/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __le16; typedef __u32 __le32; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef unsigned long uintptr_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u32 uint32_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct class; struct urb; struct device; struct completion; struct usb_device; struct gendisk; struct module; struct mutex; struct request_queue; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_10 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_11 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_9 { struct __anonstruct____missing_field_name_10 __annonCompField5 ; struct __anonstruct____missing_field_name_11 __annonCompField6 ; }; struct desc_struct { union __anonunion____missing_field_name_9 __annonCompField7 ; }; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_12 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_12 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_13 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_13 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; typedef void (*ctor_fn_t)(void); struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned char flags ; }; struct file_operations; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_16 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_16 __annonCompField8 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_21 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_22 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_20 { struct __anonstruct____missing_field_name_21 __annonCompField12 ; struct __anonstruct____missing_field_name_22 __annonCompField13 ; }; union __anonunion____missing_field_name_23 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_20 __annonCompField14 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_23 __annonCompField15 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndreg { u64 lower_bound ; u64 upper_bound ; }; struct bndcsr { u64 bndcfgu ; u64 bndstatus ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndreg bndreg[4U] ; struct bndcsr bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_27 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_26 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_27 __annonCompField17 ; }; struct spinlock { union __anonunion____missing_field_name_26 __annonCompField18 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_28 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_28 rwlock_t; struct ldv_thread; struct optimistic_spin_queue { atomic_t tail ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct compat_timespec; struct __anonstruct_futex_30 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_31 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_32 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_29 { struct __anonstruct_futex_30 futex ; struct __anonstruct_nanosleep_31 nanosleep ; struct __anonstruct_poll_32 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_29 __annonCompField19 ; }; struct jump_entry; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_45 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_45 seqlock_t; struct __wait_queue; typedef struct __wait_queue wait_queue_t; struct __wait_queue { unsigned int flags ; void *private ; int (*func)(wait_queue_t * , unsigned int , int , void * ) ; struct list_head task_list ; }; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; union __anonunion____missing_field_name_46 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_46 __annonCompField20 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_47 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_47 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct user_namespace; struct __anonstruct_kuid_t_48 { uid_t val ; }; typedef struct __anonstruct_kuid_t_48 kuid_t; struct __anonstruct_kgid_t_49 { gid_t val ; }; typedef struct __anonstruct_kgid_t_49 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct inode; struct cdev { struct kobject kobj ; struct module *owner ; struct file_operations const *ops ; struct list_head list ; dev_t dev ; unsigned int count ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_50 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_50 nodemask_t; struct path; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; }; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct __anonstruct_mm_context_t_115 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_115 mm_context_t; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; enum iio_chan_type { IIO_VOLTAGE = 0, IIO_CURRENT = 1, IIO_POWER = 2, IIO_ACCEL = 3, IIO_ANGL_VEL = 4, IIO_MAGN = 5, IIO_LIGHT = 6, IIO_INTENSITY = 7, IIO_PROXIMITY = 8, IIO_TEMP = 9, IIO_INCLI = 10, IIO_ROT = 11, IIO_ANGL = 12, IIO_TIMESTAMP = 13, IIO_CAPACITANCE = 14, IIO_ALTVOLTAGE = 15, IIO_CCT = 16, IIO_PRESSURE = 17, IIO_HUMIDITYRELATIVE = 18, IIO_ACTIVITY = 19, IIO_STEPS = 20, IIO_ENERGY = 21, IIO_DISTANCE = 22, IIO_VELOCITY = 23 } ; enum iio_event_type { IIO_EV_TYPE_THRESH = 0, IIO_EV_TYPE_MAG = 1, IIO_EV_TYPE_ROC = 2, IIO_EV_TYPE_THRESH_ADAPTIVE = 3, IIO_EV_TYPE_MAG_ADAPTIVE = 4, IIO_EV_TYPE_CHANGE = 5 } ; enum iio_event_info { IIO_EV_INFO_ENABLE = 0, IIO_EV_INFO_VALUE = 1, IIO_EV_INFO_HYSTERESIS = 2, IIO_EV_INFO_PERIOD = 3 } ; enum iio_event_direction { IIO_EV_DIR_EITHER = 0, IIO_EV_DIR_RISING = 1, IIO_EV_DIR_FALLING = 2, IIO_EV_DIR_NONE = 3 } ; typedef unsigned long kernel_ulong_t; struct usb_device_id { __u16 match_flags ; __u16 idVendor ; __u16 idProduct ; __u16 bcdDevice_lo ; __u16 bcdDevice_hi ; __u8 bDeviceClass ; __u8 bDeviceSubClass ; __u8 bDeviceProtocol ; __u8 bInterfaceClass ; __u8 bInterfaceSubClass ; __u8 bInterfaceProtocol ; __u8 bInterfaceNumber ; kernel_ulong_t driver_info ; }; struct hid_device_id { __u16 bus ; __u16 group ; __u32 vendor ; __u32 product ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct input_device_id { kernel_ulong_t flags ; __u16 bustype ; __u16 vendor ; __u16 product ; __u16 version ; kernel_ulong_t evbit[1U] ; kernel_ulong_t keybit[12U] ; kernel_ulong_t relbit[1U] ; kernel_ulong_t absbit[1U] ; kernel_ulong_t mscbit[1U] ; kernel_ulong_t ledbit[1U] ; kernel_ulong_t sndbit[1U] ; kernel_ulong_t ffbit[2U] ; kernel_ulong_t swbit[1U] ; kernel_ulong_t driver_info ; }; enum fwnode_type { FWNODE_INVALID = 0, FWNODE_OF = 1, FWNODE_ACPI = 2 } ; struct fwnode_handle { enum fwnode_type type ; }; typedef u32 phandle; struct property { char *name ; int length ; void *value ; struct property *next ; unsigned long _flags ; unsigned int unique_id ; struct bin_attribute attr ; }; struct device_node { char const *name ; char const *type ; phandle phandle ; char const *full_name ; struct fwnode_handle fwnode ; struct property *properties ; struct property *deadprops ; struct device_node *parent ; struct device_node *child ; struct device_node *sibling ; struct kobject kobj ; unsigned long _flags ; void *data ; }; struct of_phandle_args { struct device_node *np ; int args_count ; uint32_t args[16U] ; }; enum iio_shared_by { IIO_SEPARATE = 0, IIO_SHARED_BY_TYPE = 1, IIO_SHARED_BY_DIR = 2, IIO_SHARED_BY_ALL = 3 } ; enum iio_endian { IIO_CPU = 0, IIO_BE = 1, IIO_LE = 2 } ; struct iio_chan_spec; struct iio_dev; struct iio_chan_spec_ext_info { char const *name ; enum iio_shared_by shared ; ssize_t (*read)(struct iio_dev * , uintptr_t , struct iio_chan_spec const * , char * ) ; ssize_t (*write)(struct iio_dev * , uintptr_t , struct iio_chan_spec const * , char const * , size_t ) ; uintptr_t private ; }; struct iio_event_spec { enum iio_event_type type ; enum iio_event_direction dir ; unsigned long mask_separate ; unsigned long mask_shared_by_type ; unsigned long mask_shared_by_dir ; unsigned long mask_shared_by_all ; }; struct __anonstruct_scan_type_145 { char sign ; u8 realbits ; u8 storagebits ; u8 shift ; u8 repeat ; enum iio_endian endianness ; }; struct iio_chan_spec { enum iio_chan_type type ; int channel ; int channel2 ; unsigned long address ; int scan_index ; struct __anonstruct_scan_type_145 scan_type ; long info_mask_separate ; long info_mask_shared_by_type ; long info_mask_shared_by_dir ; long info_mask_shared_by_all ; struct iio_event_spec const *event_spec ; unsigned int num_event_specs ; struct iio_chan_spec_ext_info const *ext_info ; char const *extend_name ; char const *datasheet_name ; unsigned char modified : 1 ; unsigned char indexed : 1 ; unsigned char output : 1 ; unsigned char differential : 1 ; }; struct iio_trigger; struct iio_info { struct module *driver_module ; struct attribute_group *event_attrs ; struct attribute_group const *attrs ; int (*read_raw)(struct iio_dev * , struct iio_chan_spec const * , int * , int * , long ) ; int (*read_raw_multi)(struct iio_dev * , struct iio_chan_spec const * , int , int * , int * , long ) ; int (*write_raw)(struct iio_dev * , struct iio_chan_spec const * , int , int , long ) ; int (*write_raw_get_fmt)(struct iio_dev * , struct iio_chan_spec const * , long ) ; int (*read_event_config)(struct iio_dev * , struct iio_chan_spec const * , enum iio_event_type , enum iio_event_direction ) ; int (*write_event_config)(struct iio_dev * , struct iio_chan_spec const * , enum iio_event_type , enum iio_event_direction , int ) ; int (*read_event_value)(struct iio_dev * , struct iio_chan_spec const * , enum iio_event_type , enum iio_event_direction , enum iio_event_info , int * , int * ) ; int (*write_event_value)(struct iio_dev * , struct iio_chan_spec const * , enum iio_event_type , enum iio_event_direction , enum iio_event_info , int , int ) ; int (*validate_trigger)(struct iio_dev * , struct iio_trigger * ) ; int (*update_scan_mode)(struct iio_dev * , unsigned long const * ) ; int (*debugfs_reg_access)(struct iio_dev * , unsigned int , unsigned int , unsigned int * ) ; int (*of_xlate)(struct iio_dev * , struct of_phandle_args const * ) ; }; struct iio_buffer_setup_ops { int (*preenable)(struct iio_dev * ) ; int (*postenable)(struct iio_dev * ) ; int (*predisable)(struct iio_dev * ) ; int (*postdisable)(struct iio_dev * ) ; bool (*validate_scan_mask)(struct iio_dev * , unsigned long const * ) ; }; struct iio_event_interface; struct iio_buffer; struct iio_poll_func; struct iio_dev { int id ; int modes ; int currentmode ; struct device dev ; struct iio_event_interface *event_interface ; struct iio_buffer *buffer ; struct list_head buffer_list ; int scan_bytes ; struct mutex mlock ; unsigned long const *available_scan_masks ; unsigned int masklength ; unsigned long const *active_scan_mask ; bool scan_timestamp ; unsigned int scan_index_timestamp ; struct iio_trigger *trig ; struct iio_poll_func *pollfunc ; struct iio_chan_spec const *channels ; int num_channels ; struct list_head channel_attr_list ; struct attribute_group chan_attr_group ; char const *name ; struct iio_info const *info ; struct mutex info_exist_lock ; struct iio_buffer_setup_ops const *setup_ops ; struct cdev chrdev ; struct attribute_group const *groups[7U] ; int groupcounter ; unsigned long flags ; struct dentry *debugfs_dentry ; unsigned int cached_reg_addr ; }; struct usb_ctrlrequest { __u8 bRequestType ; __u8 bRequest ; __le16 wValue ; __le16 wIndex ; __le16 wLength ; }; struct usb_device_descriptor { __u8 bLength ; __u8 bDescriptorType ; __le16 bcdUSB ; __u8 bDeviceClass ; __u8 bDeviceSubClass ; __u8 bDeviceProtocol ; __u8 bMaxPacketSize0 ; __le16 idVendor ; __le16 idProduct ; __le16 bcdDevice ; __u8 iManufacturer ; __u8 iProduct ; __u8 iSerialNumber ; __u8 bNumConfigurations ; }; struct usb_config_descriptor { __u8 bLength ; __u8 bDescriptorType ; __le16 wTotalLength ; __u8 bNumInterfaces ; __u8 bConfigurationValue ; __u8 iConfiguration ; __u8 bmAttributes ; __u8 bMaxPower ; }; struct usb_interface_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bInterfaceNumber ; __u8 bAlternateSetting ; __u8 bNumEndpoints ; __u8 bInterfaceClass ; __u8 bInterfaceSubClass ; __u8 bInterfaceProtocol ; __u8 iInterface ; }; struct usb_endpoint_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bEndpointAddress ; __u8 bmAttributes ; __le16 wMaxPacketSize ; __u8 bInterval ; __u8 bRefresh ; __u8 bSynchAddress ; }; struct usb_ss_ep_comp_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bMaxBurst ; __u8 bmAttributes ; __le16 wBytesPerInterval ; }; struct usb_interface_assoc_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bFirstInterface ; __u8 bInterfaceCount ; __u8 bFunctionClass ; __u8 bFunctionSubClass ; __u8 bFunctionProtocol ; __u8 iFunction ; }; struct usb_bos_descriptor { __u8 bLength ; __u8 bDescriptorType ; __le16 wTotalLength ; __u8 bNumDeviceCaps ; }; struct usb_ext_cap_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bDevCapabilityType ; __le32 bmAttributes ; }; struct usb_ss_cap_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bDevCapabilityType ; __u8 bmAttributes ; __le16 wSpeedSupported ; __u8 bFunctionalitySupport ; __u8 bU1devExitLat ; __le16 bU2DevExitLat ; }; struct usb_ss_container_id_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bDevCapabilityType ; __u8 bReserved ; __u8 ContainerID[16U] ; }; enum usb_device_speed { USB_SPEED_UNKNOWN = 0, USB_SPEED_LOW = 1, USB_SPEED_FULL = 2, USB_SPEED_HIGH = 3, USB_SPEED_WIRELESS = 4, USB_SPEED_SUPER = 5 } ; enum usb_device_state { USB_STATE_NOTATTACHED = 0, USB_STATE_ATTACHED = 1, USB_STATE_POWERED = 2, USB_STATE_RECONNECTING = 3, USB_STATE_UNAUTHENTICATED = 4, USB_STATE_DEFAULT = 5, USB_STATE_ADDRESS = 6, USB_STATE_CONFIGURED = 7, USB_STATE_SUSPENDED = 8 } ; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; struct exception_table_entry { int insn ; int fixup ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int in_hrtirq ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_151 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_150 { struct __anonstruct____missing_field_name_151 __annonCompField35 ; }; struct lockref { union __anonunion____missing_field_name_150 __annonCompField36 ; }; struct vfsmount; struct __anonstruct____missing_field_name_153 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_152 { struct __anonstruct____missing_field_name_153 __annonCompField37 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_152 __annonCompField38 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_154 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_154 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct mem_cgroup; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct __anonstruct____missing_field_name_156 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_155 { struct __anonstruct____missing_field_name_156 __annonCompField39 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_155 __annonCompField40 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct semaphore { raw_spinlock_t lock ; unsigned int count ; struct list_head wait_list ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct io_context; struct backing_dev_info; struct export_operations; struct iovec; struct nameidata; struct kiocb; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct cred; struct swap_info_struct; struct iov_iter; struct vm_fault; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_159 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_159 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_160 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_160 __annonCompField42 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; struct address_space; struct writeback_control; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct hd_struct; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_163 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_164 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; union __anonunion____missing_field_name_165 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_163 __annonCompField43 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_164 __annonCompField44 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_165 __annonCompField45 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_166 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_166 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_get_owner)(struct file_lock * , struct file_lock * ) ; void (*lm_put_owner)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_168 { struct list_head link ; int state ; }; union __anonunion_fl_u_167 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_168 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_167 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; void (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; int (*dentry_open)(struct dentry * , struct file * , struct cred const * ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_174 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_175 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_173 { struct __anonstruct____missing_field_name_174 __annonCompField48 ; struct __anonstruct____missing_field_name_175 __annonCompField49 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_173 __annonCompField50 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_176 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_178 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_182 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_181 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_182 __annonCompField53 ; int units ; }; struct __anonstruct____missing_field_name_180 { union __anonunion____missing_field_name_181 __annonCompField54 ; atomic_t _count ; }; union __anonunion____missing_field_name_179 { unsigned long counters ; struct __anonstruct____missing_field_name_180 __annonCompField55 ; unsigned int active ; }; struct __anonstruct____missing_field_name_177 { union __anonunion____missing_field_name_178 __annonCompField52 ; union __anonunion____missing_field_name_179 __annonCompField56 ; }; struct __anonstruct____missing_field_name_184 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_185 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_183 { struct list_head lru ; struct __anonstruct____missing_field_name_184 __annonCompField58 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_185 __annonCompField59 ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_186 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_176 __annonCompField51 ; struct __anonstruct____missing_field_name_177 __annonCompField57 ; union __anonunion____missing_field_name_183 __annonCompField60 ; union __anonunion____missing_field_name_186 __annonCompField61 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_187 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_187 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; typedef unsigned long cputime_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct user_struct; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_189 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_189 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_191 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_192 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_193 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_194 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_196 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_195 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_196 _addr_bnd ; }; struct __anonstruct__sigpoll_197 { long _band ; int _fd ; }; struct __anonstruct__sigsys_198 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_190 { int _pad[28U] ; struct __anonstruct__kill_191 _kill ; struct __anonstruct__timer_192 _timer ; struct __anonstruct__rt_193 _rt ; struct __anonstruct__sigchld_194 _sigchld ; struct __anonstruct__sigfault_195 _sigfault ; struct __anonstruct__sigpoll_197 _sigpoll ; struct __anonstruct__sigsys_198 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_190 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_203 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_204 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_206 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_205 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_206 __annonCompField66 ; }; union __anonunion_type_data_207 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_209 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_208 { union __anonunion_payload_209 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_203 __annonCompField64 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_204 __annonCompField65 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_205 __annonCompField67 ; union __anonunion_type_data_207 type_data ; union __anonunion____missing_field_name_208 __annonCompField68 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned char brk_randomized : 1 ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; }; struct usb_driver; struct wusb_dev; struct ep_device; struct usb_host_endpoint { struct usb_endpoint_descriptor desc ; struct usb_ss_ep_comp_descriptor ss_ep_comp ; struct list_head urb_list ; void *hcpriv ; struct ep_device *ep_dev ; unsigned char *extra ; int extralen ; int enabled ; int streams ; }; struct usb_host_interface { struct usb_interface_descriptor desc ; int extralen ; unsigned char *extra ; struct usb_host_endpoint *endpoint ; char *string ; }; enum usb_interface_condition { USB_INTERFACE_UNBOUND = 0, USB_INTERFACE_BINDING = 1, USB_INTERFACE_BOUND = 2, USB_INTERFACE_UNBINDING = 3 } ; struct usb_interface { struct usb_host_interface *altsetting ; struct usb_host_interface *cur_altsetting ; unsigned int num_altsetting ; struct usb_interface_assoc_descriptor *intf_assoc ; int minor ; enum usb_interface_condition condition ; unsigned char sysfs_files_created : 1 ; unsigned char ep_devs_created : 1 ; unsigned char unregistering : 1 ; unsigned char needs_remote_wakeup : 1 ; unsigned char needs_altsetting0 : 1 ; unsigned char needs_binding : 1 ; unsigned char resetting_device : 1 ; struct device dev ; struct device *usb_dev ; atomic_t pm_usage_cnt ; struct work_struct reset_ws ; }; struct usb_interface_cache { unsigned int num_altsetting ; struct kref ref ; struct usb_host_interface altsetting[0U] ; }; struct usb_host_config { struct usb_config_descriptor desc ; char *string ; struct usb_interface_assoc_descriptor *intf_assoc[16U] ; struct usb_interface *interface[32U] ; struct usb_interface_cache *intf_cache[32U] ; unsigned char *extra ; int extralen ; }; struct usb_host_bos { struct usb_bos_descriptor *desc ; struct usb_ext_cap_descriptor *ext_cap ; struct usb_ss_cap_descriptor *ss_cap ; struct usb_ss_container_id_descriptor *ss_id ; }; struct usb_devmap { unsigned long devicemap[2U] ; }; struct mon_bus; struct usb_bus { struct device *controller ; int busnum ; char const *bus_name ; u8 uses_dma ; u8 uses_pio_for_control ; u8 otg_port ; unsigned char is_b_host : 1 ; unsigned char b_hnp_enable : 1 ; unsigned char no_stop_on_short : 1 ; unsigned char no_sg_constraint : 1 ; unsigned int sg_tablesize ; int devnum_next ; struct usb_devmap devmap ; struct usb_device *root_hub ; struct usb_bus *hs_companion ; struct list_head bus_list ; struct mutex usb_address0_mutex ; int bandwidth_allocated ; int bandwidth_int_reqs ; int bandwidth_isoc_reqs ; unsigned int resuming_ports ; struct mon_bus *mon_bus ; int monitored ; }; struct usb_tt; enum usb_device_removable { USB_DEVICE_REMOVABLE_UNKNOWN = 0, USB_DEVICE_REMOVABLE = 1, USB_DEVICE_FIXED = 2 } ; struct usb2_lpm_parameters { unsigned int besl ; int timeout ; }; struct usb3_lpm_parameters { unsigned int mel ; unsigned int pel ; unsigned int sel ; int timeout ; }; struct usb_device { int devnum ; char devpath[16U] ; u32 route ; enum usb_device_state state ; enum usb_device_speed speed ; struct usb_tt *tt ; int ttport ; unsigned int toggle[2U] ; struct usb_device *parent ; struct usb_bus *bus ; struct usb_host_endpoint ep0 ; struct device dev ; struct usb_device_descriptor descriptor ; struct usb_host_bos *bos ; struct usb_host_config *config ; struct usb_host_config *actconfig ; struct usb_host_endpoint *ep_in[16U] ; struct usb_host_endpoint *ep_out[16U] ; char **rawdescriptors ; unsigned short bus_mA ; u8 portnum ; u8 level ; unsigned char can_submit : 1 ; unsigned char persist_enabled : 1 ; unsigned char have_langid : 1 ; unsigned char authorized : 1 ; unsigned char authenticated : 1 ; unsigned char wusb : 1 ; unsigned char lpm_capable : 1 ; unsigned char usb2_hw_lpm_capable : 1 ; unsigned char usb2_hw_lpm_besl_capable : 1 ; unsigned char usb2_hw_lpm_enabled : 1 ; unsigned char usb2_hw_lpm_allowed : 1 ; unsigned char usb3_lpm_enabled : 1 ; int string_langid ; char *product ; char *manufacturer ; char *serial ; struct list_head filelist ; int maxchild ; u32 quirks ; atomic_t urbnum ; unsigned long active_duration ; unsigned long connect_time ; unsigned char do_remote_wakeup : 1 ; unsigned char reset_resume : 1 ; unsigned char port_is_suspended : 1 ; struct wusb_dev *wusb_dev ; int slot_id ; enum usb_device_removable removable ; struct usb2_lpm_parameters l1_params ; struct usb3_lpm_parameters u1_params ; struct usb3_lpm_parameters u2_params ; unsigned int lpm_disable_count ; }; struct usb_dynids { spinlock_t lock ; struct list_head list ; }; struct usbdrv_wrap { struct device_driver driver ; int for_devices ; }; struct usb_driver { char const *name ; int (*probe)(struct usb_interface * , struct usb_device_id const * ) ; void (*disconnect)(struct usb_interface * ) ; int (*unlocked_ioctl)(struct usb_interface * , unsigned int , void * ) ; int (*suspend)(struct usb_interface * , pm_message_t ) ; int (*resume)(struct usb_interface * ) ; int (*reset_resume)(struct usb_interface * ) ; int (*pre_reset)(struct usb_interface * ) ; int (*post_reset)(struct usb_interface * ) ; struct usb_device_id const *id_table ; struct usb_dynids dynids ; struct usbdrv_wrap drvwrap ; unsigned char no_dynamic_id : 1 ; unsigned char supports_autosuspend : 1 ; unsigned char disable_hub_initiated_lpm : 1 ; unsigned char soft_unbind : 1 ; }; struct usb_iso_packet_descriptor { unsigned int offset ; unsigned int length ; unsigned int actual_length ; int status ; }; struct usb_anchor { struct list_head urb_list ; wait_queue_head_t wait ; spinlock_t lock ; atomic_t suspend_wakeups ; unsigned char poisoned : 1 ; }; struct scatterlist; struct urb { struct kref kref ; void *hcpriv ; atomic_t use_count ; atomic_t reject ; int unlinked ; struct list_head urb_list ; struct list_head anchor_list ; struct usb_anchor *anchor ; struct usb_device *dev ; struct usb_host_endpoint *ep ; unsigned int pipe ; unsigned int stream_id ; int status ; unsigned int transfer_flags ; void *transfer_buffer ; dma_addr_t transfer_dma ; struct scatterlist *sg ; int num_mapped_sgs ; int num_sgs ; u32 transfer_buffer_length ; u32 actual_length ; unsigned char *setup_packet ; dma_addr_t setup_dma ; int start_frame ; int number_of_packets ; int interval ; int error_count ; void *context ; void (*complete)(struct urb * ) ; struct usb_iso_packet_descriptor iso_frame_desc[0U] ; }; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *cow_page ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; struct page *(*find_special_page)(struct vm_area_struct * , unsigned long ) ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_216 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_216 __annonCompField70 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct input_id { __u16 bustype ; __u16 vendor ; __u16 product ; __u16 version ; }; struct input_absinfo { __s32 value ; __s32 minimum ; __s32 maximum ; __s32 fuzz ; __s32 flat ; __s32 resolution ; }; struct input_keymap_entry { __u8 flags ; __u8 len ; __u16 index ; __u32 keycode ; __u8 scancode[32U] ; }; struct ff_replay { __u16 length ; __u16 delay ; }; struct ff_trigger { __u16 button ; __u16 interval ; }; struct ff_envelope { __u16 attack_length ; __u16 attack_level ; __u16 fade_length ; __u16 fade_level ; }; struct ff_constant_effect { __s16 level ; struct ff_envelope envelope ; }; struct ff_ramp_effect { __s16 start_level ; __s16 end_level ; struct ff_envelope envelope ; }; struct ff_condition_effect { __u16 right_saturation ; __u16 left_saturation ; __s16 right_coeff ; __s16 left_coeff ; __u16 deadband ; __s16 center ; }; struct ff_periodic_effect { __u16 waveform ; __u16 period ; __s16 magnitude ; __s16 offset ; __u16 phase ; struct ff_envelope envelope ; __u32 custom_len ; __s16 *custom_data ; }; struct ff_rumble_effect { __u16 strong_magnitude ; __u16 weak_magnitude ; }; union __anonunion_u_219 { struct ff_constant_effect constant ; struct ff_ramp_effect ramp ; struct ff_periodic_effect periodic ; struct ff_condition_effect condition[2U] ; struct ff_rumble_effect rumble ; }; struct ff_effect { __u16 type ; __s16 id ; __u16 direction ; struct ff_trigger trigger ; struct ff_replay replay ; union __anonunion_u_219 u ; }; struct input_value { __u16 type ; __u16 code ; __s32 value ; }; struct ff_device; struct input_mt; struct input_handle; struct input_dev { char const *name ; char const *phys ; char const *uniq ; struct input_id id ; unsigned long propbit[1U] ; unsigned long evbit[1U] ; unsigned long keybit[12U] ; unsigned long relbit[1U] ; unsigned long absbit[1U] ; unsigned long mscbit[1U] ; unsigned long ledbit[1U] ; unsigned long sndbit[1U] ; unsigned long ffbit[2U] ; unsigned long swbit[1U] ; unsigned int hint_events_per_packet ; unsigned int keycodemax ; unsigned int keycodesize ; void *keycode ; int (*setkeycode)(struct input_dev * , struct input_keymap_entry const * , unsigned int * ) ; int (*getkeycode)(struct input_dev * , struct input_keymap_entry * ) ; struct ff_device *ff ; unsigned int repeat_key ; struct timer_list timer ; int rep[2U] ; struct input_mt *mt ; struct input_absinfo *absinfo ; unsigned long key[12U] ; unsigned long led[1U] ; unsigned long snd[1U] ; unsigned long sw[1U] ; int (*open)(struct input_dev * ) ; void (*close)(struct input_dev * ) ; int (*flush)(struct input_dev * , struct file * ) ; int (*event)(struct input_dev * , unsigned int , unsigned int , int ) ; struct input_handle *grab ; spinlock_t event_lock ; struct mutex mutex ; unsigned int users ; bool going_away ; struct device dev ; struct list_head h_list ; struct list_head node ; unsigned int num_vals ; unsigned int max_vals ; struct input_value *vals ; bool devres_managed ; }; struct input_handler { void *private ; void (*event)(struct input_handle * , unsigned int , unsigned int , int ) ; void (*events)(struct input_handle * , struct input_value const * , unsigned int ) ; bool (*filter)(struct input_handle * , unsigned int , unsigned int , int ) ; bool (*match)(struct input_handler * , struct input_dev * ) ; int (*connect)(struct input_handler * , struct input_dev * , struct input_device_id const * ) ; void (*disconnect)(struct input_handle * ) ; void (*start)(struct input_handle * ) ; bool legacy_minors ; int minor ; char const *name ; struct input_device_id const *id_table ; struct list_head h_list ; struct list_head node ; }; struct input_handle { void *private ; int open ; char const *name ; struct input_dev *dev ; struct input_handler *handler ; struct list_head d_node ; struct list_head h_node ; }; struct ff_device { int (*upload)(struct input_dev * , struct ff_effect * , struct ff_effect * ) ; int (*erase)(struct input_dev * , int ) ; int (*playback)(struct input_dev * , int , int ) ; void (*set_gain)(struct input_dev * , u16 ) ; void (*set_autocenter)(struct input_dev * , u16 ) ; void (*destroy)(struct ff_device * ) ; void *private ; unsigned long ffbit[2U] ; struct mutex mutex ; int max_effects ; struct ff_effect *effects ; struct file *effect_owners[] ; }; enum led_brightness { LED_OFF = 0, LED_HALF = 127, LED_FULL = 255 } ; struct led_trigger; struct led_classdev { char const *name ; enum led_brightness brightness ; enum led_brightness max_brightness ; int flags ; void (*brightness_set)(struct led_classdev * , enum led_brightness ) ; int (*brightness_set_sync)(struct led_classdev * , enum led_brightness ) ; enum led_brightness (*brightness_get)(struct led_classdev * ) ; int (*blink_set)(struct led_classdev * , unsigned long * , unsigned long * ) ; struct device *dev ; struct attribute_group const **groups ; struct list_head node ; char const *default_trigger ; unsigned long blink_delay_on ; unsigned long blink_delay_off ; struct timer_list blink_timer ; int blink_brightness ; void (*flash_resume)(struct led_classdev * ) ; struct work_struct set_brightness_work ; int delayed_set_value ; struct rw_semaphore trigger_lock ; struct led_trigger *trigger ; struct list_head trig_list ; void *trigger_data ; bool activated ; struct mutex led_access ; }; struct led_trigger { char const *name ; void (*activate)(struct led_classdev * ) ; void (*deactivate)(struct led_classdev * ) ; rwlock_t leddev_list_lock ; struct list_head led_cdevs ; struct list_head next_trig ; }; enum power_supply_property { POWER_SUPPLY_PROP_STATUS = 0, POWER_SUPPLY_PROP_CHARGE_TYPE = 1, POWER_SUPPLY_PROP_HEALTH = 2, POWER_SUPPLY_PROP_PRESENT = 3, POWER_SUPPLY_PROP_ONLINE = 4, POWER_SUPPLY_PROP_AUTHENTIC = 5, POWER_SUPPLY_PROP_TECHNOLOGY = 6, POWER_SUPPLY_PROP_CYCLE_COUNT = 7, POWER_SUPPLY_PROP_VOLTAGE_MAX = 8, POWER_SUPPLY_PROP_VOLTAGE_MIN = 9, POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN = 10, POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN = 11, POWER_SUPPLY_PROP_VOLTAGE_NOW = 12, POWER_SUPPLY_PROP_VOLTAGE_AVG = 13, POWER_SUPPLY_PROP_VOLTAGE_OCV = 14, POWER_SUPPLY_PROP_VOLTAGE_BOOT = 15, POWER_SUPPLY_PROP_CURRENT_MAX = 16, POWER_SUPPLY_PROP_CURRENT_NOW = 17, POWER_SUPPLY_PROP_CURRENT_AVG = 18, POWER_SUPPLY_PROP_CURRENT_BOOT = 19, POWER_SUPPLY_PROP_POWER_NOW = 20, POWER_SUPPLY_PROP_POWER_AVG = 21, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN = 22, POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN = 23, POWER_SUPPLY_PROP_CHARGE_FULL = 24, POWER_SUPPLY_PROP_CHARGE_EMPTY = 25, POWER_SUPPLY_PROP_CHARGE_NOW = 26, POWER_SUPPLY_PROP_CHARGE_AVG = 27, POWER_SUPPLY_PROP_CHARGE_COUNTER = 28, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT = 29, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX = 30, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE = 31, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX = 32, POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT = 33, POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX = 34, POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT = 35, POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN = 36, POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN = 37, POWER_SUPPLY_PROP_ENERGY_FULL = 38, POWER_SUPPLY_PROP_ENERGY_EMPTY = 39, POWER_SUPPLY_PROP_ENERGY_NOW = 40, POWER_SUPPLY_PROP_ENERGY_AVG = 41, POWER_SUPPLY_PROP_CAPACITY = 42, POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN = 43, POWER_SUPPLY_PROP_CAPACITY_ALERT_MAX = 44, POWER_SUPPLY_PROP_CAPACITY_LEVEL = 45, POWER_SUPPLY_PROP_TEMP = 46, POWER_SUPPLY_PROP_TEMP_MAX = 47, POWER_SUPPLY_PROP_TEMP_MIN = 48, POWER_SUPPLY_PROP_TEMP_ALERT_MIN = 49, POWER_SUPPLY_PROP_TEMP_ALERT_MAX = 50, POWER_SUPPLY_PROP_TEMP_AMBIENT = 51, POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN = 52, POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX = 53, POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW = 54, POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG = 55, POWER_SUPPLY_PROP_TIME_TO_FULL_NOW = 56, POWER_SUPPLY_PROP_TIME_TO_FULL_AVG = 57, POWER_SUPPLY_PROP_TYPE = 58, POWER_SUPPLY_PROP_SCOPE = 59, POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT = 60, POWER_SUPPLY_PROP_CALIBRATE = 61, POWER_SUPPLY_PROP_MODEL_NAME = 62, POWER_SUPPLY_PROP_MANUFACTURER = 63, POWER_SUPPLY_PROP_SERIAL_NUMBER = 64 } ; enum power_supply_type { POWER_SUPPLY_TYPE_UNKNOWN = 0, POWER_SUPPLY_TYPE_BATTERY = 1, POWER_SUPPLY_TYPE_UPS = 2, POWER_SUPPLY_TYPE_MAINS = 3, POWER_SUPPLY_TYPE_USB = 4, POWER_SUPPLY_TYPE_USB_DCP = 5, POWER_SUPPLY_TYPE_USB_CDP = 6, POWER_SUPPLY_TYPE_USB_ACA = 7 } ; union power_supply_propval { int intval ; char const *strval ; }; struct power_supply { char const *name ; enum power_supply_type type ; enum power_supply_property *properties ; size_t num_properties ; char **supplied_to ; size_t num_supplicants ; char **supplied_from ; size_t num_supplies ; struct device_node *of_node ; int (*get_property)(struct power_supply * , enum power_supply_property , union power_supply_propval * ) ; int (*set_property)(struct power_supply * , enum power_supply_property , union power_supply_propval const * ) ; int (*property_is_writeable)(struct power_supply * , enum power_supply_property ) ; void (*external_power_changed)(struct power_supply * ) ; void (*set_charged)(struct power_supply * ) ; bool no_thermal ; int use_for_apm ; struct device *dev ; struct work_struct changed_work ; spinlock_t changed_lock ; bool changed ; struct led_trigger *charging_full_trig ; char *charging_full_trig_name ; struct led_trigger *charging_trig ; char *charging_trig_name ; struct led_trigger *full_trig ; char *full_trig_name ; struct led_trigger *online_trig ; char *online_trig_name ; struct led_trigger *charging_blink_full_solid_trig ; char *charging_blink_full_solid_trig_name ; }; struct hid_collection { unsigned int type ; unsigned int usage ; unsigned int level ; }; struct hid_usage { unsigned int hid ; unsigned int collection_index ; unsigned int usage_index ; __u16 code ; __u8 type ; __s8 hat_min ; __s8 hat_max ; __s8 hat_dir ; }; struct hid_input; struct hid_report; struct hid_field { unsigned int physical ; unsigned int logical ; unsigned int application ; struct hid_usage *usage ; unsigned int maxusage ; unsigned int flags ; unsigned int report_offset ; unsigned int report_size ; unsigned int report_count ; unsigned int report_type ; __s32 *value ; __s32 logical_minimum ; __s32 logical_maximum ; __s32 physical_minimum ; __s32 physical_maximum ; __s32 unit_exponent ; unsigned int unit ; struct hid_report *report ; unsigned int index ; struct hid_input *hidinput ; __u16 dpad ; }; struct hid_device; struct hid_report { struct list_head list ; unsigned int id ; unsigned int type ; struct hid_field *field[256U] ; unsigned int maxfield ; unsigned int size ; struct hid_device *device ; }; struct hid_report_enum { unsigned int numbered ; struct list_head report_list ; struct hid_report *report_id_hash[256U] ; }; struct hid_control_fifo { unsigned char dir ; struct hid_report *report ; char *raw_report ; }; struct hid_output_fifo { struct hid_report *report ; char *raw_report ; }; struct hid_input { struct list_head list ; struct hid_report *report ; struct input_dev *input ; }; enum hid_type { HID_TYPE_OTHER = 0, HID_TYPE_USBMOUSE = 1, HID_TYPE_USBNONE = 2 } ; struct hid_driver; struct hid_ll_driver; struct hid_device { __u8 *dev_rdesc ; unsigned int dev_rsize ; __u8 *rdesc ; unsigned int rsize ; struct hid_collection *collection ; unsigned int collection_size ; unsigned int maxcollection ; unsigned int maxapplication ; __u16 bus ; __u16 group ; __u32 vendor ; __u32 product ; __u32 version ; enum hid_type type ; unsigned int country ; struct hid_report_enum report_enum[3U] ; struct work_struct led_work ; struct semaphore driver_lock ; struct semaphore driver_input_lock ; struct device dev ; struct hid_driver *driver ; struct hid_ll_driver *ll_driver ; struct power_supply battery ; __s32 battery_min ; __s32 battery_max ; __s32 battery_report_type ; __s32 battery_report_id ; unsigned int status ; unsigned int claimed ; unsigned int quirks ; bool io_started ; struct list_head inputs ; void *hiddev ; void *hidraw ; int minor ; int open ; char name[128U] ; char phys[64U] ; char uniq[64U] ; void *driver_data ; int (*ff_init)(struct hid_device * ) ; int (*hiddev_connect)(struct hid_device * , unsigned int ) ; void (*hiddev_disconnect)(struct hid_device * ) ; void (*hiddev_hid_event)(struct hid_device * , struct hid_field * , struct hid_usage * , __s32 ) ; void (*hiddev_report_event)(struct hid_device * , struct hid_report * ) ; unsigned short debug ; struct dentry *debug_dir ; struct dentry *debug_rdesc ; struct dentry *debug_events ; struct list_head debug_list ; spinlock_t debug_list_lock ; wait_queue_head_t debug_wait ; }; struct hid_class_descriptor { __u8 bDescriptorType ; __le16 wDescriptorLength ; }; struct hid_descriptor { __u8 bLength ; __u8 bDescriptorType ; __le16 bcdHID ; __u8 bCountryCode ; __u8 bNumDescriptors ; struct hid_class_descriptor desc[1U] ; }; struct hid_report_id { __u32 report_type ; }; struct hid_usage_id { __u32 usage_hid ; __u32 usage_type ; __u32 usage_code ; }; struct hid_driver { char *name ; struct hid_device_id const *id_table ; struct list_head dyn_list ; spinlock_t dyn_lock ; int (*probe)(struct hid_device * , struct hid_device_id const * ) ; void (*remove)(struct hid_device * ) ; struct hid_report_id const *report_table ; int (*raw_event)(struct hid_device * , struct hid_report * , u8 * , int ) ; struct hid_usage_id const *usage_table ; int (*event)(struct hid_device * , struct hid_field * , struct hid_usage * , __s32 ) ; void (*report)(struct hid_device * , struct hid_report * ) ; __u8 *(*report_fixup)(struct hid_device * , __u8 * , unsigned int * ) ; int (*input_mapping)(struct hid_device * , struct hid_input * , struct hid_field * , struct hid_usage * , unsigned long ** , int * ) ; int (*input_mapped)(struct hid_device * , struct hid_input * , struct hid_field * , struct hid_usage * , unsigned long ** , int * ) ; void (*input_configured)(struct hid_device * , struct hid_input * ) ; void (*feature_mapping)(struct hid_device * , struct hid_field * , struct hid_usage * ) ; int (*suspend)(struct hid_device * , pm_message_t ) ; int (*resume)(struct hid_device * ) ; int (*reset_resume)(struct hid_device * ) ; struct device_driver driver ; }; struct hid_ll_driver { int (*start)(struct hid_device * ) ; void (*stop)(struct hid_device * ) ; int (*open)(struct hid_device * ) ; void (*close)(struct hid_device * ) ; int (*power)(struct hid_device * , int ) ; int (*parse)(struct hid_device * ) ; void (*request)(struct hid_device * , struct hid_report * , int ) ; int (*wait)(struct hid_device * ) ; int (*raw_request)(struct hid_device * , unsigned char , __u8 * , size_t , unsigned char , int ) ; int (*output_report)(struct hid_device * , __u8 * , size_t ) ; int (*idle)(struct hid_device * , int , int , int ) ; }; struct usbhid_device { struct hid_device *hid ; struct usb_interface *intf ; int ifnum ; unsigned int bufsize ; struct urb *urbin ; char *inbuf ; dma_addr_t inbuf_dma ; struct urb *urbctrl ; struct usb_ctrlrequest *cr ; struct hid_control_fifo ctrl[256U] ; unsigned char ctrlhead ; unsigned char ctrltail ; char *ctrlbuf ; dma_addr_t ctrlbuf_dma ; unsigned long last_ctrl ; struct urb *urbout ; struct hid_output_fifo out[256U] ; unsigned char outhead ; unsigned char outtail ; char *outbuf ; dma_addr_t outbuf_dma ; unsigned long last_out ; spinlock_t lock ; unsigned long iofl ; struct timer_list io_retry ; unsigned long stop_retry ; unsigned int retry_delay ; struct work_struct reset_work ; wait_queue_head_t wait ; }; struct ldv_struct_EMGentry_10 { int signal_pending ; }; struct ldv_struct_timer_instance_3 { struct timer_list *arg0 ; int signal_pending ; }; struct ldv_struct_usb_instance_4 { struct usb_driver *arg0 ; int signal_pending ; }; typedef int ldv_func_ret_type___0; typedef int ldv_func_ret_type___1; typedef int ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; enum hrtimer_restart; struct hid_blacklist { __u16 idVendor ; __u16 idProduct ; __u32 quirks ; }; struct quirks_list_struct { struct hid_blacklist hid_bl_item ; struct list_head node ; }; struct exec_domain; struct map_segment; struct exec_domain { char const *name ; void (*handler)(int , struct pt_regs * ) ; unsigned char pers_low ; unsigned char pers_high ; unsigned long *signal_map ; unsigned long *signal_invmap ; struct map_segment *err_map ; struct map_segment *socktype_map ; struct map_segment *sockopt_map ; struct map_segment *af_map ; struct module *module ; struct exec_domain *next ; }; struct __anonstruct_mm_segment_t_25 { unsigned long seg ; }; typedef struct __anonstruct_mm_segment_t_25 mm_segment_t; struct thread_info { struct task_struct *task ; struct exec_domain *exec_domain ; __u32 flags ; __u32 status ; __u32 cpu ; int saved_preempt_count ; mm_segment_t addr_limit ; void *sysenter_return ; unsigned char sig_on_uaccess_error : 1 ; unsigned char uaccess_err : 1 ; }; enum hrtimer_restart; struct bio_vec; struct bio_vec { struct page *bv_page ; unsigned int bv_len ; unsigned int bv_offset ; }; struct usb_class_driver { char *name ; char *(*devnode)(struct device * , umode_t * ) ; struct file_operations const *fops ; int minor_base ; }; struct kvec; struct pollfd { int fd ; short events ; short revents ; }; struct poll_table_struct { void (*_qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long _key ; }; typedef struct poll_table_struct poll_table; struct hiddev_event { unsigned int hid ; int value ; }; struct hiddev_devinfo { __u32 bustype ; __u32 busnum ; __u32 devnum ; __u32 ifnum ; __s16 vendor ; __s16 product ; __s16 version ; __u32 num_applications ; }; struct hiddev_collection_info { __u32 index ; __u32 type ; __u32 usage ; __u32 level ; }; struct hiddev_report_info { __u32 report_type ; __u32 report_id ; __u32 num_fields ; }; struct hiddev_field_info { __u32 report_type ; __u32 report_id ; __u32 field_index ; __u32 maxusage ; __u32 flags ; __u32 physical ; __u32 logical ; __u32 application ; __s32 logical_minimum ; __s32 logical_maximum ; __s32 physical_minimum ; __s32 physical_maximum ; __u32 unit_exponent ; __u32 unit ; }; struct hiddev_usage_ref { __u32 report_type ; __u32 report_id ; __u32 field_index ; __u32 usage_index ; __u32 usage_code ; __s32 value ; }; struct hiddev_usage_ref_multi { struct hiddev_usage_ref uref ; __u32 num_values ; __s32 values[1024U] ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct kvec { void *iov_base ; size_t iov_len ; }; union __anonunion____missing_field_name_222 { struct iovec const *iov ; struct kvec const *kvec ; struct bio_vec const *bvec ; }; struct iov_iter { int type ; size_t iov_offset ; size_t count ; union __anonunion____missing_field_name_222 __annonCompField73 ; unsigned long nr_segs ; }; typedef s32 compat_time_t; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_timespec { compat_time_t tv_sec ; s32 tv_nsec ; }; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; struct hiddev { int exist ; int open ; struct mutex existancelock ; wait_queue_head_t wait ; struct hid_device *hid ; struct list_head list ; spinlock_t list_lock ; }; struct hiddev_list { struct hiddev_usage_ref buffer[2048U] ; int head ; int tail ; unsigned int flags ; struct fasync_struct *fasync ; struct hiddev *hiddev ; struct list_head node ; struct mutex thread_lock ; }; typedef short s16; enum hrtimer_restart; struct pidff_usage { struct hid_field *field ; s32 *value ; }; struct pidff_device { struct hid_device *hid ; struct hid_report *reports[13U] ; struct pidff_usage set_effect[7U] ; struct pidff_usage set_envelope[5U] ; struct pidff_usage set_condition[8U] ; struct pidff_usage set_periodic[5U] ; struct pidff_usage set_constant[2U] ; struct pidff_usage set_ramp[3U] ; struct pidff_usage device_gain[1U] ; struct pidff_usage block_load[2U] ; struct pidff_usage pool[3U] ; struct pidff_usage effect_operation[2U] ; struct pidff_usage block_free[1U] ; struct hid_field *create_new_effect_type ; struct hid_field *set_effect_type ; struct hid_field *effect_direction ; struct hid_field *device_control ; struct hid_field *block_load_status ; struct hid_field *effect_operation_status ; int control_id[2U] ; int type_id[11U] ; int status_id[2U] ; int operation_id[2U] ; int pid_id[64U] ; }; struct request; struct device_private { void *driver_data ; }; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; struct kthread_worker *worker ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; struct dma_chan; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool (*can_dma)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool idling ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; bool cur_msg_mapped ; struct completion xfer_completion ; size_t max_dma_len ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; struct dma_chan *dma_tx ; struct dma_chan *dma_rx ; void *dummy_rx ; void *dummy_tx ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; struct sg_table tx_sg ; struct sg_table rx_sg ; unsigned char cs_change : 1 ; unsigned char tx_nbits : 3 ; unsigned char rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned char is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; struct notifier_block; enum hrtimer_restart; struct ratelimit_state { raw_spinlock_t lock ; int interval ; int burst ; int printed ; int missed ; unsigned long begin ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; typedef unsigned int mmc_pm_flag_t; struct mmc_card; struct sdio_func; typedef void sdio_irq_handler_t(struct sdio_func * ); struct sdio_func_tuple { struct sdio_func_tuple *next ; unsigned char code ; unsigned char size ; unsigned char data[0U] ; }; struct sdio_func { struct mmc_card *card ; struct device dev ; sdio_irq_handler_t *irq_handler ; unsigned int num ; unsigned char class ; unsigned short vendor ; unsigned short device ; unsigned int max_blksize ; unsigned int cur_blksize ; unsigned int enable_timeout ; unsigned int state ; u8 tmpbuf[4U] ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; }; struct fault_attr { unsigned long probability ; unsigned long interval ; atomic_t times ; atomic_t space ; unsigned long verbose ; u32 task_filter ; unsigned long stacktrace_depth ; unsigned long require_start ; unsigned long require_end ; unsigned long reject_start ; unsigned long reject_end ; unsigned long count ; struct ratelimit_state ratelimit_state ; struct dentry *dname ; }; struct mmc_data; struct mmc_request; struct mmc_command { u32 opcode ; u32 arg ; u32 resp[4U] ; unsigned int flags ; unsigned int retries ; unsigned int error ; unsigned int busy_timeout ; bool sanitize_busy ; struct mmc_data *data ; struct mmc_request *mrq ; }; struct mmc_data { unsigned int timeout_ns ; unsigned int timeout_clks ; unsigned int blksz ; unsigned int blocks ; unsigned int error ; unsigned int flags ; unsigned int bytes_xfered ; struct mmc_command *stop ; struct mmc_request *mrq ; unsigned int sg_len ; struct scatterlist *sg ; s32 host_cookie ; }; struct mmc_host; struct mmc_request { struct mmc_command *sbc ; struct mmc_command *cmd ; struct mmc_data *data ; struct mmc_command *stop ; struct completion completion ; void (*done)(struct mmc_request * ) ; struct mmc_host *host ; }; struct mmc_async_req; struct mmc_cid { unsigned int manfid ; char prod_name[8U] ; unsigned char prv ; unsigned int serial ; unsigned short oemid ; unsigned short year ; unsigned char hwrev ; unsigned char fwrev ; unsigned char month ; }; struct mmc_csd { unsigned char structure ; unsigned char mmca_vsn ; unsigned short cmdclass ; unsigned short tacc_clks ; unsigned int tacc_ns ; unsigned int c_size ; unsigned int r2w_factor ; unsigned int max_dtr ; unsigned int erase_size ; unsigned int read_blkbits ; unsigned int write_blkbits ; unsigned int capacity ; unsigned char read_partial : 1 ; unsigned char read_misalign : 1 ; unsigned char write_partial : 1 ; unsigned char write_misalign : 1 ; unsigned char dsr_imp : 1 ; }; struct mmc_ext_csd { u8 rev ; u8 erase_group_def ; u8 sec_feature_support ; u8 rel_sectors ; u8 rel_param ; u8 part_config ; u8 cache_ctrl ; u8 rst_n_function ; u8 max_packed_writes ; u8 max_packed_reads ; u8 packed_event_en ; unsigned int part_time ; unsigned int sa_timeout ; unsigned int generic_cmd6_time ; unsigned int power_off_longtime ; u8 power_off_notification ; unsigned int hs_max_dtr ; unsigned int hs200_max_dtr ; unsigned int sectors ; unsigned int hc_erase_size ; unsigned int hc_erase_timeout ; unsigned int sec_trim_mult ; unsigned int sec_erase_mult ; unsigned int trim_timeout ; bool partition_setting_completed ; unsigned long long enhanced_area_offset ; unsigned int enhanced_area_size ; unsigned int cache_size ; bool hpi_en ; bool hpi ; unsigned int hpi_cmd ; bool bkops ; bool man_bkops_en ; unsigned int data_sector_size ; unsigned int data_tag_unit_size ; unsigned int boot_ro_lock ; bool boot_ro_lockable ; bool ffu_capable ; u8 fwrev[8U] ; u8 raw_exception_status ; u8 raw_partition_support ; u8 raw_rpmb_size_mult ; u8 raw_erased_mem_count ; u8 raw_ext_csd_structure ; u8 raw_card_type ; u8 out_of_int_time ; u8 raw_pwr_cl_52_195 ; u8 raw_pwr_cl_26_195 ; u8 raw_pwr_cl_52_360 ; u8 raw_pwr_cl_26_360 ; u8 raw_s_a_timeout ; u8 raw_hc_erase_gap_size ; u8 raw_erase_timeout_mult ; u8 raw_hc_erase_grp_size ; u8 raw_sec_trim_mult ; u8 raw_sec_erase_mult ; u8 raw_sec_feature_support ; u8 raw_trim_mult ; u8 raw_pwr_cl_200_195 ; u8 raw_pwr_cl_200_360 ; u8 raw_pwr_cl_ddr_52_195 ; u8 raw_pwr_cl_ddr_52_360 ; u8 raw_pwr_cl_ddr_200_360 ; u8 raw_bkops_status ; u8 raw_sectors[4U] ; unsigned int feature_support ; }; struct sd_scr { unsigned char sda_vsn ; unsigned char sda_spec3 ; unsigned char bus_widths ; unsigned char cmds ; }; struct sd_ssr { unsigned int au ; unsigned int erase_timeout ; unsigned int erase_offset ; }; struct sd_switch_caps { unsigned int hs_max_dtr ; unsigned int uhs_max_dtr ; unsigned int sd3_bus_mode ; unsigned int sd3_drv_type ; unsigned int sd3_curr_limit ; }; struct sdio_cccr { unsigned int sdio_vsn ; unsigned int sd_vsn ; unsigned char multi_block : 1 ; unsigned char low_speed : 1 ; unsigned char wide_bus : 1 ; unsigned char high_power : 1 ; unsigned char high_speed : 1 ; unsigned char disable_cd : 1 ; }; struct sdio_cis { unsigned short vendor ; unsigned short device ; unsigned short blksize ; unsigned int max_dtr ; }; struct mmc_ios; struct mmc_part { unsigned int size ; unsigned int part_cfg ; char name[20U] ; bool force_ro ; unsigned int area_type ; }; struct mmc_card { struct mmc_host *host ; struct device dev ; u32 ocr ; unsigned int rca ; unsigned int type ; unsigned int state ; unsigned int quirks ; unsigned int erase_size ; unsigned int erase_shift ; unsigned int pref_erase ; u8 erased_byte ; u32 raw_cid[4U] ; u32 raw_csd[4U] ; u32 raw_scr[2U] ; struct mmc_cid cid ; struct mmc_csd csd ; struct mmc_ext_csd ext_csd ; struct sd_scr scr ; struct sd_ssr ssr ; struct sd_switch_caps sw_caps ; unsigned int sdio_funcs ; struct sdio_cccr cccr ; struct sdio_cis cis ; struct sdio_func *sdio_func[7U] ; struct sdio_func *sdio_single_irq ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; unsigned int sd_bus_speed ; unsigned int mmc_avail_type ; struct dentry *debugfs_root ; struct mmc_part part[7U] ; unsigned int nr_parts ; }; struct mmc_ios { unsigned int clock ; unsigned short vdd ; unsigned char bus_mode ; unsigned char chip_select ; unsigned char power_mode ; unsigned char bus_width ; unsigned char timing ; unsigned char signal_voltage ; unsigned char drv_type ; }; struct mmc_host_ops { int (*enable)(struct mmc_host * ) ; int (*disable)(struct mmc_host * ) ; void (*post_req)(struct mmc_host * , struct mmc_request * , int ) ; void (*pre_req)(struct mmc_host * , struct mmc_request * , bool ) ; void (*request)(struct mmc_host * , struct mmc_request * ) ; void (*set_ios)(struct mmc_host * , struct mmc_ios * ) ; int (*get_ro)(struct mmc_host * ) ; int (*get_cd)(struct mmc_host * ) ; void (*enable_sdio_irq)(struct mmc_host * , int ) ; void (*init_card)(struct mmc_host * , struct mmc_card * ) ; int (*start_signal_voltage_switch)(struct mmc_host * , struct mmc_ios * ) ; int (*card_busy)(struct mmc_host * ) ; int (*execute_tuning)(struct mmc_host * , u32 ) ; int (*prepare_hs400_tuning)(struct mmc_host * , struct mmc_ios * ) ; int (*select_drive_strength)(unsigned int , int , int ) ; void (*hw_reset)(struct mmc_host * ) ; void (*card_event)(struct mmc_host * ) ; int (*multi_io_quirk)(struct mmc_card * , unsigned int , int ) ; }; struct mmc_async_req { struct mmc_request *mrq ; int (*err_check)(struct mmc_card * , struct mmc_async_req * ) ; }; struct mmc_slot { int cd_irq ; void *handler_priv ; }; struct mmc_context_info { bool is_done_rcv ; bool is_new_req ; bool is_waiting_last_req ; wait_queue_head_t wait ; spinlock_t lock ; }; struct regulator; struct mmc_pwrseq; struct mmc_supply { struct regulator *vmmc ; struct regulator *vqmmc ; }; struct mmc_bus_ops; struct mmc_host { struct device *parent ; struct device class_dev ; int index ; struct mmc_host_ops const *ops ; struct mmc_pwrseq *pwrseq ; unsigned int f_min ; unsigned int f_max ; unsigned int f_init ; u32 ocr_avail ; u32 ocr_avail_sdio ; u32 ocr_avail_sd ; u32 ocr_avail_mmc ; struct notifier_block pm_notify ; u32 max_current_330 ; u32 max_current_300 ; u32 max_current_180 ; u32 caps ; u32 caps2 ; mmc_pm_flag_t pm_caps ; int clk_requests ; unsigned int clk_delay ; bool clk_gated ; struct delayed_work clk_gate_work ; unsigned int clk_old ; spinlock_t clk_lock ; struct mutex clk_gate_mutex ; struct device_attribute clkgate_delay_attr ; unsigned long clkgate_delay ; unsigned int max_seg_size ; unsigned short max_segs ; unsigned short unused ; unsigned int max_req_size ; unsigned int max_blk_size ; unsigned int max_blk_count ; unsigned int max_busy_timeout ; spinlock_t lock ; struct mmc_ios ios ; unsigned char use_spi_crc : 1 ; unsigned char claimed : 1 ; unsigned char bus_dead : 1 ; unsigned char removed : 1 ; int rescan_disable ; int rescan_entered ; bool trigger_card_event ; struct mmc_card *card ; wait_queue_head_t wq ; struct task_struct *claimer ; int claim_cnt ; struct delayed_work detect ; int detect_change ; struct mmc_slot slot ; struct mmc_bus_ops const *bus_ops ; unsigned int bus_refs ; unsigned int sdio_irqs ; struct task_struct *sdio_irq_thread ; bool sdio_irq_pending ; atomic_t sdio_irq_thread_abort ; mmc_pm_flag_t pm_flags ; struct led_trigger *led ; bool regulator_enabled ; struct mmc_supply supply ; struct dentry *debugfs_root ; struct mmc_async_req *areq ; struct mmc_context_info context_info ; struct fault_attr fail_mmc_request ; unsigned int actual_clock ; unsigned int slotno ; int dsr_req ; u32 dsr ; unsigned long private[0U] ; }; typedef int ldv_map; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; typedef _Bool ldv_set; long ldv__builtin_expect(long exp , long c ) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_irq_check_alloc_nonatomic(void) ; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) ; void ldv_linux_arch_io_check_final_state(void) ; void ldv_linux_block_genhd_check_final_state(void) ; void ldv_linux_block_queue_check_final_state(void) ; void ldv_linux_block_request_check_final_state(void) ; void *ldv_linux_drivers_base_class_create_class(void) ; int ldv_linux_drivers_base_class_register_class(void) ; void ldv_linux_drivers_base_class_check_final_state(void) ; void ldv_linux_fs_char_dev_check_final_state(void) ; void ldv_linux_fs_sysfs_check_final_state(void) ; void ldv_linux_kernel_locking_rwlock_check_final_state(void) ; void ldv_linux_kernel_module_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_check_final_state(void) ; void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) ; void ldv_linux_kernel_rcu_srcu_check_final_state(void) ; void ldv_linux_lib_find_bit_initialize(void) ; void ldv_linux_lib_idr_check_final_state(void) ; void ldv_linux_mmc_sdio_func_check_final_state(void) ; void ldv_linux_net_register_reset_error_counter(void) ; void ldv_linux_net_register_check_return_value_probe(int retval ) ; void ldv_linux_net_rtnetlink_check_final_state(void) ; void ldv_linux_net_sock_check_final_state(void) ; void *ldv_linux_usb_coherent_usb_alloc_coherent(void) ; void ldv_linux_usb_coherent_check_final_state(void) ; void *ldv_linux_usb_gadget_create_class(void) ; int ldv_linux_usb_gadget_register_class(void) ; void ldv_linux_usb_gadget_check_final_state(void) ; void ldv_linux_usb_register_reset_error_counter(void) ; void ldv_linux_usb_register_check_return_value_probe(int retval ) ; struct urb *ldv_linux_usb_urb_usb_alloc_urb(void) ; void ldv_linux_usb_urb_check_final_state(void) ; void ldv_check_alloc_nonatomic(void) { { { ldv_linux_alloc_irq_check_alloc_nonatomic(); ldv_linux_alloc_usb_lock_check_alloc_nonatomic(); } return; } } void ldv_check_alloc_flags(gfp_t flags ) { { { ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return; } } void ldv_check_for_read_section(void) { { { ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_check_for_read_section(); ldv_linux_kernel_rcu_srcu_check_for_read_section(); } return; } } void *ldv_create_class(void) { void *res1 ; void *tmp ; void *res2 ; void *tmp___0 ; { { tmp = ldv_linux_drivers_base_class_create_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_create_class(); res2 = tmp___0; ldv_assume((unsigned long )res1 == (unsigned long )res2); } return (res1); } } int ldv_register_class(void) { int res1 ; int tmp ; int res2 ; int tmp___0 ; { { tmp = ldv_linux_drivers_base_class_register_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_register_class(); res2 = tmp___0; ldv_assume(res1 == res2); } return (res1); } } long ldv_is_err(void const *ptr ) ; long ldv_ptr_err(void const *ptr ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) ; void ldv_linux_usb_coherent_usb_free_coherent(void *addr ) ; int ldv_undef_int(void) ; static void ldv_ldv_initialize_160(void) ; int ldv_post_init(int init_ret_val ) ; static int ldv_ldv_post_init_157(int ldv_func_arg1 ) ; extern void ldv_pre_probe(void) ; static void ldv_ldv_pre_probe_161(void) ; int ldv_post_probe(int probe_ret_val ) ; static int ldv_ldv_post_probe_162(int retval ) ; int ldv_filter_err_code(int ret_val ) ; int ldv_pre_usb_register_driver(void) ; static void ldv_ldv_check_final_state_158(void) ; static void ldv_ldv_check_final_state_159(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; void *ldv_malloc_unknown_size(void) ; extern void ldv_after_alloc(void * ) ; void *ldv_alloc_macro(gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } static void ldv_mutex_lock_116(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_118(struct mutex *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_mutex_mutex_lock_hid_open_mut(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_hid_open_mut(struct mutex *lock ) ; extern struct module __this_module ; __inline static void set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static int test_and_set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("":); return (0); return (1); } } __inline static int constant_test_bit(long nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr >> 6)) >> ((int )nr & 63)) & 1); } } __inline static int fls(int x ) { int r ; { __asm__ ("bsrl %1,%0": "=r" (r): "rm" (x), "0" (-1)); return (r + 1); } } extern int printk(char const * , ...) ; extern void __dynamic_dev_dbg(struct _ddebug * , struct device const * , char const * , ...) ; extern void __might_sleep(char const * , int , int ) ; extern int snprintf(char * , size_t , char const * , ...) ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void *__memcpy(void * , void const * , size_t ) ; extern void *__memset(void * , int , size_t ) ; extern int memcmp(void const * , void const * , size_t ) ; extern size_t strlen(char const * ) ; extern size_t strlcpy(char * , char const * , size_t ) ; extern size_t strlcat(char * , char const * , __kernel_size_t ) ; extern void warn_slowpath_null(char const * , int const ) ; __inline static long PTR_ERR(void const *ptr ) ; __inline static bool IS_ERR(void const *ptr ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )ptr > 0xfffffffffffff000UL, 0L); } return (tmp != 0L); } } extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern void __ldv_linux_kernel_locking_spinlock_spin_lock(spinlock_t * ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_95(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_98(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_104(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_114(spinlock_t *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_usbhid_device(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_usbhid_device(void) ; void ldv_linux_usb_urb_usb_free_urb(struct urb *urb ) ; void ldv_switch_to_interrupt_context(void) ; void ldv_switch_to_process_context(void) ; static void ldv_mutex_unlock_117(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_122(struct mutex *ldv_func_arg1 ) ; extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_lock_irq(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irq(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField18.rlock); } } __inline static void spin_lock(spinlock_t *lock ) { { { _raw_spin_lock(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_lock_107(spinlock_t *lock ) ; __inline static void ldv_spin_lock_107(spinlock_t *lock ) ; __inline static void ldv_spin_lock_107(spinlock_t *lock ) ; __inline static void spin_lock_irq(spinlock_t *lock ) { { { _raw_spin_lock_irq(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_lock_irq_119(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_119(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_119(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_119(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_119(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_119(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_119(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_119(spinlock_t *lock ) ; __inline static void spin_unlock(spinlock_t *lock ) { { { _raw_spin_unlock(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_unlock_108(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_108(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_108(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_108(spinlock_t *lock ) ; __inline static void spin_unlock_irq(spinlock_t *lock ) { { { _raw_spin_unlock_irq(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_unlock_irq_120(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_120(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_120(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_120(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_120(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_120(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_120(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_120(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_120(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_120(spinlock_t *lock ) ; __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField18.rlock, flags); } return; } } __inline static void ldv_spin_unlock_irqrestore_97(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_97(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_97(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_97(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_97(spinlock_t *lock , unsigned long flags ) ; extern void __init_waitqueue_head(wait_queue_head_t * , char const * , struct lock_class_key * ) ; extern void __wake_up(wait_queue_head_t * , unsigned int , int , void * ) ; extern long prepare_to_wait_event(wait_queue_head_t * , wait_queue_t * , int ) ; extern void finish_wait(wait_queue_head_t * , wait_queue_t * ) ; extern unsigned long volatile jiffies ; extern unsigned long msecs_to_jiffies(unsigned int const ) ; extern void init_timer_key(struct timer_list * , unsigned int , char const * , struct lock_class_key * ) ; extern int mod_timer(struct timer_list * , unsigned long ) ; static int ldv_mod_timer_99(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; extern int del_timer_sync(struct timer_list * ) ; static int ldv_del_timer_sync_142(struct timer_list *ldv_func_arg1 ) ; static int ldv_del_timer_sync_143(struct timer_list *ldv_func_arg1 ) ; extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *system_wq ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; extern bool cancel_work_sync(struct work_struct * ) ; __inline static bool queue_work(struct workqueue_struct *wq , struct work_struct *work ) { bool tmp ; { { tmp = queue_work_on(8192, wq, work); } return (tmp); } } __inline static bool schedule_work(struct work_struct *work ) { bool tmp ; { { tmp = queue_work(system_wq, work); } return (tmp); } } extern int device_set_wakeup_enable(struct device * , bool ) ; __inline static void *dev_get_drvdata(struct device const *dev ) { { return ((void *)dev->driver_data); } } __inline static void dev_set_drvdata(struct device *dev , void *data ) { { dev->driver_data = data; return; } } extern void dev_err(struct device const * , char const * , ...) ; extern void dev_warn(struct device const * , char const * , ...) ; __inline static int usb_endpoint_dir_in(struct usb_endpoint_descriptor const *epd ) { { return ((int )((signed char )epd->bEndpointAddress) < 0); } } __inline static int usb_endpoint_xfer_int(struct usb_endpoint_descriptor const *epd ) { { return (((int )epd->bmAttributes & 3) == 3); } } __inline static int usb_endpoint_is_int_in(struct usb_endpoint_descriptor const *epd ) { int tmp ; int tmp___0 ; int tmp___1 ; { { tmp = usb_endpoint_xfer_int(epd); } if (tmp != 0) { { tmp___0 = usb_endpoint_dir_in(epd); } if (tmp___0 != 0) { tmp___1 = 1; } else { tmp___1 = 0; } } else { tmp___1 = 0; } return (tmp___1); } } __inline static int usb_endpoint_maxp(struct usb_endpoint_descriptor const *epd ) { { return ((int )epd->wMaxPacketSize); } } extern void msleep(unsigned int ) ; extern long schedule_timeout(long ) ; __inline static void pm_runtime_mark_last_busy(struct device *dev ) { unsigned long __var ; { __var = 0UL; *((unsigned long volatile *)(& dev->power.last_busy)) = jiffies; return; } } __inline static void *usb_get_intfdata(struct usb_interface *intf ) { void *tmp ; { { tmp = dev_get_drvdata((struct device const *)(& intf->dev)); } return (tmp); } } __inline static void usb_set_intfdata(struct usb_interface *intf , void *data ) { { { dev_set_drvdata(& intf->dev, data); } return; } } extern int __usb_get_extra_descriptor(char * , unsigned int , unsigned char , void ** ) ; __inline static struct usb_device *interface_to_usbdev(struct usb_interface *intf ) { struct device const *__mptr ; { __mptr = (struct device const *)intf->dev.parent; return ((struct usb_device *)__mptr + 0xffffffffffffff70UL); } } extern void usb_queue_reset_device(struct usb_interface * ) ; extern int usb_autopm_get_interface(struct usb_interface * ) ; extern void usb_autopm_put_interface(struct usb_interface * ) ; extern int usb_autopm_get_interface_async(struct usb_interface * ) ; extern void usb_autopm_put_interface_async(struct usb_interface * ) ; extern void usb_autopm_get_interface_no_resume(struct usb_interface * ) ; extern void usb_autopm_put_interface_no_suspend(struct usb_interface * ) ; __inline static void usb_mark_last_busy(struct usb_device *udev ) { { { pm_runtime_mark_last_busy(& udev->dev); } return; } } extern struct usb_interface *usb_find_interface(struct usb_driver * , int ) ; __inline static int usb_make_path(struct usb_device *dev , char *buf , size_t size ) { int actual ; { { actual = snprintf(buf, size, "usb-%s-%s", (dev->bus)->bus_name, (char *)(& dev->devpath)); } return (actual < (int )size ? actual : -1); } } extern int usb_register_driver(struct usb_driver * , struct module * , char const * ) ; static int ldv_usb_register_driver_155(struct usb_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void usb_deregister(struct usb_driver * ) ; static void ldv_usb_deregister_156(struct usb_driver *ldv_func_arg1 ) ; __inline static void usb_fill_control_urb(struct urb *urb , struct usb_device *dev , unsigned int pipe , unsigned char *setup_packet , void *transfer_buffer , int buffer_length , void (*complete_fn)(struct urb * ) , void *context ) { { urb->dev = dev; urb->pipe = pipe; urb->setup_packet = setup_packet; urb->transfer_buffer = transfer_buffer; urb->transfer_buffer_length = (u32 )buffer_length; urb->complete = complete_fn; urb->context = context; return; } } __inline static void usb_fill_int_urb(struct urb *urb , struct usb_device *dev , unsigned int pipe , void *transfer_buffer , int buffer_length , void (*complete_fn)(struct urb * ) , void *context , int interval ) { int _min1 ; int _max1 ; int _max2 ; int _min2 ; { urb->dev = dev; urb->pipe = pipe; urb->transfer_buffer = transfer_buffer; urb->transfer_buffer_length = (u32 )buffer_length; urb->complete = complete_fn; urb->context = context; if ((unsigned int )dev->speed == 3U || (unsigned int )dev->speed == 5U) { _max1 = interval; _max2 = 1; _min1 = _max1 > _max2 ? _max1 : _max2; _min2 = 16; interval = _min1 < _min2 ? _min1 : _min2; urb->interval = 1 << (interval + -1); } else { urb->interval = interval; } urb->start_frame = -1; return; } } static struct urb *ldv_usb_alloc_urb_129(int ldv_func_arg1 , gfp_t flags ) ; static struct urb *ldv_usb_alloc_urb_130(int ldv_func_arg1 , gfp_t flags ) ; static struct urb *ldv_usb_alloc_urb_131(int ldv_func_arg1 , gfp_t flags ) ; static void ldv_usb_free_urb_132(struct urb *urb ) ; static void ldv_usb_free_urb_133(struct urb *urb ) ; static void ldv_usb_free_urb_134(struct urb *urb ) ; static void ldv_usb_free_urb_137(struct urb *urb ) ; static void ldv_usb_free_urb_138(struct urb *urb ) ; static void ldv_usb_free_urb_139(struct urb *urb ) ; static int ldv_usb_submit_urb_96(struct urb *ldv_func_arg1 , gfp_t flags ) ; static int ldv_usb_submit_urb_101(struct urb *ldv_func_arg1 , gfp_t flags ) ; static int ldv_usb_submit_urb_102(struct urb *ldv_func_arg1 , gfp_t flags ) ; static int ldv_usb_submit_urb_103(struct urb *ldv_func_arg1 , gfp_t flags ) ; extern int usb_unlink_urb(struct urb * ) ; extern void usb_kill_urb(struct urb * ) ; extern void usb_unpoison_urb(struct urb * ) ; extern void usb_block_urb(struct urb * ) ; static void *ldv_usb_alloc_coherent_123(struct usb_device *ldv_func_arg1 , size_t ldv_func_arg2 , gfp_t flags , dma_addr_t *ldv_func_arg4 ) ; static void *ldv_usb_alloc_coherent_124(struct usb_device *ldv_func_arg1 , size_t ldv_func_arg2 , gfp_t flags , dma_addr_t *ldv_func_arg4 ) ; static void *ldv_usb_alloc_coherent_125(struct usb_device *ldv_func_arg1 , size_t ldv_func_arg2 , gfp_t flags , dma_addr_t *ldv_func_arg4 ) ; static void ldv_usb_free_coherent_126(struct usb_device *dev , size_t size , void *addr , dma_addr_t dma ) ; static void ldv_usb_free_coherent_127(struct usb_device *dev , size_t size , void *addr , dma_addr_t dma ) ; static void ldv_usb_free_coherent_128(struct usb_device *dev , size_t size , void *addr , dma_addr_t dma ) ; extern int usb_control_msg(struct usb_device * , unsigned int , __u8 , __u8 , __u16 , __u16 , void * , __u16 , int ) ; extern int usb_interrupt_msg(struct usb_device * , unsigned int , void * , int , int * , int ) ; extern int usb_string(struct usb_device * , int , char * , size_t ) ; extern int usb_clear_halt(struct usb_device * , int ) ; __inline static unsigned int __create_pipe(struct usb_device *dev , unsigned int endpoint ) { { return ((unsigned int )(dev->devnum << 8) | (endpoint << 15)); } } __inline static __u16 usb_maxpacket(struct usb_device *udev , int pipe , int is_out ) { struct usb_host_endpoint *ep ; unsigned int epnum ; int __ret_warn_on ; long tmp ; int __ret_warn_on___0 ; long tmp___0 ; int tmp___1 ; { epnum = (unsigned int )(pipe >> 15) & 15U; if (is_out != 0) { { __ret_warn_on = (pipe & 128) != 0; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("include/linux/usb.h", 1820); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); ep = udev->ep_out[epnum]; } } else { { __ret_warn_on___0 = (pipe & 128) == 0; tmp___0 = ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("include/linux/usb.h", 1823); } } else { } { ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); ep = udev->ep_in[epnum]; } } if ((unsigned long )ep == (unsigned long )((struct usb_host_endpoint *)0)) { return (0U); } else { } { tmp___1 = usb_endpoint_maxp((struct usb_endpoint_descriptor const *)(& ep->desc)); } return ((__u16 )tmp___1); } } extern void kfree(void const * ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; extern int hid_debug ; extern int hid_add_device(struct hid_device * ) ; extern void hid_destroy_device(struct hid_device * ) ; extern int hid_set_field(struct hid_field * , unsigned int , __s32 ) ; extern int hid_input_report(struct hid_device * , int , u8 * , int , int ) ; extern unsigned int hidinput_count_leds(struct hid_device * ) ; extern void hid_output_report(struct hid_report * , __u8 * ) ; extern u8 *hid_alloc_report_buf(struct hid_report * , gfp_t ) ; extern struct hid_device *hid_allocate_device(void) ; extern int hid_parse_report(struct hid_device * , __u8 * , unsigned int ) ; extern int hid_check_keys_pressed(struct hid_device * ) ; __inline static int hid_report_len(struct hid_report *report ) { { return ((int )((((report->size - 1U) >> 3) + (unsigned int )(report->id != 0U)) + 1U)); } } u32 usbhid_lookup_quirk(u16 const idVendor , u16 const idProduct ) ; int usbhid_quirks_init(char **quirks_param___0 ) ; void usbhid_quirks_exit(void) ; int hid_pidff_init(struct hid_device *hid ) ; int hiddev_connect(struct hid_device *hid , unsigned int force ) ; void hiddev_disconnect(struct hid_device *hid ) ; void hiddev_hid_event(struct hid_device *hid , struct hid_field *field , struct hid_usage *usage , __s32 value ) ; void hiddev_report_event(struct hid_device *hid , struct hid_report *report ) ; void usbhid_close(struct hid_device *hid ) ; int usbhid_open(struct hid_device *hid ) ; void usbhid_init_reports(struct hid_device *hid ) ; int usbhid_get_power(struct hid_device *hid ) ; void usbhid_put_power(struct hid_device *hid ) ; struct usb_interface *usbhid_find_interface(int minor ) ; static unsigned int hid_mousepoll_interval ; static unsigned int ignoreled ; static char *quirks_param[4U] ; static struct mutex hid_open_mut = {{1}, {{{{{0U}}, 3735899821U, 4294967295U, (void *)-1, {0, {0, 0}, "hid_open_mut.wait_lock", 0, 0UL}}}}, {& hid_open_mut.wait_list, & hid_open_mut.wait_list}, 0, (void *)(& hid_open_mut), {0, {0, 0}, "hid_open_mut", 0, 0UL}}; static void hid_io_error(struct hid_device *hid ) ; static int hid_submit_out(struct hid_device *hid ) ; static int hid_submit_ctrl(struct hid_device *hid ) ; static void hid_cancel_delayed_stuff(struct usbhid_device *usbhid ) ; static int hid_start_in(struct hid_device *hid ) { unsigned long flags ; int rc ; struct usbhid_device *usbhid ; int tmp ; int tmp___0 ; int tmp___1 ; { { rc = 0; usbhid = (struct usbhid_device *)hid->driver_data; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_95(& usbhid->lock); } if (hid->open > 0 || (hid->quirks & 1024U) != 0U) { { tmp = constant_test_bit(7L, (unsigned long const volatile *)(& usbhid->iofl)); } if (tmp == 0) { { tmp___0 = constant_test_bit(5L, (unsigned long const volatile *)(& usbhid->iofl)); } if (tmp___0 == 0) { { tmp___1 = test_and_set_bit(3L, (unsigned long volatile *)(& usbhid->iofl)); } if (tmp___1 == 0) { { rc = ldv_usb_submit_urb_96(usbhid->urbin, 32U); } if (rc != 0) { { clear_bit(3L, (unsigned long volatile *)(& usbhid->iofl)); } if (rc == -28) { { set_bit(11L, (unsigned long volatile *)(& usbhid->iofl)); } } else { } } else { { clear_bit(11L, (unsigned long volatile *)(& usbhid->iofl)); } } } else { } } else { } } else { } } else { } { ldv_spin_unlock_irqrestore_97(& usbhid->lock, flags); } return (rc); } } static void hid_retry_timeout(unsigned long _hid ) { struct hid_device *hid ; struct usbhid_device *usbhid ; struct _ddebug descriptor ; long tmp ; int tmp___0 ; { { hid = (struct hid_device *)_hid; usbhid = (struct usbhid_device *)hid->driver_data; descriptor.modname = "usbhid"; descriptor.function = "hid_retry_timeout"; descriptor.filename = "drivers/hid/usbhid/hid-core.c"; descriptor.format = "retrying intr urb\n"; descriptor.lineno = 108U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (usbhid->intf)->dev), "retrying intr urb\n"); } } else { } { tmp___0 = hid_start_in(hid); } if (tmp___0 != 0) { { hid_io_error(hid); } } else { } return; } } static void hid_reset(struct work_struct *work ) { struct usbhid_device *usbhid ; struct work_struct const *__mptr ; struct hid_device *hid ; int rc ; struct _ddebug descriptor ; long tmp ; struct device const *__mptr___0 ; struct _ddebug descriptor___0 ; long tmp___0 ; int tmp___1 ; struct _ddebug descriptor___1 ; long tmp___2 ; int tmp___3 ; { { __mptr = (struct work_struct const *)work; usbhid = (struct usbhid_device *)__mptr + 0xffffffffffffd698UL; hid = usbhid->hid; tmp___1 = constant_test_bit(6L, (unsigned long const volatile *)(& usbhid->iofl)); } if (tmp___1 != 0) { { descriptor.modname = "usbhid"; descriptor.function = "hid_reset"; descriptor.filename = "drivers/hid/usbhid/hid-core.c"; descriptor.format = "clear halt\n"; descriptor.lineno = 122U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (usbhid->intf)->dev), "clear halt\n"); } } else { } { __mptr___0 = (struct device const *)(hid->dev.parent)->parent; rc = usb_clear_halt((struct usb_device *)__mptr___0 + 0xffffffffffffff70UL, (int )(usbhid->urbin)->pipe); clear_bit(6L, (unsigned long volatile *)(& usbhid->iofl)); } if (rc == 0) { { hid_start_in(hid); } } else { { descriptor___0.modname = "usbhid"; descriptor___0.function = "hid_reset"; descriptor___0.filename = "drivers/hid/usbhid/hid-core.c"; descriptor___0.format = "clear-halt failed: %d\n"; descriptor___0.lineno = 129U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_dev_dbg(& descriptor___0, (struct device const *)(& (usbhid->intf)->dev), "clear-halt failed: %d\n", rc); } } else { } { set_bit(4L, (unsigned long volatile *)(& usbhid->iofl)); } } } else { } { tmp___3 = constant_test_bit(4L, (unsigned long const volatile *)(& usbhid->iofl)); } if (tmp___3 != 0) { { descriptor___1.modname = "usbhid"; descriptor___1.function = "hid_reset"; descriptor___1.filename = "drivers/hid/usbhid/hid-core.c"; descriptor___1.format = "resetting device\n"; descriptor___1.lineno = 135U; descriptor___1.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___2 != 0L) { { __dynamic_dev_dbg(& descriptor___1, (struct device const *)(& (usbhid->intf)->dev), "resetting device\n"); } } else { } { usb_queue_reset_device(usbhid->intf); } } else { } return; } } static void hid_io_error(struct hid_device *hid ) { unsigned long flags ; struct usbhid_device *usbhid ; int tmp ; unsigned long tmp___0 ; int tmp___1 ; int tmp___2 ; unsigned long tmp___3 ; { { usbhid = (struct usbhid_device *)hid->driver_data; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_98(& usbhid->lock); tmp = constant_test_bit(7L, (unsigned long const volatile *)(& usbhid->iofl)); } if (tmp != 0) { goto done; } else { } if ((long )((usbhid->stop_retry - (unsigned long )jiffies) + 125UL) < 0L) { usbhid->retry_delay = 0U; } else { } if (usbhid->retry_delay == 0U) { { usbhid->retry_delay = 13U; tmp___0 = msecs_to_jiffies(1000U); usbhid->stop_retry = (unsigned long )jiffies + tmp___0; } } else if (usbhid->retry_delay <= 99U) { usbhid->retry_delay = usbhid->retry_delay * 2U; } else { } if ((long )(usbhid->stop_retry - (unsigned long )jiffies) < 0L) { { tmp___1 = constant_test_bit(11L, (unsigned long const volatile *)(& usbhid->iofl)); } if (tmp___1 != 0) { { tmp___2 = test_and_set_bit(4L, (unsigned long volatile *)(& usbhid->iofl)); } if (tmp___2 == 0) { { schedule_work(& usbhid->reset_work); } goto done; } else { } } else { } } else { } { tmp___3 = msecs_to_jiffies(usbhid->retry_delay); ldv_mod_timer_99(& usbhid->io_retry, (unsigned long )jiffies + tmp___3); } done: { ldv_spin_unlock_irqrestore_97(& usbhid->lock, flags); } return; } } static void usbhid_mark_busy(struct usbhid_device *usbhid ) { struct usb_interface *intf ; struct usb_device *tmp ; { { intf = usbhid->intf; tmp = interface_to_usbdev(intf); usb_mark_last_busy(tmp); } return; } } static int usbhid_restart_out_queue(struct usbhid_device *usbhid ) { struct hid_device *hid ; void *tmp ; int kicked ; int r ; int tmp___0 ; int tmp___1 ; struct _ddebug descriptor ; long tmp___2 ; int tmp___3 ; int tmp___4 ; { { tmp = usb_get_intfdata(usbhid->intf); hid = (struct hid_device *)tmp; } if ((unsigned long )hid == (unsigned long )((struct hid_device *)0)) { return (0); } else { { tmp___0 = constant_test_bit(4L, (unsigned long const volatile *)(& usbhid->iofl)); } if (tmp___0 != 0) { return (0); } else { { tmp___1 = constant_test_bit(5L, (unsigned long const volatile *)(& usbhid->iofl)); } if (tmp___1 != 0) { return (0); } else { } } } kicked = (int )usbhid->outhead != (int )usbhid->outtail; if (kicked != 0) { { descriptor.modname = "usbhid"; descriptor.function = "usbhid_restart_out_queue"; descriptor.filename = "drivers/hid/usbhid/hid-core.c"; descriptor.format = "Kicking head %d tail %d"; descriptor.lineno = 199U; descriptor.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___2 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& hid->dev), "Kicking head %d tail %d", (int )usbhid->outhead, (int )usbhid->outtail); } } else { } { r = usb_autopm_get_interface_async(usbhid->intf); } if (r < 0) { return (r); } else { } { tmp___3 = constant_test_bit(5L, (unsigned long const volatile *)(& usbhid->iofl)); } if (tmp___3 != 0) { { usb_autopm_put_interface_no_suspend(usbhid->intf); } return (r); } else { } { set_bit(2L, (unsigned long volatile *)(& usbhid->iofl)); tmp___4 = hid_submit_out(hid); } if (tmp___4 != 0) { { clear_bit(2L, (unsigned long volatile *)(& usbhid->iofl)); usb_autopm_put_interface_async(usbhid->intf); } } else { } { __wake_up(& usbhid->wait, 3U, 1, (void *)0); } } else { } return (kicked); } } static int usbhid_restart_ctrl_queue(struct usbhid_device *usbhid ) { struct hid_device *hid ; void *tmp ; int kicked ; int r ; int __ret_warn_on ; long tmp___0 ; int tmp___1 ; int tmp___2 ; struct _ddebug descriptor ; long tmp___3 ; int tmp___4 ; int tmp___5 ; { { tmp = usb_get_intfdata(usbhid->intf); hid = (struct hid_device *)tmp; __ret_warn_on = (unsigned long )hid == (unsigned long )((struct hid_device *)0); tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("drivers/hid/usbhid/hid-core.c", 232); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } if ((unsigned long )hid == (unsigned long )((struct hid_device *)0)) { return (0); } else { { tmp___1 = constant_test_bit(4L, (unsigned long const volatile *)(& usbhid->iofl)); } if (tmp___1 != 0) { return (0); } else { { tmp___2 = constant_test_bit(5L, (unsigned long const volatile *)(& usbhid->iofl)); } if (tmp___2 != 0) { return (0); } else { } } } kicked = (int )usbhid->ctrlhead != (int )usbhid->ctrltail; if (kicked != 0) { { descriptor.modname = "usbhid"; descriptor.function = "usbhid_restart_ctrl_queue"; descriptor.filename = "drivers/hid/usbhid/hid-core.c"; descriptor.format = "Kicking head %d tail %d"; descriptor.lineno = 238U; descriptor.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___3 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& hid->dev), "Kicking head %d tail %d", (int )usbhid->ctrlhead, (int )usbhid->ctrltail); } } else { } { r = usb_autopm_get_interface_async(usbhid->intf); } if (r < 0) { return (r); } else { } { tmp___4 = constant_test_bit(5L, (unsigned long const volatile *)(& usbhid->iofl)); } if (tmp___4 != 0) { { usb_autopm_put_interface_no_suspend(usbhid->intf); } return (r); } else { } { set_bit(1L, (unsigned long volatile *)(& usbhid->iofl)); tmp___5 = hid_submit_ctrl(hid); } if (tmp___5 != 0) { { clear_bit(1L, (unsigned long volatile *)(& usbhid->iofl)); usb_autopm_put_interface_async(usbhid->intf); } } else { } { __wake_up(& usbhid->wait, 3U, 1, (void *)0); } } else { } return (kicked); } } static void hid_irq_in(struct urb *urb ) { struct hid_device *hid ; struct usbhid_device *usbhid ; int status ; int tmp ; int tmp___0 ; struct device const *__mptr ; struct device const *__mptr___0 ; { hid = (struct hid_device *)urb->context; usbhid = (struct usbhid_device *)hid->driver_data; { if (urb->status == 0) { goto case_0; } else { } if (urb->status == -32) { goto case_neg_32; } else { } if (urb->status == -104) { goto case_neg_104; } else { } if (urb->status == -2) { goto case_neg_2; } else { } if (urb->status == -108) { goto case_neg_108; } else { } if (urb->status == -84) { goto case_neg_84; } else { } if (urb->status == -71) { goto case_neg_71; } else { } if (urb->status == -62) { goto case_neg_62; } else { } if (urb->status == -110) { goto case_neg_110; } else { } goto switch_default; case_0: /* CIL Label */ { usbhid_mark_busy(usbhid); usbhid->retry_delay = 0U; } if ((hid->quirks & 1024U) != 0U && hid->open == 0) { goto ldv_34880; } else { } { tmp___0 = constant_test_bit(12L, (unsigned long const volatile *)(& usbhid->iofl)); } if (tmp___0 == 0) { { hid_input_report((struct hid_device *)urb->context, 0, (u8 *)urb->transfer_buffer, (int )urb->actual_length, 1); tmp = hid_check_keys_pressed(hid); } if (tmp != 0) { { set_bit(10L, (unsigned long volatile *)(& usbhid->iofl)); } } else { { clear_bit(10L, (unsigned long volatile *)(& usbhid->iofl)); } } } else { } goto ldv_34880; case_neg_32: /* CIL Label */ { usbhid_mark_busy(usbhid); clear_bit(3L, (unsigned long volatile *)(& usbhid->iofl)); set_bit(6L, (unsigned long volatile *)(& usbhid->iofl)); schedule_work(& usbhid->reset_work); } return; case_neg_104: /* CIL Label */ ; case_neg_2: /* CIL Label */ ; case_neg_108: /* CIL Label */ { clear_bit(3L, (unsigned long volatile *)(& usbhid->iofl)); } return; case_neg_84: /* CIL Label */ ; case_neg_71: /* CIL Label */ ; case_neg_62: /* CIL Label */ ; case_neg_110: /* CIL Label */ { usbhid_mark_busy(usbhid); clear_bit(3L, (unsigned long volatile *)(& usbhid->iofl)); hid_io_error(hid); } return; switch_default: /* CIL Label */ { dev_warn((struct device const *)(& (urb->dev)->dev), "input irq status %d received\n", urb->status); } switch_break: /* CIL Label */ ; } ldv_34880: { status = ldv_usb_submit_urb_101(urb, 32U); } if (status != 0) { { clear_bit(3L, (unsigned long volatile *)(& usbhid->iofl)); } if (status != -1) { { __mptr = (struct device const *)(hid->dev.parent)->parent; __mptr___0 = (struct device const *)(hid->dev.parent)->parent; dev_err((struct device const *)(& hid->dev), "can\'t resubmit intr, %s-%s/input%d, status %d\n", (((struct usb_device *)__mptr___0 + 0xffffffffffffff70UL)->bus)->bus_name, (char *)(& ((struct usb_device *)__mptr + 0xffffffffffffff70UL)->devpath), usbhid->ifnum, status); hid_io_error(hid); } } else { } } else { } return; } } static int hid_submit_out(struct hid_device *hid ) { struct hid_report *report ; char *raw_report ; struct usbhid_device *usbhid ; int r ; int tmp ; struct device const *__mptr ; { { usbhid = (struct usbhid_device *)hid->driver_data; report = usbhid->out[(int )usbhid->outtail].report; raw_report = usbhid->out[(int )usbhid->outtail].raw_report; tmp = hid_report_len(report); (usbhid->urbout)->transfer_buffer_length = (u32 )tmp; __mptr = (struct device const *)(hid->dev.parent)->parent; (usbhid->urbout)->dev = (struct usb_device *)__mptr + 0xffffffffffffff70UL; } if ((unsigned long )raw_report != (unsigned long )((char *)0)) { { __memcpy((void *)usbhid->outbuf, (void const *)raw_report, (size_t )(usbhid->urbout)->transfer_buffer_length); kfree((void const *)raw_report); usbhid->out[(int )usbhid->outtail].raw_report = (char *)0; } } else { } if (hid_debug != 0) { { printk("\017%s: submitting out urb\n", (char *)"drivers/hid/usbhid/hid-core.c"); } } else { } { r = ldv_usb_submit_urb_102(usbhid->urbout, 32U); } if (r < 0) { { dev_err((struct device const *)(& hid->dev), "usb_submit_urb(out) failed: %d\n", r); } return (r); } else { } usbhid->last_out = jiffies; return (0); } } static int hid_submit_ctrl(struct hid_device *hid ) { struct hid_report *report ; unsigned char dir ; char *raw_report ; int len ; int r ; struct usbhid_device *usbhid ; struct device const *__mptr ; unsigned int tmp ; int maxpacket ; int padlen ; struct device const *__mptr___0 ; unsigned int tmp___0 ; struct device const *__mptr___1 ; __u16 tmp___1 ; struct device const *__mptr___2 ; { usbhid = (struct usbhid_device *)hid->driver_data; report = usbhid->ctrl[(int )usbhid->ctrltail].report; raw_report = usbhid->ctrl[(int )usbhid->ctrltail].raw_report; dir = usbhid->ctrl[(int )usbhid->ctrltail].dir; len = (int )((((report->size - 1U) >> 3) + (unsigned int )(report->id != 0U)) + 1U); if ((unsigned int )dir == 0U) { { __mptr = (struct device const *)(hid->dev.parent)->parent; tmp = __create_pipe((struct usb_device *)__mptr + 0xffffffffffffff70UL, 0U); (usbhid->urbctrl)->pipe = tmp | 2147483648U; (usbhid->urbctrl)->transfer_buffer_length = (u32 )len; } if ((unsigned long )raw_report != (unsigned long )((char *)0)) { { __memcpy((void *)usbhid->ctrlbuf, (void const *)raw_report, (size_t )len); kfree((void const *)raw_report); usbhid->ctrl[(int )usbhid->ctrltail].raw_report = (char *)0; } } else { } } else { { __mptr___0 = (struct device const *)(hid->dev.parent)->parent; tmp___0 = __create_pipe((struct usb_device *)__mptr___0 + 0xffffffffffffff70UL, 0U); (usbhid->urbctrl)->pipe = tmp___0 | 2147483776U; __mptr___1 = (struct device const *)(hid->dev.parent)->parent; tmp___1 = usb_maxpacket((struct usb_device *)__mptr___1 + 0xffffffffffffff70UL, (int )(usbhid->urbctrl)->pipe, 0); maxpacket = (int )tmp___1; } if (maxpacket > 0) { padlen = ((len + maxpacket) + -1) / maxpacket; padlen = padlen * maxpacket; if ((unsigned int )padlen > usbhid->bufsize) { padlen = (int )usbhid->bufsize; } else { } } else { padlen = 0; } (usbhid->urbctrl)->transfer_buffer_length = (u32 )padlen; } __mptr___2 = (struct device const *)(hid->dev.parent)->parent; (usbhid->urbctrl)->dev = (struct usb_device *)__mptr___2 + 0xffffffffffffff70UL; (usbhid->cr)->bRequestType = (__u8 )((unsigned int )dir | 33U); (usbhid->cr)->bRequest = (unsigned int )dir == 0U ? 9U : 1U; (usbhid->cr)->wValue = (((unsigned int )((unsigned short )report->type) + 1U) << 8U) | (unsigned int )((unsigned short )report->id); (usbhid->cr)->wIndex = (unsigned short )usbhid->ifnum; (usbhid->cr)->wLength = (unsigned short )len; if (hid_debug != 0) { { printk("\017%s: submitting ctrl urb: %s wValue=0x%04x wIndex=0x%04x wLength=%u\n", (char *)"drivers/hid/usbhid/hid-core.c", (unsigned int )(usbhid->cr)->bRequest == 9U ? (char *)"Set_Report" : (char *)"Get_Report", (int )(usbhid->cr)->wValue, (int )(usbhid->cr)->wIndex, (int )(usbhid->cr)->wLength); } } else { } { r = ldv_usb_submit_urb_103(usbhid->urbctrl, 32U); } if (r < 0) { { dev_err((struct device const *)(& hid->dev), "usb_submit_urb(ctrl) failed: %d\n", r); } return (r); } else { } usbhid->last_ctrl = jiffies; return (0); } } static void hid_irq_out(struct urb *urb ) { struct hid_device *hid ; struct usbhid_device *usbhid ; unsigned long flags ; int unplug ; int tmp ; { hid = (struct hid_device *)urb->context; usbhid = (struct usbhid_device *)hid->driver_data; unplug = 0; { if (urb->status == 0) { goto case_0; } else { } if (urb->status == -108) { goto case_neg_108; } else { } if (urb->status == -84) { goto case_neg_84; } else { } if (urb->status == -71) { goto case_neg_71; } else { } if (urb->status == -104) { goto case_neg_104; } else { } if (urb->status == -2) { goto case_neg_2; } else { } goto switch_default; case_0: /* CIL Label */ ; goto ldv_34930; case_neg_108: /* CIL Label */ unplug = 1; case_neg_84: /* CIL Label */ ; case_neg_71: /* CIL Label */ ; case_neg_104: /* CIL Label */ ; case_neg_2: /* CIL Label */ ; goto ldv_34930; switch_default: /* CIL Label */ { dev_warn((struct device const *)(& (urb->dev)->dev), "output irq status %d received\n", urb->status); } switch_break: /* CIL Label */ ; } ldv_34930: { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_104(& usbhid->lock); } if (unplug != 0) { usbhid->outtail = usbhid->outhead; } else { usbhid->outtail = ((unsigned int )usbhid->outtail + 1U) & 63U; if ((int )usbhid->outhead != (int )usbhid->outtail) { { tmp = hid_submit_out(hid); } if (tmp == 0) { { ldv_spin_unlock_irqrestore_97(& usbhid->lock, flags); } return; } else { } } else { } } { clear_bit(2L, (unsigned long volatile *)(& usbhid->iofl)); ldv_spin_unlock_irqrestore_97(& usbhid->lock, flags); usb_autopm_put_interface_async(usbhid->intf); __wake_up(& usbhid->wait, 3U, 1, (void *)0); } return; } } static void hid_ctrl(struct urb *urb ) { struct hid_device *hid ; struct usbhid_device *usbhid ; int unplug ; int status ; int tmp ; { { hid = (struct hid_device *)urb->context; usbhid = (struct usbhid_device *)hid->driver_data; unplug = 0; status = urb->status; ldv_spin_lock_107(& usbhid->lock); } { if (status == 0) { goto case_0; } else { } if (status == -108) { goto case_neg_108; } else { } if (status == -84) { goto case_neg_84; } else { } if (status == -71) { goto case_neg_71; } else { } if (status == -104) { goto case_neg_104; } else { } if (status == -2) { goto case_neg_2; } else { } if (status == -32) { goto case_neg_32; } else { } goto switch_default; case_0: /* CIL Label */ ; if ((unsigned int )usbhid->ctrl[(int )usbhid->ctrltail].dir == 128U) { { hid_input_report((struct hid_device *)urb->context, (int )(usbhid->ctrl[(int )usbhid->ctrltail].report)->type, (u8 *)urb->transfer_buffer, (int )urb->actual_length, 0); } } else { } goto ldv_34945; case_neg_108: /* CIL Label */ unplug = 1; case_neg_84: /* CIL Label */ ; case_neg_71: /* CIL Label */ ; case_neg_104: /* CIL Label */ ; case_neg_2: /* CIL Label */ ; case_neg_32: /* CIL Label */ ; goto ldv_34945; switch_default: /* CIL Label */ { dev_warn((struct device const *)(& (urb->dev)->dev), "ctrl urb status %d received\n", status); } switch_break: /* CIL Label */ ; } ldv_34945: ; if (unplug != 0) { usbhid->ctrltail = usbhid->ctrlhead; } else { usbhid->ctrltail = (unsigned int )usbhid->ctrltail + 1U; if ((int )usbhid->ctrlhead != (int )usbhid->ctrltail) { { tmp = hid_submit_ctrl(hid); } if (tmp == 0) { { ldv_spin_unlock_108(& usbhid->lock); } return; } else { } } else { } } { clear_bit(1L, (unsigned long volatile *)(& usbhid->iofl)); ldv_spin_unlock_108(& usbhid->lock); usb_autopm_put_interface_async(usbhid->intf); __wake_up(& usbhid->wait, 3U, 1, (void *)0); } return; } } static void __usbhid_submit_report(struct hid_device *hid , struct hid_report *report , unsigned char dir ) { int head ; struct usbhid_device *usbhid ; int tmp ; u8 *tmp___0 ; int tmp___1 ; int tmp___2 ; u8 *tmp___3 ; int tmp___4 ; int tmp___5 ; { usbhid = (struct usbhid_device *)hid->driver_data; if ((hid->quirks & 8U) != 0U && (unsigned int )dir == 128U) { return; } else { { tmp = constant_test_bit(7L, (unsigned long const volatile *)(& usbhid->iofl)); } if (tmp != 0) { return; } else { } } if (((unsigned long )usbhid->urbout != (unsigned long )((struct urb *)0) && (unsigned int )dir == 0U) && report->type == 1U) { head = ((int )usbhid->outhead + 1) & 63; if (head == (int )usbhid->outtail) { { dev_warn((struct device const *)(& hid->dev), "output queue full\n"); } return; } else { } { tmp___0 = hid_alloc_report_buf(report, 32U); usbhid->out[(int )usbhid->outhead].raw_report = (char *)tmp___0; } if ((unsigned long )usbhid->out[(int )usbhid->outhead].raw_report == (unsigned long )((char *)0)) { { dev_warn((struct device const *)(& hid->dev), "output queueing failed\n"); } return; } else { } { hid_output_report(report, (__u8 *)usbhid->out[(int )usbhid->outhead].raw_report); usbhid->out[(int )usbhid->outhead].report = report; usbhid->outhead = (unsigned char )head; tmp___2 = constant_test_bit(2L, (unsigned long const volatile *)(& usbhid->iofl)); } if (tmp___2 == 0) { { usbhid_restart_out_queue(usbhid); } } else if ((long )((usbhid->last_out - (unsigned long )jiffies) + 1250UL) < 0L) { { usb_autopm_get_interface_no_resume(usbhid->intf); usb_block_urb(usbhid->urbout); ldv_spin_unlock_108(& usbhid->lock); usb_unlink_urb(usbhid->urbout); ldv_spin_lock_107(& usbhid->lock); usb_unpoison_urb(usbhid->urbout); tmp___1 = constant_test_bit(2L, (unsigned long const volatile *)(& usbhid->iofl)); } if (tmp___1 == 0) { { usbhid_restart_out_queue(usbhid); } } else { } { usb_autopm_put_interface_async(usbhid->intf); } } else { } return; } else { } head = ((int )usbhid->ctrlhead + 1) & 255; if (head == (int )usbhid->ctrltail) { { dev_warn((struct device const *)(& hid->dev), "control queue full\n"); } return; } else { } if ((unsigned int )dir == 0U) { { tmp___3 = hid_alloc_report_buf(report, 32U); usbhid->ctrl[(int )usbhid->ctrlhead].raw_report = (char *)tmp___3; } if ((unsigned long )usbhid->ctrl[(int )usbhid->ctrlhead].raw_report == (unsigned long )((char *)0)) { { dev_warn((struct device const *)(& hid->dev), "control queueing failed\n"); } return; } else { } { hid_output_report(report, (__u8 *)usbhid->ctrl[(int )usbhid->ctrlhead].raw_report); } } else { } { usbhid->ctrl[(int )usbhid->ctrlhead].report = report; usbhid->ctrl[(int )usbhid->ctrlhead].dir = dir; usbhid->ctrlhead = (unsigned char )head; tmp___5 = constant_test_bit(1L, (unsigned long const volatile *)(& usbhid->iofl)); } if (tmp___5 == 0) { { usbhid_restart_ctrl_queue(usbhid); } } else if ((long )((usbhid->last_ctrl - (unsigned long )jiffies) + 1250UL) < 0L) { { usb_autopm_get_interface_no_resume(usbhid->intf); usb_block_urb(usbhid->urbctrl); ldv_spin_unlock_108(& usbhid->lock); usb_unlink_urb(usbhid->urbctrl); ldv_spin_lock_107(& usbhid->lock); usb_unpoison_urb(usbhid->urbctrl); tmp___4 = constant_test_bit(1L, (unsigned long const volatile *)(& usbhid->iofl)); } if (tmp___4 == 0) { { usbhid_restart_ctrl_queue(usbhid); } } else { } { usb_autopm_put_interface_async(usbhid->intf); } } else { } return; } } static void usbhid_submit_report(struct hid_device *hid , struct hid_report *report , unsigned char dir ) { struct usbhid_device *usbhid ; unsigned long flags ; { { usbhid = (struct usbhid_device *)hid->driver_data; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_114(& usbhid->lock); __usbhid_submit_report(hid, report, (int )dir); ldv_spin_unlock_irqrestore_97(& usbhid->lock, flags); } return; } } static int usbhid_wait_io(struct hid_device *hid ) { struct usbhid_device *usbhid ; long __ret ; wait_queue_t __wait ; long __ret___0 ; long __int ; long tmp ; bool __cond ; int tmp___0 ; int tmp___1 ; int tmp___2 ; bool __cond___0 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; { { usbhid = (struct usbhid_device *)hid->driver_data; __ret = 2500L; __might_sleep("drivers/hid/usbhid/hid-core.c", 646, 0); tmp___3 = constant_test_bit(1L, (unsigned long const volatile *)(& usbhid->iofl)); } if (tmp___3 == 0) { { tmp___4 = constant_test_bit(2L, (unsigned long const volatile *)(& usbhid->iofl)); } if (tmp___4 == 0) { tmp___5 = 1; } else { tmp___5 = 0; } } else { tmp___5 = 0; } __cond___0 = (bool )tmp___5; if ((int )__cond___0 && __ret == 0L) { __ret = 1L; } else { } if (((int )__cond___0 || __ret == 0L) == 0) { { __ret___0 = 2500L; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; } ldv_34993: { tmp = prepare_to_wait_event(& usbhid->wait, & __wait, 2); __int = tmp; tmp___0 = constant_test_bit(1L, (unsigned long const volatile *)(& usbhid->iofl)); } if (tmp___0 == 0) { { tmp___1 = constant_test_bit(2L, (unsigned long const volatile *)(& usbhid->iofl)); } if (tmp___1 == 0) { tmp___2 = 1; } else { tmp___2 = 0; } } else { tmp___2 = 0; } __cond = (bool )tmp___2; if ((int )__cond && __ret___0 == 0L) { __ret___0 = 1L; } else { } if (((int )__cond || __ret___0 == 0L) != 0) { goto ldv_34992; } else { } { __ret___0 = schedule_timeout(__ret___0); } goto ldv_34993; ldv_34992: { finish_wait(& usbhid->wait, & __wait); } __ret = __ret___0; } else { } if (__ret == 0L) { if (hid_debug != 0) { { printk("\017%s: timeout waiting for ctrl or out queue to clear\n", (char *)"drivers/hid/usbhid/hid-core.c"); } } else { } return (-1); } else { } return (0); } } static int hid_set_idle(struct usb_device *dev , int ifnum , int report , int idle ) { unsigned int tmp ; int tmp___0 ; { { tmp = __create_pipe(dev, 0U); tmp___0 = usb_control_msg(dev, tmp | 2147483648U, 10, 33, (int )((__u16 )((int )((short )(idle << 8)) | (int )((short )report))), (int )((__u16 )ifnum), (void *)0, 0, 5000); } return (tmp___0); } } static int hid_get_class_descriptor(struct usb_device *dev , int ifnum , unsigned char type , void *buf , int size ) { int result ; int retries ; unsigned int tmp ; { { retries = 4; __memset(buf, 0, (size_t )size); } ldv_35011: { tmp = __create_pipe(dev, 0U); result = usb_control_msg(dev, tmp | 2147483776U, 6, 129, (int )((__u16 )type) << 8U, (int )((__u16 )ifnum), buf, (int )((__u16 )size), 5000); retries = retries - 1; } if (result < size && retries != 0) { goto ldv_35011; } else { } return (result); } } int usbhid_open(struct hid_device *hid ) { struct usbhid_device *usbhid ; int res ; int tmp ; { { usbhid = (struct usbhid_device *)hid->driver_data; res = 0; ldv_mutex_lock_116(& hid_open_mut); tmp = hid->open; hid->open = hid->open + 1; } if (tmp == 0) { { res = usb_autopm_get_interface(usbhid->intf); } if (res < 0) { hid->open = hid->open - 1; res = -5; goto done; } else { } { (usbhid->intf)->needs_remote_wakeup = 1U; set_bit(12L, (unsigned long volatile *)(& usbhid->iofl)); res = hid_start_in(hid); } if (res != 0) { if (res != -28) { { hid_io_error(hid); res = 0; } } else { hid->open = hid->open - 1; res = -16; (usbhid->intf)->needs_remote_wakeup = 0U; } } else { } { usb_autopm_put_interface(usbhid->intf); msleep(50U); clear_bit(12L, (unsigned long volatile *)(& usbhid->iofl)); } } else { } done: { ldv_mutex_unlock_117(& hid_open_mut); } return (res); } } void usbhid_close(struct hid_device *hid ) { struct usbhid_device *usbhid ; { { usbhid = (struct usbhid_device *)hid->driver_data; ldv_mutex_lock_118(& hid_open_mut); ldv_spin_lock_irq_119(& usbhid->lock); hid->open = hid->open - 1; } if (hid->open == 0) { { ldv_spin_unlock_irq_120(& usbhid->lock); hid_cancel_delayed_stuff(usbhid); } if ((hid->quirks & 1024U) == 0U) { { usb_kill_urb(usbhid->urbin); (usbhid->intf)->needs_remote_wakeup = 0U; } } else { } } else { { ldv_spin_unlock_irq_120(& usbhid->lock); } } { ldv_mutex_unlock_122(& hid_open_mut); } return; } } void usbhid_init_reports(struct hid_device *hid ) { struct hid_report *report ; struct usbhid_device *usbhid ; struct hid_report_enum *report_enum ; int err ; int ret ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; struct list_head const *__mptr___2 ; int tmp ; int tmp___0 ; { usbhid = (struct usbhid_device *)hid->driver_data; if ((hid->quirks & 512U) == 0U) { report_enum = (struct hid_report_enum *)(& hid->report_enum); __mptr = (struct list_head const *)report_enum->report_list.next; report = (struct hid_report *)__mptr; goto ldv_35036; ldv_35035: { usbhid_submit_report(hid, report, 128); __mptr___0 = (struct list_head const *)report->list.next; report = (struct hid_report *)__mptr___0; } ldv_35036: ; if ((unsigned long )(& report->list) != (unsigned long )(& report_enum->report_list)) { goto ldv_35035; } else { } } else { } report_enum = (struct hid_report_enum *)(& hid->report_enum) + 2UL; __mptr___1 = (struct list_head const *)report_enum->report_list.next; report = (struct hid_report *)__mptr___1; goto ldv_35043; ldv_35042: { usbhid_submit_report(hid, report, 128); __mptr___2 = (struct list_head const *)report->list.next; report = (struct hid_report *)__mptr___2; } ldv_35043: ; if ((unsigned long )(& report->list) != (unsigned long )(& report_enum->report_list)) { goto ldv_35042; } else { } { err = 0; ret = usbhid_wait_io(hid); } goto ldv_35046; ldv_35045: { err = err | ret; tmp = constant_test_bit(1L, (unsigned long const volatile *)(& usbhid->iofl)); } if (tmp != 0) { { usb_kill_urb(usbhid->urbctrl); } } else { } { tmp___0 = constant_test_bit(2L, (unsigned long const volatile *)(& usbhid->iofl)); } if (tmp___0 != 0) { { usb_kill_urb(usbhid->urbout); } } else { } { ret = usbhid_wait_io(hid); } ldv_35046: ; if (ret != 0) { goto ldv_35045; } else { } if (err != 0) { { dev_warn((struct device const *)(& hid->dev), "timeout initializing reports\n"); } } else { } return; } } static int hid_find_field_early(struct hid_device *hid , unsigned int page , unsigned int hid_code , struct hid_field **pfield ) { struct hid_report *report ; struct hid_field *field ; struct hid_usage *usage ; int i ; int j ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { __mptr = (struct list_head const *)hid->report_enum[1].report_list.next; report = (struct hid_report *)__mptr; goto ldv_35070; ldv_35069: i = 0; goto ldv_35067; ldv_35066: field = report->field[i]; j = 0; goto ldv_35064; ldv_35063: usage = field->usage + (unsigned long )j; if ((usage->hid & 4294901760U) == page && (usage->hid & 65535U) == hid_code) { *pfield = field; return (j); } else { } j = j + 1; ldv_35064: ; if ((unsigned int )j < field->maxusage) { goto ldv_35063; } else { } i = i + 1; ldv_35067: ; if ((unsigned int )i < report->maxfield) { goto ldv_35066; } else { } __mptr___0 = (struct list_head const *)report->list.next; report = (struct hid_report *)__mptr___0; ldv_35070: ; if ((unsigned long )(& report->list) != (unsigned long )(& hid->report_enum[1].report_list)) { goto ldv_35069; } else { } return (-1); } } static void usbhid_set_leds(struct hid_device *hid ) { struct hid_field *field ; int offset ; { { offset = hid_find_field_early(hid, 524288U, 1U, & field); } if (offset != -1) { { hid_set_field(field, (unsigned int )offset, 0); usbhid_submit_report(hid, field->report, 0); } } else { } return; } } static void hid_find_max_report(struct hid_device *hid , unsigned int type , unsigned int *max ) { struct hid_report *report ; unsigned int size ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { __mptr = (struct list_head const *)hid->report_enum[type].report_list.next; report = (struct hid_report *)__mptr; goto ldv_35089; ldv_35088: size = (((report->size - 1U) >> 3) + hid->report_enum[type].numbered) + 1U; if (*max < size) { *max = size; } else { } __mptr___0 = (struct list_head const *)report->list.next; report = (struct hid_report *)__mptr___0; ldv_35089: ; if ((unsigned long )(& report->list) != (unsigned long )(& hid->report_enum[type].report_list)) { goto ldv_35088; } else { } return; } } static int hid_alloc_buffers(struct usb_device *dev , struct hid_device *hid ) { struct usbhid_device *usbhid ; void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; { { usbhid = (struct usbhid_device *)hid->driver_data; tmp = ldv_usb_alloc_coherent_123(dev, (size_t )usbhid->bufsize, 208U, & usbhid->inbuf_dma); usbhid->inbuf = (char *)tmp; tmp___0 = ldv_usb_alloc_coherent_124(dev, (size_t )usbhid->bufsize, 208U, & usbhid->outbuf_dma); usbhid->outbuf = (char *)tmp___0; tmp___1 = kmalloc(8UL, 208U); usbhid->cr = (struct usb_ctrlrequest *)tmp___1; tmp___2 = ldv_usb_alloc_coherent_125(dev, (size_t )usbhid->bufsize, 208U, & usbhid->ctrlbuf_dma); usbhid->ctrlbuf = (char *)tmp___2; } if ((((unsigned long )usbhid->inbuf == (unsigned long )((char *)0) || (unsigned long )usbhid->outbuf == (unsigned long )((char *)0)) || (unsigned long )usbhid->cr == (unsigned long )((struct usb_ctrlrequest *)0)) || (unsigned long )usbhid->ctrlbuf == (unsigned long )((char *)0)) { return (-1); } else { } return (0); } } static int usbhid_get_raw_report(struct hid_device *hid , unsigned char report_number , __u8 *buf , size_t count , unsigned char report_type ) { struct usbhid_device *usbhid ; struct usb_device *dev ; struct device const *__mptr ; struct usb_interface *intf ; struct usb_host_interface *interface ; int skipped_report_id ; int ret ; unsigned int tmp ; { usbhid = (struct usbhid_device *)hid->driver_data; __mptr = (struct device const *)(hid->dev.parent)->parent; dev = (struct usb_device *)__mptr + 0xffffffffffffff70UL; intf = usbhid->intf; interface = intf->cur_altsetting; skipped_report_id = 0; *buf = report_number; if ((unsigned int )report_number == 0U) { buf = buf + 1; count = count - 1UL; skipped_report_id = 1; } else { } { tmp = __create_pipe(dev, 0U); ret = usb_control_msg(dev, tmp | 2147483776U, 1, 161, (int )((__u16 )((int )((short )(((int )report_type + 1) << 8)) | (int )((short )report_number))), (int )interface->desc.bInterfaceNumber, (void *)buf, (int )((__u16 )count), 5000); } if (ret > 0 && skipped_report_id != 0) { ret = ret + 1; } else { } return (ret); } } static int usbhid_set_raw_report(struct hid_device *hid , unsigned int reportnum , __u8 *buf , size_t count , unsigned char rtype ) { struct usbhid_device *usbhid ; struct usb_device *dev ; struct device const *__mptr ; struct usb_interface *intf ; struct usb_host_interface *interface ; int ret ; int skipped_report_id ; unsigned int tmp ; { usbhid = (struct usbhid_device *)hid->driver_data; __mptr = (struct device const *)(hid->dev.parent)->parent; dev = (struct usb_device *)__mptr + 0xffffffffffffff70UL; intf = usbhid->intf; interface = intf->cur_altsetting; skipped_report_id = 0; if ((unsigned int )rtype == 1U && (hid->quirks & 131072U) != 0U) { *buf = 0U; } else { *buf = (__u8 )reportnum; } if ((unsigned int )*buf == 0U) { buf = buf + 1; count = count - 1UL; skipped_report_id = 1; } else { } { tmp = __create_pipe(dev, 0U); ret = usb_control_msg(dev, tmp | 2147483648U, 9, 33, (int )((((unsigned int )((__u16 )rtype) + 1U) << 8U) | (unsigned int )((__u16 )reportnum)), (int )interface->desc.bInterfaceNumber, (void *)buf, (int )((__u16 )count), 5000); } if (ret > 0 && skipped_report_id != 0) { ret = ret + 1; } else { } return (ret); } } static int usbhid_output_report(struct hid_device *hid , __u8 *buf , size_t count ) { struct usbhid_device *usbhid ; struct usb_device *dev ; struct device const *__mptr ; int actual_length ; int skipped_report_id ; int ret ; { usbhid = (struct usbhid_device *)hid->driver_data; __mptr = (struct device const *)(hid->dev.parent)->parent; dev = (struct usb_device *)__mptr + 0xffffffffffffff70UL; skipped_report_id = 0; if ((unsigned long )usbhid->urbout == (unsigned long )((struct urb *)0)) { return (-38); } else { } if ((unsigned int )*buf == 0U) { buf = buf + 1; count = count - 1UL; skipped_report_id = 1; } else { } { ret = usb_interrupt_msg(dev, (usbhid->urbout)->pipe, (void *)buf, (int )count, & actual_length, 5000); } if (ret == 0) { ret = actual_length; if (skipped_report_id != 0) { ret = ret + 1; } else { } } else { } return (ret); } } static void usbhid_restart_queues(struct usbhid_device *usbhid ) { int tmp ; int tmp___0 ; { if ((unsigned long )usbhid->urbout != (unsigned long )((struct urb *)0)) { { tmp = constant_test_bit(2L, (unsigned long const volatile *)(& usbhid->iofl)); } if (tmp == 0) { { usbhid_restart_out_queue(usbhid); } } else { } } else { } { tmp___0 = constant_test_bit(1L, (unsigned long const volatile *)(& usbhid->iofl)); } if (tmp___0 == 0) { { usbhid_restart_ctrl_queue(usbhid); } } else { } return; } } static void hid_free_buffers(struct usb_device *dev , struct hid_device *hid ) { struct usbhid_device *usbhid ; { { usbhid = (struct usbhid_device *)hid->driver_data; ldv_usb_free_coherent_126(dev, (size_t )usbhid->bufsize, (void *)usbhid->inbuf, usbhid->inbuf_dma); ldv_usb_free_coherent_127(dev, (size_t )usbhid->bufsize, (void *)usbhid->outbuf, usbhid->outbuf_dma); kfree((void const *)usbhid->cr); ldv_usb_free_coherent_128(dev, (size_t )usbhid->bufsize, (void *)usbhid->ctrlbuf, usbhid->ctrlbuf_dma); } return; } } static int usbhid_parse(struct hid_device *hid ) { struct usb_interface *intf ; struct device const *__mptr ; struct usb_host_interface *interface ; struct usb_device *dev ; struct usb_device *tmp ; struct hid_descriptor *hdesc ; u32 quirks ; unsigned int rsize ; char *rdesc ; int ret ; int n ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; { { __mptr = (struct device const *)hid->dev.parent; intf = (struct usb_interface *)__mptr + 0xffffffffffffffd0UL; interface = intf->cur_altsetting; tmp = interface_to_usbdev(intf); dev = tmp; quirks = 0U; rsize = 0U; quirks = usbhid_lookup_quirk((int )dev->descriptor.idVendor, (int )dev->descriptor.idProduct); } if ((quirks & 4U) != 0U) { return (-19); } else { } if ((unsigned int )interface->desc.bInterfaceSubClass == 1U) { if ((unsigned int )interface->desc.bInterfaceProtocol - 1U <= 1U) { quirks = quirks | 8U; } else { } } else { } { tmp___0 = __usb_get_extra_descriptor((char *)interface->extra, (unsigned int )interface->extralen, 33, (void **)(& hdesc)); } if (tmp___0 != 0) { if ((unsigned int )interface->desc.bNumEndpoints == 0U) { goto _L; } else { { tmp___1 = __usb_get_extra_descriptor((char *)(interface->endpoint)->extra, (unsigned int )(interface->endpoint)->extralen, 33, (void **)(& hdesc)); } if (tmp___1 != 0) { _L: /* CIL Label */ if (hid_debug != 0) { { printk("\017%s: class descriptor not present\n", (char *)"drivers/hid/usbhid/hid-core.c"); } } else { } return (-19); } else { } } } else { } hid->version = (__u32 )hdesc->bcdHID; hid->country = (unsigned int )hdesc->bCountryCode; n = 0; goto ldv_35161; ldv_35160: ; if ((unsigned int )hdesc->desc[n].bDescriptorType == 34U) { rsize = (unsigned int )hdesc->desc[n].wDescriptorLength; } else { } n = n + 1; ldv_35161: ; if (n < (int )hdesc->bNumDescriptors) { goto ldv_35160; } else { } if (rsize - 1U > 4095U) { if (hid_debug != 0) { { printk("\017%s: weird size of report descriptor (%u)\n", (char *)"drivers/hid/usbhid/hid-core.c", rsize); } } else { } return (-22); } else { } { tmp___2 = kmalloc((size_t )rsize, 208U); rdesc = (char *)tmp___2; } if ((unsigned long )rdesc == (unsigned long )((char *)0)) { if (hid_debug != 0) { { printk("\017%s: couldn\'t allocate rdesc memory\n", (char *)"drivers/hid/usbhid/hid-core.c"); } } else { } return (-12); } else { } { hid_set_idle(dev, (int )interface->desc.bInterfaceNumber, 0, 0); ret = hid_get_class_descriptor(dev, (int )interface->desc.bInterfaceNumber, 34, (void *)rdesc, (int )rsize); } if (ret < 0) { if (hid_debug != 0) { { printk("\017%s: reading report descriptor failed\n", (char *)"drivers/hid/usbhid/hid-core.c"); } } else { } { kfree((void const *)rdesc); } goto err; } else { } { ret = hid_parse_report(hid, (__u8 *)rdesc, rsize); kfree((void const *)rdesc); } if (ret != 0) { if (hid_debug != 0) { { printk("\017%s: parsing report descriptor failed\n", (char *)"drivers/hid/usbhid/hid-core.c"); } } else { } goto err; } else { } hid->quirks = hid->quirks | quirks; return (0); err: ; return (ret); } } static int usbhid_start(struct hid_device *hid ) { struct usb_interface *intf ; struct device const *__mptr ; struct usb_host_interface *interface ; struct usb_device *dev ; struct usb_device *tmp ; struct usbhid_device *usbhid ; unsigned int n ; unsigned int insize ; int ret ; int tmp___0 ; struct usb_endpoint_descriptor *endpoint ; int pipe ; int interval ; int tmp___1 ; struct urb *tmp___2 ; unsigned int tmp___3 ; struct urb *tmp___4 ; unsigned int tmp___5 ; int tmp___6 ; { { __mptr = (struct device const *)hid->dev.parent; intf = (struct usb_interface *)__mptr + 0xffffffffffffffd0UL; interface = intf->cur_altsetting; tmp = interface_to_usbdev(intf); dev = tmp; usbhid = (struct usbhid_device *)hid->driver_data; insize = 0U; clear_bit(7L, (unsigned long volatile *)(& usbhid->iofl)); usbhid->bufsize = 64U; hid_find_max_report(hid, 0U, & usbhid->bufsize); hid_find_max_report(hid, 1U, & usbhid->bufsize); hid_find_max_report(hid, 2U, & usbhid->bufsize); } if (usbhid->bufsize > 4096U) { usbhid->bufsize = 4096U; } else { } { hid_find_max_report(hid, 0U, & insize); } if (insize > 4096U) { insize = 4096U; } else { } { tmp___0 = hid_alloc_buffers(dev, hid); } if (tmp___0 != 0) { ret = -12; goto fail; } else { } n = 0U; goto ldv_35182; ldv_35181: { endpoint = & (interface->endpoint + (unsigned long )n)->desc; tmp___1 = usb_endpoint_xfer_int((struct usb_endpoint_descriptor const *)endpoint); } if (tmp___1 == 0) { goto ldv_35180; } else { } interval = (int )endpoint->bInterval; if ((hid->quirks & 268435456U) != 0U && (unsigned int )dev->speed == 3U) { { interval = fls((int )endpoint->bInterval * 8); printk("\016%s: Fixing fullspeed to highspeed interval: %d -> %d\n", (char *)(& hid->name), (int )endpoint->bInterval, interval); } } else { } if ((hid->collection)->usage == 65538U && hid_mousepoll_interval != 0U) { interval = (int )hid_mousepoll_interval; } else { } { ret = -12; tmp___6 = usb_endpoint_dir_in((struct usb_endpoint_descriptor const *)endpoint); } if (tmp___6 != 0) { if ((unsigned long )usbhid->urbin != (unsigned long )((struct urb *)0)) { goto ldv_35180; } else { } { tmp___2 = ldv_usb_alloc_urb_129(0, 208U); usbhid->urbin = tmp___2; } if ((unsigned long )tmp___2 == (unsigned long )((struct urb *)0)) { goto fail; } else { } { tmp___3 = __create_pipe(dev, (unsigned int )endpoint->bEndpointAddress); pipe = (int )(tmp___3 | 1073741952U); usb_fill_int_urb(usbhid->urbin, dev, (unsigned int )pipe, (void *)usbhid->inbuf, (int )insize, & hid_irq_in, (void *)hid, interval); (usbhid->urbin)->transfer_dma = usbhid->inbuf_dma; (usbhid->urbin)->transfer_flags = (usbhid->urbin)->transfer_flags | 4U; } } else { if ((unsigned long )usbhid->urbout != (unsigned long )((struct urb *)0)) { goto ldv_35180; } else { } { tmp___4 = ldv_usb_alloc_urb_130(0, 208U); usbhid->urbout = tmp___4; } if ((unsigned long )tmp___4 == (unsigned long )((struct urb *)0)) { goto fail; } else { } { tmp___5 = __create_pipe(dev, (unsigned int )endpoint->bEndpointAddress); pipe = (int )(tmp___5 | 1073741824U); usb_fill_int_urb(usbhid->urbout, dev, (unsigned int )pipe, (void *)usbhid->outbuf, 0, & hid_irq_out, (void *)hid, interval); (usbhid->urbout)->transfer_dma = usbhid->outbuf_dma; (usbhid->urbout)->transfer_flags = (usbhid->urbout)->transfer_flags | 4U; } } ldv_35180: n = n + 1U; ldv_35182: ; if (n < (unsigned int )interface->desc.bNumEndpoints) { goto ldv_35181; } else { } { usbhid->urbctrl = ldv_usb_alloc_urb_131(0, 208U); } if ((unsigned long )usbhid->urbctrl == (unsigned long )((struct urb *)0)) { ret = -12; goto fail; } else { } { usb_fill_control_urb(usbhid->urbctrl, dev, 0U, (unsigned char *)usbhid->cr, (void *)usbhid->ctrlbuf, 1, & hid_ctrl, (void *)hid); (usbhid->urbctrl)->transfer_dma = usbhid->ctrlbuf_dma; (usbhid->urbctrl)->transfer_flags = (usbhid->urbctrl)->transfer_flags | 4U; } if ((hid->quirks & 536870912U) == 0U) { { usbhid_init_reports(hid); } } else { } { set_bit(8L, (unsigned long volatile *)(& usbhid->iofl)); } if ((hid->quirks & 1024U) != 0U) { { ret = usb_autopm_get_interface(usbhid->intf); } if (ret != 0) { goto fail; } else { } { (usbhid->intf)->needs_remote_wakeup = 1U; ret = hid_start_in(hid); } if (ret != 0) { { dev_err((struct device const *)(& hid->dev), "failed to start in urb: %d\n", ret); } } else { } { usb_autopm_put_interface(usbhid->intf); } } else { } if ((unsigned int )*((unsigned short *)interface + 3UL) == 257U) { { usbhid_set_leds(hid); device_set_wakeup_enable(& dev->dev, 1); } } else { } return (0); fail: { ldv_usb_free_urb_132(usbhid->urbin); ldv_usb_free_urb_133(usbhid->urbout); ldv_usb_free_urb_134(usbhid->urbctrl); usbhid->urbin = (struct urb *)0; usbhid->urbout = (struct urb *)0; usbhid->urbctrl = (struct urb *)0; hid_free_buffers(dev, hid); } return (ret); } } static void usbhid_stop(struct hid_device *hid ) { struct usbhid_device *usbhid ; int __ret_warn_on ; long tmp ; long tmp___0 ; struct device const *__mptr ; { { usbhid = (struct usbhid_device *)hid->driver_data; __ret_warn_on = (unsigned long )usbhid == (unsigned long )((struct usbhid_device *)0); tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/hid/usbhid/hid-core.c", 1178); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { return; } else { } if ((hid->quirks & 1024U) != 0U) { (usbhid->intf)->needs_remote_wakeup = 0U; } else { } { clear_bit(8L, (unsigned long volatile *)(& usbhid->iofl)); ldv_spin_lock_irq_119(& usbhid->lock); set_bit(7L, (unsigned long volatile *)(& usbhid->iofl)); ldv_spin_unlock_irq_120(& usbhid->lock); usb_kill_urb(usbhid->urbin); usb_kill_urb(usbhid->urbout); usb_kill_urb(usbhid->urbctrl); hid_cancel_delayed_stuff(usbhid); hid->claimed = 0U; ldv_usb_free_urb_137(usbhid->urbin); ldv_usb_free_urb_138(usbhid->urbctrl); ldv_usb_free_urb_139(usbhid->urbout); usbhid->urbin = (struct urb *)0; usbhid->urbctrl = (struct urb *)0; usbhid->urbout = (struct urb *)0; __mptr = (struct device const *)(hid->dev.parent)->parent; hid_free_buffers((struct usb_device *)__mptr + 0xffffffffffffff70UL, hid); } return; } } static int usbhid_power(struct hid_device *hid , int lvl ) { int r ; { r = 0; { if (lvl == 32) { goto case_32; } else { } if (lvl == 2) { goto case_2; } else { } goto switch_break; case_32: /* CIL Label */ { r = usbhid_get_power(hid); } goto ldv_35198; case_2: /* CIL Label */ { usbhid_put_power(hid); } goto ldv_35198; switch_break: /* CIL Label */ ; } ldv_35198: ; return (r); } } static void usbhid_request(struct hid_device *hid , struct hid_report *rep , int reqtype ) { { { if (reqtype == 1) { goto case_1; } else { } if (reqtype == 9) { goto case_9; } else { } goto switch_break; case_1: /* CIL Label */ { usbhid_submit_report(hid, rep, 128); } goto ldv_35206; case_9: /* CIL Label */ { usbhid_submit_report(hid, rep, 0); } goto ldv_35206; switch_break: /* CIL Label */ ; } ldv_35206: ; return; } } static int usbhid_raw_request(struct hid_device *hid , unsigned char reportnum , __u8 *buf , size_t len , unsigned char rtype , int reqtype ) { int tmp ; int tmp___0 ; { { if (reqtype == 1) { goto case_1; } else { } if (reqtype == 9) { goto case_9; } else { } goto switch_default; case_1: /* CIL Label */ { tmp = usbhid_get_raw_report(hid, (int )reportnum, buf, len, (int )rtype); } return (tmp); case_9: /* CIL Label */ { tmp___0 = usbhid_set_raw_report(hid, (unsigned int )reportnum, buf, len, (int )rtype); } return (tmp___0); switch_default: /* CIL Label */ ; return (-5); switch_break: /* CIL Label */ ; } } } static int usbhid_idle(struct hid_device *hid , int report , int idle , int reqtype ) { struct usb_device *dev ; struct device const *__mptr ; struct usb_interface *intf ; struct device const *__mptr___0 ; struct usb_host_interface *interface ; int ifnum ; int tmp ; { __mptr = (struct device const *)(hid->dev.parent)->parent; dev = (struct usb_device *)__mptr + 0xffffffffffffff70UL; __mptr___0 = (struct device const *)hid->dev.parent; intf = (struct usb_interface *)__mptr___0 + 0xffffffffffffffd0UL; interface = intf->cur_altsetting; ifnum = (int )interface->desc.bInterfaceNumber; if (reqtype != 10) { return (-22); } else { } { tmp = hid_set_idle(dev, ifnum, report, idle); } return (tmp); } } static struct hid_ll_driver usb_hid_driver = {& usbhid_start, & usbhid_stop, & usbhid_open, & usbhid_close, & usbhid_power, & usbhid_parse, & usbhid_request, & usbhid_wait_io, & usbhid_raw_request, & usbhid_output_report, & usbhid_idle}; static int usbhid_probe(struct usb_interface *intf , struct usb_device_id const *id ) { struct usb_host_interface *interface ; struct usb_device *dev ; struct usb_device *tmp ; struct usbhid_device *usbhid ; struct hid_device *hid ; unsigned int n ; unsigned int has_in ; size_t len ; int ret ; int tmp___0 ; long tmp___1 ; bool tmp___2 ; size_t tmp___3 ; int tmp___4 ; void *tmp___5 ; struct lock_class_key __key ; struct lock_class_key __key___0 ; atomic_long_t __constr_expr_0 ; struct lock_class_key __key___1 ; struct lock_class_key __key___2 ; { { interface = intf->cur_altsetting; tmp = interface_to_usbdev(intf); dev = tmp; has_in = 0U; } if (hid_debug != 0) { { printk("\017%s: HID probe called for ifnum %d\n", (char *)"drivers/hid/usbhid/hid-core.c", (int )(intf->altsetting)->desc.bInterfaceNumber); } } else { } n = 0U; goto ldv_35247; ldv_35246: { tmp___0 = usb_endpoint_is_int_in((struct usb_endpoint_descriptor const *)(& (interface->endpoint + (unsigned long )n)->desc)); } if (tmp___0 != 0) { has_in = has_in + 1U; } else { } n = n + 1U; ldv_35247: ; if (n < (unsigned int )interface->desc.bNumEndpoints) { goto ldv_35246; } else { } if (has_in == 0U) { { dev_err((struct device const *)(& intf->dev), "couldn\'t find an input interrupt endpoint\n"); } return (-19); } else { } { hid = hid_allocate_device(); tmp___2 = IS_ERR((void const *)hid); } if ((int )tmp___2) { { tmp___1 = PTR_ERR((void const *)hid); } return ((int )tmp___1); } else { } { usb_set_intfdata(intf, (void *)hid); hid->ll_driver = & usb_hid_driver; hid->ff_init = & hid_pidff_init; hid->hiddev_connect = & hiddev_connect; hid->hiddev_disconnect = & hiddev_disconnect; hid->hiddev_hid_event = & hiddev_hid_event; hid->hiddev_report_event = & hiddev_report_event; hid->dev.parent = & intf->dev; hid->bus = 3U; hid->vendor = (__u32 )dev->descriptor.idVendor; hid->product = (__u32 )dev->descriptor.idProduct; hid->name[0] = 0; hid->quirks = usbhid_lookup_quirk((int )((u16 const )hid->vendor), (int )((u16 const )hid->product)); } if ((unsigned int )(intf->cur_altsetting)->desc.bInterfaceProtocol == 2U) { hid->type = 1; } else if ((unsigned int )(intf->cur_altsetting)->desc.bInterfaceProtocol == 0U) { hid->type = 2; } else { } if ((unsigned long )dev->manufacturer != (unsigned long )((char *)0)) { { strlcpy((char *)(& hid->name), (char const *)dev->manufacturer, 128UL); } } else { } if ((unsigned long )dev->product != (unsigned long )((char *)0)) { if ((unsigned long )dev->manufacturer != (unsigned long )((char *)0)) { { strlcat((char *)(& hid->name), " ", 128UL); } } else { } { strlcat((char *)(& hid->name), (char const *)dev->product, 128UL); } } else { } { tmp___3 = strlen((char const *)(& hid->name)); } if (tmp___3 == 0UL) { { snprintf((char *)(& hid->name), 128UL, "HID %04x:%04x", (int )dev->descriptor.idVendor, (int )dev->descriptor.idProduct); } } else { } { usb_make_path(dev, (char *)(& hid->phys), 64UL); strlcat((char *)(& hid->phys), "/input", 64UL); len = strlen((char const *)(& hid->phys)); } if (len <= 62UL) { { snprintf((char *)(& hid->phys) + len, 64UL - len, "%d", (int )(intf->altsetting)->desc.bInterfaceNumber); } } else { } { tmp___4 = usb_string(dev, (int )dev->descriptor.iSerialNumber, (char *)(& hid->uniq), 64UL); } if (tmp___4 <= 0) { hid->uniq[0] = 0; } else { } { tmp___5 = kzalloc(10768UL, 208U); usbhid = (struct usbhid_device *)tmp___5; } if ((unsigned long )usbhid == (unsigned long )((struct usbhid_device *)0)) { ret = -12; goto err; } else { } { hid->driver_data = (void *)usbhid; usbhid->hid = hid; usbhid->intf = intf; usbhid->ifnum = (int )interface->desc.bInterfaceNumber; __init_waitqueue_head(& usbhid->wait, "&usbhid->wait", & __key); __init_work(& usbhid->reset_work, 0); __constr_expr_0.counter = 137438953408L; usbhid->reset_work.data = __constr_expr_0; lockdep_init_map(& usbhid->reset_work.lockdep_map, "(&usbhid->reset_work)", & __key___0, 0); INIT_LIST_HEAD(& usbhid->reset_work.entry); usbhid->reset_work.func = & hid_reset; init_timer_key(& usbhid->io_retry, 0U, "((&usbhid->io_retry))", & __key___1); usbhid->io_retry.function = & hid_retry_timeout; usbhid->io_retry.data = (unsigned long )hid; spinlock_check(& usbhid->lock); __raw_spin_lock_init(& usbhid->lock.__annonCompField18.rlock, "&(&usbhid->lock)->rlock", & __key___2); ret = hid_add_device(hid); } if (ret != 0) { if (ret != -19) { { dev_err((struct device const *)(& intf->dev), "can\'t add hid device: %d\n", ret); } } else { } goto err_free; } else { } return (0); err_free: { kfree((void const *)usbhid); } err: { hid_destroy_device(hid); } return (ret); } } static void usbhid_disconnect(struct usb_interface *intf ) { struct hid_device *hid ; void *tmp ; struct usbhid_device *usbhid ; int __ret_warn_on ; long tmp___0 ; long tmp___1 ; { { tmp = usb_get_intfdata(intf); hid = (struct hid_device *)tmp; __ret_warn_on = (unsigned long )hid == (unsigned long )((struct hid_device *)0); tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("drivers/hid/usbhid/hid-core.c", 1381); } } else { } { tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { return; } else { } { usbhid = (struct usbhid_device *)hid->driver_data; ldv_spin_lock_irq_119(& usbhid->lock); set_bit(7L, (unsigned long volatile *)(& usbhid->iofl)); ldv_spin_unlock_irq_120(& usbhid->lock); hid_destroy_device(hid); kfree((void const *)usbhid); } return; } } static void hid_cancel_delayed_stuff(struct usbhid_device *usbhid ) { { { ldv_del_timer_sync_142(& usbhid->io_retry); cancel_work_sync(& usbhid->reset_work); } return; } } static void hid_cease_io(struct usbhid_device *usbhid ) { { { ldv_del_timer_sync_143(& usbhid->io_retry); usb_kill_urb(usbhid->urbin); usb_kill_urb(usbhid->urbctrl); usb_kill_urb(usbhid->urbout); } return; } } static int hid_pre_reset(struct usb_interface *intf ) { struct hid_device *hid ; void *tmp ; struct usbhid_device *usbhid ; { { tmp = usb_get_intfdata(intf); hid = (struct hid_device *)tmp; usbhid = (struct usbhid_device *)hid->driver_data; ldv_spin_lock_irq_119(& usbhid->lock); set_bit(4L, (unsigned long volatile *)(& usbhid->iofl)); ldv_spin_unlock_irq_120(& usbhid->lock); hid_cease_io(usbhid); } return (0); } } static int hid_post_reset(struct usb_interface *intf ) { struct usb_device *dev ; struct usb_device *tmp ; struct hid_device *hid ; void *tmp___0 ; struct usbhid_device *usbhid ; struct usb_host_interface *interface ; int status ; char *rdesc ; void *tmp___1 ; { { tmp = interface_to_usbdev(intf); dev = tmp; tmp___0 = usb_get_intfdata(intf); hid = (struct hid_device *)tmp___0; usbhid = (struct usbhid_device *)hid->driver_data; interface = intf->cur_altsetting; tmp___1 = kmalloc((size_t )hid->dev_rsize, 208U); rdesc = (char *)tmp___1; } if ((unsigned long )rdesc == (unsigned long )((char *)0)) { if (hid_debug != 0) { { printk("\017%s: couldn\'t allocate rdesc memory (post_reset)\n", (char *)"drivers/hid/usbhid/hid-core.c"); } } else { } return (1); } else { } { status = hid_get_class_descriptor(dev, (int )interface->desc.bInterfaceNumber, 34, (void *)rdesc, (int )hid->dev_rsize); } if (status < 0) { if (hid_debug != 0) { { printk("\017%s: reading report descriptor failed (post_reset)\n", (char *)"drivers/hid/usbhid/hid-core.c"); } } else { } { kfree((void const *)rdesc); } return (1); } else { } { status = memcmp((void const *)rdesc, (void const *)hid->dev_rdesc, (size_t )hid->dev_rsize); kfree((void const *)rdesc); } if (status != 0) { if (hid_debug != 0) { { printk("\017%s: report descriptor changed\n", (char *)"drivers/hid/usbhid/hid-core.c"); } } else { } return (1); } else { } { ldv_spin_lock_irq_119(& usbhid->lock); clear_bit(4L, (unsigned long volatile *)(& usbhid->iofl)); ldv_spin_unlock_irq_120(& usbhid->lock); hid_set_idle(dev, (int )(intf->cur_altsetting)->desc.bInterfaceNumber, 0, 0); status = hid_start_in(hid); } if (status < 0) { { hid_io_error(hid); } } else { } { usbhid_restart_queues(usbhid); } return (0); } } int usbhid_get_power(struct hid_device *hid ) { struct usbhid_device *usbhid ; int tmp ; { { usbhid = (struct usbhid_device *)hid->driver_data; tmp = usb_autopm_get_interface(usbhid->intf); } return (tmp); } } void usbhid_put_power(struct hid_device *hid ) { struct usbhid_device *usbhid ; { { usbhid = (struct usbhid_device *)hid->driver_data; usb_autopm_put_interface(usbhid->intf); } return; } } static int hid_resume_common(struct hid_device *hid , bool driver_suspended ) { struct usbhid_device *usbhid ; int status ; int tmp ; int tmp___0 ; { { usbhid = (struct usbhid_device *)hid->driver_data; ldv_spin_lock_irq_119(& usbhid->lock); clear_bit(5L, (unsigned long volatile *)(& usbhid->iofl)); usbhid_mark_busy(usbhid); tmp = constant_test_bit(6L, (unsigned long const volatile *)(& usbhid->iofl)); } if (tmp != 0) { { schedule_work(& usbhid->reset_work); } } else { { tmp___0 = constant_test_bit(4L, (unsigned long const volatile *)(& usbhid->iofl)); } if (tmp___0 != 0) { { schedule_work(& usbhid->reset_work); } } else { } } { usbhid->retry_delay = 0U; usbhid_restart_queues(usbhid); ldv_spin_unlock_irq_120(& usbhid->lock); status = hid_start_in(hid); } if (status < 0) { { hid_io_error(hid); } } else { } if (((int )driver_suspended && (unsigned long )hid->driver != (unsigned long )((struct hid_driver *)0)) && (unsigned long )(hid->driver)->resume != (unsigned long )((int (*)(struct hid_device * ))0)) { { status = (*((hid->driver)->resume))(hid); } } else { } return (status); } } static int hid_suspend(struct usb_interface *intf , pm_message_t message ) { struct hid_device *hid ; void *tmp ; struct usbhid_device *usbhid ; int status ; bool driver_suspended ; unsigned int ledcount ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; struct _ddebug descriptor ; long tmp___7 ; { { tmp = usb_get_intfdata(intf); hid = (struct hid_device *)tmp; usbhid = (struct usbhid_device *)hid->driver_data; status = 0; driver_suspended = 0; } if ((message.event & 1024) != 0) { { ledcount = hidinput_count_leds(hid); ldv_spin_lock_irq_119(& usbhid->lock); tmp___0 = constant_test_bit(4L, (unsigned long const volatile *)(& usbhid->iofl)); } if (tmp___0 == 0) { { tmp___1 = constant_test_bit(6L, (unsigned long const volatile *)(& usbhid->iofl)); } if (tmp___1 == 0) { { tmp___2 = constant_test_bit(2L, (unsigned long const volatile *)(& usbhid->iofl)); } if (tmp___2 == 0) { { tmp___3 = constant_test_bit(1L, (unsigned long const volatile *)(& usbhid->iofl)); } if (tmp___3 == 0) { { tmp___4 = constant_test_bit(10L, (unsigned long const volatile *)(& usbhid->iofl)); } if (tmp___4 == 0) { if (ledcount == 0U || ignoreled != 0U) { { set_bit(5L, (unsigned long volatile *)(& usbhid->iofl)); ldv_spin_unlock_irq_120(& usbhid->lock); } if ((unsigned long )hid->driver != (unsigned long )((struct hid_driver *)0) && (unsigned long )(hid->driver)->suspend != (unsigned long )((int (*)(struct hid_device * , pm_message_t ))0)) { { status = (*((hid->driver)->suspend))(hid, message); } if (status < 0) { goto failed; } else { } } else { } driver_suspended = 1; } else { { usbhid_mark_busy(usbhid); ldv_spin_unlock_irq_120(& usbhid->lock); } return (-16); } } else { { usbhid_mark_busy(usbhid); ldv_spin_unlock_irq_120(& usbhid->lock); } return (-16); } } else { { usbhid_mark_busy(usbhid); ldv_spin_unlock_irq_120(& usbhid->lock); } return (-16); } } else { { usbhid_mark_busy(usbhid); ldv_spin_unlock_irq_120(& usbhid->lock); } return (-16); } } else { { usbhid_mark_busy(usbhid); ldv_spin_unlock_irq_120(& usbhid->lock); } return (-16); } } else { { usbhid_mark_busy(usbhid); ldv_spin_unlock_irq_120(& usbhid->lock); } return (-16); } } else { if ((unsigned long )hid->driver != (unsigned long )((struct hid_driver *)0) && (unsigned long )(hid->driver)->suspend != (unsigned long )((int (*)(struct hid_device * , pm_message_t ))0)) { { status = (*((hid->driver)->suspend))(hid, message); } } else { } { driver_suspended = 1; ldv_spin_lock_irq_119(& usbhid->lock); set_bit(5L, (unsigned long volatile *)(& usbhid->iofl)); ldv_spin_unlock_irq_120(& usbhid->lock); tmp___5 = usbhid_wait_io(hid); } if (tmp___5 < 0) { status = -5; } else { } } { hid_cancel_delayed_stuff(usbhid); hid_cease_io(usbhid); } if ((message.event & 1024) != 0) { { tmp___6 = constant_test_bit(10L, (unsigned long const volatile *)(& usbhid->iofl)); } if (tmp___6 != 0) { status = -16; goto failed; } else { } } else { } { descriptor.modname = "usbhid"; descriptor.function = "hid_suspend"; descriptor.filename = "drivers/hid/usbhid/hid-core.c"; descriptor.format = "suspend\n"; descriptor.lineno = 1561U; descriptor.flags = 0U; tmp___7 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___7 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& intf->dev), "suspend\n"); } } else { } return (status); failed: { hid_resume_common(hid, (int )driver_suspended); } return (status); } } static int hid_resume(struct usb_interface *intf ) { struct hid_device *hid ; void *tmp ; struct usbhid_device *usbhid ; int status ; int tmp___0 ; struct _ddebug descriptor ; long tmp___1 ; { { tmp = usb_get_intfdata(intf); hid = (struct hid_device *)tmp; usbhid = (struct usbhid_device *)hid->driver_data; tmp___0 = constant_test_bit(8L, (unsigned long const volatile *)(& usbhid->iofl)); } if (tmp___0 == 0) { return (0); } else { } { status = hid_resume_common(hid, 1); descriptor.modname = "usbhid"; descriptor.function = "hid_resume"; descriptor.filename = "drivers/hid/usbhid/hid-core.c"; descriptor.format = "resume status %d\n"; descriptor.lineno = 1579U; descriptor.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___1 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& intf->dev), "resume status %d\n", status); } } else { } return (0); } } static int hid_reset_resume(struct usb_interface *intf ) { struct hid_device *hid ; void *tmp ; struct usbhid_device *usbhid ; int status ; int ret ; int tmp___0 ; { { tmp = usb_get_intfdata(intf); hid = (struct hid_device *)tmp; usbhid = (struct usbhid_device *)hid->driver_data; clear_bit(5L, (unsigned long volatile *)(& usbhid->iofl)); status = hid_post_reset(intf); } if ((status >= 0 && (unsigned long )hid->driver != (unsigned long )((struct hid_driver *)0)) && (unsigned long )(hid->driver)->reset_resume != (unsigned long )((int (*)(struct hid_device * ))0)) { { tmp___0 = (*((hid->driver)->reset_resume))(hid); ret = tmp___0; } if (ret < 0) { status = ret; } else { } } else { } return (status); } } static struct usb_device_id const hid_usb_ids[2U] = { {128U, (unsigned short)0, (unsigned short)0, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 3U, (unsigned char)0, (unsigned char)0, (unsigned char)0, 0UL}}; struct usb_device_id const __mod_usb__hid_usb_ids_device_table[2U] ; static struct usb_driver hid_driver = {"usbhid", & usbhid_probe, & usbhid_disconnect, 0, & hid_suspend, & hid_resume, & hid_reset_resume, & hid_pre_reset, & hid_post_reset, (struct usb_device_id const *)(& hid_usb_ids), {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}, {{0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 0}, (unsigned char)0, 1U, (unsigned char)0, (unsigned char)0}; struct usb_interface *usbhid_find_interface(int minor ) { struct usb_interface *tmp ; { { tmp = usb_find_interface(& hid_driver, minor); } return (tmp); } } static int hid_init(void) { int retval ; { { retval = -12; retval = usbhid_quirks_init((char **)(& quirks_param)); } if (retval != 0) { goto usbhid_quirks_init_fail; } else { } { retval = ldv_usb_register_driver_155(& hid_driver, & __this_module, "usbhid"); } if (retval != 0) { goto usb_register_fail; } else { } { printk("\016usbhid: USB HID core driver\n"); } return (0); usb_register_fail: { usbhid_quirks_exit(); } usbhid_quirks_init_fail: ; return (retval); } } static void hid_exit(void) { { { ldv_usb_deregister_156(& hid_driver); usbhid_quirks_exit(); } return; } } void ldv_EMGentry_exit_hid_exit_10_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_hid_init_10_11(int (*arg0)(void) ) ; int ldv_del_timer_sync(int arg0 , struct timer_list *arg1 ) ; void ldv_dispatch_deregister_8_1(struct usb_driver *arg0 ) ; void ldv_dispatch_deregister_file_operations_instance_5_10_4(void) ; void ldv_dispatch_deregister_io_instance_7_10_5(void) ; void ldv_dispatch_instance_deregister_5_2(struct usb_driver *arg0 ) ; void ldv_dispatch_instance_deregister_6_1(struct timer_list *arg0 ) ; void ldv_dispatch_instance_register_5_3(struct usb_driver *arg0 ) ; void ldv_dispatch_instance_register_7_2(struct timer_list *arg0 ) ; void ldv_dispatch_register_9_2(struct usb_driver *arg0 ) ; void ldv_dispatch_register_file_operations_instance_5_10_6(void) ; void ldv_dispatch_register_io_instance_7_10_7(void) ; void ldv_entry_EMGentry_10(void *arg0 ) ; int main(void) ; void ldv_file_operations_file_operations_instance_0(void *arg0 ) ; void ldv_iio_triggered_buffer_iio_triggered_buffer_instance_1(void *arg0 ) ; enum irqreturn ldv_iio_triggered_buffer_instance_handler_1_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_iio_triggered_buffer_instance_thread_1_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_io_instance_callback_2_17(int (*arg0)(struct hid_device * , int , int , int ) , struct hid_device *arg1 , int arg2 , int arg3 , int arg4 ) ; void ldv_io_instance_callback_2_20(int (*arg0)(struct hid_device * ) , struct hid_device *arg1 ) ; void ldv_io_instance_callback_2_21(int (*arg0)(struct hid_device * , unsigned char * , unsigned long ) , struct hid_device *arg1 , unsigned char *arg2 , unsigned long arg3 ) ; void ldv_io_instance_callback_2_24(int (*arg0)(struct hid_device * ) , struct hid_device *arg1 ) ; void ldv_io_instance_callback_2_25(int (*arg0)(struct hid_device * , int ) , struct hid_device *arg1 , int arg2 ) ; void ldv_io_instance_callback_2_28(int (*arg0)(struct hid_device * , unsigned char , unsigned char * , unsigned long , unsigned char , int ) , struct hid_device *arg1 , unsigned char arg2 , unsigned char *arg3 , unsigned long arg4 , unsigned char arg5 , int arg6 ) ; void ldv_io_instance_callback_2_31(void (*arg0)(struct hid_device * , struct hid_report * , int ) , struct hid_device *arg1 , struct hid_report *arg2 , int arg3 ) ; void ldv_io_instance_callback_2_34(int (*arg0)(struct hid_device * ) , struct hid_device *arg1 ) ; void ldv_io_instance_callback_2_4(void (*arg0)(struct hid_device * ) , struct hid_device *arg1 ) ; int ldv_io_instance_probe_2_11(int (*arg0)(struct hid_device * ) , struct hid_device *arg1 ) ; void ldv_io_instance_release_2_2(void (*arg0)(struct hid_device * ) , struct hid_device *arg1 ) ; int ldv_mod_timer(int arg0 , struct timer_list *arg1 , unsigned long arg2 ) ; void ldv_struct_hid_ll_driver_io_instance_2(void *arg0 ) ; void ldv_timer_instance_callback_3_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) ; void ldv_timer_timer_instance_3(void *arg0 ) ; void ldv_usb_deregister(void *arg0 , struct usb_driver *arg1 ) ; void ldv_usb_dummy_factory_5(void *arg0 ) ; void ldv_usb_instance_callback_4_6(int (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) ; void ldv_usb_instance_post_4_9(int (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) ; void ldv_usb_instance_pre_4_10(int (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) ; int ldv_usb_instance_probe_4_13(int (*arg0)(struct usb_interface * , struct usb_device_id * ) , struct usb_interface *arg1 , struct usb_device_id *arg2 ) ; void ldv_usb_instance_release_4_4(void (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) ; void ldv_usb_instance_resume_4_7(int (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) ; void ldv_usb_instance_suspend_4_8(int (*arg0)(struct usb_interface * , struct pm_message ) , struct usb_interface *arg1 , struct pm_message *arg2 ) ; int ldv_usb_register_driver(int arg0 , struct usb_driver *arg1 , struct module *arg2 , char *arg3 ) ; void ldv_usb_usb_instance_4(void *arg0 ) ; struct ldv_thread ldv_thread_1 ; struct ldv_thread ldv_thread_10 ; struct ldv_thread ldv_thread_2 ; struct ldv_thread ldv_thread_3 ; struct ldv_thread ldv_thread_4 ; struct ldv_thread ldv_thread_5 ; void ldv_EMGentry_exit_hid_exit_10_2(void (*arg0)(void) ) { { { hid_exit(); } return; } } int ldv_EMGentry_init_hid_init_10_11(int (*arg0)(void) ) { int tmp ; { { tmp = hid_init(); } return (tmp); } } int ldv_del_timer_sync(int arg0 , struct timer_list *arg1 ) { struct timer_list *ldv_6_timer_list_timer_list ; { { ldv_6_timer_list_timer_list = arg1; ldv_dispatch_instance_deregister_6_1(ldv_6_timer_list_timer_list); } return (arg0); return (arg0); } } void ldv_dispatch_deregister_8_1(struct usb_driver *arg0 ) { { return; } } void ldv_dispatch_deregister_file_operations_instance_5_10_4(void) { { return; } } void ldv_dispatch_deregister_io_instance_7_10_5(void) { { return; } } void ldv_dispatch_instance_deregister_5_2(struct usb_driver *arg0 ) { { return; } } void ldv_dispatch_instance_deregister_6_1(struct timer_list *arg0 ) { { return; } } void ldv_dispatch_instance_register_5_3(struct usb_driver *arg0 ) { struct ldv_struct_usb_instance_4 *cf_arg_4 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_4 = (struct ldv_struct_usb_instance_4 *)tmp; cf_arg_4->arg0 = arg0; ldv_usb_usb_instance_4((void *)cf_arg_4); } return; } } void ldv_dispatch_instance_register_7_2(struct timer_list *arg0 ) { struct ldv_struct_timer_instance_3 *cf_arg_3 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_3 = (struct ldv_struct_timer_instance_3 *)tmp; cf_arg_3->arg0 = arg0; ldv_timer_timer_instance_3((void *)cf_arg_3); } return; } } void ldv_dispatch_register_9_2(struct usb_driver *arg0 ) { struct ldv_struct_usb_instance_4 *cf_arg_5 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_5 = (struct ldv_struct_usb_instance_4 *)tmp; cf_arg_5->arg0 = arg0; ldv_usb_dummy_factory_5((void *)cf_arg_5); } return; } } void ldv_dispatch_register_file_operations_instance_5_10_6(void) { struct ldv_struct_EMGentry_10 *cf_arg_0 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_0 = (struct ldv_struct_EMGentry_10 *)tmp; ldv_file_operations_file_operations_instance_0((void *)cf_arg_0); } return; } } void ldv_dispatch_register_io_instance_7_10_7(void) { struct ldv_struct_EMGentry_10 *cf_arg_2 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_2 = (struct ldv_struct_EMGentry_10 *)tmp; ldv_struct_hid_ll_driver_io_instance_2((void *)cf_arg_2); } return; } } void ldv_entry_EMGentry_10(void *arg0 ) { void (*ldv_10_exit_hid_exit_default)(void) ; int (*ldv_10_init_hid_init_default)(void) ; int ldv_10_ret_default ; int tmp ; int tmp___0 ; { { ldv_10_ret_default = ldv_EMGentry_init_hid_init_10_11(ldv_10_init_hid_init_default); ldv_10_ret_default = ldv_ldv_post_init_157(ldv_10_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_10_ret_default != 0); ldv_ldv_check_final_state_158(); ldv_stop(); } return; } else { { ldv_assume(ldv_10_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dispatch_register_io_instance_7_10_7(); ldv_dispatch_register_file_operations_instance_5_10_6(); ldv_dispatch_deregister_io_instance_7_10_5(); ldv_dispatch_deregister_file_operations_instance_5_10_4(); } } else { } { ldv_EMGentry_exit_hid_exit_10_2(ldv_10_exit_hid_exit_default); ldv_ldv_check_final_state_159(); ldv_stop(); } return; } return; } } int main(void) { { { ldv_ldv_initialize_160(); ldv_entry_EMGentry_10((void *)0); } return 0; } } void ldv_iio_triggered_buffer_iio_triggered_buffer_instance_1(void *arg0 ) { enum irqreturn (*ldv_1_callback_handler)(int , void * ) ; void *ldv_1_data_data ; int ldv_1_line_line ; enum irqreturn ldv_1_ret_val_default ; enum irqreturn (*ldv_1_thread_thread)(int , void * ) ; int tmp ; { { ldv_switch_to_interrupt_context(); } if ((unsigned long )ldv_1_callback_handler != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_1_ret_val_default = ldv_iio_triggered_buffer_instance_handler_1_5(ldv_1_callback_handler, ldv_1_line_line, ldv_1_data_data); } } else { } { ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume((unsigned int )ldv_1_ret_val_default == 2U); } if ((unsigned long )ldv_1_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_iio_triggered_buffer_instance_thread_1_3(ldv_1_thread_thread, ldv_1_line_line, ldv_1_data_data); } } else { } } else { { ldv_assume((unsigned int )ldv_1_ret_val_default != 2U); } } return; return; } } enum irqreturn ldv_iio_triggered_buffer_instance_handler_1_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { enum irqreturn tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_iio_triggered_buffer_instance_thread_1_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_io_instance_callback_2_17(int (*arg0)(struct hid_device * , int , int , int ) , struct hid_device *arg1 , int arg2 , int arg3 , int arg4 ) { { { usbhid_idle(arg1, arg2, arg3, arg4); } return; } } void ldv_io_instance_callback_2_20(int (*arg0)(struct hid_device * ) , struct hid_device *arg1 ) { { { usbhid_open(arg1); } return; } } void ldv_io_instance_callback_2_21(int (*arg0)(struct hid_device * , unsigned char * , unsigned long ) , struct hid_device *arg1 , unsigned char *arg2 , unsigned long arg3 ) { { { usbhid_output_report(arg1, arg2, arg3); } return; } } void ldv_io_instance_callback_2_24(int (*arg0)(struct hid_device * ) , struct hid_device *arg1 ) { { { usbhid_parse(arg1); } return; } } void ldv_io_instance_callback_2_25(int (*arg0)(struct hid_device * , int ) , struct hid_device *arg1 , int arg2 ) { { { usbhid_power(arg1, arg2); } return; } } void ldv_io_instance_callback_2_28(int (*arg0)(struct hid_device * , unsigned char , unsigned char * , unsigned long , unsigned char , int ) , struct hid_device *arg1 , unsigned char arg2 , unsigned char *arg3 , unsigned long arg4 , unsigned char arg5 , int arg6 ) { { { usbhid_raw_request(arg1, (int )arg2, arg3, arg4, (int )arg5, arg6); } return; } } void ldv_io_instance_callback_2_31(void (*arg0)(struct hid_device * , struct hid_report * , int ) , struct hid_device *arg1 , struct hid_report *arg2 , int arg3 ) { { { usbhid_request(arg1, arg2, arg3); } return; } } void ldv_io_instance_callback_2_34(int (*arg0)(struct hid_device * ) , struct hid_device *arg1 ) { { { usbhid_wait_io(arg1); } return; } } void ldv_io_instance_callback_2_4(void (*arg0)(struct hid_device * ) , struct hid_device *arg1 ) { { { usbhid_close(arg1); } return; } } int ldv_io_instance_probe_2_11(int (*arg0)(struct hid_device * ) , struct hid_device *arg1 ) { int tmp ; { { tmp = usbhid_start(arg1); } return (tmp); } } void ldv_io_instance_release_2_2(void (*arg0)(struct hid_device * ) , struct hid_device *arg1 ) { { { usbhid_stop(arg1); } return; } } int ldv_mod_timer(int arg0 , struct timer_list *arg1 , unsigned long arg2 ) { struct timer_list *ldv_7_timer_list_timer_list ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_7_timer_list_timer_list = arg1; ldv_dispatch_instance_register_7_2(ldv_7_timer_list_timer_list); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_struct_hid_ll_driver_io_instance_2(void *arg0 ) { void (*ldv_2_callback_close)(struct hid_device * ) ; int (*ldv_2_callback_idle)(struct hid_device * , int , int , int ) ; int (*ldv_2_callback_open)(struct hid_device * ) ; int (*ldv_2_callback_output_report)(struct hid_device * , unsigned char * , unsigned long ) ; int (*ldv_2_callback_parse)(struct hid_device * ) ; int (*ldv_2_callback_power)(struct hid_device * , int ) ; int (*ldv_2_callback_raw_request)(struct hid_device * , unsigned char , unsigned char * , unsigned long , unsigned char , int ) ; void (*ldv_2_callback_request)(struct hid_device * , struct hid_report * , int ) ; int (*ldv_2_callback_wait)(struct hid_device * ) ; struct hid_ll_driver *ldv_2_container_struct_hid_ll_driver ; int ldv_2_ldv_param_17_1_default ; int ldv_2_ldv_param_17_2_default ; int ldv_2_ldv_param_17_3_default ; unsigned char *ldv_2_ldv_param_21_1_default ; unsigned long ldv_2_ldv_param_21_2_default ; int ldv_2_ldv_param_25_1_default ; unsigned char ldv_2_ldv_param_28_1_default ; unsigned char *ldv_2_ldv_param_28_2_default ; unsigned long ldv_2_ldv_param_28_3_default ; unsigned char ldv_2_ldv_param_28_4_default ; int ldv_2_ldv_param_28_5_default ; int ldv_2_ldv_param_31_2_default ; struct hid_device *ldv_2_resource_struct_hid_device_ptr ; struct hid_report *ldv_2_resource_struct_hid_report_ptr ; int ldv_2_ret_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; void *tmp___4 ; void *tmp___5 ; { { ldv_2_ret_default = 1; tmp = ldv_xmalloc(8944UL); ldv_2_resource_struct_hid_device_ptr = (struct hid_device *)tmp; tmp___0 = ldv_xmalloc(2088UL); ldv_2_resource_struct_hid_report_ptr = (struct hid_report *)tmp___0; } goto ldv_main_2; return; ldv_main_2: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_2_ret_default = ldv_io_instance_probe_2_11(ldv_2_container_struct_hid_ll_driver->start, ldv_2_resource_struct_hid_device_ptr); ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { ldv_assume(ldv_2_ret_default == 0); } goto ldv_call_2; } else { { ldv_assume(ldv_2_ret_default != 0); } goto ldv_main_2; } } else { { ldv_free((void *)ldv_2_resource_struct_hid_device_ptr); ldv_free((void *)ldv_2_resource_struct_hid_report_ptr); } return; } return; ldv_call_2: { tmp___3 = ldv_undef_int(); } { if (tmp___3 == 1) { goto case_1; } else { } if (tmp___3 == 2) { goto case_2; } else { } if (tmp___3 == 3) { goto case_3; } else { } if (tmp___3 == 4) { goto case_4; } else { } if (tmp___3 == 5) { goto case_5; } else { } if (tmp___3 == 6) { goto case_6; } else { } if (tmp___3 == 7) { goto case_7; } else { } if (tmp___3 == 8) { goto case_8; } else { } if (tmp___3 == 9) { goto case_9; } else { } if (tmp___3 == 10) { goto case_10; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_io_instance_callback_2_34(ldv_2_callback_wait, ldv_2_resource_struct_hid_device_ptr); } goto ldv_call_2; case_2: /* CIL Label */ { ldv_io_instance_callback_2_31(ldv_2_callback_request, ldv_2_resource_struct_hid_device_ptr, ldv_2_resource_struct_hid_report_ptr, ldv_2_ldv_param_31_2_default); } goto ldv_call_2; goto ldv_call_2; case_3: /* CIL Label */ { tmp___4 = ldv_xmalloc(1UL); ldv_2_ldv_param_28_2_default = (unsigned char *)tmp___4; ldv_io_instance_callback_2_28(ldv_2_callback_raw_request, ldv_2_resource_struct_hid_device_ptr, (int )ldv_2_ldv_param_28_1_default, ldv_2_ldv_param_28_2_default, ldv_2_ldv_param_28_3_default, (int )ldv_2_ldv_param_28_4_default, ldv_2_ldv_param_28_5_default); ldv_free((void *)ldv_2_ldv_param_28_2_default); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_4: /* CIL Label */ { ldv_io_instance_callback_2_25(ldv_2_callback_power, ldv_2_resource_struct_hid_device_ptr, ldv_2_ldv_param_25_1_default); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_5: /* CIL Label */ { ldv_io_instance_callback_2_24(ldv_2_callback_parse, ldv_2_resource_struct_hid_device_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_6: /* CIL Label */ { tmp___5 = ldv_xmalloc(1UL); ldv_2_ldv_param_21_1_default = (unsigned char *)tmp___5; ldv_io_instance_callback_2_21(ldv_2_callback_output_report, ldv_2_resource_struct_hid_device_ptr, ldv_2_ldv_param_21_1_default, ldv_2_ldv_param_21_2_default); ldv_free((void *)ldv_2_ldv_param_21_1_default); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_7: /* CIL Label */ { ldv_io_instance_callback_2_20(ldv_2_callback_open, ldv_2_resource_struct_hid_device_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_8: /* CIL Label */ { ldv_io_instance_callback_2_17(ldv_2_callback_idle, ldv_2_resource_struct_hid_device_ptr, ldv_2_ldv_param_17_1_default, ldv_2_ldv_param_17_2_default, ldv_2_ldv_param_17_3_default); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_9: /* CIL Label */ { ldv_io_instance_callback_2_4(ldv_2_callback_close, ldv_2_resource_struct_hid_device_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_10: /* CIL Label */ { ldv_io_instance_release_2_2(ldv_2_container_struct_hid_ll_driver->stop, ldv_2_resource_struct_hid_device_ptr); } goto ldv_main_2; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_timer_instance_callback_3_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_timer_timer_instance_3(void *arg0 ) { struct timer_list *ldv_3_container_timer_list ; struct ldv_struct_timer_instance_3 *data ; { data = (struct ldv_struct_timer_instance_3 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_timer_instance_3 *)0)) { { ldv_3_container_timer_list = data->arg0; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); } if ((unsigned long )ldv_3_container_timer_list->function != (unsigned long )((void (*)(unsigned long ))0)) { { ldv_timer_instance_callback_3_2(ldv_3_container_timer_list->function, ldv_3_container_timer_list->data); } } else { } { ldv_switch_to_process_context(); } return; return; } } void ldv_usb_deregister(void *arg0 , struct usb_driver *arg1 ) { struct usb_driver *ldv_8_usb_driver_usb_driver ; { { ldv_8_usb_driver_usb_driver = arg1; ldv_dispatch_deregister_8_1(ldv_8_usb_driver_usb_driver); } return; return; } } void ldv_usb_dummy_factory_5(void *arg0 ) { struct usb_driver *ldv_5_container_usb_driver ; struct ldv_struct_usb_instance_4 *data ; { data = (struct ldv_struct_usb_instance_4 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_usb_instance_4 *)0)) { { ldv_5_container_usb_driver = data->arg0; ldv_free((void *)data); } } else { } { ldv_dispatch_instance_register_5_3(ldv_5_container_usb_driver); ldv_dispatch_instance_deregister_5_2(ldv_5_container_usb_driver); } return; return; } } void ldv_usb_instance_callback_4_6(int (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) { { { hid_reset_resume(arg1); } return; } } void ldv_usb_instance_post_4_9(int (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) { { { hid_post_reset(arg1); } return; } } void ldv_usb_instance_pre_4_10(int (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) { { { hid_pre_reset(arg1); } return; } } int ldv_usb_instance_probe_4_13(int (*arg0)(struct usb_interface * , struct usb_device_id * ) , struct usb_interface *arg1 , struct usb_device_id *arg2 ) { int tmp ; { { tmp = usbhid_probe(arg1, (struct usb_device_id const *)arg2); } return (tmp); } } void ldv_usb_instance_release_4_4(void (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) { { { usbhid_disconnect(arg1); } return; } } void ldv_usb_instance_resume_4_7(int (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) { { { hid_resume(arg1); } return; } } void ldv_usb_instance_suspend_4_8(int (*arg0)(struct usb_interface * , struct pm_message ) , struct usb_interface *arg1 , struct pm_message *arg2 ) { { { hid_suspend(arg1, *arg2); } return; } } int ldv_usb_register_driver(int arg0 , struct usb_driver *arg1 , struct module *arg2 , char *arg3 ) { struct usb_driver *ldv_9_usb_driver_usb_driver ; int tmp ; { { arg0 = ldv_pre_usb_register_driver(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_9_usb_driver_usb_driver = arg1; ldv_dispatch_register_9_2(ldv_9_usb_driver_usb_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_usb_usb_instance_4(void *arg0 ) { int (*ldv_4_callback_reset_resume)(struct usb_interface * ) ; struct usb_driver *ldv_4_container_usb_driver ; struct usb_device_id *ldv_4_ldv_param_13_1_default ; struct pm_message *ldv_4_ldv_param_8_1_default ; int ldv_4_probe_retval_default ; _Bool ldv_4_reset_flag_default ; struct usb_interface *ldv_4_resource_usb_interface ; struct usb_device *ldv_4_usb_device_usb_device ; struct ldv_struct_usb_instance_4 *data ; void *tmp ; void *tmp___0 ; void *tmp___1 ; int tmp___2 ; void *tmp___3 ; int tmp___4 ; { data = (struct ldv_struct_usb_instance_4 *)arg0; ldv_4_reset_flag_default = 0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_usb_instance_4 *)0)) { { ldv_4_container_usb_driver = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(1552UL); ldv_4_resource_usb_interface = (struct usb_interface *)tmp; tmp___0 = ldv_xmalloc(2024UL); ldv_4_usb_device_usb_device = (struct usb_device *)tmp___0; ldv_4_resource_usb_interface->dev.parent = & ldv_4_usb_device_usb_device->dev; tmp___1 = ldv_xmalloc(32UL); ldv_4_ldv_param_13_1_default = (struct usb_device_id *)tmp___1; ldv_ldv_pre_probe_161(); ldv_4_probe_retval_default = ldv_usb_instance_probe_4_13((int (*)(struct usb_interface * , struct usb_device_id * ))ldv_4_container_usb_driver->probe, ldv_4_resource_usb_interface, ldv_4_ldv_param_13_1_default); ldv_4_probe_retval_default = ldv_ldv_post_probe_162(ldv_4_probe_retval_default); ldv_free((void *)ldv_4_ldv_param_13_1_default); tmp___4 = ldv_undef_int(); } if (tmp___4 != 0) { { ldv_assume(ldv_4_probe_retval_default == 0); tmp___2 = ldv_undef_int(); } { if (tmp___2 == 1) { goto case_1; } else { } if (tmp___2 == 2) { goto case_2; } else { } if (tmp___2 == 3) { goto case_3; } else { } if (tmp___2 == 4) { goto case_4; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___3 = ldv_xmalloc(4UL); ldv_4_ldv_param_8_1_default = (struct pm_message *)tmp___3; ldv_usb_instance_suspend_4_8(ldv_4_container_usb_driver->suspend, ldv_4_resource_usb_interface, ldv_4_ldv_param_8_1_default); ldv_free((void *)ldv_4_ldv_param_8_1_default); ldv_usb_instance_resume_4_7(ldv_4_container_usb_driver->resume, ldv_4_resource_usb_interface); } goto ldv_35869; case_2: /* CIL Label */ { ldv_usb_instance_pre_4_10(ldv_4_container_usb_driver->pre_reset, ldv_4_resource_usb_interface); ldv_usb_instance_post_4_9(ldv_4_container_usb_driver->post_reset, ldv_4_resource_usb_interface); } goto ldv_35869; case_3: /* CIL Label */ { ldv_usb_instance_callback_4_6(ldv_4_callback_reset_resume, ldv_4_resource_usb_interface); } goto ldv_35869; case_4: /* CIL Label */ ; goto ldv_35869; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_35869: { ldv_usb_instance_release_4_4(ldv_4_container_usb_driver->disconnect, ldv_4_resource_usb_interface); } } else { { ldv_assume(ldv_4_probe_retval_default != 0); } } { ldv_free((void *)ldv_4_resource_usb_interface); ldv_free((void *)ldv_4_usb_device_usb_device); } return; return; } } __inline static long PTR_ERR(void const *ptr ) { long tmp ; { { tmp = ldv_ptr_err(ptr); } return (tmp); } } __inline static void *kmalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_malloc_unknown_size(); ldv_after_alloc(res); } return (res); } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = ldv_kzalloc(size, flags); } return (tmp); } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_95(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_usbhid_device(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static int ldv_usb_submit_urb_96(struct urb *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return ((int )((long )tmp)); } } __inline static void ldv_spin_unlock_irqrestore_97(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_usbhid_device(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_98(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_usbhid_device(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static int ldv_mod_timer_99(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static int ldv_usb_submit_urb_101(struct urb *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return ((int )((long )tmp)); } } static int ldv_usb_submit_urb_102(struct urb *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return ((int )((long )tmp)); } } static int ldv_usb_submit_urb_103(struct urb *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return ((int )((long )tmp)); } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_104(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_usbhid_device(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_lock_107(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_usbhid_device(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_108(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_usbhid_device(); spin_unlock(lock); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_114(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_usbhid_device(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv_mutex_lock_116(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_hid_open_mut(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_117(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_hid_open_mut(ldv_func_arg1); } return; } } static void ldv_mutex_lock_118(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_hid_open_mut(ldv_func_arg1); } return; } } __inline static void ldv_spin_lock_irq_119(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_usbhid_device(); spin_lock_irq(lock); } return; } } __inline static void ldv_spin_unlock_irq_120(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_usbhid_device(); spin_unlock_irq(lock); } return; } } static void ldv_mutex_unlock_122(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_hid_open_mut(ldv_func_arg1); } return; } } static void *ldv_usb_alloc_coherent_123(struct usb_device *ldv_func_arg1 , size_t ldv_func_arg2 , gfp_t flags , dma_addr_t *ldv_func_arg4 ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = ldv_linux_usb_coherent_usb_alloc_coherent(); res = tmp; tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return (res); } } static void *ldv_usb_alloc_coherent_124(struct usb_device *ldv_func_arg1 , size_t ldv_func_arg2 , gfp_t flags , dma_addr_t *ldv_func_arg4 ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = ldv_linux_usb_coherent_usb_alloc_coherent(); res = tmp; tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return (res); } } static void *ldv_usb_alloc_coherent_125(struct usb_device *ldv_func_arg1 , size_t ldv_func_arg2 , gfp_t flags , dma_addr_t *ldv_func_arg4 ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = ldv_linux_usb_coherent_usb_alloc_coherent(); res = tmp; tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return (res); } } static void ldv_usb_free_coherent_126(struct usb_device *dev , size_t size , void *addr , dma_addr_t dma ) { { { ldv_linux_usb_coherent_usb_free_coherent(addr); } return; } } static void ldv_usb_free_coherent_127(struct usb_device *dev , size_t size , void *addr , dma_addr_t dma ) { { { ldv_linux_usb_coherent_usb_free_coherent(addr); } return; } } static void ldv_usb_free_coherent_128(struct usb_device *dev , size_t size , void *addr , dma_addr_t dma ) { { { ldv_linux_usb_coherent_usb_free_coherent(addr); } return; } } static struct urb *ldv_usb_alloc_urb_129(int ldv_func_arg1 , gfp_t flags ) { struct urb *res ; struct urb *tmp ; long tmp___0 ; { { tmp = ldv_linux_usb_urb_usb_alloc_urb(); res = tmp; tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return (res); } } static struct urb *ldv_usb_alloc_urb_130(int ldv_func_arg1 , gfp_t flags ) { struct urb *res ; struct urb *tmp ; long tmp___0 ; { { tmp = ldv_linux_usb_urb_usb_alloc_urb(); res = tmp; tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return (res); } } static struct urb *ldv_usb_alloc_urb_131(int ldv_func_arg1 , gfp_t flags ) { struct urb *res ; struct urb *tmp ; long tmp___0 ; { { tmp = ldv_linux_usb_urb_usb_alloc_urb(); res = tmp; tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return (res); } } static void ldv_usb_free_urb_132(struct urb *urb ) { { { ldv_linux_usb_urb_usb_free_urb(urb); } return; } } static void ldv_usb_free_urb_133(struct urb *urb ) { { { ldv_linux_usb_urb_usb_free_urb(urb); } return; } } static void ldv_usb_free_urb_134(struct urb *urb ) { { { ldv_linux_usb_urb_usb_free_urb(urb); } return; } } static void ldv_usb_free_urb_137(struct urb *urb ) { { { ldv_linux_usb_urb_usb_free_urb(urb); } return; } } static void ldv_usb_free_urb_138(struct urb *urb ) { { { ldv_linux_usb_urb_usb_free_urb(urb); } return; } } static void ldv_usb_free_urb_139(struct urb *urb ) { { { ldv_linux_usb_urb_usb_free_urb(urb); } return; } } static int ldv_del_timer_sync_142(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static int ldv_del_timer_sync_143(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static int ldv_usb_register_driver_155(struct usb_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = usb_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv_usb_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_usb_deregister_156(struct usb_driver *ldv_func_arg1 ) { { { usb_deregister(ldv_func_arg1); ldv_usb_deregister((void *)0, ldv_func_arg1); } return; } } static int ldv_ldv_post_init_157(int ldv_func_arg1 ) { int tmp ; { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); tmp = ldv_post_init(ldv_func_arg1); } return (tmp); } } static void ldv_ldv_check_final_state_158(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_check_final_state_159(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_initialize_160(void) { { { ldv_linux_lib_find_bit_initialize(); } return; } } static void ldv_ldv_pre_probe_161(void) { { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); ldv_pre_probe(); } return; } } static int ldv_ldv_post_probe_162(int retval ) { int tmp ; { { ldv_linux_net_register_check_return_value_probe(retval); ldv_linux_usb_register_check_return_value_probe(retval); tmp = ldv_post_probe(retval); } return (tmp); } } extern int sscanf(char const * , char const * , ...) ; extern void __list_add(struct list_head * , struct list_head * , struct list_head * ) ; __inline static void list_add_tail(struct list_head *new , struct list_head *head ) { { { __list_add(new, head->prev, head); } return; } } extern void list_del(struct list_head * ) ; __inline static void list_replace(struct list_head *old , struct list_head *new ) { { new->next = old->next; (new->next)->prev = new; new->prev = old->prev; (new->prev)->next = new; return; } } extern void down_read(struct rw_semaphore * ) ; extern void down_write(struct rw_semaphore * ) ; extern void up_read(struct rw_semaphore * ) ; extern void up_write(struct rw_semaphore * ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) ; static struct hid_blacklist const hid_blacklist[100U] = { {1750U, 37U, 32U}, {1750U, 38U, 32U}, {1075U, 4353U, 32U}, {1534U, 20U, 32U}, {3823U, 1U, 72U}, {33410U, 12801U, 64U}, {1931U, 16U, 96U}, {1931U, 32U, 96U}, {1931U, 48U, 96U}, {2231U, 1U, 32U}, {1854U, 769U, 32U}, {6438U, 3U, 64U}, {1699U, 65303U, 32U}, {1635U, 259U, 32U}, {5540U, 36886U, 268435456U}, {8198U, 280U, 64U}, {8889U, 6U, 64U}, {8889U, 10600U, 64U}, {3727U, 12307U, 64U}, {2064U, 1U, 65600U}, {2883U, 3U, 64U}, {7165U, 5768U, 64U}, {6700U, 2U, 8U}, {1367U, 8196U, 8U}, {1367U, 8706U, 8U}, {1367U, 8708U, 8U}, {1367U, 8709U, 8U}, {1367U, 8712U, 8U}, {1678U, 243U, 8U}, {1678U, 244U, 8U}, {1678U, 81U, 8U}, {1678U, 255U, 8U}, {1678U, 241U, 8U}, {1678U, 242U, 8U}, {1678U, 211U, 8U}, {1678U, 28U, 8U}, {3083U, 24491U, 8U}, {1267U, 137U, 1024U}, {1267U, 155U, 1024U}, {1267U, 259U, 1024U}, {1267U, 268U, 1024U}, {1267U, 367U, 1024U}, {1255U, 32U, 8U}, {5242U, 57406U, 536870912U}, {5538U, 79U, 8U}, {1123U, 65535U, 8U}, {1118U, 2012U, 536870912U}, {1118U, 2013U, 536870912U}, {6000U, 65280U, 536870912U}, {6256U, 272U, 536870912U}, {1539U, 5634U, 536870912U}, {5345U, 5648U, 8U}, {5345U, 5696U, 8U}, {2362U, 9488U, 1024U}, {1112U, 311U, 1024U}, {2362U, 32769U, 536870912U}, {2362U, 32770U, 536870912U}, {2362U, 32771U, 536870912U}, {1455U, 12386U, 8U}, {1032U, 12289U, 8U}, {1032U, 12296U, 8U}, {3034U, 338U, 536870912U}, {5013U, 44U, 8U}, {1647U, 14208U, 8U}, {1111U, 37376U, 8U}, {1111U, 2071U, 8U}, {1111U, 4115U, 536870912U}, {1111U, 4144U, 8U}, {1072U, 52651U, 8U}, {1504U, 2048U, 8U}, {1504U, 4864U, 8U}, {9642U, 34947U, 8U}, {1578U, 513U, 8U}, {21827U, 66U, 64U}, {21827U, 3U, 64U}, {21827U, 24577U, 64U}, {21827U, 100U, 64U}, {21827U, 4U, 64U}, {21827U, 5U, 64U}, {5935U, 1281U, 64U}, {5935U, 1280U, 64U}, {5935U, 1282U, 64U}, {2341U, 34816U, 72U}, {26231U, 34818U, 72U}, {1523U, 255U, 128U}, {1266U, 45469U, 64U}, {1266U, 1560U, 64U}, {7247U, 2U, 536870912U}, {1112U, 20497U, 64U}, {1112U, 20506U, 64U}, {1112U, 20499U, 64U}, {7062U, 5376U, 536870912U}, {6700U, 35U, 536870912U}, {1739U, 2808U, 536870912U}, {1739U, 7440U, 536870912U}, {1739U, 2755U, 536870912U}, {1739U, 6851U, 536870912U}, {1739U, 22288U, 536870912U}, {1241U, 41110U, 512U}, {0U, 0U, 0U}}; static struct list_head dquirks_list = {& dquirks_list, & dquirks_list}; static struct rw_semaphore dquirks_rwsem = {0L, {& dquirks_rwsem.wait_list, & dquirks_rwsem.wait_list}, {{{0U}}, 3735899821U, 4294967295U, (void *)-1, {0, {0, 0}, "dquirks_rwsem.wait_lock", 0, 0UL}}, {{0}}, (struct task_struct *)0, {0, {0, 0}, "dquirks_rwsem", 0, 0UL}}; static struct hid_blacklist *usbhid_exists_dquirk(u16 const idVendor , u16 const idProduct ) { struct quirks_list_struct *q ; struct hid_blacklist *bl_entry ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { bl_entry = (struct hid_blacklist *)0; __mptr = (struct list_head const *)dquirks_list.next; q = (struct quirks_list_struct *)__mptr + 0xfffffffffffffff8UL; goto ldv_33386; ldv_33385: ; if ((int )q->hid_bl_item.idVendor == (int )((unsigned short )idVendor) && (int )q->hid_bl_item.idProduct == (int )((unsigned short )idProduct)) { bl_entry = & q->hid_bl_item; goto ldv_33384; } else { } __mptr___0 = (struct list_head const *)q->node.next; q = (struct quirks_list_struct *)__mptr___0 + 0xfffffffffffffff8UL; ldv_33386: ; if ((unsigned long )(& q->node) != (unsigned long )(& dquirks_list)) { goto ldv_33385; } else { } ldv_33384: ; if ((unsigned long )bl_entry != (unsigned long )((struct hid_blacklist *)0)) { if (hid_debug != 0) { { printk("\017%s: Found dynamic quirk 0x%x for USB HID vendor 0x%hx prod 0x%hx\n", (char *)"drivers/hid/usbhid/hid-quirks.c", bl_entry->quirks, (int )bl_entry->idVendor, (int )bl_entry->idProduct); } } else { } } else { } return (bl_entry); } } static int usbhid_modify_dquirk(u16 const idVendor , u16 const idProduct , u32 const quirks ) { struct quirks_list_struct *q_new ; struct quirks_list_struct *q ; int list_edited ; void *tmp ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { list_edited = 0; if ((unsigned int )((unsigned short )idVendor) == 0U) { if (hid_debug != 0) { { printk("\017%s: Cannot add a quirk with idVendor = 0\n", (char *)"drivers/hid/usbhid/hid-quirks.c"); } } else { } return (-22); } else { } { tmp = kmalloc(24UL, 208U); q_new = (struct quirks_list_struct *)tmp; } if ((unsigned long )q_new == (unsigned long )((struct quirks_list_struct *)0)) { if (hid_debug != 0) { { printk("\017%s: Could not allocate quirks_list_struct\n", (char *)"drivers/hid/usbhid/hid-quirks.c"); } } else { } return (-12); } else { } { q_new->hid_bl_item.idVendor = idVendor; q_new->hid_bl_item.idProduct = idProduct; q_new->hid_bl_item.quirks = quirks; down_write(& dquirks_rwsem); __mptr = (struct list_head const *)dquirks_list.next; q = (struct quirks_list_struct *)__mptr + 0xfffffffffffffff8UL; } goto ldv_33401; ldv_33400: ; if ((int )q->hid_bl_item.idVendor == (int )((unsigned short )idVendor) && (int )q->hid_bl_item.idProduct == (int )((unsigned short )idProduct)) { { list_replace(& q->node, & q_new->node); kfree((void const *)q); list_edited = 1; } goto ldv_33399; } else { } __mptr___0 = (struct list_head const *)q->node.next; q = (struct quirks_list_struct *)__mptr___0 + 0xfffffffffffffff8UL; ldv_33401: ; if ((unsigned long )(& q->node) != (unsigned long )(& dquirks_list)) { goto ldv_33400; } else { } ldv_33399: ; if (list_edited == 0) { { list_add_tail(& q_new->node, & dquirks_list); } } else { } { up_write(& dquirks_rwsem); } return (0); } } static void usbhid_remove_all_dquirks(void) { struct quirks_list_struct *q ; struct quirks_list_struct *temp ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; { { down_write(& dquirks_rwsem); __mptr = (struct list_head const *)dquirks_list.next; q = (struct quirks_list_struct *)__mptr + 0xfffffffffffffff8UL; __mptr___0 = (struct list_head const *)q->node.next; temp = (struct quirks_list_struct *)__mptr___0 + 0xfffffffffffffff8UL; } goto ldv_33414; ldv_33413: { list_del(& q->node); kfree((void const *)q); q = temp; __mptr___1 = (struct list_head const *)temp->node.next; temp = (struct quirks_list_struct *)__mptr___1 + 0xfffffffffffffff8UL; } ldv_33414: ; if ((unsigned long )(& q->node) != (unsigned long )(& dquirks_list)) { goto ldv_33413; } else { } { up_write(& dquirks_rwsem); } return; } } int usbhid_quirks_init(char **quirks_param___0 ) { u16 idVendor ; u16 idProduct ; u32 quirks ; int n ; int m ; int tmp ; { n = 0; goto ldv_33425; ldv_33424: { m = sscanf((char const *)*(quirks_param___0 + (unsigned long )n), "0x%hx:0x%hx:0x%x", & idVendor, & idProduct, & quirks); } if (m != 3) { { printk("\fCould not parse HID quirk module param %s\n", *(quirks_param___0 + (unsigned long )n)); } } else { { tmp = usbhid_modify_dquirk((int )idVendor, (int )idProduct, quirks); } if (tmp != 0) { { printk("\fCould not parse HID quirk module param %s\n", *(quirks_param___0 + (unsigned long )n)); } } else { } } n = n + 1; ldv_33425: ; if (n <= 3 && (unsigned long )*(quirks_param___0 + (unsigned long )n) != (unsigned long )((char *)0)) { goto ldv_33424; } else { } return (0); } } void usbhid_quirks_exit(void) { { { usbhid_remove_all_dquirks(); } return; } } static struct hid_blacklist const *usbhid_exists_squirk(u16 const idVendor , u16 const idProduct ) { struct hid_blacklist const *bl_entry ; int n ; { bl_entry = (struct hid_blacklist const *)0; n = 0; goto ldv_33437; ldv_33436: ; if ((int )((unsigned short )hid_blacklist[n].idVendor) == (int )((unsigned short )idVendor) && (int )((unsigned short )hid_blacklist[n].idProduct) == (int )((unsigned short )idProduct)) { bl_entry = (struct hid_blacklist const *)(& hid_blacklist) + (unsigned long )n; } else { } n = n + 1; ldv_33437: ; if ((unsigned int )((unsigned short )hid_blacklist[n].idVendor) != 0U) { goto ldv_33436; } else { } if ((unsigned long )bl_entry != (unsigned long )((struct hid_blacklist const *)0)) { if (hid_debug != 0) { { printk("\017%s: Found squirk 0x%x for USB HID vendor 0x%hx prod 0x%hx\n", (char *)"drivers/hid/usbhid/hid-quirks.c", bl_entry->quirks, (int )bl_entry->idVendor, (int )bl_entry->idProduct); } } else { } } else { } return (bl_entry); } } u32 usbhid_lookup_quirk(u16 const idVendor , u16 const idProduct ) { u32 quirks ; struct hid_blacklist const *bl_entry ; struct hid_blacklist *tmp ; { quirks = 0U; bl_entry = (struct hid_blacklist const *)0; if (((unsigned int )((unsigned short )idVendor) == 1028U && (unsigned int )((unsigned short )idProduct) > 767U) && (unsigned int )((unsigned short )idProduct) <= 1023U) { return (536870912U); } else { } { down_read(& dquirks_rwsem); tmp = usbhid_exists_dquirk((int )idVendor, (int )idProduct); bl_entry = (struct hid_blacklist const *)tmp; } if ((unsigned long )bl_entry == (unsigned long )((struct hid_blacklist const *)0)) { { bl_entry = usbhid_exists_squirk((int )idVendor, (int )idProduct); } } else { } if ((unsigned long )bl_entry != (unsigned long )((struct hid_blacklist const *)0)) { quirks = bl_entry->quirks; } else { } { up_read(& dquirks_rwsem); } return (quirks); } } static char const __kstrtab_usbhid_lookup_quirk[20U] = { 'u', 's', 'b', 'h', 'i', 'd', '_', 'l', 'o', 'o', 'k', 'u', 'p', '_', 'q', 'u', 'i', 'r', 'k', '\000'}; struct kernel_symbol const __ksymtab_usbhid_lookup_quirk ; struct kernel_symbol const __ksymtab_usbhid_lookup_quirk = {(unsigned long )(& usbhid_lookup_quirk), (char const *)(& __kstrtab_usbhid_lookup_quirk)}; static void ldv_mutex_lock_99(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_105(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_115(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_117(struct mutex *ldv_func_arg1 ) ; static int ldv_mutex_lock_interruptible_108(struct mutex *ldv_func_arg1 ) ; static int ldv_mutex_lock_interruptible_110(struct mutex *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_mutex_mutex_lock_existancelock_of_hiddev(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_existancelock_of_hiddev(struct mutex *lock ) ; int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_thread_lock_of_hiddev_list(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_thread_lock_of_hiddev_list(struct mutex *lock ) ; __inline static int variable_test_bit(long nr , unsigned long const volatile *addr ) { int oldbit ; { __asm__ volatile ("bt %2,%1\n\tsbb %0,%0": "=r" (oldbit): "m" (*((unsigned long *)addr)), "Ir" (nr)); return (oldbit); } } extern void might_fault(void) ; extern char *kasprintf(gfp_t , char const * , ...) ; __inline static int list_empty(struct list_head const *head ) { { return ((unsigned long )((struct list_head const *)head->next) == (unsigned long )head); } } extern void __bad_percpu_size(void) ; extern struct task_struct *current_task ; __inline static struct task_struct *get_current(void) { struct task_struct *pfo_ret__ ; { { if (8UL == 1UL) { goto case_1; } else { } if (8UL == 2UL) { goto case_2; } else { } if (8UL == 4UL) { goto case_4; } else { } if (8UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "p" (& current_task)); goto ldv_3586; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_3586; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_3586; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_3586; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_3586: ; return (pfo_ret__); } } extern void __xchg_wrong_size(void) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_95___0(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_97(spinlock_t *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_spinlock_spin_lock_list_lock_of_hiddev(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_list_lock_of_hiddev(void) ; extern void __mutex_init(struct mutex * , char const * , struct lock_class_key * ) ; static void ldv_mutex_unlock_100(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_101(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_106(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_107(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_109(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_111(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_112(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_113(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_114(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_116(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_118(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_119(struct mutex *ldv_func_arg1 ) ; __inline static int test_ti_thread_flag(struct thread_info *ti , int flag ) { int tmp___0 ; { { tmp___0 = variable_test_bit((long )flag, (unsigned long const volatile *)(& ti->flags)); } return (tmp___0); } } __inline static void ldv_spin_lock_irq_103(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_104(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irqrestore_96(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_96(spinlock_t *lock , unsigned long flags ) ; extern void prepare_to_wait(wait_queue_head_t * , wait_queue_t * , int ) ; extern int autoremove_wake_function(wait_queue_t * , unsigned int , int , void * ) ; __inline static char const *kobject_name(struct kobject const *kobj ) { { return ((char const *)kobj->name); } } static void *ldv_vzalloc_102(unsigned long ldv_func_arg1 ) ; extern void vfree(void const * ) ; __inline static char const *dev_name(struct device const *dev ) { char const *tmp ; { if ((unsigned long )dev->init_name != (unsigned long )((char const */* const */)0)) { return ((char const *)dev->init_name); } else { } { tmp = kobject_name(& dev->kobj); } return (tmp); } } extern unsigned long _copy_from_user(void * , void const * , unsigned int ) ; extern unsigned long _copy_to_user(void * , void const * , unsigned int ) ; extern void __copy_from_user_overflow(void) ; extern void __copy_to_user_overflow(void) ; __inline static unsigned long copy_from_user(void *to , void const *from , unsigned long n ) { int sz ; long tmp ; long tmp___0 ; { { sz = -1; might_fault(); tmp = ldv__builtin_expect(sz < 0, 1L); } if (tmp != 0L) { { n = _copy_from_user(to, from, (unsigned int )n); } } else { { tmp___0 = ldv__builtin_expect((unsigned long )sz >= n, 1L); } if (tmp___0 != 0L) { { n = _copy_from_user(to, from, (unsigned int )n); } } else { { __copy_from_user_overflow(); } } } return (n); } } __inline static unsigned long copy_to_user(void *to , void const *from , unsigned long n ) { int sz ; long tmp ; long tmp___0 ; { { sz = -1; might_fault(); tmp = ldv__builtin_expect(sz < 0, 1L); } if (tmp != 0L) { { n = _copy_to_user(to, from, (unsigned int )n); } } else { { tmp___0 = ldv__builtin_expect((unsigned long )sz >= n, 1L); } if (tmp___0 != 0L) { { n = _copy_to_user(to, from, (unsigned int )n); } } else { { __copy_to_user_overflow(); } } } return (n); } } __inline static unsigned int iminor(struct inode const *inode ) { { return ((unsigned int )inode->i_rdev & 1048575U); } } extern int fasync_helper(int , struct file * , int , struct fasync_struct ** ) ; extern void kill_fasync(struct fasync_struct ** , int , int ) ; extern loff_t noop_llseek(struct file * , loff_t , int ) ; extern void schedule(void) ; __inline static int test_tsk_thread_flag(struct task_struct *tsk , int flag ) { int tmp ; { { tmp = test_ti_thread_flag((struct thread_info *)tsk->stack, flag); } return (tmp); } } __inline static int signal_pending(struct task_struct *p ) { int tmp ; long tmp___0 ; { { tmp = test_tsk_thread_flag(p, 2); tmp___0 = ldv__builtin_expect(tmp != 0, 0L); } return ((int )tmp___0); } } extern int usb_register_dev(struct usb_interface * , struct usb_class_driver * ) ; extern void usb_deregister_dev(struct usb_interface * , struct usb_class_driver * ) ; __inline static void poll_wait(struct file *filp , wait_queue_head_t *wait_address , poll_table *p ) { { if ((unsigned long )p != (unsigned long )((poll_table *)0) && ((unsigned long )p->_qproc != (unsigned long )((void (*)(struct file * , wait_queue_head_t * , struct poll_table_struct * ))0) && (unsigned long )wait_address != (unsigned long )((wait_queue_head_t *)0))) { { (*(p->_qproc))(filp, wait_address, p); } } else { } return; } } __inline static void *kmalloc(size_t size , gfp_t flags ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; extern void __hid_request(struct hid_device * , struct hid_report * , int ) ; __inline static void hid_hw_request(struct hid_device *hdev , struct hid_report *report , int reqtype ) { { if ((unsigned long )(hdev->ll_driver)->request != (unsigned long )((void (*)(struct hid_device * , struct hid_report * , int ))0)) { return; } else { } { __hid_request(hdev, report, reqtype); } return; } } __inline static void hid_hw_wait(struct hid_device *hdev ) { { if ((unsigned long )(hdev->ll_driver)->wait != (unsigned long )((int (*)(struct hid_device * ))0)) { { (*((hdev->ll_driver)->wait))(hdev); } } else { } return; } } __inline static void *compat_ptr(compat_uptr_t uptr ) { { return ((void *)((unsigned long )uptr)); } } static struct hid_report *hiddev_lookup_report(struct hid_device *hid , struct hiddev_report_info *rinfo ) { unsigned int flags ; unsigned int rid ; struct hid_report_enum *report_enum ; struct hid_report *report ; struct list_head *list ; int tmp ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { flags = rinfo->report_id & 4294967040U; rid = rinfo->report_id & 255U; if (rinfo->report_type - 1U > 2U) { return ((struct hid_report *)0); } else { } report_enum = (struct hid_report_enum *)(& hid->report_enum) + (unsigned long )(rinfo->report_type - 1U); { if (flags == 0U) { goto case_0; } else { } if (flags == 256U) { goto case_256; } else { } if (flags == 512U) { goto case_512; } else { } goto switch_default; case_0: /* CIL Label */ ; goto ldv_35915; case_256: /* CIL Label */ { tmp = list_empty((struct list_head const *)(& report_enum->report_list)); } if (tmp != 0) { return ((struct hid_report *)0); } else { } list = report_enum->report_list.next; __mptr = (struct list_head const *)list; report = (struct hid_report *)__mptr; rinfo->report_id = report->id; goto ldv_35915; case_512: /* CIL Label */ report = report_enum->report_id_hash[rid]; if ((unsigned long )report == (unsigned long )((struct hid_report *)0)) { return ((struct hid_report *)0); } else { } list = report->list.next; if ((unsigned long )list == (unsigned long )(& report_enum->report_list)) { return ((struct hid_report *)0); } else { } __mptr___0 = (struct list_head const *)list; report = (struct hid_report *)__mptr___0; rinfo->report_id = report->id; goto ldv_35915; switch_default: /* CIL Label */ ; return ((struct hid_report *)0); switch_break: /* CIL Label */ ; } ldv_35915: ; return (report_enum->report_id_hash[rinfo->report_id]); } } static struct hid_field *hiddev_lookup_usage(struct hid_device *hid , struct hiddev_usage_ref *uref ) { int i ; int j ; struct hid_report *report ; struct hid_report_enum *report_enum ; struct hid_field *field ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { if (uref->report_type - 1U > 2U) { return ((struct hid_field *)0); } else { } report_enum = (struct hid_report_enum *)(& hid->report_enum) + (unsigned long )(uref->report_type - 1U); __mptr = (struct list_head const *)report_enum->report_list.next; report = (struct hid_report *)__mptr; goto ldv_35943; ldv_35942: i = 0; goto ldv_35940; ldv_35939: field = report->field[i]; j = 0; goto ldv_35937; ldv_35936: ; if ((field->usage + (unsigned long )j)->hid == uref->usage_code) { uref->report_id = report->id; uref->field_index = (__u32 )i; uref->usage_index = (__u32 )j; return (field); } else { } j = j + 1; ldv_35937: ; if ((unsigned int )j < field->maxusage) { goto ldv_35936; } else { } i = i + 1; ldv_35940: ; if ((unsigned int )i < report->maxfield) { goto ldv_35939; } else { } __mptr___0 = (struct list_head const *)report->list.next; report = (struct hid_report *)__mptr___0; ldv_35943: ; if ((unsigned long )(& report->list) != (unsigned long )(& report_enum->report_list)) { goto ldv_35942; } else { } return ((struct hid_field *)0); } } static void hiddev_send_event(struct hid_device *hid , struct hiddev_usage_ref *uref ) { struct hiddev *hiddev ; struct hiddev_list *list ; unsigned long flags ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { { hiddev = (struct hiddev *)hid->hiddev; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_95___0(& hiddev->list_lock); __mptr = (struct list_head const *)hiddev->list.next; list = (struct hiddev_list *)__mptr + 0xffffffffffff3fe0UL; } goto ldv_35957; ldv_35956: ; if (uref->field_index != 4294967295U || (list->flags & 2U) != 0U) { { list->buffer[list->head] = *uref; list->head = (list->head + 1) & 2047; kill_fasync(& list->fasync, 29, 131073); } } else { } __mptr___0 = (struct list_head const *)list->node.next; list = (struct hiddev_list *)__mptr___0 + 0xffffffffffff3fe0UL; ldv_35957: ; if ((unsigned long )(& list->node) != (unsigned long )(& hiddev->list)) { goto ldv_35956; } else { } { ldv_spin_unlock_irqrestore_96(& hiddev->list_lock, flags); __wake_up(& hiddev->wait, 1U, 1, (void *)0); } return; } } void hiddev_hid_event(struct hid_device *hid , struct hid_field *field , struct hid_usage *usage , __s32 value ) { unsigned int type ; struct hiddev_usage_ref uref ; { { type = field->report_type; uref.report_type = type != 0U ? (type != 1U ? (type == 2U ? 3U : 0U) : 2U) : 1U; uref.report_id = (field->report)->id; uref.field_index = field->index; uref.usage_index = (__u32 )(((long )usage - (long )field->usage) / 20L); uref.usage_code = usage->hid; uref.value = value; hiddev_send_event(hid, & uref); } return; } } static char const __kstrtab_hiddev_hid_event[17U] = { 'h', 'i', 'd', 'd', 'e', 'v', '_', 'h', 'i', 'd', '_', 'e', 'v', 'e', 'n', 't', '\000'}; struct kernel_symbol const __ksymtab_hiddev_hid_event ; struct kernel_symbol const __ksymtab_hiddev_hid_event = {(unsigned long )(& hiddev_hid_event), (char const *)(& __kstrtab_hiddev_hid_event)}; void hiddev_report_event(struct hid_device *hid , struct hid_report *report ) { unsigned int type ; struct hiddev_usage_ref uref ; { { type = report->type; __memset((void *)(& uref), 0, 24UL); uref.report_type = type != 0U ? (type != 1U ? (type == 2U ? 3U : 0U) : 2U) : 1U; uref.report_id = report->id; uref.field_index = 4294967295U; hiddev_send_event(hid, & uref); } return; } } static int hiddev_fasync(int fd , struct file *file , int on ) { struct hiddev_list *list ; int tmp ; { { list = (struct hiddev_list *)file->private_data; tmp = fasync_helper(fd, file, on, & list->fasync); } return (tmp); } } static int hiddev_release(struct inode *inode , struct file *file ) { struct hiddev_list *list ; unsigned long flags ; { { list = (struct hiddev_list *)file->private_data; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_97(& (list->hiddev)->list_lock); list_del(& list->node); ldv_spin_unlock_irqrestore_96(& (list->hiddev)->list_lock, flags); ldv_mutex_lock_99(& (list->hiddev)->existancelock); (list->hiddev)->open = (list->hiddev)->open - 1; } if ((list->hiddev)->open == 0) { if ((list->hiddev)->exist != 0) { { usbhid_close((list->hiddev)->hid); usbhid_put_power((list->hiddev)->hid); } } else { { ldv_mutex_unlock_100(& (list->hiddev)->existancelock); kfree((void const *)list->hiddev); vfree((void const *)list); } return (0); } } else { } { ldv_mutex_unlock_101(& (list->hiddev)->existancelock); vfree((void const *)list); } return (0); } } static int hiddev_open(struct inode *inode , struct file *file ) { struct hiddev_list *list ; struct usb_interface *intf ; struct hid_device *hid ; struct hiddev *hiddev ; int res ; unsigned int tmp ; void *tmp___0 ; void *tmp___1 ; struct lock_class_key __key ; int tmp___2 ; struct hid_device *hid___0 ; int tmp___3 ; { { tmp = iminor((struct inode const *)inode); intf = usbhid_find_interface((int )tmp); } if ((unsigned long )intf == (unsigned long )((struct usb_interface *)0)) { return (-19); } else { } { tmp___0 = usb_get_intfdata(intf); hid = (struct hid_device *)tmp___0; hiddev = (struct hiddev *)hid->hiddev; tmp___1 = ldv_vzalloc_102(49360UL); list = (struct hiddev_list *)tmp___1; } if ((unsigned long )list == (unsigned long )((struct hiddev_list *)0)) { return (-12); } else { } { __mutex_init(& list->thread_lock, "&list->thread_lock", & __key); list->hiddev = hiddev; file->private_data = (void *)list; } if ((list->hiddev)->exist != 0) { tmp___2 = (list->hiddev)->open; (list->hiddev)->open = (list->hiddev)->open + 1; if (tmp___2 == 0) { { res = usbhid_open(hiddev->hid); } if (res < 0) { res = -5; goto bail; } else { } } else { } } else { res = -19; goto bail; } { ldv_spin_lock_irq_103(& (list->hiddev)->list_lock); list_add_tail(& list->node, & hiddev->list); ldv_spin_unlock_irq_104(& (list->hiddev)->list_lock); ldv_mutex_lock_105(& hiddev->existancelock); tmp___3 = (list->hiddev)->open; (list->hiddev)->open = (list->hiddev)->open + 1; } if (tmp___3 == 0) { if ((list->hiddev)->exist != 0) { { hid___0 = hiddev->hid; res = usbhid_get_power(hid___0); } if (res < 0) { res = -5; goto bail_unlock; } else { } { usbhid_open(hid___0); } } else { } } else { } { ldv_mutex_unlock_106(& hiddev->existancelock); } return (0); bail_unlock: { ldv_mutex_unlock_107(& hiddev->existancelock); } bail: { file->private_data = (void *)0; vfree((void const *)list); } return (res); } } static ssize_t hiddev_write(struct file *file , char const *buffer , size_t count , loff_t *ppos ) { { return (-22L); } } static ssize_t hiddev_read(struct file *file , char *buffer , size_t count , loff_t *ppos ) { wait_queue_t wait ; struct task_struct *tmp ; struct hiddev_list *list ; int event_size ; int retval ; struct task_struct *tmp___0 ; int tmp___1 ; int tmp___2 ; struct task_struct *tmp___3 ; long volatile __ret ; struct task_struct *tmp___4 ; struct task_struct *tmp___5 ; struct task_struct *tmp___6 ; struct task_struct *tmp___7 ; struct hiddev_event event ; unsigned long tmp___8 ; unsigned long tmp___9 ; { { tmp = get_current(); wait.flags = 0U; wait.private = (void *)tmp; wait.func = & autoremove_wake_function; wait.task_list.next = & wait.task_list; wait.task_list.prev = & wait.task_list; list = (struct hiddev_list *)file->private_data; event_size = (int )list->flags & 1 ? 24 : 8; } if (count < (size_t )event_size) { return (0L); } else { } { retval = ldv_mutex_lock_interruptible_108(& list->thread_lock); } if (retval != 0) { return (-512L); } else { } goto ldv_36042; ldv_36041: ; if (list->head == list->tail) { { prepare_to_wait(& (list->hiddev)->wait, & wait, 1); } goto ldv_36036; ldv_36035: { tmp___0 = get_current(); tmp___1 = signal_pending(tmp___0); } if (tmp___1 != 0) { retval = -512; goto ldv_36024; } else { } if ((list->hiddev)->exist == 0) { retval = -5; goto ldv_36024; } else { } if ((file->f_flags & 2048U) != 0U) { retval = -11; goto ldv_36024; } else { } { ldv_mutex_unlock_109(& list->thread_lock); schedule(); tmp___2 = ldv_mutex_lock_interruptible_110(& list->thread_lock); } if (tmp___2 != 0) { { finish_wait(& (list->hiddev)->wait, & wait); } return (-4L); } else { } { tmp___3 = get_current(); } tmp___3->task_state_change = (unsigned long )((void *)0); __ret = 1L; { if (8UL == 1UL) { goto case_1; } else { } if (8UL == 2UL) { goto case_2; } else { } if (8UL == 4UL) { goto case_4; } else { } if (8UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___4 = get_current(); __asm__ volatile ("xchgb %b0, %1\n": "+q" (__ret), "+m" (tmp___4->state): : "memory", "cc"); } goto ldv_36029; case_2: /* CIL Label */ { tmp___5 = get_current(); __asm__ volatile ("xchgw %w0, %1\n": "+r" (__ret), "+m" (tmp___5->state): : "memory", "cc"); } goto ldv_36029; case_4: /* CIL Label */ { tmp___6 = get_current(); __asm__ volatile ("xchgl %0, %1\n": "+r" (__ret), "+m" (tmp___6->state): : "memory", "cc"); } goto ldv_36029; case_8: /* CIL Label */ { tmp___7 = get_current(); __asm__ volatile ("xchgq %q0, %1\n": "+r" (__ret), "+m" (tmp___7->state): : "memory", "cc"); } goto ldv_36029; switch_default: /* CIL Label */ { __xchg_wrong_size(); } switch_break: /* CIL Label */ ; } ldv_36029: ; ldv_36036: ; if (list->head == list->tail) { goto ldv_36035; } else { } ldv_36024: { finish_wait(& (list->hiddev)->wait, & wait); } } else { } if (retval != 0) { { ldv_mutex_unlock_111(& list->thread_lock); } return ((ssize_t )retval); } else { } goto ldv_36039; ldv_36038: ; if ((list->flags & 1U) == 0U) { if (list->buffer[list->tail].field_index != 4294967295U) { { event.hid = list->buffer[list->tail].usage_code; event.value = list->buffer[list->tail].value; tmp___8 = copy_to_user((void *)buffer + (unsigned long )retval, (void const *)(& event), 8UL); } if (tmp___8 != 0UL) { { ldv_mutex_unlock_112(& list->thread_lock); } return (-14L); } else { } retval = (int )((unsigned int )retval + 8U); } else { } } else if (list->buffer[list->tail].field_index != 4294967295U || (list->flags & 2U) != 0U) { { tmp___9 = copy_to_user((void *)buffer + (unsigned long )retval, (void const *)(& list->buffer) + (unsigned long )list->tail, 24UL); } if (tmp___9 != 0UL) { { ldv_mutex_unlock_113(& list->thread_lock); } return (-14L); } else { } retval = (int )((unsigned int )retval + 24U); } else { } list->tail = (list->tail + 1) & 2047; ldv_36039: ; if (list->head != list->tail && (size_t )(retval + event_size) <= count) { goto ldv_36038; } else { } ldv_36042: ; if (retval == 0) { goto ldv_36041; } else { } { ldv_mutex_unlock_114(& list->thread_lock); } return ((ssize_t )retval); } } static unsigned int hiddev_poll(struct file *file , poll_table *wait ) { struct hiddev_list *list ; { { list = (struct hiddev_list *)file->private_data; poll_wait(file, & (list->hiddev)->wait, wait); } if (list->head != list->tail) { return (65U); } else { } if ((list->hiddev)->exist == 0) { return (24U); } else { } return (0U); } } static int hiddev_ioctl_usage(struct hiddev *hiddev , unsigned int cmd , void *user_arg ) { struct hid_device *hid ; struct hiddev_report_info rinfo ; struct hiddev_usage_ref_multi *uref_multi ; struct hiddev_usage_ref *uref ; struct hid_report *report ; struct hid_field *field ; int i ; void *tmp ; unsigned long tmp___0 ; unsigned long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; unsigned long tmp___4 ; { { hid = hiddev->hid; uref_multi = (struct hiddev_usage_ref_multi *)0; tmp = kmalloc(4124UL, 208U); uref_multi = (struct hiddev_usage_ref_multi *)tmp; } if ((unsigned long )uref_multi == (unsigned long )((struct hiddev_usage_ref_multi *)0)) { return (-12); } else { } uref = & uref_multi->uref; if (cmd == 3491514387U || cmd == 1344030740U) { { tmp___0 = copy_from_user((void *)uref_multi, (void const *)user_arg, 4124UL); } if (tmp___0 != 0UL) { goto fault; } else { } } else { { tmp___1 = copy_from_user((void *)uref, (void const *)user_arg, 24UL); } if (tmp___1 != 0UL) { goto fault; } else { } } { if (cmd == 3222816781U) { goto case_3222816781; } else { } goto switch_default; case_3222816781: /* CIL Label */ { rinfo.report_type = uref->report_type; rinfo.report_id = uref->report_id; report = hiddev_lookup_report(hid, & rinfo); } if ((unsigned long )report == (unsigned long )((struct hid_report *)0)) { goto inval; } else { } if (uref->field_index >= report->maxfield) { goto inval; } else { } field = report->field[uref->field_index]; if (uref->usage_index >= field->maxusage) { goto inval; } else { } { uref->usage_code = (field->usage + (unsigned long )uref->usage_index)->hid; tmp___2 = copy_to_user(user_arg, (void const *)uref, 24UL); } if (tmp___2 != 0UL) { goto fault; } else { } goto goodreturn; switch_default: /* CIL Label */ ; if ((cmd != 3222816779U && cmd != 3491514387U) && uref->report_type == 1U) { goto inval; } else { } if (uref->report_id == 4294967295U) { { field = hiddev_lookup_usage(hid, uref); } if ((unsigned long )field == (unsigned long )((struct hid_field *)0)) { goto inval; } else { } } else { { rinfo.report_type = uref->report_type; rinfo.report_id = uref->report_id; report = hiddev_lookup_report(hid, & rinfo); } if ((unsigned long )report == (unsigned long )((struct hid_report *)0)) { goto inval; } else { } if (uref->field_index >= report->maxfield) { goto inval; } else { } field = report->field[uref->field_index]; if (cmd == 1075333136U) { if (uref->usage_index >= field->maxusage) { goto inval; } else { } } else if (uref->usage_index >= field->report_count) { goto inval; } else if ((cmd == 3491514387U || cmd == 1344030740U) && (uref_multi->num_values > 1024U || uref->usage_index + uref_multi->num_values > field->report_count)) { goto inval; } else { } } { if (cmd == 3222816779U) { goto case_3222816779; } else { } if (cmd == 1075333132U) { goto case_1075333132; } else { } if (cmd == 1075333136U) { goto case_1075333136; } else { } if (cmd == 3491514387U) { goto case_3491514387; } else { } if (cmd == 1344030740U) { goto case_1344030740; } else { } goto switch_break___0; case_3222816779: /* CIL Label */ { uref->value = *(field->value + (unsigned long )uref->usage_index); tmp___3 = copy_to_user(user_arg, (void const *)uref, 24UL); } if (tmp___3 != 0UL) { goto fault; } else { } goto goodreturn; case_1075333132: /* CIL Label */ *(field->value + (unsigned long )uref->usage_index) = uref->value; goto goodreturn; case_1075333136: /* CIL Label */ { i = (int )(field->usage + (unsigned long )uref->usage_index)->collection_index; kfree((void const *)uref_multi); } return (i); case_3491514387: /* CIL Label */ i = 0; goto ldv_36071; ldv_36070: uref_multi->values[i] = *(field->value + (unsigned long )(uref->usage_index + (__u32 )i)); i = i + 1; ldv_36071: ; if ((__u32 )i < uref_multi->num_values) { goto ldv_36070; } else { } { tmp___4 = copy_to_user(user_arg, (void const *)uref_multi, 4124UL); } if (tmp___4 != 0UL) { goto fault; } else { } goto goodreturn; case_1344030740: /* CIL Label */ i = 0; goto ldv_36075; ldv_36074: *(field->value + (unsigned long )(uref->usage_index + (__u32 )i)) = uref_multi->values[i]; i = i + 1; ldv_36075: ; if ((__u32 )i < uref_multi->num_values) { goto ldv_36074; } else { } goto goodreturn; switch_break___0: /* CIL Label */ ; } goodreturn: { kfree((void const *)uref_multi); } return (0); fault: { kfree((void const *)uref_multi); } return (-14); inval: { kfree((void const *)uref_multi); } return (-22); switch_break: /* CIL Label */ ; } } } static int hiddev_ioctl_string(struct hiddev *hiddev , unsigned int cmd , void *user_arg ) { struct hid_device *hid ; struct usb_device *dev ; struct device const *__mptr ; int idx ; int len ; char *buf ; int __ret_gu ; register unsigned long __val_gu ; void *tmp ; unsigned long tmp___0 ; { { hid = hiddev->hid; __mptr = (struct device const *)(hid->dev.parent)->parent; dev = (struct usb_device *)__mptr + 0xffffffffffffff70UL; might_fault(); __asm__ volatile ("call __get_user_%P3": "=a" (__ret_gu), "=r" (__val_gu): "0" ((int *)user_arg), "i" (4UL)); idx = (int )__val_gu; } if (__ret_gu != 0) { return (-14); } else { } { tmp = kmalloc(256UL, 208U); buf = (char *)tmp; } if ((unsigned long )buf == (unsigned long )((char *)0)) { return (-12); } else { } { len = usb_string(dev, idx, buf, 255UL); } if (len < 0) { { kfree((void const *)buf); } return (-22); } else { } { tmp___0 = copy_to_user(user_arg + 4UL, (void const *)buf, (unsigned long )(len + 1)); } if (tmp___0 != 0UL) { { kfree((void const *)buf); } return (-14); } else { } { kfree((void const *)buf); } return (len); } } static long hiddev_ioctl(struct file *file , unsigned int cmd , unsigned long arg ) { struct hiddev_list *list ; struct hiddev *hiddev ; struct hid_device *hid ; struct hiddev_collection_info cinfo ; struct hiddev_report_info rinfo ; struct hiddev_field_info finfo ; struct hiddev_devinfo dinfo ; struct hid_report *report ; struct hid_field *field ; void *user_arg ; int i ; int r ; int __ret_pu ; int __pu_val ; unsigned long tmp ; struct usb_device *dev ; struct device const *__mptr ; struct usbhid_device *usbhid ; unsigned long tmp___0 ; int __ret_pu___0 ; int __pu_val___0 ; int newflags ; int __ret_gu ; register unsigned long __val_gu ; unsigned long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; unsigned long tmp___4 ; unsigned long tmp___5 ; unsigned long tmp___6 ; unsigned long tmp___7 ; unsigned long tmp___8 ; int len ; size_t tmp___9 ; unsigned long tmp___10 ; int len___0 ; size_t tmp___11 ; unsigned long tmp___12 ; { { list = (struct hiddev_list *)file->private_data; hiddev = list->hiddev; user_arg = (void *)arg; r = -22; ldv_mutex_lock_115(& hiddev->existancelock); } if (hiddev->exist == 0) { r = -19; goto ret_unlock; } else { } hid = hiddev->hid; { if (cmd == 2147764225U) { goto case_2147764225; } else { } if (cmd == 18434U) { goto case_18434; } else { } if (cmd == 2149337091U) { goto case_2149337091; } else { } if (cmd == 2147764238U) { goto case_2147764238; } else { } if (cmd == 1074022415U) { goto case_1074022415; } else { } if (cmd == 2164541444U) { goto case_2164541444; } else { } if (cmd == 18437U) { goto case_18437; } else { } if (cmd == 1074546695U) { goto case_1074546695; } else { } if (cmd == 1074546696U) { goto case_1074546696; } else { } if (cmd == 3222030345U) { goto case_3222030345; } else { } if (cmd == 3224913930U) { goto case_3224913930; } else { } if (cmd == 3222816781U) { goto case_3222816781; } else { } if (cmd == 3222816779U) { goto case_3222816779; } else { } if (cmd == 1075333132U) { goto case_1075333132; } else { } if (cmd == 3491514387U) { goto case_3491514387; } else { } if (cmd == 1344030740U) { goto case_1344030740; } else { } if (cmd == 1075333136U) { goto case_1075333136; } else { } if (cmd == 3222292497U) { goto case_3222292497; } else { } goto switch_default___1; case_2147764225: /* CIL Label */ { might_fault(); __pu_val = 65540; } { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ volatile ("call __put_user_1": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx"); goto ldv_36114; case_2: /* CIL Label */ __asm__ volatile ("call __put_user_2": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx"); goto ldv_36114; case_4: /* CIL Label */ __asm__ volatile ("call __put_user_4": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx"); goto ldv_36114; case_8: /* CIL Label */ __asm__ volatile ("call __put_user_8": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx"); goto ldv_36114; switch_default: /* CIL Label */ __asm__ volatile ("call __put_user_X": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx"); goto ldv_36114; switch_break___0: /* CIL Label */ ; } ldv_36114: r = __ret_pu != 0 ? -14 : 0; goto ldv_36120; case_18434: /* CIL Label */ ; if (arg >= (unsigned long )hid->maxapplication) { goto ldv_36120; } else { } i = 0; goto ldv_36124; ldv_36123: ; if ((hid->collection + (unsigned long )i)->type == 1U) { tmp = arg; arg = arg - 1UL; if (tmp == 0UL) { goto ldv_36122; } else { } } else { } i = i + 1; ldv_36124: ; if ((unsigned int )i < hid->maxcollection) { goto ldv_36123; } else { } ldv_36122: ; if ((unsigned int )i < hid->maxcollection) { r = (int )(hid->collection + (unsigned long )i)->usage; } else { } goto ldv_36120; case_2149337091: /* CIL Label */ { __mptr = (struct device const *)(hid->dev.parent)->parent; dev = (struct usb_device *)__mptr + 0xffffffffffffff70UL; usbhid = (struct usbhid_device *)hid->driver_data; __memset((void *)(& dinfo), 0, 28UL); dinfo.bustype = 3U; dinfo.busnum = (__u32 )(dev->bus)->busnum; dinfo.devnum = (__u32 )dev->devnum; dinfo.ifnum = (__u32 )usbhid->ifnum; dinfo.vendor = (__s16 )dev->descriptor.idVendor; dinfo.product = (__s16 )dev->descriptor.idProduct; dinfo.version = (__s16 )dev->descriptor.bcdDevice; dinfo.num_applications = hid->maxapplication; tmp___0 = copy_to_user(user_arg, (void const *)(& dinfo), 28UL); r = tmp___0 != 0UL ? -14 : 0; } goto ldv_36120; case_2147764238: /* CIL Label */ { might_fault(); __pu_val___0 = (int )list->flags; } { if (4UL == 1UL) { goto case_1___0; } else { } if (4UL == 2UL) { goto case_2___0; } else { } if (4UL == 4UL) { goto case_4___0; } else { } if (4UL == 8UL) { goto case_8___0; } else { } goto switch_default___0; case_1___0: /* CIL Label */ __asm__ volatile ("call __put_user_1": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" ((int *)arg): "ebx"); goto ldv_36134; case_2___0: /* CIL Label */ __asm__ volatile ("call __put_user_2": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" ((int *)arg): "ebx"); goto ldv_36134; case_4___0: /* CIL Label */ __asm__ volatile ("call __put_user_4": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" ((int *)arg): "ebx"); goto ldv_36134; case_8___0: /* CIL Label */ __asm__ volatile ("call __put_user_8": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" ((int *)arg): "ebx"); goto ldv_36134; switch_default___0: /* CIL Label */ __asm__ volatile ("call __put_user_X": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" ((int *)arg): "ebx"); goto ldv_36134; switch_break___1: /* CIL Label */ ; } ldv_36134: r = __ret_pu___0 != 0 ? -14 : 0; goto ldv_36120; case_1074022415: /* CIL Label */ { might_fault(); __asm__ volatile ("call __get_user_%P3": "=a" (__ret_gu), "=r" (__val_gu): "0" ((int *)arg), "i" (4UL)); newflags = (int )__val_gu; } if (__ret_gu != 0) { r = -14; goto ldv_36120; } else { } if ((newflags & -4) != 0 || ((unsigned int )newflags & 3U) == 2U) { goto ldv_36120; } else { } list->flags = (unsigned int )newflags; r = 0; goto ldv_36120; case_2164541444: /* CIL Label */ { r = hiddev_ioctl_string(hiddev, cmd, user_arg); } goto ldv_36120; case_18437: /* CIL Label */ { usbhid_init_reports(hid); r = 0; } goto ldv_36120; case_1074546695: /* CIL Label */ { tmp___1 = copy_from_user((void *)(& rinfo), (void const *)user_arg, 12UL); } if (tmp___1 != 0UL) { r = -14; goto ldv_36120; } else { } if (rinfo.report_type == 2U) { goto ldv_36120; } else { } { report = hiddev_lookup_report(hid, & rinfo); } if ((unsigned long )report == (unsigned long )((struct hid_report *)0)) { goto ldv_36120; } else { } { hid_hw_request(hid, report, 1); hid_hw_wait(hid); r = 0; } goto ldv_36120; case_1074546696: /* CIL Label */ { tmp___2 = copy_from_user((void *)(& rinfo), (void const *)user_arg, 12UL); } if (tmp___2 != 0UL) { r = -14; goto ldv_36120; } else { } if (rinfo.report_type == 1U) { goto ldv_36120; } else { } { report = hiddev_lookup_report(hid, & rinfo); } if ((unsigned long )report == (unsigned long )((struct hid_report *)0)) { goto ldv_36120; } else { } { hid_hw_request(hid, report, 9); hid_hw_wait(hid); r = 0; } goto ldv_36120; case_3222030345: /* CIL Label */ { tmp___3 = copy_from_user((void *)(& rinfo), (void const *)user_arg, 12UL); } if (tmp___3 != 0UL) { r = -14; goto ldv_36120; } else { } { report = hiddev_lookup_report(hid, & rinfo); } if ((unsigned long )report == (unsigned long )((struct hid_report *)0)) { goto ldv_36120; } else { } { rinfo.num_fields = report->maxfield; tmp___4 = copy_to_user(user_arg, (void const *)(& rinfo), 12UL); r = tmp___4 != 0UL ? -14 : 0; } goto ldv_36120; case_3224913930: /* CIL Label */ { tmp___5 = copy_from_user((void *)(& finfo), (void const *)user_arg, 56UL); } if (tmp___5 != 0UL) { r = -14; goto ldv_36120; } else { } { rinfo.report_type = finfo.report_type; rinfo.report_id = finfo.report_id; report = hiddev_lookup_report(hid, & rinfo); } if ((unsigned long )report == (unsigned long )((struct hid_report *)0)) { goto ldv_36120; } else { } if (finfo.field_index >= report->maxfield) { goto ldv_36120; } else { } { field = report->field[finfo.field_index]; __memset((void *)(& finfo), 0, 56UL); finfo.report_type = rinfo.report_type; finfo.report_id = rinfo.report_id; finfo.field_index = field->report_count - 1U; finfo.maxusage = field->maxusage; finfo.flags = field->flags; finfo.physical = field->physical; finfo.logical = field->logical; finfo.application = field->application; finfo.logical_minimum = field->logical_minimum; finfo.logical_maximum = field->logical_maximum; finfo.physical_minimum = field->physical_minimum; finfo.physical_maximum = field->physical_maximum; finfo.unit_exponent = (__u32 )field->unit_exponent; finfo.unit = field->unit; tmp___6 = copy_to_user(user_arg, (void const *)(& finfo), 56UL); r = tmp___6 != 0UL ? -14 : 0; } goto ldv_36120; case_3222816781: /* CIL Label */ ; case_3222816779: /* CIL Label */ ; case_1075333132: /* CIL Label */ ; case_3491514387: /* CIL Label */ ; case_1344030740: /* CIL Label */ ; case_1075333136: /* CIL Label */ { r = hiddev_ioctl_usage(hiddev, cmd, user_arg); } goto ldv_36120; case_3222292497: /* CIL Label */ { tmp___7 = copy_from_user((void *)(& cinfo), (void const *)user_arg, 16UL); } if (tmp___7 != 0UL) { r = -14; goto ldv_36120; } else { } if (cinfo.index >= hid->maxcollection) { goto ldv_36120; } else { } { cinfo.type = (hid->collection + (unsigned long )cinfo.index)->type; cinfo.usage = (hid->collection + (unsigned long )cinfo.index)->usage; cinfo.level = (hid->collection + (unsigned long )cinfo.index)->level; tmp___8 = copy_to_user(user_arg, (void const *)(& cinfo), 16UL); r = tmp___8 != 0UL ? -14 : 0; } goto ldv_36120; switch_default___1: /* CIL Label */ ; if (((cmd >> 8) & 255U) != 72U || cmd >> 30 != 2U) { goto ldv_36120; } else { } if ((cmd & 255U) == 6U) { { tmp___9 = strlen((char const *)(& hid->name)); len = (int )((unsigned int )tmp___9 + 1U); } if ((unsigned int )len > ((cmd >> 16) & 16383U)) { len = (int )(cmd >> 16) & 16383; } else { } { tmp___10 = copy_to_user(user_arg, (void const *)(& hid->name), (unsigned long )len); r = tmp___10 == 0UL ? len : -14; } goto ldv_36120; } else { } if ((cmd & 255U) == 18U) { { tmp___11 = strlen((char const *)(& hid->phys)); len___0 = (int )((unsigned int )tmp___11 + 1U); } if ((unsigned int )len___0 > ((cmd >> 16) & 16383U)) { len___0 = (int )(cmd >> 16) & 16383; } else { } { tmp___12 = copy_to_user(user_arg, (void const *)(& hid->phys), (unsigned long )len___0); r = tmp___12 == 0UL ? len___0 : -14; } goto ldv_36120; } else { } switch_break: /* CIL Label */ ; } ldv_36120: ; ret_unlock: { ldv_mutex_unlock_116(& hiddev->existancelock); } return ((long )r); } } static long hiddev_compat_ioctl(struct file *file , unsigned int cmd , unsigned long arg ) { void *tmp ; long tmp___0 ; { { tmp = compat_ptr((compat_uptr_t )arg); tmp___0 = hiddev_ioctl(file, cmd, (unsigned long )tmp); } return (tmp___0); } } static struct file_operations const hiddev_fops = {& __this_module, & noop_llseek, & hiddev_read, & hiddev_write, 0, 0, 0, 0, 0, & hiddev_poll, & hiddev_ioctl, & hiddev_compat_ioctl, 0, 0, & hiddev_open, 0, & hiddev_release, 0, 0, & hiddev_fasync, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static char *hiddev_devnode(struct device *dev , umode_t *mode ) { char const *tmp ; char *tmp___0 ; { { tmp = dev_name((struct device const *)dev); tmp___0 = kasprintf(208U, "usb/%s", tmp); } return (tmp___0); } } static struct usb_class_driver hiddev_class = {(char *)"hiddev%d", & hiddev_devnode, & hiddev_fops, 0}; int hiddev_connect(struct hid_device *hid , unsigned int force ) { struct hiddev *hiddev ; struct usbhid_device *usbhid ; int retval ; unsigned int i ; void *tmp ; struct lock_class_key __key ; struct lock_class_key __key___0 ; struct lock_class_key __key___1 ; { usbhid = (struct usbhid_device *)hid->driver_data; if (force == 0U) { i = 0U; goto ldv_36182; ldv_36181: ; if ((hid->collection + (unsigned long )i)->type == 1U && ((((hid->collection + (unsigned long )i)->usage - 65536U > 8U && (hid->collection + (unsigned long )i)->usage != 65664U) && (hid->collection + (unsigned long )i)->usage != 786433U) && (hid->collection + (unsigned long )i)->usage - 851970U > 4U)) { goto ldv_36180; } else { } i = i + 1U; ldv_36182: ; if (i < hid->maxcollection) { goto ldv_36181; } else { } ldv_36180: ; if (i == hid->maxcollection) { return (-1); } else { } } else { } { tmp = kzalloc(352UL, 208U); hiddev = (struct hiddev *)tmp; } if ((unsigned long )hiddev == (unsigned long )((struct hiddev *)0)) { return (-1); } else { } { __init_waitqueue_head(& hiddev->wait, "&hiddev->wait", & __key); INIT_LIST_HEAD(& hiddev->list); spinlock_check(& hiddev->list_lock); __raw_spin_lock_init(& hiddev->list_lock.__annonCompField18.rlock, "&(&hiddev->list_lock)->rlock", & __key___0); __mutex_init(& hiddev->existancelock, "&hiddev->existancelock", & __key___1); hid->hiddev = (void *)hiddev; hiddev->hid = hid; hiddev->exist = 1; retval = usb_register_dev(usbhid->intf, & hiddev_class); } if (retval != 0) { { dev_err((struct device const *)(& hid->dev), "Not able to get a minor for this device\n"); hid->hiddev = (void *)0; kfree((void const *)hiddev); } return (-1); } else { } return (0); } } void hiddev_disconnect(struct hid_device *hid ) { struct hiddev *hiddev ; struct usbhid_device *usbhid ; { { hiddev = (struct hiddev *)hid->hiddev; usbhid = (struct usbhid_device *)hid->driver_data; usb_deregister_dev(usbhid->intf, & hiddev_class); ldv_mutex_lock_117(& hiddev->existancelock); hiddev->exist = 0; } if (hiddev->open != 0) { { ldv_mutex_unlock_118(& hiddev->existancelock); usbhid_close(hiddev->hid); __wake_up(& hiddev->wait, 1U, 1, (void *)0); } } else { { ldv_mutex_unlock_119(& hiddev->existancelock); kfree((void const *)hiddev); } } return; } } void ldv_file_operations_instance_callback_0_22(char *(*arg0)(struct device * , unsigned short * ) , struct device *arg1 , unsigned short *arg2 ) ; void ldv_file_operations_instance_callback_0_25(int (*arg0)(int , struct file * , int ) , int arg1 , struct file *arg2 , int arg3 ) ; void ldv_file_operations_instance_callback_0_28(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) ; void ldv_file_operations_instance_callback_0_31(unsigned int (*arg0)(struct file * , struct poll_table_struct * ) , struct file *arg1 , struct poll_table_struct *arg2 ) ; void ldv_file_operations_instance_callback_0_32(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_callback_0_35(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) ; void ldv_file_operations_instance_callback_0_5(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) ; int ldv_file_operations_instance_probe_0_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_release_0_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_write_0_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; struct ldv_thread ldv_thread_0 ; void ldv_file_operations_file_operations_instance_0(void *arg0 ) { long (*ldv_0_callback_compat_ioctl)(struct file * , unsigned int , unsigned long ) ; char *(*ldv_0_callback_devnode)(struct device * , unsigned short * ) ; int (*ldv_0_callback_fasync)(int , struct file * , int ) ; long long (*ldv_0_callback_llseek)(struct file * , long long , int ) ; unsigned int (*ldv_0_callback_poll)(struct file * , struct poll_table_struct * ) ; long (*ldv_0_callback_read)(struct file * , char * , unsigned long , long long * ) ; long (*ldv_0_callback_unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; struct file_operations *ldv_0_container_file_operations ; struct device *ldv_0_ldv_param_22_0_default ; unsigned short *ldv_0_ldv_param_22_1_default ; int ldv_0_ldv_param_25_0_default ; int ldv_0_ldv_param_25_2_default ; long long ldv_0_ldv_param_28_1_default ; int ldv_0_ldv_param_28_2_default ; char *ldv_0_ldv_param_32_1_default ; long long *ldv_0_ldv_param_32_3_default ; unsigned int ldv_0_ldv_param_35_1_default ; char *ldv_0_ldv_param_4_1_default ; long long *ldv_0_ldv_param_4_3_default ; unsigned int ldv_0_ldv_param_5_1_default ; struct file *ldv_0_resource_file ; struct inode *ldv_0_resource_inode ; int ldv_0_ret_default ; struct device *ldv_0_size_cnt_struct_device_ptr ; struct poll_table_struct *ldv_0_size_cnt_struct_poll_table_struct_ptr ; unsigned long ldv_0_size_cnt_write_size ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; void *tmp___5 ; void *tmp___6 ; int tmp___7 ; void *tmp___8 ; void *tmp___9 ; void *tmp___10 ; void *tmp___11 ; { { ldv_0_ret_default = 1; tmp = ldv_xmalloc(504UL); ldv_0_resource_file = (struct file *)tmp; tmp___0 = ldv_xmalloc(976UL); ldv_0_resource_inode = (struct inode *)tmp___0; tmp___1 = ldv_undef_int(); ldv_0_size_cnt_struct_device_ptr = (struct device *)((long )tmp___1); } goto ldv_main_0; return; ldv_main_0: { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { ldv_0_ret_default = ldv_file_operations_instance_probe_0_12(ldv_0_container_file_operations->open, ldv_0_resource_inode, ldv_0_resource_file); ldv_0_ret_default = ldv_filter_err_code(ldv_0_ret_default); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_assume(ldv_0_ret_default == 0); } goto ldv_call_0; } else { { ldv_assume(ldv_0_ret_default != 0); } goto ldv_main_0; } } else { { ldv_free((void *)ldv_0_resource_file); ldv_free((void *)ldv_0_resource_inode); } return; } return; ldv_call_0: { tmp___4 = ldv_undef_int(); } { if (tmp___4 == 1) { goto case_1; } else { } if (tmp___4 == 2) { goto case_2; } else { } if (tmp___4 == 3) { goto case_3; } else { } goto switch_default___0; case_1: /* CIL Label */ { tmp___5 = ldv_xmalloc(1UL); ldv_0_ldv_param_4_1_default = (char *)tmp___5; tmp___6 = ldv_xmalloc(8UL); ldv_0_ldv_param_4_3_default = (long long *)tmp___6; ldv_assume((unsigned long )ldv_0_size_cnt_struct_device_ptr <= (unsigned long )((struct device *)2147479552)); ldv_file_operations_instance_write_0_4((long (*)(struct file * , char * , unsigned long , long long * ))ldv_0_container_file_operations->write, ldv_0_resource_file, ldv_0_ldv_param_4_1_default, ldv_0_size_cnt_write_size, ldv_0_ldv_param_4_3_default); ldv_free((void *)ldv_0_ldv_param_4_1_default); ldv_free((void *)ldv_0_ldv_param_4_3_default); } goto ldv_call_0; case_2: /* CIL Label */ { ldv_file_operations_instance_release_0_2(ldv_0_container_file_operations->release, ldv_0_resource_inode, ldv_0_resource_file); } goto ldv_main_0; case_3: /* CIL Label */ { tmp___7 = ldv_undef_int(); } { if (tmp___7 == 1) { goto case_1___0; } else { } if (tmp___7 == 2) { goto case_2___0; } else { } if (tmp___7 == 3) { goto case_3___0; } else { } if (tmp___7 == 4) { goto case_4; } else { } if (tmp___7 == 5) { goto case_5; } else { } if (tmp___7 == 6) { goto case_6; } else { } if (tmp___7 == 7) { goto case_7; } else { } goto switch_default; case_1___0: /* CIL Label */ { ldv_file_operations_instance_callback_0_35(ldv_0_callback_unlocked_ioctl, ldv_0_resource_file, ldv_0_ldv_param_35_1_default, ldv_0_size_cnt_write_size); } goto ldv_36334; case_2___0: /* CIL Label */ { tmp___8 = ldv_xmalloc(1UL); ldv_0_ldv_param_32_1_default = (char *)tmp___8; tmp___9 = ldv_xmalloc(8UL); ldv_0_ldv_param_32_3_default = (long long *)tmp___9; ldv_file_operations_instance_callback_0_32(ldv_0_callback_read, ldv_0_resource_file, ldv_0_ldv_param_32_1_default, ldv_0_size_cnt_write_size, ldv_0_ldv_param_32_3_default); ldv_free((void *)ldv_0_ldv_param_32_1_default); ldv_free((void *)ldv_0_ldv_param_32_3_default); } goto ldv_36334; case_3___0: /* CIL Label */ { ldv_file_operations_instance_callback_0_31(ldv_0_callback_poll, ldv_0_resource_file, ldv_0_size_cnt_struct_poll_table_struct_ptr); } goto ldv_36334; case_4: /* CIL Label */ { ldv_file_operations_instance_callback_0_28(ldv_0_callback_llseek, ldv_0_resource_file, ldv_0_ldv_param_28_1_default, ldv_0_ldv_param_28_2_default); } goto ldv_36334; case_5: /* CIL Label */ { ldv_file_operations_instance_callback_0_25(ldv_0_callback_fasync, ldv_0_ldv_param_25_0_default, ldv_0_resource_file, ldv_0_ldv_param_25_2_default); } goto ldv_36334; case_6: /* CIL Label */ { tmp___10 = ldv_xmalloc(1408UL); ldv_0_ldv_param_22_0_default = (struct device *)tmp___10; tmp___11 = ldv_xmalloc(2UL); ldv_0_ldv_param_22_1_default = (unsigned short *)tmp___11; ldv_file_operations_instance_callback_0_22(ldv_0_callback_devnode, ldv_0_ldv_param_22_0_default, ldv_0_ldv_param_22_1_default); ldv_free((void *)ldv_0_ldv_param_22_0_default); ldv_free((void *)ldv_0_ldv_param_22_1_default); } goto ldv_36334; case_7: /* CIL Label */ { ldv_file_operations_instance_callback_0_5(ldv_0_callback_compat_ioctl, ldv_0_resource_file, ldv_0_ldv_param_5_1_default, ldv_0_size_cnt_write_size); } goto ldv_36334; switch_default: /* CIL Label */ { ldv_stop(); } switch_break___0: /* CIL Label */ ; } ldv_36334: ; goto ldv_36342; switch_default___0: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_36342: ; goto ldv_call_0; goto ldv_call_0; return; } } void ldv_file_operations_instance_callback_0_22(char *(*arg0)(struct device * , unsigned short * ) , struct device *arg1 , unsigned short *arg2 ) { { { hiddev_devnode(arg1, arg2); } return; } } void ldv_file_operations_instance_callback_0_25(int (*arg0)(int , struct file * , int ) , int arg1 , struct file *arg2 , int arg3 ) { { { hiddev_fasync(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_0_28(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) { { { noop_llseek(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_0_31(unsigned int (*arg0)(struct file * , struct poll_table_struct * ) , struct file *arg1 , struct poll_table_struct *arg2 ) { { { hiddev_poll(arg1, arg2); } return; } } void ldv_file_operations_instance_callback_0_32(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { hiddev_read(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_0_35(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) { { { hiddev_ioctl(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_0_5(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) { { { hiddev_compat_ioctl(arg1, arg2, arg3); } return; } } int ldv_file_operations_instance_probe_0_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { int tmp ; { { tmp = hiddev_open(arg1, arg2); } return (tmp); } } void ldv_file_operations_instance_release_0_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { { { hiddev_release(arg1, arg2); } return; } } void ldv_file_operations_instance_write_0_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { hiddev_write(arg1, (char const *)arg2, arg3, arg4); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_95___0(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_list_lock_of_hiddev(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_96(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_list_lock_of_hiddev(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_97(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_list_lock_of_hiddev(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv_mutex_lock_99(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_existancelock_of_hiddev(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_100(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_existancelock_of_hiddev(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_101(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_existancelock_of_hiddev(ldv_func_arg1); } return; } } static void *ldv_vzalloc_102(unsigned long ldv_func_arg1 ) { void *tmp ; { { ldv_check_alloc_nonatomic(); tmp = ldv_malloc_unknown_size(); } return (tmp); } } __inline static void ldv_spin_lock_irq_103(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_list_lock_of_hiddev(); spin_lock_irq(lock); } return; } } __inline static void ldv_spin_unlock_irq_104(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_list_lock_of_hiddev(); spin_unlock_irq(lock); } return; } } static void ldv_mutex_lock_105(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_existancelock_of_hiddev(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_106(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_existancelock_of_hiddev(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_107(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_existancelock_of_hiddev(ldv_func_arg1); } return; } } static int ldv_mutex_lock_interruptible_108(struct mutex *ldv_func_arg1 ) { int tmp ; { { tmp = ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_thread_lock_of_hiddev_list(ldv_func_arg1); } return (tmp); } } static void ldv_mutex_unlock_109(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_thread_lock_of_hiddev_list(ldv_func_arg1); } return; } } static int ldv_mutex_lock_interruptible_110(struct mutex *ldv_func_arg1 ) { int tmp ; { { tmp = ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_thread_lock_of_hiddev_list(ldv_func_arg1); } return (tmp); } } static void ldv_mutex_unlock_111(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_thread_lock_of_hiddev_list(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_112(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_thread_lock_of_hiddev_list(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_113(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_thread_lock_of_hiddev_list(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_114(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_thread_lock_of_hiddev_list(ldv_func_arg1); } return; } } static void ldv_mutex_lock_115(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_existancelock_of_hiddev(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_116(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_existancelock_of_hiddev(ldv_func_arg1); } return; } } static void ldv_mutex_lock_117(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_existancelock_of_hiddev(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_118(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_existancelock_of_hiddev(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_119(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_existancelock_of_hiddev(ldv_func_arg1); } return; } } extern void __dynamic_pr_debug(struct _ddebug * , char const * , ...) ; extern void dev_notice(struct device const * , char const * , ...) ; extern void _dev_info(struct device const * , char const * , ...) ; extern void down(struct semaphore * ) ; extern void up(struct semaphore * ) ; extern int input_ff_create(struct input_dev * , unsigned int ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; __inline static void hid_device_io_start(struct hid_device *hid ) { { if ((int )hid->io_started) { { dev_warn((struct device const *)(& hid->dev), "io already started"); } return; } else { } { hid->io_started = 1; up(& hid->driver_input_lock); } return; } } __inline static void hid_device_io_stop(struct hid_device *hid ) { { if (! hid->io_started) { { dev_warn((struct device const *)(& hid->dev), "io already stopped"); } return; } else { } { hid->io_started = 0; down(& hid->driver_input_lock); } return; } } static u8 const pidff_reports[13U] = { 33U, 119U, 125U, 127U, 137U, 144U, 150U, 171U, 90U, 95U, 110U, 115U, 116U}; static u8 const pidff_set_effect[7U] = { 34U, 80U, 82U, 83U, 84U, 86U, 167U}; static u8 const pidff_set_envelope[5U] = { 34U, 91U, 92U, 93U, 94U}; static u8 const pidff_set_condition[8U] = { 34U, 35U, 96U, 97U, 98U, 99U, 100U, 101U}; static u8 const pidff_set_periodic[5U] = { 34U, 112U, 111U, 113U, 114U}; static u8 const pidff_set_constant[2U] = { 34U, 112U}; static u8 const pidff_set_ramp[3U] = { 34U, 117U, 118U}; static u8 const pidff_block_load[2U] = { 34U, 172U}; static u8 const pidff_effect_operation[2U] = { 34U, 124U}; static u8 const pidff_block_free[1U] = { 34U}; static u8 const pidff_device_gain[1U] = { 126U}; static u8 const pidff_pool[3U] = { 128U, 131U, 169U}; static u8 const pidff_device_control[2U] = { 151U, 154U}; static u8 const pidff_effect_types[11U] = { 38U, 39U, 48U, 49U, 50U, 51U, 52U, 64U, 65U, 66U, 67U}; static u8 const pidff_block_load_status[2U] = { 140U, 141U}; static u8 const pidff_effect_operation_status[2U] = { 121U, 123U}; static int pidff_rescale(int i , int max , struct hid_field *field ) { { return ((i * (field->logical_maximum - field->logical_minimum)) / max + field->logical_minimum); } } static int pidff_rescale_signed(int i , struct hid_field *field ) { { return (i != 0 ? (i > 0 ? (i * field->logical_maximum) / 32767 : (i * field->logical_minimum) / -32768) : 0); } } static void pidff_set(struct pidff_usage *usage , u16 value ) { struct _ddebug descriptor ; long tmp ; { { *(usage->value) = pidff_rescale((int )value, 65535, usage->field); descriptor.modname = "usbhid"; descriptor.function = "pidff_set"; descriptor.filename = "drivers/hid/usbhid/hid-pidff.c"; descriptor.format = "calculated from %d to %d\n"; descriptor.lineno = 223U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "usbhid: calculated from %d to %d\n", (int )value, *(usage->value)); } } else { } return; } } static void pidff_set_signed(struct pidff_usage *usage , s16 value ) { struct _ddebug descriptor ; long tmp ; { if ((usage->field)->logical_minimum < 0) { { *(usage->value) = pidff_rescale_signed((int )value, usage->field); } } else if ((int )value < 0) { { *(usage->value) = pidff_rescale(- ((int )value), 32768, usage->field); } } else { { *(usage->value) = pidff_rescale((int )value, 32767, usage->field); } } { descriptor.modname = "usbhid"; descriptor.function = "pidff_set_signed"; descriptor.filename = "drivers/hid/usbhid/hid-pidff.c"; descriptor.format = "calculated from %d to %d\n"; descriptor.lineno = 238U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "usbhid: calculated from %d to %d\n", (int )value, *(usage->value)); } } else { } return; } } static void pidff_set_envelope_report(struct pidff_device *pidff , struct ff_envelope *envelope ) { struct _ddebug descriptor ; long tmp ; { { *(pidff->set_envelope[0].value) = *(pidff->block_load[0].value); *(pidff->set_envelope[1].value) = pidff_rescale((int )((short )envelope->attack_level) >= 0 ? (int )envelope->attack_level : 32767, 32767, pidff->set_envelope[1].field); *(pidff->set_envelope[3].value) = pidff_rescale((int )((short )envelope->fade_level) >= 0 ? (int )envelope->fade_level : 32767, 32767, pidff->set_envelope[3].field); *(pidff->set_envelope[2].value) = (s32 )envelope->attack_length; *(pidff->set_envelope[4].value) = (s32 )envelope->fade_length; descriptor.modname = "usbhid"; descriptor.function = "pidff_set_envelope_report"; descriptor.filename = "drivers/hid/usbhid/hid-pidff.c"; descriptor.format = "attack %u => %d\n"; descriptor.lineno = 264U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (pidff->hid)->dev), "attack %u => %d\n", (int )envelope->attack_level, *(pidff->set_envelope[1].value)); } } else { } { hid_hw_request(pidff->hid, pidff->reports[8], 9); } return; } } static int pidff_needs_set_envelope(struct ff_envelope *envelope , struct ff_envelope *old ) { { return ((((int )envelope->attack_level != (int )old->attack_level || (int )envelope->fade_level != (int )old->fade_level) || (int )envelope->attack_length != (int )old->attack_length) || (int )envelope->fade_length != (int )old->fade_length); } } static void pidff_set_constant_force_report(struct pidff_device *pidff , struct ff_effect *effect ) { { { *(pidff->set_constant[0].value) = *(pidff->block_load[0].value); pidff_set_signed((struct pidff_usage *)(& pidff->set_constant) + 1UL, (int )effect->u.constant.level); hid_hw_request(pidff->hid, pidff->reports[11], 9); } return; } } static int pidff_needs_set_constant(struct ff_effect *effect , struct ff_effect *old ) { { return ((int )effect->u.constant.level != (int )old->u.constant.level); } } static void pidff_set_effect_report(struct pidff_device *pidff , struct ff_effect *effect ) { { { *(pidff->set_effect[0].value) = *(pidff->block_load[0].value); *((pidff->set_effect_type)->value) = *((pidff->create_new_effect_type)->value); *(pidff->set_effect[1].value) = (s32 )effect->replay.length; *(pidff->set_effect[3].value) = (s32 )effect->trigger.button; *(pidff->set_effect[4].value) = (s32 )effect->trigger.interval; *(pidff->set_effect[2].value) = (pidff->set_effect[2].field)->logical_maximum; *(pidff->set_effect[5].value) = 1; *((pidff->effect_direction)->value) = pidff_rescale((int )effect->direction, 65535, pidff->effect_direction); *(pidff->set_effect[6].value) = (s32 )effect->replay.delay; hid_hw_request(pidff->hid, pidff->reports[0], 9); } return; } } static int pidff_needs_set_effect(struct ff_effect *effect , struct ff_effect *old ) { { return ((*((unsigned int *)effect + 2UL) != *((unsigned int *)old + 2UL) || *((unsigned int *)effect + 1UL) != *((unsigned int *)old + 1UL)) || (int )effect->replay.delay != (int )old->replay.delay); } } static void pidff_set_periodic_report(struct pidff_device *pidff , struct ff_effect *effect ) { { { *(pidff->set_periodic[0].value) = *(pidff->block_load[0].value); pidff_set_signed((struct pidff_usage *)(& pidff->set_periodic) + 1UL, (int )effect->u.periodic.magnitude); pidff_set_signed((struct pidff_usage *)(& pidff->set_periodic) + 2UL, (int )effect->u.periodic.offset); pidff_set((struct pidff_usage *)(& pidff->set_periodic) + 3UL, (int )effect->u.periodic.phase); *(pidff->set_periodic[4].value) = (s32 )effect->u.periodic.period; hid_hw_request(pidff->hid, pidff->reports[10], 9); } return; } } static int pidff_needs_set_periodic(struct ff_effect *effect , struct ff_effect *old ) { { return ((((unsigned int )*((int *)effect + 5UL) & 4294967295U) != ((unsigned int )*((int *)old + 5UL) & 4294967295U) || (int )effect->u.periodic.phase != (int )old->u.periodic.phase) || (int )effect->u.periodic.period != (int )old->u.periodic.period); } } static void pidff_set_condition_report(struct pidff_device *pidff , struct ff_effect *effect ) { int i ; { *(pidff->set_condition[0].value) = *(pidff->block_load[0].value); i = 0; goto ldv_33510; ldv_33509: { *(pidff->set_condition[1].value) = i; pidff_set_signed((struct pidff_usage *)(& pidff->set_condition) + 2UL, (int )effect->u.condition[i].center); pidff_set_signed((struct pidff_usage *)(& pidff->set_condition) + 3UL, (int )effect->u.condition[i].right_coeff); pidff_set_signed((struct pidff_usage *)(& pidff->set_condition) + 4UL, (int )effect->u.condition[i].left_coeff); pidff_set((struct pidff_usage *)(& pidff->set_condition) + 5UL, (int )effect->u.condition[i].right_saturation); pidff_set((struct pidff_usage *)(& pidff->set_condition) + 6UL, (int )effect->u.condition[i].left_saturation); pidff_set((struct pidff_usage *)(& pidff->set_condition) + 7UL, (int )effect->u.condition[i].deadband); hid_hw_request(pidff->hid, pidff->reports[9], 9); i = i + 1; } ldv_33510: ; if (i <= 1) { goto ldv_33509; } else { } return; } } static int pidff_needs_set_condition(struct ff_effect *effect , struct ff_effect *old ) { int i ; int ret ; struct ff_condition_effect *cond ; struct ff_condition_effect *old_cond ; { ret = 0; i = 0; goto ldv_33521; ldv_33520: cond = (struct ff_condition_effect *)(& effect->u.condition) + (unsigned long )i; old_cond = (struct ff_condition_effect *)(& old->u.condition) + (unsigned long )i; ret = ret | ((((((int )cond->center != (int )old_cond->center || (int )cond->right_coeff != (int )old_cond->right_coeff) || (int )cond->left_coeff != (int )old_cond->left_coeff) || (int )cond->right_saturation != (int )old_cond->right_saturation) || (int )cond->left_saturation != (int )old_cond->left_saturation) || (int )cond->deadband != (int )old_cond->deadband); i = i + 1; ldv_33521: ; if (i <= 1) { goto ldv_33520; } else { } return (ret); } } static void pidff_set_ramp_force_report(struct pidff_device *pidff , struct ff_effect *effect ) { { { *(pidff->set_ramp[0].value) = *(pidff->block_load[0].value); pidff_set_signed((struct pidff_usage *)(& pidff->set_ramp) + 1UL, (int )effect->u.ramp.start_level); pidff_set_signed((struct pidff_usage *)(& pidff->set_ramp) + 2UL, (int )effect->u.ramp.end_level); hid_hw_request(pidff->hid, pidff->reports[12], 9); } return; } } static int pidff_needs_set_ramp(struct ff_effect *effect , struct ff_effect *old ) { { return (((unsigned int )*((int *)effect + 4UL) & 4294967295U) != ((unsigned int )*((int *)old + 4UL) & 4294967295U)); } } static int pidff_request_effect_upload(struct pidff_device *pidff , int efnum ) { int j ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; long tmp___1 ; struct _ddebug descriptor___2 ; long tmp___2 ; { { *((pidff->create_new_effect_type)->value) = efnum; hid_hw_request(pidff->hid, pidff->reports[7], 9); descriptor.modname = "usbhid"; descriptor.function = "pidff_request_effect_upload"; descriptor.filename = "drivers/hid/usbhid/hid-pidff.c"; descriptor.format = "create_new_effect sent, type: %d\n"; descriptor.lineno = 470U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (pidff->hid)->dev), "create_new_effect sent, type: %d\n", efnum); } } else { } { *(pidff->block_load[0].value) = 0; *((pidff->block_load_status)->value) = 0; hid_hw_wait(pidff->hid); j = 0; } goto ldv_33542; ldv_33541: { descriptor___0.modname = "usbhid"; descriptor___0.function = "pidff_request_effect_upload"; descriptor___0.filename = "drivers/hid/usbhid/hid-pidff.c"; descriptor___0.format = "pid_block_load requested\n"; descriptor___0.lineno = 477U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_dev_dbg(& descriptor___0, (struct device const *)(& (pidff->hid)->dev), "pid_block_load requested\n"); } } else { } { hid_hw_request(pidff->hid, pidff->reports[4], 1); hid_hw_wait(pidff->hid); } if (*((pidff->block_load_status)->value) == pidff->status_id[0]) { { descriptor___1.modname = "usbhid"; descriptor___1.function = "pidff_request_effect_upload"; descriptor___1.filename = "drivers/hid/usbhid/hid-pidff.c"; descriptor___1.format = "device reported free memory: %d bytes\n"; descriptor___1.lineno = 485U; descriptor___1.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___1 != 0L) { { __dynamic_dev_dbg(& descriptor___1, (struct device const *)(& (pidff->hid)->dev), "device reported free memory: %d bytes\n", (unsigned long )pidff->block_load[1].value != (unsigned long )((s32 *)0) ? *(pidff->block_load[1].value) : -1); } } else { } return (0); } else { } if (*((pidff->block_load_status)->value) == pidff->status_id[1]) { { descriptor___2.modname = "usbhid"; descriptor___2.function = "pidff_request_effect_upload"; descriptor___2.filename = "drivers/hid/usbhid/hid-pidff.c"; descriptor___2.format = "not enough memory free: %d bytes\n"; descriptor___2.lineno = 492U; descriptor___2.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___2 != 0L) { { __dynamic_dev_dbg(& descriptor___2, (struct device const *)(& (pidff->hid)->dev), "not enough memory free: %d bytes\n", (unsigned long )pidff->block_load[1].value != (unsigned long )((s32 *)0) ? *(pidff->block_load[1].value) : -1); } } else { } return (-28); } else { } j = j + 1; ldv_33542: ; if (j <= 59) { goto ldv_33541; } else { } { dev_err((struct device const *)(& (pidff->hid)->dev), "pid_block_load failed 60 times\n"); } return (-5); } } static void pidff_playback_pid(struct pidff_device *pidff , int pid_id , int n ) { { *(pidff->effect_operation[0].value) = pid_id; if (n == 0) { *((pidff->effect_operation_status)->value) = pidff->operation_id[1]; } else { *((pidff->effect_operation_status)->value) = pidff->operation_id[0]; *(pidff->effect_operation[1].value) = n; } { hid_hw_request(pidff->hid, pidff->reports[1], 9); } return; } } static int pidff_playback(struct input_dev *dev , int effect_id , int value ) { struct pidff_device *pidff ; { { pidff = (struct pidff_device *)(dev->ff)->private; pidff_playback_pid(pidff, pidff->pid_id[effect_id], value); } return (0); } } static void pidff_erase_pid(struct pidff_device *pidff , int pid_id ) { { { *(pidff->block_free[0].value) = pid_id; hid_hw_request(pidff->hid, pidff->reports[5], 9); } return; } } static int pidff_erase_effect(struct input_dev *dev , int effect_id ) { struct pidff_device *pidff ; int pid_id ; struct _ddebug descriptor ; long tmp ; { { pidff = (struct pidff_device *)(dev->ff)->private; pid_id = pidff->pid_id[effect_id]; descriptor.modname = "usbhid"; descriptor.function = "pidff_erase_effect"; descriptor.filename = "drivers/hid/usbhid/hid-pidff.c"; descriptor.format = "starting to erase %d/%d\n"; descriptor.lineno = 551U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (pidff->hid)->dev), "starting to erase %d/%d\n", effect_id, pidff->pid_id[effect_id]); } } else { } { hid_hw_wait(pidff->hid); pidff_playback_pid(pidff, pid_id, 0); pidff_erase_pid(pidff, pid_id); } return (0); } } static int pidff_upload_effect(struct input_dev *dev , struct ff_effect *effect , struct ff_effect *old ) { struct pidff_device *pidff ; int type_id ; int error ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; int tmp___12 ; int tmp___13 ; int tmp___14 ; int tmp___15 ; struct _ddebug descriptor ; long tmp___16 ; { pidff = (struct pidff_device *)(dev->ff)->private; { if ((int )effect->type == 82) { goto case_82; } else { } if ((int )effect->type == 81) { goto case_81; } else { } if ((int )effect->type == 87) { goto case_87; } else { } if ((int )effect->type == 83) { goto case_83; } else { } if ((int )effect->type == 84) { goto case_84; } else { } if ((int )effect->type == 85) { goto case_85; } else { } if ((int )effect->type == 86) { goto case_86; } else { } goto switch_default___0; case_82: /* CIL Label */ ; if ((unsigned long )old == (unsigned long )((struct ff_effect *)0)) { { error = pidff_request_effect_upload(pidff, pidff->type_id[0]); } if (error != 0) { return (error); } else { } } else { } if ((unsigned long )old == (unsigned long )((struct ff_effect *)0)) { { pidff_set_effect_report(pidff, effect); } } else { { tmp = pidff_needs_set_effect(effect, old); } if (tmp != 0) { { pidff_set_effect_report(pidff, effect); } } else { } } if ((unsigned long )old == (unsigned long )((struct ff_effect *)0)) { { pidff_set_constant_force_report(pidff, effect); } } else { { tmp___0 = pidff_needs_set_constant(effect, old); } if (tmp___0 != 0) { { pidff_set_constant_force_report(pidff, effect); } } else { } } if ((unsigned long )old == (unsigned long )((struct ff_effect *)0)) { { pidff_set_envelope_report(pidff, & effect->u.constant.envelope); } } else { { tmp___1 = pidff_needs_set_envelope(& effect->u.constant.envelope, & old->u.constant.envelope); } if (tmp___1 != 0) { { pidff_set_envelope_report(pidff, & effect->u.constant.envelope); } } else { } } goto ldv_33576; case_81: /* CIL Label */ ; if ((unsigned long )old == (unsigned long )((struct ff_effect *)0)) { { if ((int )effect->u.periodic.waveform == 88) { goto case_88; } else { } if ((int )effect->u.periodic.waveform == 89) { goto case_89; } else { } if ((int )effect->u.periodic.waveform == 90) { goto case_90; } else { } if ((int )effect->u.periodic.waveform == 91) { goto case_91; } else { } if ((int )effect->u.periodic.waveform == 92) { goto case_92; } else { } goto switch_default; case_88: /* CIL Label */ type_id = 2; goto ldv_33579; case_89: /* CIL Label */ type_id = 4; goto ldv_33579; case_90: /* CIL Label */ type_id = 3; goto ldv_33579; case_91: /* CIL Label */ type_id = 5; goto ldv_33579; case_92: /* CIL Label */ type_id = 6; goto ldv_33579; switch_default: /* CIL Label */ { dev_err((struct device const *)(& (pidff->hid)->dev), "invalid waveform\n"); } return (-22); switch_break___0: /* CIL Label */ ; } ldv_33579: { error = pidff_request_effect_upload(pidff, pidff->type_id[type_id]); } if (error != 0) { return (error); } else { } } else { } if ((unsigned long )old == (unsigned long )((struct ff_effect *)0)) { { pidff_set_effect_report(pidff, effect); } } else { { tmp___2 = pidff_needs_set_effect(effect, old); } if (tmp___2 != 0) { { pidff_set_effect_report(pidff, effect); } } else { } } if ((unsigned long )old == (unsigned long )((struct ff_effect *)0)) { { pidff_set_periodic_report(pidff, effect); } } else { { tmp___3 = pidff_needs_set_periodic(effect, old); } if (tmp___3 != 0) { { pidff_set_periodic_report(pidff, effect); } } else { } } if ((unsigned long )old == (unsigned long )((struct ff_effect *)0)) { { pidff_set_envelope_report(pidff, & effect->u.periodic.envelope); } } else { { tmp___4 = pidff_needs_set_envelope(& effect->u.periodic.envelope, & old->u.periodic.envelope); } if (tmp___4 != 0) { { pidff_set_envelope_report(pidff, & effect->u.periodic.envelope); } } else { } } goto ldv_33576; case_87: /* CIL Label */ ; if ((unsigned long )old == (unsigned long )((struct ff_effect *)0)) { { error = pidff_request_effect_upload(pidff, pidff->type_id[1]); } if (error != 0) { return (error); } else { } } else { } if ((unsigned long )old == (unsigned long )((struct ff_effect *)0)) { { pidff_set_effect_report(pidff, effect); } } else { { tmp___5 = pidff_needs_set_effect(effect, old); } if (tmp___5 != 0) { { pidff_set_effect_report(pidff, effect); } } else { } } if ((unsigned long )old == (unsigned long )((struct ff_effect *)0)) { { pidff_set_ramp_force_report(pidff, effect); } } else { { tmp___6 = pidff_needs_set_ramp(effect, old); } if (tmp___6 != 0) { { pidff_set_ramp_force_report(pidff, effect); } } else { } } if ((unsigned long )old == (unsigned long )((struct ff_effect *)0)) { { pidff_set_envelope_report(pidff, & effect->u.ramp.envelope); } } else { { tmp___7 = pidff_needs_set_envelope(& effect->u.ramp.envelope, & old->u.ramp.envelope); } if (tmp___7 != 0) { { pidff_set_envelope_report(pidff, & effect->u.ramp.envelope); } } else { } } goto ldv_33576; case_83: /* CIL Label */ ; if ((unsigned long )old == (unsigned long )((struct ff_effect *)0)) { { error = pidff_request_effect_upload(pidff, pidff->type_id[7]); } if (error != 0) { return (error); } else { } } else { } if ((unsigned long )old == (unsigned long )((struct ff_effect *)0)) { { pidff_set_effect_report(pidff, effect); } } else { { tmp___8 = pidff_needs_set_effect(effect, old); } if (tmp___8 != 0) { { pidff_set_effect_report(pidff, effect); } } else { } } if ((unsigned long )old == (unsigned long )((struct ff_effect *)0)) { { pidff_set_condition_report(pidff, effect); } } else { { tmp___9 = pidff_needs_set_condition(effect, old); } if (tmp___9 != 0) { { pidff_set_condition_report(pidff, effect); } } else { } } goto ldv_33576; case_84: /* CIL Label */ ; if ((unsigned long )old == (unsigned long )((struct ff_effect *)0)) { { error = pidff_request_effect_upload(pidff, pidff->type_id[10]); } if (error != 0) { return (error); } else { } } else { } if ((unsigned long )old == (unsigned long )((struct ff_effect *)0)) { { pidff_set_effect_report(pidff, effect); } } else { { tmp___10 = pidff_needs_set_effect(effect, old); } if (tmp___10 != 0) { { pidff_set_effect_report(pidff, effect); } } else { } } if ((unsigned long )old == (unsigned long )((struct ff_effect *)0)) { { pidff_set_condition_report(pidff, effect); } } else { { tmp___11 = pidff_needs_set_condition(effect, old); } if (tmp___11 != 0) { { pidff_set_condition_report(pidff, effect); } } else { } } goto ldv_33576; case_85: /* CIL Label */ ; if ((unsigned long )old == (unsigned long )((struct ff_effect *)0)) { { error = pidff_request_effect_upload(pidff, pidff->type_id[8]); } if (error != 0) { return (error); } else { } } else { } if ((unsigned long )old == (unsigned long )((struct ff_effect *)0)) { { pidff_set_effect_report(pidff, effect); } } else { { tmp___12 = pidff_needs_set_effect(effect, old); } if (tmp___12 != 0) { { pidff_set_effect_report(pidff, effect); } } else { } } if ((unsigned long )old == (unsigned long )((struct ff_effect *)0)) { { pidff_set_condition_report(pidff, effect); } } else { { tmp___13 = pidff_needs_set_condition(effect, old); } if (tmp___13 != 0) { { pidff_set_condition_report(pidff, effect); } } else { } } goto ldv_33576; case_86: /* CIL Label */ ; if ((unsigned long )old == (unsigned long )((struct ff_effect *)0)) { { error = pidff_request_effect_upload(pidff, pidff->type_id[9]); } if (error != 0) { return (error); } else { } } else { } if ((unsigned long )old == (unsigned long )((struct ff_effect *)0)) { { pidff_set_effect_report(pidff, effect); } } else { { tmp___14 = pidff_needs_set_effect(effect, old); } if (tmp___14 != 0) { { pidff_set_effect_report(pidff, effect); } } else { } } if ((unsigned long )old == (unsigned long )((struct ff_effect *)0)) { { pidff_set_condition_report(pidff, effect); } } else { { tmp___15 = pidff_needs_set_condition(effect, old); } if (tmp___15 != 0) { { pidff_set_condition_report(pidff, effect); } } else { } } goto ldv_33576; switch_default___0: /* CIL Label */ { dev_err((struct device const *)(& (pidff->hid)->dev), "invalid type\n"); } return (-22); switch_break: /* CIL Label */ ; } ldv_33576: ; if ((unsigned long )old == (unsigned long )((struct ff_effect *)0)) { pidff->pid_id[(int )effect->id] = *(pidff->block_load[0].value); } else { } { descriptor.modname = "usbhid"; descriptor.function = "pidff_upload_effect"; descriptor.filename = "drivers/hid/usbhid/hid-pidff.c"; descriptor.format = "uploaded\n"; descriptor.lineno = 708U; descriptor.flags = 0U; tmp___16 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___16 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (pidff->hid)->dev), "uploaded\n"); } } else { } return (0); } } static void pidff_set_gain(struct input_dev *dev , u16 gain ) { struct pidff_device *pidff ; { { pidff = (struct pidff_device *)(dev->ff)->private; pidff_set((struct pidff_usage *)(& pidff->device_gain), (int )gain); hid_hw_request(pidff->hid, pidff->reports[2], 9); } return; } } static void pidff_autocenter(struct pidff_device *pidff , u16 magnitude ) { struct hid_field *field ; { field = pidff->block_load[0].field; if ((unsigned int )magnitude == 0U) { { pidff_playback_pid(pidff, field->logical_minimum, 0); } return; } else { } { pidff_playback_pid(pidff, field->logical_minimum, 1); *(pidff->set_effect[0].value) = (pidff->block_load[0].field)->logical_minimum; *((pidff->set_effect_type)->value) = pidff->type_id[7]; *(pidff->set_effect[1].value) = 0; *(pidff->set_effect[3].value) = 0; *(pidff->set_effect[4].value) = 0; pidff_set((struct pidff_usage *)(& pidff->set_effect) + 2UL, (int )magnitude); *(pidff->set_effect[5].value) = 1; *(pidff->set_effect[6].value) = 0; hid_hw_request(pidff->hid, pidff->reports[0], 9); } return; } } static void pidff_set_autocenter(struct input_dev *dev , u16 magnitude ) { struct pidff_device *pidff ; { { pidff = (struct pidff_device *)(dev->ff)->private; pidff_autocenter(pidff, (int )magnitude); } return; } } static int pidff_find_fields(struct pidff_usage *usage , u8 const *table , struct hid_report *report , int count , int strict ) { int i ; int j ; int k ; int found ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; long tmp___1 ; { k = 0; goto ldv_33631; ldv_33630: found = 0; i = 0; goto ldv_33628; ldv_33627: ; if ((report->field[i])->maxusage != (report->field[i])->report_count) { { descriptor.modname = "usbhid"; descriptor.function = "pidff_find_fields"; descriptor.filename = "drivers/hid/usbhid/hid-pidff.c"; descriptor.format = "maxusage and report_count do not match, skipping\n"; descriptor.lineno = 774U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "usbhid: maxusage and report_count do not match, skipping\n"); } } else { } goto ldv_33621; } else { } j = 0; goto ldv_33625; ldv_33624: ; if (((report->field[i])->usage + (unsigned long )j)->hid == (unsigned int )((int )*(table + (unsigned long )k) | 983040)) { { descriptor___0.modname = "usbhid"; descriptor___0.function = "pidff_find_fields"; descriptor___0.filename = "drivers/hid/usbhid/hid-pidff.c"; descriptor___0.format = "found %d at %d->%d\n"; descriptor___0.lineno = 781U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_pr_debug(& descriptor___0, "usbhid: found %d at %d->%d\n", k, i, j); } } else { } (usage + (unsigned long )k)->field = report->field[i]; (usage + (unsigned long )k)->value = (report->field[i])->value + (unsigned long )j; found = 1; goto ldv_33623; } else { } j = j + 1; ldv_33625: ; if ((unsigned int )j < (report->field[i])->maxusage) { goto ldv_33624; } else { } ldv_33623: ; if (found != 0) { goto ldv_33626; } else { } ldv_33621: i = i + 1; ldv_33628: ; if ((unsigned int )i < report->maxfield) { goto ldv_33627; } else { } ldv_33626: ; if (found == 0 && strict != 0) { { descriptor___1.modname = "usbhid"; descriptor___1.function = "pidff_find_fields"; descriptor___1.filename = "drivers/hid/usbhid/hid-pidff.c"; descriptor___1.format = "failed to locate %d\n"; descriptor___1.lineno = 793U; descriptor___1.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___1 != 0L) { { __dynamic_pr_debug(& descriptor___1, "usbhid: failed to locate %d\n", k); } } else { } return (-1); } else { } k = k + 1; ldv_33631: ; if (k < count) { goto ldv_33630; } else { } return (0); } } static int pidff_check_usage(int usage ) { int i ; { i = 0; goto ldv_33638; ldv_33637: ; if (usage == ((int )pidff_reports[i] | 983040)) { return (i); } else { } i = i + 1; ldv_33638: ; if ((unsigned int )i <= 12U) { goto ldv_33637; } else { } return (-1); } } static void pidff_find_reports(struct hid_device *hid , int report_type , struct pidff_device *pidff ) { struct hid_report *report ; int i ; int ret ; struct list_head const *__mptr ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct list_head const *__mptr___0 ; { __mptr = (struct list_head const *)hid->report_enum[report_type].report_list.next; report = (struct hid_report *)__mptr; goto ldv_33657; ldv_33656: ; if (report->maxfield == 0U) { goto ldv_33652; } else { } { ret = pidff_check_usage((int )(report->field[0])->logical); } if (ret != -1) { { descriptor.modname = "usbhid"; descriptor.function = "pidff_find_reports"; descriptor.filename = "drivers/hid/usbhid/hid-pidff.c"; descriptor.format = "found usage 0x%02x from field->logical\n"; descriptor.lineno = 831U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& hid->dev), "found usage 0x%02x from field->logical\n", (int )pidff_reports[ret]); } } else { } pidff->reports[ret] = report; goto ldv_33652; } else { } i = (int )((report->field[0])->usage)->collection_index; if (i <= 0 || (hid->collection + ((unsigned long )i + 0xffffffffffffffffUL))->type != 2U) { goto ldv_33652; } else { } { ret = pidff_check_usage((int )(hid->collection + ((unsigned long )i + 0xffffffffffffffffUL))->usage); } if (ret != -1 && (unsigned long )pidff->reports[ret] == (unsigned long )((struct hid_report *)0)) { { descriptor___0.modname = "usbhid"; descriptor___0.function = "pidff_find_reports"; descriptor___0.filename = "drivers/hid/usbhid/hid-pidff.c"; descriptor___0.format = "found usage 0x%02x from collection array\n"; descriptor___0.lineno = 851U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_dev_dbg(& descriptor___0, (struct device const *)(& hid->dev), "found usage 0x%02x from collection array\n", (int )pidff_reports[ret]); } } else { } pidff->reports[ret] = report; } else { } ldv_33652: __mptr___0 = (struct list_head const *)report->list.next; report = (struct hid_report *)__mptr___0; ldv_33657: ; if ((unsigned long )(& report->list) != (unsigned long )(& hid->report_enum[report_type].report_list)) { goto ldv_33656; } else { } return; } } static int pidff_reports_ok(struct pidff_device *pidff ) { int i ; struct _ddebug descriptor ; long tmp ; { i = 0; goto ldv_33666; ldv_33665: ; if ((unsigned long )pidff->reports[i] == (unsigned long )((struct hid_report *)0)) { { descriptor.modname = "usbhid"; descriptor.function = "pidff_reports_ok"; descriptor.filename = "drivers/hid/usbhid/hid-pidff.c"; descriptor.format = "%d missing\n"; descriptor.lineno = 866U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (pidff->hid)->dev), "%d missing\n", i); } } else { } return (0); } else { } i = i + 1; ldv_33666: ; if (i <= 7) { goto ldv_33665; } else { } return (1); } } static struct hid_field *pidff_find_special_field(struct hid_report *report , int usage , int enforce_min ) { int i ; { i = 0; goto ldv_33675; ldv_33674: ; if ((report->field[i])->logical == (unsigned int )(usage | 983040) && (report->field[i])->report_count != 0U) { if (enforce_min == 0 || (report->field[i])->logical_minimum == 1) { return (report->field[i]); } else { { printk("\vusbhid: logical_minimum is not 1 as it should be\n"); } return ((struct hid_field *)0); } } else { } i = i + 1; ldv_33675: ; if ((unsigned int )i < report->maxfield) { goto ldv_33674; } else { } return ((struct hid_field *)0); } } static int pidff_find_special_keys(int *keys , struct hid_field *fld , u8 const *usagetable , int count ) { int i ; int j ; int found ; { found = 0; i = 0; goto ldv_33690; ldv_33689: j = 0; goto ldv_33688; ldv_33687: ; if ((fld->usage + (unsigned long )j)->hid == (unsigned int )((int )*(usagetable + (unsigned long )i) | 983040)) { *(keys + (unsigned long )i) = j + 1; found = found + 1; goto ldv_33686; } else { } j = j + 1; ldv_33688: ; if ((unsigned int )j < fld->maxusage) { goto ldv_33687; } else { } ldv_33686: i = i + 1; ldv_33690: ; if (i < count) { goto ldv_33689; } else { } return (found); } } static int pidff_find_special_fields(struct pidff_device *pidff ) { struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { { descriptor.modname = "usbhid"; descriptor.function = "pidff_find_special_fields"; descriptor.filename = "drivers/hid/usbhid/hid-pidff.c"; descriptor.format = "finding special fields\n"; descriptor.lineno = 928U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (pidff->hid)->dev), "finding special fields\n"); } } else { } { pidff->create_new_effect_type = pidff_find_special_field(pidff->reports[7], 37, 1); pidff->set_effect_type = pidff_find_special_field(pidff->reports[0], 37, 1); pidff->effect_direction = pidff_find_special_field(pidff->reports[0], 87, 0); pidff->device_control = pidff_find_special_field(pidff->reports[6], 150, 1); pidff->block_load_status = pidff_find_special_field(pidff->reports[4], 139, 1); pidff->effect_operation_status = pidff_find_special_field(pidff->reports[1], 120, 1); descriptor___0.modname = "usbhid"; descriptor___0.function = "pidff_find_special_fields"; descriptor___0.filename = "drivers/hid/usbhid/hid-pidff.c"; descriptor___0.format = "search done\n"; descriptor___0.lineno = 949U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_dev_dbg(& descriptor___0, (struct device const *)(& (pidff->hid)->dev), "search done\n"); } } else { } if ((unsigned long )pidff->create_new_effect_type == (unsigned long )((struct hid_field *)0) || (unsigned long )pidff->set_effect_type == (unsigned long )((struct hid_field *)0)) { { dev_err((struct device const *)(& (pidff->hid)->dev), "effect lists not found\n"); } return (-1); } else { } if ((unsigned long )pidff->effect_direction == (unsigned long )((struct hid_field *)0)) { { dev_err((struct device const *)(& (pidff->hid)->dev), "direction field not found\n"); } return (-1); } else { } if ((unsigned long )pidff->device_control == (unsigned long )((struct hid_field *)0)) { { dev_err((struct device const *)(& (pidff->hid)->dev), "device control field not found\n"); } return (-1); } else { } if ((unsigned long )pidff->block_load_status == (unsigned long )((struct hid_field *)0)) { { dev_err((struct device const *)(& (pidff->hid)->dev), "block load status field not found\n"); } return (-1); } else { } if ((unsigned long )pidff->effect_operation_status == (unsigned long )((struct hid_field *)0)) { { dev_err((struct device const *)(& (pidff->hid)->dev), "effect operation field not found\n"); } return (-1); } else { } { pidff_find_special_keys((int *)(& pidff->control_id), pidff->device_control, (u8 const *)(& pidff_device_control), 2); pidff_find_special_keys((int *)(& pidff->control_id), pidff->device_control, (u8 const *)(& pidff_device_control), 2); tmp___1 = pidff_find_special_keys((int *)(& pidff->type_id), pidff->create_new_effect_type, (u8 const *)(& pidff_effect_types), 11); } if (tmp___1 == 0) { { dev_err((struct device const *)(& (pidff->hid)->dev), "no effect types found\n"); } return (-1); } else { } { tmp___2 = pidff_find_special_keys((int *)(& pidff->status_id), pidff->block_load_status, (u8 const *)(& pidff_block_load_status), 2); } if (tmp___2 != 2) { { dev_err((struct device const *)(& (pidff->hid)->dev), "block load status identifiers not found\n"); } return (-1); } else { } { tmp___3 = pidff_find_special_keys((int *)(& pidff->operation_id), pidff->effect_operation_status, (u8 const *)(& pidff_effect_operation_status), 2); } if (tmp___3 != 2) { { dev_err((struct device const *)(& (pidff->hid)->dev), "effect operation identifiers not found\n"); } return (-1); } else { } return (0); } } static int pidff_find_effects(struct pidff_device *pidff , struct input_dev *dev ) { int i ; int pidff_type ; { i = 0; goto ldv_33705; ldv_33704: pidff_type = pidff->type_id[i]; if (((pidff->set_effect_type)->usage + (unsigned long )pidff_type)->hid != ((pidff->create_new_effect_type)->usage + (unsigned long )pidff_type)->hid) { { dev_err((struct device const *)(& (pidff->hid)->dev), "effect type number %d is invalid\n", i); } return (-1); } else { } i = i + 1; ldv_33705: ; if ((unsigned int )i <= 10U) { goto ldv_33704; } else { } if (pidff->type_id[0] != 0) { { set_bit(82L, (unsigned long volatile *)(& dev->ffbit)); } } else { } if (pidff->type_id[1] != 0) { { set_bit(87L, (unsigned long volatile *)(& dev->ffbit)); } } else { } if (pidff->type_id[2] != 0) { { set_bit(88L, (unsigned long volatile *)(& dev->ffbit)); set_bit(81L, (unsigned long volatile *)(& dev->ffbit)); } } else { } if (pidff->type_id[3] != 0) { { set_bit(90L, (unsigned long volatile *)(& dev->ffbit)); set_bit(81L, (unsigned long volatile *)(& dev->ffbit)); } } else { } if (pidff->type_id[4] != 0) { { set_bit(89L, (unsigned long volatile *)(& dev->ffbit)); set_bit(81L, (unsigned long volatile *)(& dev->ffbit)); } } else { } if (pidff->type_id[5] != 0) { { set_bit(91L, (unsigned long volatile *)(& dev->ffbit)); set_bit(81L, (unsigned long volatile *)(& dev->ffbit)); } } else { } if (pidff->type_id[6] != 0) { { set_bit(92L, (unsigned long volatile *)(& dev->ffbit)); set_bit(81L, (unsigned long volatile *)(& dev->ffbit)); } } else { } if (pidff->type_id[7] != 0) { { set_bit(83L, (unsigned long volatile *)(& dev->ffbit)); } } else { } if (pidff->type_id[8] != 0) { { set_bit(85L, (unsigned long volatile *)(& dev->ffbit)); } } else { } if (pidff->type_id[9] != 0) { { set_bit(86L, (unsigned long volatile *)(& dev->ffbit)); } } else { } if (pidff->type_id[10] != 0) { { set_bit(84L, (unsigned long volatile *)(& dev->ffbit)); } } else { } return (0); } } static int pidff_init_fields(struct pidff_device *pidff , struct input_dev *dev ) { int envelope_ok ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; int tmp___12 ; int tmp___13 ; int tmp___14 ; int tmp___15 ; int tmp___16 ; int tmp___17 ; int tmp___18 ; int tmp___19 ; { { envelope_ok = 0; tmp = pidff_find_fields((struct pidff_usage *)(& pidff->set_effect), (u8 const *)(& pidff_set_effect), pidff->reports[0], 7, 1); } if (tmp != 0) { { dev_err((struct device const *)(& (pidff->hid)->dev), "unknown set_effect report layout\n"); } return (-19); } else { } { pidff_find_fields((struct pidff_usage *)(& pidff->block_load), (u8 const *)(& pidff_block_load), pidff->reports[4], 2, 0); } if ((unsigned long )pidff->block_load[0].value == (unsigned long )((s32 *)0)) { { dev_err((struct device const *)(& (pidff->hid)->dev), "unknown pid_block_load report layout\n"); } return (-19); } else { } { tmp___0 = pidff_find_fields((struct pidff_usage *)(& pidff->effect_operation), (u8 const *)(& pidff_effect_operation), pidff->reports[1], 2, 1); } if (tmp___0 != 0) { { dev_err((struct device const *)(& (pidff->hid)->dev), "unknown effect_operation report layout\n"); } return (-19); } else { } { tmp___1 = pidff_find_fields((struct pidff_usage *)(& pidff->block_free), (u8 const *)(& pidff_block_free), pidff->reports[5], 1, 1); } if (tmp___1 != 0) { { dev_err((struct device const *)(& (pidff->hid)->dev), "unknown pid_block_free report layout\n"); } return (-19); } else { } { tmp___2 = pidff_find_fields((struct pidff_usage *)(& pidff->set_envelope), (u8 const *)(& pidff_set_envelope), pidff->reports[8], 5, 1); } if (tmp___2 == 0) { envelope_ok = 1; } else { } { tmp___3 = pidff_find_special_fields(pidff); } if (tmp___3 != 0) { return (-19); } else { { tmp___4 = pidff_find_effects(pidff, dev); } if (tmp___4 != 0) { return (-19); } else { } } if (envelope_ok == 0) { { tmp___5 = test_and_set_bit(82L, (unsigned long volatile *)(& dev->ffbit)); } if (tmp___5 != 0) { { dev_warn((struct device const *)(& (pidff->hid)->dev), "has constant effect but no envelope\n"); } } else { } { tmp___6 = test_and_set_bit(87L, (unsigned long volatile *)(& dev->ffbit)); } if (tmp___6 != 0) { { dev_warn((struct device const *)(& (pidff->hid)->dev), "has ramp effect but no envelope\n"); } } else { } { tmp___7 = test_and_set_bit(81L, (unsigned long volatile *)(& dev->ffbit)); } if (tmp___7 != 0) { { dev_warn((struct device const *)(& (pidff->hid)->dev), "has periodic effect but no envelope\n"); } } else { } } else { } { tmp___8 = constant_test_bit(82L, (unsigned long const volatile *)(& dev->ffbit)); } if (tmp___8 != 0) { { tmp___9 = pidff_find_fields((struct pidff_usage *)(& pidff->set_constant), (u8 const *)(& pidff_set_constant), pidff->reports[11], 2, 1); } if (tmp___9 != 0) { { dev_warn((struct device const *)(& (pidff->hid)->dev), "unknown constant effect layout\n"); clear_bit(82L, (unsigned long volatile *)(& dev->ffbit)); } } else { } } else { } { tmp___10 = constant_test_bit(87L, (unsigned long const volatile *)(& dev->ffbit)); } if (tmp___10 != 0) { { tmp___11 = pidff_find_fields((struct pidff_usage *)(& pidff->set_ramp), (u8 const *)(& pidff_set_ramp), pidff->reports[12], 3, 1); } if (tmp___11 != 0) { { dev_warn((struct device const *)(& (pidff->hid)->dev), "unknown ramp effect layout\n"); clear_bit(87L, (unsigned long volatile *)(& dev->ffbit)); } } else { } } else { } { tmp___12 = constant_test_bit(83L, (unsigned long const volatile *)(& dev->ffbit)); } if (tmp___12 != 0) { goto _L; } else { { tmp___13 = constant_test_bit(85L, (unsigned long const volatile *)(& dev->ffbit)); } if (tmp___13 != 0) { goto _L; } else { { tmp___14 = constant_test_bit(84L, (unsigned long const volatile *)(& dev->ffbit)); } if (tmp___14 != 0) { goto _L; } else { { tmp___15 = constant_test_bit(86L, (unsigned long const volatile *)(& dev->ffbit)); } if (tmp___15 != 0) { _L: /* CIL Label */ { tmp___16 = pidff_find_fields((struct pidff_usage *)(& pidff->set_condition), (u8 const *)(& pidff_set_condition), pidff->reports[9], 8, 1); } if (tmp___16 != 0) { { dev_warn((struct device const *)(& (pidff->hid)->dev), "unknown condition effect layout\n"); clear_bit(83L, (unsigned long volatile *)(& dev->ffbit)); clear_bit(85L, (unsigned long volatile *)(& dev->ffbit)); clear_bit(84L, (unsigned long volatile *)(& dev->ffbit)); clear_bit(86L, (unsigned long volatile *)(& dev->ffbit)); } } else { } } else { } } } } { tmp___17 = constant_test_bit(81L, (unsigned long const volatile *)(& dev->ffbit)); } if (tmp___17 != 0) { { tmp___18 = pidff_find_fields((struct pidff_usage *)(& pidff->set_periodic), (u8 const *)(& pidff_set_periodic), pidff->reports[10], 5, 1); } if (tmp___18 != 0) { { dev_warn((struct device const *)(& (pidff->hid)->dev), "unknown periodic effect layout\n"); clear_bit(81L, (unsigned long volatile *)(& dev->ffbit)); } } else { } } else { } { pidff_find_fields((struct pidff_usage *)(& pidff->pool), (u8 const *)(& pidff_pool), pidff->reports[3], 3, 0); tmp___19 = pidff_find_fields((struct pidff_usage *)(& pidff->device_gain), (u8 const *)(& pidff_device_gain), pidff->reports[2], 1, 1); } if (tmp___19 == 0) { { set_bit(96L, (unsigned long volatile *)(& dev->ffbit)); } } else { } return (0); } } static void pidff_reset(struct pidff_device *pidff ) { struct hid_device *hid ; int i ; int tmp ; struct _ddebug descriptor ; long tmp___0 ; { { hid = pidff->hid; i = 0; *((pidff->device_control)->value) = pidff->control_id[1]; hid_hw_request(hid, pidff->reports[6], 9); hid_hw_wait(hid); hid_hw_request(hid, pidff->reports[6], 9); hid_hw_wait(hid); *((pidff->device_control)->value) = pidff->control_id[0]; hid_hw_request(hid, pidff->reports[6], 9); hid_hw_wait(hid); hid_hw_request(hid, pidff->reports[3], 1); hid_hw_wait(hid); } if ((unsigned long )pidff->pool[1].value != (unsigned long )((s32 *)0)) { goto ldv_33721; ldv_33720: tmp = i; i = i + 1; if (tmp > 20) { { dev_warn((struct device const *)(& (pidff->hid)->dev), "device reports %d simultaneous effects\n", *(pidff->pool[1].value)); } goto ldv_33717; } else { } { descriptor.modname = "usbhid"; descriptor.function = "pidff_reset"; descriptor.filename = "drivers/hid/usbhid/hid-pidff.c"; descriptor.format = "pid_pool requested again\n"; descriptor.lineno = 1183U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (pidff->hid)->dev), "pid_pool requested again\n"); } } else { } { hid_hw_request(hid, pidff->reports[3], 1); hid_hw_wait(hid); } ldv_33721: ; if (*(pidff->pool[1].value) <= 1) { goto ldv_33720; } else { } ldv_33717: ; } else { } return; } } static int pidff_check_autocenter(struct pidff_device *pidff , struct input_dev *dev ) { int error ; { { error = pidff_request_effect_upload(pidff, 1); } if (error != 0) { { dev_err((struct device const *)(& (pidff->hid)->dev), "upload request failed\n"); } return (error); } else { } if (*(pidff->block_load[0].value) == (pidff->block_load[0].field)->logical_minimum + 1) { { pidff_autocenter(pidff, 65535); set_bit(97L, (unsigned long volatile *)(& dev->ffbit)); } } else { { dev_notice((struct device const *)(& (pidff->hid)->dev), "device has unknown autocenter control method\n"); } } { pidff_erase_pid(pidff, *(pidff->block_load[0].value)); } return (0); } } int hid_pidff_init(struct hid_device *hid ) { struct pidff_device *pidff ; struct hid_input *hidinput ; struct list_head const *__mptr ; struct input_dev *dev ; struct ff_device *ff ; int max_effects ; int error ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; int tmp___1 ; void *tmp___2 ; struct _ddebug descriptor___1 ; long tmp___3 ; int tmp___4 ; int tmp___5 ; struct _ddebug descriptor___2 ; long tmp___6 ; struct _ddebug descriptor___3 ; long tmp___7 ; struct _ddebug descriptor___4 ; long tmp___8 ; { { __mptr = (struct list_head const *)hid->inputs.next; hidinput = (struct hid_input *)__mptr; dev = hidinput->input; descriptor.modname = "usbhid"; descriptor.function = "hid_pidff_init"; descriptor.filename = "drivers/hid/usbhid/hid-pidff.c"; descriptor.format = "starting pid init\n"; descriptor.lineno = 1242U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& hid->dev), "starting pid init\n"); } } else { } { tmp___1 = list_empty((struct list_head const *)(& hid->report_enum[1].report_list)); } if (tmp___1 != 0) { { descriptor___0.modname = "usbhid"; descriptor___0.function = "hid_pidff_init"; descriptor___0.filename = "drivers/hid/usbhid/hid-pidff.c"; descriptor___0.format = "not a PID device, no output report\n"; descriptor___0.lineno = 1245U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_dev_dbg(& descriptor___0, (struct device const *)(& hid->dev), "not a PID device, no output report\n"); } } else { } return (-19); } else { } { tmp___2 = kzalloc(1112UL, 208U); pidff = (struct pidff_device *)tmp___2; } if ((unsigned long )pidff == (unsigned long )((struct pidff_device *)0)) { return (-12); } else { } { pidff->hid = hid; hid_device_io_start(hid); pidff_find_reports(hid, 1, pidff); pidff_find_reports(hid, 2, pidff); tmp___4 = pidff_reports_ok(pidff); } if (tmp___4 == 0) { { descriptor___1.modname = "usbhid"; descriptor___1.function = "hid_pidff_init"; descriptor___1.filename = "drivers/hid/usbhid/hid-pidff.c"; descriptor___1.format = "reports not ok, aborting\n"; descriptor___1.lineno = 1261U; descriptor___1.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___3 != 0L) { { __dynamic_dev_dbg(& descriptor___1, (struct device const *)(& hid->dev), "reports not ok, aborting\n"); } } else { } error = -19; goto fail; } else { } { error = pidff_init_fields(pidff, dev); } if (error != 0) { goto fail; } else { } { pidff_reset(pidff); tmp___5 = constant_test_bit(96L, (unsigned long const volatile *)(& dev->ffbit)); } if (tmp___5 != 0) { { pidff_set((struct pidff_usage *)(& pidff->device_gain), 65535); hid_hw_request(hid, pidff->reports[2], 9); } } else { } { error = pidff_check_autocenter(pidff, dev); } if (error != 0) { goto fail; } else { } { max_effects = ((pidff->block_load[0].field)->logical_maximum - (pidff->block_load[0].field)->logical_minimum) + 1; descriptor___2.modname = "usbhid"; descriptor___2.function = "hid_pidff_init"; descriptor___2.filename = "drivers/hid/usbhid/hid-pidff.c"; descriptor___2.format = "max effects is %d\n"; descriptor___2.lineno = 1286U; descriptor___2.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___6 != 0L) { { __dynamic_dev_dbg(& descriptor___2, (struct device const *)(& hid->dev), "max effects is %d\n", max_effects); } } else { } if (max_effects > 64) { max_effects = 64; } else { } if ((unsigned long )pidff->pool[1].value != (unsigned long )((s32 *)0)) { { descriptor___3.modname = "usbhid"; descriptor___3.function = "hid_pidff_init"; descriptor___3.filename = "drivers/hid/usbhid/hid-pidff.c"; descriptor___3.format = "max simultaneous effects is %d\n"; descriptor___3.lineno = 1293U; descriptor___3.flags = 0U; tmp___7 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); } if (tmp___7 != 0L) { { __dynamic_dev_dbg(& descriptor___3, (struct device const *)(& hid->dev), "max simultaneous effects is %d\n", *(pidff->pool[1].value)); } } else { } } else { } if ((unsigned long )pidff->pool[0].value != (unsigned long )((s32 *)0)) { { descriptor___4.modname = "usbhid"; descriptor___4.function = "hid_pidff_init"; descriptor___4.filename = "drivers/hid/usbhid/hid-pidff.c"; descriptor___4.format = "device memory size is %d bytes\n"; descriptor___4.lineno = 1297U; descriptor___4.flags = 0U; tmp___8 = ldv__builtin_expect((long )descriptor___4.flags & 1L, 0L); } if (tmp___8 != 0L) { { __dynamic_dev_dbg(& descriptor___4, (struct device const *)(& hid->dev), "device memory size is %d bytes\n", *(pidff->pool[0].value)); } } else { } } else { } if ((unsigned long )pidff->pool[2].value != (unsigned long )((s32 *)0) && *(pidff->pool[2].value) == 0) { { dev_notice((struct device const *)(& hid->dev), "device does not support device managed pool\n"); } goto fail; } else { } { error = input_ff_create(dev, (unsigned int )max_effects); } if (error != 0) { goto fail; } else { } { ff = dev->ff; ff->private = (void *)pidff; ff->upload = & pidff_upload_effect; ff->erase = & pidff_erase_effect; ff->set_gain = & pidff_set_gain; ff->set_autocenter = & pidff_set_autocenter; ff->playback = & pidff_playback; _dev_info((struct device const *)(& dev->dev), "Force feedback for USB HID PID devices by Anssi Hannula \n"); hid_device_io_stop(hid); } return (0); fail: { hid_device_io_stop(hid); kfree((void const *)pidff); } return (error); } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) ; bool ldv_in_interrupt_context(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) { bool tmp ; int tmp___0 ; { { tmp = ldv_in_interrupt_context(); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } { ldv_assert_linux_alloc_irq__wrong_flags(tmp___0 || flags == 32U); } return; } } void ldv_linux_alloc_irq_check_alloc_nonatomic(void) { bool tmp ; { { tmp = ldv_in_interrupt_context(); } if ((int )tmp) { { ldv_assert_linux_alloc_irq__nonatomic(0); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_linux_alloc_spinlock_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_linux_alloc_spinlock_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) ; int ldv_linux_alloc_usb_lock_lock = 1; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) { { if (ldv_linux_alloc_usb_lock_lock == 2) { { ldv_assert_linux_alloc_usb_lock__wrong_flags(flags == 16U || flags == 32U); } } else { } return; } } void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) { { { ldv_assert_linux_alloc_usb_lock__nonatomic(ldv_linux_alloc_usb_lock_lock == 1); } return; } } void ldv_linux_alloc_usb_lock_usb_lock_device(void) { { ldv_linux_alloc_usb_lock_lock = 2; return; } } int ldv_linux_alloc_usb_lock_usb_trylock_device(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_alloc_usb_lock_usb_lock_device_for_reset(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (0); } else { return (-1); } } else { return (-1); } } } void ldv_linux_alloc_usb_lock_usb_unlock_device(void) { { ldv_linux_alloc_usb_lock_lock = 1; return; } } void ldv_linux_usb_dev_atomic_add(int i , atomic_t *v ) { { v->counter = v->counter + i; return; } } void ldv_linux_usb_dev_atomic_sub(int i , atomic_t *v ) { { v->counter = v->counter - i; return; } } int ldv_linux_usb_dev_atomic_sub_and_test(int i , atomic_t *v ) { { v->counter = v->counter - i; if (v->counter != 0) { return (0); } else { } return (1); } } void ldv_linux_usb_dev_atomic_inc(atomic_t *v ) { { v->counter = v->counter + 1; return; } } void ldv_linux_usb_dev_atomic_dec(atomic_t *v ) { { v->counter = v->counter - 1; return; } } int ldv_linux_usb_dev_atomic_dec_and_test(atomic_t *v ) { { v->counter = v->counter - 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_inc_and_test(atomic_t *v ) { { v->counter = v->counter + 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_add_return(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter); } } int ldv_linux_usb_dev_atomic_add_negative(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter < 0); } } int ldv_linux_usb_dev_atomic_inc_short(short *v ) { { *v = (short )((unsigned int )((unsigned short )*v) + 1U); return ((int )*v); } } void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) ; void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) ; void *ldv_undef_ptr(void) ; int ldv_linux_arch_io_iomem = 0; void *ldv_linux_arch_io_io_mem_remap(void) { void *ptr ; void *tmp ; { { tmp = ldv_undef_ptr(); ptr = tmp; } if ((unsigned long )ptr != (unsigned long )((void *)0)) { ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem + 1; return (ptr); } else { } return (ptr); } } void ldv_linux_arch_io_io_mem_unmap(void) { { { ldv_assert_linux_arch_io__less_initial_decrement(ldv_linux_arch_io_iomem > 0); ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem - 1; } return; } } void ldv_linux_arch_io_check_final_state(void) { { { ldv_assert_linux_arch_io__more_initial_at_exit(ldv_linux_arch_io_iomem == 0); } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) ; void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) ; void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) ; static int ldv_linux_block_genhd_disk_state = 0; struct gendisk *ldv_linux_block_genhd_alloc_disk(void) { struct gendisk *res ; void *tmp ; { { tmp = ldv_undef_ptr(); res = (struct gendisk *)tmp; ldv_assert_linux_block_genhd__double_allocation(ldv_linux_block_genhd_disk_state == 0); } if ((unsigned long )res != (unsigned long )((struct gendisk *)0)) { ldv_linux_block_genhd_disk_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_genhd_add_disk(void) { { { ldv_assert_linux_block_genhd__use_before_allocation(ldv_linux_block_genhd_disk_state == 1); ldv_linux_block_genhd_disk_state = 2; } return; } } void ldv_linux_block_genhd_del_gendisk(void) { { { ldv_assert_linux_block_genhd__delete_before_add(ldv_linux_block_genhd_disk_state == 2); ldv_linux_block_genhd_disk_state = 1; } return; } } void ldv_linux_block_genhd_put_disk(struct gendisk *disk ) { { if ((unsigned long )disk != (unsigned long )((struct gendisk *)0)) { { ldv_assert_linux_block_genhd__free_before_allocation(ldv_linux_block_genhd_disk_state > 0); ldv_linux_block_genhd_disk_state = 0; } } else { } return; } } void ldv_linux_block_genhd_check_final_state(void) { { { ldv_assert_linux_block_genhd__more_initial_at_exit(ldv_linux_block_genhd_disk_state == 0); } return; } } void ldv_assert_linux_block_queue__double_allocation(int expr ) ; void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_queue__use_before_allocation(int expr ) ; static int ldv_linux_block_queue_queue_state = 0; struct request_queue *ldv_linux_block_queue_request_queue(void) { struct request_queue *res ; void *tmp ; { { tmp = ldv_undef_ptr(); res = (struct request_queue *)tmp; ldv_assert_linux_block_queue__double_allocation(ldv_linux_block_queue_queue_state == 0); } if ((unsigned long )res != (unsigned long )((struct request_queue *)0)) { ldv_linux_block_queue_queue_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_queue_blk_cleanup_queue(void) { { { ldv_assert_linux_block_queue__use_before_allocation(ldv_linux_block_queue_queue_state == 1); ldv_linux_block_queue_queue_state = 0; } return; } } void ldv_linux_block_queue_check_final_state(void) { { { ldv_assert_linux_block_queue__more_initial_at_exit(ldv_linux_block_queue_queue_state == 0); } return; } } void ldv_assert_linux_block_request__double_get(int expr ) ; void ldv_assert_linux_block_request__double_put(int expr ) ; void ldv_assert_linux_block_request__get_at_exit(int expr ) ; int ldv_linux_block_request_blk_rq = 0; struct request *ldv_linux_block_request_blk_get_request(gfp_t mask ) { struct request *res ; void *tmp ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_undef_ptr(); res = (struct request *)tmp; } if ((mask == 16U || mask == 208U) || mask == 16U) { { ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); } } else { } if ((unsigned long )res != (unsigned long )((struct request *)0)) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } struct request *ldv_linux_block_request_blk_make_request(gfp_t mask ) { struct request *res ; void *tmp ; long tmp___0 ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_undef_ptr(); res = (struct request *)tmp; ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); tmp___0 = ldv_is_err((void const *)res); } if (tmp___0 == 0L) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } void ldv_linux_block_request_put_blk_rq(void) { { { ldv_assert_linux_block_request__double_put(ldv_linux_block_request_blk_rq == 1); ldv_linux_block_request_blk_rq = 0; } return; } } void ldv_linux_block_request_check_final_state(void) { { { ldv_assert_linux_block_request__get_at_exit(ldv_linux_block_request_blk_rq == 0); } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) ; void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) ; int ldv_undef_int_nonpositive(void) ; int ldv_linux_drivers_base_class_usb_gadget_class = 0; void *ldv_linux_drivers_base_class_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_undef_ptr(); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_got); } } int ldv_linux_drivers_base_class_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_reg); } } void ldv_linux_drivers_base_class_unregister_class(void) { { { ldv_assert_linux_drivers_base_class__double_deregistration(ldv_linux_drivers_base_class_usb_gadget_class == 1); ldv_linux_drivers_base_class_usb_gadget_class = 0; } return; } } void ldv_linux_drivers_base_class_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_drivers_base_class_unregister_class(); } return; } } void ldv_linux_drivers_base_class_check_final_state(void) { { { ldv_assert_linux_drivers_base_class__registered_at_exit(ldv_linux_drivers_base_class_usb_gadget_class == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2176UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) ; void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) ; int ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; int ldv_linux_fs_char_dev_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_fs_char_dev_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } } else { } return (is_reg); } } void ldv_linux_fs_char_dev_unregister_chrdev_region(void) { { { ldv_assert_linux_fs_char_dev__double_deregistration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 1); ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; } return; } } void ldv_linux_fs_char_dev_check_final_state(void) { { { ldv_assert_linux_fs_char_dev__registered_at_exit(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); } return; } } void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) ; void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) ; int ldv_linux_fs_sysfs_sysfs = 0; int ldv_linux_fs_sysfs_sysfs_create_group(void) { int res ; int tmp ; { { tmp = ldv_undef_int_nonpositive(); res = tmp; } if (res == 0) { ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs + 1; return (0); } else { } return (res); } } void ldv_linux_fs_sysfs_sysfs_remove_group(void) { { { ldv_assert_linux_fs_sysfs__less_initial_decrement(ldv_linux_fs_sysfs_sysfs > 0); ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs - 1; } return; } } void ldv_linux_fs_sysfs_check_final_state(void) { { { ldv_assert_linux_fs_sysfs__more_initial_at_exit(ldv_linux_fs_sysfs_sysfs == 0); } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) ; int ldv_linux_kernel_locking_rwlock_rlock = 1; int ldv_linux_kernel_locking_rwlock_wlock = 1; void ldv_linux_kernel_locking_rwlock_read_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; } return; } } void ldv_linux_kernel_locking_rwlock_read_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(ldv_linux_kernel_locking_rwlock_rlock > 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + -1; } return; } } void ldv_linux_kernel_locking_rwlock_write_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_wlock = 2; } return; } } void ldv_linux_kernel_locking_rwlock_write_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(ldv_linux_kernel_locking_rwlock_wlock != 1); ldv_linux_kernel_locking_rwlock_wlock = 1; } return; } } int ldv_linux_kernel_locking_rwlock_read_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_kernel_locking_rwlock_write_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_wlock = 2; return (1); } else { return (0); } } else { return (0); } } } void ldv_linux_kernel_locking_rwlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(ldv_linux_kernel_locking_rwlock_rlock == 1); ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(ldv_linux_kernel_locking_rwlock_wlock == 1); } return; } } void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) ; void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) ; int ldv_linux_kernel_module_module_refcounter = 1; void ldv_linux_kernel_module_module_get(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; } else { } return; } } int ldv_linux_kernel_module_try_module_get(struct module *module ) { int tmp ; { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { tmp = ldv_undef_int(); } if (tmp == 1) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; return (1); } else { return (0); } } else { } return (0); } } void ldv_linux_kernel_module_module_put(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { ldv_assert_linux_kernel_module__less_initial_decrement(ldv_linux_kernel_module_module_refcounter > 1); ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter - 1; } } else { } return; } } void ldv_linux_kernel_module_module_put_and_exit(void) { { { ldv_linux_kernel_module_module_put((struct module *)1); } LDV_LINUX_KERNEL_MODULE_STOP: ; goto LDV_LINUX_KERNEL_MODULE_STOP; } } unsigned int ldv_linux_kernel_module_module_refcount(void) { { return ((unsigned int )(ldv_linux_kernel_module_module_refcounter + -1)); } } void ldv_linux_kernel_module_check_final_state(void) { { { ldv_assert_linux_kernel_module__more_initial_at_exit(ldv_linux_kernel_module_module_refcounter == 1); } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_srcu_srcu_nested = 0; void ldv_linux_kernel_rcu_srcu_srcu_read_lock(void) { { ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested + 1; return; } } void ldv_linux_kernel_rcu_srcu_srcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_srcu__more_unlocks(ldv_linux_kernel_rcu_srcu_srcu_nested > 0); ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_srcu_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = 0; void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_lock_bh(void) { { ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh + 1; return; } } void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_unlock_bh(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh > 0); ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = 0; void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_lock_sched(void) { { ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched + 1; return; } } void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_unlock_sched(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched > 0); ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_rcu_nested = 0; void ldv_linux_kernel_rcu_update_lock_rcu_read_lock(void) { { ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested + 1; return; } } void ldv_linux_kernel_rcu_update_lock_rcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(ldv_linux_kernel_rcu_update_lock_rcu_nested > 0); ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } static bool __ldv_in_interrupt_context = 0; void ldv_switch_to_interrupt_context(void) { { __ldv_in_interrupt_context = 1; return; } } void ldv_switch_to_process_context(void) { { __ldv_in_interrupt_context = 0; return; } } bool ldv_in_interrupt_context(void) { { return (__ldv_in_interrupt_context); } } void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) ; extern int nr_cpu_ids ; unsigned long ldv_undef_ulong(void) ; unsigned long ldv_linux_lib_find_bit_find_next_bit(unsigned long size , unsigned long offset ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assert_linux_lib_find_bit__offset_out_of_range(offset <= size); ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } unsigned long ldv_linux_lib_find_bit_find_first_bit(unsigned long size ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } void ldv_linux_lib_find_bit_initialize(void) { { { ldv_assume(nr_cpu_ids > 0); } return; } } void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) ; unsigned short ldv_linux_mmc_sdio_func_sdio_element = 0U; void ldv_linux_mmc_sdio_func_check_context(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__wrong_params((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); } return; } } void ldv_linux_mmc_sdio_func_sdio_claim_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__double_claim((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); ldv_linux_mmc_sdio_func_sdio_element = (unsigned short )((func->card)->host)->index; } return; } } void ldv_linux_mmc_sdio_func_sdio_release_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__release_without_claim((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); ldv_linux_mmc_sdio_func_sdio_element = 0U; } return; } } void ldv_linux_mmc_sdio_func_check_final_state(void) { { { ldv_assert_linux_mmc_sdio_func__unreleased_at_exit((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); } return; } } void ldv_assert_linux_net_register__wrong_return_value(int expr ) ; int ldv_pre_register_netdev(void) ; int ldv_linux_net_register_probe_state = 0; int ldv_pre_register_netdev(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_net_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_net_register_reset_error_counter(void) { { ldv_linux_net_register_probe_state = 0; return; } } void ldv_linux_net_register_check_return_value_probe(int retval ) { { if (ldv_linux_net_register_probe_state == 1) { { ldv_assert_linux_net_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_net_register_reset_error_counter(); } return; } } void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) ; void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) ; void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) ; int rtnllocknumber = 0; void ldv_linux_net_rtnetlink_past_rtnl_unlock(void) { { { ldv_assert_linux_net_rtnetlink__double_unlock(rtnllocknumber == 1); rtnllocknumber = 0; } return; } } void ldv_linux_net_rtnetlink_past_rtnl_lock(void) { { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); rtnllocknumber = 1; } return; } } void ldv_linux_net_rtnetlink_before_ieee80211_unregister_hw(void) { { { ldv_linux_net_rtnetlink_past_rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } int ldv_linux_net_rtnetlink_rtnl_is_locked(void) { int tmp ; { if (rtnllocknumber != 0) { return (rtnllocknumber); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_net_rtnetlink_rtnl_trylock(void) { int tmp ; { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); tmp = ldv_linux_net_rtnetlink_rtnl_is_locked(); } if (tmp == 0) { rtnllocknumber = 1; return (1); } else { return (0); } } } void ldv_linux_net_rtnetlink_check_final_state(void) { { { ldv_assert_linux_net_rtnetlink__lock_on_exit(rtnllocknumber == 0); } return; } } void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) ; void ldv_assert_linux_net_sock__double_release(int expr ) ; int locksocknumber = 0; void ldv_linux_net_sock_past_lock_sock_nested(void) { { locksocknumber = locksocknumber + 1; return; } } bool ldv_linux_net_sock_lock_sock_fast(void) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { locksocknumber = locksocknumber + 1; return (1); } else { } return (0); } } void ldv_linux_net_sock_unlock_sock_fast(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_before_release_sock(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_check_final_state(void) { { { ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(locksocknumber == 0); } return; } } void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) ; int ldv_linux_usb_coherent_coherent_state = 0; void *ldv_linux_usb_coherent_usb_alloc_coherent(void) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return (arbitrary_memory); } else { } ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + 1; return (arbitrary_memory); } } void ldv_linux_usb_coherent_usb_free_coherent(void *addr ) { { if ((unsigned long )addr != (unsigned long )((void *)0)) { { ldv_assert_linux_usb_coherent__less_initial_decrement(ldv_linux_usb_coherent_coherent_state > 0); ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + -1; } } else { } return; } } void ldv_linux_usb_coherent_check_final_state(void) { { { ldv_assert_linux_usb_coherent__more_initial_at_exit(ldv_linux_usb_coherent_coherent_state == 0); } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) ; void ldv_assert_linux_usb_dev__probe_failed(int expr ) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) ; ldv_map LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS ; struct usb_device *ldv_linux_usb_dev_usb_get_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0 ? LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + 1 : 1; } else { } return (dev); } } void ldv_linux_usb_dev_usb_put_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { { ldv_assert_linux_usb_dev__unincremented_counter_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0); ldv_assert_linux_usb_dev__less_initial_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 0); } if (LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 1) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + -1; } else { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; } } else { } return; } } void ldv_linux_usb_dev_check_return_value_probe(int retval ) { { if (retval != 0) { { ldv_assert_linux_usb_dev__probe_failed(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } } else { } return; } } void ldv_linux_usb_dev_initialize(void) { { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; return; } } void ldv_linux_usb_dev_check_final_state(void) { { { ldv_assert_linux_usb_dev__more_initial_at_exit(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) ; void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) ; int ldv_linux_usb_gadget_usb_gadget = 0; void *ldv_linux_usb_gadget_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_undef_ptr(); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_got); } } int ldv_linux_usb_gadget_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_class(void) { { { ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_linux_usb_gadget_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_usb_gadget_unregister_class(); } return; } } int ldv_linux_usb_gadget_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_usb_gadget_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_chrdev_region(void) { { { ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } int ldv_linux_usb_gadget_register_usb_gadget(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__double_usb_gadget_registration(ldv_linux_usb_gadget_usb_gadget == 0); ldv_linux_usb_gadget_usb_gadget = 1; } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_usb_gadget(void) { { { ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(ldv_linux_usb_gadget_usb_gadget == 1); ldv_linux_usb_gadget_usb_gadget = 0; } return; } } void ldv_linux_usb_gadget_check_final_state(void) { { { ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_assert_linux_usb_register__wrong_return_value(int expr ) ; int ldv_linux_usb_register_probe_state = 0; int ldv_pre_usb_register_driver(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_usb_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_usb_register_reset_error_counter(void) { { ldv_linux_usb_register_probe_state = 0; return; } } void ldv_linux_usb_register_check_return_value_probe(int retval ) { { if (ldv_linux_usb_register_probe_state == 1) { { ldv_assert_linux_usb_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_usb_register_reset_error_counter(); } return; } } void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) ; int ldv_linux_usb_urb_urb_state = 0; struct urb *ldv_linux_usb_urb_usb_alloc_urb(void) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return ((struct urb *)arbitrary_memory); } else { } ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + 1; return ((struct urb *)arbitrary_memory); } } void ldv_linux_usb_urb_usb_free_urb(struct urb *urb ) { { if ((unsigned long )urb != (unsigned long )((struct urb *)0)) { { ldv_assert_linux_usb_urb__less_initial_decrement(ldv_linux_usb_urb_urb_state > 0); ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + -1; } } else { } return; } } void ldv_linux_usb_urb_check_final_state(void) { { { ldv_assert_linux_usb_urb__more_initial_at_exit(ldv_linux_usb_urb_urb_state == 0); } return; } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *external_allocated_data(void) ; void *ldv_calloc_unknown_size(void) ; void *ldv_zalloc_unknown_size(void) ; void *ldv_xmalloc_unknown_size(size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; extern void *memset(void * , int , size_t ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_malloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; memset(res, 0, 8UL); ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc_unknown_size(void) { void *tmp ; { { tmp = ldv_calloc_unknown_size(); } return (tmp); } } void *ldv_xmalloc_unknown_size(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } int ldv_undef_int_negative(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { { tmp = __VERIFIER_nondet_pointer(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) ; ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_existancelock_of_hiddev ; void ldv_linux_kernel_locking_mutex_mutex_lock_existancelock_of_hiddev(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_existancelock_of_hiddev); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_existancelock_of_hiddev = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_existancelock_of_hiddev(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_existancelock_of_hiddev); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_existancelock_of_hiddev = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_existancelock_of_hiddev(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_existancelock_of_hiddev) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_existancelock_of_hiddev(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_existancelock_of_hiddev); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_existancelock_of_hiddev(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_existancelock_of_hiddev = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_existancelock_of_hiddev(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_existancelock_of_hiddev(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_existancelock_of_hiddev(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_existancelock_of_hiddev); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_existancelock_of_hiddev = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_hid_open_mut ; void ldv_linux_kernel_locking_mutex_mutex_lock_hid_open_mut(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_hid_open_mut); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_hid_open_mut = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_hid_open_mut(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_hid_open_mut); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_hid_open_mut = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_hid_open_mut(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_hid_open_mut) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_hid_open_mut(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_hid_open_mut); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_hid_open_mut(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_hid_open_mut = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_hid_open_mut(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_hid_open_mut(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_hid_open_mut(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_hid_open_mut); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_hid_open_mut = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode ; void ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock ; void ldv_linux_kernel_locking_mutex_mutex_lock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_lock(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device ; void ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_thread_lock_of_hiddev_list ; void ldv_linux_kernel_locking_mutex_mutex_lock_thread_lock_of_hiddev_list(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_thread_lock_of_hiddev_list); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_thread_lock_of_hiddev_list = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_thread_lock_of_hiddev_list(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_thread_lock_of_hiddev_list); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_thread_lock_of_hiddev_list = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_thread_lock_of_hiddev_list(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_thread_lock_of_hiddev_list) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_thread_lock_of_hiddev_list(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_thread_lock_of_hiddev_list); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_thread_lock_of_hiddev_list(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_thread_lock_of_hiddev_list = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_thread_lock_of_hiddev_list(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_thread_lock_of_hiddev_list(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_thread_lock_of_hiddev_list(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_thread_lock_of_hiddev_list); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_thread_lock_of_hiddev_list = 0; } return; } } void ldv_linux_kernel_locking_mutex_initialize(void) { { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_existancelock_of_hiddev = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_hid_open_mut = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_thread_lock_of_hiddev_list = 0; return; } } void ldv_linux_kernel_locking_mutex_check_final_state(void) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_existancelock_of_hiddev); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_hid_open_mut); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_thread_lock_of_hiddev_list); } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_list_lock_of_hiddev = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_list_lock_of_hiddev(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_list_lock_of_hiddev == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_list_lock_of_hiddev == 1); ldv_linux_kernel_locking_spinlock_spin_list_lock_of_hiddev = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_list_lock_of_hiddev(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_list_lock_of_hiddev == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_list_lock_of_hiddev == 2); ldv_linux_kernel_locking_spinlock_spin_list_lock_of_hiddev = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_list_lock_of_hiddev(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_list_lock_of_hiddev == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_list_lock_of_hiddev == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_list_lock_of_hiddev = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_list_lock_of_hiddev(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_list_lock_of_hiddev == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_list_lock_of_hiddev == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_list_lock_of_hiddev(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_list_lock_of_hiddev == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_list_lock_of_hiddev(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_list_lock_of_hiddev(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_list_lock_of_hiddev(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_list_lock_of_hiddev(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_list_lock_of_hiddev == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_list_lock_of_hiddev == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_list_lock_of_hiddev = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_linux_kernel_locking_spinlock_spin_lock = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_linux_kernel_locking_spinlock_spin_lock = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_usbhid_device = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_usbhid_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_usbhid_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_usbhid_device == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_usbhid_device = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_usbhid_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_usbhid_device == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_usbhid_device == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_usbhid_device = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_usbhid_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_usbhid_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_usbhid_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_usbhid_device = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_usbhid_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_usbhid_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_usbhid_device == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_usbhid_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_usbhid_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_usbhid_device(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_usbhid_device(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_usbhid_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_usbhid_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_usbhid_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_usbhid_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_usbhid_device = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_ptl = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_linux_kernel_locking_spinlock_spin_ptl = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_linux_kernel_locking_spinlock_spin_ptl = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } void ldv_linux_kernel_locking_spinlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_list_lock_of_hiddev == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_usbhid_device == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_list_lock_of_hiddev == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_usbhid_device == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2) { return (1); } else { } return (0); } } void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) ; void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) ; static int ldv_linux_kernel_sched_completion_completion = 0; void ldv_linux_kernel_sched_completion_init_completion(void) { { ldv_linux_kernel_sched_completion_completion = 1; return; } } void ldv_linux_kernel_sched_completion_init_completion_macro(void) { { { ldv_assert_linux_kernel_sched_completion__double_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 1; } return; } } void ldv_linux_kernel_sched_completion_wait_for_completion(void) { { { ldv_assert_linux_kernel_sched_completion__wait_without_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 2; } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) ; void ldv_assert_linux_lib_idr__double_init(int expr ) ; void ldv_assert_linux_lib_idr__more_at_exit(int expr ) ; void ldv_assert_linux_lib_idr__not_initialized(int expr ) ; static int ldv_linux_lib_idr_idr = 0; void ldv_linux_lib_idr_idr_init(void) { { { ldv_assert_linux_lib_idr__double_init(ldv_linux_lib_idr_idr == 0); ldv_linux_lib_idr_idr = 1; } return; } } void ldv_linux_lib_idr_idr_alloc(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_find(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_remove(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_destroy(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 3; } return; } } void ldv_linux_lib_idr_check_final_state(void) { { { ldv_assert_linux_lib_idr__more_at_exit(ldv_linux_lib_idr_idr == 0 || ldv_linux_lib_idr_idr == 3); } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_lib_idr__double_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__not_initialized(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__more_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_register__wrong_return_value(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_sock__double_release(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__probe_failed(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_request__double_get(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_request__double_put(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_request__get_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_queue__double_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_queue__use_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_register__wrong_return_value(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } }