; extern bool xen_has_pv_and_legacy_disk_devices(void) ; static struct mutex blkfront_mutex = {{1}, {{{{{0U}}, 3735899821U, 4294967295U, (void *)-1, {0, {0, 0}, "blkfront_mutex.wait_lock", 0, 0UL}}}}, {& blkfront_mutex.wait_list, & blkfront_mutex.wait_list}, 0, (void *)(& blkfront_mutex), {0, {0, 0}, "blkfront_mutex", 0, 0UL}}; static struct block_device_operations const xlvbd_block_fops ; static unsigned int xen_blkif_max_segments = 32U; static unsigned int nr_minors ; static unsigned long *minors ; static spinlock_t minor_lock = {{{{{0U}}, 3735899821U, 4294967295U, (void *)-1, {0, {0, 0}, "minor_lock", 0, 0UL}}}}; static int blkfront_setup_indirect(struct blkfront_info *info ) ; static int get_id_from_freelist(struct blkfront_info *info ) { unsigned long free___0 ; long tmp ; { { free___0 = info->shadow_free; tmp = ldv__builtin_expect(free___0 > 31UL, 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/block/xen-blkfront.c"), "i" (173), "i" (12UL)); __builtin_unreachable(); } } else { } info->shadow_free = (unsigned long )info->shadow[free___0].req.u.rw.id; info->shadow[free___0].req.u.rw.id = 268435438ULL; return ((int )free___0); } } static int add_id_to_freelist(struct blkfront_info *info , unsigned long id ) { { if (info->shadow[id].req.u.rw.id != (unsigned long long )id) { return (-22); } else { } if ((unsigned long )info->shadow[id].request == (unsigned long )((struct request *)0)) { return (-22); } else { } info->shadow[id].req.u.rw.id = (uint64_t )info->shadow_free; info->shadow[id].request = (struct request *)0; info->shadow_free = id; return (0); } } static int fill_grant_buffer(struct blkfront_info *info , int num ) { struct page *granted_page ; struct grant *gnt_list_entry ; struct grant *n ; int i ; void *tmp ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; long tmp___0 ; { i = 0; goto ldv_39719; ldv_39718: { tmp = kzalloc(32UL, 16U); gnt_list_entry = (struct grant *)tmp; } if ((unsigned long )gnt_list_entry == (unsigned long )((struct grant *)0)) { goto out_of_memory; } else { } if ((unsigned int )*((unsigned char *)info + 5088UL) != 0U) { { granted_page = alloc_pages(16U, 0U); } if ((unsigned long )granted_page == (unsigned long )((struct page *)0)) { { kfree((void const *)gnt_list_entry); } goto out_of_memory; } else { } gnt_list_entry->pfn = (unsigned long )(((long )granted_page + 24189255811072L) / 64L); } else { } { gnt_list_entry->gref = 0U; list_add(& gnt_list_entry->node, & info->grants); i = i + 1; } ldv_39719: ; if (i < num) { goto ldv_39718; } else { } return (0); out_of_memory: __mptr = (struct list_head const *)info->grants.next; gnt_list_entry = (struct grant *)__mptr + 0xfffffffffffffff0UL; __mptr___0 = (struct list_head const *)gnt_list_entry->node.next; n = (struct grant *)__mptr___0 + 0xfffffffffffffff0UL; goto ldv_39728; ldv_39727: { list_del(& gnt_list_entry->node); } if ((unsigned int )*((unsigned char *)info + 5088UL) != 0U) { { __free_pages((struct page *)-24189255811072L + gnt_list_entry->pfn, 0U); } } else { } { kfree((void const *)gnt_list_entry); i = i - 1; gnt_list_entry = n; __mptr___1 = (struct list_head const *)n->node.next; n = (struct grant *)__mptr___1 + 0xfffffffffffffff0UL; } ldv_39728: ; if ((unsigned long )(& gnt_list_entry->node) != (unsigned long )(& info->grants)) { goto ldv_39727; } else { } { tmp___0 = ldv__builtin_expect(i != 0, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/block/xen-blkfront.c"), "i" (228), "i" (12UL)); __builtin_unreachable(); } } else { } return (-12); } } static struct grant *get_grant(grant_ref_t *gref_head , unsigned long pfn , struct blkfront_info *info ) { struct grant *gnt_list_entry ; unsigned long buffer_mfn ; int tmp ; long tmp___0 ; struct list_head const *__mptr ; int tmp___1 ; long tmp___2 ; long tmp___3 ; { { tmp = list_empty((struct list_head const *)(& info->grants)); tmp___0 = ldv__builtin_expect(tmp != 0, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/block/xen-blkfront.c"), "i" (239), "i" (12UL)); __builtin_unreachable(); } } else { } { __mptr = (struct list_head const *)info->grants.next; gnt_list_entry = (struct grant *)__mptr + 0xfffffffffffffff0UL; list_del(& gnt_list_entry->node); } if (gnt_list_entry->gref != 0U) { info->persistent_gnts_c = info->persistent_gnts_c - 1U; return (gnt_list_entry); } else { } { tmp___1 = gnttab_claim_grant_reference(gref_head); gnt_list_entry->gref = (grant_ref_t )tmp___1; tmp___2 = ldv__builtin_expect(gnt_list_entry->gref == 4294967268U, 0L); } if (tmp___2 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/block/xen-blkfront.c"), "i" (251), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned int )*((unsigned char *)info + 5088UL) == 0U) { { tmp___3 = ldv__builtin_expect(pfn == 0UL, 0L); } if (tmp___3 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/block/xen-blkfront.c"), "i" (253), "i" (12UL)); __builtin_unreachable(); } } else { } gnt_list_entry->pfn = pfn; } else { } { buffer_mfn = pfn_to_mfn(gnt_list_entry->pfn); gnttab_grant_foreign_access_ref(gnt_list_entry->gref, (int )((domid_t )(info->xbdev)->otherend_id), buffer_mfn, 0); } return (gnt_list_entry); } } static char const *op_name(int op ) { char const *names[6U] ; { names[0] = "read"; names[1] = "write"; names[2] = "barrier"; names[3] = "flush"; names[4] = 0; names[5] = "discard"; if ((unsigned int )op > 5U) { return ("unknown"); } else { } if ((unsigned long )names[op] == (unsigned long )((char const */* const */)0)) { return ("reserved"); } else { } return (names[op]); } } static int xlbd_reserve_minors(unsigned int minor , unsigned int nr ) { unsigned int end ; int rc ; unsigned long *bitmap ; unsigned long *old ; void *tmp ; unsigned long tmp___0 ; { end = minor + nr; if (end > nr_minors) { { tmp = kcalloc(((unsigned long )end + 63UL) / 64UL, 8UL, 208U); bitmap = (unsigned long *)tmp; } if ((unsigned long )bitmap == (unsigned long )((unsigned long *)0UL)) { return (-12); } else { } { ldv_spin_lock_96(& minor_lock); } if (end > nr_minors) { { old = minors; __memcpy((void *)bitmap, (void const *)minors, (((unsigned long )nr_minors + 63UL) / 64UL) * 8UL); minors = bitmap; nr_minors = (unsigned int )(((unsigned long )end + 63UL) / 64UL) * 64U; } } else { old = bitmap; } { ldv_spin_unlock_97(& minor_lock); kfree((void const *)old); } } else { } { ldv_spin_lock_96(& minor_lock); tmp___0 = ldv_find_next_bit_99((unsigned long const *)minors, (unsigned long )end, (unsigned long )minor); } if (tmp___0 >= (unsigned long )end) { { bitmap_set(minors, minor, (int )nr); rc = 0; } } else { rc = -16; } { ldv_spin_unlock_97(& minor_lock); } return (rc); } } static void xlbd_release_minors(unsigned int minor , unsigned int nr ) { unsigned int end ; long tmp ; { { end = minor + nr; tmp = ldv__builtin_expect(end > nr_minors, 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/block/xen-blkfront.c"), "i" (321), "i" (12UL)); __builtin_unreachable(); } } else { } { ldv_spin_lock_96(& minor_lock); bitmap_clear(minors, minor, (int )nr); ldv_spin_unlock_97(& minor_lock); } return; } } static void blkif_restart_queue_callback(void *arg ) { struct blkfront_info *info ; { { info = (struct blkfront_info *)arg; schedule_work(& info->work); } return; } } static int blkif_getgeo(struct block_device *bd , struct hd_geometry *hg ) { sector_t nsect ; sector_t tmp ; sector_t cylinders ; int _res ; { { tmp = get_capacity(bd->bd_disk); nsect = tmp; cylinders = nsect; hg->heads = 255U; hg->sectors = 63U; _res = (int )(cylinders % (sector_t )((int )hg->heads * (int )hg->sectors)); cylinders = cylinders / (sector_t )((int )hg->heads * (int )hg->sectors); hg->cylinders = (unsigned short )cylinders; } if (((unsigned long )((int )hg->cylinders + 1) * (unsigned long )hg->heads) * (unsigned long )hg->sectors < nsect) { hg->cylinders = 65535U; } else { } return (0); } } static int blkif_ioctl(struct block_device *bdev , fmode_t mode , unsigned int command , unsigned long argument ) { struct blkfront_info *info ; int i ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; int __ret_pu ; char __pu_val ; struct gendisk *gd ; { { info = (struct blkfront_info *)(bdev->bd_disk)->private_data; descriptor.modname = "xen_blkfront"; descriptor.function = "blkif_ioctl"; descriptor.filename = "drivers/block/xen-blkfront.c"; descriptor.format = "command: 0x%x, argument: 0x%lx\n"; descriptor.lineno = 356U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (info->xbdev)->dev), "command: 0x%x, argument: 0x%lx\n", command, (long )argument); } } else { } { if (command == 21264U) { goto case_21264; } else { } if (command == 21297U) { goto case_21297; } else { } goto switch_default___0; case_21264: /* CIL Label */ { descriptor___0.modname = "xen_blkfront"; descriptor___0.function = "blkif_ioctl"; descriptor___0.filename = "drivers/block/xen-blkfront.c"; descriptor___0.format = "FIXME: support multisession CDs later\n"; descriptor___0.lineno = 360U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_dev_dbg(& descriptor___0, (struct device const *)(& (info->xbdev)->dev), "FIXME: support multisession CDs later\n"); } } else { } i = 0; goto ldv_39792; ldv_39791: { might_fault(); __pu_val = 0; } { if (1UL == 1UL) { goto case_1; } else { } if (1UL == 2UL) { goto case_2; } else { } if (1UL == 4UL) { goto case_4; } else { } if (1UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ volatile ("call __put_user_1": "=a" (__ret_pu): "0" (__pu_val), "c" ((char *)(argument + (unsigned long )i)): "ebx"); goto ldv_39785; case_2: /* CIL Label */ __asm__ volatile ("call __put_user_2": "=a" (__ret_pu): "0" (__pu_val), "c" ((char *)(argument + (unsigned long )i)): "ebx"); goto ldv_39785; case_4: /* CIL Label */ __asm__ volatile ("call __put_user_4": "=a" (__ret_pu): "0" (__pu_val), "c" ((char *)(argument + (unsigned long )i)): "ebx"); goto ldv_39785; case_8: /* CIL Label */ __asm__ volatile ("call __put_user_8": "=a" (__ret_pu): "0" (__pu_val), "c" ((char *)(argument + (unsigned long )i)): "ebx"); goto ldv_39785; switch_default: /* CIL Label */ __asm__ volatile ("call __put_user_X": "=a" (__ret_pu): "0" (__pu_val), "c" ((char *)(argument + (unsigned long )i)): "ebx"); goto ldv_39785; switch_break___0: /* CIL Label */ ; } ldv_39785: ; if (__ret_pu != 0) { return (-14); } else { } i = i + 1; ldv_39792: ; if ((unsigned int )i <= 7U) { goto ldv_39791; } else { } return (0); case_21297: /* CIL Label */ gd = info->gd; if ((gd->flags & 8) != 0) { return (0); } else { } return (-22); switch_default___0: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } return (0); } } extern void __compiletime_assert_506(void) ; extern void __compiletime_assert_552(void) ; extern void __compiletime_assert_553(void) ; extern void __compiletime_assert_571(void) ; static int blkif_queue_request(struct request *req ) { struct blkfront_info *info ; struct blkif_request *ring_req ; unsigned long id ; unsigned int fsect ; unsigned int lsect ; int i ; int ref ; int n ; struct blkif_request_segment *segments ; bool new_persistent_gnts ; grant_ref_t gref_head ; struct grant *gnt_list_entry ; struct scatterlist *sg ; int nseg ; int max_grefs ; long tmp ; int tmp___0 ; int tmp___1 ; unsigned int tmp___2 ; sector_t tmp___3 ; long tmp___4 ; long tmp___5 ; long tmp___6 ; long tmp___7 ; long tmp___8 ; sector_t tmp___9 ; sector_t tmp___10 ; unsigned long pfn ; bool __cond ; struct page *indirect_page ; int tmp___11 ; long tmp___12 ; struct list_head const *__mptr ; void *tmp___13 ; struct page *tmp___14 ; char *bvec_data ; void *shared_data ; long tmp___15 ; struct page *tmp___16 ; void *tmp___17 ; bool __cond___0 ; bool __cond___1 ; struct blkif_request_segment __constr_expr_0 ; struct blkif_request_segment __constr_expr_1 ; bool __cond___2 ; long tmp___18 ; { { info = (struct blkfront_info *)(req->rq_disk)->private_data; segments = (struct blkif_request_segment *)0; gnt_list_entry = (struct grant *)0; tmp = ldv__builtin_expect((unsigned int )info->connected != 1U, 0L); } if (tmp != 0L) { return (1); } else { } max_grefs = (int )req->nr_phys_segments; if (max_grefs > 11) { max_grefs = (int )((unsigned int )max_grefs + (unsigned int )(((unsigned long )req->nr_phys_segments + 511UL) / 512UL)); } else { } if (info->persistent_gnts_c < (unsigned int )max_grefs) { { new_persistent_gnts = 1; tmp___0 = gnttab_alloc_grant_references((int )((u16 )max_grefs) - (int )((u16 )info->persistent_gnts_c), & gref_head); } if (tmp___0 < 0) { { gnttab_request_free_callback(& info->callback, & blkif_restart_queue_callback, (void *)info, (int )((u16 )max_grefs)); } return (1); } else { } } else { new_persistent_gnts = 0; } { ring_req = & (info->ring.sring)->ring[info->ring.req_prod_pvt & (info->ring.nr_ents - 1U)].req; tmp___1 = get_id_from_freelist(info); id = (unsigned long )tmp___1; info->shadow[id].request = req; tmp___18 = ldv__builtin_expect((req->cmd_flags & 384ULL) != 0ULL, 0L); } if (tmp___18 != 0L) { { ring_req->operation = 5U; tmp___2 = blk_rq_sectors((struct request const *)req); ring_req->u.discard.nr_sectors = (uint64_t )tmp___2; ring_req->u.discard.id = (uint64_t )id; tmp___3 = blk_rq_pos((struct request const *)req); ring_req->u.discard.sector_number = (unsigned long long )tmp___3; } if ((req->cmd_flags & 256ULL) != 0ULL && (unsigned int )*((unsigned char *)info + 5076UL) != 0U) { ring_req->u.discard.flag = 1U; } else { ring_req->u.discard.flag = 0U; } } else { { tmp___4 = ldv__builtin_expect(info->max_indirect_segments == 0U, 0L); } if (tmp___4 != 0L) { { tmp___5 = ldv__builtin_expect((unsigned int )req->nr_phys_segments > 11U, 0L); } if (tmp___5 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/block/xen-blkfront.c"), "i" (451), "i" (12UL)); __builtin_unreachable(); } } else { } } else { } { tmp___6 = ldv__builtin_expect(info->max_indirect_segments != 0U, 0L); } if (tmp___6 != 0L) { { tmp___7 = ldv__builtin_expect((unsigned int )req->nr_phys_segments > info->max_indirect_segments, 0L); } if (tmp___7 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/block/xen-blkfront.c"), "i" (453), "i" (12UL)); __builtin_unreachable(); } } else { } } else { } { nseg = blk_rq_map_sg(req->q, req, info->shadow[id].sg); ring_req->u.rw.id = (uint64_t )id; } if (nseg > 11) { { tmp___8 = ldv__builtin_expect((req->cmd_flags & 12288ULL) != 0ULL, 0L); } if (tmp___8 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/block/xen-blkfront.c"), "i" (461), "i" (12UL)); __builtin_unreachable(); } } else { } { ring_req->operation = 6U; ring_req->u.indirect.indirect_op = (unsigned int )((uint8_t )req->cmd_flags) & 1U; tmp___9 = blk_rq_pos((struct request const *)req); ring_req->u.indirect.sector_number = (unsigned long long )tmp___9; ring_req->u.indirect.handle = info->handle; ring_req->u.indirect.nr_segments = (uint16_t )nseg; } } else { { tmp___10 = blk_rq_pos((struct request const *)req); ring_req->u.rw.sector_number = (unsigned long long )tmp___10; ring_req->u.rw.handle = info->handle; ring_req->operation = (unsigned int )((uint8_t )req->cmd_flags) & 1U; } if ((req->cmd_flags & 12288ULL) != 0ULL) { { if (((unsigned long long )info->feature_flush & 12288ULL) == 12288ULL) { goto case_12288; } else { } if (((unsigned long long )info->feature_flush & 12288ULL) == 8192ULL) { goto case_8192; } else { } goto switch_default; case_12288: /* CIL Label */ ring_req->operation = 2U; goto ldv_39816; case_8192: /* CIL Label */ ring_req->operation = 3U; goto ldv_39816; switch_default: /* CIL Label */ ring_req->operation = 0U; switch_break: /* CIL Label */ ; } ldv_39816: ; } else { } ring_req->u.rw.nr_segments = (uint8_t )nseg; } i = 0; sg = info->shadow[id].sg; goto ldv_39840; ldv_39839: fsect = sg->offset >> 9; lsect = (fsect + (sg->length >> 9)) - 1U; if ((unsigned int )ring_req->operation == 6U && ((unsigned long )i & 511UL) == 0UL) { pfn = pfn; if ((unsigned long )segments != (unsigned long )((struct blkif_request_segment *)0)) { __cond = 0; if ((int )__cond) { { __compiletime_assert_506(); } } else { } { __kunmap_atomic((void *)segments); } } else { } n = (int )((unsigned long )i / 512UL); if ((unsigned int )*((unsigned char *)info + 5088UL) == 0U) { { tmp___11 = list_empty((struct list_head const *)(& info->indirect_pages)); tmp___12 = ldv__builtin_expect(tmp___11 != 0, 0L); } if (tmp___12 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/block/xen-blkfront.c"), "i" (513), "i" (12UL)); __builtin_unreachable(); } } else { } { __mptr = (struct list_head const *)info->indirect_pages.next; indirect_page = (struct page *)__mptr + 0xffffffffffffffe0UL; list_del(& indirect_page->__annonCompField49.lru); pfn = (unsigned long )(((long )indirect_page + 24189255811072L) / 64L); } } else { } { gnt_list_entry = get_grant(& gref_head, pfn, info); *(info->shadow[id].indirect_grants + (unsigned long )n) = gnt_list_entry; tmp___13 = kmap_atomic((struct page *)-24189255811072L + gnt_list_entry->pfn); segments = (struct blkif_request_segment *)tmp___13; ring_req->u.indirect.indirect_grefs[n] = gnt_list_entry->gref; } } else { } { tmp___14 = sg_page(sg); gnt_list_entry = get_grant(& gref_head, (unsigned long )(((long )tmp___14 + 24189255811072L) / 64L), info); ref = (int )gnt_list_entry->gref; *(info->shadow[id].grants_used + (unsigned long )i) = gnt_list_entry; } if ((int )req->cmd_flags & 1 && (unsigned int )*((unsigned char *)info + 5088UL) != 0U) { { tmp___15 = ldv__builtin_expect(sg->offset + sg->length > 4096U, 0L); } if (tmp___15 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/block/xen-blkfront.c"), "i" (534), "i" (12UL)); __builtin_unreachable(); } } else { } { shared_data = kmap_atomic((struct page *)-24189255811072L + gnt_list_entry->pfn); tmp___16 = sg_page(sg); tmp___17 = kmap_atomic(tmp___16); bvec_data = (char *)tmp___17; __memcpy(shared_data + (unsigned long )sg->offset, (void const *)bvec_data + (unsigned long )sg->offset, (size_t )sg->length); __cond___0 = 0; } if ((int )__cond___0) { { __compiletime_assert_552(); } } else { } { __kunmap_atomic((void *)bvec_data); __cond___1 = 0; } if ((int )__cond___1) { { __compiletime_assert_553(); } } else { } { __kunmap_atomic(shared_data); } } else { } if ((unsigned int )ring_req->operation != 6U) { __constr_expr_0.gref = (unsigned int )ref; __constr_expr_0.first_sect = (unsigned char )fsect; __constr_expr_0.last_sect = (unsigned char )lsect; ring_req->u.rw.seg[i] = __constr_expr_0; } else { n = i & 511; __constr_expr_1.gref = (unsigned int )ref; __constr_expr_1.first_sect = (unsigned char )fsect; __constr_expr_1.last_sect = (unsigned char )lsect; *(segments + (unsigned long )n) = __constr_expr_1; } { i = i + 1; sg = sg_next(sg); } ldv_39840: ; if (i < nseg) { goto ldv_39839; } else { } if ((unsigned long )segments != (unsigned long )((struct blkif_request_segment *)0)) { __cond___2 = 0; if ((int )__cond___2) { { __compiletime_assert_571(); } } else { } { __kunmap_atomic((void *)segments); } } else { } } info->ring.req_prod_pvt = info->ring.req_prod_pvt + 1U; info->shadow[id].req = *ring_req; if ((int )new_persistent_gnts) { { gnttab_free_grant_references(gref_head); } } else { } return (0); } } __inline static void flush_requests(struct blkfront_info *info ) { int notify ; RING_IDX __old ; RING_IDX __new ; { __old = (info->ring.sring)->req_prod; __new = info->ring.req_prod_pvt; __asm__ volatile ("sfence": : : "memory"); (info->ring.sring)->req_prod = __new; __asm__ volatile ("mfence": : : "memory"); notify = __new - (info->ring.sring)->req_event < __new - __old; if (notify != 0) { { notify_remote_via_irq((int )info->irq); } } else { } return; } } __inline static bool blkif_request_flush_invalid(struct request *req , struct blkfront_info *info ) { { return ((bool )(((unsigned int )req->cmd_type != 1U || ((req->cmd_flags & 8192ULL) != 0ULL && ((unsigned long long )info->feature_flush & 8192ULL) == 0ULL)) || ((req->cmd_flags & 4096ULL) != 0ULL && ((unsigned long long )info->feature_flush & 4096ULL) == 0ULL))); } } static void do_blkif_request(struct request_queue *rq ) { struct blkfront_info *info ; struct request *req ; int queued ; struct _ddebug descriptor ; long tmp ; bool tmp___0 ; struct _ddebug descriptor___0 ; unsigned int tmp___1 ; unsigned int tmp___2 ; sector_t tmp___3 ; long tmp___4 ; int tmp___5 ; { { info = (struct blkfront_info *)0; descriptor.modname = "xen_blkfront"; descriptor.function = "do_blkif_request"; descriptor.filename = "drivers/block/xen-blkfront.c"; descriptor.format = "Entered do_blkif_request\n"; descriptor.lineno = 616U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "Entered do_blkif_request\n"); } } else { } queued = 0; goto ldv_39865; ldv_39868: info = (struct blkfront_info *)(req->rq_disk)->private_data; if (info->ring.nr_ents + (info->ring.rsp_cons - info->ring.req_prod_pvt) == 0U) { goto wait; } else { } { blk_start_request(req); tmp___0 = blkif_request_flush_invalid(req, info); } if ((int )tmp___0) { { __blk_end_request_all(req, -95); } goto ldv_39865; } else { } { descriptor___0.modname = "xen_blkfront"; descriptor___0.function = "do_blkif_request"; descriptor___0.filename = "drivers/block/xen-blkfront.c"; descriptor___0.format = "do_blk_req %p: cmd %p, sec %lx, (%u/%u) [%s]\n"; descriptor___0.lineno = 637U; descriptor___0.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___4 != 0L) { { tmp___1 = blk_rq_sectors((struct request const *)req); tmp___2 = blk_rq_cur_sectors((struct request const *)req); tmp___3 = blk_rq_pos((struct request const *)req); __dynamic_pr_debug(& descriptor___0, "do_blk_req %p: cmd %p, sec %lx, (%u/%u) [%s]\n", req, req->cmd, tmp___3, tmp___2, tmp___1, (int )req->cmd_flags & 1 ? (char *)"write" : (char *)"read"); } } else { } { tmp___5 = blkif_queue_request(req); } if (tmp___5 != 0) { { blk_requeue_request(rq, req); } wait: { blk_stop_queue(rq); } goto ldv_39867; } else { } queued = queued + 1; ldv_39865: { req = blk_peek_request(rq); } if ((unsigned long )req != (unsigned long )((struct request *)0)) { goto ldv_39868; } else { } ldv_39867: ; if (queued != 0) { { flush_requests(info); } } else { } return; } } static int xlvbd_init_blk_queue(struct gendisk *gd , u16 sector_size , unsigned int physical_sector_size , unsigned int segments ) { struct request_queue *rq ; struct blkfront_info *info ; sector_t tmp ; { { info = (struct blkfront_info *)gd->private_data; rq = ldv_blk_init_queue_103(& do_blkif_request, & info->io_lock); } if ((unsigned long )rq == (unsigned long )((struct request_queue *)0)) { return (-1); } else { } { queue_flag_set_unlocked(12U, rq); } if ((unsigned int )*((unsigned char *)info + 5076UL) != 0U) { { queue_flag_set_unlocked(14U, rq); tmp = get_capacity(gd); blk_queue_max_discard_sectors(rq, (unsigned int )tmp); rq->limits.discard_granularity = info->discard_granularity; rq->limits.discard_alignment = info->discard_alignment; } if ((unsigned int )*((unsigned char *)info + 5076UL) != 0U) { { queue_flag_set_unlocked(17U, rq); } } else { } } else { } { blk_queue_logical_block_size(rq, (int )sector_size); blk_queue_physical_block_size(rq, physical_sector_size); blk_queue_max_hw_sectors(rq, (unsigned int )(((unsigned long )segments * 4096UL) / 512UL)); blk_queue_segment_boundary(rq, 4095UL); blk_queue_max_segment_size(rq, 4096U); blk_queue_max_segments(rq, (int )((unsigned short )segments)); blk_queue_dma_alignment(rq, 511); blk_queue_bounce_limit(rq, 0xffffffffffffffffULL); gd->queue = rq; } return (0); } } static char const *flush_info(unsigned int feature_flush ) { { { if (((unsigned long long )feature_flush & 12288ULL) == 12288ULL) { goto case_12288; } else { } if (((unsigned long long )feature_flush & 12288ULL) == 8192ULL) { goto case_8192; } else { } goto switch_default; case_12288: /* CIL Label */ ; return ("barrier: enabled;"); case_8192: /* CIL Label */ ; return ("flush diskcache: enabled;"); switch_default: /* CIL Label */ ; return ("barrier or flush: disabled;"); switch_break: /* CIL Label */ ; } } } static void xlvbd_flush(struct blkfront_info *info ) { char const *tmp ; { { blk_queue_flush(info->rq, info->feature_flush); tmp = flush_info(info->feature_flush); printk("\016blkfront: %s: %s %s %s %s %s\n", (char *)(& (info->gd)->disk_name), tmp, (char *)"persistent grants:", (unsigned int )*((unsigned char *)info + 5088UL) != 0U ? (char *)"enabled;" : (char *)"disabled;", (char *)"indirect descriptors:", info->max_indirect_segments != 0U ? (char *)"enabled;" : (char *)"disabled;"); } return; } } static int xen_translate_vdev(int vdevice , int *minor , unsigned int *offset ) { int major ; { major = vdevice >> 8; *minor = vdevice & 255; { if (major == 3) { goto case_3; } else { } if (major == 22) { goto case_22; } else { } if (major == 8) { goto case_8; } else { } if (major == 65) { goto case_65; } else { } if (major == 66) { goto case_66; } else { } if (major == 67) { goto case_67; } else { } if (major == 68) { goto case_68; } else { } if (major == 69) { goto case_69; } else { } if (major == 70) { goto case_70; } else { } if (major == 71) { goto case_71; } else { } if (major == 128) { goto case_128; } else { } if (major == 129) { goto case_129; } else { } if (major == 130) { goto case_130; } else { } if (major == 131) { goto case_131; } else { } if (major == 132) { goto case_132; } else { } if (major == 133) { goto case_133; } else { } if (major == 134) { goto case_134; } else { } if (major == 135) { goto case_135; } else { } if (major == 202) { goto case_202; } else { } goto switch_default; case_3: /* CIL Label */ *offset = (unsigned int )(*minor / 64); *minor = (*minor / 64) * 16; goto ldv_39893; case_22: /* CIL Label */ *offset = (unsigned int )(*minor / 64 + 2); *minor = (*minor / 64 + 2) * 16; goto ldv_39893; case_8: /* CIL Label */ *offset = (unsigned int )(*minor / 16); *minor = *minor; goto ldv_39893; case_65: /* CIL Label */ ; case_66: /* CIL Label */ ; case_67: /* CIL Label */ ; case_68: /* CIL Label */ ; case_69: /* CIL Label */ ; case_70: /* CIL Label */ ; case_71: /* CIL Label */ *offset = (unsigned int )(*minor / 16 + (major + -64) * 16); *minor = *minor + (major + -64) * 256; goto ldv_39893; case_128: /* CIL Label */ ; case_129: /* CIL Label */ ; case_130: /* CIL Label */ ; case_131: /* CIL Label */ ; case_132: /* CIL Label */ ; case_133: /* CIL Label */ ; case_134: /* CIL Label */ ; case_135: /* CIL Label */ *offset = (unsigned int )(*minor / 16 + (major + -120) * 16); *minor = *minor + (major + -120) * 256; goto ldv_39893; case_202: /* CIL Label */ *offset = (unsigned int )(*minor / 16); goto ldv_39893; switch_default: /* CIL Label */ { printk("\fblkfront: your disk configuration is incorrect, please use an xvd device instead\n"); } return (-19); switch_break: /* CIL Label */ ; } ldv_39893: ; return (0); } } static char *encode_disk_name(char *ptr , unsigned int n ) { { if (n > 25U) { { ptr = encode_disk_name(ptr, n / 26U - 1U); } } else { } *ptr = (char )((unsigned int )((unsigned char )(n % 26U)) + 97U); return (ptr + 1UL); } } static int xlvbd_alloc_gendisk(blkif_sector_t capacity , struct blkfront_info *info , u16 vdisk_info , u16 sector_size , unsigned int physical_sector_size ) { struct gendisk *gd ; int nr_minors___0 ; int err ; unsigned int offset ; int minor ; int nr_parts ; char *ptr ; long tmp ; long tmp___0 ; long tmp___1 ; int tmp___2 ; { { nr_minors___0 = 1; tmp = ldv__builtin_expect((unsigned long )info->gd != (unsigned long )((struct gendisk *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/block/xen-blkfront.c"), "i" (802), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___0 = ldv__builtin_expect((unsigned long )info->rq != (unsigned long )((struct request_queue *)0), 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/block/xen-blkfront.c"), "i" (803), "i" (12UL)); __builtin_unreachable(); } } else { } if (info->vdevice >> 28 > 1) { { printk("\fblkfront: vdevice 0x%x is above the extended range; ignoring\n", info->vdevice); } return (-19); } else { } if ((info->vdevice & 268435456) == 0) { { err = xen_translate_vdev(info->vdevice, & minor, & offset); } if (err != 0) { return (err); } else { } nr_parts = 16; } else { minor = info->vdevice & -268435457; nr_parts = 256; offset = (unsigned int )(minor / nr_parts); if ((unsigned int )xen_domain_type == 2U && offset <= 3U) { { printk("\fblkfront: vdevice 0x%x might conflict with emulated IDE disks,\n\t choose an xvd device namefrom xvde on\n", info->vdevice); } } else { } } if (minor >> 20 != 0) { { printk("\fblkfront: %#x\'s minor (%#x) out of range; ignoring\n", info->vdevice, minor); } return (-19); } else { } if (minor % nr_parts == 0) { nr_minors___0 = nr_parts; } else { } { err = xlbd_reserve_minors((unsigned int )minor, (unsigned int )nr_minors___0); } if (err != 0) { goto out; } else { } { err = -19; gd = ldv_alloc_disk_104(nr_minors___0); } if ((unsigned long )gd == (unsigned long )((struct gendisk *)0)) { goto release; } else { } { strcpy((char *)(& gd->disk_name), "xvd"); ptr = encode_disk_name((char *)(& gd->disk_name) + 3U, offset); tmp___1 = ldv__builtin_expect((unsigned long )ptr >= (unsigned long )((char *)(& gd->disk_name) + 32UL), 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/block/xen-blkfront.c"), "i" (845), "i" (12UL)); __builtin_unreachable(); } } else { } if (nr_minors___0 > 1) { *ptr = 0; } else { { snprintf(ptr, (size_t )((long )((char *)(& gd->disk_name) + 32UL) - (long )ptr), "%d", minor & (nr_parts + -1)); } } { gd->major = 202; gd->first_minor = minor; gd->fops = & xlvbd_block_fops; gd->private_data = (void *)info; gd->driverfs_dev = & (info->xbdev)->dev; set_capacity(gd, (sector_t )capacity); tmp___2 = xlvbd_init_blk_queue(gd, (int )sector_size, physical_sector_size, info->max_indirect_segments != 0U ? info->max_indirect_segments != 0U : 11U); } if (tmp___2 != 0) { { ldv_del_gendisk_105(gd); } goto release; } else { } { info->rq = gd->queue; info->gd = gd; xlvbd_flush(info); } if (((int )vdisk_info & 4) != 0) { { set_disk_ro(gd, 1); } } else { } if (((int )vdisk_info & 2) != 0) { gd->flags = gd->flags | 1; } else { } if ((int )vdisk_info & 1) { gd->flags = gd->flags | 8; } else { } return (0); release: { xlbd_release_minors((unsigned int )minor, (unsigned int )nr_minors___0); } out: ; return (err); } } static void xlvbd_release_gendisk(struct blkfront_info *info ) { unsigned int minor ; unsigned int nr_minors___0 ; unsigned long flags ; { if ((unsigned long )info->rq == (unsigned long )((struct request_queue *)0)) { return; } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_106(& info->io_lock); blk_stop_queue(info->rq); gnttab_cancel_free_callback(& info->callback); ldv_spin_unlock_irqrestore_107(& info->io_lock, flags); flush_work(& info->work); ldv_del_gendisk_108(info->gd); minor = (unsigned int )(info->gd)->first_minor; nr_minors___0 = (unsigned int )(info->gd)->minors; xlbd_release_minors(minor, nr_minors___0); ldv_blk_cleanup_queue_109(info->rq); info->rq = (struct request_queue *)0; ldv_put_disk_110(info->gd); info->gd = (struct gendisk *)0; } return; } } static void kick_pending_request_queues(struct blkfront_info *info ) { { if (info->ring.nr_ents + (info->ring.rsp_cons - info->ring.req_prod_pvt) != 0U) { { blk_start_queue(info->rq); do_blkif_request(info->rq); } } else { } return; } } static void blkif_restart_queue(struct work_struct *work ) { struct blkfront_info *info ; struct work_struct const *__mptr ; { { __mptr = (struct work_struct const *)work; info = (struct blkfront_info *)__mptr + 0xfffffffffffffed0UL; ldv_spin_lock_irq_111(& info->io_lock); } if ((unsigned int )info->connected == 1U) { { kick_pending_request_queues(info); } } else { } { ldv_spin_unlock_irq_112(& info->io_lock); } return; } } static void blkif_free(struct blkfront_info *info , int suspend ) { struct grant *persistent_gnt ; struct grant *n ; int i ; int j ; int segs ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; int tmp ; long tmp___0 ; struct page *indirect_page ; struct page *n___0 ; long tmp___1 ; struct list_head const *__mptr___2 ; struct list_head const *__mptr___3 ; struct list_head const *__mptr___4 ; int tmp___2 ; unsigned int tmp___3 ; { { ldv_spin_lock_irq_111(& info->io_lock); info->connected = suspend != 0 ? 2 : 0; } if ((unsigned long )info->rq != (unsigned long )((struct request_queue *)0)) { { blk_stop_queue(info->rq); } } else { } { tmp = list_empty((struct list_head const *)(& info->grants)); } if (tmp == 0) { __mptr = (struct list_head const *)info->grants.next; persistent_gnt = (struct grant *)__mptr + 0xfffffffffffffff0UL; __mptr___0 = (struct list_head const *)persistent_gnt->node.next; n = (struct grant *)__mptr___0 + 0xfffffffffffffff0UL; goto ldv_39964; ldv_39963: { list_del(& persistent_gnt->node); } if (persistent_gnt->gref != 0U) { { gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL); info->persistent_gnts_c = info->persistent_gnts_c - 1U; } } else { } if ((unsigned int )*((unsigned char *)info + 5088UL) != 0U) { { __free_pages((struct page *)-24189255811072L + persistent_gnt->pfn, 0U); } } else { } { kfree((void const *)persistent_gnt); persistent_gnt = n; __mptr___1 = (struct list_head const *)n->node.next; n = (struct grant *)__mptr___1 + 0xfffffffffffffff0UL; } ldv_39964: ; if ((unsigned long )(& persistent_gnt->node) != (unsigned long )(& info->grants)) { goto ldv_39963; } else { } } else { } { tmp___0 = ldv__builtin_expect(info->persistent_gnts_c != 0U, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/block/xen-blkfront.c"), "i" (970), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___2 = list_empty((struct list_head const *)(& info->indirect_pages)); } if (tmp___2 == 0) { { tmp___1 = ldv__builtin_expect((long )*((unsigned char *)info + 5088UL) & 1L, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/block/xen-blkfront.c"), "i" (979), "i" (12UL)); __builtin_unreachable(); } } else { } __mptr___2 = (struct list_head const *)info->indirect_pages.next; indirect_page = (struct page *)__mptr___2 + 0xffffffffffffffe0UL; __mptr___3 = (struct list_head const *)indirect_page->__annonCompField49.lru.next; n___0 = (struct page *)__mptr___3 + 0xffffffffffffffe0UL; goto ldv_39975; ldv_39974: { list_del(& indirect_page->__annonCompField49.lru); __free_pages(indirect_page, 0U); indirect_page = n___0; __mptr___4 = (struct list_head const *)n___0->__annonCompField49.lru.next; n___0 = (struct page *)__mptr___4 + 0xffffffffffffffe0UL; } ldv_39975: ; if ((unsigned long )(& indirect_page->__annonCompField49.lru) != (unsigned long )(& info->indirect_pages)) { goto ldv_39974; } else { } } else { } i = 0; goto ldv_39985; ldv_39984: ; if ((unsigned long )info->shadow[i].request == (unsigned long )((struct request *)0)) { goto free_shadow; } else { } segs = (unsigned int )info->shadow[i].req.operation == 6U ? (int )info->shadow[i].req.u.indirect.nr_segments : (int )info->shadow[i].req.u.rw.nr_segments; j = 0; goto ldv_39979; ldv_39978: { persistent_gnt = *(info->shadow[i].grants_used + (unsigned long )j); gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL); } if ((unsigned int )*((unsigned char *)info + 5088UL) != 0U) { { __free_pages((struct page *)-24189255811072L + persistent_gnt->pfn, 0U); } } else { } { kfree((void const *)persistent_gnt); j = j + 1; } ldv_39979: ; if (j < segs) { goto ldv_39978; } else { } if ((unsigned int )info->shadow[i].req.operation != 6U) { goto free_shadow; } else { } j = 0; goto ldv_39982; ldv_39981: { persistent_gnt = *(info->shadow[i].indirect_grants + (unsigned long )j); gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL); __free_pages((struct page *)-24189255811072L + persistent_gnt->pfn, 0U); kfree((void const *)persistent_gnt); j = j + 1; } ldv_39982: ; if ((unsigned long )j < ((unsigned long )segs + 511UL) / 512UL) { goto ldv_39981; } else { } free_shadow: { kfree((void const *)info->shadow[i].grants_used); info->shadow[i].grants_used = (struct grant **)0; kfree((void const *)info->shadow[i].indirect_grants); info->shadow[i].indirect_grants = (struct grant **)0; kfree((void const *)info->shadow[i].sg); info->shadow[i].sg = (struct scatterlist *)0; i = i + 1; } ldv_39985: ; if ((unsigned int )i <= 31U) { goto ldv_39984; } else { } { gnttab_cancel_free_callback(& info->callback); ldv_spin_unlock_irq_112(& info->io_lock); flush_work(& info->work); } if (info->ring_ref != 0) { { gnttab_end_foreign_access((grant_ref_t )info->ring_ref, 0, (unsigned long )info->ring.sring); info->ring_ref = 0; info->ring.sring = (struct blkif_sring *)0; } } else { } if (info->irq != 0U) { { unbind_from_irqhandler(info->irq, (void *)info); } } else { } tmp___3 = 0U; info->irq = tmp___3; info->evtchn = tmp___3; return; } } extern void __compiletime_assert_1075(void) ; extern void __compiletime_assert_1076(void) ; static void blkif_completion(struct blk_shadow *s , struct blkfront_info *info , struct blkif_response *bret ) { int i ; struct scatterlist *sg ; char *bvec_data ; void *shared_data ; int nseg ; long tmp ; struct page *tmp___0 ; void *tmp___1 ; bool __cond ; bool __cond___0 ; struct ratelimit_state _rs ; int tmp___2 ; int tmp___3 ; struct ratelimit_state _rs___0 ; int tmp___4 ; struct page *indirect_page ; int tmp___5 ; { i = 0; nseg = (unsigned int )s->req.operation == 6U ? (int )s->req.u.indirect.nr_segments : (int )s->req.u.rw.nr_segments; if ((unsigned int )bret->operation == 0U && (unsigned int )*((unsigned char *)info + 5088UL) != 0U) { i = 0; sg = s->sg; goto ldv_40006; ldv_40005: { tmp = ldv__builtin_expect(sg->offset + sg->length > 4096U, 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/block/xen-blkfront.c"), "i" (1068), "i" (12UL)); __builtin_unreachable(); } } else { } { shared_data = kmap_atomic((struct page *)-24189255811072L + (*(s->grants_used + (unsigned long )i))->pfn); tmp___0 = sg_page(sg); tmp___1 = kmap_atomic(tmp___0); bvec_data = (char *)tmp___1; __memcpy((void *)bvec_data + (unsigned long )sg->offset, (void const *)shared_data + (unsigned long )sg->offset, (size_t )sg->length); __cond = 0; } if ((int )__cond) { { __compiletime_assert_1075(); } } else { } { __kunmap_atomic((void *)bvec_data); __cond___0 = 0; } if ((int )__cond___0) { { __compiletime_assert_1076(); } } else { } { __kunmap_atomic(shared_data); i = i + 1; sg = sg_next(sg); } ldv_40006: ; if (i < nseg) { goto ldv_40005; } else { } } else { } i = 0; goto ldv_40012; ldv_40011: { tmp___3 = gnttab_query_foreign_access((*(s->grants_used + (unsigned long )i))->gref); } if (tmp___3 != 0) { if ((unsigned int )*((unsigned char *)info + 5088UL) == 0U) { { _rs.lock.raw_lock.__annonCompField4.head_tail = 0U; _rs.lock.magic = 3735899821U; _rs.lock.owner_cpu = 4294967295U; _rs.lock.owner = (void *)-1; _rs.lock.dep_map.key = 0; _rs.lock.dep_map.class_cache[0] = 0; _rs.lock.dep_map.class_cache[1] = 0; _rs.lock.dep_map.name = "_rs.lock"; _rs.lock.dep_map.cpu = 0; _rs.lock.dep_map.ip = 0UL; _rs.interval = 1250; _rs.burst = 10; _rs.printed = 0; _rs.missed = 0; _rs.begin = 0UL; tmp___2 = ___ratelimit(& _rs, "blkif_completion"); } if (tmp___2 != 0) { { printk("\tbacked has not unmapped grant: %u\n", (*(s->grants_used + (unsigned long )i))->gref); } } else { } } else { } { list_add(& (*(s->grants_used + (unsigned long )i))->node, & info->grants); info->persistent_gnts_c = info->persistent_gnts_c + 1U; } } else { { gnttab_end_foreign_access((*(s->grants_used + (unsigned long )i))->gref, 0, 0UL); (*(s->grants_used + (unsigned long )i))->gref = 0U; list_add_tail(& (*(s->grants_used + (unsigned long )i))->node, & info->grants); } } i = i + 1; ldv_40012: ; if (i < nseg) { goto ldv_40011; } else { } if ((unsigned int )s->req.operation == 6U) { i = 0; goto ldv_40018; ldv_40017: { tmp___5 = gnttab_query_foreign_access((*(s->indirect_grants + (unsigned long )i))->gref); } if (tmp___5 != 0) { if ((unsigned int )*((unsigned char *)info + 5088UL) == 0U) { { _rs___0.lock.raw_lock.__annonCompField4.head_tail = 0U; _rs___0.lock.magic = 3735899821U; _rs___0.lock.owner_cpu = 4294967295U; _rs___0.lock.owner = (void *)-1; _rs___0.lock.dep_map.key = 0; _rs___0.lock.dep_map.class_cache[0] = 0; _rs___0.lock.dep_map.class_cache[1] = 0; _rs___0.lock.dep_map.name = "_rs.lock"; _rs___0.lock.dep_map.cpu = 0; _rs___0.lock.dep_map.ip = 0UL; _rs___0.interval = 1250; _rs___0.burst = 10; _rs___0.printed = 0; _rs___0.missed = 0; _rs___0.begin = 0UL; tmp___4 = ___ratelimit(& _rs___0, "blkif_completion"); } if (tmp___4 != 0) { { printk("\tbacked has not unmapped grant: %u\n", (*(s->indirect_grants + (unsigned long )i))->gref); } } else { } } else { } { list_add(& (*(s->indirect_grants + (unsigned long )i))->node, & info->grants); info->persistent_gnts_c = info->persistent_gnts_c + 1U; } } else { { gnttab_end_foreign_access((*(s->indirect_grants + (unsigned long )i))->gref, 0, 0UL); indirect_page = (struct page *)-24189255811072L + (*(s->indirect_grants + (unsigned long )i))->pfn; list_add(& indirect_page->__annonCompField49.lru, & info->indirect_pages); (*(s->indirect_grants + (unsigned long )i))->gref = 0U; list_add_tail(& (*(s->indirect_grants + (unsigned long )i))->node, & info->grants); } } i = i + 1; ldv_40018: ; if ((unsigned long )i < ((unsigned long )nseg + 511UL) / 512UL) { goto ldv_40017; } else { } } else { } return; } } static irqreturn_t blkif_interrupt(int irq , void *dev_id ) { struct request *req ; struct blkif_response *bret ; RING_IDX i ; RING_IDX rp ; unsigned long flags ; struct blkfront_info *info ; int error ; long tmp ; unsigned long id ; int __ret_warn_on ; char const *tmp___0 ; long tmp___1 ; int __ret_warn_on___0 ; char const *tmp___2 ; long tmp___3 ; int tmp___4 ; struct request_queue *rq ; char const *tmp___5 ; long tmp___6 ; char const *tmp___7 ; long tmp___8 ; char const *tmp___9 ; long tmp___10 ; long tmp___11 ; long tmp___12 ; struct _ddebug descriptor ; long tmp___13 ; long tmp___14 ; int more_to_do ; { { info = (struct blkfront_info *)dev_id; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_115(& info->io_lock); tmp = ldv__builtin_expect((unsigned int )info->connected != 1U, 0L); } if (tmp != 0L) { { ldv_spin_unlock_irqrestore_107(& info->io_lock, flags); } return (1); } else { } again: rp = (info->ring.sring)->rsp_prod; __asm__ volatile ("lfence": : : "memory"); i = info->ring.rsp_cons; goto ldv_40049; ldv_40048: bret = & (info->ring.sring)->ring[i & (info->ring.nr_ents - 1U)].rsp; id = (unsigned long )bret->id; if (id > 31UL) { { __ret_warn_on = 1; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { tmp___0 = op_name((int )bret->operation); warn_slowpath_fmt("drivers/block/xen-blkfront.c", 1162, "%s: response to %s has incorrect id (%ld)\n", (char *)(& (info->gd)->disk_name), tmp___0, id); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } goto ldv_40035; } else { } req = info->shadow[id].request; if ((unsigned int )bret->operation != 5U) { { blkif_completion((struct blk_shadow *)(& info->shadow) + id, info, bret); } } else { } { tmp___4 = add_id_to_freelist(info, id); } if (tmp___4 != 0) { { __ret_warn_on___0 = 1; tmp___3 = ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); } if (tmp___3 != 0L) { { tmp___2 = op_name((int )bret->operation); warn_slowpath_fmt("drivers/block/xen-blkfront.c", 1174, "%s: response to %s (id %ld) couldn\'t be recycled!\n", (char *)(& (info->gd)->disk_name), tmp___2, id); } } else { } { ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); } goto ldv_40035; } else { } error = (int )bret->status == 0 ? 0 : -5; { if ((int )bret->operation == 5) { goto case_5; } else { } if ((int )bret->operation == 3) { goto case_3; } else { } if ((int )bret->operation == 2) { goto case_2; } else { } if ((int )bret->operation == 0) { goto case_0; } else { } if ((int )bret->operation == 1) { goto case_1; } else { } goto switch_default; case_5: /* CIL Label */ { tmp___6 = ldv__builtin_expect((int )bret->status == -2, 0L); } if (tmp___6 != 0L) { { rq = info->rq; tmp___5 = op_name((int )bret->operation); printk("\fblkfront: %s: %s op failed\n", (char *)(& (info->gd)->disk_name), tmp___5); error = -95; info->feature_discard = 0U; info->feature_secdiscard = 0U; queue_flag_clear(14U, rq); queue_flag_clear(17U, rq); } } else { } { __blk_end_request_all(req, error); } goto ldv_40040; case_3: /* CIL Label */ ; case_2: /* CIL Label */ { tmp___8 = ldv__builtin_expect((int )bret->status == -2, 0L); } if (tmp___8 != 0L) { { tmp___7 = op_name((int )bret->operation); printk("\fblkfront: %s: %s op failed\n", (char *)(& (info->gd)->disk_name), tmp___7); error = -95; } } else { } { tmp___10 = ldv__builtin_expect((int )bret->status == -1, 0L); } if (tmp___10 != 0L) { { tmp___11 = ldv__builtin_expect((unsigned int )info->shadow[id].req.u.rw.nr_segments == 0U, 0L); } if (tmp___11 != 0L) { { tmp___9 = op_name((int )bret->operation); printk("\fblkfront: %s: empty %s op failed\n", (char *)(& (info->gd)->disk_name), tmp___9); error = -95; } } else { } } else { } { tmp___12 = ldv__builtin_expect(error != 0, 0L); } if (tmp___12 != 0L) { if (error == -95) { error = 0; } else { } { info->feature_flush = 0U; xlvbd_flush(info); } } else { } case_0: /* CIL Label */ ; case_1: /* CIL Label */ { tmp___14 = ldv__builtin_expect((int )bret->status != 0, 0L); } if (tmp___14 != 0L) { { descriptor.modname = "xen_blkfront"; descriptor.function = "blkif_interrupt"; descriptor.filename = "drivers/block/xen-blkfront.c"; descriptor.format = "Bad return from blkdev data request: %x\n"; descriptor.lineno = 1217U; descriptor.flags = 0U; tmp___13 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___13 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (info->xbdev)->dev), "Bad return from blkdev data request: %x\n", (int )bret->status); } } else { } } else { } { __blk_end_request_all(req, error); } goto ldv_40040; switch_default: /* CIL Label */ { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/block/xen-blkfront.c"), "i" (1222), "i" (12UL)); __builtin_unreachable(); } switch_break: /* CIL Label */ ; } ldv_40040: ; ldv_40035: i = i + 1U; ldv_40049: ; if (i != rp) { goto ldv_40048; } else { } info->ring.rsp_cons = i; if (i != info->ring.req_prod_pvt) { more_to_do = (int )((info->ring.sring)->rsp_prod - info->ring.rsp_cons); if (more_to_do != 0) { goto ldv_40052; } else { } (info->ring.sring)->rsp_event = info->ring.rsp_cons + 1U; __asm__ volatile ("mfence": : : "memory"); more_to_do = (int )((info->ring.sring)->rsp_prod - info->ring.rsp_cons); ldv_40052: ; if (more_to_do != 0) { goto again; } else { } } else { (info->ring.sring)->rsp_event = i + 1U; } { kick_pending_request_queues(info); ldv_spin_unlock_irqrestore_107(& info->io_lock, flags); } return (1); } } static int setup_blkring(struct xenbus_device *dev , struct blkfront_info *info ) { struct blkif_sring *sring ; int err ; unsigned long tmp ; RING_IDX tmp___0 ; RING_IDX tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { { info->ring_ref = 0; tmp = ldv___get_free_pages_118(48U, 0U); sring = (struct blkif_sring *)tmp; } if ((unsigned long )sring == (unsigned long )((struct blkif_sring *)0)) { { xenbus_dev_fatal(dev, -12, "allocating shared ring"); } return (-12); } else { } { tmp___0 = 0U; sring->rsp_prod = tmp___0; sring->req_prod = tmp___0; tmp___1 = 1U; sring->rsp_event = tmp___1; sring->req_event = tmp___1; __memset((void *)(& sring->pad), 0, 48UL); info->ring.req_prod_pvt = 0U; info->ring.rsp_cons = 0U; info->ring.nr_ents = 32U; info->ring.sring = sring; tmp___2 = __phys_addr((unsigned long )info->ring.sring); tmp___3 = pfn_to_mfn(tmp___2 >> 12); err = xenbus_grant_ring(dev, tmp___3); } if (err < 0) { { free_pages((unsigned long )sring, 0U); info->ring.sring = (struct blkif_sring *)0; } goto fail; } else { } { info->ring_ref = err; err = xenbus_alloc_evtchn(dev, (int *)(& info->evtchn)); } if (err != 0) { goto fail; } else { } { err = bind_evtchn_to_irqhandler(info->evtchn, & blkif_interrupt, 0UL, "blkif", (void *)info); } if (err <= 0) { { xenbus_dev_fatal(dev, err, "bind_evtchn_to_irqhandler failed"); } goto fail; } else { } info->irq = (unsigned int )err; return (0); fail: { blkif_free(info, 0); } return (err); } } static int talk_to_blkback(struct xenbus_device *dev , struct blkfront_info *info ) { char const *message ; struct xenbus_transaction xbt ; int err ; { { message = (char const *)0; err = setup_blkring(dev, info); } if (err != 0) { goto out; } else { } again: { err = xenbus_transaction_start(& xbt); } if (err != 0) { { xenbus_dev_fatal(dev, err, "starting transaction"); } goto destroy_blkring; } else { } { err = xenbus_printf(xbt, dev->nodename, "ring-ref", "%u", info->ring_ref); } if (err != 0) { message = "writing ring-ref"; goto abort_transaction; } else { } { err = xenbus_printf(xbt, dev->nodename, "event-channel", "%u", info->evtchn); } if (err != 0) { message = "writing event-channel"; goto abort_transaction; } else { } { err = xenbus_printf(xbt, dev->nodename, "protocol", "%s", (char *)"x86_64-abi"); } if (err != 0) { message = "writing protocol"; goto abort_transaction; } else { } { err = xenbus_printf(xbt, dev->nodename, "feature-persistent", "%u", 1); } if (err != 0) { { dev_warn((struct device const *)(& dev->dev), "writing persistent grants feature to xenbus"); } } else { } { err = xenbus_transaction_end(xbt, 0); } if (err != 0) { if (err == -11) { goto again; } else { } { xenbus_dev_fatal(dev, err, "completing transaction"); } goto destroy_blkring; } else { } { xenbus_switch_state(dev, 3); } return (0); abort_transaction: { xenbus_transaction_end(xbt, 1); } if ((unsigned long )message != (unsigned long )((char const *)0)) { { xenbus_dev_fatal(dev, err, "%s", message); } } else { } destroy_blkring: { blkif_free(info, 0); } out: ; return (err); } } static int blkfront_probe(struct xenbus_device *dev , struct xenbus_device_id const *id ) { int err ; int vdevice ; int i ; struct blkfront_info *info ; struct xenbus_transaction __constr_expr_0 ; struct xenbus_transaction __constr_expr_1 ; char *type ; int len ; int major ; bool tmp ; struct xenbus_transaction __constr_expr_2 ; void *tmp___0 ; bool tmp___1 ; int tmp___2 ; void *tmp___3 ; struct lock_class_key __key ; struct lock_class_key __key___0 ; struct lock_class_key __key___1 ; atomic_long_t __constr_expr_3 ; char *tmp___4 ; unsigned long tmp___5 ; { { __constr_expr_0.id = 0U; err = xenbus_scanf(__constr_expr_0, dev->nodename, "virtual-device", "%i", & vdevice); } if (err != 1) { { __constr_expr_1.id = 0U; err = xenbus_scanf(__constr_expr_1, dev->nodename, "virtual-device-ext", "%i", & vdevice); } if (err != 1) { { xenbus_dev_fatal(dev, err, "reading virtual-device"); } return (err); } else { } } else { } if ((unsigned int )xen_domain_type == 2U) { { tmp = xen_has_pv_and_legacy_disk_devices(); } if ((int )tmp) { if ((vdevice & 268435456) == 0) { major = vdevice >> 8; } else { major = 202; } if (major != 202) { { printk("\016%s: HVM does not support vbd %d as xen block device\n", "blkfront_probe", vdevice); } return (-19); } else { } } else { } { __constr_expr_2.id = 0U; tmp___0 = xenbus_read(__constr_expr_2, dev->nodename, "device-type", (unsigned int *)(& len)); type = (char *)tmp___0; tmp___1 = IS_ERR((void const *)type); } if ((int )tmp___1) { return (-19); } else { } { tmp___2 = strncmp((char const *)type, "cdrom", 5UL); } if (tmp___2 == 0) { { kfree((void const *)type); } return (-19); } else { } { kfree((void const *)type); } } else { } { tmp___3 = kzalloc(5104UL, 208U); info = (struct blkfront_info *)tmp___3; } if ((unsigned long )info == (unsigned long )((struct blkfront_info *)0)) { { xenbus_dev_fatal(dev, -12, "allocating info structure"); } return (-12); } else { } { __mutex_init(& info->mutex, "&info->mutex", & __key); spinlock_check(& info->io_lock); __raw_spin_lock_init(& info->io_lock.__annonCompField18.rlock, "&(&info->io_lock)->rlock", & __key___0); info->xbdev = dev; info->vdevice = vdevice; INIT_LIST_HEAD(& info->grants); INIT_LIST_HEAD(& info->indirect_pages); info->persistent_gnts_c = 0U; info->connected = 0; __init_work(& info->work, 0); __constr_expr_3.counter = 137438953408L; info->work.data = __constr_expr_3; lockdep_init_map(& info->work.lockdep_map, "(&info->work)", & __key___1, 0); INIT_LIST_HEAD(& info->work.entry); info->work.func = & blkif_restart_queue; i = 0; } goto ldv_40091; ldv_40090: info->shadow[i].req.u.rw.id = (uint64_t )(i + 1); i = i + 1; ldv_40091: ; if ((unsigned int )i <= 31U) { goto ldv_40090; } else { } { info->shadow[31UL].req.u.rw.id = 268435455ULL; tmp___4 = strrchr(dev->nodename, 47); tmp___5 = simple_strtoul((char const *)tmp___4 + 1U, (char **)0, 0U); info->handle = (blkif_vdev_t )tmp___5; dev_set_drvdata(& dev->dev, (void *)info); err = talk_to_blkback(dev, info); } if (err != 0) { { kfree((void const *)info); dev_set_drvdata(& dev->dev, (void *)0); } return (err); } else { } return (0); } } static void split_bio_end(struct bio *bio , int error ) { struct split_bio *split_bio ; int tmp ; { split_bio = (struct split_bio *)bio->bi_private; if (error != 0) { split_bio->err = error; } else { } { tmp = atomic_dec_and_test(& split_bio->pending); } if (tmp != 0) { { (split_bio->bio)->bi_phys_segments = 0U; bio_endio(split_bio->bio, split_bio->err); kfree((void const *)split_bio); } } else { } { bio_put(bio); } return; } } static int blkif_recover(struct blkfront_info *info ) { int i ; struct request *req ; struct request *n ; struct blk_shadow *copy ; int rc ; struct bio *bio ; struct bio *cloned_bio ; struct bio_list bio_list ; struct bio_list merge_bio ; unsigned int segs ; unsigned int offset ; int pending ; int size ; struct split_bio *split_bio ; struct list_head requests ; void *tmp ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; long tmp___0 ; struct list_head const *__mptr___1 ; unsigned int tmp___1 ; void *tmp___2 ; long tmp___3 ; unsigned int _min1 ; unsigned int _min2 ; long tmp___4 ; unsigned int tmp___5 ; { { tmp = kmemdup((void const *)(& info->shadow), 4608UL, 1072U); copy = (struct blk_shadow *)tmp; } if ((unsigned long )copy == (unsigned long )((struct blk_shadow *)0)) { return (-12); } else { } { __memset((void *)(& info->shadow), 0, 4608UL); i = 0; } goto ldv_40117; ldv_40116: info->shadow[i].req.u.rw.id = (uint64_t )(i + 1); i = i + 1; ldv_40117: ; if ((unsigned int )i <= 31U) { goto ldv_40116; } else { } { info->shadow_free = (unsigned long )info->ring.req_prod_pvt; info->shadow[31UL].req.u.rw.id = 268435455ULL; rc = blkfront_setup_indirect(info); } if (rc != 0) { { kfree((void const *)copy); } return (rc); } else { } { segs = info->max_indirect_segments != 0U ? info->max_indirect_segments != 0U : 11U; blk_queue_max_segments(info->rq, (int )((unsigned short )segs)); bio_list_init(& bio_list); INIT_LIST_HEAD(& requests); i = 0; } goto ldv_40121; ldv_40120: ; if ((unsigned long )(copy + (unsigned long )i)->request == (unsigned long )((struct request *)0)) { goto ldv_40119; } else { } if ((((copy + (unsigned long )i)->request)->cmd_flags & 12672ULL) != 0ULL) { { list_add(& ((copy + (unsigned long )i)->request)->queuelist, & requests); } goto ldv_40119; } else { } { merge_bio.head = ((copy + (unsigned long )i)->request)->bio; merge_bio.tail = ((copy + (unsigned long )i)->request)->biotail; bio_list_merge(& bio_list, & merge_bio); ((copy + (unsigned long )i)->request)->bio = (struct bio *)0; blk_end_request_all((copy + (unsigned long )i)->request, 0); } ldv_40119: i = i + 1; ldv_40121: ; if ((unsigned int )i <= 31U) { goto ldv_40120; } else { } { kfree((void const *)copy); ldv_spin_lock_irq_111(& info->io_lock); } goto ldv_40123; ldv_40124: ; if ((req->cmd_flags & 12672ULL) != 0ULL) { { list_add(& req->queuelist, & requests); } goto ldv_40123; } else { } { merge_bio.head = req->bio; merge_bio.tail = req->biotail; bio_list_merge(& bio_list, & merge_bio); req->bio = (struct bio *)0; } if ((req->cmd_flags & 12288ULL) != 0ULL) { { printk("\tdiskcache flush request found!\n"); } } else { } { __blk_end_request_all(req, 0); } ldv_40123: { req = blk_fetch_request(info->rq); } if ((unsigned long )req != (unsigned long )((struct request *)0)) { goto ldv_40124; } else { } { ldv_spin_unlock_irq_112(& info->io_lock); xenbus_switch_state(info->xbdev, 4); ldv_spin_lock_irq_111(& info->io_lock); info->connected = 1; kick_pending_request_queues(info); __mptr = (struct list_head const *)requests.next; req = (struct request *)__mptr; __mptr___0 = (struct list_head const *)req->queuelist.next; n = (struct request *)__mptr___0; } goto ldv_40133; ldv_40132: { list_del_init(& req->queuelist); tmp___0 = ldv__builtin_expect((unsigned int )req->nr_phys_segments > segs, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/block/xen-blkfront.c"), "i" (1554), "i" (12UL)); __builtin_unreachable(); } } else { } { blk_requeue_request(info->rq, req); req = n; __mptr___1 = (struct list_head const *)n->queuelist.next; n = (struct request *)__mptr___1; } ldv_40133: ; if ((unsigned long )(& req->queuelist) != (unsigned long )(& requests)) { goto ldv_40132; } else { } { ldv_spin_unlock_irq_112(& info->io_lock); } goto ldv_40141; ldv_40142: { tmp___5 = bio_segments(bio); } if (tmp___5 > segs) { { tmp___1 = bio_segments(bio); pending = (int )(((tmp___1 + segs) - 1U) / segs); tmp___2 = kzalloc(16UL, 16U); split_bio = (struct split_bio *)tmp___2; tmp___3 = ldv__builtin_expect((unsigned long )split_bio == (unsigned long )((struct split_bio *)0), 0L); } if (tmp___3 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/block/xen-blkfront.c"), "i" (1568), "i" (12UL)); __builtin_unreachable(); } } else { } { atomic_set(& split_bio->pending, pending); split_bio->bio = bio; i = 0; } goto ldv_40139; ldv_40138: { offset = (unsigned int )((unsigned long )((unsigned int )i * segs) * 4096UL >> 9); _min1 = segs * 4096U >> 9; _min2 = (bio->bi_iter.bi_size >> 9) - offset; size = (int )(_min1 < _min2 ? _min1 : _min2); cloned_bio = bio_clone(bio, 16U); tmp___4 = ldv__builtin_expect((unsigned long )cloned_bio == (unsigned long )((struct bio *)0), 0L); } if (tmp___4 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/block/xen-blkfront.c"), "i" (1576), "i" (12UL)); __builtin_unreachable(); } } else { } { bio_trim(cloned_bio, (int )offset, size); cloned_bio->bi_private = (void *)split_bio; cloned_bio->bi_end_io = & split_bio_end; submit_bio((int )cloned_bio->bi_rw, cloned_bio); i = i + 1; } ldv_40139: ; if (i < pending) { goto ldv_40138; } else { } goto ldv_40141; } else { } { submit_bio((int )bio->bi_rw, bio); } ldv_40141: { bio = bio_list_pop(& bio_list); } if ((unsigned long )bio != (unsigned long )((struct bio *)0)) { goto ldv_40142; } else { } return (0); } } static int blkfront_resume(struct xenbus_device *dev ) { struct blkfront_info *info ; void *tmp ; int err ; struct _ddebug descriptor ; long tmp___0 ; { { tmp = dev_get_drvdata((struct device const *)(& dev->dev)); info = (struct blkfront_info *)tmp; descriptor.modname = "xen_blkfront"; descriptor.function = "blkfront_resume"; descriptor.filename = "drivers/block/xen-blkfront.c"; descriptor.format = "blkfront_resume: %s\n"; descriptor.lineno = 1606U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& dev->dev), "blkfront_resume: %s\n", dev->nodename); } } else { } { blkif_free(info, (unsigned int )info->connected == 1U); err = talk_to_blkback(dev, info); } return (err); } } static void blkfront_closing(struct blkfront_info *info ) { struct xenbus_device *xbdev ; struct block_device *bdev ; { { xbdev = info->xbdev; bdev = (struct block_device *)0; ldv_mutex_lock_123(& info->mutex); } if ((unsigned int )xbdev->state == 5U) { { ldv_mutex_unlock_124(& info->mutex); } return; } else { } if ((unsigned long )info->gd != (unsigned long )((struct gendisk *)0)) { { bdev = bdget_disk(info->gd, 0); } } else { } { ldv_mutex_unlock_125(& info->mutex); } if ((unsigned long )bdev == (unsigned long )((struct block_device *)0)) { { xenbus_frontend_closed(xbdev); } return; } else { } { ldv_mutex_lock_126(& bdev->bd_mutex); } if (bdev->bd_openers != 0) { { xenbus_dev_error(xbdev, -16, "Device in use; refusing to close"); xenbus_switch_state(xbdev, 5); } } else { { xlvbd_release_gendisk(info); xenbus_frontend_closed(xbdev); } } { ldv_mutex_unlock_127(& bdev->bd_mutex); bdput(bdev); } return; } } static void blkfront_setup_discard(struct blkfront_info *info ) { int err ; unsigned int discard_granularity ; unsigned int discard_alignment ; unsigned int discard_secure ; struct xenbus_transaction __constr_expr_0 ; struct xenbus_transaction __constr_expr_1 ; { { info->feature_discard = 1U; __constr_expr_0.id = 0U; err = xenbus_gather(__constr_expr_0, (info->xbdev)->otherend, (char *)"discard-granularity", (char *)"%u", & discard_granularity, (char *)"discard-alignment", (char *)"%u", & discard_alignment, (void *)0); } if (err == 0) { info->discard_granularity = discard_granularity; info->discard_alignment = discard_alignment; } else { } { __constr_expr_1.id = 0U; err = xenbus_gather(__constr_expr_1, (info->xbdev)->otherend, (char *)"discard-secure", (char *)"%d", & discard_secure, (void *)0); } if (err == 0) { info->feature_secdiscard = discard_secure != 0U; } else { } return; } } static int blkfront_setup_indirect(struct blkfront_info *info ) { unsigned int indirect_segments ; unsigned int segs ; int err ; int i ; struct xenbus_transaction __constr_expr_0 ; unsigned int _min1 ; unsigned int _min2 ; int num ; int tmp ; long tmp___0 ; struct page *indirect_page ; struct page *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; struct page *indirect_page___0 ; struct page *n ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; int tmp___5 ; { { __constr_expr_0.id = 0U; err = xenbus_gather(__constr_expr_0, (info->xbdev)->otherend, (char *)"feature-max-indirect-segments", (char *)"%u", & indirect_segments, (void *)0); } if (err != 0) { info->max_indirect_segments = 0U; segs = 11U; } else { _min1 = indirect_segments; _min2 = xen_blkif_max_segments; info->max_indirect_segments = _min1 < _min2 ? _min1 : _min2; segs = info->max_indirect_segments; } { err = fill_grant_buffer(info, (int )((unsigned int )((unsigned long )segs + ((unsigned long )segs + 511UL) / 512UL) * 32U)); } if (err != 0) { goto out_of_memory; } else { } if ((unsigned int )*((unsigned char *)info + 5088UL) == 0U && info->max_indirect_segments != 0U) { { num = (int )((unsigned int )(((unsigned long )segs + 511UL) / 512UL) * 32U); tmp = list_empty((struct list_head const *)(& info->indirect_pages)); tmp___0 = ldv__builtin_expect(tmp == 0, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/block/xen-blkfront.c"), "i" (1711), "i" (12UL)); __builtin_unreachable(); } } else { } i = 0; goto ldv_40180; ldv_40179: { tmp___1 = alloc_pages(16U, 0U); indirect_page = tmp___1; } if ((unsigned long )indirect_page == (unsigned long )((struct page *)0)) { goto out_of_memory; } else { } { list_add(& indirect_page->__annonCompField49.lru, & info->indirect_pages); i = i + 1; } ldv_40180: ; if (i < num) { goto ldv_40179; } else { } } else { } i = 0; goto ldv_40183; ldv_40182: { tmp___2 = kzalloc((unsigned long )segs * 8UL, 16U); info->shadow[i].grants_used = (struct grant **)tmp___2; tmp___3 = kzalloc((unsigned long )segs * 40UL, 16U); info->shadow[i].sg = (struct scatterlist *)tmp___3; } if (info->max_indirect_segments != 0U) { { tmp___4 = kzalloc((((unsigned long )segs + 511UL) / 512UL) * 8UL, 16U); info->shadow[i].indirect_grants = (struct grant **)tmp___4; } } else { } if (((unsigned long )info->shadow[i].grants_used == (unsigned long )((struct grant **)0) || (unsigned long )info->shadow[i].sg == (unsigned long )((struct scatterlist *)0)) || (info->max_indirect_segments != 0U && (unsigned long )info->shadow[i].indirect_grants == (unsigned long )((struct grant **)0))) { goto out_of_memory; } else { } { sg_init_table(info->shadow[i].sg, segs); i = i + 1; } ldv_40183: ; if ((unsigned int )i <= 31U) { goto ldv_40182; } else { } return (0); out_of_memory: i = 0; goto ldv_40186; ldv_40185: { kfree((void const *)info->shadow[i].grants_used); info->shadow[i].grants_used = (struct grant **)0; kfree((void const *)info->shadow[i].sg); info->shadow[i].sg = (struct scatterlist *)0; kfree((void const *)info->shadow[i].indirect_grants); info->shadow[i].indirect_grants = (struct grant **)0; i = i + 1; } ldv_40186: ; if ((unsigned int )i <= 31U) { goto ldv_40185; } else { } { tmp___5 = list_empty((struct list_head const *)(& info->indirect_pages)); } if (tmp___5 == 0) { __mptr = (struct list_head const *)info->indirect_pages.next; indirect_page___0 = (struct page *)__mptr + 0xffffffffffffffe0UL; __mptr___0 = (struct list_head const *)indirect_page___0->__annonCompField49.lru.next; n = (struct page *)__mptr___0 + 0xffffffffffffffe0UL; goto ldv_40197; ldv_40196: { list_del(& indirect_page___0->__annonCompField49.lru); __free_pages(indirect_page___0, 0U); indirect_page___0 = n; __mptr___1 = (struct list_head const *)n->__annonCompField49.lru.next; n = (struct page *)__mptr___1 + 0xffffffffffffffe0UL; } ldv_40197: ; if ((unsigned long )(& indirect_page___0->__annonCompField49.lru) != (unsigned long )(& info->indirect_pages)) { goto ldv_40196; } else { } } else { } return (-12); } } static void blkfront_connect(struct blkfront_info *info ) { unsigned long long sectors ; unsigned long sector_size ; unsigned int physical_sector_size ; unsigned int binfo ; int err ; int barrier ; int flush ; int discard ; int persistent ; struct xenbus_transaction __constr_expr_0 ; struct _ddebug descriptor ; long tmp ; struct xenbus_transaction __constr_expr_1 ; struct xenbus_transaction __constr_expr_2 ; struct xenbus_transaction __constr_expr_3 ; struct xenbus_transaction __constr_expr_4 ; struct xenbus_transaction __constr_expr_5 ; struct xenbus_transaction __constr_expr_6 ; { { if ((unsigned int )info->connected == 1U) { goto case_1; } else { } if ((unsigned int )info->connected == 2U) { goto case_2; } else { } goto switch_default; case_1: /* CIL Label */ { __constr_expr_0.id = 0U; err = xenbus_scanf(__constr_expr_0, (info->xbdev)->otherend, "sectors", "%Lu", & sectors); } if (err == -2 || err == -34) { return; } else { } { printk("\016Setting capacity to %Lu\n", sectors); set_capacity(info->gd, (sector_t )sectors); revalidate_disk(info->gd); } return; case_2: /* CIL Label */ { blkif_recover(info); } return; switch_default: /* CIL Label */ ; goto ldv_40215; switch_break: /* CIL Label */ ; } ldv_40215: { descriptor.modname = "xen_blkfront"; descriptor.function = "blkfront_connect"; descriptor.filename = "drivers/block/xen-blkfront.c"; descriptor.format = "%s:%s.\n"; descriptor.lineno = 1804U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (info->xbdev)->dev), "%s:%s.\n", "blkfront_connect", (info->xbdev)->otherend); } } else { } { __constr_expr_1.id = 0U; err = xenbus_gather(__constr_expr_1, (info->xbdev)->otherend, (char *)"sectors", (char *)"%llu", & sectors, (char *)"info", (char *)"%u", & binfo, (char *)"sector-size", (char *)"%lu", & sector_size, (void *)0); } if (err != 0) { { xenbus_dev_fatal(info->xbdev, err, "reading backend fields at %s", (info->xbdev)->otherend); } return; } else { } { __constr_expr_2.id = 0U; err = xenbus_scanf(__constr_expr_2, (info->xbdev)->otherend, "physical-sector-size", "%u", & physical_sector_size); } if (err != 1) { physical_sector_size = (unsigned int )sector_size; } else { } { info->feature_flush = 0U; __constr_expr_3.id = 0U; err = xenbus_gather(__constr_expr_3, (info->xbdev)->otherend, (char *)"feature-barrier", (char *)"%d", & barrier, (void *)0); } if (err == 0 && barrier != 0) { info->feature_flush = 12288U; } else { } { __constr_expr_4.id = 0U; err = xenbus_gather(__constr_expr_4, (info->xbdev)->otherend, (char *)"feature-flush-cache", (char *)"%d", & flush, (void *)0); } if (err == 0 && flush != 0) { info->feature_flush = 8192U; } else { } { __constr_expr_5.id = 0U; err = xenbus_gather(__constr_expr_5, (info->xbdev)->otherend, (char *)"feature-discard", (char *)"%d", & discard, (void *)0); } if (err == 0 && discard != 0) { { blkfront_setup_discard(info); } } else { } { __constr_expr_6.id = 0U; err = xenbus_gather(__constr_expr_6, (info->xbdev)->otherend, (char *)"feature-persistent", (char *)"%u", & persistent, (void *)0); } if (err != 0) { info->feature_persistent = 0U; } else { info->feature_persistent = (unsigned char )persistent; } { err = blkfront_setup_indirect(info); } if (err != 0) { { xenbus_dev_fatal(info->xbdev, err, "setup_indirect at %s", (info->xbdev)->otherend); } return; } else { } { err = xlvbd_alloc_gendisk(sectors, info, (int )((u16 )binfo), (int )((u16 )sector_size), physical_sector_size); } if (err != 0) { { xenbus_dev_fatal(info->xbdev, err, "xlvbd_add at %s", (info->xbdev)->otherend); } return; } else { } { xenbus_switch_state(info->xbdev, 4); ldv_spin_lock_irq_111(& info->io_lock); info->connected = 1; kick_pending_request_queues(info); ldv_spin_unlock_irq_112(& info->io_lock); ldv_add_disk_130(info->gd); info->is_ready = 1; } return; } } static void blkback_changed(struct xenbus_device *dev , enum xenbus_state backend_state ) { struct blkfront_info *info ; void *tmp ; struct _ddebug descriptor ; long tmp___0 ; { { tmp = dev_get_drvdata((struct device const *)(& dev->dev)); info = (struct blkfront_info *)tmp; descriptor.modname = "xen_blkfront"; descriptor.function = "blkback_changed"; descriptor.filename = "drivers/block/xen-blkfront.c"; descriptor.format = "blkfront:blkback_changed to state %d.\n"; descriptor.lineno = 1905U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& dev->dev), "blkfront:blkback_changed to state %d.\n", (unsigned int )backend_state); } } else { } { if ((unsigned int )backend_state == 1U) { goto case_1; } else { } if ((unsigned int )backend_state == 2U) { goto case_2; } else { } if ((unsigned int )backend_state == 3U) { goto case_3; } else { } if ((unsigned int )backend_state == 7U) { goto case_7; } else { } if ((unsigned int )backend_state == 8U) { goto case_8; } else { } if ((unsigned int )backend_state == 0U) { goto case_0; } else { } if ((unsigned int )backend_state == 4U) { goto case_4; } else { } if ((unsigned int )backend_state == 6U) { goto case_6; } else { } if ((unsigned int )backend_state == 5U) { goto case_5; } else { } goto switch_break; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; case_3: /* CIL Label */ ; case_7: /* CIL Label */ ; case_8: /* CIL Label */ ; case_0: /* CIL Label */ ; goto ldv_40237; case_4: /* CIL Label */ { blkfront_connect(info); } goto ldv_40237; case_6: /* CIL Label */ ; if ((unsigned int )dev->state == 6U) { goto ldv_40237; } else { } case_5: /* CIL Label */ { blkfront_closing(info); } goto ldv_40237; switch_break: /* CIL Label */ ; } ldv_40237: ; return; } } static int blkfront_remove(struct xenbus_device *xbdev ) { struct blkfront_info *info ; void *tmp ; struct block_device *bdev ; struct gendisk *disk ; struct _ddebug descriptor ; long tmp___0 ; { { tmp = dev_get_drvdata((struct device const *)(& xbdev->dev)); info = (struct blkfront_info *)tmp; bdev = (struct block_device *)0; descriptor.modname = "xen_blkfront"; descriptor.function = "blkfront_remove"; descriptor.filename = "drivers/block/xen-blkfront.c"; descriptor.format = "%s removed"; descriptor.lineno = 1936U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& xbdev->dev), "%s removed", xbdev->nodename); } } else { } { blkif_free(info, 0); ldv_mutex_lock_131(& info->mutex); disk = info->gd; } if ((unsigned long )disk != (unsigned long )((struct gendisk *)0)) { { bdev = bdget_disk(disk, 0); } } else { } { info->xbdev = (struct xenbus_device *)0; ldv_mutex_unlock_132(& info->mutex); } if ((unsigned long )bdev == (unsigned long )((struct block_device *)0)) { { kfree((void const *)info); } return (0); } else { } { ldv_mutex_lock_133(& bdev->bd_mutex); info = (struct blkfront_info *)disk->private_data; dev_warn((struct device const *)(& disk->part0.__dev), "%s was hot-unplugged, %d stale handles\n", xbdev->nodename, bdev->bd_openers); } if ((unsigned long )info != (unsigned long )((struct blkfront_info *)0) && bdev->bd_openers == 0) { { xlvbd_release_gendisk(info); disk->private_data = (void *)0; kfree((void const *)info); } } else { } { ldv_mutex_unlock_134(& bdev->bd_mutex); bdput(bdev); } return (0); } } static int blkfront_is_ready(struct xenbus_device *dev ) { struct blkfront_info *info ; void *tmp ; { { tmp = dev_get_drvdata((struct device const *)(& dev->dev)); info = (struct blkfront_info *)tmp; } return (info->is_ready != 0 && (unsigned long )info->xbdev != (unsigned long )((struct xenbus_device *)0)); } } static int blkif_open(struct block_device *bdev , fmode_t mode ) { struct gendisk *disk ; struct blkfront_info *info ; int err ; { { disk = bdev->bd_disk; err = 0; ldv_mutex_lock_135(& blkfront_mutex); info = (struct blkfront_info *)disk->private_data; } if ((unsigned long )info == (unsigned long )((struct blkfront_info *)0)) { err = -512; goto out; } else { } { ldv_mutex_lock_136(& info->mutex); } if ((unsigned long )info->gd == (unsigned long )((struct gendisk *)0)) { err = -512; } else { } { ldv_mutex_unlock_137(& info->mutex); } out: { ldv_mutex_unlock_138(& blkfront_mutex); } return (err); } } static void blkif_release(struct gendisk *disk , fmode_t mode ) { struct blkfront_info *info ; struct block_device *bdev ; struct xenbus_device *xbdev ; int __ret_warn_on ; long tmp ; { { info = (struct blkfront_info *)disk->private_data; ldv_mutex_lock_139(& blkfront_mutex); bdev = bdget_disk(disk, 0); } if ((unsigned long )bdev == (unsigned long )((struct block_device *)0)) { { __ret_warn_on = 1; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_fmt("drivers/block/xen-blkfront.c", 2025, "Block device %s yanked out from us!\n", (char *)(& disk->disk_name)); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } goto out_mutex; } else { } if (bdev->bd_openers != 0) { goto out; } else { } { ldv_mutex_lock_140(& info->mutex); xbdev = info->xbdev; } if ((unsigned long )xbdev != (unsigned long )((struct xenbus_device *)0) && (unsigned int )xbdev->state == 5U) { { _dev_info((struct device const *)(& (bdev->bd_disk)->part0.__dev), "releasing disk\n"); xlvbd_release_gendisk(info); xenbus_frontend_closed(info->xbdev); } } else { } { ldv_mutex_unlock_141(& info->mutex); } if ((unsigned long )xbdev == (unsigned long )((struct xenbus_device *)0)) { { _dev_info((struct device const *)(& (bdev->bd_disk)->part0.__dev), "releasing disk\n"); xlvbd_release_gendisk(info); disk->private_data = (void *)0; kfree((void const *)info); } } else { } out: { bdput(bdev); } out_mutex: { ldv_mutex_unlock_142(& blkfront_mutex); } return; } } static struct block_device_operations const xlvbd_block_fops = {& blkif_open, & blkif_release, 0, & blkif_ioctl, 0, 0, 0, 0, 0, 0, & blkif_getgeo, 0, & __this_module}; static struct xenbus_device_id const blkfront_ids[2U] = { {{'v', 'b', 'd', '\000'}}, {{'\000'}}}; static struct xenbus_driver blkfront_driver = {0, (struct xenbus_device_id const *)(& blkfront_ids), & blkfront_probe, & blkback_changed, & blkfront_remove, 0, & blkfront_resume, 0, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 0, & blkfront_is_ready}; static int xlblk_init(void) { int ret ; bool tmp ; int tmp___0 ; int tmp___1 ; { if ((unsigned int )xen_domain_type == 0U) { return (-19); } else { } { tmp = xen_has_pv_disk_devices(); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (-19); } else { } { tmp___1 = register_blkdev(202U, "xvd"); } if (tmp___1 != 0) { { printk("\fxen_blk: can\'t get major %d with name %s\n", 202, (char *)"xvd"); } return (-19); } else { } { ret = ldv___xenbus_register_frontend_143(& blkfront_driver, & __this_module, "xen_blkfront"); } if (ret != 0) { { unregister_blkdev(202U, "xvd"); } return (ret); } else { } return (0); } } static void xlblk_exit(void) { { { ldv_xenbus_unregister_driver_144(& blkfront_driver); unregister_blkdev(202U, "xvd"); kfree((void const *)minors); } return; } } void ldv_EMGentry_exit_xlblk_exit_6_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_xlblk_init_6_9(int (*arg0)(void) ) ; int ldv___xenbus_register_frontend(int arg0 , struct xenbus_driver *arg1 , struct module *arg2 , char *arg3 ) ; void ldv_dispatch_deregister_4_1(struct xenbus_driver *arg0 ) ; void ldv_dispatch_deregister_io_instance_3_6_4(void) ; void ldv_dispatch_register_5_2(struct xenbus_driver *arg0 ) ; void ldv_dispatch_register_io_instance_3_6_5(void) ; void ldv_entry_EMGentry_6(void *arg0 ) ; int main(void) ; void ldv_iio_triggered_buffer_iio_triggered_buffer_instance_0(void *arg0 ) ; enum irqreturn ldv_iio_triggered_buffer_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_iio_triggered_buffer_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; enum irqreturn ldv_interrupt_instance_handler_1_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_1_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_interrupt_instance_1(void *arg0 ) ; void ldv_io_instance_callback_2_19(int (*arg0)(struct block_device * , unsigned int , unsigned int , unsigned long ) , struct block_device *arg1 , unsigned int arg2 , unsigned int arg3 , unsigned long arg4 ) ; void ldv_io_instance_callback_2_4(int (*arg0)(struct block_device * , struct hd_geometry * ) , struct block_device *arg1 , struct hd_geometry *arg2 ) ; void ldv_io_instance_callback_3_17(void (*arg0)(struct xenbus_device * , enum xenbus_state ) , struct xenbus_device *arg1 , enum xenbus_state arg2 ) ; void ldv_io_instance_callback_3_18(int (*arg0)(struct xenbus_device * ) , struct xenbus_device *arg1 ) ; void ldv_io_instance_callback_3_4(int (*arg0)(struct xenbus_device * ) , struct xenbus_device *arg1 ) ; int ldv_io_instance_probe_2_11(int (*arg0)(struct block_device * , unsigned int ) , struct block_device *arg1 , unsigned int arg2 ) ; int ldv_io_instance_probe_3_11(int (*arg0)(struct xenbus_device * , struct xenbus_device_id * ) , struct xenbus_device *arg1 , struct xenbus_device_id *arg2 ) ; void ldv_io_instance_release_2_2(void (*arg0)(struct gendisk * , unsigned int ) , struct gendisk *arg1 , unsigned int arg2 ) ; void ldv_io_instance_release_3_2(int (*arg0)(struct xenbus_device * ) , struct xenbus_device *arg1 ) ; void ldv_struct_block_device_operations_io_instance_2(void *arg0 ) ; void ldv_struct_xenbus_driver_io_instance_3(void *arg0 ) ; void ldv_xenbus_unregister_driver(void *arg0 , struct xenbus_driver *arg1 ) ; struct ldv_thread ldv_thread_0 ; struct ldv_thread ldv_thread_1 ; struct ldv_thread ldv_thread_2 ; struct ldv_thread ldv_thread_3 ; struct ldv_thread ldv_thread_6 ; void ldv_EMGentry_exit_xlblk_exit_6_2(void (*arg0)(void) ) { { { xlblk_exit(); } return; } } int ldv_EMGentry_init_xlblk_init_6_9(int (*arg0)(void) ) { int tmp ; { { tmp = xlblk_init(); } return (tmp); } } int ldv___xenbus_register_frontend(int arg0 , struct xenbus_driver *arg1 , struct module *arg2 , char *arg3 ) { struct xenbus_driver *ldv_5_struct_xenbus_driver_struct_xenbus_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_5_struct_xenbus_driver_struct_xenbus_driver = arg1; ldv_dispatch_register_5_2(ldv_5_struct_xenbus_driver_struct_xenbus_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_dispatch_deregister_4_1(struct xenbus_driver *arg0 ) { { return; } } void ldv_dispatch_deregister_io_instance_3_6_4(void) { { return; } } void ldv_dispatch_register_5_2(struct xenbus_driver *arg0 ) { struct ldv_struct_io_instance_3 *cf_arg_3 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_3 = (struct ldv_struct_io_instance_3 *)tmp; cf_arg_3->arg0 = arg0; ldv_struct_xenbus_driver_io_instance_3((void *)cf_arg_3); } return; } } void ldv_dispatch_register_io_instance_3_6_5(void) { struct ldv_struct_EMGentry_6 *cf_arg_2 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_2 = (struct ldv_struct_EMGentry_6 *)tmp; ldv_struct_block_device_operations_io_instance_2((void *)cf_arg_2); } return; } } void ldv_entry_EMGentry_6(void *arg0 ) { void (*ldv_6_exit_xlblk_exit_default)(void) ; int (*ldv_6_init_xlblk_init_default)(void) ; int ldv_6_ret_default ; int tmp ; int tmp___0 ; { { ldv_6_ret_default = ldv_EMGentry_init_xlblk_init_6_9(ldv_6_init_xlblk_init_default); ldv_6_ret_default = ldv_ldv_post_init_145(ldv_6_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_6_ret_default != 0); ldv_ldv_check_final_state_146(); ldv_stop(); } return; } else { { ldv_assume(ldv_6_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dispatch_register_io_instance_3_6_5(); ldv_dispatch_deregister_io_instance_3_6_4(); } } else { } { ldv_EMGentry_exit_xlblk_exit_6_2(ldv_6_exit_xlblk_exit_default); ldv_ldv_check_final_state_147(); ldv_stop(); } return; } return; } } int main(void) { { { ldv_ldv_initialize_148(); ldv_entry_EMGentry_6((void *)0); } return 0; } } void ldv_iio_triggered_buffer_iio_triggered_buffer_instance_0(void *arg0 ) { enum irqreturn (*ldv_0_callback_handler)(int , void * ) ; void *ldv_0_data_data ; int ldv_0_line_line ; enum irqreturn ldv_0_ret_val_default ; enum irqreturn (*ldv_0_thread_thread)(int , void * ) ; int tmp ; { { ldv_switch_to_interrupt_context(); ldv_0_ret_val_default = ldv_iio_triggered_buffer_instance_handler_0_5(ldv_0_callback_handler, ldv_0_line_line, ldv_0_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume((unsigned int )ldv_0_ret_val_default == 2U); ldv_iio_triggered_buffer_instance_thread_0_3(ldv_0_thread_thread, ldv_0_line_line, ldv_0_data_data); } } else { { ldv_assume((unsigned int )ldv_0_ret_val_default != 2U); } } return; return; } } enum irqreturn ldv_iio_triggered_buffer_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = blkif_interrupt(arg1, arg2); } return (tmp); } } void ldv_iio_triggered_buffer_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { blkif_interrupt(arg1, arg2); } return; } } enum irqreturn ldv_interrupt_instance_handler_1_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = blkif_interrupt(arg1, arg2); } return (tmp); } } void ldv_interrupt_instance_thread_1_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { blkif_interrupt(arg1, arg2); } return; } } void ldv_interrupt_interrupt_instance_1(void *arg0 ) { enum irqreturn (*ldv_1_callback_handler)(int , void * ) ; void *ldv_1_data_data ; int ldv_1_line_line ; enum irqreturn ldv_1_ret_val_default ; enum irqreturn (*ldv_1_thread_thread)(int , void * ) ; int tmp ; { { ldv_switch_to_interrupt_context(); ldv_1_ret_val_default = ldv_interrupt_instance_handler_1_5(ldv_1_callback_handler, ldv_1_line_line, ldv_1_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume((unsigned int )ldv_1_ret_val_default == 2U); ldv_interrupt_instance_thread_1_3(ldv_1_thread_thread, ldv_1_line_line, ldv_1_data_data); } } else { { ldv_assume((unsigned int )ldv_1_ret_val_default != 2U); } } return; return; } } void ldv_io_instance_callback_2_19(int (*arg0)(struct block_device * , unsigned int , unsigned int , unsigned long ) , struct block_device *arg1 , unsigned int arg2 , unsigned int arg3 , unsigned long arg4 ) { { { blkif_ioctl(arg1, arg2, arg3, arg4); } return; } } void ldv_io_instance_callback_2_4(int (*arg0)(struct block_device * , struct hd_geometry * ) , struct block_device *arg1 , struct hd_geometry *arg2 ) { { { blkif_getgeo(arg1, arg2); } return; } } void ldv_io_instance_callback_3_17(void (*arg0)(struct xenbus_device * , enum xenbus_state ) , struct xenbus_device *arg1 , enum xenbus_state arg2 ) { { { blkback_changed(arg1, arg2); } return; } } void ldv_io_instance_callback_3_18(int (*arg0)(struct xenbus_device * ) , struct xenbus_device *arg1 ) { { { blkfront_resume(arg1); } return; } } void ldv_io_instance_callback_3_4(int (*arg0)(struct xenbus_device * ) , struct xenbus_device *arg1 ) { { { blkfront_is_ready(arg1); } return; } } int ldv_io_instance_probe_2_11(int (*arg0)(struct block_device * , unsigned int ) , struct block_device *arg1 , unsigned int arg2 ) { int tmp ; { { tmp = blkif_open(arg1, arg2); } return (tmp); } } int ldv_io_instance_probe_3_11(int (*arg0)(struct xenbus_device * , struct xenbus_device_id * ) , struct xenbus_device *arg1 , struct xenbus_device_id *arg2 ) { int tmp ; { { tmp = blkfront_probe(arg1, (struct xenbus_device_id const *)arg2); } return (tmp); } } void ldv_io_instance_release_2_2(void (*arg0)(struct gendisk * , unsigned int ) , struct gendisk *arg1 , unsigned int arg2 ) { { { blkif_release(arg1, arg2); } return; } } void ldv_io_instance_release_3_2(int (*arg0)(struct xenbus_device * ) , struct xenbus_device *arg1 ) { { { blkfront_remove(arg1); } return; } } void ldv_struct_block_device_operations_io_instance_2(void *arg0 ) { int (*ldv_2_callback_getgeo)(struct block_device * , struct hd_geometry * ) ; int (*ldv_2_callback_ioctl)(struct block_device * , unsigned int , unsigned int , unsigned long ) ; struct block_device_operations *ldv_2_container_struct_block_device_operations ; unsigned int ldv_2_ldv_param_11_1_default ; unsigned int ldv_2_ldv_param_19_1_default ; unsigned int ldv_2_ldv_param_19_2_default ; unsigned long ldv_2_ldv_param_19_3_default ; unsigned int ldv_2_ldv_param_2_1_default ; struct block_device *ldv_2_resource_struct_block_device_ptr ; struct gendisk *ldv_2_resource_struct_gendisk_ptr ; struct hd_geometry *ldv_2_resource_struct_hd_geometry_ptr ; int ldv_2_ret_default ; void *tmp ; void *tmp___0 ; void *tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; { { ldv_2_ret_default = 1; tmp = ldv_xmalloc(480UL); ldv_2_resource_struct_block_device_ptr = (struct block_device *)tmp; tmp___0 = ldv_xmalloc(1736UL); ldv_2_resource_struct_gendisk_ptr = (struct gendisk *)tmp___0; tmp___1 = ldv_xmalloc(16UL); ldv_2_resource_struct_hd_geometry_ptr = (struct hd_geometry *)tmp___1; } goto ldv_main_2; return; ldv_main_2: { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { ldv_2_ret_default = ldv_io_instance_probe_2_11(ldv_2_container_struct_block_device_operations->open, ldv_2_resource_struct_block_device_ptr, ldv_2_ldv_param_11_1_default); ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_assume(ldv_2_ret_default == 0); } goto ldv_call_2; } else { { ldv_assume(ldv_2_ret_default != 0); } goto ldv_main_2; } } else { { ldv_free((void *)ldv_2_resource_struct_block_device_ptr); ldv_free((void *)ldv_2_resource_struct_gendisk_ptr); ldv_free((void *)ldv_2_resource_struct_hd_geometry_ptr); } return; } return; ldv_call_2: { tmp___4 = ldv_undef_int(); } { if (tmp___4 == 1) { goto case_1; } else { } if (tmp___4 == 2) { goto case_2; } else { } if (tmp___4 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_io_instance_callback_2_19(ldv_2_callback_ioctl, ldv_2_resource_struct_block_device_ptr, ldv_2_ldv_param_19_1_default, ldv_2_ldv_param_19_2_default, ldv_2_ldv_param_19_3_default); } goto ldv_call_2; case_2: /* CIL Label */ { ldv_io_instance_release_2_2(ldv_2_container_struct_block_device_operations->release, ldv_2_resource_struct_gendisk_ptr, ldv_2_ldv_param_2_1_default); } goto ldv_main_2; case_3: /* CIL Label */ { ldv_io_instance_callback_2_4(ldv_2_callback_getgeo, ldv_2_resource_struct_block_device_ptr, ldv_2_resource_struct_hd_geometry_ptr); } goto ldv_call_2; goto ldv_call_2; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_struct_xenbus_driver_io_instance_3(void *arg0 ) { int (*ldv_3_callback_is_ready)(struct xenbus_device * ) ; void (*ldv_3_callback_otherend_changed)(struct xenbus_device * , enum xenbus_state ) ; int (*ldv_3_callback_resume)(struct xenbus_device * ) ; struct xenbus_driver *ldv_3_container_struct_xenbus_driver ; enum xenbus_state ldv_3_resource_enum_xenbus_state ; struct xenbus_device_id *ldv_3_resource_struct_xenbus_device_id ; struct xenbus_device *ldv_3_resource_struct_xenbus_device_ptr ; int ldv_3_ret_default ; struct ldv_struct_io_instance_3 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { data = (struct ldv_struct_io_instance_3 *)arg0; ldv_3_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_io_instance_3 *)0)) { { ldv_3_container_struct_xenbus_driver = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(32UL); ldv_3_resource_struct_xenbus_device_id = (struct xenbus_device_id *)tmp; tmp___0 = ldv_xmalloc(1656UL); ldv_3_resource_struct_xenbus_device_ptr = (struct xenbus_device *)tmp___0; } goto ldv_main_3; return; ldv_main_3: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_3_ret_default = ldv_io_instance_probe_3_11((int (*)(struct xenbus_device * , struct xenbus_device_id * ))ldv_3_container_struct_xenbus_driver->probe, ldv_3_resource_struct_xenbus_device_ptr, ldv_3_resource_struct_xenbus_device_id); ldv_3_ret_default = ldv_filter_err_code(ldv_3_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { ldv_assume(ldv_3_ret_default == 0); } goto ldv_call_3; } else { { ldv_assume(ldv_3_ret_default != 0); } goto ldv_main_3; } } else { { ldv_free((void *)ldv_3_resource_struct_xenbus_device_id); ldv_free((void *)ldv_3_resource_struct_xenbus_device_ptr); } return; } return; ldv_call_3: { tmp___3 = ldv_undef_int(); } { if (tmp___3 == 1) { goto case_1; } else { } if (tmp___3 == 2) { goto case_2; } else { } if (tmp___3 == 3) { goto case_3; } else { } if (tmp___3 == 4) { goto case_4; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_io_instance_callback_3_18(ldv_3_callback_resume, ldv_3_resource_struct_xenbus_device_ptr); } goto ldv_call_3; case_2: /* CIL Label */ { ldv_io_instance_callback_3_17(ldv_3_callback_otherend_changed, ldv_3_resource_struct_xenbus_device_ptr, ldv_3_resource_enum_xenbus_state); } goto ldv_call_3; goto ldv_call_3; case_3: /* CIL Label */ { ldv_io_instance_callback_3_4(ldv_3_callback_is_ready, ldv_3_resource_struct_xenbus_device_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_4: /* CIL Label */ { ldv_io_instance_release_3_2(ldv_3_container_struct_xenbus_driver->remove, ldv_3_resource_struct_xenbus_device_ptr); } goto ldv_main_3; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_xenbus_unregister_driver(void *arg0 , struct xenbus_driver *arg1 ) { struct xenbus_driver *ldv_4_struct_xenbus_driver_struct_xenbus_driver ; { { ldv_4_struct_xenbus_driver_struct_xenbus_driver = arg1; ldv_dispatch_deregister_4_1(ldv_4_struct_xenbus_driver_struct_xenbus_driver); } return; return; } } __inline static int atomic_dec_and_test(atomic_t *v ) { int tmp ; { { tmp = ldv_linux_usb_dev_atomic_dec_and_test(v); } return (tmp); } } __inline static struct page *alloc_pages(gfp_t flags , unsigned int order ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return ((struct page *)tmp); } } __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_malloc_unknown_size(); ldv_after_alloc(res); } return (res); } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = ldv_kzalloc(size, flags); } return (tmp); } } __inline static void ldv_spin_lock_96(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_minor_lock(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_97(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_minor_lock(); spin_unlock(lock); } return; } } static unsigned long ldv_find_next_bit_99(unsigned long const *addr , unsigned long size , unsigned long offset ) { unsigned long tmp ; { { tmp = ldv_linux_lib_find_bit_find_next_bit(size, offset); } return (tmp); } } static struct request_queue *ldv_blk_init_queue_103(void (*ldv_func_arg1)(struct request_queue * ) , spinlock_t *ldv_func_arg2 ) { ldv_func_ret_type___0 ldv_func_res ; struct request_queue *tmp ; struct request_queue *tmp___0 ; { { tmp = blk_init_queue(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_linux_block_queue_request_queue(); } return (tmp___0); return (ldv_func_res); } } static struct gendisk *ldv_alloc_disk_104(int minors___0 ) { ldv_func_ret_type___1 ldv_func_res ; struct gendisk *tmp ; struct gendisk *tmp___0 ; { { tmp = alloc_disk(minors___0); ldv_func_res = tmp; tmp___0 = ldv_linux_block_genhd_alloc_disk(); } return (tmp___0); return (ldv_func_res); } } static void ldv_del_gendisk_105(struct gendisk *gp ) { { { ldv_linux_block_genhd_del_gendisk(); del_gendisk(gp); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_106(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_io_lock_of_blkfront_info(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_107(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_io_lock_of_blkfront_info(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv_del_gendisk_108(struct gendisk *gp ) { { { ldv_linux_block_genhd_del_gendisk(); del_gendisk(gp); } return; } } static void ldv_blk_cleanup_queue_109(struct request_queue *ldv_func_arg1 ) { { { ldv_linux_block_queue_blk_cleanup_queue(); blk_cleanup_queue(ldv_func_arg1); } return; } } static void ldv_put_disk_110(struct gendisk *disk ) { { { ldv_linux_block_genhd_put_disk(disk); put_disk(disk); } return; } } __inline static void ldv_spin_lock_irq_111(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_io_lock_of_blkfront_info(); spin_lock_irq(lock); } return; } } __inline static void ldv_spin_unlock_irq_112(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_io_lock_of_blkfront_info(); spin_unlock_irq(lock); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_115(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_io_lock_of_blkfront_info(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static unsigned long ldv___get_free_pages_118(gfp_t flags , unsigned int ldv_func_arg2 ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return ((unsigned long )((unsigned int )((long )tmp))); } } static void ldv_mutex_lock_123(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_blkfront_info(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_124(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_blkfront_info(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_125(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_blkfront_info(ldv_func_arg1); } return; } } static void ldv_mutex_lock_126(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_bd_mutex_of_block_device(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_127(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_bd_mutex_of_block_device(ldv_func_arg1); } return; } } static void ldv_add_disk_130(struct gendisk *disk ) { { { ldv_linux_block_genhd_add_disk(); add_disk(disk); } return; } } static void ldv_mutex_lock_131(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_blkfront_info(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_132(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_blkfront_info(ldv_func_arg1); } return; } } static void ldv_mutex_lock_133(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_bd_mutex_of_block_device(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_134(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_bd_mutex_of_block_device(ldv_func_arg1); } return; } } static void ldv_mutex_lock_135(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_blkfront_mutex(ldv_func_arg1); } return; } } static void ldv_mutex_lock_136(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_blkfront_info(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_137(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_blkfront_info(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_138(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_blkfront_mutex(ldv_func_arg1); } return; } } static void ldv_mutex_lock_139(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_blkfront_mutex(ldv_func_arg1); } return; } } static void ldv_mutex_lock_140(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_blkfront_info(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_141(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_blkfront_info(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_142(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_blkfront_mutex(ldv_func_arg1); } return; } } static int ldv___xenbus_register_frontend_143(struct xenbus_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __xenbus_register_frontend(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___xenbus_register_frontend(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_xenbus_unregister_driver_144(struct xenbus_driver *ldv_func_arg1 ) { { { xenbus_unregister_driver(ldv_func_arg1); ldv_xenbus_unregister_driver((void *)0, ldv_func_arg1); } return; } } static int ldv_ldv_post_init_145(int ldv_func_arg1 ) { int tmp ; { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); tmp = ldv_post_init(ldv_func_arg1); } return (tmp); } } static void ldv_ldv_check_final_state_146(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_check_final_state_147(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_initialize_148(void) { { { ldv_linux_lib_find_bit_initialize(); } return; } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) ; bool ldv_in_interrupt_context(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) { bool tmp ; int tmp___0 ; { { tmp = ldv_in_interrupt_context(); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } { ldv_assert_linux_alloc_irq__wrong_flags(tmp___0 || flags == 32U); } return; } } void ldv_linux_alloc_irq_check_alloc_nonatomic(void) { bool tmp ; { { tmp = ldv_in_interrupt_context(); } if ((int )tmp) { { ldv_assert_linux_alloc_irq__nonatomic(0); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_linux_alloc_spinlock_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_linux_alloc_spinlock_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) ; int ldv_linux_alloc_usb_lock_lock = 1; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) { { if (ldv_linux_alloc_usb_lock_lock == 2) { { ldv_assert_linux_alloc_usb_lock__wrong_flags(flags == 16U || flags == 32U); } } else { } return; } } void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) { { { ldv_assert_linux_alloc_usb_lock__nonatomic(ldv_linux_alloc_usb_lock_lock == 1); } return; } } void ldv_linux_alloc_usb_lock_usb_lock_device(void) { { ldv_linux_alloc_usb_lock_lock = 2; return; } } int ldv_linux_alloc_usb_lock_usb_trylock_device(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_alloc_usb_lock_usb_lock_device_for_reset(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (0); } else { return (-1); } } else { return (-1); } } } void ldv_linux_alloc_usb_lock_usb_unlock_device(void) { { ldv_linux_alloc_usb_lock_lock = 1; return; } } void ldv_linux_usb_dev_atomic_add(int i , atomic_t *v ) { { v->counter = v->counter + i; return; } } void ldv_linux_usb_dev_atomic_sub(int i , atomic_t *v ) { { v->counter = v->counter - i; return; } } int ldv_linux_usb_dev_atomic_sub_and_test(int i , atomic_t *v ) { { v->counter = v->counter - i; if (v->counter != 0) { return (0); } else { } return (1); } } void ldv_linux_usb_dev_atomic_inc(atomic_t *v ) { { v->counter = v->counter + 1; return; } } void ldv_linux_usb_dev_atomic_dec(atomic_t *v ) { { v->counter = v->counter - 1; return; } } int ldv_linux_usb_dev_atomic_dec_and_test(atomic_t *v ) { { v->counter = v->counter - 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_inc_and_test(atomic_t *v ) { { v->counter = v->counter + 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_add_return(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter); } } int ldv_linux_usb_dev_atomic_add_negative(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter < 0); } } int ldv_linux_usb_dev_atomic_inc_short(short *v ) { { *v = (short )((unsigned int )((unsigned short )*v) + 1U); return ((int )*v); } } void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) ; void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) ; void *ldv_undef_ptr(void) ; int ldv_linux_arch_io_iomem = 0; void *ldv_linux_arch_io_io_mem_remap(void) { void *ptr ; void *tmp ; { { tmp = ldv_undef_ptr(); ptr = tmp; } if ((unsigned long )ptr != (unsigned long )((void *)0)) { ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem + 1; return (ptr); } else { } return (ptr); } } void ldv_linux_arch_io_io_mem_unmap(void) { { { ldv_assert_linux_arch_io__less_initial_decrement(ldv_linux_arch_io_iomem > 0); ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem - 1; } return; } } void ldv_linux_arch_io_check_final_state(void) { { { ldv_assert_linux_arch_io__more_initial_at_exit(ldv_linux_arch_io_iomem == 0); } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) ; void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) ; void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) ; static int ldv_linux_block_genhd_disk_state = 0; struct gendisk *ldv_linux_block_genhd_alloc_disk(void) { struct gendisk *res ; void *tmp ; { { tmp = ldv_undef_ptr(); res = (struct gendisk *)tmp; ldv_assert_linux_block_genhd__double_allocation(ldv_linux_block_genhd_disk_state == 0); } if ((unsigned long )res != (unsigned long )((struct gendisk *)0)) { ldv_linux_block_genhd_disk_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_genhd_add_disk(void) { { { ldv_assert_linux_block_genhd__use_before_allocation(ldv_linux_block_genhd_disk_state == 1); ldv_linux_block_genhd_disk_state = 2; } return; } } void ldv_linux_block_genhd_del_gendisk(void) { { { ldv_assert_linux_block_genhd__delete_before_add(ldv_linux_block_genhd_disk_state == 2); ldv_linux_block_genhd_disk_state = 1; } return; } } void ldv_linux_block_genhd_put_disk(struct gendisk *disk ) { { if ((unsigned long )disk != (unsigned long )((struct gendisk *)0)) { { ldv_assert_linux_block_genhd__free_before_allocation(ldv_linux_block_genhd_disk_state > 0); ldv_linux_block_genhd_disk_state = 0; } } else { } return; } } void ldv_linux_block_genhd_check_final_state(void) { { { ldv_assert_linux_block_genhd__more_initial_at_exit(ldv_linux_block_genhd_disk_state == 0); } return; } } void ldv_assert_linux_block_queue__double_allocation(int expr ) ; void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_queue__use_before_allocation(int expr ) ; static int ldv_linux_block_queue_queue_state = 0; struct request_queue *ldv_linux_block_queue_request_queue(void) { struct request_queue *res ; void *tmp ; { { tmp = ldv_undef_ptr(); res = (struct request_queue *)tmp; ldv_assert_linux_block_queue__double_allocation(ldv_linux_block_queue_queue_state == 0); } if ((unsigned long )res != (unsigned long )((struct request_queue *)0)) { ldv_linux_block_queue_queue_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_queue_blk_cleanup_queue(void) { { { ldv_assert_linux_block_queue__use_before_allocation(ldv_linux_block_queue_queue_state == 1); ldv_linux_block_queue_queue_state = 0; } return; } } void ldv_linux_block_queue_check_final_state(void) { { { ldv_assert_linux_block_queue__more_initial_at_exit(ldv_linux_block_queue_queue_state == 0); } return; } } void ldv_assert_linux_block_request__double_get(int expr ) ; void ldv_assert_linux_block_request__double_put(int expr ) ; void ldv_assert_linux_block_request__get_at_exit(int expr ) ; long ldv_is_err(void const *ptr ) ; int ldv_linux_block_request_blk_rq = 0; struct request *ldv_linux_block_request_blk_get_request(gfp_t mask ) { struct request *res ; void *tmp ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_undef_ptr(); res = (struct request *)tmp; } if ((mask == 16U || mask == 208U) || mask == 16U) { { ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); } } else { } if ((unsigned long )res != (unsigned long )((struct request *)0)) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } struct request *ldv_linux_block_request_blk_make_request(gfp_t mask ) { struct request *res ; void *tmp ; long tmp___0 ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_undef_ptr(); res = (struct request *)tmp; ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); tmp___0 = ldv_is_err((void const *)res); } if (tmp___0 == 0L) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } void ldv_linux_block_request_put_blk_rq(void) { { { ldv_assert_linux_block_request__double_put(ldv_linux_block_request_blk_rq == 1); ldv_linux_block_request_blk_rq = 0; } return; } } void ldv_linux_block_request_check_final_state(void) { { { ldv_assert_linux_block_request__get_at_exit(ldv_linux_block_request_blk_rq == 0); } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) ; void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) ; int ldv_undef_int_nonpositive(void) ; int ldv_linux_drivers_base_class_usb_gadget_class = 0; void *ldv_linux_drivers_base_class_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_undef_ptr(); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_got); } } int ldv_linux_drivers_base_class_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_reg); } } void ldv_linux_drivers_base_class_unregister_class(void) { { { ldv_assert_linux_drivers_base_class__double_deregistration(ldv_linux_drivers_base_class_usb_gadget_class == 1); ldv_linux_drivers_base_class_usb_gadget_class = 0; } return; } } void ldv_linux_drivers_base_class_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_drivers_base_class_unregister_class(); } return; } } void ldv_linux_drivers_base_class_check_final_state(void) { { { ldv_assert_linux_drivers_base_class__registered_at_exit(ldv_linux_drivers_base_class_usb_gadget_class == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2176UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) ; void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) ; int ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; int ldv_linux_fs_char_dev_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_fs_char_dev_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } } else { } return (is_reg); } } void ldv_linux_fs_char_dev_unregister_chrdev_region(void) { { { ldv_assert_linux_fs_char_dev__double_deregistration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 1); ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; } return; } } void ldv_linux_fs_char_dev_check_final_state(void) { { { ldv_assert_linux_fs_char_dev__registered_at_exit(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); } return; } } void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) ; void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) ; int ldv_linux_fs_sysfs_sysfs = 0; int ldv_linux_fs_sysfs_sysfs_create_group(void) { int res ; int tmp ; { { tmp = ldv_undef_int_nonpositive(); res = tmp; } if (res == 0) { ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs + 1; return (0); } else { } return (res); } } void ldv_linux_fs_sysfs_sysfs_remove_group(void) { { { ldv_assert_linux_fs_sysfs__less_initial_decrement(ldv_linux_fs_sysfs_sysfs > 0); ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs - 1; } return; } } void ldv_linux_fs_sysfs_check_final_state(void) { { { ldv_assert_linux_fs_sysfs__more_initial_at_exit(ldv_linux_fs_sysfs_sysfs == 0); } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) ; int ldv_linux_kernel_locking_rwlock_rlock = 1; int ldv_linux_kernel_locking_rwlock_wlock = 1; void ldv_linux_kernel_locking_rwlock_read_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; } return; } } void ldv_linux_kernel_locking_rwlock_read_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(ldv_linux_kernel_locking_rwlock_rlock > 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + -1; } return; } } void ldv_linux_kernel_locking_rwlock_write_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_wlock = 2; } return; } } void ldv_linux_kernel_locking_rwlock_write_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(ldv_linux_kernel_locking_rwlock_wlock != 1); ldv_linux_kernel_locking_rwlock_wlock = 1; } return; } } int ldv_linux_kernel_locking_rwlock_read_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_kernel_locking_rwlock_write_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_wlock = 2; return (1); } else { return (0); } } else { return (0); } } } void ldv_linux_kernel_locking_rwlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(ldv_linux_kernel_locking_rwlock_rlock == 1); ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(ldv_linux_kernel_locking_rwlock_wlock == 1); } return; } } void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) ; void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) ; int ldv_linux_kernel_module_module_refcounter = 1; void ldv_linux_kernel_module_module_get(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; } else { } return; } } int ldv_linux_kernel_module_try_module_get(struct module *module ) { int tmp ; { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { tmp = ldv_undef_int(); } if (tmp == 1) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; return (1); } else { return (0); } } else { } return (0); } } void ldv_linux_kernel_module_module_put(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { ldv_assert_linux_kernel_module__less_initial_decrement(ldv_linux_kernel_module_module_refcounter > 1); ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter - 1; } } else { } return; } } void ldv_linux_kernel_module_module_put_and_exit(void) { { { ldv_linux_kernel_module_module_put((struct module *)1); } LDV_LINUX_KERNEL_MODULE_STOP: ; goto LDV_LINUX_KERNEL_MODULE_STOP; } } unsigned int ldv_linux_kernel_module_module_refcount(void) { { return ((unsigned int )(ldv_linux_kernel_module_module_refcounter + -1)); } } void ldv_linux_kernel_module_check_final_state(void) { { { ldv_assert_linux_kernel_module__more_initial_at_exit(ldv_linux_kernel_module_module_refcounter == 1); } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_srcu_srcu_nested = 0; void ldv_linux_kernel_rcu_srcu_srcu_read_lock(void) { { ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested + 1; return; } } void ldv_linux_kernel_rcu_srcu_srcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_srcu__more_unlocks(ldv_linux_kernel_rcu_srcu_srcu_nested > 0); ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_srcu_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = 0; void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_lock_bh(void) { { ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh + 1; return; } } void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_unlock_bh(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh > 0); ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = 0; void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_lock_sched(void) { { ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched + 1; return; } } void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_unlock_sched(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched > 0); ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_rcu_nested = 0; void ldv_linux_kernel_rcu_update_lock_rcu_read_lock(void) { { ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested + 1; return; } } void ldv_linux_kernel_rcu_update_lock_rcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(ldv_linux_kernel_rcu_update_lock_rcu_nested > 0); ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } int ldv_post_probe(int probe_ret_val ) ; static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } static bool __ldv_in_interrupt_context = 0; void ldv_switch_to_interrupt_context(void) { { __ldv_in_interrupt_context = 1; return; } } void ldv_switch_to_process_context(void) { { __ldv_in_interrupt_context = 0; return; } } bool ldv_in_interrupt_context(void) { { return (__ldv_in_interrupt_context); } } void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) ; extern int nr_cpu_ids ; unsigned long ldv_undef_ulong(void) ; unsigned long ldv_linux_lib_find_bit_find_next_bit(unsigned long size , unsigned long offset ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assert_linux_lib_find_bit__offset_out_of_range(offset <= size); ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } unsigned long ldv_linux_lib_find_bit_find_first_bit(unsigned long size ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } void ldv_linux_lib_find_bit_initialize(void) { { { ldv_assume(nr_cpu_ids > 0); } return; } } void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) ; unsigned short ldv_linux_mmc_sdio_func_sdio_element = 0U; void ldv_linux_mmc_sdio_func_check_context(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__wrong_params((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); } return; } } void ldv_linux_mmc_sdio_func_sdio_claim_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__double_claim((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); ldv_linux_mmc_sdio_func_sdio_element = (unsigned short )((func->card)->host)->index; } return; } } void ldv_linux_mmc_sdio_func_sdio_release_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__release_without_claim((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); ldv_linux_mmc_sdio_func_sdio_element = 0U; } return; } } void ldv_linux_mmc_sdio_func_check_final_state(void) { { { ldv_assert_linux_mmc_sdio_func__unreleased_at_exit((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); } return; } } void ldv_assert_linux_net_register__wrong_return_value(int expr ) ; int ldv_pre_register_netdev(void) ; int ldv_linux_net_register_probe_state = 0; int ldv_pre_register_netdev(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_net_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_net_register_reset_error_counter(void) { { ldv_linux_net_register_probe_state = 0; return; } } void ldv_linux_net_register_check_return_value_probe(int retval ) { { if (ldv_linux_net_register_probe_state == 1) { { ldv_assert_linux_net_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_net_register_reset_error_counter(); } return; } } void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) ; void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) ; void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) ; int rtnllocknumber = 0; void ldv_linux_net_rtnetlink_past_rtnl_unlock(void) { { { ldv_assert_linux_net_rtnetlink__double_unlock(rtnllocknumber == 1); rtnllocknumber = 0; } return; } } void ldv_linux_net_rtnetlink_past_rtnl_lock(void) { { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); rtnllocknumber = 1; } return; } } void ldv_linux_net_rtnetlink_before_ieee80211_unregister_hw(void) { { { ldv_linux_net_rtnetlink_past_rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } int ldv_linux_net_rtnetlink_rtnl_is_locked(void) { int tmp ; { if (rtnllocknumber != 0) { return (rtnllocknumber); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_net_rtnetlink_rtnl_trylock(void) { int tmp ; { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); tmp = ldv_linux_net_rtnetlink_rtnl_is_locked(); } if (tmp == 0) { rtnllocknumber = 1; return (1); } else { return (0); } } } void ldv_linux_net_rtnetlink_check_final_state(void) { { { ldv_assert_linux_net_rtnetlink__lock_on_exit(rtnllocknumber == 0); } return; } } void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) ; void ldv_assert_linux_net_sock__double_release(int expr ) ; int locksocknumber = 0; void ldv_linux_net_sock_past_lock_sock_nested(void) { { locksocknumber = locksocknumber + 1; return; } } bool ldv_linux_net_sock_lock_sock_fast(void) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { locksocknumber = locksocknumber + 1; return (1); } else { } return (0); } } void ldv_linux_net_sock_unlock_sock_fast(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_before_release_sock(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_check_final_state(void) { { { ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(locksocknumber == 0); } return; } } void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) ; int ldv_linux_usb_coherent_coherent_state = 0; void *ldv_linux_usb_coherent_usb_alloc_coherent(void) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return (arbitrary_memory); } else { } ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + 1; return (arbitrary_memory); } } void ldv_linux_usb_coherent_usb_free_coherent(void *addr ) { { if ((unsigned long )addr != (unsigned long )((void *)0)) { { ldv_assert_linux_usb_coherent__less_initial_decrement(ldv_linux_usb_coherent_coherent_state > 0); ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + -1; } } else { } return; } } void ldv_linux_usb_coherent_check_final_state(void) { { { ldv_assert_linux_usb_coherent__more_initial_at_exit(ldv_linux_usb_coherent_coherent_state == 0); } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) ; void ldv_assert_linux_usb_dev__probe_failed(int expr ) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) ; ldv_map LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS ; struct usb_device *ldv_linux_usb_dev_usb_get_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0 ? LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + 1 : 1; } else { } return (dev); } } void ldv_linux_usb_dev_usb_put_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { { ldv_assert_linux_usb_dev__unincremented_counter_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0); ldv_assert_linux_usb_dev__less_initial_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 0); } if (LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 1) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + -1; } else { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; } } else { } return; } } void ldv_linux_usb_dev_check_return_value_probe(int retval ) { { if (retval != 0) { { ldv_assert_linux_usb_dev__probe_failed(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } } else { } return; } } void ldv_linux_usb_dev_initialize(void) { { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; return; } } void ldv_linux_usb_dev_check_final_state(void) { { { ldv_assert_linux_usb_dev__more_initial_at_exit(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) ; void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) ; int ldv_linux_usb_gadget_usb_gadget = 0; void *ldv_linux_usb_gadget_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_undef_ptr(); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_got); } } int ldv_linux_usb_gadget_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_class(void) { { { ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_linux_usb_gadget_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_usb_gadget_unregister_class(); } return; } } int ldv_linux_usb_gadget_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_usb_gadget_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_chrdev_region(void) { { { ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } int ldv_linux_usb_gadget_register_usb_gadget(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__double_usb_gadget_registration(ldv_linux_usb_gadget_usb_gadget == 0); ldv_linux_usb_gadget_usb_gadget = 1; } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_usb_gadget(void) { { { ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(ldv_linux_usb_gadget_usb_gadget == 1); ldv_linux_usb_gadget_usb_gadget = 0; } return; } } void ldv_linux_usb_gadget_check_final_state(void) { { { ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_assert_linux_usb_register__wrong_return_value(int expr ) ; int ldv_pre_usb_register_driver(void) ; int ldv_linux_usb_register_probe_state = 0; int ldv_pre_usb_register_driver(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_usb_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_usb_register_reset_error_counter(void) { { ldv_linux_usb_register_probe_state = 0; return; } } void ldv_linux_usb_register_check_return_value_probe(int retval ) { { if (ldv_linux_usb_register_probe_state == 1) { { ldv_assert_linux_usb_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_usb_register_reset_error_counter(); } return; } } void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) ; int ldv_linux_usb_urb_urb_state = 0; struct urb *ldv_linux_usb_urb_usb_alloc_urb(void) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return ((struct urb *)arbitrary_memory); } else { } ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + 1; return ((struct urb *)arbitrary_memory); } } void ldv_linux_usb_urb_usb_free_urb(struct urb *urb ) { { if ((unsigned long )urb != (unsigned long )((struct urb *)0)) { { ldv_assert_linux_usb_urb__less_initial_decrement(ldv_linux_usb_urb_urb_state > 0); ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + -1; } } else { } return; } } void ldv_linux_usb_urb_check_final_state(void) { { { ldv_assert_linux_usb_urb__more_initial_at_exit(ldv_linux_usb_urb_urb_state == 0); } return; } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *external_allocated_data(void) ; void *ldv_calloc_unknown_size(void) ; void *ldv_zalloc_unknown_size(void) ; void *ldv_xmalloc_unknown_size(size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; extern void *memset(void * , int , size_t ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_malloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; memset(res, 0, 8UL); ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc_unknown_size(void) { void *tmp ; { { tmp = ldv_calloc_unknown_size(); } return (tmp); } } void *ldv_xmalloc_unknown_size(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } int ldv_undef_int_negative(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { { tmp = __VERIFIER_nondet_pointer(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) ; ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_bd_mutex_of_block_device ; void ldv_linux_kernel_locking_mutex_mutex_lock_bd_mutex_of_block_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_bd_mutex_of_block_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_bd_mutex_of_block_device = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_bd_mutex_of_block_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_bd_mutex_of_block_device); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_bd_mutex_of_block_device = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_bd_mutex_of_block_device(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_bd_mutex_of_block_device) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_bd_mutex_of_block_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_bd_mutex_of_block_device); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_bd_mutex_of_block_device(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_bd_mutex_of_block_device = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_bd_mutex_of_block_device(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_bd_mutex_of_block_device(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_bd_mutex_of_block_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_bd_mutex_of_block_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_bd_mutex_of_block_device = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_blkfront_mutex ; void ldv_linux_kernel_locking_mutex_mutex_lock_blkfront_mutex(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_blkfront_mutex); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_blkfront_mutex = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_blkfront_mutex(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_blkfront_mutex); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_blkfront_mutex = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_blkfront_mutex(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_blkfront_mutex) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_blkfront_mutex(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_blkfront_mutex); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_blkfront_mutex(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_blkfront_mutex = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_blkfront_mutex(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_blkfront_mutex(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_blkfront_mutex(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_blkfront_mutex); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_blkfront_mutex = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode ; void ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock ; void ldv_linux_kernel_locking_mutex_mutex_lock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_lock(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_blkfront_info ; void ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_blkfront_info(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_blkfront_info); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_blkfront_info = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_blkfront_info(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_blkfront_info); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_blkfront_info = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_blkfront_info(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_blkfront_info) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_mutex_of_blkfront_info(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_blkfront_info); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_blkfront_info(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_blkfront_info = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_mutex_of_blkfront_info(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_blkfront_info(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_blkfront_info(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_blkfront_info); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_blkfront_info = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device ; void ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; } return; } } void ldv_linux_kernel_locking_mutex_initialize(void) { { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_bd_mutex_of_block_device = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_blkfront_mutex = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_blkfront_info = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; return; } } void ldv_linux_kernel_locking_mutex_check_final_state(void) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_bd_mutex_of_block_device); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_blkfront_mutex); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_blkfront_info); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_io_lock_of_blkfront_info = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_io_lock_of_blkfront_info(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_io_lock_of_blkfront_info == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_io_lock_of_blkfront_info == 1); ldv_linux_kernel_locking_spinlock_spin_io_lock_of_blkfront_info = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_io_lock_of_blkfront_info(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_io_lock_of_blkfront_info == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_io_lock_of_blkfront_info == 2); ldv_linux_kernel_locking_spinlock_spin_io_lock_of_blkfront_info = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_io_lock_of_blkfront_info(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_io_lock_of_blkfront_info == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_io_lock_of_blkfront_info == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_io_lock_of_blkfront_info = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_io_lock_of_blkfront_info(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_io_lock_of_blkfront_info == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_io_lock_of_blkfront_info == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_io_lock_of_blkfront_info(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_io_lock_of_blkfront_info == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_io_lock_of_blkfront_info(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_io_lock_of_blkfront_info(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_io_lock_of_blkfront_info(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_io_lock_of_blkfront_info(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_io_lock_of_blkfront_info == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_io_lock_of_blkfront_info == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_io_lock_of_blkfront_info = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_linux_kernel_locking_spinlock_spin_lock = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_linux_kernel_locking_spinlock_spin_lock = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_minor_lock = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_minor_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_minor_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_minor_lock == 1); ldv_linux_kernel_locking_spinlock_spin_minor_lock = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_minor_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_minor_lock == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_minor_lock == 2); ldv_linux_kernel_locking_spinlock_spin_minor_lock = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_minor_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_minor_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_minor_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_minor_lock = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_minor_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_minor_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_minor_lock == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_minor_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_minor_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_minor_lock(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_minor_lock(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_minor_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_minor_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_minor_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_minor_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_minor_lock = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_ptl = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_linux_kernel_locking_spinlock_spin_ptl = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_linux_kernel_locking_spinlock_spin_ptl = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } void ldv_linux_kernel_locking_spinlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_io_lock_of_blkfront_info == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_minor_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_io_lock_of_blkfront_info == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_minor_lock == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2) { return (1); } else { } return (0); } } void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) ; void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) ; static int ldv_linux_kernel_sched_completion_completion = 0; void ldv_linux_kernel_sched_completion_init_completion(void) { { ldv_linux_kernel_sched_completion_completion = 1; return; } } void ldv_linux_kernel_sched_completion_init_completion_macro(void) { { { ldv_assert_linux_kernel_sched_completion__double_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 1; } return; } } void ldv_linux_kernel_sched_completion_wait_for_completion(void) { { { ldv_assert_linux_kernel_sched_completion__wait_without_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 2; } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) ; void ldv_assert_linux_lib_idr__double_init(int expr ) ; void ldv_assert_linux_lib_idr__more_at_exit(int expr ) ; void ldv_assert_linux_lib_idr__not_initialized(int expr ) ; static int ldv_linux_lib_idr_idr = 0; void ldv_linux_lib_idr_idr_init(void) { { { ldv_assert_linux_lib_idr__double_init(ldv_linux_lib_idr_idr == 0); ldv_linux_lib_idr_idr = 1; } return; } } void ldv_linux_lib_idr_idr_alloc(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_find(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_remove(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_destroy(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 3; } return; } } void ldv_linux_lib_idr_check_final_state(void) { { { ldv_assert_linux_lib_idr__more_at_exit(ldv_linux_lib_idr_idr == 0 || ldv_linux_lib_idr_idr == 3); } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_lib_idr__double_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__not_initialized(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__more_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_register__wrong_return_value(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_sock__double_release(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__probe_failed(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_request__double_get(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_request__double_put(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_request__get_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_queue__double_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_queue__use_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_register__wrong_return_value(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } }