/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef short s16; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u32 uint32_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct class; struct device; struct completion; struct gendisk; struct module; struct mutex; struct request_queue; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_10 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_11 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_9 { struct __anonstruct____missing_field_name_10 __annonCompField5 ; struct __anonstruct____missing_field_name_11 __annonCompField6 ; }; struct desc_struct { union __anonunion____missing_field_name_9 __annonCompField7 ; }; struct gate_struct64 { u16 offset_low ; u16 segment ; unsigned char ist : 3 ; unsigned char zero0 : 5 ; unsigned char type : 5 ; unsigned char dpl : 2 ; unsigned char p : 1 ; u16 offset_middle ; u32 offset_high ; u32 zero1 ; }; typedef struct gate_struct64 gate_desc; struct desc_ptr { unsigned short size ; unsigned long address ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_13 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_13 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct tss_struct; struct mm_struct; struct cpumask; struct pv_cpu_ops { unsigned long (*get_debugreg)(int ) ; void (*set_debugreg)(int , unsigned long ) ; void (*clts)(void) ; unsigned long (*read_cr0)(void) ; void (*write_cr0)(unsigned long ) ; unsigned long (*read_cr4_safe)(void) ; unsigned long (*read_cr4)(void) ; void (*write_cr4)(unsigned long ) ; unsigned long (*read_cr8)(void) ; void (*write_cr8)(unsigned long ) ; void (*load_tr_desc)(void) ; void (*load_gdt)(struct desc_ptr const * ) ; void (*load_idt)(struct desc_ptr const * ) ; void (*store_idt)(struct desc_ptr * ) ; void (*set_ldt)(void const * , unsigned int ) ; unsigned long (*store_tr)(void) ; void (*load_tls)(struct thread_struct * , unsigned int ) ; void (*load_gs_index)(unsigned int ) ; void (*write_ldt_entry)(struct desc_struct * , int , void const * ) ; void (*write_gdt_entry)(struct desc_struct * , int , void const * , int ) ; void (*write_idt_entry)(gate_desc * , int , gate_desc const * ) ; void (*alloc_ldt)(struct desc_struct * , unsigned int ) ; void (*free_ldt)(struct desc_struct * , unsigned int ) ; void (*load_sp0)(struct tss_struct * , struct thread_struct * ) ; void (*set_iopl_mask)(unsigned int ) ; void (*wbinvd)(void) ; void (*io_delay)(void) ; void (*cpuid)(unsigned int * , unsigned int * , unsigned int * , unsigned int * ) ; u64 (*read_msr)(unsigned int , int * ) ; int (*write_msr)(unsigned int , unsigned int , unsigned int ) ; u64 (*read_tsc)(void) ; u64 (*read_pmc)(int ) ; unsigned long long (*read_tscp)(unsigned int * ) ; void (*irq_enable_sysexit)(void) ; void (*usergs_sysret64)(void) ; void (*usergs_sysret32)(void) ; void (*iret)(void) ; void (*swapgs)(void) ; void (*start_context_switch)(struct task_struct * ) ; void (*end_context_switch)(struct task_struct * ) ; }; typedef void (*ctor_fn_t)(void); struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned char flags ; }; struct file_operations; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_16 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_16 __annonCompField8 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct seq_operations; struct x86_hw_tss { u32 reserved1 ; u64 sp0 ; u64 sp1 ; u64 sp2 ; u64 reserved2 ; u64 ist[7U] ; u32 reserved3 ; u32 reserved4 ; u16 reserved5 ; u16 io_bitmap_base ; }; struct tss_struct { struct x86_hw_tss x86_tss ; unsigned long io_bitmap[1025U] ; unsigned long stack[64U] ; }; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_21 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_22 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_20 { struct __anonstruct____missing_field_name_21 __annonCompField12 ; struct __anonstruct____missing_field_name_22 __annonCompField13 ; }; union __anonunion____missing_field_name_23 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_20 __annonCompField14 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_23 __annonCompField15 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndreg { u64 lower_bound ; u64 upper_bound ; }; struct bndcsr { u64 bndcfgu ; u64 bndstatus ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndreg bndreg[4U] ; struct bndcsr bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_27 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_26 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_27 __annonCompField17 ; }; struct spinlock { union __anonunion____missing_field_name_26 __annonCompField18 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_28 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_28 rwlock_t; struct ldv_thread; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct optimistic_spin_queue { atomic_t tail ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct compat_timespec; struct __anonstruct_futex_30 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_31 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_32 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_29 { struct __anonstruct_futex_30 futex ; struct __anonstruct_nanosleep_31 nanosleep ; struct __anonstruct_poll_32 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_29 __annonCompField19 ; }; struct jump_entry; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_45 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_45 seqlock_t; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; union __anonunion____missing_field_name_46 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_46 __annonCompField20 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_47 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_47 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct user_namespace; struct __anonstruct_kuid_t_48 { uid_t val ; }; typedef struct __anonstruct_kuid_t_48 kuid_t; struct __anonstruct_kgid_t_49 { gid_t val ; }; typedef struct __anonstruct_kgid_t_49 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_50 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_50 nodemask_t; struct path; struct inode; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; }; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct __anonstruct_mm_context_t_115 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_115 mm_context_t; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct pdev_archdata { }; struct device_private; struct device_driver; struct driver_private; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; typedef unsigned long kernel_ulong_t; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct platform_device_id { char name[20U] ; kernel_ulong_t driver_data ; }; struct mfd_cell; struct platform_device { char const *name ; int id ; bool id_auto ; struct device dev ; u32 num_resources ; struct resource *resource ; struct platform_device_id const *id_entry ; char *driver_override ; struct mfd_cell *mfd_cell ; struct pdev_archdata archdata ; }; struct platform_driver { int (*probe)(struct platform_device * ) ; int (*remove)(struct platform_device * ) ; void (*shutdown)(struct platform_device * ) ; int (*suspend)(struct platform_device * , pm_message_t ) ; int (*resume)(struct platform_device * ) ; struct device_driver driver ; struct platform_device_id const *id_table ; bool prevent_deferred_probe ; }; struct nsproxy; struct cred; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_153 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_154 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_152 { struct __anonstruct____missing_field_name_153 __annonCompField36 ; struct __anonstruct____missing_field_name_154 __annonCompField37 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_152 __annonCompField38 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; struct mem_cgroup; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_155 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_157 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_161 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_160 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_161 __annonCompField41 ; int units ; }; struct __anonstruct____missing_field_name_159 { union __anonunion____missing_field_name_160 __annonCompField42 ; atomic_t _count ; }; union __anonunion____missing_field_name_158 { unsigned long counters ; struct __anonstruct____missing_field_name_159 __annonCompField43 ; unsigned int active ; }; struct __anonstruct____missing_field_name_156 { union __anonunion____missing_field_name_157 __annonCompField40 ; union __anonunion____missing_field_name_158 __annonCompField44 ; }; struct __anonstruct____missing_field_name_163 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_164 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_162 { struct list_head lru ; struct __anonstruct____missing_field_name_163 __annonCompField46 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_164 __annonCompField47 ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_165 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_155 __annonCompField39 ; struct __anonstruct____missing_field_name_156 __annonCompField45 ; union __anonunion____missing_field_name_162 __annonCompField48 ; union __anonunion____missing_field_name_165 __annonCompField49 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_166 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_166 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_171 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_171 __annonCompField50 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; struct exception_table_entry; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; typedef unsigned long cputime_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct user_struct; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_173 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_173 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_175 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_176 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_177 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_178 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_180 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_179 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_180 _addr_bnd ; }; struct __anonstruct__sigpoll_181 { long _band ; int _fd ; }; struct __anonstruct__sigsys_182 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_174 { int _pad[28U] ; struct __anonstruct__kill_175 _kill ; struct __anonstruct__timer_176 _timer ; struct __anonstruct__rt_177 _rt ; struct __anonstruct__sigchld_178 _sigchld ; struct __anonstruct__sigfault_179 _sigfault ; struct __anonstruct__sigpoll_181 _sigpoll ; struct __anonstruct__sigsys_182 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_174 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int in_hrtirq ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_185 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_186 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_188 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_187 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_188 __annonCompField53 ; }; union __anonunion_type_data_189 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_191 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_190 { union __anonunion_payload_191 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_185 __annonCompField51 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_186 __annonCompField52 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_187 __annonCompField54 ; union __anonunion_type_data_189 type_data ; union __anonunion____missing_field_name_190 __annonCompField55 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct io_context; struct pipe_inode_info; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned char brk_randomized : 1 ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; }; struct sensor_device_attribute { struct device_attribute dev_attr ; int index ; }; struct sensor_device_attribute_2 { struct device_attribute dev_attr ; u8 index ; u8 nr ; }; enum fwnode_type { FWNODE_INVALID = 0, FWNODE_OF = 1, FWNODE_ACPI = 2 } ; struct fwnode_handle { enum fwnode_type type ; }; typedef u64 acpi_io_address; typedef void *acpi_handle; typedef u32 acpi_object_type; struct __anonstruct_integer_196 { acpi_object_type type ; u64 value ; }; struct __anonstruct_string_197 { acpi_object_type type ; u32 length ; char *pointer ; }; struct __anonstruct_buffer_198 { acpi_object_type type ; u32 length ; u8 *pointer ; }; struct __anonstruct_package_199 { acpi_object_type type ; u32 count ; union acpi_object *elements ; }; struct __anonstruct_reference_200 { acpi_object_type type ; acpi_object_type actual_type ; acpi_handle handle ; }; struct __anonstruct_processor_201 { acpi_object_type type ; u32 proc_id ; acpi_io_address pblk_address ; u32 pblk_length ; }; struct __anonstruct_power_resource_202 { acpi_object_type type ; u32 system_level ; u32 resource_order ; }; union acpi_object { acpi_object_type type ; struct __anonstruct_integer_196 integer ; struct __anonstruct_string_197 string ; struct __anonstruct_buffer_198 buffer ; struct __anonstruct_package_199 package ; struct __anonstruct_reference_200 reference ; struct __anonstruct_processor_201 processor ; struct __anonstruct_power_resource_202 power_resource ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_204 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_203 { struct __anonstruct____missing_field_name_204 __annonCompField59 ; }; struct lockref { union __anonunion____missing_field_name_203 __annonCompField60 ; }; struct vfsmount; struct __anonstruct____missing_field_name_206 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_205 { struct __anonstruct____missing_field_name_206 __annonCompField61 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_205 __annonCompField62 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_207 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_207 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct __anonstruct____missing_field_name_209 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_208 { struct __anonstruct____missing_field_name_209 __annonCompField63 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_208 __annonCompField64 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct export_operations; struct iovec; struct nameidata; struct kiocb; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iov_iter; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_211 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_211 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_212 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_212 __annonCompField66 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; struct writeback_control; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct hd_struct; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_215 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_216 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; struct cdev; union __anonunion____missing_field_name_217 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_215 __annonCompField67 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_216 __annonCompField68 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_217 __annonCompField69 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_218 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_218 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_get_owner)(struct file_lock * , struct file_lock * ) ; void (*lm_put_owner)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_220 { struct list_head link ; int state ; }; union __anonunion_fl_u_219 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_220 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_219 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; void (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; int (*dentry_open)(struct dentry * , struct file * , struct cred const * ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; struct proc_dir_entry; struct acpi_driver; struct acpi_hotplug_profile { struct kobject kobj ; int (*scan_dependent)(struct acpi_device * ) ; void (*notify_online)(struct acpi_device * ) ; bool enabled ; bool demand_offline ; }; struct acpi_scan_handler { struct acpi_device_id const *ids ; struct list_head list_node ; bool (*match)(char * , struct acpi_device_id const ** ) ; int (*attach)(struct acpi_device * , struct acpi_device_id const * ) ; void (*detach)(struct acpi_device * ) ; void (*bind)(struct device * ) ; void (*unbind)(struct device * ) ; struct acpi_hotplug_profile hotplug ; }; struct acpi_hotplug_context { struct acpi_device *self ; int (*notify)(struct acpi_device * , u32 ) ; void (*uevent)(struct acpi_device * , u32 ) ; void (*fixup)(struct acpi_device * ) ; }; struct acpi_device_ops { int (*add)(struct acpi_device * ) ; int (*remove)(struct acpi_device * ) ; void (*notify)(struct acpi_device * , u32 ) ; }; struct acpi_driver { char name[80U] ; char class[80U] ; struct acpi_device_id const *ids ; unsigned int flags ; struct acpi_device_ops ops ; struct device_driver drv ; struct module *owner ; }; struct acpi_device_status { unsigned char present : 1 ; unsigned char enabled : 1 ; unsigned char show_in_ui : 1 ; unsigned char functional : 1 ; unsigned char battery_present : 1 ; unsigned int reserved : 27 ; }; struct acpi_device_flags { unsigned char dynamic_status : 1 ; unsigned char removable : 1 ; unsigned char ejectable : 1 ; unsigned char power_manageable : 1 ; unsigned char match_driver : 1 ; unsigned char initialized : 1 ; unsigned char visited : 1 ; unsigned char hotplug_notify : 1 ; unsigned char is_dock_station : 1 ; unsigned int reserved : 23 ; }; struct acpi_device_dir { struct proc_dir_entry *entry ; }; typedef char acpi_bus_id[8U]; typedef unsigned long acpi_bus_address; typedef char acpi_device_name[40U]; typedef char acpi_device_class[20U]; struct acpi_pnp_type { unsigned char hardware_id : 1 ; unsigned char bus_address : 1 ; unsigned char platform_id : 1 ; unsigned int reserved : 29 ; }; struct acpi_device_pnp { acpi_bus_id bus_id ; struct acpi_pnp_type type ; acpi_bus_address bus_address ; char *unique_id ; struct list_head ids ; acpi_device_name device_name ; acpi_device_class device_class ; union acpi_object *str_obj ; }; struct acpi_device_power_flags { unsigned char explicit_get : 1 ; unsigned char power_resources : 1 ; unsigned char inrush_current : 1 ; unsigned char power_removed : 1 ; unsigned char ignore_parent : 1 ; unsigned char dsw_present : 1 ; unsigned int reserved : 26 ; }; struct __anonstruct_flags_221 { unsigned char valid : 1 ; unsigned char os_accessible : 1 ; unsigned char explicit_set : 1 ; unsigned char reserved : 6 ; }; struct acpi_device_power_state { struct __anonstruct_flags_221 flags ; int power ; int latency ; struct list_head resources ; }; struct acpi_device_power { int state ; struct acpi_device_power_flags flags ; struct acpi_device_power_state states[5U] ; }; struct acpi_device_perf_flags { u8 reserved ; }; struct __anonstruct_flags_222 { unsigned char valid : 1 ; unsigned char reserved : 7 ; }; struct acpi_device_perf_state { struct __anonstruct_flags_222 flags ; u8 power ; u8 performance ; int latency ; }; struct acpi_device_perf { int state ; struct acpi_device_perf_flags flags ; int state_count ; struct acpi_device_perf_state *states ; }; struct acpi_device_wakeup_flags { unsigned char valid : 1 ; unsigned char run_wake : 1 ; unsigned char notifier_present : 1 ; unsigned char enabled : 1 ; }; struct acpi_device_wakeup_context { struct work_struct work ; struct device *dev ; }; struct acpi_device_wakeup { acpi_handle gpe_device ; u64 gpe_number ; u64 sleep_state ; struct list_head resources ; struct acpi_device_wakeup_flags flags ; struct acpi_device_wakeup_context context ; struct wakeup_source *ws ; int prepare_count ; }; struct acpi_device_data { union acpi_object const *pointer ; union acpi_object const *properties ; union acpi_object const *of_compatible ; }; struct acpi_gpio_mapping; struct acpi_device { int device_type ; acpi_handle handle ; struct fwnode_handle fwnode ; struct acpi_device *parent ; struct list_head children ; struct list_head node ; struct list_head wakeup_list ; struct list_head del_list ; struct acpi_device_status status ; struct acpi_device_flags flags ; struct acpi_device_pnp pnp ; struct acpi_device_power power ; struct acpi_device_wakeup wakeup ; struct acpi_device_perf performance ; struct acpi_device_dir dir ; struct acpi_device_data data ; struct acpi_scan_handler *handler ; struct acpi_hotplug_context *hp ; struct acpi_driver *driver ; struct acpi_gpio_mapping const *driver_gpios ; void *driver_data ; struct device dev ; unsigned int physical_node_count ; unsigned int dep_unmet ; struct list_head physical_node_list ; struct mutex physical_node_lock ; void (*remove)(struct acpi_device * ) ; }; struct acpi_gpio_params { unsigned int crs_entry_index ; unsigned int line_index ; bool active_low ; }; struct acpi_gpio_mapping { char const *name ; struct acpi_gpio_params const *data ; unsigned int size ; }; enum kinds { nct6106 = 0, nct6775 = 1, nct6776 = 2, nct6779 = 3, nct6791 = 4, nct6792 = 5 } ; enum pwm_enable { off = 0, manual = 1, thermal_cruise = 2, speed_cruise = 3, sf3 = 4, sf4 = 5 } ; struct nct6775_data { int addr ; int sioreg ; enum kinds kind ; char const *name ; struct attribute_group const *groups[6U] ; u16 reg_temp[5U][10U] ; u8 temp_src[10U] ; u16 reg_temp_config[10U] ; char const * const *temp_label ; int temp_label_num ; u16 REG_CONFIG ; u16 REG_VBAT ; u16 REG_DIODE ; u8 DIODE_MASK ; s8 const *ALARM_BITS ; s8 const *BEEP_BITS ; u16 const *REG_VIN ; u16 const *REG_IN_MINMAX[2U] ; u16 const *REG_TARGET ; u16 const *REG_FAN ; u16 const *REG_FAN_MODE ; u16 const *REG_FAN_MIN ; u16 const *REG_FAN_PULSES ; u16 const *FAN_PULSE_SHIFT ; u16 const *REG_FAN_TIME[3U] ; u16 const *REG_TOLERANCE_H ; u8 const *REG_PWM_MODE ; u8 const *PWM_MODE_MASK ; u16 const *REG_PWM[7U] ; u16 const *REG_PWM_READ ; u16 const *REG_CRITICAL_PWM_ENABLE ; u8 CRITICAL_PWM_ENABLE_MASK ; u16 const *REG_CRITICAL_PWM ; u16 const *REG_AUTO_TEMP ; u16 const *REG_AUTO_PWM ; u16 const *REG_CRITICAL_TEMP ; u16 const *REG_CRITICAL_TEMP_TOLERANCE ; u16 const *REG_TEMP_SOURCE ; u16 const *REG_TEMP_SEL ; u16 const *REG_WEIGHT_TEMP_SEL ; u16 const *REG_WEIGHT_TEMP[3U] ; u16 const *REG_TEMP_OFFSET ; u16 const *REG_ALARM ; u16 const *REG_BEEP ; unsigned int (*fan_from_reg)(u16 , unsigned int ) ; unsigned int (*fan_from_reg_min)(u16 , unsigned int ) ; struct mutex update_lock ; bool valid ; unsigned long last_updated ; u8 bank ; u8 in_num ; u8 in[15U][3U] ; unsigned int rpm[6U] ; u16 fan_min[6U] ; u8 fan_pulses[6U] ; u8 fan_div[6U] ; u8 has_pwm ; u8 has_fan ; u8 has_fan_min ; bool has_fan_div ; u8 num_temp_alarms ; u8 num_temp_beeps ; u8 temp_fixed_num ; u8 temp_type[6U] ; s8 temp_offset[6U] ; s16 temp[5U][10U] ; u64 alarms ; u64 beeps ; u8 pwm_num ; u8 pwm_mode[6U] ; enum pwm_enable pwm_enable[6U] ; u8 pwm[7U][6U] ; u8 target_temp[6U] ; u8 target_temp_mask ; u32 target_speed[6U] ; u32 target_speed_tolerance[6U] ; u8 speed_tolerance_limit ; u8 temp_tolerance[2U][6U] ; u8 tolerance_mask ; u8 fan_time[3U][6U] ; int auto_pwm_num ; u8 auto_pwm[6U][7U] ; u8 auto_temp[6U][7U] ; u8 pwm_temp_sel[6U] ; u8 pwm_weight_temp_sel[6U] ; u8 weight_temp[3U][6U] ; u8 vid ; u8 vrm ; bool have_vid ; u16 have_temp ; u16 have_temp_fixed ; u16 have_in ; u8 vbat ; u8 fandiv1 ; u8 fandiv2 ; }; struct nct6775_sio_data { int sioreg ; enum kinds kind ; }; struct __anonstruct_s_224 { u8 nr ; u8 index ; }; union __anonunion_u_223 { struct __anonstruct_s_224 s ; int index ; }; struct sensor_device_template { struct device_attribute dev_attr ; union __anonunion_u_223 u ; bool s2 ; }; union __anonunion_u_225 { struct sensor_device_attribute a1 ; struct sensor_device_attribute_2 a2 ; }; struct sensor_device_attr_u { union __anonunion_u_225 u ; char name[32U] ; }; struct sensor_template_group { struct sensor_device_template **templates ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; int base ; }; struct ldv_struct_platform_instance_0 { struct platform_driver *arg0 ; int signal_pending ; }; typedef int ldv_func_ret_type___0; struct request; struct device_private { void *driver_data ; }; typedef u64 dma_addr_t; typedef unsigned long pteval_t; struct __anonstruct_pte_t_11 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_11 pte_t; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; struct kthread_worker *worker ; }; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *cow_page ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; struct page *(*find_special_page)(struct vm_area_struct * , unsigned long ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; struct dma_chan; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool (*can_dma)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool idling ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; bool cur_msg_mapped ; struct completion xfer_completion ; size_t max_dma_len ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; struct dma_chan *dma_tx ; struct dma_chan *dma_rx ; void *dummy_rx ; void *dummy_tx ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; struct sg_table tx_sg ; struct sg_table rx_sg ; unsigned char cs_change : 1 ; unsigned char tx_nbits : 3 ; unsigned char rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned char is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; struct notifier_block; enum hrtimer_restart; struct ratelimit_state { raw_spinlock_t lock ; int interval ; int burst ; int printed ; int missed ; unsigned long begin ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; typedef unsigned int mmc_pm_flag_t; struct mmc_card; struct sdio_func; typedef void sdio_irq_handler_t(struct sdio_func * ); struct sdio_func_tuple { struct sdio_func_tuple *next ; unsigned char code ; unsigned char size ; unsigned char data[0U] ; }; struct sdio_func { struct mmc_card *card ; struct device dev ; sdio_irq_handler_t *irq_handler ; unsigned int num ; unsigned char class ; unsigned short vendor ; unsigned short device ; unsigned int max_blksize ; unsigned int cur_blksize ; unsigned int enable_timeout ; unsigned int state ; u8 tmpbuf[4U] ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; }; enum led_brightness { LED_OFF = 0, LED_HALF = 127, LED_FULL = 255 } ; struct led_trigger; struct led_classdev { char const *name ; enum led_brightness brightness ; enum led_brightness max_brightness ; int flags ; void (*brightness_set)(struct led_classdev * , enum led_brightness ) ; int (*brightness_set_sync)(struct led_classdev * , enum led_brightness ) ; enum led_brightness (*brightness_get)(struct led_classdev * ) ; int (*blink_set)(struct led_classdev * , unsigned long * , unsigned long * ) ; struct device *dev ; struct attribute_group const **groups ; struct list_head node ; char const *default_trigger ; unsigned long blink_delay_on ; unsigned long blink_delay_off ; struct timer_list blink_timer ; int blink_brightness ; void (*flash_resume)(struct led_classdev * ) ; struct work_struct set_brightness_work ; int delayed_set_value ; struct rw_semaphore trigger_lock ; struct led_trigger *trigger ; struct list_head trig_list ; void *trigger_data ; bool activated ; struct mutex led_access ; }; struct led_trigger { char const *name ; void (*activate)(struct led_classdev * ) ; void (*deactivate)(struct led_classdev * ) ; rwlock_t leddev_list_lock ; struct list_head led_cdevs ; struct list_head next_trig ; }; struct fault_attr { unsigned long probability ; unsigned long interval ; atomic_t times ; atomic_t space ; unsigned long verbose ; u32 task_filter ; unsigned long stacktrace_depth ; unsigned long require_start ; unsigned long require_end ; unsigned long reject_start ; unsigned long reject_end ; unsigned long count ; struct ratelimit_state ratelimit_state ; struct dentry *dname ; }; struct mmc_data; struct mmc_request; struct mmc_command { u32 opcode ; u32 arg ; u32 resp[4U] ; unsigned int flags ; unsigned int retries ; unsigned int error ; unsigned int busy_timeout ; bool sanitize_busy ; struct mmc_data *data ; struct mmc_request *mrq ; }; struct mmc_data { unsigned int timeout_ns ; unsigned int timeout_clks ; unsigned int blksz ; unsigned int blocks ; unsigned int error ; unsigned int flags ; unsigned int bytes_xfered ; struct mmc_command *stop ; struct mmc_request *mrq ; unsigned int sg_len ; struct scatterlist *sg ; s32 host_cookie ; }; struct mmc_host; struct mmc_request { struct mmc_command *sbc ; struct mmc_command *cmd ; struct mmc_data *data ; struct mmc_command *stop ; struct completion completion ; void (*done)(struct mmc_request * ) ; struct mmc_host *host ; }; struct mmc_async_req; struct mmc_cid { unsigned int manfid ; char prod_name[8U] ; unsigned char prv ; unsigned int serial ; unsigned short oemid ; unsigned short year ; unsigned char hwrev ; unsigned char fwrev ; unsigned char month ; }; struct mmc_csd { unsigned char structure ; unsigned char mmca_vsn ; unsigned short cmdclass ; unsigned short tacc_clks ; unsigned int tacc_ns ; unsigned int c_size ; unsigned int r2w_factor ; unsigned int max_dtr ; unsigned int erase_size ; unsigned int read_blkbits ; unsigned int write_blkbits ; unsigned int capacity ; unsigned char read_partial : 1 ; unsigned char read_misalign : 1 ; unsigned char write_partial : 1 ; unsigned char write_misalign : 1 ; unsigned char dsr_imp : 1 ; }; struct mmc_ext_csd { u8 rev ; u8 erase_group_def ; u8 sec_feature_support ; u8 rel_sectors ; u8 rel_param ; u8 part_config ; u8 cache_ctrl ; u8 rst_n_function ; u8 max_packed_writes ; u8 max_packed_reads ; u8 packed_event_en ; unsigned int part_time ; unsigned int sa_timeout ; unsigned int generic_cmd6_time ; unsigned int power_off_longtime ; u8 power_off_notification ; unsigned int hs_max_dtr ; unsigned int hs200_max_dtr ; unsigned int sectors ; unsigned int hc_erase_size ; unsigned int hc_erase_timeout ; unsigned int sec_trim_mult ; unsigned int sec_erase_mult ; unsigned int trim_timeout ; bool partition_setting_completed ; unsigned long long enhanced_area_offset ; unsigned int enhanced_area_size ; unsigned int cache_size ; bool hpi_en ; bool hpi ; unsigned int hpi_cmd ; bool bkops ; bool man_bkops_en ; unsigned int data_sector_size ; unsigned int data_tag_unit_size ; unsigned int boot_ro_lock ; bool boot_ro_lockable ; bool ffu_capable ; u8 fwrev[8U] ; u8 raw_exception_status ; u8 raw_partition_support ; u8 raw_rpmb_size_mult ; u8 raw_erased_mem_count ; u8 raw_ext_csd_structure ; u8 raw_card_type ; u8 out_of_int_time ; u8 raw_pwr_cl_52_195 ; u8 raw_pwr_cl_26_195 ; u8 raw_pwr_cl_52_360 ; u8 raw_pwr_cl_26_360 ; u8 raw_s_a_timeout ; u8 raw_hc_erase_gap_size ; u8 raw_erase_timeout_mult ; u8 raw_hc_erase_grp_size ; u8 raw_sec_trim_mult ; u8 raw_sec_erase_mult ; u8 raw_sec_feature_support ; u8 raw_trim_mult ; u8 raw_pwr_cl_200_195 ; u8 raw_pwr_cl_200_360 ; u8 raw_pwr_cl_ddr_52_195 ; u8 raw_pwr_cl_ddr_52_360 ; u8 raw_pwr_cl_ddr_200_360 ; u8 raw_bkops_status ; u8 raw_sectors[4U] ; unsigned int feature_support ; }; struct sd_scr { unsigned char sda_vsn ; unsigned char sda_spec3 ; unsigned char bus_widths ; unsigned char cmds ; }; struct sd_ssr { unsigned int au ; unsigned int erase_timeout ; unsigned int erase_offset ; }; struct sd_switch_caps { unsigned int hs_max_dtr ; unsigned int uhs_max_dtr ; unsigned int sd3_bus_mode ; unsigned int sd3_drv_type ; unsigned int sd3_curr_limit ; }; struct sdio_cccr { unsigned int sdio_vsn ; unsigned int sd_vsn ; unsigned char multi_block : 1 ; unsigned char low_speed : 1 ; unsigned char wide_bus : 1 ; unsigned char high_power : 1 ; unsigned char high_speed : 1 ; unsigned char disable_cd : 1 ; }; struct sdio_cis { unsigned short vendor ; unsigned short device ; unsigned short blksize ; unsigned int max_dtr ; }; struct mmc_ios; struct mmc_part { unsigned int size ; unsigned int part_cfg ; char name[20U] ; bool force_ro ; unsigned int area_type ; }; struct mmc_card { struct mmc_host *host ; struct device dev ; u32 ocr ; unsigned int rca ; unsigned int type ; unsigned int state ; unsigned int quirks ; unsigned int erase_size ; unsigned int erase_shift ; unsigned int pref_erase ; u8 erased_byte ; u32 raw_cid[4U] ; u32 raw_csd[4U] ; u32 raw_scr[2U] ; struct mmc_cid cid ; struct mmc_csd csd ; struct mmc_ext_csd ext_csd ; struct sd_scr scr ; struct sd_ssr ssr ; struct sd_switch_caps sw_caps ; unsigned int sdio_funcs ; struct sdio_cccr cccr ; struct sdio_cis cis ; struct sdio_func *sdio_func[7U] ; struct sdio_func *sdio_single_irq ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; unsigned int sd_bus_speed ; unsigned int mmc_avail_type ; struct dentry *debugfs_root ; struct mmc_part part[7U] ; unsigned int nr_parts ; }; struct mmc_ios { unsigned int clock ; unsigned short vdd ; unsigned char bus_mode ; unsigned char chip_select ; unsigned char power_mode ; unsigned char bus_width ; unsigned char timing ; unsigned char signal_voltage ; unsigned char drv_type ; }; struct mmc_host_ops { int (*enable)(struct mmc_host * ) ; int (*disable)(struct mmc_host * ) ; void (*post_req)(struct mmc_host * , struct mmc_request * , int ) ; void (*pre_req)(struct mmc_host * , struct mmc_request * , bool ) ; void (*request)(struct mmc_host * , struct mmc_request * ) ; void (*set_ios)(struct mmc_host * , struct mmc_ios * ) ; int (*get_ro)(struct mmc_host * ) ; int (*get_cd)(struct mmc_host * ) ; void (*enable_sdio_irq)(struct mmc_host * , int ) ; void (*init_card)(struct mmc_host * , struct mmc_card * ) ; int (*start_signal_voltage_switch)(struct mmc_host * , struct mmc_ios * ) ; int (*card_busy)(struct mmc_host * ) ; int (*execute_tuning)(struct mmc_host * , u32 ) ; int (*prepare_hs400_tuning)(struct mmc_host * , struct mmc_ios * ) ; int (*select_drive_strength)(unsigned int , int , int ) ; void (*hw_reset)(struct mmc_host * ) ; void (*card_event)(struct mmc_host * ) ; int (*multi_io_quirk)(struct mmc_card * , unsigned int , int ) ; }; struct mmc_async_req { struct mmc_request *mrq ; int (*err_check)(struct mmc_card * , struct mmc_async_req * ) ; }; struct mmc_slot { int cd_irq ; void *handler_priv ; }; struct mmc_context_info { bool is_done_rcv ; bool is_new_req ; bool is_waiting_last_req ; wait_queue_head_t wait ; spinlock_t lock ; }; struct regulator; struct mmc_pwrseq; struct mmc_supply { struct regulator *vmmc ; struct regulator *vqmmc ; }; struct mmc_bus_ops; struct mmc_host { struct device *parent ; struct device class_dev ; int index ; struct mmc_host_ops const *ops ; struct mmc_pwrseq *pwrseq ; unsigned int f_min ; unsigned int f_max ; unsigned int f_init ; u32 ocr_avail ; u32 ocr_avail_sdio ; u32 ocr_avail_sd ; u32 ocr_avail_mmc ; struct notifier_block pm_notify ; u32 max_current_330 ; u32 max_current_300 ; u32 max_current_180 ; u32 caps ; u32 caps2 ; mmc_pm_flag_t pm_caps ; int clk_requests ; unsigned int clk_delay ; bool clk_gated ; struct delayed_work clk_gate_work ; unsigned int clk_old ; spinlock_t clk_lock ; struct mutex clk_gate_mutex ; struct device_attribute clkgate_delay_attr ; unsigned long clkgate_delay ; unsigned int max_seg_size ; unsigned short max_segs ; unsigned short unused ; unsigned int max_req_size ; unsigned int max_blk_size ; unsigned int max_blk_count ; unsigned int max_busy_timeout ; spinlock_t lock ; struct mmc_ios ios ; unsigned char use_spi_crc : 1 ; unsigned char claimed : 1 ; unsigned char bus_dead : 1 ; unsigned char removed : 1 ; int rescan_disable ; int rescan_entered ; bool trigger_card_event ; struct mmc_card *card ; wait_queue_head_t wq ; struct task_struct *claimer ; int claim_cnt ; struct delayed_work detect ; int detect_change ; struct mmc_slot slot ; struct mmc_bus_ops const *bus_ops ; unsigned int bus_refs ; unsigned int sdio_irqs ; struct task_struct *sdio_irq_thread ; bool sdio_irq_pending ; atomic_t sdio_irq_thread_abort ; mmc_pm_flag_t pm_flags ; struct led_trigger *led ; bool regulator_enabled ; struct mmc_supply supply ; struct dentry *debugfs_root ; struct mmc_async_req *areq ; struct mmc_context_info context_info ; struct fault_attr fail_mmc_request ; unsigned int actual_clock ; unsigned int slotno ; int dsr_req ; u32 dsr ; unsigned long private[0U] ; }; typedef int ldv_map; struct usb_device; struct urb; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; typedef _Bool ldv_set; long ldv__builtin_expect(long exp , long c ) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_irq_check_alloc_nonatomic(void) ; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) ; void ldv_linux_arch_io_check_final_state(void) ; void ldv_linux_block_genhd_check_final_state(void) ; void ldv_linux_block_queue_check_final_state(void) ; void ldv_linux_block_request_check_final_state(void) ; void *ldv_linux_drivers_base_class_create_class(void) ; int ldv_linux_drivers_base_class_register_class(void) ; void ldv_linux_drivers_base_class_check_final_state(void) ; void ldv_linux_fs_char_dev_check_final_state(void) ; void ldv_linux_fs_sysfs_check_final_state(void) ; void ldv_linux_kernel_locking_rwlock_check_final_state(void) ; void ldv_linux_kernel_module_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_check_final_state(void) ; void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) ; void ldv_linux_kernel_rcu_srcu_check_final_state(void) ; void ldv_linux_lib_find_bit_initialize(void) ; void ldv_linux_lib_idr_check_final_state(void) ; void ldv_linux_mmc_sdio_func_check_final_state(void) ; void ldv_linux_net_register_reset_error_counter(void) ; void ldv_linux_net_register_check_return_value_probe(int retval ) ; void ldv_linux_net_rtnetlink_check_final_state(void) ; void ldv_linux_net_sock_check_final_state(void) ; void ldv_linux_usb_coherent_check_final_state(void) ; void *ldv_linux_usb_gadget_create_class(void) ; int ldv_linux_usb_gadget_register_class(void) ; void ldv_linux_usb_gadget_check_final_state(void) ; void ldv_linux_usb_register_reset_error_counter(void) ; void ldv_linux_usb_register_check_return_value_probe(int retval ) ; void ldv_linux_usb_urb_check_final_state(void) ; void ldv_check_alloc_nonatomic(void) { { { ldv_linux_alloc_irq_check_alloc_nonatomic(); ldv_linux_alloc_usb_lock_check_alloc_nonatomic(); } return; } } void ldv_check_alloc_flags(gfp_t flags ) { { { ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return; } } void ldv_check_for_read_section(void) { { { ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_check_for_read_section(); ldv_linux_kernel_rcu_srcu_check_for_read_section(); } return; } } void *ldv_create_class(void) { void *res1 ; void *tmp ; void *res2 ; void *tmp___0 ; { { tmp = ldv_linux_drivers_base_class_create_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_create_class(); res2 = tmp___0; ldv_assume((unsigned long )res1 == (unsigned long )res2); } return (res1); } } int ldv_register_class(void) { int res1 ; int tmp ; int res2 ; int tmp___0 ; { { tmp = ldv_linux_drivers_base_class_register_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_register_class(); res2 = tmp___0; ldv_assume(res1 == res2); } return (res1); } } void *ldv_err_ptr(long error ) ; long ldv_ptr_err(void const *ptr ) ; int ldv_undef_int(void) ; static void ldv_ldv_initialize_152(void) ; int ldv_post_init(int init_ret_val ) ; static int ldv_ldv_post_init_149(int ldv_func_arg1 ) ; extern void ldv_pre_probe(void) ; static void ldv_ldv_pre_probe_153(void) ; int ldv_post_probe(int probe_ret_val ) ; static int ldv_ldv_post_probe_154(int retval ) ; static void ldv_ldv_check_final_state_150(void) ; static void ldv_ldv_check_final_state_151(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; void *ldv_malloc_unknown_size(void) ; void *ldv_alloc_macro(gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } static void ldv_mutex_lock_96(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_98(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_100(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_102(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_104(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_106(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_108(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_110(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_112(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_114(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_116(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_118(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_120(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_122(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_124(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_126(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_128(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_130(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_132(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_134(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_136(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_138(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_140(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_142(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_144(struct mutex *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_mutex_mutex_lock_update_lock_of_nct6775_data(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_update_lock_of_nct6775_data(struct mutex *lock ) ; extern struct module __this_module ; extern struct pv_cpu_ops pv_cpu_ops ; __inline static unsigned long __ffs(unsigned long word ) { { __asm__ ("rep; bsf %1,%0": "=r" (word): "rm" (word)); return (word); } } __inline static int fls(int x ) { int r ; { __asm__ ("bsrl %1,%0": "=r" (r): "rm" (x), "0" (-1)); return (r + 1); } } extern int printk(char const * , ...) ; extern void __dynamic_pr_debug(struct _ddebug * , char const * , ...) ; extern void __dynamic_dev_dbg(struct _ddebug * , struct device const * , char const * , ...) ; extern int kstrtoull(char const * , unsigned int , unsigned long long * ) ; extern int kstrtoll(char const * , unsigned int , long long * ) ; __inline static int kstrtoul(char const *s , unsigned int base , unsigned long *res ) { int tmp ; { { tmp = kstrtoull(s, base, (unsigned long long *)res); } return (tmp); } } __inline static int kstrtol(char const *s , unsigned int base , long *res ) { int tmp ; { { tmp = kstrtoll(s, base, (long long *)res); } return (tmp); } } extern int sprintf(char * , char const * , ...) ; extern int snprintf(char * , size_t , char const * , ...) ; extern void *__memset(void * , int , size_t ) ; extern size_t strlen(char const * ) ; __inline static void slow_down_io(void) { { { (*(pv_cpu_ops.io_delay))(); } return; } } __inline static void *ERR_PTR(long error ) ; __inline static long PTR_ERR(void const *ptr ) ; __inline static bool IS_ERR(void const *ptr ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )ptr > 0xfffffffffffff000UL, 0L); } return (tmp != 0L); } } __inline static int PTR_ERR_OR_ZERO(void const *ptr ) { long tmp ; bool tmp___0 ; { { tmp___0 = IS_ERR(ptr); } if ((int )tmp___0) { { tmp = PTR_ERR(ptr); } return ((int )tmp); } else { return (0); } } } extern struct resource ioport_resource ; extern struct resource *__request_region(struct resource * , resource_size_t , resource_size_t , char const * , int ) ; extern void __release_region(struct resource * , resource_size_t , resource_size_t ) ; extern struct resource *__devm_request_region(struct device * , struct resource * , resource_size_t , resource_size_t , char const * ) ; extern void __mutex_init(struct mutex * , char const * , struct lock_class_key * ) ; static void ldv_mutex_unlock_97(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_99(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_101(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_103(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_105(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_107(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_109(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_111(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_113(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_115(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_117(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_119(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_121(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_123(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_125(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_127(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_129(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_131(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_133(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_135(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_137(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_139(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_141(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_143(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_145(struct mutex *ldv_func_arg1 ) ; extern unsigned long volatile jiffies ; __inline static void outb(unsigned char value , int port ) { { __asm__ volatile ("outb %b0, %w1": : "a" (value), "Nd" (port)); return; } } __inline static unsigned char inb(int port ) { unsigned char value ; { __asm__ volatile ("inb %w1, %b0": "=a" (value): "Nd" (port)); return (value); } } __inline static void outb_p(unsigned char value , int port ) { { { outb((int )value, port); slow_down_io(); } return; } } __inline static unsigned char inb_p(int port ) { unsigned char value ; unsigned char tmp ; { { tmp = inb(port); value = tmp; slow_down_io(); } return (value); } } extern void *devm_kmalloc(struct device * , size_t , gfp_t ) ; __inline static void *devm_kzalloc(struct device *dev , size_t size , gfp_t gfp ) { void *tmp ; { { tmp = devm_kmalloc(dev, size, gfp | 32768U); } return (tmp); } } __inline static void *dev_get_drvdata(struct device const *dev ) { { return ((void *)dev->driver_data); } } __inline static void dev_set_drvdata(struct device *dev , void *data ) { { dev->driver_data = data; return; } } __inline static void *dev_get_platdata(struct device const *dev ) { { return ((void *)dev->platform_data); } } extern void dev_err(struct device const * , char const * , ...) ; extern void dev_warn(struct device const * , char const * , ...) ; extern void _dev_info(struct device const * , char const * , ...) ; extern void platform_device_unregister(struct platform_device * ) ; extern struct resource *platform_get_resource(struct platform_device * , unsigned int , unsigned int ) ; extern struct platform_device *platform_device_alloc(char const * , int ) ; extern int platform_device_add_resources(struct platform_device * , struct resource const * , unsigned int ) ; extern int platform_device_add_data(struct platform_device * , void const * , size_t ) ; extern int platform_device_add(struct platform_device * ) ; extern void platform_device_put(struct platform_device * ) ; extern int __platform_driver_register(struct platform_driver * , struct module * ) ; static int ldv___platform_driver_register_146(struct platform_driver *ldv_func_arg1 , struct module *ldv_func_arg2 ) ; extern void platform_driver_unregister(struct platform_driver * ) ; static void ldv_platform_driver_unregister_147(struct platform_driver *ldv_func_arg1 ) ; static void ldv_platform_driver_unregister_148(struct platform_driver *ldv_func_arg1 ) ; __inline static void platform_set_drvdata(struct platform_device *pdev___0 , void *data ) { { { dev_set_drvdata(& pdev___0->dev, data); } return; } } extern struct device *devm_hwmon_device_register_with_groups(struct device * , char const * , void * , struct attribute_group const ** ) ; extern int vid_from_reg(int , u8 ) ; extern u8 vid_which_vrm(void) ; extern int acpi_check_resource_conflict(struct resource const * ) ; __inline static u16 LM75_TEMP_TO_REG(long temp ) { int ntemp ; long __min1 ; long __max1 ; long __max2 ; long __min2 ; { __max1 = temp; __max2 = -55000L; __min1 = __max1 > __max2 ? __max1 : __max2; __min2 = 125000L; ntemp = (int )(__min1 < __min2 ? __min1 : __min2); ntemp = ntemp + (ntemp < 0 ? -250 : 250); return ((u16 )((int )((unsigned short )(ntemp / 500)) << 7U)); } } __inline static int LM75_TEMP_FROM_REG(u16 reg ) { { return (((int )((short )reg) / 128) * 500); } } static char const * const nct6775_device_names[6U] = { "nct6106", "nct6775", "nct6776", "nct6779", "nct6791", "nct6792"}; static unsigned short force_id ; static unsigned short fan_debounce ; __inline static void superio_outb(int ioreg , int reg , int val ) { { { outb((int )((unsigned char )reg), ioreg); outb((int )((unsigned char )val), ioreg + 1); } return; } } __inline static int superio_inb(int ioreg , int reg ) { unsigned char tmp ; { { outb((int )((unsigned char )reg), ioreg); tmp = inb(ioreg + 1); } return ((int )tmp); } } __inline static void superio_select(int ioreg , int ld ) { { { outb(7, ioreg); outb((int )((unsigned char )ld), ioreg + 1); } return; } } __inline static int superio_enter(int ioreg ) { struct resource *tmp ; { { tmp = __request_region(& ioport_resource, (resource_size_t )ioreg, 2ULL, "nct6775", 4194304); } if ((unsigned long )tmp == (unsigned long )((struct resource *)0)) { return (-16); } else { } { outb(135, ioreg); outb(135, ioreg); } return (0); } } __inline static void superio_exit(int ioreg ) { { { outb(170, ioreg); outb(2, ioreg); outb(2, ioreg + 1); __release_region(& ioport_resource, (resource_size_t )ioreg, 2ULL); } return; } } static u16 const NCT6775_REG_IN_MAX[15U] = { 43U, 45U, 47U, 49U, 51U, 53U, 55U, 1364U, 1366U, 1368U, 1370U, 1372U, 1374U, 1376U, 1378U}; static u16 const NCT6775_REG_IN_MIN[15U] = { 44U, 46U, 48U, 50U, 52U, 54U, 56U, 1365U, 1367U, 1369U, 1371U, 1373U, 1375U, 1377U, 1379U}; static u16 const NCT6775_REG_IN[10U] = { 32U, 33U, 34U, 35U, 36U, 37U, 38U, 1360U, 1361U, 1362U}; static u16 const NCT6775_REG_ALARM[7U] = { 1113U, 1114U, 1115U}; static s8 const NCT6775_ALARM_BITS[32U] = { 0, 1, 2, 3, 8, 21, 20, 16, 17, -1, -1, -1, -1, -1, -1, -1, 6, 7, 11, -1, -1, -1, -1, -1, 4, 5, 13, -1, -1, -1, 12, -1}; static u16 const NCT6775_REG_BEEP[5U] = { 86U, 87U, 1107U, 78U}; static s8 const NCT6775_BEEP_BITS[32U] = { 0, 1, 2, 3, 8, 9, 10, 16, 17, -1, -1, -1, -1, -1, -1, 21, 6, 7, 11, 28, -1, -1, -1, -1, 4, 5, 13, -1, -1, -1, 12, -1}; static u8 const NCT6775_REG_CR_CASEOPEN_CLR[2U] = { 230U, 238U}; static u8 const NCT6775_CR_CASEOPEN_CLR_MASK[2U] = { 32U, 1U}; static u8 const NCT6775_REG_PWM_MODE[3U] = { 4U, 4U, 18U}; static u8 const NCT6775_PWM_MODE_MASK[3U] = { 1U, 2U, 1U}; static u16 const NCT6775_REG_TARGET[6U] = { 257U, 513U, 769U, 2049U, 2305U, 2561U}; static u16 const NCT6775_REG_FAN_MODE[6U] = { 258U, 514U, 770U, 2050U, 2306U, 2562U}; static u16 const NCT6775_REG_FAN_STEP_DOWN_TIME[6U] = { 259U, 515U, 771U, 2051U, 2307U, 2563U}; static u16 const NCT6775_REG_FAN_STEP_UP_TIME[6U] = { 260U, 516U, 772U, 2052U, 2308U, 2564U}; static u16 const NCT6775_REG_FAN_STOP_OUTPUT[6U] = { 261U, 517U, 773U, 2053U, 2309U, 2565U}; static u16 const NCT6775_REG_FAN_START_OUTPUT[6U] = { 262U, 518U, 774U, 2054U, 2310U, 2566U}; static u16 const NCT6775_REG_FAN_MAX_OUTPUT[3U] = { 266U, 522U, 778U}; static u16 const NCT6775_REG_FAN_STEP_OUTPUT[3U] = { 267U, 523U, 779U}; static u16 const NCT6775_REG_FAN_STOP_TIME[6U] = { 263U, 519U, 775U, 2055U, 2311U, 2567U}; static u16 const NCT6775_REG_PWM[6U] = { 265U, 521U, 777U, 2057U, 2313U, 2569U}; static u16 const NCT6775_REG_PWM_READ[6U] = { 1U, 3U, 17U, 19U, 21U, 2569U}; static u16 const NCT6775_REG_FAN[5U] = { 1584U, 1586U, 1588U, 1590U, 1592U}; static u16 const NCT6775_REG_FAN_MIN[3U] = { 59U, 60U, 61U}; static u16 const NCT6775_REG_FAN_PULSES[5U] = { 1601U, 1602U, 1603U, 1604U, 0U}; static u16 const NCT6775_FAN_PULSE_SHIFT[6U] = { 0U, 0U, 0U, 0U, 0U, 0U}; static u16 const NCT6775_REG_TEMP[6U] = { 39U, 336U, 592U, 1579U, 1580U, 1581U}; static u16 const NCT6775_REG_TEMP_MON[3U] = { 115U, 117U, 119U}; static u16 const NCT6775_REG_TEMP_CONFIG[6U] = { 0U, 338U, 594U, 1576U, 1577U, 1578U}; static u16 const NCT6775_REG_TEMP_HYST[6U] = { 58U, 339U, 595U, 1651U, 1656U, 1661U}; static u16 const NCT6775_REG_TEMP_OVER[6U] = { 57U, 341U, 597U, 1650U, 1655U, 1660U}; static u16 const NCT6775_REG_TEMP_SOURCE[6U] = { 1569U, 1570U, 1571U, 1572U, 1573U, 1574U}; static u16 const NCT6775_REG_TEMP_SEL[6U] = { 256U, 512U, 768U, 2048U, 2304U, 2560U}; static u16 const NCT6775_REG_WEIGHT_TEMP_SEL[6U] = { 313U, 569U, 825U, 2105U, 2361U, 2617U}; static u16 const NCT6775_REG_WEIGHT_TEMP_STEP[6U] = { 314U, 570U, 826U, 2106U, 2362U, 2618U}; static u16 const NCT6775_REG_WEIGHT_TEMP_STEP_TOL[6U] = { 315U, 571U, 827U, 2107U, 2363U, 2619U}; static u16 const NCT6775_REG_WEIGHT_DUTY_STEP[6U] = { 316U, 572U, 828U, 2108U, 2364U, 2620U}; static u16 const NCT6775_REG_WEIGHT_TEMP_BASE[6U] = { 317U, 573U, 829U, 2109U, 2365U, 2621U}; static u16 const NCT6775_REG_TEMP_OFFSET[3U] = { 1108U, 1109U, 1110U}; static u16 const NCT6775_REG_AUTO_TEMP[6U] = { 289U, 545U, 801U, 2081U, 2337U, 2593U}; static u16 const NCT6775_REG_AUTO_PWM[6U] = { 295U, 551U, 807U, 2087U, 2343U, 2599U}; static u16 const NCT6775_REG_CRITICAL_ENAB[3U] = { 308U, 564U, 820U}; static u16 const NCT6775_REG_CRITICAL_TEMP[6U] = { 309U, 565U, 821U, 2101U, 2357U, 2613U}; static u16 const NCT6775_REG_CRITICAL_TEMP_TOLERANCE[6U] = { 312U, 568U, 824U, 2104U, 2360U, 2616U}; static char const * const nct6775_temp_label[21U] = { "", "SYSTIN", "CPUTIN", "AUXTIN", "AMD SB-TSI", "PECI Agent 0", "PECI Agent 1", "PECI Agent 2", "PECI Agent 3", "PECI Agent 4", "PECI Agent 5", "PECI Agent 6", "PECI Agent 7", "PCH_CHIP_CPU_MAX_TEMP", "PCH_CHIP_TEMP", "PCH_CPU_TEMP", "PCH_MCH_TEMP", "PCH_DIM0_TEMP", "PCH_DIM1_TEMP", "PCH_DIM2_TEMP", "PCH_DIM3_TEMP"}; static u16 const NCT6775_REG_TEMP_ALTERNATE[20U] = { 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 1633U, 1634U, 1636U}; static u16 const NCT6775_REG_TEMP_CRIT[20U] = { 0U, 0U, 0U, 0U, 2560U, 2561U, 2562U, 2563U, 2564U, 2565U, 2566U, 2567U}; static s8 const NCT6776_ALARM_BITS[32U] = { 0, 1, 2, 3, 8, 21, 20, 16, 17, -1, -1, -1, -1, -1, -1, -1, 6, 7, 11, 10, 23, -1, -1, -1, 4, 5, 13, -1, -1, -1, 12, 9}; static u16 const NCT6776_REG_BEEP[5U] = { 178U, 179U, 180U, 181U}; static s8 const NCT6776_BEEP_BITS[32U] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, -1, -1, -1, -1, -1, -1, 24, 25, 26, 27, 28, 29, -1, -1, -1, 16, 17, 18, 19, 20, 21, 30, 31}; static u16 const NCT6776_REG_TOLERANCE_H[6U] = { 268U, 524U, 780U, 2060U, 2316U, 2572U}; static u8 const NCT6776_REG_PWM_MODE[6U] = { 4U, 0U, 0U, 0U, 0U, 0U}; static u8 const NCT6776_PWM_MODE_MASK[6U] = { 1U, 0U, 0U, 0U, 0U, 0U}; static u16 const NCT6776_REG_FAN_MIN[5U] = { 1594U, 1596U, 1598U, 1600U, 1602U}; static u16 const NCT6776_REG_FAN_PULSES[5U] = { 1604U, 1605U, 1606U, 0U, 0U}; static u16 const NCT6776_REG_WEIGHT_DUTY_BASE[6U] = { 318U, 574U, 830U, 2110U, 2366U, 2622U}; static u16 const NCT6776_REG_TEMP_CONFIG[6U] = { 24U, 338U, 594U, 1576U, 1577U, 1578U}; static char const * const nct6776_temp_label[23U] = { "", "SYSTIN", "CPUTIN", "AUXTIN", "SMBUSMASTER 0", "SMBUSMASTER 1", "SMBUSMASTER 2", "SMBUSMASTER 3", "SMBUSMASTER 4", "SMBUSMASTER 5", "SMBUSMASTER 6", "SMBUSMASTER 7", "PECI Agent 0", "PECI Agent 1", "PCH_CHIP_CPU_MAX_TEMP", "PCH_CHIP_TEMP", "PCH_CPU_TEMP", "PCH_MCH_TEMP", "PCH_DIM0_TEMP", "PCH_DIM1_TEMP", "PCH_DIM2_TEMP", "PCH_DIM3_TEMP", "BYTE_TEMP"}; static u16 const NCT6776_REG_TEMP_ALTERNATE[22U] = { 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 1025U, 1026U, 1028U}; static u16 const NCT6776_REG_TEMP_CRIT[22U] = { 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 1801U, 1802U}; static u16 const NCT6779_REG_IN[15U] = { 1152U, 1153U, 1154U, 1155U, 1156U, 1157U, 1158U, 1159U, 1160U, 1161U, 1162U, 1163U, 1164U, 1165U, 1166U}; static u16 const NCT6779_REG_ALARM[7U] = { 1113U, 1114U, 1115U, 1384U}; static s8 const NCT6779_ALARM_BITS[32U] = { 0, 1, 2, 3, 8, 21, 20, 16, 17, 24, 25, 26, 27, 28, 29, -1, 6, 7, 11, 10, 23, -1, -1, -1, 4, 5, 13, -1, -1, -1, 12, 9}; static s8 const NCT6779_BEEP_BITS[32U] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 24, 25, 26, 27, 28, 29, -1, -1, -1, 16, 17, -1, -1, -1, -1, 30, 31}; static u16 const NCT6779_REG_FAN[6U] = { 1200U, 1202U, 1204U, 1206U, 1208U, 1210U}; static u16 const NCT6779_REG_FAN_PULSES[6U] = { 1604U, 1605U, 1606U, 1607U, 1608U, 1609U}; static u16 const NCT6779_REG_CRITICAL_PWM_ENABLE[6U] = { 310U, 566U, 822U, 2102U, 2358U, 2614U}; static u16 const NCT6779_REG_CRITICAL_PWM[6U] = { 311U, 567U, 823U, 2103U, 2359U, 2615U}; static u16 const NCT6779_REG_TEMP[2U] = { 39U, 336U}; static u16 const NCT6779_REG_TEMP_MON[5U] = { 115U, 117U, 119U, 121U, 123U}; static u16 const NCT6779_REG_TEMP_CONFIG[2U] = { 24U, 338U}; static u16 const NCT6779_REG_TEMP_HYST[2U] = { 58U, 339U}; static u16 const NCT6779_REG_TEMP_OVER[2U] = { 57U, 341U}; static u16 const NCT6779_REG_TEMP_OFFSET[6U] = { 1108U, 1109U, 1110U, 1098U, 1099U, 1100U}; static char const * const nct6779_temp_label[27U] = { "", "SYSTIN", "CPUTIN", "AUXTIN0", "AUXTIN1", "AUXTIN2", "AUXTIN3", "", "SMBUSMASTER 0", "SMBUSMASTER 1", "SMBUSMASTER 2", "SMBUSMASTER 3", "SMBUSMASTER 4", "SMBUSMASTER 5", "SMBUSMASTER 6", "SMBUSMASTER 7", "PECI Agent 0", "PECI Agent 1", "PCH_CHIP_CPU_MAX_TEMP", "PCH_CHIP_TEMP", "PCH_CPU_TEMP", "PCH_MCH_TEMP", "PCH_DIM0_TEMP", "PCH_DIM1_TEMP", "PCH_DIM2_TEMP", "PCH_DIM3_TEMP", "BYTE_TEMP"}; static u16 const NCT6779_REG_TEMP_ALTERNATE[26U] = { 1168U, 1169U, 1170U, 1171U, 1172U, 1173U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 1024U, 1025U, 1026U, 1028U, 1029U, 1030U, 1031U, 1032U, 0U}; static u16 const NCT6779_REG_TEMP_CRIT[26U] = { 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 1801U, 1802U}; static u16 const NCT6791_REG_WEIGHT_TEMP_SEL[6U] = { 0U, 569U}; static u16 const NCT6791_REG_WEIGHT_TEMP_STEP[6U] = { 0U, 570U}; static u16 const NCT6791_REG_WEIGHT_TEMP_STEP_TOL[6U] = { 0U, 571U}; static u16 const NCT6791_REG_WEIGHT_DUTY_STEP[6U] = { 0U, 572U}; static u16 const NCT6791_REG_WEIGHT_TEMP_BASE[6U] = { 0U, 573U}; static u16 const NCT6791_REG_WEIGHT_DUTY_BASE[6U] = { 0U, 574U}; static u16 const NCT6791_REG_ALARM[7U] = { 1113U, 1114U, 1115U, 1384U, 1117U}; static s8 const NCT6791_ALARM_BITS[32U] = { 0, 1, 2, 3, 8, 21, 20, 16, 17, 24, 25, 26, 27, 28, 29, -1, 6, 7, 11, 10, 23, 33, -1, -1, 4, 5, 13, -1, -1, -1, 12, 9}; static u16 const NCT6792_REG_TEMP_MON[6U] = { 115U, 117U, 119U, 121U, 123U, 125U}; static u16 const NCT6792_REG_BEEP[5U] = { 178U, 179U, 180U, 181U, 191U}; static u16 const NCT6106_REG_IN_MAX[9U] = { 144U, 146U, 148U, 150U, 152U, 154U, 158U, 160U, 162U}; static u16 const NCT6106_REG_IN_MIN[9U] = { 145U, 147U, 149U, 151U, 153U, 155U, 159U, 161U, 163U}; static u16 const NCT6106_REG_IN[9U] = { 0U, 1U, 2U, 3U, 4U, 5U, 7U, 8U, 9U}; static u16 const NCT6106_REG_TEMP[6U] = { 16U, 17U, 18U, 19U, 20U, 21U}; static u16 const NCT6106_REG_TEMP_MON[3U] = { 24U, 25U, 26U}; static u16 const NCT6106_REG_TEMP_HYST[6U] = { 195U, 199U, 203U, 207U, 211U, 215U}; static u16 const NCT6106_REG_TEMP_OVER[6U] = { 194U, 198U, 202U, 206U, 210U, 214U}; static u16 const NCT6106_REG_TEMP_CRIT_L[6U] = { 192U, 196U, 200U, 204U, 208U, 212U}; static u16 const NCT6106_REG_TEMP_CRIT_H[6U] = { 193U, 197U, 201U, 207U, 209U, 213U}; static u16 const NCT6106_REG_TEMP_OFFSET[3U] = { 785U, 786U, 787U}; static u16 const NCT6106_REG_TEMP_CONFIG[6U] = { 183U, 184U, 185U, 186U, 187U, 188U}; static u16 const NCT6106_REG_FAN[3U] = { 32U, 34U, 36U}; static u16 const NCT6106_REG_FAN_MIN[3U] = { 224U, 226U, 228U}; static u16 const NCT6106_REG_FAN_PULSES[5U] = { 246U, 246U, 246U, 0U, 0U}; static u16 const NCT6106_FAN_PULSE_SHIFT[5U] = { 0U, 2U, 4U, 0U, 0U}; static u8 const NCT6106_REG_PWM_MODE[3U] = { 243U, 243U, 243U}; static u8 const NCT6106_PWM_MODE_MASK[3U] = { 1U, 2U, 4U}; static u16 const NCT6106_REG_PWM[3U] = { 281U, 297U, 313U}; static u16 const NCT6106_REG_PWM_READ[3U] = { 74U, 75U, 76U}; static u16 const NCT6106_REG_FAN_MODE[3U] = { 275U, 291U, 307U}; static u16 const NCT6106_REG_TEMP_SEL[3U] = { 272U, 288U, 304U}; static u16 const NCT6106_REG_TEMP_SOURCE[6U] = { 176U, 177U, 178U, 179U, 180U, 181U}; static u16 const NCT6106_REG_CRITICAL_TEMP[3U] = { 282U, 298U, 314U}; static u16 const NCT6106_REG_CRITICAL_TEMP_TOLERANCE[3U] = { 283U, 299U, 315U}; static u16 const NCT6106_REG_CRITICAL_PWM_ENABLE[3U] = { 284U, 300U, 316U}; static u16 const NCT6106_REG_CRITICAL_PWM[3U] = { 285U, 301U, 317U}; static u16 const NCT6106_REG_FAN_STEP_UP_TIME[3U] = { 276U, 292U, 308U}; static u16 const NCT6106_REG_FAN_STEP_DOWN_TIME[3U] = { 277U, 293U, 309U}; static u16 const NCT6106_REG_FAN_STOP_OUTPUT[3U] = { 278U, 294U, 310U}; static u16 const NCT6106_REG_FAN_START_OUTPUT[3U] = { 279U, 295U, 311U}; static u16 const NCT6106_REG_FAN_STOP_TIME[3U] = { 280U, 296U, 312U}; static u16 const NCT6106_REG_TARGET[3U] = { 273U, 289U, 305U}; static u16 const NCT6106_REG_WEIGHT_TEMP_SEL[3U] = { 360U, 376U, 392U}; static u16 const NCT6106_REG_WEIGHT_TEMP_STEP[3U] = { 361U, 377U, 393U}; static u16 const NCT6106_REG_WEIGHT_TEMP_STEP_TOL[3U] = { 362U, 378U, 394U}; static u16 const NCT6106_REG_WEIGHT_DUTY_STEP[3U] = { 363U, 379U, 380U}; static u16 const NCT6106_REG_WEIGHT_TEMP_BASE[3U] = { 364U, 380U, 396U}; static u16 const NCT6106_REG_WEIGHT_DUTY_BASE[3U] = { 365U, 381U, 397U}; static u16 const NCT6106_REG_AUTO_TEMP[3U] = { 352U, 368U, 384U}; static u16 const NCT6106_REG_AUTO_PWM[3U] = { 356U, 372U, 388U}; static u16 const NCT6106_REG_ALARM[7U] = { 119U, 120U, 121U, 122U, 123U, 124U, 125U}; static s8 const NCT6106_ALARM_BITS[32U] = { 0, 1, 2, 3, 4, 5, 7, 8, 9, -1, -1, -1, -1, -1, -1, -1, 32, 33, 34, -1, -1, -1, -1, -1, 16, 17, 18, 19, 20, 21, 48, -1}; static u16 const NCT6106_REG_BEEP[5U] = { 960U, 961U, 962U, 963U, 964U}; static s8 const NCT6106_BEEP_BITS[32U] = { 0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, -1, -1, -1, 32, 24, 25, 26, 27, 28, -1, -1, -1, 16, 17, 18, 19, 20, 21, 34, -1}; static u16 const NCT6106_REG_TEMP_ALTERNATE[22U] = { 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 81U, 82U, 84U}; static u16 const NCT6106_REG_TEMP_CRIT[22U] = { 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 516U, 517U}; static enum pwm_enable reg_to_pwm_enable(int pwm , int mode ) { { if (mode == 0 && pwm == 255) { return (0); } else { } return ((enum pwm_enable )(mode + 1)); } } static int pwm_enable_to_reg(enum pwm_enable mode ) { { if ((unsigned int )mode == 0U) { return (0); } else { } return ((int )((unsigned int )mode - 1U)); } } static unsigned int step_time_from_reg(u8 reg , u8 mode ) { { return ((unsigned int )((unsigned int )mode != 0U ? (int )reg * 400 : (int )reg * 100)); } } static u8 step_time_to_reg(unsigned int msec , u8 mode ) { unsigned int __min1 ; unsigned int __max1 ; unsigned int __max2 ; unsigned int __min2 ; { __max1 = (unsigned int )mode != 0U ? (msec + 200U) / 400U : (msec + 50U) / 100U; __max2 = 1U; __min1 = __max1 > __max2 ? __max1 : __max2; __min2 = 255U; return ((u8 )(__min1 < __min2 ? __min1 : __min2)); } } static unsigned int fan_from_reg8(u16 reg , unsigned int divreg ) { { if ((unsigned int )reg == 0U || (unsigned int )reg == 255U) { return (0U); } else { } return (1350000U / (unsigned int )((int )reg << (int )divreg)); } } static unsigned int fan_from_reg13(u16 reg , unsigned int divreg ) { { if (((int )reg & 65311) == 65311) { return (0U); } else { } reg = (u16 )(((int )((short )reg) & 31) | (int )((short )(((int )reg & 65280) >> 3))); if ((unsigned int )reg == 0U) { return (0U); } else { } return (1350000U / (unsigned int )reg); } } static unsigned int fan_from_reg16(u16 reg , unsigned int divreg ) { { if ((unsigned int )reg - 1U > 65533U) { return (0U); } else { } return (1350000U / (unsigned int )((int )reg << (int )divreg)); } } static u16 fan_to_reg(u32 fan , unsigned int divreg ) { { if (fan == 0U) { return (0U); } else { } return ((u16 )(1350000U / fan >> (int )divreg)); } } __inline static unsigned int div_from_reg(u8 reg ) { { return ((unsigned int )(1 << (int )reg)); } } static u16 const scale_in[15U] = { 800U, 800U, 1600U, 1600U, 800U, 800U, 800U, 1600U, 1600U, 800U, 800U, 800U, 800U, 800U, 800U}; __inline static long in_from_reg(u8 reg , u8 nr ) { int __x ; int __d ; { __x = (int )reg * (int )scale_in[(int )nr]; __d = 100; return ((long )(__x > 0 ? (__x + __d / 2) / __d : (__x - __d / 2) / __d)); } } __inline static u8 in_to_reg(u32 val , u8 nr ) { u32 __min1 ; u32 __max1 ; u32 __x ; unsigned short __d ; u32 __max2 ; u32 __min2 ; { __x = val * 100U; __d = scale_in[(int )nr]; __max1 = (__x + (unsigned int )__d / 2U) / (u32 )__d; __max2 = 0U; __min1 = __max1 > __max2 ? __max1 : __max2; __min2 = 255U; return ((u8 )(__min1 < __min2 ? __min1 : __min2)); } } static struct attribute_group *nct6775_create_attr_group(struct device *dev , struct sensor_template_group *tg , int repeat ) { struct attribute_group *group ; struct sensor_device_attr_u *su ; struct sensor_device_attribute *a ; struct sensor_device_attribute_2 *a2 ; struct attribute **attrs ; struct sensor_device_template **t ; int i ; int count ; void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; void *tmp___5 ; void *tmp___6 ; { if (repeat <= 0) { { tmp = ERR_PTR(-22L); } return ((struct attribute_group *)tmp); } else { } t = tg->templates; count = 0; goto ldv_30268; ldv_30267: t = t + 1; count = count + 1; ldv_30268: ; if ((unsigned long )*t != (unsigned long )((struct sensor_device_template *)0)) { goto ldv_30267; } else { } if (count == 0) { { tmp___0 = ERR_PTR(-22L); } return ((struct attribute_group *)tmp___0); } else { } { tmp___1 = devm_kzalloc(dev, 32UL, 208U); group = (struct attribute_group *)tmp___1; } if ((unsigned long )group == (unsigned long )((struct attribute_group *)0)) { { tmp___2 = ERR_PTR(-12L); } return ((struct attribute_group *)tmp___2); } else { } { tmp___3 = devm_kzalloc(dev, (unsigned long )(repeat * count + 1) * 8UL, 208U); attrs = (struct attribute **)tmp___3; } if ((unsigned long )attrs == (unsigned long )((struct attribute **)0)) { { tmp___4 = ERR_PTR(-12L); } return ((struct attribute_group *)tmp___4); } else { } { tmp___5 = devm_kzalloc(dev, ((unsigned long )repeat * (unsigned long )count) * 88UL, 208U); su = (struct sensor_device_attr_u *)tmp___5; } if ((unsigned long )su == (unsigned long )((struct sensor_device_attr_u *)0)) { { tmp___6 = ERR_PTR(-12L); } return ((struct attribute_group *)tmp___6); } else { } group->attrs = attrs; group->is_visible = tg->is_visible; i = 0; goto ldv_30274; ldv_30273: t = tg->templates; goto ldv_30271; ldv_30270: { snprintf((char *)(& su->name), 32UL, (*t)->dev_attr.attr.name, tg->base + i); } if ((int )(*t)->s2) { a2 = & su->u.a2; a2->dev_attr.attr.name = (char const *)(& su->name); a2->nr = (int )(*t)->u.s.nr + (int )((u8 )i); a2->index = (*t)->u.s.index; a2->dev_attr.attr.mode = (*t)->dev_attr.attr.mode; a2->dev_attr.show = (*t)->dev_attr.show; a2->dev_attr.store = (*t)->dev_attr.store; *attrs = & a2->dev_attr.attr; } else { a = & su->u.a1; a->dev_attr.attr.name = (char const *)(& su->name); a->index = (*t)->u.index + i; a->dev_attr.attr.mode = (*t)->dev_attr.attr.mode; a->dev_attr.show = (*t)->dev_attr.show; a->dev_attr.store = (*t)->dev_attr.store; *attrs = & a->dev_attr.attr; } attrs = attrs + 1; su = su + 1; t = t + 1; ldv_30271: ; if ((unsigned long )*t != (unsigned long )((struct sensor_device_template *)0)) { goto ldv_30270; } else { } i = i + 1; ldv_30274: ; if (i < repeat) { goto ldv_30273; } else { } return (group); } } static bool is_word_sized(struct nct6775_data *data , u16 reg ) { { { if ((unsigned int )data->kind == 0U) { goto case_0; } else { } if ((unsigned int )data->kind == 1U) { goto case_1; } else { } if ((unsigned int )data->kind == 2U) { goto case_2; } else { } if ((unsigned int )data->kind == 3U) { goto case_3; } else { } if ((unsigned int )data->kind == 4U) { goto case_4; } else { } if ((unsigned int )data->kind == 5U) { goto case_5; } else { } goto switch_break; case_0: /* CIL Label */ ; return ((bool )((((((unsigned int )reg == 32U || (unsigned int )reg == 34U) || ((unsigned int )reg == 36U || (unsigned int )reg == 224U)) || ((unsigned int )reg == 226U || (unsigned int )reg == 228U)) || ((unsigned int )reg == 273U || (unsigned int )reg == 289U)) || (unsigned int )reg == 305U)); case_1: /* CIL Label */ ; return ((bool )(((((((((int )reg & 65280) == 256 || ((int )reg & 65280) == 512) && ((((int )reg & 255) == 80 || ((int )reg & 255) == 83) || ((int )reg & 255) == 85)) || (((int )reg & 65520) == 1584 || (unsigned int )reg == 1600U)) || ((unsigned int )reg == 1602U || (unsigned int )reg == 1634U)) || (((int )reg & 65520) == 1616 && ((int )reg & 15) > 5)) || ((unsigned int )reg == 115U || (unsigned int )reg == 117U)) || (unsigned int )reg == 119U)); case_2: /* CIL Label */ ; return ((bool )(((((((((int )reg & 65280) == 256 || ((int )reg & 65280) == 512) && ((((int )reg & 255) == 80 || ((int )reg & 255) == 83) || ((int )reg & 255) == 85)) || (((int )reg & 65520) == 1584 || (unsigned int )reg == 1026U)) || ((unsigned int )reg == 1600U || (unsigned int )reg == 1602U)) || (((int )reg & 65520) == 1616 && ((int )reg & 15) > 5)) || ((unsigned int )reg == 115U || (unsigned int )reg == 117U)) || (unsigned int )reg == 119U)); case_3: /* CIL Label */ ; case_4: /* CIL Label */ ; case_5: /* CIL Label */ ; return ((bool )((((((((((unsigned int )reg == 336U || (unsigned int )reg == 339U) || (unsigned int )reg == 341U) || (((int )reg & 65520) == 1200 && ((int )reg & 15) <= 10)) || ((unsigned int )reg == 1026U || (unsigned int )reg == 1594U)) || ((unsigned int )reg == 1596U || (unsigned int )reg == 1598U)) || ((unsigned int )reg == 1600U || (unsigned int )reg == 1602U)) || ((unsigned int )reg == 115U || (unsigned int )reg == 117U)) || ((unsigned int )reg == 119U || (unsigned int )reg == 121U)) || ((unsigned int )reg == 123U || (unsigned int )reg == 125U))); switch_break: /* CIL Label */ ; } return (0); } } __inline static void nct6775_set_bank(struct nct6775_data *data , u16 reg ) { u8 bank ; { bank = (u8 )((int )reg >> 8); if ((int )data->bank != (int )bank) { { outb_p(78, data->addr); outb_p((int )bank, data->addr + 1); data->bank = bank; } } else { } return; } } static u16 nct6775_read_value(struct nct6775_data *data , u16 reg ) { int res ; int word_sized ; bool tmp ; unsigned char tmp___0 ; unsigned char tmp___1 ; { { tmp = is_word_sized(data, (int )reg); word_sized = (int )tmp; nct6775_set_bank(data, (int )reg); outb_p((int )((unsigned char )reg), data->addr); tmp___0 = inb_p(data->addr + 1); res = (int )tmp___0; } if (word_sized != 0) { { outb_p((int )((unsigned int )((unsigned char )reg) + 1U), data->addr); tmp___1 = inb_p(data->addr + 1); res = (res << 8) + (int )tmp___1; } } else { } return ((u16 )res); } } static int nct6775_write_value(struct nct6775_data *data , u16 reg , u16 value ) { int word_sized ; bool tmp ; { { tmp = is_word_sized(data, (int )reg); word_sized = (int )tmp; nct6775_set_bank(data, (int )reg); outb_p((int )((unsigned char )reg), data->addr); } if (word_sized != 0) { { outb_p((int )((unsigned char )((int )value >> 8)), data->addr + 1); outb_p((int )((unsigned int )((unsigned char )reg) + 1U), data->addr); } } else { } { outb_p((int )((unsigned char )value), data->addr + 1); } return (0); } } static u16 nct6775_read_temp(struct nct6775_data *data , u16 reg ) { u16 res ; bool tmp ; int tmp___0 ; { { res = nct6775_read_value(data, (int )reg); tmp = is_word_sized(data, (int )reg); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { res = (int )res << 8U; } else { } return (res); } } static int nct6775_write_temp(struct nct6775_data *data , u16 reg , u16 value ) { bool tmp ; int tmp___0 ; int tmp___1 ; { { tmp = is_word_sized(data, (int )reg); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { value = (u16 )((int )value >> 8); } else { } { tmp___1 = nct6775_write_value(data, (int )reg, (int )value); } return (tmp___1); } } static void nct6775_write_fan_div(struct nct6775_data *data , int nr ) { u8 reg ; u16 tmp ; u16 tmp___0 ; u16 tmp___1 ; u16 tmp___2 ; { { if (nr == 0) { goto case_0; } else { } if (nr == 1) { goto case_1; } else { } if (nr == 2) { goto case_2; } else { } if (nr == 3) { goto case_3; } else { } goto switch_break; case_0: /* CIL Label */ { tmp = nct6775_read_value(data, 1286); reg = (u8 )(((int )((signed char )tmp) & 112) | ((int )((signed char )data->fan_div[0]) & 7)); nct6775_write_value(data, 1286, (int )reg); } goto ldv_30319; case_1: /* CIL Label */ { tmp___0 = nct6775_read_value(data, 1286); reg = (u8 )(((int )((signed char )tmp___0) & 7) | ((int )((signed char )((int )data->fan_div[1] << 4)) & 112)); nct6775_write_value(data, 1286, (int )reg); } goto ldv_30319; case_2: /* CIL Label */ { tmp___1 = nct6775_read_value(data, 1287); reg = (u8 )(((int )((signed char )tmp___1) & 112) | ((int )((signed char )data->fan_div[2]) & 7)); nct6775_write_value(data, 1287, (int )reg); } goto ldv_30319; case_3: /* CIL Label */ { tmp___2 = nct6775_read_value(data, 1287); reg = (u8 )(((int )((signed char )tmp___2) & 7) | ((int )((signed char )((int )data->fan_div[3] << 4)) & 112)); nct6775_write_value(data, 1287, (int )reg); } goto ldv_30319; switch_break: /* CIL Label */ ; } ldv_30319: ; return; } } static void nct6775_write_fan_div_common(struct nct6775_data *data , int nr ) { { if ((unsigned int )data->kind == 1U) { { nct6775_write_fan_div(data, nr); } } else { } return; } } static void nct6775_update_fan_div(struct nct6775_data *data ) { u8 i ; u16 tmp ; u16 tmp___0 ; { { tmp = nct6775_read_value(data, 1286); i = (u8 )tmp; data->fan_div[0] = (unsigned int )i & 7U; data->fan_div[1] = (u8 )(((int )i & 112) >> 4); tmp___0 = nct6775_read_value(data, 1287); i = (u8 )tmp___0; data->fan_div[2] = (unsigned int )i & 7U; } if (((int )data->has_fan & 8) != 0) { data->fan_div[3] = (u8 )(((int )i & 112) >> 4); } else { } return; } } static void nct6775_update_fan_div_common(struct nct6775_data *data ) { { if ((unsigned int )data->kind == 1U) { { nct6775_update_fan_div(data); } } else { } return; } } static void nct6775_init_fan_div(struct nct6775_data *data ) { int i ; { { nct6775_update_fan_div_common(data); i = 0; } goto ldv_30342; ldv_30341: ; if ((((int )data->has_fan >> i) & 1) == 0) { goto ldv_30340; } else { } if ((unsigned int )data->fan_div[i] == 0U) { { data->fan_div[i] = 7U; nct6775_write_fan_div_common(data, i); } } else { } ldv_30340: i = i + 1; ldv_30342: ; if ((unsigned int )i <= 5U) { goto ldv_30341; } else { } return; } } static void nct6775_init_fan_common(struct device *dev , struct nct6775_data *data ) { int i ; u8 reg ; u16 tmp ; { if ((int )data->has_fan_div) { { nct6775_init_fan_div(data); } } else { } i = 0; goto ldv_30353; ldv_30352: ; if (((int )data->has_fan_min >> i) & 1) { { tmp = nct6775_read_value(data, (int )*(data->REG_FAN_MIN + (unsigned long )i)); reg = (u8 )tmp; } if ((unsigned int )reg == 0U) { { nct6775_write_value(data, (int )*(data->REG_FAN_MIN + (unsigned long )i), (int )data->has_fan_div ? 255 : 65311); } } else { } } else { } i = i + 1; ldv_30353: ; if ((unsigned int )i <= 5U) { goto ldv_30352; } else { } return; } } static void nct6775_select_fan_div(struct device *dev , struct nct6775_data *data , int nr , u16 reg ) { u8 fan_div ; u16 fan_min ; struct _ddebug descriptor ; unsigned int tmp ; unsigned int tmp___0 ; long tmp___1 ; { fan_div = data->fan_div[nr]; if (! data->has_fan_div) { return; } else { } if ((unsigned int )reg == 0U && (unsigned int )fan_div <= 6U) { fan_div = (u8 )((int )fan_div + 1); } else if ((unsigned int )reg - 1U <= 46U && (unsigned int )fan_div != 0U) { fan_div = (u8 )((int )fan_div - 1); } else { } if ((int )fan_div != (int )data->fan_div[nr]) { { descriptor.modname = "nct6775"; descriptor.function = "nct6775_select_fan_div"; descriptor.filename = "drivers/hwmon/nct6775.c"; descriptor.format = "Modifying fan%d clock divider from %u to %u\n"; descriptor.lineno = 1254U; descriptor.flags = 1U; tmp___1 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___1 != 0L) { { tmp = div_from_reg((int )fan_div); tmp___0 = div_from_reg((int )data->fan_div[nr]); __dynamic_dev_dbg(& descriptor, (struct device const *)dev, "Modifying fan%d clock divider from %u to %u\n", nr + 1, tmp___0, tmp); } } else { } if (((int )data->has_fan_min >> nr) & 1) { fan_min = data->fan_min[nr]; if ((int )fan_div > (int )data->fan_div[nr]) { if ((unsigned int )fan_min != 255U && (unsigned int )fan_min > 1U) { fan_min = (u16 )((int )fan_min >> 1); } else { } } else if ((unsigned int )fan_min != 255U) { fan_min = (int )fan_min << 1U; if ((unsigned int )fan_min > 254U) { fan_min = 254U; } else { } } else { } if ((int )fan_min != (int )data->fan_min[nr]) { { data->fan_min[nr] = fan_min; nct6775_write_value(data, (int )*(data->REG_FAN_MIN + (unsigned long )nr), (int )fan_min); } } else { } } else { } { data->fan_div[nr] = fan_div; nct6775_write_fan_div_common(data, nr); } } else { } return; } } static void nct6775_update_pwm(struct device *dev ) { struct nct6775_data *data ; void *tmp ; int i ; int j ; int fanmodecfg ; int reg ; bool duty_is_dc ; u16 tmp___0 ; int tmp___1 ; u16 tmp___2 ; u16 tmp___3 ; u8 t ; u16 tmp___4 ; u16 tmp___5 ; u16 tmp___6 ; u16 tmp___7 ; u16 tmp___8 ; { { tmp = dev_get_drvdata((struct device const *)dev); data = (struct nct6775_data *)tmp; i = 0; } goto ldv_30387; ldv_30386: ; if ((((int )data->has_pwm >> i) & 1) == 0) { goto ldv_30374; } else { } if ((unsigned int )((unsigned char )*(data->REG_PWM_MODE + (unsigned long )i)) != 0U) { { tmp___0 = nct6775_read_value(data, (int )*(data->REG_PWM_MODE + (unsigned long )i)); } if (((int )tmp___0 & (int )*(data->PWM_MODE_MASK + (unsigned long )i)) != 0) { tmp___1 = 1; } else { tmp___1 = 0; } } else { tmp___1 = 0; } { duty_is_dc = (bool )tmp___1; data->pwm_mode[i] = (u8 )duty_is_dc; tmp___2 = nct6775_read_value(data, (int )*(data->REG_FAN_MODE + (unsigned long )i)); fanmodecfg = (int )tmp___2; j = 0; } goto ldv_30378; ldv_30377: ; if ((unsigned long )data->REG_PWM[j] != (unsigned long )((u16 const *)0U) && (unsigned int )((unsigned short )*(data->REG_PWM[j] + (unsigned long )i)) != 0U) { { tmp___3 = nct6775_read_value(data, (int )*(data->REG_PWM[j] + (unsigned long )i)); data->pwm[j][i] = (u8 )tmp___3; } } else { } j = j + 1; ldv_30378: ; if ((unsigned int )j <= 6U) { goto ldv_30377; } else { } { data->pwm_enable[i] = reg_to_pwm_enable((int )data->pwm[0][i], (fanmodecfg >> 4) & 7); } if ((unsigned int )data->temp_tolerance[0][i] == 0U || (unsigned int )data->pwm_enable[i] != 3U) { data->temp_tolerance[0][i] = (unsigned int )((u8 )fanmodecfg) & 15U; } else { } if (data->target_speed_tolerance[i] == 0U || (unsigned int )data->pwm_enable[i] == 3U) { t = (unsigned int )((u8 )fanmodecfg) & 15U; if ((unsigned long )data->REG_TOLERANCE_H != (unsigned long )((u16 const *)0U)) { { tmp___4 = nct6775_read_value(data, (int )*(data->REG_TOLERANCE_H + (unsigned long )i)); t = (u8 )((int )((signed char )t) | (int )((signed char )(((int )tmp___4 & 112) >> 1))); } } else { } data->target_speed_tolerance[i] = (u32 )t; } else { } { tmp___5 = nct6775_read_value(data, (int )*(data->REG_CRITICAL_TEMP_TOLERANCE + (unsigned long )i)); data->temp_tolerance[1][i] = (u8 )tmp___5; tmp___6 = nct6775_read_value(data, (int )*(data->REG_TEMP_SEL + (unsigned long )i)); reg = (int )tmp___6; data->pwm_temp_sel[i] = (unsigned int )((u8 )reg) & 31U; } if ((reg & 128) != 0) { data->pwm[2][i] = 0U; } else { } if ((unsigned int )((unsigned short )*(data->REG_WEIGHT_TEMP_SEL + (unsigned long )i)) == 0U) { goto ldv_30374; } else { } { tmp___7 = nct6775_read_value(data, (int )*(data->REG_WEIGHT_TEMP_SEL + (unsigned long )i)); reg = (int )tmp___7; data->pwm_weight_temp_sel[i] = (unsigned int )((u8 )reg) & 31U; } if (j == 1 && (reg & 128) == 0) { data->pwm_weight_temp_sel[i] = 0U; } else { } j = 0; goto ldv_30384; ldv_30383: { tmp___8 = nct6775_read_value(data, (int )*(data->REG_WEIGHT_TEMP[j] + (unsigned long )i)); data->weight_temp[j][i] = (u8 )tmp___8; j = j + 1; } ldv_30384: ; if ((unsigned int )j <= 2U) { goto ldv_30383; } else { } ldv_30374: i = i + 1; ldv_30387: ; if (i < (int )data->pwm_num) { goto ldv_30386; } else { } return; } } static void nct6775_update_pwm_limits(struct device *dev ) { struct nct6775_data *data ; void *tmp ; int i ; int j ; u8 reg ; u16 reg_t ; u16 tmp___0 ; u16 tmp___1 ; u16 tmp___2 ; u16 tmp___3 ; u16 tmp___4 ; u16 tmp___5 ; u16 tmp___6 ; u16 tmp___7 ; { { tmp = dev_get_drvdata((struct device const *)dev); data = (struct nct6775_data *)tmp; i = 0; } goto ldv_30414; ldv_30413: ; if ((((int )data->has_pwm >> i) & 1) == 0) { goto ldv_30397; } else { } j = 0; goto ldv_30401; ldv_30400: { tmp___0 = nct6775_read_value(data, (int )*(data->REG_FAN_TIME[j] + (unsigned long )i)); data->fan_time[j][i] = (u8 )tmp___0; j = j + 1; } ldv_30401: ; if ((unsigned int )j <= 2U) { goto ldv_30400; } else { } { reg_t = nct6775_read_value(data, (int )*(data->REG_TARGET + (unsigned long )i)); } if ((unsigned int )data->target_temp[i] == 0U || (unsigned int )data->pwm_enable[i] == 2U) { data->target_temp[i] = (int )((u8 )reg_t) & (int )data->target_temp_mask; } else { } if (data->target_speed[i] == 0U || (unsigned int )data->pwm_enable[i] == 3U) { if ((unsigned long )data->REG_TOLERANCE_H != (unsigned long )((u16 const *)0U)) { { tmp___1 = nct6775_read_value(data, (int )*(data->REG_TOLERANCE_H + (unsigned long )i)); reg_t = (u16 )((int )((short )reg_t) | (int )((short )(((int )tmp___1 & 15) << 8))); } } else { } data->target_speed[i] = (u32 )reg_t; } else { } j = 0; goto ldv_30404; ldv_30403: { tmp___2 = nct6775_read_value(data, (int )((u16 )*(data->REG_AUTO_PWM + (unsigned long )i)) + (int )((u16 )j)); data->auto_pwm[i][j] = (u8 )tmp___2; tmp___3 = nct6775_read_value(data, (int )((u16 )*(data->REG_AUTO_TEMP + (unsigned long )i)) + (int )((u16 )j)); data->auto_temp[i][j] = (u8 )tmp___3; j = j + 1; } ldv_30404: ; if (j < data->auto_pwm_num) { goto ldv_30403; } else { } { tmp___4 = nct6775_read_value(data, (int )*(data->REG_CRITICAL_TEMP + (unsigned long )i)); data->auto_temp[i][data->auto_pwm_num] = (u8 )tmp___4; } { if ((unsigned int )data->kind == 1U) { goto case_1; } else { } if ((unsigned int )data->kind == 2U) { goto case_2; } else { } if ((unsigned int )data->kind == 0U) { goto case_0; } else { } if ((unsigned int )data->kind == 3U) { goto case_3; } else { } if ((unsigned int )data->kind == 4U) { goto case_4; } else { } if ((unsigned int )data->kind == 5U) { goto case_5; } else { } goto switch_break; case_1: /* CIL Label */ { tmp___5 = nct6775_read_value(data, (int )NCT6775_REG_CRITICAL_ENAB[i]); reg = (u8 )tmp___5; data->auto_pwm[i][data->auto_pwm_num] = ((int )reg & 2) != 0 ? 255U : 0U; } goto ldv_30407; case_2: /* CIL Label */ data->auto_pwm[i][data->auto_pwm_num] = 255U; goto ldv_30407; case_0: /* CIL Label */ ; case_3: /* CIL Label */ ; case_4: /* CIL Label */ ; case_5: /* CIL Label */ { tmp___6 = nct6775_read_value(data, (int )*(data->REG_CRITICAL_PWM_ENABLE + (unsigned long )i)); reg = (u8 )tmp___6; } if ((unsigned int )((int )reg & (int )data->CRITICAL_PWM_ENABLE_MASK) != 0U) { { tmp___7 = nct6775_read_value(data, (int )*(data->REG_CRITICAL_PWM + (unsigned long )i)); reg = (u8 )tmp___7; } } else { reg = 255U; } data->auto_pwm[i][data->auto_pwm_num] = reg; goto ldv_30407; switch_break: /* CIL Label */ ; } ldv_30407: ; ldv_30397: i = i + 1; ldv_30414: ; if (i < (int )data->pwm_num) { goto ldv_30413; } else { } return; } } static struct nct6775_data *nct6775_update_device(struct device *dev ) { struct nct6775_data *data ; void *tmp ; int i ; int j ; u16 tmp___0 ; u16 tmp___1 ; u16 tmp___2 ; u16 reg ; u16 tmp___3 ; u16 tmp___4 ; u16 tmp___5 ; u8 alarm ; u16 tmp___6 ; u8 beep ; u16 tmp___7 ; { { tmp = dev_get_drvdata((struct device const *)dev); data = (struct nct6775_data *)tmp; ldv_mutex_lock_96(& data->update_lock); } if ((long )((data->last_updated - (unsigned long )jiffies) + 375UL) < 0L || ! data->valid) { { nct6775_update_fan_div_common(data); i = 0; } goto ldv_30430; ldv_30429: ; if ((((int )data->have_in >> i) & 1) == 0) { goto ldv_30428; } else { } { tmp___0 = nct6775_read_value(data, (int )*(data->REG_VIN + (unsigned long )i)); data->in[i][0] = (u8 )tmp___0; tmp___1 = nct6775_read_value(data, (int )*(data->REG_IN_MINMAX[0] + (unsigned long )i)); data->in[i][1] = (u8 )tmp___1; tmp___2 = nct6775_read_value(data, (int )*(data->REG_IN_MINMAX[1] + (unsigned long )i)); data->in[i][2] = (u8 )tmp___2; } ldv_30428: i = i + 1; ldv_30430: ; if (i < (int )data->in_num) { goto ldv_30429; } else { } i = 0; goto ldv_30437; ldv_30436: ; if ((((int )data->has_fan >> i) & 1) == 0) { goto ldv_30435; } else { } { reg = nct6775_read_value(data, (int )*(data->REG_FAN + (unsigned long )i)); data->rpm[i] = (*(data->fan_from_reg))((int )reg, (unsigned int )data->fan_div[i]); } if (((int )data->has_fan_min >> i) & 1) { { data->fan_min[i] = nct6775_read_value(data, (int )*(data->REG_FAN_MIN + (unsigned long )i)); } } else { } { tmp___3 = nct6775_read_value(data, (int )*(data->REG_FAN_PULSES + (unsigned long )i)); data->fan_pulses[i] = (unsigned int )((u8 )((int )tmp___3 >> (int )*(data->FAN_PULSE_SHIFT + (unsigned long )i))) & 3U; nct6775_select_fan_div(dev, data, i, (int )reg); } ldv_30435: i = i + 1; ldv_30437: ; if ((unsigned int )i <= 5U) { goto ldv_30436; } else { } { nct6775_update_pwm(dev); nct6775_update_pwm_limits(dev); i = 0; } goto ldv_30446; ldv_30445: ; if ((((int )data->have_temp >> i) & 1) == 0) { goto ldv_30439; } else { } j = 0; goto ldv_30443; ldv_30442: ; if ((unsigned int )data->reg_temp[j][i] != 0U) { { tmp___4 = nct6775_read_temp(data, (int )data->reg_temp[j][i]); data->temp[j][i] = (s16 )tmp___4; } } else { } j = j + 1; ldv_30443: ; if ((unsigned int )j <= 4U) { goto ldv_30442; } else { } if (i > 5 || (((int )data->have_temp_fixed >> i) & 1) == 0) { goto ldv_30439; } else { } { tmp___5 = nct6775_read_value(data, (int )*(data->REG_TEMP_OFFSET + (unsigned long )i)); data->temp_offset[i] = (s8 )tmp___5; } ldv_30439: i = i + 1; ldv_30446: ; if (i <= 9) { goto ldv_30445; } else { } data->alarms = 0ULL; i = 0; goto ldv_30451; ldv_30450: ; if ((unsigned int )((unsigned short )*(data->REG_ALARM + (unsigned long )i)) == 0U) { goto ldv_30449; } else { } { tmp___6 = nct6775_read_value(data, (int )*(data->REG_ALARM + (unsigned long )i)); alarm = (u8 )tmp___6; data->alarms = data->alarms | ((unsigned long long )alarm << (i << 3)); } ldv_30449: i = i + 1; ldv_30451: ; if (i <= 6) { goto ldv_30450; } else { } data->beeps = 0ULL; i = 0; goto ldv_30456; ldv_30455: ; if ((unsigned int )((unsigned short )*(data->REG_BEEP + (unsigned long )i)) == 0U) { goto ldv_30454; } else { } { tmp___7 = nct6775_read_value(data, (int )*(data->REG_BEEP + (unsigned long )i)); beep = (u8 )tmp___7; data->beeps = data->beeps | ((unsigned long long )beep << (i << 3)); } ldv_30454: i = i + 1; ldv_30456: ; if (i <= 4) { goto ldv_30455; } else { } data->last_updated = jiffies; data->valid = 1; } else { } { ldv_mutex_unlock_97(& data->update_lock); } return (data); } } static ssize_t show_in_reg(struct device *dev , struct device_attribute *attr , char *buf ) { struct nct6775_data *data ; struct nct6775_data *tmp ; struct sensor_device_attribute_2 *sattr ; struct device_attribute const *__mptr ; int index ; int nr ; long tmp___0 ; int tmp___1 ; { { tmp = nct6775_update_device(dev); data = tmp; __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute_2 *)__mptr; index = (int )sattr->index; nr = (int )sattr->nr; tmp___0 = in_from_reg((int )data->in[nr][index], (int )((u8 )nr)); tmp___1 = sprintf(buf, "%ld\n", tmp___0); } return ((ssize_t )tmp___1); } } static ssize_t store_in_reg(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct nct6775_data *data ; void *tmp ; struct sensor_device_attribute_2 *sattr ; struct device_attribute const *__mptr ; int index ; int nr ; unsigned long val ; int err ; { { tmp = dev_get_drvdata((struct device const *)dev); data = (struct nct6775_data *)tmp; __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute_2 *)__mptr; index = (int )sattr->index; nr = (int )sattr->nr; err = kstrtoul(buf, 10U, & val); } if (err < 0) { return ((ssize_t )err); } else { } { ldv_mutex_lock_98(& data->update_lock); data->in[nr][index] = in_to_reg((u32 )val, (int )((u8 )nr)); nct6775_write_value(data, (int )*(data->REG_IN_MINMAX[index + -1] + (unsigned long )nr), (int )data->in[nr][index]); ldv_mutex_unlock_99(& data->update_lock); } return ((ssize_t )count); } } static ssize_t show_alarm(struct device *dev , struct device_attribute *attr , char *buf ) { struct nct6775_data *data ; struct nct6775_data *tmp ; struct sensor_device_attribute *sattr ; struct device_attribute const *__mptr ; int nr ; int tmp___0 ; { { tmp = nct6775_update_device(dev); data = tmp; __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute *)__mptr; nr = (int )*(data->ALARM_BITS + (unsigned long )sattr->index); tmp___0 = sprintf(buf, "%u\n", (unsigned int )(data->alarms >> nr) & 1U); } return ((ssize_t )tmp___0); } } static int find_temp_source(struct nct6775_data *data , int index , int count ) { int source ; int nr ; int src ; u16 tmp ; { source = (int )data->temp_src[index]; nr = 0; goto ldv_30502; ldv_30501: { tmp = nct6775_read_value(data, (int )*(data->REG_TEMP_SOURCE + (unsigned long )nr)); src = (int )tmp & 31; } if (src == source) { return (nr); } else { } nr = nr + 1; ldv_30502: ; if (nr < count) { goto ldv_30501; } else { } return (-19); } } static ssize_t show_temp_alarm(struct device *dev , struct device_attribute *attr , char *buf ) { struct sensor_device_attribute *sattr ; struct device_attribute const *__mptr ; struct nct6775_data *data ; struct nct6775_data *tmp ; unsigned int alarm ; int nr ; int bit ; int tmp___0 ; { { __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute *)__mptr; tmp = nct6775_update_device(dev); data = tmp; alarm = 0U; nr = find_temp_source(data, sattr->index, (int )data->num_temp_alarms); } if (nr >= 0) { bit = (int )*(data->ALARM_BITS + ((unsigned long )nr + 24UL)); alarm = (unsigned int )(data->alarms >> bit) & 1U; } else { } { tmp___0 = sprintf(buf, "%u\n", alarm); } return ((ssize_t )tmp___0); } } static ssize_t show_beep(struct device *dev , struct device_attribute *attr , char *buf ) { struct sensor_device_attribute *sattr ; struct device_attribute const *__mptr ; struct nct6775_data *data ; struct nct6775_data *tmp ; int nr ; int tmp___0 ; { { __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute *)__mptr; tmp = nct6775_update_device(dev); data = tmp; nr = (int )*(data->BEEP_BITS + (unsigned long )sattr->index); tmp___0 = sprintf(buf, "%u\n", (unsigned int )(data->beeps >> nr) & 1U); } return ((ssize_t )tmp___0); } } static ssize_t store_beep(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct sensor_device_attribute_2 *sattr ; struct device_attribute const *__mptr ; struct nct6775_data *data ; void *tmp ; int nr ; int regindex ; unsigned long val ; int err ; { { __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute_2 *)__mptr; tmp = dev_get_drvdata((struct device const *)dev); data = (struct nct6775_data *)tmp; nr = (int )*(data->BEEP_BITS + (unsigned long )sattr->index); regindex = nr >> 3; err = kstrtoul(buf, 10U, & val); } if (err < 0) { return ((ssize_t )err); } else { } if (val > 1UL) { return (-22L); } else { } { ldv_mutex_lock_100(& data->update_lock); } if (val != 0UL) { data->beeps = data->beeps | (1ULL << nr); } else { data->beeps = data->beeps & ~ (1ULL << nr); } { nct6775_write_value(data, (int )*(data->REG_BEEP + (unsigned long )regindex), (int )((u16 )(data->beeps >> (regindex << 3))) & 255); ldv_mutex_unlock_101(& data->update_lock); } return ((ssize_t )count); } } static ssize_t show_temp_beep(struct device *dev , struct device_attribute *attr , char *buf ) { struct sensor_device_attribute *sattr ; struct device_attribute const *__mptr ; struct nct6775_data *data ; struct nct6775_data *tmp ; unsigned int beep ; int nr ; int bit ; int tmp___0 ; { { __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute *)__mptr; tmp = nct6775_update_device(dev); data = tmp; beep = 0U; nr = find_temp_source(data, sattr->index, (int )data->num_temp_beeps); } if (nr >= 0) { bit = (int )*(data->BEEP_BITS + ((unsigned long )nr + 24UL)); beep = (unsigned int )(data->beeps >> bit) & 1U; } else { } { tmp___0 = sprintf(buf, "%u\n", beep); } return ((ssize_t )tmp___0); } } static ssize_t store_temp_beep(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct sensor_device_attribute_2 *sattr ; struct device_attribute const *__mptr ; struct nct6775_data *data ; void *tmp ; int nr ; int bit ; int regindex ; unsigned long val ; int err ; { { __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute_2 *)__mptr; tmp = dev_get_drvdata((struct device const *)dev); data = (struct nct6775_data *)tmp; err = kstrtoul(buf, 10U, & val); } if (err < 0) { return ((ssize_t )err); } else { } if (val > 1UL) { return (-22L); } else { } { nr = find_temp_source(data, (int )sattr->index, (int )data->num_temp_beeps); } if (nr < 0) { return ((ssize_t )nr); } else { } { bit = (int )*(data->BEEP_BITS + ((unsigned long )nr + 24UL)); regindex = bit >> 3; ldv_mutex_lock_102(& data->update_lock); } if (val != 0UL) { data->beeps = data->beeps | (1ULL << bit); } else { data->beeps = data->beeps & ~ (1ULL << bit); } { nct6775_write_value(data, (int )*(data->REG_BEEP + (unsigned long )regindex), (int )((u16 )(data->beeps >> (regindex << 3))) & 255); ldv_mutex_unlock_103(& data->update_lock); } return ((ssize_t )count); } } static umode_t nct6775_in_is_visible(struct kobject *kobj , struct attribute *attr , int index ) { struct device *dev ; struct kobject const *__mptr ; struct nct6775_data *data ; void *tmp ; int in ; { { __mptr = (struct kobject const *)kobj; dev = (struct device *)__mptr + 0xfffffffffffffff0UL; tmp = dev_get_drvdata((struct device const *)dev); data = (struct nct6775_data *)tmp; in = index / 5; } if ((((int )data->have_in >> in) & 1) == 0) { return (0U); } else { } return (attr->mode); } } static struct sensor_device_template sensor_dev_template_in_input = {{{"in%d_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_reg, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, {{0U, 0U}}, 1}; static struct sensor_device_template sensor_dev_template_in_alarm = {{{"in%d_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarm, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, {.index = 0}, 0}; static struct sensor_device_template sensor_dev_template_in_beep = {{{"in%d_beep", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_beep, & store_beep}, {.index = 0}, 0}; static struct sensor_device_template sensor_dev_template_in_min = {{{"in%d_min", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_reg, & store_in_reg}, {{0U, 1U}}, 1}; static struct sensor_device_template sensor_dev_template_in_max = {{{"in%d_max", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_reg, & store_in_reg}, {{0U, 2U}}, 1}; static struct sensor_device_template *nct6775_attributes_in_template[6U] = { & sensor_dev_template_in_input, & sensor_dev_template_in_alarm, & sensor_dev_template_in_beep, & sensor_dev_template_in_min, & sensor_dev_template_in_max, (struct sensor_device_template *)0}; static struct sensor_template_group nct6775_in_template_group = {(struct sensor_device_template **)(& nct6775_attributes_in_template), & nct6775_in_is_visible, 0}; static ssize_t show_fan(struct device *dev , struct device_attribute *attr , char *buf ) { struct nct6775_data *data ; struct nct6775_data *tmp ; struct sensor_device_attribute *sattr ; struct device_attribute const *__mptr ; int nr ; int tmp___0 ; { { tmp = nct6775_update_device(dev); data = tmp; __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute *)__mptr; nr = sattr->index; tmp___0 = sprintf(buf, "%d\n", data->rpm[nr]); } return ((ssize_t )tmp___0); } } static ssize_t show_fan_min(struct device *dev , struct device_attribute *attr , char *buf ) { struct nct6775_data *data ; struct nct6775_data *tmp ; struct sensor_device_attribute *sattr ; struct device_attribute const *__mptr ; int nr ; unsigned int tmp___0 ; int tmp___1 ; { { tmp = nct6775_update_device(dev); data = tmp; __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute *)__mptr; nr = sattr->index; tmp___0 = (*(data->fan_from_reg_min))((int )data->fan_min[nr], (unsigned int )data->fan_div[nr]); tmp___1 = sprintf(buf, "%d\n", tmp___0); } return ((ssize_t )tmp___1); } } static ssize_t show_fan_div(struct device *dev , struct device_attribute *attr , char *buf ) { struct nct6775_data *data ; struct nct6775_data *tmp ; struct sensor_device_attribute *sattr ; struct device_attribute const *__mptr ; int nr ; unsigned int tmp___0 ; int tmp___1 ; { { tmp = nct6775_update_device(dev); data = tmp; __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute *)__mptr; nr = sattr->index; tmp___0 = div_from_reg((int )data->fan_div[nr]); tmp___1 = sprintf(buf, "%u\n", tmp___0); } return ((ssize_t )tmp___1); } } static ssize_t store_fan_min(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct nct6775_data *data ; void *tmp ; struct sensor_device_attribute *sattr ; struct device_attribute const *__mptr ; int nr ; unsigned long val ; unsigned int reg ; u8 new_div ; int err ; unsigned int tmp___0 ; unsigned int tmp___1 ; struct _ddebug descriptor ; unsigned int tmp___2 ; unsigned int tmp___3 ; long tmp___4 ; { { tmp = dev_get_drvdata((struct device const *)dev); data = (struct nct6775_data *)tmp; __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute *)__mptr; nr = sattr->index; err = kstrtoul(buf, 10U, & val); } if (err < 0) { return ((ssize_t )err); } else { } { ldv_mutex_lock_104(& data->update_lock); } if (! data->has_fan_div) { if (val == 0UL) { val = 65311UL; } else { if (val > 1350000UL) { val = 135000UL; } else { } val = 1350000UL / val; val = (val & 31UL) | ((val << 3) & 65280UL); } data->fan_min[nr] = (u16 )val; goto write_min; } else { } if (val == 0UL) { { data->fan_min[nr] = 255U; new_div = data->fan_div[nr]; _dev_info((struct device const *)dev, "fan%u low limit and alarm disabled\n", nr + 1); } goto write_div; } else { } reg = (unsigned int )(1350000UL / val); if (reg > 32639U) { { data->fan_min[nr] = 254U; new_div = 7U; tmp___0 = (*(data->fan_from_reg_min))(254, 7U); dev_warn((struct device const *)dev, "fan%u low limit %lu below minimum %u, set to minimum\n", nr + 1, val, tmp___0); } } else if (reg == 0U) { { data->fan_min[nr] = 1U; new_div = 0U; tmp___1 = (*(data->fan_from_reg_min))(1, 0U); dev_warn((struct device const *)dev, "fan%u low limit %lu above maximum %u, set to maximum\n", nr + 1, val, tmp___1); } } else { new_div = 0U; goto ldv_30632; ldv_30631: reg = reg >> 1; new_div = (u8 )((int )new_div + 1); ldv_30632: ; if (reg > 192U && (unsigned int )new_div <= 6U) { goto ldv_30631; } else { } data->fan_min[nr] = (u16 )reg; } write_div: ; if ((int )new_div != (int )data->fan_div[nr]) { { descriptor.modname = "nct6775"; descriptor.function = "store_fan_min"; descriptor.filename = "drivers/hwmon/nct6775.c"; descriptor.format = "fan%u clock divider changed from %u to %u\n"; descriptor.lineno = 1847U; descriptor.flags = 1U; tmp___4 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___4 != 0L) { { tmp___2 = div_from_reg((int )new_div); tmp___3 = div_from_reg((int )data->fan_div[nr]); __dynamic_dev_dbg(& descriptor, (struct device const *)dev, "fan%u clock divider changed from %u to %u\n", nr + 1, tmp___3, tmp___2); } } else { } { data->fan_div[nr] = new_div; nct6775_write_fan_div_common(data, nr); data->last_updated = jiffies; } } else { } write_min: { nct6775_write_value(data, (int )*(data->REG_FAN_MIN + (unsigned long )nr), (int )data->fan_min[nr]); ldv_mutex_unlock_105(& data->update_lock); } return ((ssize_t )count); } } static ssize_t show_fan_pulses(struct device *dev , struct device_attribute *attr , char *buf ) { struct nct6775_data *data ; struct nct6775_data *tmp ; struct sensor_device_attribute *sattr ; struct device_attribute const *__mptr ; int p ; int tmp___0 ; { { tmp = nct6775_update_device(dev); data = tmp; __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute *)__mptr; p = (int )data->fan_pulses[sattr->index]; tmp___0 = sprintf(buf, "%d\n", p != 0 ? p != 0 : 4); } return ((ssize_t )tmp___0); } } static ssize_t store_fan_pulses(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct nct6775_data *data ; void *tmp ; struct sensor_device_attribute *sattr ; struct device_attribute const *__mptr ; int nr ; unsigned long val ; int err ; u8 reg ; u16 tmp___0 ; { { tmp = dev_get_drvdata((struct device const *)dev); data = (struct nct6775_data *)tmp; __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute *)__mptr; nr = sattr->index; err = kstrtoul(buf, 10U, & val); } if (err < 0) { return ((ssize_t )err); } else { } if (val > 4UL) { return (-22L); } else { } { ldv_mutex_lock_106(& data->update_lock); data->fan_pulses[nr] = (unsigned int )((u8 )val) & 3U; tmp___0 = nct6775_read_value(data, (int )*(data->REG_FAN_PULSES + (unsigned long )nr)); reg = (u8 )tmp___0; reg = (u8 )((int )((signed char )reg) & ~ ((int )((signed char )(3 << (int )*(data->FAN_PULSE_SHIFT + (unsigned long )nr))))); reg = (int )reg | (int )((u8 )((val & 3UL) << (int )*(data->FAN_PULSE_SHIFT + (unsigned long )nr))); nct6775_write_value(data, (int )*(data->REG_FAN_PULSES + (unsigned long )nr), (int )reg); ldv_mutex_unlock_107(& data->update_lock); } return ((ssize_t )count); } } static umode_t nct6775_fan_is_visible(struct kobject *kobj , struct attribute *attr , int index ) { struct device *dev ; struct kobject const *__mptr ; struct nct6775_data *data ; void *tmp ; int fan ; int nr ; { { __mptr = (struct kobject const *)kobj; dev = (struct device *)__mptr + 0xfffffffffffffff0UL; tmp = dev_get_drvdata((struct device const *)dev); data = (struct nct6775_data *)tmp; fan = index / 6; nr = index % 6; } if ((((int )data->has_fan >> fan) & 1) == 0) { return (0U); } else { } if (nr == 1 && (int )((signed char )*(data->ALARM_BITS + (unsigned long )(fan + 16))) == -1) { return (0U); } else { } if (nr == 2 && (int )((signed char )*(data->BEEP_BITS + (unsigned long )(fan + 16))) == -1) { return (0U); } else { } if (nr == 4 && (((int )data->has_fan_min >> fan) & 1) == 0) { return (0U); } else { } if (nr == 5 && (unsigned int )data->kind != 1U) { return (0U); } else { } return (attr->mode); } } static struct sensor_device_template sensor_dev_template_fan_input = {{{"fan%d_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_fan, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, {.index = 0}, 0}; static struct sensor_device_template sensor_dev_template_fan_alarm = {{{"fan%d_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarm, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, {.index = 16}, 0}; static struct sensor_device_template sensor_dev_template_fan_beep = {{{"fan%d_beep", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_beep, & store_beep}, {.index = 16}, 0}; static struct sensor_device_template sensor_dev_template_fan_pulses = {{{"fan%d_pulses", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_fan_pulses, & store_fan_pulses}, {.index = 0}, 0}; static struct sensor_device_template sensor_dev_template_fan_min = {{{"fan%d_min", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_fan_min, & store_fan_min}, {.index = 0}, 0}; static struct sensor_device_template sensor_dev_template_fan_div = {{{"fan%d_div", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_fan_div, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, {.index = 0}, 0}; static struct sensor_device_template *nct6775_attributes_fan_template[7U] = { & sensor_dev_template_fan_input, & sensor_dev_template_fan_alarm, & sensor_dev_template_fan_beep, & sensor_dev_template_fan_pulses, & sensor_dev_template_fan_min, & sensor_dev_template_fan_div, (struct sensor_device_template *)0}; static struct sensor_template_group nct6775_fan_template_group = {(struct sensor_device_template **)(& nct6775_attributes_fan_template), & nct6775_fan_is_visible, 1}; static ssize_t show_temp_label(struct device *dev , struct device_attribute *attr , char *buf ) { struct nct6775_data *data ; struct nct6775_data *tmp ; struct sensor_device_attribute *sattr ; struct device_attribute const *__mptr ; int nr ; int tmp___0 ; { { tmp = nct6775_update_device(dev); data = tmp; __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute *)__mptr; nr = sattr->index; tmp___0 = sprintf(buf, "%s\n", *(data->temp_label + (unsigned long )data->temp_src[nr])); } return ((ssize_t )tmp___0); } } static ssize_t show_temp(struct device *dev , struct device_attribute *attr , char *buf ) { struct nct6775_data *data ; struct nct6775_data *tmp ; struct sensor_device_attribute_2 *sattr ; struct device_attribute const *__mptr ; int nr ; int index ; int tmp___0 ; int tmp___1 ; { { tmp = nct6775_update_device(dev); data = tmp; __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute_2 *)__mptr; nr = (int )sattr->nr; index = (int )sattr->index; tmp___0 = LM75_TEMP_FROM_REG((int )((u16 )data->temp[index][nr])); tmp___1 = sprintf(buf, "%d\n", tmp___0); } return ((ssize_t )tmp___1); } } static ssize_t store_temp(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct nct6775_data *data ; void *tmp ; struct sensor_device_attribute_2 *sattr ; struct device_attribute const *__mptr ; int nr ; int index ; int err ; long val ; u16 tmp___0 ; { { tmp = dev_get_drvdata((struct device const *)dev); data = (struct nct6775_data *)tmp; __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute_2 *)__mptr; nr = (int )sattr->nr; index = (int )sattr->index; err = kstrtol(buf, 10U, & val); } if (err < 0) { return ((ssize_t )err); } else { } { ldv_mutex_lock_108(& data->update_lock); tmp___0 = LM75_TEMP_TO_REG(val); data->temp[index][nr] = (s16 )tmp___0; nct6775_write_temp(data, (int )data->reg_temp[index][nr], (int )((u16 )data->temp[index][nr])); ldv_mutex_unlock_109(& data->update_lock); } return ((ssize_t )count); } } static ssize_t show_temp_offset(struct device *dev , struct device_attribute *attr , char *buf ) { struct nct6775_data *data ; struct nct6775_data *tmp ; struct sensor_device_attribute *sattr ; struct device_attribute const *__mptr ; int tmp___0 ; { { tmp = nct6775_update_device(dev); data = tmp; __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute *)__mptr; tmp___0 = sprintf(buf, "%d\n", (int )data->temp_offset[sattr->index] * 1000); } return ((ssize_t )tmp___0); } } static ssize_t store_temp_offset(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct nct6775_data *data ; void *tmp ; struct sensor_device_attribute *sattr ; struct device_attribute const *__mptr ; int nr ; long val ; int err ; long __min1 ; long __max1 ; long __x ; int __d ; long __max2 ; long __min2 ; { { tmp = dev_get_drvdata((struct device const *)dev); data = (struct nct6775_data *)tmp; __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute *)__mptr; nr = sattr->index; err = kstrtol(buf, 10U, & val); } if (err < 0) { return ((ssize_t )err); } else { } { __x = val; __d = 1000; __max1 = __x > 0L ? (__x + (long )(__d / 2)) / (long )__d : (__x - (long )(__d / 2)) / (long )__d; __max2 = -128L; __min1 = __max1 > __max2 ? __max1 : __max2; __min2 = 127L; val = __min1 < __min2 ? __min1 : __min2; ldv_mutex_lock_110(& data->update_lock); data->temp_offset[nr] = (s8 )val; nct6775_write_value(data, (int )*(data->REG_TEMP_OFFSET + (unsigned long )nr), (int )((u16 )val)); ldv_mutex_unlock_111(& data->update_lock); } return ((ssize_t )count); } } static ssize_t show_temp_type(struct device *dev , struct device_attribute *attr , char *buf ) { struct nct6775_data *data ; struct nct6775_data *tmp ; struct sensor_device_attribute *sattr ; struct device_attribute const *__mptr ; int nr ; int tmp___0 ; { { tmp = nct6775_update_device(dev); data = tmp; __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute *)__mptr; nr = sattr->index; tmp___0 = sprintf(buf, "%d\n", (int )data->temp_type[nr]); } return ((ssize_t )tmp___0); } } static ssize_t store_temp_type(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct nct6775_data *data ; struct nct6775_data *tmp ; struct sensor_device_attribute *sattr ; struct device_attribute const *__mptr ; int nr ; unsigned long val ; int err ; u8 vbat ; u8 diode ; u8 vbit ; u8 dbit ; u16 tmp___0 ; u16 tmp___1 ; { { tmp = nct6775_update_device(dev); data = tmp; __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute *)__mptr; nr = sattr->index; err = kstrtoul(buf, 10U, & val); } if (err < 0) { return ((ssize_t )err); } else { } if ((val != 1UL && val != 3UL) && val != 4UL) { return (-22L); } else { } { ldv_mutex_lock_112(& data->update_lock); data->temp_type[nr] = (u8 )val; vbit = (u8 )(2 << nr); dbit = (u8 )((int )data->DIODE_MASK << nr); tmp___0 = nct6775_read_value(data, (int )data->REG_VBAT); vbat = (u8 )((int )((signed char )tmp___0) & ~ ((int )((signed char )vbit))); tmp___1 = nct6775_read_value(data, (int )data->REG_DIODE); diode = (u8 )((int )((signed char )tmp___1) & ~ ((int )((signed char )dbit))); } { if (val == 1UL) { goto case_1; } else { } if (val == 3UL) { goto case_3; } else { } if (val == 4UL) { goto case_4; } else { } goto switch_break; case_1: /* CIL Label */ vbat = (u8 )((int )vbat | (int )vbit); diode = (u8 )((int )diode | (int )dbit); goto ldv_30785; case_3: /* CIL Label */ vbat = (u8 )((int )vbat | (int )dbit); goto ldv_30785; case_4: /* CIL Label */ ; goto ldv_30785; switch_break: /* CIL Label */ ; } ldv_30785: { nct6775_write_value(data, (int )data->REG_VBAT, (int )vbat); nct6775_write_value(data, (int )data->REG_DIODE, (int )diode); ldv_mutex_unlock_113(& data->update_lock); } return ((ssize_t )count); } } static umode_t nct6775_temp_is_visible(struct kobject *kobj , struct attribute *attr , int index ) { struct device *dev ; struct kobject const *__mptr ; struct nct6775_data *data ; void *tmp ; int temp ; int nr ; int tmp___0 ; int tmp___1 ; { { __mptr = (struct kobject const *)kobj; dev = (struct device *)__mptr + 0xfffffffffffffff0UL; tmp = dev_get_drvdata((struct device const *)dev); data = (struct nct6775_data *)tmp; temp = index / 10; nr = index % 10; } if ((((int )data->have_temp >> temp) & 1) == 0) { return (0U); } else { } if (nr == 2) { { tmp___0 = find_temp_source(data, temp, (int )data->num_temp_alarms); } if (tmp___0 < 0) { return (0U); } else { } } else { } if (nr == 3) { { tmp___1 = find_temp_source(data, temp, (int )data->num_temp_beeps); } if (tmp___1 < 0) { return (0U); } else { } } else { } if (nr == 4 && (unsigned int )data->reg_temp[1][temp] == 0U) { return (0U); } else { } if (nr == 5 && (unsigned int )data->reg_temp[2][temp] == 0U) { return (0U); } else { } if (nr == 6 && (unsigned int )data->reg_temp[3][temp] == 0U) { return (0U); } else { } if (nr == 7 && (unsigned int )data->reg_temp[4][temp] == 0U) { return (0U); } else { } if (nr > 7 && (((int )data->have_temp_fixed >> temp) & 1) == 0) { return (0U); } else { } return (attr->mode); } } static struct sensor_device_template sensor_dev_template_temp_input = {{{"temp%d_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_temp, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, {{0U, 0U}}, 1}; static struct sensor_device_template sensor_dev_template_temp_label = {{{"temp%d_label", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_temp_label, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, {.index = 0}, 0}; static struct sensor_device_template sensor_dev_template_temp_max = {{{"temp%d_max", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_temp, & store_temp}, {{0U, 1U}}, 1}; static struct sensor_device_template sensor_dev_template_temp_max_hyst = {{{"temp%d_max_hyst", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_temp, & store_temp}, {{0U, 2U}}, 1}; static struct sensor_device_template sensor_dev_template_temp_crit = {{{"temp%d_crit", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_temp, & store_temp}, {{0U, 3U}}, 1}; static struct sensor_device_template sensor_dev_template_temp_lcrit = {{{"temp%d_lcrit", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_temp, & store_temp}, {{0U, 4U}}, 1}; static struct sensor_device_template sensor_dev_template_temp_offset = {{{"temp%d_offset", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_temp_offset, & store_temp_offset}, {.index = 0}, 0}; static struct sensor_device_template sensor_dev_template_temp_type = {{{"temp%d_type", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_temp_type, & store_temp_type}, {.index = 0}, 0}; static struct sensor_device_template sensor_dev_template_temp_alarm = {{{"temp%d_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_temp_alarm, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, {.index = 0}, 0}; static struct sensor_device_template sensor_dev_template_temp_beep = {{{"temp%d_beep", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_temp_beep, & store_temp_beep}, {.index = 0}, 0}; static struct sensor_device_template *nct6775_attributes_temp_template[11U] = { & sensor_dev_template_temp_input, & sensor_dev_template_temp_label, & sensor_dev_template_temp_alarm, & sensor_dev_template_temp_beep, & sensor_dev_template_temp_max, & sensor_dev_template_temp_max_hyst, & sensor_dev_template_temp_crit, & sensor_dev_template_temp_lcrit, & sensor_dev_template_temp_offset, & sensor_dev_template_temp_type, (struct sensor_device_template *)0}; static struct sensor_template_group nct6775_temp_template_group = {(struct sensor_device_template **)(& nct6775_attributes_temp_template), & nct6775_temp_is_visible, 1}; static ssize_t show_pwm_mode(struct device *dev , struct device_attribute *attr , char *buf ) { struct nct6775_data *data ; struct nct6775_data *tmp ; struct sensor_device_attribute *sattr ; struct device_attribute const *__mptr ; int tmp___0 ; { { tmp = nct6775_update_device(dev); data = tmp; __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute *)__mptr; tmp___0 = sprintf(buf, "%d\n", (unsigned int )data->pwm_mode[sattr->index] == 0U); } return ((ssize_t )tmp___0); } } static ssize_t store_pwm_mode(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct nct6775_data *data ; void *tmp ; struct sensor_device_attribute *sattr ; struct device_attribute const *__mptr ; int nr ; unsigned long val ; int err ; u8 reg ; u16 tmp___0 ; { { tmp = dev_get_drvdata((struct device const *)dev); data = (struct nct6775_data *)tmp; __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute *)__mptr; nr = sattr->index; err = kstrtoul(buf, 10U, & val); } if (err < 0) { return ((ssize_t )err); } else { } if (val > 1UL) { return (-22L); } else { } if ((unsigned int )((unsigned char )*(data->REG_PWM_MODE + (unsigned long )nr)) == 0U) { if (val != 0UL) { return (-22L); } else { } return ((ssize_t )count); } else { } { ldv_mutex_lock_114(& data->update_lock); data->pwm_mode[nr] = (u8 )val; tmp___0 = nct6775_read_value(data, (int )*(data->REG_PWM_MODE + (unsigned long )nr)); reg = (u8 )tmp___0; reg = (u8 )((int )((signed char )reg) & ~ ((int )((signed char )*(data->PWM_MODE_MASK + (unsigned long )nr)))); } if (val != 0UL) { reg = (u8 )((int )reg | (int )((unsigned char )*(data->PWM_MODE_MASK + (unsigned long )nr))); } else { } { nct6775_write_value(data, (int )*(data->REG_PWM_MODE + (unsigned long )nr), (int )reg); ldv_mutex_unlock_115(& data->update_lock); } return ((ssize_t )count); } } static ssize_t show_pwm(struct device *dev , struct device_attribute *attr , char *buf ) { struct nct6775_data *data ; struct nct6775_data *tmp ; struct sensor_device_attribute_2 *sattr ; struct device_attribute const *__mptr ; int nr ; int index ; int pwm ; u16 tmp___0 ; int tmp___1 ; { { tmp = nct6775_update_device(dev); data = tmp; __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute_2 *)__mptr; nr = (int )sattr->nr; index = (int )sattr->index; } if (index == 0 && (unsigned int )data->pwm_enable[nr] > 1U) { { tmp___0 = nct6775_read_value(data, (int )*(data->REG_PWM_READ + (unsigned long )nr)); pwm = (int )tmp___0; } } else { pwm = (int )data->pwm[index][nr]; } { tmp___1 = sprintf(buf, "%d\n", pwm); } return ((ssize_t )tmp___1); } } static ssize_t store_pwm(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct nct6775_data *data ; void *tmp ; struct sensor_device_attribute_2 *sattr ; struct device_attribute const *__mptr ; int nr ; int index ; unsigned long val ; int minval[7U] ; int maxval[7U] ; int err ; u8 reg ; unsigned long __min1 ; unsigned long __max1 ; unsigned long __max2 ; unsigned long __min2 ; u16 tmp___0 ; { { tmp = dev_get_drvdata((struct device const *)dev); data = (struct nct6775_data *)tmp; __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute_2 *)__mptr; nr = (int )sattr->nr; index = (int )sattr->index; minval[0] = 0; minval[1] = 1; minval[2] = 1; minval[3] = (int )data->pwm[2][nr]; minval[4] = 0; minval[5] = 0; minval[6] = 0; maxval[0] = 255; maxval[1] = 255; maxval[2] = (int )data->pwm[3][nr] != 0 ? (int )data->pwm[3][nr] != 0 : 255; maxval[3] = 255; maxval[4] = 255; maxval[5] = 255; maxval[6] = 255; err = kstrtoul(buf, 10U, & val); } if (err < 0) { return ((ssize_t )err); } else { } { __max1 = val; __max2 = (unsigned long )minval[index]; __min1 = __max1 > __max2 ? __max1 : __max2; __min2 = (unsigned long )maxval[index]; val = __min1 < __min2 ? __min1 : __min2; ldv_mutex_lock_116(& data->update_lock); data->pwm[index][nr] = (u8 )val; nct6775_write_value(data, (int )*(data->REG_PWM[index] + (unsigned long )nr), (int )((u16 )val)); } if (index == 2) { { tmp___0 = nct6775_read_value(data, (int )*(data->REG_TEMP_SEL + (unsigned long )nr)); reg = (u8 )tmp___0; reg = (unsigned int )reg & 127U; } if (val != 0UL) { reg = (u8 )((unsigned int )reg | 128U); } else { } { nct6775_write_value(data, (int )*(data->REG_TEMP_SEL + (unsigned long )nr), (int )reg); } } else { } { ldv_mutex_unlock_117(& data->update_lock); } return ((ssize_t )count); } } static int check_trip_points(struct nct6775_data *data , int nr ) { int i ; { i = 0; goto ldv_30875; ldv_30874: ; if ((int )data->auto_temp[nr][i] > (int )data->auto_temp[nr][i + 1]) { return (-22); } else { } i = i + 1; ldv_30875: ; if (i < data->auto_pwm_num + -1) { goto ldv_30874; } else { } i = 0; goto ldv_30878; ldv_30877: ; if ((int )data->auto_pwm[nr][i] > (int )data->auto_pwm[nr][i + 1]) { return (-22); } else { } i = i + 1; ldv_30878: ; if (i < data->auto_pwm_num + -1) { goto ldv_30877; } else { } if ((unsigned int )data->auto_pwm[nr][data->auto_pwm_num] != 0U) { if ((int )data->auto_temp[nr][data->auto_pwm_num + -1] > (int )data->auto_temp[nr][data->auto_pwm_num] || (int )data->auto_pwm[nr][data->auto_pwm_num + -1] > (int )data->auto_pwm[nr][data->auto_pwm_num]) { return (-22); } else { } } else { } return (0); } } static void pwm_update_registers(struct nct6775_data *data , int nr ) { u8 reg ; u16 tmp ; u16 tmp___0 ; { { if ((unsigned int )data->pwm_enable[nr] == 0U) { goto case_0; } else { } if ((unsigned int )data->pwm_enable[nr] == 1U) { goto case_1; } else { } if ((unsigned int )data->pwm_enable[nr] == 3U) { goto case_3; } else { } if ((unsigned int )data->pwm_enable[nr] == 2U) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; case_1: /* CIL Label */ ; goto ldv_30887; case_3: /* CIL Label */ { tmp = nct6775_read_value(data, (int )*(data->REG_FAN_MODE + (unsigned long )nr)); reg = (u8 )tmp; reg = (int )((u8 )((int )((signed char )reg) & ~ ((int )((signed char )data->tolerance_mask)))) | ((int )((u8 )data->target_speed_tolerance[nr]) & (int )data->tolerance_mask); nct6775_write_value(data, (int )*(data->REG_FAN_MODE + (unsigned long )nr), (int )reg); nct6775_write_value(data, (int )*(data->REG_TARGET + (unsigned long )nr), (int )((u16 )data->target_speed[nr]) & 255); } if ((unsigned long )data->REG_TOLERANCE_H != (unsigned long )((u16 const *)0U)) { { reg = (unsigned int )((u8 )(data->target_speed[nr] >> 8)) & 15U; reg = (unsigned int )reg | (((unsigned int )((u8 )data->target_speed_tolerance[nr]) & 56U) << 1U); nct6775_write_value(data, (int )*(data->REG_TOLERANCE_H + (unsigned long )nr), (int )reg); } } else { } goto ldv_30887; case_2: /* CIL Label */ { nct6775_write_value(data, (int )*(data->REG_TARGET + (unsigned long )nr), (int )data->target_temp[nr]); } switch_default: /* CIL Label */ { tmp___0 = nct6775_read_value(data, (int )*(data->REG_FAN_MODE + (unsigned long )nr)); reg = (u8 )tmp___0; reg = (u8 )(((int )((signed char )reg) & ~ ((int )((signed char )data->tolerance_mask))) | (int )((signed char )data->temp_tolerance[0][nr])); nct6775_write_value(data, (int )*(data->REG_FAN_MODE + (unsigned long )nr), (int )reg); } goto ldv_30887; switch_break: /* CIL Label */ ; } ldv_30887: ; return; } } static ssize_t show_pwm_enable(struct device *dev , struct device_attribute *attr , char *buf ) { struct nct6775_data *data ; struct nct6775_data *tmp ; struct sensor_device_attribute *sattr ; struct device_attribute const *__mptr ; int tmp___0 ; { { tmp = nct6775_update_device(dev); data = tmp; __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute *)__mptr; tmp___0 = sprintf(buf, "%d\n", (unsigned int )data->pwm_enable[sattr->index]); } return ((ssize_t )tmp___0); } } static ssize_t store_pwm_enable(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct nct6775_data *data ; void *tmp ; struct sensor_device_attribute *sattr ; struct device_attribute const *__mptr ; int nr ; unsigned long val ; int err ; u16 reg ; int tmp___0 ; int tmp___1 ; { { tmp = dev_get_drvdata((struct device const *)dev); data = (struct nct6775_data *)tmp; __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute *)__mptr; nr = sattr->index; err = kstrtoul(buf, 10U, & val); } if (err < 0) { return ((ssize_t )err); } else { } if (val > 5UL) { return (-22L); } else { } if (val == 4UL && (unsigned int )data->kind != 1U) { return (-22L); } else { } if (val == 5UL) { { tmp___0 = check_trip_points(data, nr); } if (tmp___0 != 0) { { dev_err((struct device const *)dev, "Inconsistent trip points, not switching to SmartFan IV mode\n"); dev_err((struct device const *)dev, "Adjust trip points and try again\n"); } return (-22L); } else { } } else { } { ldv_mutex_lock_118(& data->update_lock); data->pwm_enable[nr] = (enum pwm_enable )val; } if (val == 0UL) { { data->pwm[0][nr] = 255U; nct6775_write_value(data, (int )*(data->REG_PWM[0] + (unsigned long )nr), 255); } } else { } { pwm_update_registers(data, nr); reg = nct6775_read_value(data, (int )*(data->REG_FAN_MODE + (unsigned long )nr)); reg = (unsigned int )reg & 15U; tmp___1 = pwm_enable_to_reg((enum pwm_enable )val); reg = (u16 )((int )((short )reg) | (int )((short )(tmp___1 << 4))); nct6775_write_value(data, (int )*(data->REG_FAN_MODE + (unsigned long )nr), (int )reg); ldv_mutex_unlock_119(& data->update_lock); } return ((ssize_t )count); } } static ssize_t show_pwm_temp_sel_common(struct nct6775_data *data , char *buf , int src ) { int i ; int sel ; int tmp ; { sel = 0; i = 0; goto ldv_30924; ldv_30923: ; if ((((int )data->have_temp >> i) & 1) == 0) { goto ldv_30921; } else { } if (src == (int )data->temp_src[i]) { sel = i + 1; goto ldv_30922; } else { } ldv_30921: i = i + 1; ldv_30924: ; if (i <= 9) { goto ldv_30923; } else { } ldv_30922: { tmp = sprintf(buf, "%d\n", sel); } return ((ssize_t )tmp); } } static ssize_t show_pwm_temp_sel(struct device *dev , struct device_attribute *attr , char *buf ) { struct nct6775_data *data ; struct nct6775_data *tmp ; struct sensor_device_attribute *sattr ; struct device_attribute const *__mptr ; int index ; ssize_t tmp___0 ; { { tmp = nct6775_update_device(dev); data = tmp; __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute *)__mptr; index = sattr->index; tmp___0 = show_pwm_temp_sel_common(data, buf, (int )data->pwm_temp_sel[index]); } return (tmp___0); } } static ssize_t store_pwm_temp_sel(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct nct6775_data *data ; struct nct6775_data *tmp ; struct sensor_device_attribute *sattr ; struct device_attribute const *__mptr ; int nr ; unsigned long val ; int err ; int reg ; int src ; u16 tmp___0 ; { { tmp = nct6775_update_device(dev); data = tmp; __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute *)__mptr; nr = sattr->index; err = kstrtoul(buf, 10U, & val); } if (err < 0) { return ((ssize_t )err); } else { } if (val - 1UL > 9UL) { return (-22L); } else { } if ((((int )data->have_temp >> (int )((unsigned int )val - 1U)) & 1) == 0 || (unsigned int )data->temp_src[val - 1UL] == 0U) { return (-22L); } else { } { ldv_mutex_lock_120(& data->update_lock); src = (int )data->temp_src[val - 1UL]; data->pwm_temp_sel[nr] = (u8 )src; tmp___0 = nct6775_read_value(data, (int )*(data->REG_TEMP_SEL + (unsigned long )nr)); reg = (int )tmp___0; reg = reg & 224; reg = reg | src; nct6775_write_value(data, (int )*(data->REG_TEMP_SEL + (unsigned long )nr), (int )((u16 )reg)); ldv_mutex_unlock_121(& data->update_lock); } return ((ssize_t )count); } } static ssize_t show_pwm_weight_temp_sel(struct device *dev , struct device_attribute *attr , char *buf ) { struct nct6775_data *data ; struct nct6775_data *tmp ; struct sensor_device_attribute *sattr ; struct device_attribute const *__mptr ; int index ; ssize_t tmp___0 ; { { tmp = nct6775_update_device(dev); data = tmp; __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute *)__mptr; index = sattr->index; tmp___0 = show_pwm_temp_sel_common(data, buf, (int )data->pwm_weight_temp_sel[index]); } return (tmp___0); } } static ssize_t store_pwm_weight_temp_sel(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct nct6775_data *data ; struct nct6775_data *tmp ; struct sensor_device_attribute *sattr ; struct device_attribute const *__mptr ; int nr ; unsigned long val ; int err ; int reg ; int src ; u16 tmp___0 ; u16 tmp___1 ; { { tmp = nct6775_update_device(dev); data = tmp; __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute *)__mptr; nr = sattr->index; err = kstrtoul(buf, 10U, & val); } if (err < 0) { return ((ssize_t )err); } else { } if (val > 10UL) { return (-22L); } else { } if (val != 0UL && ((((int )data->have_temp >> (int )((unsigned int )val - 1U)) & 1) == 0 || (unsigned int )data->temp_src[val - 1UL] == 0U)) { return (-22L); } else { } { ldv_mutex_lock_122(& data->update_lock); } if (val != 0UL) { { src = (int )data->temp_src[val - 1UL]; data->pwm_weight_temp_sel[nr] = (u8 )src; tmp___0 = nct6775_read_value(data, (int )*(data->REG_WEIGHT_TEMP_SEL + (unsigned long )nr)); reg = (int )tmp___0; reg = reg & 224; reg = reg | (src | 128); nct6775_write_value(data, (int )*(data->REG_WEIGHT_TEMP_SEL + (unsigned long )nr), (int )((u16 )reg)); } } else { { data->pwm_weight_temp_sel[nr] = 0U; tmp___1 = nct6775_read_value(data, (int )*(data->REG_WEIGHT_TEMP_SEL + (unsigned long )nr)); reg = (int )tmp___1; reg = reg & 127; nct6775_write_value(data, (int )*(data->REG_WEIGHT_TEMP_SEL + (unsigned long )nr), (int )((u16 )reg)); } } { ldv_mutex_unlock_123(& data->update_lock); } return ((ssize_t )count); } } static ssize_t show_target_temp(struct device *dev , struct device_attribute *attr , char *buf ) { struct nct6775_data *data ; struct nct6775_data *tmp ; struct sensor_device_attribute *sattr ; struct device_attribute const *__mptr ; int tmp___0 ; { { tmp = nct6775_update_device(dev); data = tmp; __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute *)__mptr; tmp___0 = sprintf(buf, "%d\n", (int )data->target_temp[sattr->index] * 1000); } return ((ssize_t )tmp___0); } } static ssize_t store_target_temp(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct nct6775_data *data ; void *tmp ; struct sensor_device_attribute *sattr ; struct device_attribute const *__mptr ; int nr ; unsigned long val ; int err ; unsigned long __min1 ; unsigned long __max1 ; unsigned long __x ; int __d ; unsigned long __max2 ; unsigned long __min2 ; { { tmp = dev_get_drvdata((struct device const *)dev); data = (struct nct6775_data *)tmp; __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute *)__mptr; nr = sattr->index; err = kstrtoul(buf, 10U, & val); } if (err < 0) { return ((ssize_t )err); } else { } { __x = val; __d = 1000; __max1 = (__x + (unsigned long )(__d / 2)) / (unsigned long )__d; __max2 = 0UL; __min1 = __max1 > __max2 ? __max1 : __max2; __min2 = (unsigned long )data->target_temp_mask; val = __min1 < __min2 ? __min1 : __min2; ldv_mutex_lock_124(& data->update_lock); data->target_temp[nr] = (u8 )val; pwm_update_registers(data, nr); ldv_mutex_unlock_125(& data->update_lock); } return ((ssize_t )count); } } static ssize_t show_target_speed(struct device *dev , struct device_attribute *attr , char *buf ) { struct nct6775_data *data ; struct nct6775_data *tmp ; struct sensor_device_attribute *sattr ; struct device_attribute const *__mptr ; int nr ; unsigned int tmp___0 ; int tmp___1 ; { { tmp = nct6775_update_device(dev); data = tmp; __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute *)__mptr; nr = sattr->index; tmp___0 = fan_from_reg16((int )((u16 )data->target_speed[nr]), (unsigned int )data->fan_div[nr]); tmp___1 = sprintf(buf, "%d\n", tmp___0); } return ((ssize_t )tmp___1); } } static ssize_t store_target_speed(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct nct6775_data *data ; void *tmp ; struct sensor_device_attribute *sattr ; struct device_attribute const *__mptr ; int nr ; unsigned long val ; int err ; u16 speed ; unsigned long __min1 ; unsigned long __max1 ; unsigned long __max2 ; unsigned long __min2 ; { { tmp = dev_get_drvdata((struct device const *)dev); data = (struct nct6775_data *)tmp; __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute *)__mptr; nr = sattr->index; err = kstrtoul(buf, 10U, & val); } if (err < 0) { return ((ssize_t )err); } else { } { __max1 = val; __max2 = 0UL; __min1 = __max1 > __max2 ? __max1 : __max2; __min2 = 1350000UL; val = __min1 < __min2 ? __min1 : __min2; speed = fan_to_reg((u32 )val, (unsigned int )data->fan_div[nr]); ldv_mutex_lock_126(& data->update_lock); data->target_speed[nr] = (u32 )speed; pwm_update_registers(data, nr); ldv_mutex_unlock_127(& data->update_lock); } return ((ssize_t )count); } } static ssize_t show_temp_tolerance(struct device *dev , struct device_attribute *attr , char *buf ) { struct nct6775_data *data ; struct nct6775_data *tmp ; struct sensor_device_attribute_2 *sattr ; struct device_attribute const *__mptr ; int nr ; int index ; int tmp___0 ; { { tmp = nct6775_update_device(dev); data = tmp; __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute_2 *)__mptr; nr = (int )sattr->nr; index = (int )sattr->index; tmp___0 = sprintf(buf, "%d\n", (int )data->temp_tolerance[index][nr] * 1000); } return ((ssize_t )tmp___0); } } static ssize_t store_temp_tolerance(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct nct6775_data *data ; void *tmp ; struct sensor_device_attribute_2 *sattr ; struct device_attribute const *__mptr ; int nr ; int index ; unsigned long val ; int err ; unsigned long __min1 ; unsigned long __max1 ; unsigned long __x ; int __d ; unsigned long __max2 ; unsigned long __min2 ; { { tmp = dev_get_drvdata((struct device const *)dev); data = (struct nct6775_data *)tmp; __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute_2 *)__mptr; nr = (int )sattr->nr; index = (int )sattr->index; err = kstrtoul(buf, 10U, & val); } if (err < 0) { return ((ssize_t )err); } else { } { __x = val; __d = 1000; __max1 = (__x + (unsigned long )(__d / 2)) / (unsigned long )__d; __max2 = 0UL; __min1 = __max1 > __max2 ? __max1 : __max2; __min2 = (unsigned long )data->tolerance_mask; val = __min1 < __min2 ? __min1 : __min2; ldv_mutex_lock_128(& data->update_lock); data->temp_tolerance[index][nr] = (u8 )val; } if (index != 0) { { pwm_update_registers(data, nr); } } else { { nct6775_write_value(data, (int )*(data->REG_CRITICAL_TEMP_TOLERANCE + (unsigned long )nr), (int )((u16 )val)); } } { ldv_mutex_unlock_129(& data->update_lock); } return ((ssize_t )count); } } static ssize_t show_speed_tolerance(struct device *dev , struct device_attribute *attr , char *buf ) { struct nct6775_data *data ; struct nct6775_data *tmp ; struct sensor_device_attribute *sattr ; struct device_attribute const *__mptr ; int nr ; int low ; int high ; int tolerance ; unsigned int tmp___0 ; unsigned int tmp___1 ; int tmp___2 ; { { tmp = nct6775_update_device(dev); data = tmp; __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute *)__mptr; nr = sattr->index; low = (int )(data->target_speed[nr] - data->target_speed_tolerance[nr]); high = (int )(data->target_speed[nr] + data->target_speed_tolerance[nr]); } if (low <= 0) { low = 1; } else { } if (high > 65535) { high = 65535; } else { } if (high < low) { high = low; } else { } { tmp___0 = fan_from_reg16((int )((u16 )low), (unsigned int )data->fan_div[nr]); tmp___1 = fan_from_reg16((int )((u16 )high), (unsigned int )data->fan_div[nr]); tolerance = (int )((tmp___0 - tmp___1) / 2U); tmp___2 = sprintf(buf, "%d\n", tolerance); } return ((ssize_t )tmp___2); } } static ssize_t store_speed_tolerance(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct nct6775_data *data ; void *tmp ; struct sensor_device_attribute *sattr ; struct device_attribute const *__mptr ; int nr ; unsigned long val ; int err ; int low ; int high ; unsigned int tmp___0 ; unsigned int tmp___1 ; u16 tmp___2 ; u16 tmp___3 ; unsigned long __min1 ; unsigned long __max1 ; unsigned long __max2 ; unsigned long __min2 ; { { tmp = dev_get_drvdata((struct device const *)dev); data = (struct nct6775_data *)tmp; __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute *)__mptr; nr = sattr->index; err = kstrtoul(buf, 10U, & val); } if (err < 0) { return ((ssize_t )err); } else { } { tmp___0 = fan_from_reg16((int )((u16 )data->target_speed[nr]), (unsigned int )data->fan_div[nr]); high = (int )(tmp___0 + (unsigned int )val); tmp___1 = fan_from_reg16((int )((u16 )data->target_speed[nr]), (unsigned int )data->fan_div[nr]); low = (int )(tmp___1 - (unsigned int )val); } if (low <= 0) { low = 1; } else { } if (high < low) { high = low; } else { } { tmp___2 = fan_to_reg((u32 )low, (unsigned int )data->fan_div[nr]); tmp___3 = fan_to_reg((u32 )high, (unsigned int )data->fan_div[nr]); val = (unsigned long )(((int )tmp___2 - (int )tmp___3) / 2); __max1 = val; __max2 = 0UL; __min1 = __max1 > __max2 ? __max1 : __max2; __min2 = (unsigned long )data->speed_tolerance_limit; val = __min1 < __min2 ? __min1 : __min2; ldv_mutex_lock_130(& data->update_lock); data->target_speed_tolerance[nr] = (u32 )val; pwm_update_registers(data, nr); ldv_mutex_unlock_131(& data->update_lock); } return ((ssize_t )count); } } static struct sensor_device_template sensor_dev_template_pwm = {{{"pwm%d", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_pwm, & store_pwm}, {{0U, 0U}}, 1}; static struct sensor_device_template sensor_dev_template_pwm_mode = {{{"pwm%d_mode", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_pwm_mode, & store_pwm_mode}, {.index = 0}, 0}; static struct sensor_device_template sensor_dev_template_pwm_enable = {{{"pwm%d_enable", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_pwm_enable, & store_pwm_enable}, {.index = 0}, 0}; static struct sensor_device_template sensor_dev_template_pwm_temp_sel = {{{"pwm%d_temp_sel", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_pwm_temp_sel, & store_pwm_temp_sel}, {.index = 0}, 0}; static struct sensor_device_template sensor_dev_template_pwm_target_temp = {{{"pwm%d_target_temp", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_target_temp, & store_target_temp}, {.index = 0}, 0}; static struct sensor_device_template sensor_dev_template_fan_target = {{{"fan%d_target", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_target_speed, & store_target_speed}, {.index = 0}, 0}; static struct sensor_device_template sensor_dev_template_fan_tolerance = {{{"fan%d_tolerance", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_speed_tolerance, & store_speed_tolerance}, {.index = 0}, 0}; static ssize_t show_weight_temp(struct device *dev , struct device_attribute *attr , char *buf ) { struct nct6775_data *data ; struct nct6775_data *tmp ; struct sensor_device_attribute_2 *sattr ; struct device_attribute const *__mptr ; int nr ; int index ; int tmp___0 ; { { tmp = nct6775_update_device(dev); data = tmp; __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute_2 *)__mptr; nr = (int )sattr->nr; index = (int )sattr->index; tmp___0 = sprintf(buf, "%d\n", (int )data->weight_temp[index][nr] * 1000); } return ((ssize_t )tmp___0); } } static ssize_t store_weight_temp(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct nct6775_data *data ; void *tmp ; struct sensor_device_attribute_2 *sattr ; struct device_attribute const *__mptr ; int nr ; int index ; unsigned long val ; int err ; unsigned long __min1 ; unsigned long __max1 ; unsigned long __x ; int __d ; unsigned long __max2 ; unsigned long __min2 ; { { tmp = dev_get_drvdata((struct device const *)dev); data = (struct nct6775_data *)tmp; __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute_2 *)__mptr; nr = (int )sattr->nr; index = (int )sattr->index; err = kstrtoul(buf, 10U, & val); } if (err < 0) { return ((ssize_t )err); } else { } { __x = val; __d = 1000; __max1 = (__x + (unsigned long )(__d / 2)) / (unsigned long )__d; __max2 = 0UL; __min1 = __max1 > __max2 ? __max1 : __max2; __min2 = 255UL; val = __min1 < __min2 ? __min1 : __min2; ldv_mutex_lock_132(& data->update_lock); data->weight_temp[index][nr] = (u8 )val; nct6775_write_value(data, (int )*(data->REG_WEIGHT_TEMP[index] + (unsigned long )nr), (int )((u16 )val)); ldv_mutex_unlock_133(& data->update_lock); } return ((ssize_t )count); } } static struct sensor_device_template sensor_dev_template_pwm_weight_temp_sel = {{{"pwm%d_weight_temp_sel", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_pwm_weight_temp_sel, & store_pwm_weight_temp_sel}, {.index = 0}, 0}; static struct sensor_device_template sensor_dev_template_pwm_weight_temp_step = {{{"pwm%d_weight_temp_step", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_weight_temp, & store_weight_temp}, {{0U, 0U}}, 1}; static struct sensor_device_template sensor_dev_template_pwm_weight_temp_step_tol = {{{"pwm%d_weight_temp_step_tol", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_weight_temp, & store_weight_temp}, {{0U, 1U}}, 1}; static struct sensor_device_template sensor_dev_template_pwm_weight_temp_step_base = {{{"pwm%d_weight_temp_step_base", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_weight_temp, & store_weight_temp}, {{0U, 2U}}, 1}; static struct sensor_device_template sensor_dev_template_pwm_weight_duty_step = {{{"pwm%d_weight_duty_step", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_pwm, & store_pwm}, {{0U, 5U}}, 1}; static struct sensor_device_template sensor_dev_template_pwm_weight_duty_base = {{{"pwm%d_weight_duty_base", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_pwm, & store_pwm}, {{0U, 6U}}, 1}; static ssize_t show_fan_time(struct device *dev , struct device_attribute *attr , char *buf ) { struct nct6775_data *data ; struct nct6775_data *tmp ; struct sensor_device_attribute_2 *sattr ; struct device_attribute const *__mptr ; int nr ; int index ; unsigned int tmp___0 ; int tmp___1 ; { { tmp = nct6775_update_device(dev); data = tmp; __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute_2 *)__mptr; nr = (int )sattr->nr; index = (int )sattr->index; tmp___0 = step_time_from_reg((int )data->fan_time[index][nr], (int )data->pwm_mode[nr]); tmp___1 = sprintf(buf, "%d\n", tmp___0); } return ((ssize_t )tmp___1); } } static ssize_t store_fan_time(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct nct6775_data *data ; void *tmp ; struct sensor_device_attribute_2 *sattr ; struct device_attribute const *__mptr ; int nr ; int index ; unsigned long val ; int err ; u8 tmp___0 ; { { tmp = dev_get_drvdata((struct device const *)dev); data = (struct nct6775_data *)tmp; __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute_2 *)__mptr; nr = (int )sattr->nr; index = (int )sattr->index; err = kstrtoul(buf, 10U, & val); } if (err < 0) { return ((ssize_t )err); } else { } { tmp___0 = step_time_to_reg((unsigned int )val, (int )data->pwm_mode[nr]); val = (unsigned long )tmp___0; ldv_mutex_lock_134(& data->update_lock); data->fan_time[index][nr] = (u8 )val; nct6775_write_value(data, (int )*(data->REG_FAN_TIME[index] + (unsigned long )nr), (int )((u16 )val)); ldv_mutex_unlock_135(& data->update_lock); } return ((ssize_t )count); } } static ssize_t show_auto_pwm(struct device *dev , struct device_attribute *attr , char *buf ) { struct nct6775_data *data ; struct nct6775_data *tmp ; struct sensor_device_attribute_2 *sattr ; struct device_attribute const *__mptr ; int tmp___0 ; { { tmp = nct6775_update_device(dev); data = tmp; __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute_2 *)__mptr; tmp___0 = sprintf(buf, "%d\n", (int )data->auto_pwm[(int )sattr->nr][(int )sattr->index]); } return ((ssize_t )tmp___0); } } static ssize_t store_auto_pwm(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct nct6775_data *data ; void *tmp ; struct sensor_device_attribute_2 *sattr ; struct device_attribute const *__mptr ; int nr ; int point ; unsigned long val ; int err ; u8 reg ; u16 tmp___0 ; u16 tmp___1 ; { { tmp = dev_get_drvdata((struct device const *)dev); data = (struct nct6775_data *)tmp; __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute_2 *)__mptr; nr = (int )sattr->nr; point = (int )sattr->index; err = kstrtoul(buf, 10U, & val); } if (err < 0) { return ((ssize_t )err); } else { } if (val > 255UL) { return (-22L); } else { } if (point == data->auto_pwm_num) { if ((unsigned int )data->kind != 1U && val == 0UL) { return (-22L); } else { } if ((unsigned int )data->kind != 3U && val != 0UL) { val = 255UL; } else { } } else { } { ldv_mutex_lock_136(& data->update_lock); data->auto_pwm[nr][point] = (u8 )val; } if (point < data->auto_pwm_num) { { nct6775_write_value(data, (int )((u16 )*(data->REG_AUTO_PWM + (unsigned long )nr)) + (int )((u16 )point), (int )data->auto_pwm[nr][point]); } } else { { if ((unsigned int )data->kind == 1U) { goto case_1; } else { } if ((unsigned int )data->kind == 2U) { goto case_2; } else { } if ((unsigned int )data->kind == 0U) { goto case_0; } else { } if ((unsigned int )data->kind == 3U) { goto case_3; } else { } if ((unsigned int )data->kind == 4U) { goto case_4; } else { } if ((unsigned int )data->kind == 5U) { goto case_5; } else { } goto switch_break; case_1: /* CIL Label */ { tmp___0 = nct6775_read_value(data, (int )NCT6775_REG_CRITICAL_ENAB[nr]); reg = (u8 )tmp___0; } if (val != 0UL) { reg = (u8 )((unsigned int )reg | 2U); } else { reg = (unsigned int )reg & 253U; } { nct6775_write_value(data, (int )NCT6775_REG_CRITICAL_ENAB[nr], (int )reg); } goto ldv_31237; case_2: /* CIL Label */ ; goto ldv_31237; case_0: /* CIL Label */ ; case_3: /* CIL Label */ ; case_4: /* CIL Label */ ; case_5: /* CIL Label */ { nct6775_write_value(data, (int )*(data->REG_CRITICAL_PWM + (unsigned long )nr), (int )((u16 )val)); tmp___1 = nct6775_read_value(data, (int )*(data->REG_CRITICAL_PWM_ENABLE + (unsigned long )nr)); reg = (u8 )tmp___1; } if (val == 255UL) { reg = (u8 )((int )((signed char )reg) & ~ ((int )((signed char )data->CRITICAL_PWM_ENABLE_MASK))); } else { reg = (u8 )((int )reg | (int )data->CRITICAL_PWM_ENABLE_MASK); } { nct6775_write_value(data, (int )*(data->REG_CRITICAL_PWM_ENABLE + (unsigned long )nr), (int )reg); } goto ldv_31237; switch_break: /* CIL Label */ ; } ldv_31237: ; } { ldv_mutex_unlock_137(& data->update_lock); } return ((ssize_t )count); } } static ssize_t show_auto_temp(struct device *dev , struct device_attribute *attr , char *buf ) { struct nct6775_data *data ; struct nct6775_data *tmp ; struct sensor_device_attribute_2 *sattr ; struct device_attribute const *__mptr ; int nr ; int point ; int tmp___0 ; { { tmp = nct6775_update_device(dev); data = tmp; __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute_2 *)__mptr; nr = (int )sattr->nr; point = (int )sattr->index; tmp___0 = sprintf(buf, "%d\n", (int )data->auto_temp[nr][point] * 1000); } return ((ssize_t )tmp___0); } } static ssize_t store_auto_temp(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct nct6775_data *data ; void *tmp ; struct sensor_device_attribute_2 *sattr ; struct device_attribute const *__mptr ; int nr ; int point ; unsigned long val ; int err ; unsigned long __x ; int __d ; { { tmp = dev_get_drvdata((struct device const *)dev); data = (struct nct6775_data *)tmp; __mptr = (struct device_attribute const *)attr; sattr = (struct sensor_device_attribute_2 *)__mptr; nr = (int )sattr->nr; point = (int )sattr->index; err = kstrtoul(buf, 10U, & val); } if (err != 0) { return ((ssize_t )err); } else { } if (val > 255000UL) { return (-22L); } else { } { ldv_mutex_lock_138(& data->update_lock); __x = val; __d = 1000; data->auto_temp[nr][point] = (u8 )((__x + (unsigned long )(__d / 2)) / (unsigned long )__d); } if (point < data->auto_pwm_num) { { nct6775_write_value(data, (int )((u16 )*(data->REG_AUTO_TEMP + (unsigned long )nr)) + (int )((u16 )point), (int )data->auto_temp[nr][point]); } } else { { nct6775_write_value(data, (int )*(data->REG_CRITICAL_TEMP + (unsigned long )nr), (int )data->auto_temp[nr][point]); } } { ldv_mutex_unlock_139(& data->update_lock); } return ((ssize_t )count); } } static umode_t nct6775_pwm_is_visible(struct kobject *kobj , struct attribute *attr , int index ) { struct device *dev ; struct kobject const *__mptr ; struct nct6775_data *data ; void *tmp ; int pwm ; int nr ; int api ; { { __mptr = (struct kobject const *)kobj; dev = (struct device *)__mptr + 0xfffffffffffffff0UL; tmp = dev_get_drvdata((struct device const *)dev); data = (struct nct6775_data *)tmp; pwm = index / 36; nr = index % 36; } if ((((int )data->has_pwm >> pwm) & 1) == 0) { return (0U); } else { } if ((unsigned int )nr - 14U <= 4U || nr == 21) { if ((unsigned int )((unsigned short )*(data->REG_WEIGHT_TEMP_SEL + (unsigned long )pwm)) == 0U) { return (0U); } else { } } else { } if (nr == 19 && (unsigned long )data->REG_PWM[3] == (unsigned long )((u16 const *)0U)) { return (0U); } else { } if (nr == 20 && (unsigned long )data->REG_PWM[4] == (unsigned long )((u16 const *)0U)) { return (0U); } else { } if (nr == 21 && (unsigned long )data->REG_PWM[6] == (unsigned long )((u16 const *)0U)) { return (0U); } else { } if ((unsigned int )nr - 22U <= 13U) { api = (nr + -22) / 2; if (api > data->auto_pwm_num) { return (0U); } else { } } else { } return (attr->mode); } } static struct sensor_device_template sensor_dev_template_pwm_stop_time = {{{"pwm%d_stop_time", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_fan_time, & store_fan_time}, {{0U, 0U}}, 1}; static struct sensor_device_template sensor_dev_template_pwm_step_up_time = {{{"pwm%d_step_up_time", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_fan_time, & store_fan_time}, {{0U, 1U}}, 1}; static struct sensor_device_template sensor_dev_template_pwm_step_down_time = {{{"pwm%d_step_down_time", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_fan_time, & store_fan_time}, {{0U, 2U}}, 1}; static struct sensor_device_template sensor_dev_template_pwm_start = {{{"pwm%d_start", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_pwm, & store_pwm}, {{0U, 1U}}, 1}; static struct sensor_device_template sensor_dev_template_pwm_floor = {{{"pwm%d_floor", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_pwm, & store_pwm}, {{0U, 2U}}, 1}; static struct sensor_device_template sensor_dev_template_pwm_temp_tolerance = {{{"pwm%d_temp_tolerance", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_temp_tolerance, & store_temp_tolerance}, {{0U, 0U}}, 1}; static struct sensor_device_template sensor_dev_template_pwm_crit_temp_tolerance = {{{"pwm%d_crit_temp_tolerance", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_temp_tolerance, & store_temp_tolerance}, {{0U, 1U}}, 1}; static struct sensor_device_template sensor_dev_template_pwm_max = {{{"pwm%d_max", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_pwm, & store_pwm}, {{0U, 3U}}, 1}; static struct sensor_device_template sensor_dev_template_pwm_step = {{{"pwm%d_step", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_pwm, & store_pwm}, {{0U, 4U}}, 1}; static struct sensor_device_template sensor_dev_template_pwm_auto_point1_pwm = {{{"pwm%d_auto_point1_pwm", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_auto_pwm, & store_auto_pwm}, {{0U, 0U}}, 1}; static struct sensor_device_template sensor_dev_template_pwm_auto_point1_temp = {{{"pwm%d_auto_point1_temp", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_auto_temp, & store_auto_temp}, {{0U, 0U}}, 1}; static struct sensor_device_template sensor_dev_template_pwm_auto_point2_pwm = {{{"pwm%d_auto_point2_pwm", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_auto_pwm, & store_auto_pwm}, {{0U, 1U}}, 1}; static struct sensor_device_template sensor_dev_template_pwm_auto_point2_temp = {{{"pwm%d_auto_point2_temp", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_auto_temp, & store_auto_temp}, {{0U, 1U}}, 1}; static struct sensor_device_template sensor_dev_template_pwm_auto_point3_pwm = {{{"pwm%d_auto_point3_pwm", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_auto_pwm, & store_auto_pwm}, {{0U, 2U}}, 1}; static struct sensor_device_template sensor_dev_template_pwm_auto_point3_temp = {{{"pwm%d_auto_point3_temp", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_auto_temp, & store_auto_temp}, {{0U, 2U}}, 1}; static struct sensor_device_template sensor_dev_template_pwm_auto_point4_pwm = {{{"pwm%d_auto_point4_pwm", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_auto_pwm, & store_auto_pwm}, {{0U, 3U}}, 1}; static struct sensor_device_template sensor_dev_template_pwm_auto_point4_temp = {{{"pwm%d_auto_point4_temp", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_auto_temp, & store_auto_temp}, {{0U, 3U}}, 1}; static struct sensor_device_template sensor_dev_template_pwm_auto_point5_pwm = {{{"pwm%d_auto_point5_pwm", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_auto_pwm, & store_auto_pwm}, {{0U, 4U}}, 1}; static struct sensor_device_template sensor_dev_template_pwm_auto_point5_temp = {{{"pwm%d_auto_point5_temp", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_auto_temp, & store_auto_temp}, {{0U, 4U}}, 1}; static struct sensor_device_template sensor_dev_template_pwm_auto_point6_pwm = {{{"pwm%d_auto_point6_pwm", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_auto_pwm, & store_auto_pwm}, {{0U, 5U}}, 1}; static struct sensor_device_template sensor_dev_template_pwm_auto_point6_temp = {{{"pwm%d_auto_point6_temp", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_auto_temp, & store_auto_temp}, {{0U, 5U}}, 1}; static struct sensor_device_template sensor_dev_template_pwm_auto_point7_pwm = {{{"pwm%d_auto_point7_pwm", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_auto_pwm, & store_auto_pwm}, {{0U, 6U}}, 1}; static struct sensor_device_template sensor_dev_template_pwm_auto_point7_temp = {{{"pwm%d_auto_point7_temp", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_auto_temp, & store_auto_temp}, {{0U, 6U}}, 1}; static struct sensor_device_template *nct6775_attributes_pwm_template[37U] = { & sensor_dev_template_pwm, & sensor_dev_template_pwm_mode, & sensor_dev_template_pwm_enable, & sensor_dev_template_pwm_temp_sel, & sensor_dev_template_pwm_temp_tolerance, & sensor_dev_template_pwm_crit_temp_tolerance, & sensor_dev_template_pwm_target_temp, & sensor_dev_template_fan_target, & sensor_dev_template_fan_tolerance, & sensor_dev_template_pwm_stop_time, & sensor_dev_template_pwm_step_up_time, & sensor_dev_template_pwm_step_down_time, & sensor_dev_template_pwm_start, & sensor_dev_template_pwm_floor, & sensor_dev_template_pwm_weight_temp_sel, & sensor_dev_template_pwm_weight_temp_step, & sensor_dev_template_pwm_weight_temp_step_tol, & sensor_dev_template_pwm_weight_temp_step_base, & sensor_dev_template_pwm_weight_duty_step, & sensor_dev_template_pwm_max, & sensor_dev_template_pwm_step, & sensor_dev_template_pwm_weight_duty_base, & sensor_dev_template_pwm_auto_point1_pwm, & sensor_dev_template_pwm_auto_point1_temp, & sensor_dev_template_pwm_auto_point2_pwm, & sensor_dev_template_pwm_auto_point2_temp, & sensor_dev_template_pwm_auto_point3_pwm, & sensor_dev_template_pwm_auto_point3_temp, & sensor_dev_template_pwm_auto_point4_pwm, & sensor_dev_template_pwm_auto_point4_temp, & sensor_dev_template_pwm_auto_point5_pwm, & sensor_dev_template_pwm_auto_point5_temp, & sensor_dev_template_pwm_auto_point6_pwm, & sensor_dev_template_pwm_auto_point6_temp, & sensor_dev_template_pwm_auto_point7_pwm, & sensor_dev_template_pwm_auto_point7_temp, (struct sensor_device_template *)0}; static struct sensor_template_group nct6775_pwm_template_group = {(struct sensor_device_template **)(& nct6775_attributes_pwm_template), & nct6775_pwm_is_visible, 1}; static ssize_t show_vid(struct device *dev , struct device_attribute *attr , char *buf ) { struct nct6775_data *data ; void *tmp ; int tmp___0 ; int tmp___1 ; { { tmp = dev_get_drvdata((struct device const *)dev); data = (struct nct6775_data *)tmp; tmp___0 = vid_from_reg((int )data->vid, (int )data->vrm); tmp___1 = sprintf(buf, "%d\n", tmp___0); } return ((ssize_t )tmp___1); } } static struct device_attribute dev_attr_cpu0_vid = {{"cpu0_vid", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_vid, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}; static ssize_t clear_caseopen(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct nct6775_data *data ; void *tmp ; int nr ; struct device_attribute const *__mptr ; unsigned long val ; u8 reg ; int ret ; int tmp___0 ; int tmp___1 ; { { tmp = dev_get_drvdata((struct device const *)dev); data = (struct nct6775_data *)tmp; __mptr = (struct device_attribute const *)attr; nr = ((struct sensor_device_attribute *)__mptr)->index + -30; tmp___0 = kstrtoul(buf, 10U, & val); } if (tmp___0 != 0 || val != 0UL) { return (-22L); } else { } { ldv_mutex_lock_140(& data->update_lock); ret = superio_enter(data->sioreg); } if (ret != 0) { count = (size_t )ret; goto error; } else { } { superio_select(data->sioreg, 10); tmp___1 = superio_inb(data->sioreg, (int )NCT6775_REG_CR_CASEOPEN_CLR[nr]); reg = (u8 )tmp___1; reg = (u8 )((int )reg | (int )((unsigned char )NCT6775_CR_CASEOPEN_CLR_MASK[nr])); superio_outb(data->sioreg, (int )NCT6775_REG_CR_CASEOPEN_CLR[nr], (int )reg); reg = (u8 )((int )((signed char )reg) & ~ ((int )((signed char )NCT6775_CR_CASEOPEN_CLR_MASK[nr]))); superio_outb(data->sioreg, (int )NCT6775_REG_CR_CASEOPEN_CLR[nr], (int )reg); superio_exit(data->sioreg); data->valid = 0; } error: { ldv_mutex_unlock_141(& data->update_lock); } return ((ssize_t )count); } } static struct sensor_device_attribute sensor_dev_attr_intrusion0_alarm = {{{"intrusion0_alarm", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarm, & clear_caseopen}, 30}; static struct sensor_device_attribute sensor_dev_attr_intrusion1_alarm = {{{"intrusion1_alarm", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarm, & clear_caseopen}, 31}; static struct sensor_device_attribute sensor_dev_attr_intrusion0_beep = {{{"intrusion0_beep", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_beep, & store_beep}, 30}; static struct sensor_device_attribute sensor_dev_attr_intrusion1_beep = {{{"intrusion1_beep", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_beep, & store_beep}, 31}; static struct sensor_device_attribute sensor_dev_attr_beep_enable = {{{"beep_enable", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_beep, & store_beep}, 15}; static umode_t nct6775_other_is_visible(struct kobject *kobj , struct attribute *attr , int index ) { struct device *dev ; struct kobject const *__mptr ; struct nct6775_data *data ; void *tmp ; { { __mptr = (struct kobject const *)kobj; dev = (struct device *)__mptr + 0xfffffffffffffff0UL; tmp = dev_get_drvdata((struct device const *)dev); data = (struct nct6775_data *)tmp; } if (index == 0 && ! data->have_vid) { return (0U); } else { } if ((unsigned int )index - 1U <= 1U) { if ((int )((signed char )*(data->ALARM_BITS + ((unsigned long )(index + 30) + 0xffffffffffffffffUL))) < 0) { return (0U); } else { } } else { } if ((unsigned int )index - 3U <= 1U) { if ((int )((signed char )*(data->BEEP_BITS + ((unsigned long )(index + 30) + 0xfffffffffffffffdUL))) < 0) { return (0U); } else { } } else { } return (attr->mode); } } static struct attribute *nct6775_attributes_other[7U] = { & dev_attr_cpu0_vid.attr, & sensor_dev_attr_intrusion0_alarm.dev_attr.attr, & sensor_dev_attr_intrusion1_alarm.dev_attr.attr, & sensor_dev_attr_intrusion0_beep.dev_attr.attr, & sensor_dev_attr_intrusion1_beep.dev_attr.attr, & sensor_dev_attr_beep_enable.dev_attr.attr, (struct attribute *)0}; static struct attribute_group const nct6775_group_other = {0, & nct6775_other_is_visible, (struct attribute **)(& nct6775_attributes_other), 0}; __inline static void nct6775_init_device(struct nct6775_data *data ) { int i ; u8 tmp ; u8 diode ; u16 tmp___0 ; u16 tmp___1 ; u16 tmp___2 ; u16 tmp___3 ; { if ((unsigned int )data->REG_CONFIG != 0U) { { tmp___0 = nct6775_read_value(data, (int )data->REG_CONFIG); tmp = (u8 )tmp___0; } if (((int )tmp & 1) == 0) { { nct6775_write_value(data, (int )data->REG_CONFIG, (int )((unsigned int )tmp | 1U)); } } else { } } else { } i = 0; goto ldv_31413; ldv_31412: ; if ((((int )data->have_temp >> i) & 1) == 0) { goto ldv_31411; } else { } if ((unsigned int )data->reg_temp_config[i] == 0U) { goto ldv_31411; } else { } { tmp___1 = nct6775_read_value(data, (int )data->reg_temp_config[i]); tmp = (u8 )tmp___1; } if ((int )tmp & 1) { { nct6775_write_value(data, (int )data->reg_temp_config[i], (int )tmp & 254); } } else { } ldv_31411: i = i + 1; ldv_31413: ; if (i <= 9) { goto ldv_31412; } else { } { tmp___2 = nct6775_read_value(data, (int )data->REG_VBAT); tmp = (u8 )tmp___2; } if (((int )tmp & 1) == 0) { { nct6775_write_value(data, (int )data->REG_VBAT, (int )((unsigned int )tmp | 1U)); } } else { } { tmp___3 = nct6775_read_value(data, (int )data->REG_DIODE); diode = (u8 )tmp___3; i = 0; } goto ldv_31417; ldv_31416: ; if ((((int )data->have_temp_fixed >> i) & 1) == 0) { goto ldv_31415; } else { } if (((int )tmp & ((int )data->DIODE_MASK << i)) != 0) { data->temp_type[i] = 3U - (unsigned int )((u8 )((int )((signed char )((int )diode >> i)) & (int )((signed char )data->DIODE_MASK))); } else { data->temp_type[i] = 4U; } ldv_31415: i = i + 1; ldv_31417: ; if (i < (int )data->temp_fixed_num) { goto ldv_31416; } else { } return; } } static void nct6775_check_fan_inputs(struct nct6775_data *data ) { bool fan3pin ; bool fan4pin ; bool fan4min ; bool fan5pin ; bool fan6pin ; bool pwm3pin ; bool pwm4pin ; bool pwm5pin ; bool pwm6pin ; int sioreg ; int regval ; int tmp ; bool gpok ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { sioreg = data->sioreg; if ((unsigned int )data->kind == 1U) { { regval = superio_inb(sioreg, 44); fan3pin = (regval & 64) != 0; pwm3pin = (regval & 128) != 0; tmp = superio_inb(sioreg, 42); fan4pin = (tmp & 128) == 0; fan4min = 0; fan5pin = 0; fan6pin = 0; pwm4pin = 0; pwm5pin = 0; pwm6pin = 0; } } else if ((unsigned int )data->kind == 2U) { { tmp___0 = superio_inb(sioreg, 39); gpok = (tmp___0 & 128) != 0; superio_select(sioreg, 11); regval = superio_inb(sioreg, 48); } if ((regval & 128) != 0) { fan3pin = gpok; } else { { tmp___1 = superio_inb(sioreg, 36); fan3pin = (tmp___1 & 64) == 0; } } if ((regval & 64) != 0) { fan4pin = gpok; } else { { tmp___2 = superio_inb(sioreg, 28); fan4pin = (tmp___2 & 1) != 0; } } if ((regval & 32) != 0) { fan5pin = gpok; } else { { tmp___3 = superio_inb(sioreg, 28); fan5pin = (tmp___3 & 2) != 0; } } fan4min = fan4pin; fan6pin = 0; pwm3pin = fan3pin; pwm4pin = 0; pwm5pin = 0; pwm6pin = 0; } else if ((unsigned int )data->kind == 0U) { { regval = superio_inb(sioreg, 36); fan3pin = (regval & 128) == 0; pwm3pin = (regval & 8) != 0; fan4pin = 0; fan4min = 0; fan5pin = 0; fan6pin = 0; pwm4pin = 0; pwm5pin = 0; pwm6pin = 0; } } else { { regval = superio_inb(sioreg, 28); fan3pin = (regval & 32) == 0; fan4pin = (regval & 64) == 0; fan5pin = (regval & 128) == 0; pwm3pin = (regval & 1) == 0; pwm4pin = (regval & 2) == 0; pwm5pin = (regval & 4) == 0; fan4min = fan4pin; } if ((unsigned int )data->kind - 4U <= 1U) { { regval = superio_inb(sioreg, 45); fan6pin = (regval & 2) != 0; pwm6pin = (regval & 1) != 0; } } else { fan6pin = 0; pwm6pin = 0; } } data->has_fan = (u8 )(((((int )((signed char )((int )fan3pin << 2)) | 3) | (int )((signed char )((int )fan4pin << 3))) | (int )((signed char )((int )fan5pin << 4))) | (int )((signed char )((int )fan6pin << 5))); data->has_fan_min = (u8 )((((int )((signed char )((int )fan3pin << 2)) | 3) | (int )((signed char )((int )fan4min << 3))) | (int )((signed char )((int )fan5pin << 4))); data->has_pwm = (u8 )(((((int )((signed char )((int )pwm3pin << 2)) | 3) | (int )((signed char )((int )pwm4pin << 3))) | (int )((signed char )((int )pwm5pin << 4))) | (int )((signed char )((int )pwm6pin << 5))); return; } } static void add_temp_sensors(struct nct6775_data *data , u16 const *regp , int *available , int *mask ) { int i ; u8 src ; int index ; u16 tmp ; size_t tmp___0 ; unsigned long tmp___1 ; { i = 0; goto ldv_31445; ldv_31444: ; if ((unsigned int )((unsigned short )*(regp + (unsigned long )i)) == 0U) { goto ldv_31443; } else { } { tmp = nct6775_read_value(data, (int )*(regp + (unsigned long )i)); src = (u8 )tmp; src = (unsigned int )src & 31U; } if ((unsigned int )src == 0U || (*mask >> (int )src) & 1) { goto ldv_31443; } else { } if ((int )src >= data->temp_label_num) { goto ldv_31443; } else { { tmp___0 = strlen(*(data->temp_label + (unsigned long )src)); } if (tmp___0 == 0UL) { goto ldv_31443; } else { } } { tmp___1 = __ffs((unsigned long )*available); index = (int )tmp___1; nct6775_write_value(data, (int )*(data->REG_TEMP_SOURCE + (unsigned long )index), (int )src); *available = *available & ~ (1 << index); *mask = *mask | (1 << (int )src); } ldv_31443: i = i + 1; ldv_31445: ; if (i < (int )data->pwm_num && *available != 0) { goto ldv_31444; } else { } return; } } static int nct6775_probe(struct platform_device *pdev___0 ) { struct device *dev ; struct nct6775_sio_data *sio_data ; void *tmp ; struct nct6775_data *data ; struct resource *res ; int i ; int s ; int err ; int src ; int mask ; int available ; u16 const *reg_temp ; u16 const *reg_temp_over ; u16 const *reg_temp_hyst ; u16 const *reg_temp_config ; u16 const *reg_temp_mon ; u16 const *reg_temp_alternate ; u16 const *reg_temp_crit ; u16 const *reg_temp_crit_l ; u16 const *reg_temp_crit_h ; int num_reg_temp ; int num_reg_temp_mon ; u8 cr2a ; struct attribute_group *group ; struct device *hwmon_dev ; int num_attr_groups ; struct resource *tmp___0 ; void *tmp___1 ; struct lock_class_key __key ; u16 tmp___2 ; u16 tmp___3 ; size_t tmp___4 ; u16 tmp___5 ; size_t tmp___6 ; int tmp___7 ; int tmp___8 ; u8 tmp___9 ; int tmp___10 ; long tmp___11 ; bool tmp___12 ; int tmp___13 ; int tmp___14 ; long tmp___15 ; bool tmp___16 ; int tmp___17 ; int tmp___18 ; long tmp___19 ; bool tmp___20 ; int tmp___21 ; int tmp___22 ; long tmp___23 ; bool tmp___24 ; int tmp___25 ; int tmp___26 ; int tmp___27 ; { { dev = & pdev___0->dev; tmp = dev_get_platdata((struct device const *)dev); sio_data = (struct nct6775_sio_data *)tmp; err = 0; reg_temp_crit_l = (u16 const *)0U; reg_temp_crit_h = (u16 const *)0U; num_attr_groups = 0; res = platform_get_resource(pdev___0, 256U, 0U); tmp___0 = __devm_request_region(& pdev___0->dev, & ioport_resource, res->start, 2ULL, "nct6775"); } if ((unsigned long )tmp___0 == (unsigned long )((struct resource *)0)) { return (-16); } else { } { tmp___1 = devm_kzalloc(& pdev___0->dev, 1280UL, 208U); data = (struct nct6775_data *)tmp___1; } if ((unsigned long )data == (unsigned long )((struct nct6775_data *)0)) { return (-12); } else { } { data->kind = sio_data->kind; data->sioreg = sio_data->sioreg; data->addr = (int )res->start; __mutex_init(& data->update_lock, "&data->update_lock", & __key); data->name = nct6775_device_names[(unsigned int )data->kind]; data->bank = 255U; platform_set_drvdata(pdev___0, (void *)data); } { if ((unsigned int )data->kind == 0U) { goto case_0; } else { } if ((unsigned int )data->kind == 1U) { goto case_1; } else { } if ((unsigned int )data->kind == 2U) { goto case_2; } else { } if ((unsigned int )data->kind == 3U) { goto case_3; } else { } if ((unsigned int )data->kind == 4U) { goto case_4; } else { } if ((unsigned int )data->kind == 5U) { goto case_5; } else { } goto switch_default; case_0: /* CIL Label */ data->in_num = 9U; data->pwm_num = 3U; data->auto_pwm_num = 4; data->temp_fixed_num = 3U; data->num_temp_alarms = 6U; data->num_temp_beeps = 6U; data->fan_from_reg = & fan_from_reg13; data->fan_from_reg_min = & fan_from_reg13; data->temp_label = (char const * const *)(& nct6776_temp_label); data->temp_label_num = 23; data->REG_VBAT = 792U; data->REG_DIODE = 793U; data->DIODE_MASK = 1U; data->REG_VIN = (u16 const *)(& NCT6106_REG_IN); data->REG_IN_MINMAX[0] = (u16 const *)(& NCT6106_REG_IN_MIN); data->REG_IN_MINMAX[1] = (u16 const *)(& NCT6106_REG_IN_MAX); data->REG_TARGET = (u16 const *)(& NCT6106_REG_TARGET); data->REG_FAN = (u16 const *)(& NCT6106_REG_FAN); data->REG_FAN_MODE = (u16 const *)(& NCT6106_REG_FAN_MODE); data->REG_FAN_MIN = (u16 const *)(& NCT6106_REG_FAN_MIN); data->REG_FAN_PULSES = (u16 const *)(& NCT6106_REG_FAN_PULSES); data->FAN_PULSE_SHIFT = (u16 const *)(& NCT6106_FAN_PULSE_SHIFT); data->REG_FAN_TIME[0] = (u16 const *)(& NCT6106_REG_FAN_STOP_TIME); data->REG_FAN_TIME[1] = (u16 const *)(& NCT6106_REG_FAN_STEP_UP_TIME); data->REG_FAN_TIME[2] = (u16 const *)(& NCT6106_REG_FAN_STEP_DOWN_TIME); data->REG_PWM[0] = (u16 const *)(& NCT6106_REG_PWM); data->REG_PWM[1] = (u16 const *)(& NCT6106_REG_FAN_START_OUTPUT); data->REG_PWM[2] = (u16 const *)(& NCT6106_REG_FAN_STOP_OUTPUT); data->REG_PWM[5] = (u16 const *)(& NCT6106_REG_WEIGHT_DUTY_STEP); data->REG_PWM[6] = (u16 const *)(& NCT6106_REG_WEIGHT_DUTY_BASE); data->REG_PWM_READ = (u16 const *)(& NCT6106_REG_PWM_READ); data->REG_PWM_MODE = (u8 const *)(& NCT6106_REG_PWM_MODE); data->PWM_MODE_MASK = (u8 const *)(& NCT6106_PWM_MODE_MASK); data->REG_AUTO_TEMP = (u16 const *)(& NCT6106_REG_AUTO_TEMP); data->REG_AUTO_PWM = (u16 const *)(& NCT6106_REG_AUTO_PWM); data->REG_CRITICAL_TEMP = (u16 const *)(& NCT6106_REG_CRITICAL_TEMP); data->REG_CRITICAL_TEMP_TOLERANCE = (u16 const *)(& NCT6106_REG_CRITICAL_TEMP_TOLERANCE); data->REG_CRITICAL_PWM_ENABLE = (u16 const *)(& NCT6106_REG_CRITICAL_PWM_ENABLE); data->CRITICAL_PWM_ENABLE_MASK = 16U; data->REG_CRITICAL_PWM = (u16 const *)(& NCT6106_REG_CRITICAL_PWM); data->REG_TEMP_OFFSET = (u16 const *)(& NCT6106_REG_TEMP_OFFSET); data->REG_TEMP_SOURCE = (u16 const *)(& NCT6106_REG_TEMP_SOURCE); data->REG_TEMP_SEL = (u16 const *)(& NCT6106_REG_TEMP_SEL); data->REG_WEIGHT_TEMP_SEL = (u16 const *)(& NCT6106_REG_WEIGHT_TEMP_SEL); data->REG_WEIGHT_TEMP[0] = (u16 const *)(& NCT6106_REG_WEIGHT_TEMP_STEP); data->REG_WEIGHT_TEMP[1] = (u16 const *)(& NCT6106_REG_WEIGHT_TEMP_STEP_TOL); data->REG_WEIGHT_TEMP[2] = (u16 const *)(& NCT6106_REG_WEIGHT_TEMP_BASE); data->REG_ALARM = (u16 const *)(& NCT6106_REG_ALARM); data->ALARM_BITS = (s8 const *)(& NCT6106_ALARM_BITS); data->REG_BEEP = (u16 const *)(& NCT6106_REG_BEEP); data->BEEP_BITS = (s8 const *)(& NCT6106_BEEP_BITS); reg_temp = (u16 const *)(& NCT6106_REG_TEMP); reg_temp_mon = (u16 const *)(& NCT6106_REG_TEMP_MON); num_reg_temp = 6; num_reg_temp_mon = 3; reg_temp_over = (u16 const *)(& NCT6106_REG_TEMP_OVER); reg_temp_hyst = (u16 const *)(& NCT6106_REG_TEMP_HYST); reg_temp_config = (u16 const *)(& NCT6106_REG_TEMP_CONFIG); reg_temp_alternate = (u16 const *)(& NCT6106_REG_TEMP_ALTERNATE); reg_temp_crit = (u16 const *)(& NCT6106_REG_TEMP_CRIT); reg_temp_crit_l = (u16 const *)(& NCT6106_REG_TEMP_CRIT_L); reg_temp_crit_h = (u16 const *)(& NCT6106_REG_TEMP_CRIT_H); goto ldv_31483; case_1: /* CIL Label */ data->in_num = 9U; data->pwm_num = 3U; data->auto_pwm_num = 6; data->has_fan_div = 1; data->temp_fixed_num = 3U; data->num_temp_alarms = 3U; data->num_temp_beeps = 3U; data->ALARM_BITS = (s8 const *)(& NCT6775_ALARM_BITS); data->BEEP_BITS = (s8 const *)(& NCT6775_BEEP_BITS); data->fan_from_reg = & fan_from_reg16; data->fan_from_reg_min = & fan_from_reg8; data->target_temp_mask = 127U; data->tolerance_mask = 15U; data->speed_tolerance_limit = 15U; data->temp_label = (char const * const *)(& nct6775_temp_label); data->temp_label_num = 21; data->REG_CONFIG = 64U; data->REG_VBAT = 93U; data->REG_DIODE = 94U; data->DIODE_MASK = 2U; data->REG_VIN = (u16 const *)(& NCT6775_REG_IN); data->REG_IN_MINMAX[0] = (u16 const *)(& NCT6775_REG_IN_MIN); data->REG_IN_MINMAX[1] = (u16 const *)(& NCT6775_REG_IN_MAX); data->REG_TARGET = (u16 const *)(& NCT6775_REG_TARGET); data->REG_FAN = (u16 const *)(& NCT6775_REG_FAN); data->REG_FAN_MODE = (u16 const *)(& NCT6775_REG_FAN_MODE); data->REG_FAN_MIN = (u16 const *)(& NCT6775_REG_FAN_MIN); data->REG_FAN_PULSES = (u16 const *)(& NCT6775_REG_FAN_PULSES); data->FAN_PULSE_SHIFT = (u16 const *)(& NCT6775_FAN_PULSE_SHIFT); data->REG_FAN_TIME[0] = (u16 const *)(& NCT6775_REG_FAN_STOP_TIME); data->REG_FAN_TIME[1] = (u16 const *)(& NCT6775_REG_FAN_STEP_UP_TIME); data->REG_FAN_TIME[2] = (u16 const *)(& NCT6775_REG_FAN_STEP_DOWN_TIME); data->REG_PWM[0] = (u16 const *)(& NCT6775_REG_PWM); data->REG_PWM[1] = (u16 const *)(& NCT6775_REG_FAN_START_OUTPUT); data->REG_PWM[2] = (u16 const *)(& NCT6775_REG_FAN_STOP_OUTPUT); data->REG_PWM[3] = (u16 const *)(& NCT6775_REG_FAN_MAX_OUTPUT); data->REG_PWM[4] = (u16 const *)(& NCT6775_REG_FAN_STEP_OUTPUT); data->REG_PWM[5] = (u16 const *)(& NCT6775_REG_WEIGHT_DUTY_STEP); data->REG_PWM_READ = (u16 const *)(& NCT6775_REG_PWM_READ); data->REG_PWM_MODE = (u8 const *)(& NCT6775_REG_PWM_MODE); data->PWM_MODE_MASK = (u8 const *)(& NCT6775_PWM_MODE_MASK); data->REG_AUTO_TEMP = (u16 const *)(& NCT6775_REG_AUTO_TEMP); data->REG_AUTO_PWM = (u16 const *)(& NCT6775_REG_AUTO_PWM); data->REG_CRITICAL_TEMP = (u16 const *)(& NCT6775_REG_CRITICAL_TEMP); data->REG_CRITICAL_TEMP_TOLERANCE = (u16 const *)(& NCT6775_REG_CRITICAL_TEMP_TOLERANCE); data->REG_TEMP_OFFSET = (u16 const *)(& NCT6775_REG_TEMP_OFFSET); data->REG_TEMP_SOURCE = (u16 const *)(& NCT6775_REG_TEMP_SOURCE); data->REG_TEMP_SEL = (u16 const *)(& NCT6775_REG_TEMP_SEL); data->REG_WEIGHT_TEMP_SEL = (u16 const *)(& NCT6775_REG_WEIGHT_TEMP_SEL); data->REG_WEIGHT_TEMP[0] = (u16 const *)(& NCT6775_REG_WEIGHT_TEMP_STEP); data->REG_WEIGHT_TEMP[1] = (u16 const *)(& NCT6775_REG_WEIGHT_TEMP_STEP_TOL); data->REG_WEIGHT_TEMP[2] = (u16 const *)(& NCT6775_REG_WEIGHT_TEMP_BASE); data->REG_ALARM = (u16 const *)(& NCT6775_REG_ALARM); data->REG_BEEP = (u16 const *)(& NCT6775_REG_BEEP); reg_temp = (u16 const *)(& NCT6775_REG_TEMP); reg_temp_mon = (u16 const *)(& NCT6775_REG_TEMP_MON); num_reg_temp = 6; num_reg_temp_mon = 3; reg_temp_over = (u16 const *)(& NCT6775_REG_TEMP_OVER); reg_temp_hyst = (u16 const *)(& NCT6775_REG_TEMP_HYST); reg_temp_config = (u16 const *)(& NCT6775_REG_TEMP_CONFIG); reg_temp_alternate = (u16 const *)(& NCT6775_REG_TEMP_ALTERNATE); reg_temp_crit = (u16 const *)(& NCT6775_REG_TEMP_CRIT); goto ldv_31483; case_2: /* CIL Label */ data->in_num = 9U; data->pwm_num = 3U; data->auto_pwm_num = 4; data->has_fan_div = 0; data->temp_fixed_num = 3U; data->num_temp_alarms = 3U; data->num_temp_beeps = 6U; data->ALARM_BITS = (s8 const *)(& NCT6776_ALARM_BITS); data->BEEP_BITS = (s8 const *)(& NCT6776_BEEP_BITS); data->fan_from_reg = & fan_from_reg13; data->fan_from_reg_min = & fan_from_reg13; data->target_temp_mask = 255U; data->tolerance_mask = 7U; data->speed_tolerance_limit = 63U; data->temp_label = (char const * const *)(& nct6776_temp_label); data->temp_label_num = 23; data->REG_CONFIG = 64U; data->REG_VBAT = 93U; data->REG_DIODE = 94U; data->DIODE_MASK = 2U; data->REG_VIN = (u16 const *)(& NCT6775_REG_IN); data->REG_IN_MINMAX[0] = (u16 const *)(& NCT6775_REG_IN_MIN); data->REG_IN_MINMAX[1] = (u16 const *)(& NCT6775_REG_IN_MAX); data->REG_TARGET = (u16 const *)(& NCT6775_REG_TARGET); data->REG_FAN = (u16 const *)(& NCT6775_REG_FAN); data->REG_FAN_MODE = (u16 const *)(& NCT6775_REG_FAN_MODE); data->REG_FAN_MIN = (u16 const *)(& NCT6776_REG_FAN_MIN); data->REG_FAN_PULSES = (u16 const *)(& NCT6776_REG_FAN_PULSES); data->FAN_PULSE_SHIFT = (u16 const *)(& NCT6775_FAN_PULSE_SHIFT); data->REG_FAN_TIME[0] = (u16 const *)(& NCT6775_REG_FAN_STOP_TIME); data->REG_FAN_TIME[1] = (u16 const *)(& NCT6775_REG_FAN_STEP_UP_TIME); data->REG_FAN_TIME[2] = (u16 const *)(& NCT6775_REG_FAN_STEP_DOWN_TIME); data->REG_TOLERANCE_H = (u16 const *)(& NCT6776_REG_TOLERANCE_H); data->REG_PWM[0] = (u16 const *)(& NCT6775_REG_PWM); data->REG_PWM[1] = (u16 const *)(& NCT6775_REG_FAN_START_OUTPUT); data->REG_PWM[2] = (u16 const *)(& NCT6775_REG_FAN_STOP_OUTPUT); data->REG_PWM[5] = (u16 const *)(& NCT6775_REG_WEIGHT_DUTY_STEP); data->REG_PWM[6] = (u16 const *)(& NCT6776_REG_WEIGHT_DUTY_BASE); data->REG_PWM_READ = (u16 const *)(& NCT6775_REG_PWM_READ); data->REG_PWM_MODE = (u8 const *)(& NCT6776_REG_PWM_MODE); data->PWM_MODE_MASK = (u8 const *)(& NCT6776_PWM_MODE_MASK); data->REG_AUTO_TEMP = (u16 const *)(& NCT6775_REG_AUTO_TEMP); data->REG_AUTO_PWM = (u16 const *)(& NCT6775_REG_AUTO_PWM); data->REG_CRITICAL_TEMP = (u16 const *)(& NCT6775_REG_CRITICAL_TEMP); data->REG_CRITICAL_TEMP_TOLERANCE = (u16 const *)(& NCT6775_REG_CRITICAL_TEMP_TOLERANCE); data->REG_TEMP_OFFSET = (u16 const *)(& NCT6775_REG_TEMP_OFFSET); data->REG_TEMP_SOURCE = (u16 const *)(& NCT6775_REG_TEMP_SOURCE); data->REG_TEMP_SEL = (u16 const *)(& NCT6775_REG_TEMP_SEL); data->REG_WEIGHT_TEMP_SEL = (u16 const *)(& NCT6775_REG_WEIGHT_TEMP_SEL); data->REG_WEIGHT_TEMP[0] = (u16 const *)(& NCT6775_REG_WEIGHT_TEMP_STEP); data->REG_WEIGHT_TEMP[1] = (u16 const *)(& NCT6775_REG_WEIGHT_TEMP_STEP_TOL); data->REG_WEIGHT_TEMP[2] = (u16 const *)(& NCT6775_REG_WEIGHT_TEMP_BASE); data->REG_ALARM = (u16 const *)(& NCT6775_REG_ALARM); data->REG_BEEP = (u16 const *)(& NCT6776_REG_BEEP); reg_temp = (u16 const *)(& NCT6775_REG_TEMP); reg_temp_mon = (u16 const *)(& NCT6775_REG_TEMP_MON); num_reg_temp = 6; num_reg_temp_mon = 3; reg_temp_over = (u16 const *)(& NCT6775_REG_TEMP_OVER); reg_temp_hyst = (u16 const *)(& NCT6775_REG_TEMP_HYST); reg_temp_config = (u16 const *)(& NCT6776_REG_TEMP_CONFIG); reg_temp_alternate = (u16 const *)(& NCT6776_REG_TEMP_ALTERNATE); reg_temp_crit = (u16 const *)(& NCT6776_REG_TEMP_CRIT); goto ldv_31483; case_3: /* CIL Label */ data->in_num = 15U; data->pwm_num = 5U; data->auto_pwm_num = 4; data->has_fan_div = 0; data->temp_fixed_num = 6U; data->num_temp_alarms = 2U; data->num_temp_beeps = 2U; data->ALARM_BITS = (s8 const *)(& NCT6779_ALARM_BITS); data->BEEP_BITS = (s8 const *)(& NCT6779_BEEP_BITS); data->fan_from_reg = & fan_from_reg13; data->fan_from_reg_min = & fan_from_reg13; data->target_temp_mask = 255U; data->tolerance_mask = 7U; data->speed_tolerance_limit = 63U; data->temp_label = (char const * const *)(& nct6779_temp_label); data->temp_label_num = 27; data->REG_CONFIG = 64U; data->REG_VBAT = 93U; data->REG_DIODE = 94U; data->DIODE_MASK = 2U; data->REG_VIN = (u16 const *)(& NCT6779_REG_IN); data->REG_IN_MINMAX[0] = (u16 const *)(& NCT6775_REG_IN_MIN); data->REG_IN_MINMAX[1] = (u16 const *)(& NCT6775_REG_IN_MAX); data->REG_TARGET = (u16 const *)(& NCT6775_REG_TARGET); data->REG_FAN = (u16 const *)(& NCT6779_REG_FAN); data->REG_FAN_MODE = (u16 const *)(& NCT6775_REG_FAN_MODE); data->REG_FAN_MIN = (u16 const *)(& NCT6776_REG_FAN_MIN); data->REG_FAN_PULSES = (u16 const *)(& NCT6779_REG_FAN_PULSES); data->FAN_PULSE_SHIFT = (u16 const *)(& NCT6775_FAN_PULSE_SHIFT); data->REG_FAN_TIME[0] = (u16 const *)(& NCT6775_REG_FAN_STOP_TIME); data->REG_FAN_TIME[1] = (u16 const *)(& NCT6775_REG_FAN_STEP_UP_TIME); data->REG_FAN_TIME[2] = (u16 const *)(& NCT6775_REG_FAN_STEP_DOWN_TIME); data->REG_TOLERANCE_H = (u16 const *)(& NCT6776_REG_TOLERANCE_H); data->REG_PWM[0] = (u16 const *)(& NCT6775_REG_PWM); data->REG_PWM[1] = (u16 const *)(& NCT6775_REG_FAN_START_OUTPUT); data->REG_PWM[2] = (u16 const *)(& NCT6775_REG_FAN_STOP_OUTPUT); data->REG_PWM[5] = (u16 const *)(& NCT6775_REG_WEIGHT_DUTY_STEP); data->REG_PWM[6] = (u16 const *)(& NCT6776_REG_WEIGHT_DUTY_BASE); data->REG_PWM_READ = (u16 const *)(& NCT6775_REG_PWM_READ); data->REG_PWM_MODE = (u8 const *)(& NCT6776_REG_PWM_MODE); data->PWM_MODE_MASK = (u8 const *)(& NCT6776_PWM_MODE_MASK); data->REG_AUTO_TEMP = (u16 const *)(& NCT6775_REG_AUTO_TEMP); data->REG_AUTO_PWM = (u16 const *)(& NCT6775_REG_AUTO_PWM); data->REG_CRITICAL_TEMP = (u16 const *)(& NCT6775_REG_CRITICAL_TEMP); data->REG_CRITICAL_TEMP_TOLERANCE = (u16 const *)(& NCT6775_REG_CRITICAL_TEMP_TOLERANCE); data->REG_CRITICAL_PWM_ENABLE = (u16 const *)(& NCT6779_REG_CRITICAL_PWM_ENABLE); data->CRITICAL_PWM_ENABLE_MASK = 1U; data->REG_CRITICAL_PWM = (u16 const *)(& NCT6779_REG_CRITICAL_PWM); data->REG_TEMP_OFFSET = (u16 const *)(& NCT6779_REG_TEMP_OFFSET); data->REG_TEMP_SOURCE = (u16 const *)(& NCT6775_REG_TEMP_SOURCE); data->REG_TEMP_SEL = (u16 const *)(& NCT6775_REG_TEMP_SEL); data->REG_WEIGHT_TEMP_SEL = (u16 const *)(& NCT6775_REG_WEIGHT_TEMP_SEL); data->REG_WEIGHT_TEMP[0] = (u16 const *)(& NCT6775_REG_WEIGHT_TEMP_STEP); data->REG_WEIGHT_TEMP[1] = (u16 const *)(& NCT6775_REG_WEIGHT_TEMP_STEP_TOL); data->REG_WEIGHT_TEMP[2] = (u16 const *)(& NCT6775_REG_WEIGHT_TEMP_BASE); data->REG_ALARM = (u16 const *)(& NCT6779_REG_ALARM); data->REG_BEEP = (u16 const *)(& NCT6776_REG_BEEP); reg_temp = (u16 const *)(& NCT6779_REG_TEMP); reg_temp_mon = (u16 const *)(& NCT6779_REG_TEMP_MON); num_reg_temp = 2; num_reg_temp_mon = 5; reg_temp_over = (u16 const *)(& NCT6779_REG_TEMP_OVER); reg_temp_hyst = (u16 const *)(& NCT6779_REG_TEMP_HYST); reg_temp_config = (u16 const *)(& NCT6779_REG_TEMP_CONFIG); reg_temp_alternate = (u16 const *)(& NCT6779_REG_TEMP_ALTERNATE); reg_temp_crit = (u16 const *)(& NCT6779_REG_TEMP_CRIT); goto ldv_31483; case_4: /* CIL Label */ ; case_5: /* CIL Label */ data->in_num = 15U; data->pwm_num = 6U; data->auto_pwm_num = 4; data->has_fan_div = 0; data->temp_fixed_num = 6U; data->num_temp_alarms = 2U; data->num_temp_beeps = 2U; data->ALARM_BITS = (s8 const *)(& NCT6791_ALARM_BITS); data->BEEP_BITS = (s8 const *)(& NCT6779_BEEP_BITS); data->fan_from_reg = & fan_from_reg13; data->fan_from_reg_min = & fan_from_reg13; data->target_temp_mask = 255U; data->tolerance_mask = 7U; data->speed_tolerance_limit = 63U; data->temp_label = (char const * const *)(& nct6779_temp_label); data->temp_label_num = 27; data->REG_CONFIG = 64U; data->REG_VBAT = 93U; data->REG_DIODE = 94U; data->DIODE_MASK = 2U; data->REG_VIN = (u16 const *)(& NCT6779_REG_IN); data->REG_IN_MINMAX[0] = (u16 const *)(& NCT6775_REG_IN_MIN); data->REG_IN_MINMAX[1] = (u16 const *)(& NCT6775_REG_IN_MAX); data->REG_TARGET = (u16 const *)(& NCT6775_REG_TARGET); data->REG_FAN = (u16 const *)(& NCT6779_REG_FAN); data->REG_FAN_MODE = (u16 const *)(& NCT6775_REG_FAN_MODE); data->REG_FAN_MIN = (u16 const *)(& NCT6776_REG_FAN_MIN); data->REG_FAN_PULSES = (u16 const *)(& NCT6779_REG_FAN_PULSES); data->FAN_PULSE_SHIFT = (u16 const *)(& NCT6775_FAN_PULSE_SHIFT); data->REG_FAN_TIME[0] = (u16 const *)(& NCT6775_REG_FAN_STOP_TIME); data->REG_FAN_TIME[1] = (u16 const *)(& NCT6775_REG_FAN_STEP_UP_TIME); data->REG_FAN_TIME[2] = (u16 const *)(& NCT6775_REG_FAN_STEP_DOWN_TIME); data->REG_TOLERANCE_H = (u16 const *)(& NCT6776_REG_TOLERANCE_H); data->REG_PWM[0] = (u16 const *)(& NCT6775_REG_PWM); data->REG_PWM[1] = (u16 const *)(& NCT6775_REG_FAN_START_OUTPUT); data->REG_PWM[2] = (u16 const *)(& NCT6775_REG_FAN_STOP_OUTPUT); data->REG_PWM[5] = (u16 const *)(& NCT6791_REG_WEIGHT_DUTY_STEP); data->REG_PWM[6] = (u16 const *)(& NCT6791_REG_WEIGHT_DUTY_BASE); data->REG_PWM_READ = (u16 const *)(& NCT6775_REG_PWM_READ); data->REG_PWM_MODE = (u8 const *)(& NCT6776_REG_PWM_MODE); data->PWM_MODE_MASK = (u8 const *)(& NCT6776_PWM_MODE_MASK); data->REG_AUTO_TEMP = (u16 const *)(& NCT6775_REG_AUTO_TEMP); data->REG_AUTO_PWM = (u16 const *)(& NCT6775_REG_AUTO_PWM); data->REG_CRITICAL_TEMP = (u16 const *)(& NCT6775_REG_CRITICAL_TEMP); data->REG_CRITICAL_TEMP_TOLERANCE = (u16 const *)(& NCT6775_REG_CRITICAL_TEMP_TOLERANCE); data->REG_CRITICAL_PWM_ENABLE = (u16 const *)(& NCT6779_REG_CRITICAL_PWM_ENABLE); data->CRITICAL_PWM_ENABLE_MASK = 1U; data->REG_CRITICAL_PWM = (u16 const *)(& NCT6779_REG_CRITICAL_PWM); data->REG_TEMP_OFFSET = (u16 const *)(& NCT6779_REG_TEMP_OFFSET); data->REG_TEMP_SOURCE = (u16 const *)(& NCT6775_REG_TEMP_SOURCE); data->REG_TEMP_SEL = (u16 const *)(& NCT6775_REG_TEMP_SEL); data->REG_WEIGHT_TEMP_SEL = (u16 const *)(& NCT6791_REG_WEIGHT_TEMP_SEL); data->REG_WEIGHT_TEMP[0] = (u16 const *)(& NCT6791_REG_WEIGHT_TEMP_STEP); data->REG_WEIGHT_TEMP[1] = (u16 const *)(& NCT6791_REG_WEIGHT_TEMP_STEP_TOL); data->REG_WEIGHT_TEMP[2] = (u16 const *)(& NCT6791_REG_WEIGHT_TEMP_BASE); data->REG_ALARM = (u16 const *)(& NCT6791_REG_ALARM); if ((unsigned int )data->kind == 4U) { data->REG_BEEP = (u16 const *)(& NCT6776_REG_BEEP); } else { data->REG_BEEP = (u16 const *)(& NCT6792_REG_BEEP); } reg_temp = (u16 const *)(& NCT6779_REG_TEMP); num_reg_temp = 2; if ((unsigned int )data->kind == 4U) { reg_temp_mon = (u16 const *)(& NCT6779_REG_TEMP_MON); num_reg_temp_mon = 5; } else { reg_temp_mon = (u16 const *)(& NCT6792_REG_TEMP_MON); num_reg_temp_mon = 6; } reg_temp_over = (u16 const *)(& NCT6779_REG_TEMP_OVER); reg_temp_hyst = (u16 const *)(& NCT6779_REG_TEMP_HYST); reg_temp_config = (u16 const *)(& NCT6779_REG_TEMP_CONFIG); reg_temp_alternate = (u16 const *)(& NCT6779_REG_TEMP_ALTERNATE); reg_temp_crit = (u16 const *)(& NCT6779_REG_TEMP_CRIT); goto ldv_31483; switch_default: /* CIL Label */ ; return (-19); switch_break: /* CIL Label */ ; } ldv_31483: data->have_in = (unsigned int )((u16 )(1 << (int )data->in_num)) + 65535U; data->have_temp = 0U; mask = 0; available = 0; i = 0; goto ldv_31518; ldv_31517: ; if ((unsigned int )((unsigned short )*(reg_temp + (unsigned long )i)) == 0U) { goto ldv_31516; } else { } { tmp___2 = nct6775_read_value(data, (int )*(data->REG_TEMP_SOURCE + (unsigned long )i)); src = (int )tmp___2 & 31; } if (src == 0 || (mask >> src) & 1) { available = available | (1 << i); } else { } mask = mask | (1 << src); ldv_31516: i = i + 1; ldv_31518: ; if (i < num_reg_temp) { goto ldv_31517; } else { } { add_temp_sensors(data, data->REG_TEMP_SEL, & available, & mask); add_temp_sensors(data, data->REG_WEIGHT_TEMP_SEL, & available, & mask); mask = 0; s = 6; i = 0; } goto ldv_31522; ldv_31521: ; if ((unsigned int )((unsigned short )*(reg_temp + (unsigned long )i)) == 0U) { goto ldv_31520; } else { } { tmp___3 = nct6775_read_value(data, (int )*(data->REG_TEMP_SOURCE + (unsigned long )i)); src = (int )tmp___3 & 31; } if (src == 0 || (mask >> src) & 1) { goto ldv_31520; } else { } if (src >= data->temp_label_num) { { _dev_info((struct device const *)dev, "Invalid temperature source %d at index %d, source register 0x%x, temp register 0x%x\n", src, i, (int )*(data->REG_TEMP_SOURCE + (unsigned long )i), (int )*(reg_temp + (unsigned long )i)); } goto ldv_31520; } else { { tmp___4 = strlen(*(data->temp_label + (unsigned long )src)); } if (tmp___4 == 0UL) { { _dev_info((struct device const *)dev, "Invalid temperature source %d at index %d, source register 0x%x, temp register 0x%x\n", src, i, (int )*(data->REG_TEMP_SOURCE + (unsigned long )i), (int )*(reg_temp + (unsigned long )i)); } goto ldv_31520; } else { } } mask = mask | (1 << src); if (src <= (int )data->temp_fixed_num) { data->have_temp = (u16 )((int )((short )data->have_temp) | (int )((short )(1 << (src + -1)))); data->have_temp_fixed = (u16 )((int )((short )data->have_temp_fixed) | (int )((short )(1 << (src + -1)))); data->reg_temp[0][src + -1] = *(reg_temp + (unsigned long )i); data->reg_temp[1][src + -1] = *(reg_temp_over + (unsigned long )i); data->reg_temp[2][src + -1] = *(reg_temp_hyst + (unsigned long )i); if ((unsigned long )reg_temp_crit_h != (unsigned long )((u16 const *)0U) && (unsigned int )((unsigned short )*(reg_temp_crit_h + (unsigned long )i)) != 0U) { data->reg_temp[3][src + -1] = *(reg_temp_crit_h + (unsigned long )i); } else if ((unsigned int )((unsigned short )*(reg_temp_crit + ((unsigned long )src + 0xffffffffffffffffUL))) != 0U) { data->reg_temp[3][src + -1] = *(reg_temp_crit + ((unsigned long )src + 0xffffffffffffffffUL)); } else { } if ((unsigned long )reg_temp_crit_l != (unsigned long )((u16 const *)0U) && (unsigned int )((unsigned short )*(reg_temp_crit_l + (unsigned long )i)) != 0U) { data->reg_temp[4][src + -1] = *(reg_temp_crit_l + (unsigned long )i); } else { } data->reg_temp_config[src + -1] = *(reg_temp_config + (unsigned long )i); data->temp_src[src + -1] = (u8 )src; goto ldv_31520; } else { } if (s > 9) { goto ldv_31520; } else { } data->have_temp = (u16 )((int )((short )data->have_temp) | (int )((short )(1 << s))); data->reg_temp[0][s] = *(reg_temp + (unsigned long )i); data->reg_temp[1][s] = *(reg_temp_over + (unsigned long )i); data->reg_temp[2][s] = *(reg_temp_hyst + (unsigned long )i); data->reg_temp_config[s] = *(reg_temp_config + (unsigned long )i); if ((unsigned long )reg_temp_crit_h != (unsigned long )((u16 const *)0U) && (unsigned int )((unsigned short )*(reg_temp_crit_h + (unsigned long )i)) != 0U) { data->reg_temp[3][s] = *(reg_temp_crit_h + (unsigned long )i); } else if ((unsigned int )((unsigned short )*(reg_temp_crit + ((unsigned long )src + 0xffffffffffffffffUL))) != 0U) { data->reg_temp[3][s] = *(reg_temp_crit + ((unsigned long )src + 0xffffffffffffffffUL)); } else { } if ((unsigned long )reg_temp_crit_l != (unsigned long )((u16 const *)0U) && (unsigned int )((unsigned short )*(reg_temp_crit_l + (unsigned long )i)) != 0U) { data->reg_temp[4][s] = *(reg_temp_crit_l + (unsigned long )i); } else { } data->temp_src[s] = (u8 )src; s = s + 1; ldv_31520: i = i + 1; ldv_31522: ; if (i < num_reg_temp) { goto ldv_31521; } else { } i = 0; goto ldv_31526; ldv_31525: ; if ((unsigned int )((unsigned short )*(reg_temp_mon + (unsigned long )i)) == 0U) { goto ldv_31524; } else { } { tmp___5 = nct6775_read_value(data, (int )*(data->REG_TEMP_SEL + (unsigned long )i)); src = (int )tmp___5 & 31; } if (src == 0 || (mask >> src) & 1) { goto ldv_31524; } else { } if (src >= data->temp_label_num) { { _dev_info((struct device const *)dev, "Invalid temperature source %d at index %d, source register 0x%x, temp register 0x%x\n", src, i, (int )*(data->REG_TEMP_SEL + (unsigned long )i), (int )*(reg_temp_mon + (unsigned long )i)); } goto ldv_31524; } else { { tmp___6 = strlen(*(data->temp_label + (unsigned long )src)); } if (tmp___6 == 0UL) { { _dev_info((struct device const *)dev, "Invalid temperature source %d at index %d, source register 0x%x, temp register 0x%x\n", src, i, (int )*(data->REG_TEMP_SEL + (unsigned long )i), (int )*(reg_temp_mon + (unsigned long )i)); } goto ldv_31524; } else { } } mask = mask | (1 << src); if (src <= (int )data->temp_fixed_num) { if (((int )data->have_temp >> (src + -1)) & 1) { goto ldv_31524; } else { } data->have_temp = (u16 )((int )((short )data->have_temp) | (int )((short )(1 << (src + -1)))); data->have_temp_fixed = (u16 )((int )((short )data->have_temp_fixed) | (int )((short )(1 << (src + -1)))); data->reg_temp[0][src + -1] = *(reg_temp_mon + (unsigned long )i); data->temp_src[src + -1] = (u8 )src; goto ldv_31524; } else { } if (s > 9) { goto ldv_31524; } else { } data->have_temp = (u16 )((int )((short )data->have_temp) | (int )((short )(1 << s))); data->reg_temp[0][s] = *(reg_temp_mon + (unsigned long )i); data->temp_src[s] = (u8 )src; s = s + 1; ldv_31524: i = i + 1; ldv_31526: ; if (i < num_reg_temp_mon) { goto ldv_31525; } else { } i = 0; goto ldv_31531; ldv_31530: ; if ((unsigned int )((unsigned short )*(reg_temp_alternate + (unsigned long )i)) == 0U) { goto ldv_31528; } else { } if ((mask >> (i + 1)) & 1) { goto ldv_31528; } else { } if (i < (int )data->temp_fixed_num) { if (((int )data->have_temp >> i) & 1) { goto ldv_31528; } else { } data->have_temp = (u16 )((int )((short )data->have_temp) | (int )((short )(1 << i))); data->have_temp_fixed = (u16 )((int )((short )data->have_temp_fixed) | (int )((short )(1 << i))); data->reg_temp[0][i] = *(reg_temp_alternate + (unsigned long )i); if (i < num_reg_temp) { data->reg_temp[1][i] = *(reg_temp_over + (unsigned long )i); data->reg_temp[2][i] = *(reg_temp_hyst + (unsigned long )i); } else { } data->temp_src[i] = (unsigned int )((u8 )i) + 1U; goto ldv_31528; } else { } if (s > 9) { goto ldv_31529; } else { } data->have_temp = (u16 )((int )((short )data->have_temp) | (int )((short )(1 << s))); data->reg_temp[0][s] = *(reg_temp_alternate + (unsigned long )i); data->temp_src[s] = (unsigned int )((u8 )i) + 1U; s = s + 1; ldv_31528: i = i + 1; ldv_31531: ; if (i < data->temp_label_num + -1) { goto ldv_31530; } else { } ldv_31529: { nct6775_init_device(data); err = superio_enter(sio_data->sioreg); } if (err != 0) { return (err); } else { } { tmp___7 = superio_inb(sio_data->sioreg, 42); cr2a = (u8 )tmp___7; } { if ((unsigned int )data->kind == 1U) { goto case_1___0; } else { } if ((unsigned int )data->kind == 2U) { goto case_2___0; } else { } if ((unsigned int )data->kind == 0U) { goto case_0___0; } else { } if ((unsigned int )data->kind == 3U) { goto case_3___0; } else { } if ((unsigned int )data->kind == 4U) { goto case_4___0; } else { } if ((unsigned int )data->kind == 5U) { goto case_5___0; } else { } goto switch_break___0; case_1___0: /* CIL Label */ data->have_vid = ((int )cr2a & 64) != 0; goto ldv_31533; case_2___0: /* CIL Label */ data->have_vid = ((int )cr2a & 96) == 64; goto ldv_31533; case_0___0: /* CIL Label */ ; case_3___0: /* CIL Label */ ; case_4___0: /* CIL Label */ ; case_5___0: /* CIL Label */ ; goto ldv_31533; switch_break___0: /* CIL Label */ ; } ldv_31533: ; if ((int )data->have_vid) { { superio_select(sio_data->sioreg, 13); tmp___8 = superio_inb(sio_data->sioreg, 227); data->vid = (u8 )tmp___8; data->vrm = vid_which_vrm(); } } else { } if ((unsigned int )fan_debounce != 0U) { { superio_select(sio_data->sioreg, 11); tmp___10 = superio_inb(sio_data->sioreg, 240); tmp___9 = (u8 )tmp___10; } { if ((unsigned int )data->kind == 0U) { goto case_0___1; } else { } if ((unsigned int )data->kind == 1U) { goto case_1___1; } else { } if ((unsigned int )data->kind == 2U) { goto case_2___1; } else { } if ((unsigned int )data->kind == 3U) { goto case_3___1; } else { } if ((unsigned int )data->kind == 4U) { goto case_4___1; } else { } if ((unsigned int )data->kind == 5U) { goto case_5___1; } else { } goto switch_break___1; case_0___1: /* CIL Label */ tmp___9 = (u8 )((unsigned int )tmp___9 | 224U); goto ldv_31541; case_1___1: /* CIL Label */ tmp___9 = (u8 )((unsigned int )tmp___9 | 30U); goto ldv_31541; case_2___1: /* CIL Label */ ; case_3___1: /* CIL Label */ tmp___9 = (u8 )((unsigned int )tmp___9 | 62U); goto ldv_31541; case_4___1: /* CIL Label */ ; case_5___1: /* CIL Label */ tmp___9 = (u8 )((unsigned int )tmp___9 | 126U); goto ldv_31541; switch_break___1: /* CIL Label */ ; } ldv_31541: { superio_outb(sio_data->sioreg, 240, (int )tmp___9); _dev_info((struct device const *)(& pdev___0->dev), "Enabled fan debounce for chip %s\n", data->name); } } else { } { nct6775_check_fan_inputs(data); superio_exit(sio_data->sioreg); nct6775_init_fan_common(dev, data); group = nct6775_create_attr_group(dev, & nct6775_pwm_template_group, (int )data->pwm_num); tmp___12 = IS_ERR((void const *)group); } if ((int )tmp___12) { { tmp___11 = PTR_ERR((void const *)group); } return ((int )tmp___11); } else { } { tmp___13 = num_attr_groups; num_attr_groups = num_attr_groups + 1; data->groups[tmp___13] = (struct attribute_group const *)group; tmp___14 = fls((int )data->have_in); group = nct6775_create_attr_group(dev, & nct6775_in_template_group, tmp___14); tmp___16 = IS_ERR((void const *)group); } if ((int )tmp___16) { { tmp___15 = PTR_ERR((void const *)group); } return ((int )tmp___15); } else { } { tmp___17 = num_attr_groups; num_attr_groups = num_attr_groups + 1; data->groups[tmp___17] = (struct attribute_group const *)group; tmp___18 = fls((int )data->has_fan); group = nct6775_create_attr_group(dev, & nct6775_fan_template_group, tmp___18); tmp___20 = IS_ERR((void const *)group); } if ((int )tmp___20) { { tmp___19 = PTR_ERR((void const *)group); } return ((int )tmp___19); } else { } { tmp___21 = num_attr_groups; num_attr_groups = num_attr_groups + 1; data->groups[tmp___21] = (struct attribute_group const *)group; tmp___22 = fls((int )data->have_temp); group = nct6775_create_attr_group(dev, & nct6775_temp_template_group, tmp___22); tmp___24 = IS_ERR((void const *)group); } if ((int )tmp___24) { { tmp___23 = PTR_ERR((void const *)group); } return ((int )tmp___23); } else { } { tmp___25 = num_attr_groups; num_attr_groups = num_attr_groups + 1; data->groups[tmp___25] = (struct attribute_group const *)group; tmp___26 = num_attr_groups; num_attr_groups = num_attr_groups + 1; data->groups[tmp___26] = & nct6775_group_other; hwmon_dev = devm_hwmon_device_register_with_groups(dev, data->name, (void *)data, (struct attribute_group const **)(& data->groups)); tmp___27 = PTR_ERR_OR_ZERO((void const *)hwmon_dev); } return (tmp___27); } } static void nct6791_enable_io_mapping(int sioaddr ) { int val ; { { val = superio_inb(sioaddr, 40); } if ((val & 16) != 0) { { printk("\016nct6775: Enabling hardware monitor logical device mappings.\n"); superio_outb(sioaddr, 40, val & -17); } } else { } return; } } static int nct6775_suspend(struct device *dev ) { struct nct6775_data *data ; struct nct6775_data *tmp ; u16 tmp___0 ; u16 tmp___1 ; u16 tmp___2 ; { { tmp = nct6775_update_device(dev); data = tmp; ldv_mutex_lock_142(& data->update_lock); tmp___0 = nct6775_read_value(data, (int )data->REG_VBAT); data->vbat = (u8 )tmp___0; } if ((unsigned int )data->kind == 1U) { { tmp___1 = nct6775_read_value(data, 1286); data->fandiv1 = (u8 )tmp___1; tmp___2 = nct6775_read_value(data, 1287); data->fandiv2 = (u8 )tmp___2; } } else { } { ldv_mutex_unlock_143(& data->update_lock); } return (0); } } static int nct6775_resume(struct device *dev ) { struct nct6775_data *data ; void *tmp ; int i ; int j ; int err ; { { tmp = dev_get_drvdata((struct device const *)dev); data = (struct nct6775_data *)tmp; err = 0; ldv_mutex_lock_144(& data->update_lock); data->bank = 255U; } if ((unsigned int )data->kind - 4U <= 1U) { { err = superio_enter(data->sioreg); } if (err != 0) { goto abort; } else { } { nct6791_enable_io_mapping(data->sioreg); superio_exit(data->sioreg); } } else { } i = 0; goto ldv_31565; ldv_31564: ; if ((((int )data->have_in >> i) & 1) == 0) { goto ldv_31563; } else { } { nct6775_write_value(data, (int )*(data->REG_IN_MINMAX[0] + (unsigned long )i), (int )data->in[i][1]); nct6775_write_value(data, (int )*(data->REG_IN_MINMAX[1] + (unsigned long )i), (int )data->in[i][2]); } ldv_31563: i = i + 1; ldv_31565: ; if (i < (int )data->in_num) { goto ldv_31564; } else { } i = 0; goto ldv_31571; ldv_31570: ; if ((((int )data->has_fan_min >> i) & 1) == 0) { goto ldv_31569; } else { } { nct6775_write_value(data, (int )*(data->REG_FAN_MIN + (unsigned long )i), (int )data->fan_min[i]); } ldv_31569: i = i + 1; ldv_31571: ; if ((unsigned int )i <= 5U) { goto ldv_31570; } else { } i = 0; goto ldv_31580; ldv_31579: ; if ((((int )data->have_temp >> i) & 1) == 0) { goto ldv_31573; } else { } j = 1; goto ldv_31577; ldv_31576: ; if ((unsigned int )data->reg_temp[j][i] != 0U) { { nct6775_write_temp(data, (int )data->reg_temp[j][i], (int )((u16 )data->temp[j][i])); } } else { } j = j + 1; ldv_31577: ; if ((unsigned int )j <= 4U) { goto ldv_31576; } else { } ldv_31573: i = i + 1; ldv_31580: ; if (i <= 9) { goto ldv_31579; } else { } { nct6775_write_value(data, (int )data->REG_VBAT, (int )data->vbat); } if ((unsigned int )data->kind == 1U) { { nct6775_write_value(data, 1286, (int )data->fandiv1); nct6775_write_value(data, 1287, (int )data->fandiv2); } } else { } abort: { data->valid = 0; ldv_mutex_unlock_145(& data->update_lock); } return (err); } } static struct dev_pm_ops const nct6775_dev_pm_ops = {0, 0, & nct6775_suspend, & nct6775_resume, & nct6775_suspend, 0, 0, & nct6775_resume, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct platform_driver nct6775_driver = {& nct6775_probe, 0, 0, 0, 0, {"nct6775", 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, & nct6775_dev_pm_ops, 0}, 0, (_Bool)0}; static char const * const nct6775_sio_names[6U] = { "NCT6106D", "NCT6775F", "NCT6776D/F", "NCT6779D", "NCT6791D", "NCT6792D"}; static int nct6775_find(int sioaddr , struct nct6775_sio_data *sio_data ) { u16 val ; int err ; int addr ; int tmp ; int tmp___0 ; struct _ddebug descriptor ; long tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; { { err = superio_enter(sioaddr); } if (err != 0) { return (err); } else { } if ((unsigned int )force_id != 0U) { val = force_id; } else { { tmp = superio_inb(sioaddr, 32); tmp___0 = superio_inb(sioaddr, 33); val = (u16 )((int )((short )(tmp << 8)) | (int )((short )tmp___0)); } } { if (((int )val & 65520) == 50256) { goto case_50256; } else { } if (((int )val & 65520) == 46192) { goto case_46192; } else { } if (((int )val & 65520) == 49968) { goto case_49968; } else { } if (((int )val & 65520) == 50528) { goto case_50528; } else { } if (((int )val & 65520) == 51200) { goto case_51200; } else { } if (((int )val & 65520) == 51472) { goto case_51472; } else { } goto switch_default; case_50256: /* CIL Label */ sio_data->kind = 0; goto ldv_31593; case_46192: /* CIL Label */ sio_data->kind = 1; goto ldv_31593; case_49968: /* CIL Label */ sio_data->kind = 2; goto ldv_31593; case_50528: /* CIL Label */ sio_data->kind = 3; goto ldv_31593; case_51200: /* CIL Label */ sio_data->kind = 4; goto ldv_31593; case_51472: /* CIL Label */ sio_data->kind = 5; goto ldv_31593; switch_default: /* CIL Label */ ; if ((unsigned int )val != 65535U) { { descriptor.modname = "nct6775"; descriptor.function = "nct6775_find"; descriptor.filename = "drivers/hwmon/nct6775.c"; descriptor.format = "unsupported chip ID: 0x%04x\n"; descriptor.lineno = 4135U; descriptor.flags = 1U; tmp___1 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___1 != 0L) { { __dynamic_pr_debug(& descriptor, "nct6775: unsupported chip ID: 0x%04x\n", (int )val); } } else { } } else { } { superio_exit(sioaddr); } return (-19); switch_break: /* CIL Label */ ; } ldv_31593: { superio_select(sioaddr, 11); tmp___2 = superio_inb(sioaddr, 96); tmp___3 = superio_inb(sioaddr, 97); val = (u16 )((int )((short )(tmp___2 << 8)) | (int )((short )tmp___3)); addr = (int )val & -8; } if (addr == 0) { { printk("\vnct6775: Refusing to enable a Super-I/O device with a base I/O port 0\n"); superio_exit(sioaddr); } return (-19); } else { } { tmp___4 = superio_inb(sioaddr, 48); val = (u16 )tmp___4; } if (((int )val & 1) == 0) { { printk("\fnct6775: Forcibly enabling Super-I/O. Sensor is probably unusable.\n"); superio_outb(sioaddr, 48, (int )((unsigned int )val | 1U)); } } else { } if ((unsigned int )sio_data->kind - 4U <= 1U) { { nct6791_enable_io_mapping(sioaddr); } } else { } { superio_exit(sioaddr); printk("\016nct6775: Found %s or compatible chip at %#x:%#x\n", nct6775_sio_names[(unsigned int )sio_data->kind], sioaddr, addr); sio_data->sioreg = sioaddr; } return (addr); } } static struct platform_device *pdev[2U] ; static int sensors_nct6775_init(void) { int i ; int err ; bool found ; int address ; struct resource res ; struct nct6775_sio_data sio_data ; int sioaddr[2U] ; { { found = 0; sioaddr[0] = 46; sioaddr[1] = 78; err = ldv___platform_driver_register_146(& nct6775_driver, & __this_module); } if (err != 0) { return (err); } else { } i = 0; goto ldv_31619; ldv_31618: { address = nct6775_find(sioaddr[i], & sio_data); } if (address <= 0) { goto ldv_31615; } else { } { found = 1; pdev[i] = platform_device_alloc("nct6775", address); } if ((unsigned long )pdev[i] == (unsigned long )((struct platform_device *)0)) { err = -12; goto exit_device_unregister; } else { } { err = platform_device_add_data(pdev[i], (void const *)(& sio_data), 8UL); } if (err != 0) { goto exit_device_put; } else { } { __memset((void *)(& res), 0, 56UL); res.name = "nct6775"; res.start = (resource_size_t )(address + 5); res.end = (resource_size_t )(address + 6); res.flags = 256UL; err = acpi_check_resource_conflict((struct resource const *)(& res)); } if (err != 0) { { platform_device_put(pdev[i]); pdev[i] = (struct platform_device *)0; } goto ldv_31615; } else { } { err = platform_device_add_resources(pdev[i], (struct resource const *)(& res), 1U); } if (err != 0) { goto exit_device_put; } else { } { err = platform_device_add(pdev[i]); } if (err != 0) { goto exit_device_put; } else { } ldv_31615: i = i + 1; ldv_31619: ; if ((unsigned int )i <= 1U) { goto ldv_31618; } else { } if (! found) { err = -19; goto exit_unregister; } else { } return (0); exit_device_put: { platform_device_put(pdev[i]); } exit_device_unregister: ; goto ldv_31623; ldv_31622: ; if ((unsigned long )pdev[i] != (unsigned long )((struct platform_device *)0)) { { platform_device_unregister(pdev[i]); } } else { } ldv_31623: i = i - 1; if (i >= 0) { goto ldv_31622; } else { } exit_unregister: { ldv_platform_driver_unregister_147(& nct6775_driver); } return (err); } } static void sensors_nct6775_exit(void) { int i ; { i = 0; goto ldv_31632; ldv_31631: ; if ((unsigned long )pdev[i] != (unsigned long )((struct platform_device *)0)) { { platform_device_unregister(pdev[i]); } } else { } i = i + 1; ldv_31632: ; if ((unsigned int )i <= 1U) { goto ldv_31631; } else { } { ldv_platform_driver_unregister_148(& nct6775_driver); } return; } } void ldv_EMGentry_exit_sensors_nct6775_exit_36_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_sensors_nct6775_init_36_11(int (*arg0)(void) ) ; int ldv___platform_driver_register(int arg0 , struct platform_driver *arg1 , struct module *arg2 ) ; void ldv_dispatch_deregister_35_1(struct platform_driver *arg0 ) ; void ldv_dispatch_deregister_dummy_resourceless_instance_5_36_4(void) ; void ldv_dispatch_deregister_dummy_resourceless_instance_6_36_5(void) ; void ldv_dispatch_pm_deregister_0_5(void) ; void ldv_dispatch_pm_register_0_6(void) ; void ldv_dispatch_register_34_2(struct platform_driver *arg0 ) ; void ldv_dispatch_register_dummy_resourceless_instance_5_36_6(void) ; void ldv_dispatch_register_dummy_resourceless_instance_6_36_7(void) ; void ldv_dummy_resourceless_instance_callback_10_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_10_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_11_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_11_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_12_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_12_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_13_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_13_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_14_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_14_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_15_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_15_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_16_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_16_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_17_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_17_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_18_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_18_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_19_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_19_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_20_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_20_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_21_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_21_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_22_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_22_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_23_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_23_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_24_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_24_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_25_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_25_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_26_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_26_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_27_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_27_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_28_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_28_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_29_3(unsigned short (*arg0)(struct kobject * , struct attribute * , int ) , struct kobject *arg1 , struct attribute *arg2 , int arg3 ) ; void ldv_dummy_resourceless_instance_callback_2_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_2_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_30_3(unsigned short (*arg0)(struct kobject * , struct attribute * , int ) , struct kobject *arg1 , struct attribute *arg2 , int arg3 ) ; void ldv_dummy_resourceless_instance_callback_31_3(unsigned short (*arg0)(struct kobject * , struct attribute * , int ) , struct kobject *arg1 , struct attribute *arg2 , int arg3 ) ; void ldv_dummy_resourceless_instance_callback_32_3(unsigned short (*arg0)(struct kobject * , struct attribute * , int ) , struct kobject *arg1 , struct attribute *arg2 , int arg3 ) ; void ldv_dummy_resourceless_instance_callback_33_3(unsigned short (*arg0)(struct kobject * , struct attribute * , int ) , struct kobject *arg1 , struct attribute *arg2 , int arg3 ) ; void ldv_dummy_resourceless_instance_callback_3_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_3_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_4_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_4_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_5_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_5_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_6_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_6_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_7_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_7_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_8_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_8_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_9_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_9_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_entry_EMGentry_36(void *arg0 ) ; int main(void) ; void ldv_platform_driver_unregister(void *arg0 , struct platform_driver *arg1 ) ; int ldv_platform_instance_probe_0_14(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) ; void ldv_platform_instance_release_0_3(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) ; void ldv_platform_platform_instance_0(void *arg0 ) ; void ldv_platform_pm_ops_instance_1(void *arg0 ) ; void ldv_pm_ops_instance_complete_1_3(void (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_1_15(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_late_1_14(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_noirq_1_12(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_1_9(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_late_1_8(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_noirq_1_6(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_prepare_1_22(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_1_4(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_early_1_7(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_noirq_1_5(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_1_16(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_early_1_17(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_noirq_1_19(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_idle_1_27(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_resume_1_24(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_suspend_1_25(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_1_21(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_late_1_18(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_noirq_1_20(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_1_10(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_early_1_13(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_noirq_1_11(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_struct_sensor_device_template_dummy_resourceless_instance_10(void *arg0 ) ; void ldv_struct_sensor_device_template_dummy_resourceless_instance_11(void *arg0 ) ; void ldv_struct_sensor_device_template_dummy_resourceless_instance_12(void *arg0 ) ; void ldv_struct_sensor_device_template_dummy_resourceless_instance_13(void *arg0 ) ; void ldv_struct_sensor_device_template_dummy_resourceless_instance_14(void *arg0 ) ; void ldv_struct_sensor_device_template_dummy_resourceless_instance_15(void *arg0 ) ; void ldv_struct_sensor_device_template_dummy_resourceless_instance_16(void *arg0 ) ; void ldv_struct_sensor_device_template_dummy_resourceless_instance_17(void *arg0 ) ; void ldv_struct_sensor_device_template_dummy_resourceless_instance_18(void *arg0 ) ; void ldv_struct_sensor_device_template_dummy_resourceless_instance_19(void *arg0 ) ; void ldv_struct_sensor_device_template_dummy_resourceless_instance_2(void *arg0 ) ; void ldv_struct_sensor_device_template_dummy_resourceless_instance_20(void *arg0 ) ; void ldv_struct_sensor_device_template_dummy_resourceless_instance_21(void *arg0 ) ; void ldv_struct_sensor_device_template_dummy_resourceless_instance_22(void *arg0 ) ; void ldv_struct_sensor_device_template_dummy_resourceless_instance_23(void *arg0 ) ; void ldv_struct_sensor_device_template_dummy_resourceless_instance_24(void *arg0 ) ; void ldv_struct_sensor_device_template_dummy_resourceless_instance_25(void *arg0 ) ; void ldv_struct_sensor_device_template_dummy_resourceless_instance_26(void *arg0 ) ; void ldv_struct_sensor_device_template_dummy_resourceless_instance_27(void *arg0 ) ; void ldv_struct_sensor_device_template_dummy_resourceless_instance_28(void *arg0 ) ; void ldv_struct_sensor_device_template_dummy_resourceless_instance_3(void *arg0 ) ; void ldv_struct_sensor_device_template_dummy_resourceless_instance_4(void *arg0 ) ; void ldv_struct_sensor_device_template_dummy_resourceless_instance_5(void *arg0 ) ; void ldv_struct_sensor_device_template_dummy_resourceless_instance_6(void *arg0 ) ; void ldv_struct_sensor_device_template_dummy_resourceless_instance_7(void *arg0 ) ; void ldv_struct_sensor_device_template_dummy_resourceless_instance_8(void *arg0 ) ; void ldv_struct_sensor_device_template_dummy_resourceless_instance_9(void *arg0 ) ; void ldv_struct_sensor_template_group_dummy_resourceless_instance_29(void *arg0 ) ; void ldv_struct_sensor_template_group_dummy_resourceless_instance_30(void *arg0 ) ; void ldv_struct_sensor_template_group_dummy_resourceless_instance_31(void *arg0 ) ; void ldv_struct_sensor_template_group_dummy_resourceless_instance_32(void *arg0 ) ; void ldv_struct_sensor_template_group_dummy_resourceless_instance_33(void *arg0 ) ; struct ldv_thread ldv_thread_0 ; struct ldv_thread ldv_thread_1 ; struct ldv_thread ldv_thread_10 ; struct ldv_thread ldv_thread_11 ; struct ldv_thread ldv_thread_12 ; struct ldv_thread ldv_thread_13 ; struct ldv_thread ldv_thread_14 ; struct ldv_thread ldv_thread_15 ; struct ldv_thread ldv_thread_16 ; struct ldv_thread ldv_thread_17 ; struct ldv_thread ldv_thread_18 ; struct ldv_thread ldv_thread_19 ; struct ldv_thread ldv_thread_2 ; struct ldv_thread ldv_thread_20 ; struct ldv_thread ldv_thread_21 ; struct ldv_thread ldv_thread_22 ; struct ldv_thread ldv_thread_23 ; struct ldv_thread ldv_thread_24 ; struct ldv_thread ldv_thread_25 ; struct ldv_thread ldv_thread_26 ; struct ldv_thread ldv_thread_27 ; struct ldv_thread ldv_thread_28 ; struct ldv_thread ldv_thread_29 ; struct ldv_thread ldv_thread_3 ; struct ldv_thread ldv_thread_30 ; struct ldv_thread ldv_thread_31 ; struct ldv_thread ldv_thread_32 ; struct ldv_thread ldv_thread_33 ; struct ldv_thread ldv_thread_36 ; struct ldv_thread ldv_thread_4 ; struct ldv_thread ldv_thread_5 ; struct ldv_thread ldv_thread_6 ; struct ldv_thread ldv_thread_7 ; struct ldv_thread ldv_thread_8 ; struct ldv_thread ldv_thread_9 ; void ldv_EMGentry_exit_sensors_nct6775_exit_36_2(void (*arg0)(void) ) { { { sensors_nct6775_exit(); } return; } } int ldv_EMGentry_init_sensors_nct6775_init_36_11(int (*arg0)(void) ) { int tmp ; { { tmp = sensors_nct6775_init(); } return (tmp); } } int ldv___platform_driver_register(int arg0 , struct platform_driver *arg1 , struct module *arg2 ) { struct platform_driver *ldv_34_platform_driver_platform_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_34_platform_driver_platform_driver = arg1; ldv_dispatch_register_34_2(ldv_34_platform_driver_platform_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_dispatch_deregister_35_1(struct platform_driver *arg0 ) { { return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_5_36_4(void) { { return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_6_36_5(void) { { return; } } void ldv_dispatch_pm_deregister_0_5(void) { { return; } } void ldv_dispatch_pm_register_0_6(void) { struct ldv_struct_platform_instance_0 *cf_arg_1 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_1 = (struct ldv_struct_platform_instance_0 *)tmp; ldv_platform_pm_ops_instance_1((void *)cf_arg_1); } return; } } void ldv_dispatch_register_34_2(struct platform_driver *arg0 ) { struct ldv_struct_platform_instance_0 *cf_arg_0 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_0 = (struct ldv_struct_platform_instance_0 *)tmp; cf_arg_0->arg0 = arg0; ldv_platform_platform_instance_0((void *)cf_arg_0); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_5_36_6(void) { struct ldv_struct_platform_instance_0 *cf_arg_2 ; struct ldv_struct_platform_instance_0 *cf_arg_3 ; struct ldv_struct_platform_instance_0 *cf_arg_4 ; struct ldv_struct_platform_instance_0 *cf_arg_5 ; struct ldv_struct_platform_instance_0 *cf_arg_6 ; struct ldv_struct_platform_instance_0 *cf_arg_7 ; struct ldv_struct_platform_instance_0 *cf_arg_8 ; struct ldv_struct_platform_instance_0 *cf_arg_9 ; struct ldv_struct_platform_instance_0 *cf_arg_10 ; struct ldv_struct_platform_instance_0 *cf_arg_11 ; struct ldv_struct_platform_instance_0 *cf_arg_12 ; struct ldv_struct_platform_instance_0 *cf_arg_13 ; struct ldv_struct_platform_instance_0 *cf_arg_14 ; struct ldv_struct_platform_instance_0 *cf_arg_15 ; struct ldv_struct_platform_instance_0 *cf_arg_16 ; struct ldv_struct_platform_instance_0 *cf_arg_17 ; struct ldv_struct_platform_instance_0 *cf_arg_18 ; struct ldv_struct_platform_instance_0 *cf_arg_19 ; struct ldv_struct_platform_instance_0 *cf_arg_20 ; struct ldv_struct_platform_instance_0 *cf_arg_21 ; struct ldv_struct_platform_instance_0 *cf_arg_22 ; struct ldv_struct_platform_instance_0 *cf_arg_23 ; struct ldv_struct_platform_instance_0 *cf_arg_24 ; struct ldv_struct_platform_instance_0 *cf_arg_25 ; struct ldv_struct_platform_instance_0 *cf_arg_26 ; struct ldv_struct_platform_instance_0 *cf_arg_27 ; struct ldv_struct_platform_instance_0 *cf_arg_28 ; void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; void *tmp___8 ; void *tmp___9 ; void *tmp___10 ; void *tmp___11 ; void *tmp___12 ; void *tmp___13 ; void *tmp___14 ; void *tmp___15 ; void *tmp___16 ; void *tmp___17 ; void *tmp___18 ; void *tmp___19 ; void *tmp___20 ; void *tmp___21 ; void *tmp___22 ; void *tmp___23 ; void *tmp___24 ; void *tmp___25 ; { { tmp = ldv_xmalloc(16UL); cf_arg_2 = (struct ldv_struct_platform_instance_0 *)tmp; ldv_struct_sensor_device_template_dummy_resourceless_instance_2((void *)cf_arg_2); tmp___0 = ldv_xmalloc(16UL); cf_arg_3 = (struct ldv_struct_platform_instance_0 *)tmp___0; ldv_struct_sensor_device_template_dummy_resourceless_instance_3((void *)cf_arg_3); tmp___1 = ldv_xmalloc(16UL); cf_arg_4 = (struct ldv_struct_platform_instance_0 *)tmp___1; ldv_struct_sensor_device_template_dummy_resourceless_instance_4((void *)cf_arg_4); tmp___2 = ldv_xmalloc(16UL); cf_arg_5 = (struct ldv_struct_platform_instance_0 *)tmp___2; ldv_struct_sensor_device_template_dummy_resourceless_instance_5((void *)cf_arg_5); tmp___3 = ldv_xmalloc(16UL); cf_arg_6 = (struct ldv_struct_platform_instance_0 *)tmp___3; ldv_struct_sensor_device_template_dummy_resourceless_instance_6((void *)cf_arg_6); tmp___4 = ldv_xmalloc(16UL); cf_arg_7 = (struct ldv_struct_platform_instance_0 *)tmp___4; ldv_struct_sensor_device_template_dummy_resourceless_instance_7((void *)cf_arg_7); tmp___5 = ldv_xmalloc(16UL); cf_arg_8 = (struct ldv_struct_platform_instance_0 *)tmp___5; ldv_struct_sensor_device_template_dummy_resourceless_instance_8((void *)cf_arg_8); tmp___6 = ldv_xmalloc(16UL); cf_arg_9 = (struct ldv_struct_platform_instance_0 *)tmp___6; ldv_struct_sensor_device_template_dummy_resourceless_instance_9((void *)cf_arg_9); tmp___7 = ldv_xmalloc(16UL); cf_arg_10 = (struct ldv_struct_platform_instance_0 *)tmp___7; ldv_struct_sensor_device_template_dummy_resourceless_instance_10((void *)cf_arg_10); tmp___8 = ldv_xmalloc(16UL); cf_arg_11 = (struct ldv_struct_platform_instance_0 *)tmp___8; ldv_struct_sensor_device_template_dummy_resourceless_instance_11((void *)cf_arg_11); tmp___9 = ldv_xmalloc(16UL); cf_arg_12 = (struct ldv_struct_platform_instance_0 *)tmp___9; ldv_struct_sensor_device_template_dummy_resourceless_instance_12((void *)cf_arg_12); tmp___10 = ldv_xmalloc(16UL); cf_arg_13 = (struct ldv_struct_platform_instance_0 *)tmp___10; ldv_struct_sensor_device_template_dummy_resourceless_instance_13((void *)cf_arg_13); tmp___11 = ldv_xmalloc(16UL); cf_arg_14 = (struct ldv_struct_platform_instance_0 *)tmp___11; ldv_struct_sensor_device_template_dummy_resourceless_instance_14((void *)cf_arg_14); tmp___12 = ldv_xmalloc(16UL); cf_arg_15 = (struct ldv_struct_platform_instance_0 *)tmp___12; ldv_struct_sensor_device_template_dummy_resourceless_instance_15((void *)cf_arg_15); tmp___13 = ldv_xmalloc(16UL); cf_arg_16 = (struct ldv_struct_platform_instance_0 *)tmp___13; ldv_struct_sensor_device_template_dummy_resourceless_instance_16((void *)cf_arg_16); tmp___14 = ldv_xmalloc(16UL); cf_arg_17 = (struct ldv_struct_platform_instance_0 *)tmp___14; ldv_struct_sensor_device_template_dummy_resourceless_instance_17((void *)cf_arg_17); tmp___15 = ldv_xmalloc(16UL); cf_arg_18 = (struct ldv_struct_platform_instance_0 *)tmp___15; ldv_struct_sensor_device_template_dummy_resourceless_instance_18((void *)cf_arg_18); tmp___16 = ldv_xmalloc(16UL); cf_arg_19 = (struct ldv_struct_platform_instance_0 *)tmp___16; ldv_struct_sensor_device_template_dummy_resourceless_instance_19((void *)cf_arg_19); tmp___17 = ldv_xmalloc(16UL); cf_arg_20 = (struct ldv_struct_platform_instance_0 *)tmp___17; ldv_struct_sensor_device_template_dummy_resourceless_instance_20((void *)cf_arg_20); tmp___18 = ldv_xmalloc(16UL); cf_arg_21 = (struct ldv_struct_platform_instance_0 *)tmp___18; ldv_struct_sensor_device_template_dummy_resourceless_instance_21((void *)cf_arg_21); tmp___19 = ldv_xmalloc(16UL); cf_arg_22 = (struct ldv_struct_platform_instance_0 *)tmp___19; ldv_struct_sensor_device_template_dummy_resourceless_instance_22((void *)cf_arg_22); tmp___20 = ldv_xmalloc(16UL); cf_arg_23 = (struct ldv_struct_platform_instance_0 *)tmp___20; ldv_struct_sensor_device_template_dummy_resourceless_instance_23((void *)cf_arg_23); tmp___21 = ldv_xmalloc(16UL); cf_arg_24 = (struct ldv_struct_platform_instance_0 *)tmp___21; ldv_struct_sensor_device_template_dummy_resourceless_instance_24((void *)cf_arg_24); tmp___22 = ldv_xmalloc(16UL); cf_arg_25 = (struct ldv_struct_platform_instance_0 *)tmp___22; ldv_struct_sensor_device_template_dummy_resourceless_instance_25((void *)cf_arg_25); tmp___23 = ldv_xmalloc(16UL); cf_arg_26 = (struct ldv_struct_platform_instance_0 *)tmp___23; ldv_struct_sensor_device_template_dummy_resourceless_instance_26((void *)cf_arg_26); tmp___24 = ldv_xmalloc(16UL); cf_arg_27 = (struct ldv_struct_platform_instance_0 *)tmp___24; ldv_struct_sensor_device_template_dummy_resourceless_instance_27((void *)cf_arg_27); tmp___25 = ldv_xmalloc(16UL); cf_arg_28 = (struct ldv_struct_platform_instance_0 *)tmp___25; ldv_struct_sensor_device_template_dummy_resourceless_instance_28((void *)cf_arg_28); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_6_36_7(void) { struct ldv_struct_platform_instance_0 *cf_arg_32 ; struct ldv_struct_platform_instance_0 *cf_arg_33 ; struct ldv_struct_platform_instance_0 *cf_arg_29 ; struct ldv_struct_platform_instance_0 *cf_arg_30 ; struct ldv_struct_platform_instance_0 *cf_arg_31 ; void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; { { tmp = ldv_xmalloc(16UL); cf_arg_32 = (struct ldv_struct_platform_instance_0 *)tmp; ldv_struct_sensor_template_group_dummy_resourceless_instance_32((void *)cf_arg_32); tmp___0 = ldv_xmalloc(16UL); cf_arg_33 = (struct ldv_struct_platform_instance_0 *)tmp___0; ldv_struct_sensor_template_group_dummy_resourceless_instance_33((void *)cf_arg_33); tmp___1 = ldv_xmalloc(16UL); cf_arg_29 = (struct ldv_struct_platform_instance_0 *)tmp___1; ldv_struct_sensor_template_group_dummy_resourceless_instance_29((void *)cf_arg_29); tmp___2 = ldv_xmalloc(16UL); cf_arg_30 = (struct ldv_struct_platform_instance_0 *)tmp___2; ldv_struct_sensor_template_group_dummy_resourceless_instance_30((void *)cf_arg_30); tmp___3 = ldv_xmalloc(16UL); cf_arg_31 = (struct ldv_struct_platform_instance_0 *)tmp___3; ldv_struct_sensor_template_group_dummy_resourceless_instance_31((void *)cf_arg_31); } return; } } void ldv_dummy_resourceless_instance_callback_10_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_fan_time(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_10_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { store_fan_time(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_11_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_in_reg(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_11_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { store_in_reg(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_12_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_pwm(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_12_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { store_pwm(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_13_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_pwm_enable(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_13_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { store_pwm_enable(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_14_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_pwm_mode(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_14_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { store_pwm_mode(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_15_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_pwm_temp_sel(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_15_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { store_pwm_temp_sel(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_16_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_pwm_weight_temp_sel(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_16_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { store_pwm_weight_temp_sel(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_17_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_speed_tolerance(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_17_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { store_speed_tolerance(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_18_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_target_speed(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_18_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { store_target_speed(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_19_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_target_temp(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_19_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { store_target_temp(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_20_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_temp(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_20_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { store_temp(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_21_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_temp_alarm(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_21_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { store_weight_temp(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_22_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_temp_beep(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_22_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { store_temp_beep(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_23_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_temp_label(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_23_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { store_weight_temp(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_24_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_temp_offset(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_24_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { store_temp_offset(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_25_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_temp_tolerance(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_25_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { store_temp_tolerance(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_26_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_temp_type(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_26_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { store_temp_type(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_27_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_vid(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_27_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { store_weight_temp(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_28_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_weight_temp(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_28_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { store_weight_temp(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_29_3(unsigned short (*arg0)(struct kobject * , struct attribute * , int ) , struct kobject *arg1 , struct attribute *arg2 , int arg3 ) { { { nct6775_fan_is_visible(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_2_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_alarm(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_2_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { clear_caseopen(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_30_3(unsigned short (*arg0)(struct kobject * , struct attribute * , int ) , struct kobject *arg1 , struct attribute *arg2 , int arg3 ) { { { nct6775_in_is_visible(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_31_3(unsigned short (*arg0)(struct kobject * , struct attribute * , int ) , struct kobject *arg1 , struct attribute *arg2 , int arg3 ) { { { nct6775_other_is_visible(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_32_3(unsigned short (*arg0)(struct kobject * , struct attribute * , int ) , struct kobject *arg1 , struct attribute *arg2 , int arg3 ) { { { nct6775_pwm_is_visible(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_33_3(unsigned short (*arg0)(struct kobject * , struct attribute * , int ) , struct kobject *arg1 , struct attribute *arg2 , int arg3 ) { { { nct6775_temp_is_visible(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_3_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_auto_pwm(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_3_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { store_auto_pwm(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_4_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_auto_temp(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_4_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { store_auto_temp(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_5_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_beep(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_5_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { store_beep(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_6_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_fan(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_6_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { store_weight_temp(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_7_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_fan_div(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_7_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { store_weight_temp(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_8_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_fan_min(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_8_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { store_fan_min(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_9_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_fan_pulses(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_9_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { store_fan_pulses(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_entry_EMGentry_36(void *arg0 ) { void (*ldv_36_exit_sensors_nct6775_exit_default)(void) ; int (*ldv_36_init_sensors_nct6775_init_default)(void) ; int ldv_36_ret_default ; int tmp ; int tmp___0 ; { { ldv_36_ret_default = ldv_EMGentry_init_sensors_nct6775_init_36_11(ldv_36_init_sensors_nct6775_init_default); ldv_36_ret_default = ldv_ldv_post_init_149(ldv_36_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_36_ret_default != 0); ldv_ldv_check_final_state_150(); ldv_stop(); } return; } else { { ldv_assume(ldv_36_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dispatch_register_dummy_resourceless_instance_6_36_7(); ldv_dispatch_register_dummy_resourceless_instance_5_36_6(); ldv_dispatch_deregister_dummy_resourceless_instance_6_36_5(); ldv_dispatch_deregister_dummy_resourceless_instance_5_36_4(); } } else { } { ldv_EMGentry_exit_sensors_nct6775_exit_36_2(ldv_36_exit_sensors_nct6775_exit_default); ldv_ldv_check_final_state_151(); ldv_stop(); } return; } return; } } int main(void) { { { ldv_ldv_initialize_152(); ldv_entry_EMGentry_36((void *)0); } return 0; } } void ldv_platform_driver_unregister(void *arg0 , struct platform_driver *arg1 ) { struct platform_driver *ldv_35_platform_driver_platform_driver ; { { ldv_35_platform_driver_platform_driver = arg1; ldv_dispatch_deregister_35_1(ldv_35_platform_driver_platform_driver); } return; return; } } int ldv_platform_instance_probe_0_14(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) { int tmp ; { { tmp = nct6775_probe(arg1); } return (tmp); } } void ldv_platform_instance_release_0_3(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_platform_platform_instance_0(void *arg0 ) { struct platform_driver *ldv_0_container_platform_driver ; int ldv_0_probed_default ; struct platform_device *ldv_0_resource_platform_device ; struct ldv_struct_platform_instance_0 *data ; void *tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { data = (struct ldv_struct_platform_instance_0 *)arg0; ldv_0_probed_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_platform_instance_0 *)0)) { { ldv_0_container_platform_driver = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(1464UL); ldv_0_resource_platform_device = (struct platform_device *)tmp; } goto ldv_main_0; return; ldv_main_0: { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { ldv_ldv_pre_probe_153(); ldv_0_probed_default = ldv_platform_instance_probe_0_14(ldv_0_container_platform_driver->probe, ldv_0_resource_platform_device); ldv_0_probed_default = ldv_ldv_post_probe_154(ldv_0_probed_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_0_probed_default == 0); } goto ldv_call_0; } else { { ldv_assume(ldv_0_probed_default != 0); } goto ldv_main_0; } } else { { ldv_free((void *)ldv_0_resource_platform_device); } return; } return; ldv_call_0: { tmp___2 = ldv_undef_int(); } { if (tmp___2 == 1) { goto case_1; } else { } if (tmp___2 == 2) { goto case_2; } else { } if (tmp___2 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_call_0; case_2: /* CIL Label */ { ldv_dispatch_pm_register_0_6(); ldv_dispatch_pm_deregister_0_5(); } goto ldv_call_0; goto ldv_call_0; case_3: /* CIL Label */ ; if ((unsigned long )ldv_0_container_platform_driver->remove != (unsigned long )((int (*)(struct platform_device * ))0)) { { ldv_platform_instance_release_0_3(ldv_0_container_platform_driver->remove, ldv_0_resource_platform_device); } } else { } ldv_0_probed_default = 1; goto ldv_main_0; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_platform_pm_ops_instance_1(void *arg0 ) { struct device *ldv_1_device_device ; struct dev_pm_ops *ldv_1_pm_ops_dev_pm_ops ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { goto ldv_do_1; return; ldv_do_1: { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } goto switch_default___0; case_1: /* CIL Label */ ; if ((unsigned long )ldv_1_pm_ops_dev_pm_ops->runtime_idle != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_idle_1_27(ldv_1_pm_ops_dev_pm_ops->runtime_idle, ldv_1_device_device); } } else { } goto ldv_do_1; case_2: /* CIL Label */ ; if ((unsigned long )ldv_1_pm_ops_dev_pm_ops->runtime_suspend != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_suspend_1_25(ldv_1_pm_ops_dev_pm_ops->runtime_suspend, ldv_1_device_device); } } else { } if ((unsigned long )ldv_1_pm_ops_dev_pm_ops->runtime_resume != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_resume_1_24(ldv_1_pm_ops_dev_pm_ops->runtime_resume, ldv_1_device_device); } } else { } goto ldv_do_1; case_3: /* CIL Label */ ; if ((unsigned long )ldv_1_pm_ops_dev_pm_ops->prepare != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_prepare_1_22(ldv_1_pm_ops_dev_pm_ops->prepare, ldv_1_device_device); } } else { } { tmp___0 = ldv_undef_int(); } { if (tmp___0 == 1) { goto case_1___0; } else { } if (tmp___0 == 2) { goto case_2___0; } else { } if (tmp___0 == 3) { goto case_3___0; } else { } goto switch_default; case_1___0: /* CIL Label */ { ldv_pm_ops_instance_suspend_1_21(ldv_1_pm_ops_dev_pm_ops->suspend, ldv_1_device_device); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { if ((unsigned long )ldv_1_pm_ops_dev_pm_ops->suspend_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_suspend_noirq_1_20(ldv_1_pm_ops_dev_pm_ops->suspend_noirq, ldv_1_device_device); } } else { } if ((unsigned long )ldv_1_pm_ops_dev_pm_ops->resume_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_resume_noirq_1_19(ldv_1_pm_ops_dev_pm_ops->resume_noirq, ldv_1_device_device); } } else { } } else { if ((unsigned long )ldv_1_pm_ops_dev_pm_ops->suspend_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_suspend_late_1_18(ldv_1_pm_ops_dev_pm_ops->suspend_late, ldv_1_device_device); } } else { } if ((unsigned long )ldv_1_pm_ops_dev_pm_ops->resume_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_resume_early_1_17(ldv_1_pm_ops_dev_pm_ops->resume_early, ldv_1_device_device); } } else { } } { ldv_pm_ops_instance_resume_1_16(ldv_1_pm_ops_dev_pm_ops->resume, ldv_1_device_device); } goto ldv_33153; case_2___0: /* CIL Label */ { ldv_pm_ops_instance_freeze_1_15(ldv_1_pm_ops_dev_pm_ops->freeze, ldv_1_device_device); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { if ((unsigned long )ldv_1_pm_ops_dev_pm_ops->freeze_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_freeze_late_1_14(ldv_1_pm_ops_dev_pm_ops->freeze_late, ldv_1_device_device); } } else { } if ((unsigned long )ldv_1_pm_ops_dev_pm_ops->thaw_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_thaw_early_1_13(ldv_1_pm_ops_dev_pm_ops->thaw_early, ldv_1_device_device); } } else { } } else { if ((unsigned long )ldv_1_pm_ops_dev_pm_ops->freeze_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_freeze_noirq_1_12(ldv_1_pm_ops_dev_pm_ops->freeze_noirq, ldv_1_device_device); } } else { } if ((unsigned long )ldv_1_pm_ops_dev_pm_ops->thaw_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_thaw_noirq_1_11(ldv_1_pm_ops_dev_pm_ops->thaw_noirq, ldv_1_device_device); } } else { } } if ((unsigned long )ldv_1_pm_ops_dev_pm_ops->thaw != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_thaw_1_10(ldv_1_pm_ops_dev_pm_ops->thaw, ldv_1_device_device); } } else { } goto ldv_33153; case_3___0: /* CIL Label */ ; if ((unsigned long )ldv_1_pm_ops_dev_pm_ops->poweroff != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_poweroff_1_9(ldv_1_pm_ops_dev_pm_ops->poweroff, ldv_1_device_device); } } else { } { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { if ((unsigned long )ldv_1_pm_ops_dev_pm_ops->poweroff_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_poweroff_late_1_8(ldv_1_pm_ops_dev_pm_ops->poweroff_late, ldv_1_device_device); } } else { } if ((unsigned long )ldv_1_pm_ops_dev_pm_ops->restore_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_restore_early_1_7(ldv_1_pm_ops_dev_pm_ops->restore_early, ldv_1_device_device); } } else { } } else { if ((unsigned long )ldv_1_pm_ops_dev_pm_ops->poweroff_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_poweroff_noirq_1_6(ldv_1_pm_ops_dev_pm_ops->poweroff_noirq, ldv_1_device_device); } } else { } if ((unsigned long )ldv_1_pm_ops_dev_pm_ops->restore_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_restore_noirq_1_5(ldv_1_pm_ops_dev_pm_ops->restore_noirq, ldv_1_device_device); } } else { } } { ldv_pm_ops_instance_restore_1_4(ldv_1_pm_ops_dev_pm_ops->restore, ldv_1_device_device); } goto ldv_33153; switch_default: /* CIL Label */ { ldv_stop(); } switch_break___0: /* CIL Label */ ; } ldv_33153: ; if ((unsigned long )ldv_1_pm_ops_dev_pm_ops->complete != (unsigned long )((void (*)(struct device * ))0)) { { ldv_pm_ops_instance_complete_1_3(ldv_1_pm_ops_dev_pm_ops->complete, ldv_1_device_device); } } else { } goto ldv_do_1; case_4: /* CIL Label */ ; return; switch_default___0: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_pm_ops_instance_complete_1_3(void (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_freeze_1_15(int (*arg0)(struct device * ) , struct device *arg1 ) { { { nct6775_suspend(arg1); } return; } } void ldv_pm_ops_instance_freeze_late_1_14(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_freeze_noirq_1_12(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_poweroff_1_9(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_poweroff_late_1_8(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_poweroff_noirq_1_6(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_prepare_1_22(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_restore_1_4(int (*arg0)(struct device * ) , struct device *arg1 ) { { { nct6775_resume(arg1); } return; } } void ldv_pm_ops_instance_restore_early_1_7(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_restore_noirq_1_5(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_resume_1_16(int (*arg0)(struct device * ) , struct device *arg1 ) { { { nct6775_resume(arg1); } return; } } void ldv_pm_ops_instance_resume_early_1_17(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_resume_noirq_1_19(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_idle_1_27(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_resume_1_24(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_suspend_1_25(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_suspend_1_21(int (*arg0)(struct device * ) , struct device *arg1 ) { { { nct6775_suspend(arg1); } return; } } void ldv_pm_ops_instance_suspend_late_1_18(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_suspend_noirq_1_20(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_thaw_1_10(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_thaw_early_1_13(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_thaw_noirq_1_11(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_struct_sensor_device_template_dummy_resourceless_instance_10(void *arg0 ) { long (*ldv_10_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_10_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_10_container_struct_device_attribute ; struct device *ldv_10_container_struct_device_ptr ; char *ldv_10_ldv_param_3_2_default ; char *ldv_10_ldv_param_9_2_default ; unsigned long ldv_10_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_10; return; ldv_call_10: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_10_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_10_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_10_9(ldv_10_callback_store, ldv_10_container_struct_device_ptr, ldv_10_container_struct_device_attribute, ldv_10_ldv_param_9_2_default, ldv_10_ldv_param_9_3_default); ldv_free((void *)ldv_10_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_10_3(ldv_10_callback_show, ldv_10_container_struct_device_ptr, ldv_10_container_struct_device_attribute, ldv_10_ldv_param_3_2_default); } } { ldv_free((void *)ldv_10_ldv_param_3_2_default); } goto ldv_call_10; } else { return; } return; } } void ldv_struct_sensor_device_template_dummy_resourceless_instance_11(void *arg0 ) { long (*ldv_11_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_11_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_11_container_struct_device_attribute ; struct device *ldv_11_container_struct_device_ptr ; char *ldv_11_ldv_param_3_2_default ; char *ldv_11_ldv_param_9_2_default ; unsigned long ldv_11_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_11; return; ldv_call_11: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_11_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_11_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_11_9(ldv_11_callback_store, ldv_11_container_struct_device_ptr, ldv_11_container_struct_device_attribute, ldv_11_ldv_param_9_2_default, ldv_11_ldv_param_9_3_default); ldv_free((void *)ldv_11_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_11_3(ldv_11_callback_show, ldv_11_container_struct_device_ptr, ldv_11_container_struct_device_attribute, ldv_11_ldv_param_3_2_default); } } { ldv_free((void *)ldv_11_ldv_param_3_2_default); } goto ldv_call_11; } else { return; } return; } } void ldv_struct_sensor_device_template_dummy_resourceless_instance_12(void *arg0 ) { long (*ldv_12_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_12_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_12_container_struct_device_attribute ; struct device *ldv_12_container_struct_device_ptr ; char *ldv_12_ldv_param_3_2_default ; char *ldv_12_ldv_param_9_2_default ; unsigned long ldv_12_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_12; return; ldv_call_12: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_12_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_12_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_12_9(ldv_12_callback_store, ldv_12_container_struct_device_ptr, ldv_12_container_struct_device_attribute, ldv_12_ldv_param_9_2_default, ldv_12_ldv_param_9_3_default); ldv_free((void *)ldv_12_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_12_3(ldv_12_callback_show, ldv_12_container_struct_device_ptr, ldv_12_container_struct_device_attribute, ldv_12_ldv_param_3_2_default); } } { ldv_free((void *)ldv_12_ldv_param_3_2_default); } goto ldv_call_12; } else { return; } return; } } void ldv_struct_sensor_device_template_dummy_resourceless_instance_13(void *arg0 ) { long (*ldv_13_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_13_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_13_container_struct_device_attribute ; struct device *ldv_13_container_struct_device_ptr ; char *ldv_13_ldv_param_3_2_default ; char *ldv_13_ldv_param_9_2_default ; unsigned long ldv_13_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_13; return; ldv_call_13: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_13_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_13_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_13_9(ldv_13_callback_store, ldv_13_container_struct_device_ptr, ldv_13_container_struct_device_attribute, ldv_13_ldv_param_9_2_default, ldv_13_ldv_param_9_3_default); ldv_free((void *)ldv_13_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_13_3(ldv_13_callback_show, ldv_13_container_struct_device_ptr, ldv_13_container_struct_device_attribute, ldv_13_ldv_param_3_2_default); } } { ldv_free((void *)ldv_13_ldv_param_3_2_default); } goto ldv_call_13; } else { return; } return; } } void ldv_struct_sensor_device_template_dummy_resourceless_instance_14(void *arg0 ) { long (*ldv_14_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_14_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_14_container_struct_device_attribute ; struct device *ldv_14_container_struct_device_ptr ; char *ldv_14_ldv_param_3_2_default ; char *ldv_14_ldv_param_9_2_default ; unsigned long ldv_14_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_14; return; ldv_call_14: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_14_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_14_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_14_9(ldv_14_callback_store, ldv_14_container_struct_device_ptr, ldv_14_container_struct_device_attribute, ldv_14_ldv_param_9_2_default, ldv_14_ldv_param_9_3_default); ldv_free((void *)ldv_14_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_14_3(ldv_14_callback_show, ldv_14_container_struct_device_ptr, ldv_14_container_struct_device_attribute, ldv_14_ldv_param_3_2_default); } } { ldv_free((void *)ldv_14_ldv_param_3_2_default); } goto ldv_call_14; } else { return; } return; } } void ldv_struct_sensor_device_template_dummy_resourceless_instance_15(void *arg0 ) { long (*ldv_15_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_15_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_15_container_struct_device_attribute ; struct device *ldv_15_container_struct_device_ptr ; char *ldv_15_ldv_param_3_2_default ; char *ldv_15_ldv_param_9_2_default ; unsigned long ldv_15_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_15; return; ldv_call_15: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_15_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_15_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_15_9(ldv_15_callback_store, ldv_15_container_struct_device_ptr, ldv_15_container_struct_device_attribute, ldv_15_ldv_param_9_2_default, ldv_15_ldv_param_9_3_default); ldv_free((void *)ldv_15_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_15_3(ldv_15_callback_show, ldv_15_container_struct_device_ptr, ldv_15_container_struct_device_attribute, ldv_15_ldv_param_3_2_default); } } { ldv_free((void *)ldv_15_ldv_param_3_2_default); } goto ldv_call_15; } else { return; } return; } } void ldv_struct_sensor_device_template_dummy_resourceless_instance_16(void *arg0 ) { long (*ldv_16_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_16_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_16_container_struct_device_attribute ; struct device *ldv_16_container_struct_device_ptr ; char *ldv_16_ldv_param_3_2_default ; char *ldv_16_ldv_param_9_2_default ; unsigned long ldv_16_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_16; return; ldv_call_16: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_16_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_16_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_16_9(ldv_16_callback_store, ldv_16_container_struct_device_ptr, ldv_16_container_struct_device_attribute, ldv_16_ldv_param_9_2_default, ldv_16_ldv_param_9_3_default); ldv_free((void *)ldv_16_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_16_3(ldv_16_callback_show, ldv_16_container_struct_device_ptr, ldv_16_container_struct_device_attribute, ldv_16_ldv_param_3_2_default); } } { ldv_free((void *)ldv_16_ldv_param_3_2_default); } goto ldv_call_16; } else { return; } return; } } void ldv_struct_sensor_device_template_dummy_resourceless_instance_17(void *arg0 ) { long (*ldv_17_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_17_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_17_container_struct_device_attribute ; struct device *ldv_17_container_struct_device_ptr ; char *ldv_17_ldv_param_3_2_default ; char *ldv_17_ldv_param_9_2_default ; unsigned long ldv_17_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_17; return; ldv_call_17: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_17_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_17_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_17_9(ldv_17_callback_store, ldv_17_container_struct_device_ptr, ldv_17_container_struct_device_attribute, ldv_17_ldv_param_9_2_default, ldv_17_ldv_param_9_3_default); ldv_free((void *)ldv_17_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_17_3(ldv_17_callback_show, ldv_17_container_struct_device_ptr, ldv_17_container_struct_device_attribute, ldv_17_ldv_param_3_2_default); } } { ldv_free((void *)ldv_17_ldv_param_3_2_default); } goto ldv_call_17; } else { return; } return; } } void ldv_struct_sensor_device_template_dummy_resourceless_instance_18(void *arg0 ) { long (*ldv_18_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_18_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_18_container_struct_device_attribute ; struct device *ldv_18_container_struct_device_ptr ; char *ldv_18_ldv_param_3_2_default ; char *ldv_18_ldv_param_9_2_default ; unsigned long ldv_18_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_18; return; ldv_call_18: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_18_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_18_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_18_9(ldv_18_callback_store, ldv_18_container_struct_device_ptr, ldv_18_container_struct_device_attribute, ldv_18_ldv_param_9_2_default, ldv_18_ldv_param_9_3_default); ldv_free((void *)ldv_18_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_18_3(ldv_18_callback_show, ldv_18_container_struct_device_ptr, ldv_18_container_struct_device_attribute, ldv_18_ldv_param_3_2_default); } } { ldv_free((void *)ldv_18_ldv_param_3_2_default); } goto ldv_call_18; } else { return; } return; } } void ldv_struct_sensor_device_template_dummy_resourceless_instance_19(void *arg0 ) { long (*ldv_19_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_19_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_19_container_struct_device_attribute ; struct device *ldv_19_container_struct_device_ptr ; char *ldv_19_ldv_param_3_2_default ; char *ldv_19_ldv_param_9_2_default ; unsigned long ldv_19_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_19; return; ldv_call_19: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_19_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_19_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_19_9(ldv_19_callback_store, ldv_19_container_struct_device_ptr, ldv_19_container_struct_device_attribute, ldv_19_ldv_param_9_2_default, ldv_19_ldv_param_9_3_default); ldv_free((void *)ldv_19_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_19_3(ldv_19_callback_show, ldv_19_container_struct_device_ptr, ldv_19_container_struct_device_attribute, ldv_19_ldv_param_3_2_default); } } { ldv_free((void *)ldv_19_ldv_param_3_2_default); } goto ldv_call_19; } else { return; } return; } } void ldv_struct_sensor_device_template_dummy_resourceless_instance_2(void *arg0 ) { long (*ldv_2_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_2_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_2_container_struct_device_attribute ; struct device *ldv_2_container_struct_device_ptr ; char *ldv_2_ldv_param_3_2_default ; char *ldv_2_ldv_param_9_2_default ; unsigned long ldv_2_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_2; return; ldv_call_2: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_2_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_2_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_2_9(ldv_2_callback_store, ldv_2_container_struct_device_ptr, ldv_2_container_struct_device_attribute, ldv_2_ldv_param_9_2_default, ldv_2_ldv_param_9_3_default); ldv_free((void *)ldv_2_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_2_3(ldv_2_callback_show, ldv_2_container_struct_device_ptr, ldv_2_container_struct_device_attribute, ldv_2_ldv_param_3_2_default); } } { ldv_free((void *)ldv_2_ldv_param_3_2_default); } goto ldv_call_2; } else { return; } return; } } void ldv_struct_sensor_device_template_dummy_resourceless_instance_20(void *arg0 ) { long (*ldv_20_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_20_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_20_container_struct_device_attribute ; struct device *ldv_20_container_struct_device_ptr ; char *ldv_20_ldv_param_3_2_default ; char *ldv_20_ldv_param_9_2_default ; unsigned long ldv_20_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_20; return; ldv_call_20: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_20_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_20_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_20_9(ldv_20_callback_store, ldv_20_container_struct_device_ptr, ldv_20_container_struct_device_attribute, ldv_20_ldv_param_9_2_default, ldv_20_ldv_param_9_3_default); ldv_free((void *)ldv_20_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_20_3(ldv_20_callback_show, ldv_20_container_struct_device_ptr, ldv_20_container_struct_device_attribute, ldv_20_ldv_param_3_2_default); } } { ldv_free((void *)ldv_20_ldv_param_3_2_default); } goto ldv_call_20; } else { return; } return; } } void ldv_struct_sensor_device_template_dummy_resourceless_instance_21(void *arg0 ) { long (*ldv_21_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_21_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_21_container_struct_device_attribute ; struct device *ldv_21_container_struct_device_ptr ; char *ldv_21_ldv_param_3_2_default ; char *ldv_21_ldv_param_9_2_default ; unsigned long ldv_21_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_21; return; ldv_call_21: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_21_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_21_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_21_9(ldv_21_callback_store, ldv_21_container_struct_device_ptr, ldv_21_container_struct_device_attribute, ldv_21_ldv_param_9_2_default, ldv_21_ldv_param_9_3_default); ldv_free((void *)ldv_21_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_21_3(ldv_21_callback_show, ldv_21_container_struct_device_ptr, ldv_21_container_struct_device_attribute, ldv_21_ldv_param_3_2_default); } } { ldv_free((void *)ldv_21_ldv_param_3_2_default); } goto ldv_call_21; } else { return; } return; } } void ldv_struct_sensor_device_template_dummy_resourceless_instance_22(void *arg0 ) { long (*ldv_22_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_22_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_22_container_struct_device_attribute ; struct device *ldv_22_container_struct_device_ptr ; char *ldv_22_ldv_param_3_2_default ; char *ldv_22_ldv_param_9_2_default ; unsigned long ldv_22_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_22; return; ldv_call_22: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_22_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_22_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_22_9(ldv_22_callback_store, ldv_22_container_struct_device_ptr, ldv_22_container_struct_device_attribute, ldv_22_ldv_param_9_2_default, ldv_22_ldv_param_9_3_default); ldv_free((void *)ldv_22_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_22_3(ldv_22_callback_show, ldv_22_container_struct_device_ptr, ldv_22_container_struct_device_attribute, ldv_22_ldv_param_3_2_default); } } { ldv_free((void *)ldv_22_ldv_param_3_2_default); } goto ldv_call_22; } else { return; } return; } } void ldv_struct_sensor_device_template_dummy_resourceless_instance_23(void *arg0 ) { long (*ldv_23_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_23_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_23_container_struct_device_attribute ; struct device *ldv_23_container_struct_device_ptr ; char *ldv_23_ldv_param_3_2_default ; char *ldv_23_ldv_param_9_2_default ; unsigned long ldv_23_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_23; return; ldv_call_23: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_23_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_23_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_23_9(ldv_23_callback_store, ldv_23_container_struct_device_ptr, ldv_23_container_struct_device_attribute, ldv_23_ldv_param_9_2_default, ldv_23_ldv_param_9_3_default); ldv_free((void *)ldv_23_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_23_3(ldv_23_callback_show, ldv_23_container_struct_device_ptr, ldv_23_container_struct_device_attribute, ldv_23_ldv_param_3_2_default); } } { ldv_free((void *)ldv_23_ldv_param_3_2_default); } goto ldv_call_23; } else { return; } return; } } void ldv_struct_sensor_device_template_dummy_resourceless_instance_24(void *arg0 ) { long (*ldv_24_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_24_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_24_container_struct_device_attribute ; struct device *ldv_24_container_struct_device_ptr ; char *ldv_24_ldv_param_3_2_default ; char *ldv_24_ldv_param_9_2_default ; unsigned long ldv_24_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_24; return; ldv_call_24: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_24_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_24_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_24_9(ldv_24_callback_store, ldv_24_container_struct_device_ptr, ldv_24_container_struct_device_attribute, ldv_24_ldv_param_9_2_default, ldv_24_ldv_param_9_3_default); ldv_free((void *)ldv_24_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_24_3(ldv_24_callback_show, ldv_24_container_struct_device_ptr, ldv_24_container_struct_device_attribute, ldv_24_ldv_param_3_2_default); } } { ldv_free((void *)ldv_24_ldv_param_3_2_default); } goto ldv_call_24; } else { return; } return; } } void ldv_struct_sensor_device_template_dummy_resourceless_instance_25(void *arg0 ) { long (*ldv_25_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_25_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_25_container_struct_device_attribute ; struct device *ldv_25_container_struct_device_ptr ; char *ldv_25_ldv_param_3_2_default ; char *ldv_25_ldv_param_9_2_default ; unsigned long ldv_25_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_25; return; ldv_call_25: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_25_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_25_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_25_9(ldv_25_callback_store, ldv_25_container_struct_device_ptr, ldv_25_container_struct_device_attribute, ldv_25_ldv_param_9_2_default, ldv_25_ldv_param_9_3_default); ldv_free((void *)ldv_25_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_25_3(ldv_25_callback_show, ldv_25_container_struct_device_ptr, ldv_25_container_struct_device_attribute, ldv_25_ldv_param_3_2_default); } } { ldv_free((void *)ldv_25_ldv_param_3_2_default); } goto ldv_call_25; } else { return; } return; } } void ldv_struct_sensor_device_template_dummy_resourceless_instance_26(void *arg0 ) { long (*ldv_26_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_26_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_26_container_struct_device_attribute ; struct device *ldv_26_container_struct_device_ptr ; char *ldv_26_ldv_param_3_2_default ; char *ldv_26_ldv_param_9_2_default ; unsigned long ldv_26_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_26; return; ldv_call_26: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_26_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_26_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_26_9(ldv_26_callback_store, ldv_26_container_struct_device_ptr, ldv_26_container_struct_device_attribute, ldv_26_ldv_param_9_2_default, ldv_26_ldv_param_9_3_default); ldv_free((void *)ldv_26_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_26_3(ldv_26_callback_show, ldv_26_container_struct_device_ptr, ldv_26_container_struct_device_attribute, ldv_26_ldv_param_3_2_default); } } { ldv_free((void *)ldv_26_ldv_param_3_2_default); } goto ldv_call_26; } else { return; } return; } } void ldv_struct_sensor_device_template_dummy_resourceless_instance_27(void *arg0 ) { long (*ldv_27_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_27_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_27_container_struct_device_attribute ; struct device *ldv_27_container_struct_device_ptr ; char *ldv_27_ldv_param_3_2_default ; char *ldv_27_ldv_param_9_2_default ; unsigned long ldv_27_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_27; return; ldv_call_27: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_27_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_27_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_27_9(ldv_27_callback_store, ldv_27_container_struct_device_ptr, ldv_27_container_struct_device_attribute, ldv_27_ldv_param_9_2_default, ldv_27_ldv_param_9_3_default); ldv_free((void *)ldv_27_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_27_3(ldv_27_callback_show, ldv_27_container_struct_device_ptr, ldv_27_container_struct_device_attribute, ldv_27_ldv_param_3_2_default); } } { ldv_free((void *)ldv_27_ldv_param_3_2_default); } goto ldv_call_27; } else { return; } return; } } void ldv_struct_sensor_device_template_dummy_resourceless_instance_28(void *arg0 ) { long (*ldv_28_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_28_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_28_container_struct_device_attribute ; struct device *ldv_28_container_struct_device_ptr ; char *ldv_28_ldv_param_3_2_default ; char *ldv_28_ldv_param_9_2_default ; unsigned long ldv_28_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_28; return; ldv_call_28: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_28_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_28_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_28_9(ldv_28_callback_store, ldv_28_container_struct_device_ptr, ldv_28_container_struct_device_attribute, ldv_28_ldv_param_9_2_default, ldv_28_ldv_param_9_3_default); ldv_free((void *)ldv_28_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_28_3(ldv_28_callback_show, ldv_28_container_struct_device_ptr, ldv_28_container_struct_device_attribute, ldv_28_ldv_param_3_2_default); } } { ldv_free((void *)ldv_28_ldv_param_3_2_default); } goto ldv_call_28; } else { return; } return; } } void ldv_struct_sensor_device_template_dummy_resourceless_instance_3(void *arg0 ) { long (*ldv_3_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_3_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_3_container_struct_device_attribute ; struct device *ldv_3_container_struct_device_ptr ; char *ldv_3_ldv_param_3_2_default ; char *ldv_3_ldv_param_9_2_default ; unsigned long ldv_3_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_3; return; ldv_call_3: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_3_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_3_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_3_9(ldv_3_callback_store, ldv_3_container_struct_device_ptr, ldv_3_container_struct_device_attribute, ldv_3_ldv_param_9_2_default, ldv_3_ldv_param_9_3_default); ldv_free((void *)ldv_3_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_3_3(ldv_3_callback_show, ldv_3_container_struct_device_ptr, ldv_3_container_struct_device_attribute, ldv_3_ldv_param_3_2_default); } } { ldv_free((void *)ldv_3_ldv_param_3_2_default); } goto ldv_call_3; } else { return; } return; } } void ldv_struct_sensor_device_template_dummy_resourceless_instance_4(void *arg0 ) { long (*ldv_4_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_4_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_4_container_struct_device_attribute ; struct device *ldv_4_container_struct_device_ptr ; char *ldv_4_ldv_param_3_2_default ; char *ldv_4_ldv_param_9_2_default ; unsigned long ldv_4_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_4; return; ldv_call_4: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_4_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_4_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_4_9(ldv_4_callback_store, ldv_4_container_struct_device_ptr, ldv_4_container_struct_device_attribute, ldv_4_ldv_param_9_2_default, ldv_4_ldv_param_9_3_default); ldv_free((void *)ldv_4_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_4_3(ldv_4_callback_show, ldv_4_container_struct_device_ptr, ldv_4_container_struct_device_attribute, ldv_4_ldv_param_3_2_default); } } { ldv_free((void *)ldv_4_ldv_param_3_2_default); } goto ldv_call_4; } else { return; } return; } } void ldv_struct_sensor_device_template_dummy_resourceless_instance_5(void *arg0 ) { long (*ldv_5_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_5_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_5_container_struct_device_attribute ; struct device *ldv_5_container_struct_device_ptr ; char *ldv_5_ldv_param_3_2_default ; char *ldv_5_ldv_param_9_2_default ; unsigned long ldv_5_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_5; return; ldv_call_5: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_5_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_5_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_5_9(ldv_5_callback_store, ldv_5_container_struct_device_ptr, ldv_5_container_struct_device_attribute, ldv_5_ldv_param_9_2_default, ldv_5_ldv_param_9_3_default); ldv_free((void *)ldv_5_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_5_3(ldv_5_callback_show, ldv_5_container_struct_device_ptr, ldv_5_container_struct_device_attribute, ldv_5_ldv_param_3_2_default); } } { ldv_free((void *)ldv_5_ldv_param_3_2_default); } goto ldv_call_5; } else { return; } return; } } void ldv_struct_sensor_device_template_dummy_resourceless_instance_6(void *arg0 ) { long (*ldv_6_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_6_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_6_container_struct_device_attribute ; struct device *ldv_6_container_struct_device_ptr ; char *ldv_6_ldv_param_3_2_default ; char *ldv_6_ldv_param_9_2_default ; unsigned long ldv_6_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_6; return; ldv_call_6: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_6_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_6_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_6_9(ldv_6_callback_store, ldv_6_container_struct_device_ptr, ldv_6_container_struct_device_attribute, ldv_6_ldv_param_9_2_default, ldv_6_ldv_param_9_3_default); ldv_free((void *)ldv_6_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_6_3(ldv_6_callback_show, ldv_6_container_struct_device_ptr, ldv_6_container_struct_device_attribute, ldv_6_ldv_param_3_2_default); } } { ldv_free((void *)ldv_6_ldv_param_3_2_default); } goto ldv_call_6; } else { return; } return; } } void ldv_struct_sensor_device_template_dummy_resourceless_instance_7(void *arg0 ) { long (*ldv_7_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_7_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_7_container_struct_device_attribute ; struct device *ldv_7_container_struct_device_ptr ; char *ldv_7_ldv_param_3_2_default ; char *ldv_7_ldv_param_9_2_default ; unsigned long ldv_7_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_7; return; ldv_call_7: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_7_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_7_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_7_9(ldv_7_callback_store, ldv_7_container_struct_device_ptr, ldv_7_container_struct_device_attribute, ldv_7_ldv_param_9_2_default, ldv_7_ldv_param_9_3_default); ldv_free((void *)ldv_7_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_7_3(ldv_7_callback_show, ldv_7_container_struct_device_ptr, ldv_7_container_struct_device_attribute, ldv_7_ldv_param_3_2_default); } } { ldv_free((void *)ldv_7_ldv_param_3_2_default); } goto ldv_call_7; } else { return; } return; } } void ldv_struct_sensor_device_template_dummy_resourceless_instance_8(void *arg0 ) { long (*ldv_8_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_8_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_8_container_struct_device_attribute ; struct device *ldv_8_container_struct_device_ptr ; char *ldv_8_ldv_param_3_2_default ; char *ldv_8_ldv_param_9_2_default ; unsigned long ldv_8_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_8; return; ldv_call_8: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_8_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_8_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_8_9(ldv_8_callback_store, ldv_8_container_struct_device_ptr, ldv_8_container_struct_device_attribute, ldv_8_ldv_param_9_2_default, ldv_8_ldv_param_9_3_default); ldv_free((void *)ldv_8_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_8_3(ldv_8_callback_show, ldv_8_container_struct_device_ptr, ldv_8_container_struct_device_attribute, ldv_8_ldv_param_3_2_default); } } { ldv_free((void *)ldv_8_ldv_param_3_2_default); } goto ldv_call_8; } else { return; } return; } } void ldv_struct_sensor_device_template_dummy_resourceless_instance_9(void *arg0 ) { long (*ldv_9_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_9_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_9_container_struct_device_attribute ; struct device *ldv_9_container_struct_device_ptr ; char *ldv_9_ldv_param_3_2_default ; char *ldv_9_ldv_param_9_2_default ; unsigned long ldv_9_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_9; return; ldv_call_9: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_9_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_9_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_9_9(ldv_9_callback_store, ldv_9_container_struct_device_ptr, ldv_9_container_struct_device_attribute, ldv_9_ldv_param_9_2_default, ldv_9_ldv_param_9_3_default); ldv_free((void *)ldv_9_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_9_3(ldv_9_callback_show, ldv_9_container_struct_device_ptr, ldv_9_container_struct_device_attribute, ldv_9_ldv_param_3_2_default); } } { ldv_free((void *)ldv_9_ldv_param_3_2_default); } goto ldv_call_9; } else { return; } return; } } void ldv_struct_sensor_template_group_dummy_resourceless_instance_29(void *arg0 ) { unsigned short (*ldv_29_callback_is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute *ldv_29_container_struct_attribute_ptr ; struct kobject *ldv_29_container_struct_kobject_ptr ; int ldv_29_ldv_param_3_2_default ; int tmp ; { goto ldv_call_29; return; ldv_call_29: { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dummy_resourceless_instance_callback_29_3(ldv_29_callback_is_visible, ldv_29_container_struct_kobject_ptr, ldv_29_container_struct_attribute_ptr, ldv_29_ldv_param_3_2_default); } goto ldv_call_29; } else { return; } return; } } void ldv_struct_sensor_template_group_dummy_resourceless_instance_30(void *arg0 ) { unsigned short (*ldv_30_callback_is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute *ldv_30_container_struct_attribute_ptr ; struct kobject *ldv_30_container_struct_kobject_ptr ; int ldv_30_ldv_param_3_2_default ; int tmp ; { goto ldv_call_30; return; ldv_call_30: { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dummy_resourceless_instance_callback_30_3(ldv_30_callback_is_visible, ldv_30_container_struct_kobject_ptr, ldv_30_container_struct_attribute_ptr, ldv_30_ldv_param_3_2_default); } goto ldv_call_30; } else { return; } return; } } void ldv_struct_sensor_template_group_dummy_resourceless_instance_31(void *arg0 ) { unsigned short (*ldv_31_callback_is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute *ldv_31_container_struct_attribute_ptr ; struct kobject *ldv_31_container_struct_kobject_ptr ; int ldv_31_ldv_param_3_2_default ; int tmp ; { goto ldv_call_31; return; ldv_call_31: { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dummy_resourceless_instance_callback_31_3(ldv_31_callback_is_visible, ldv_31_container_struct_kobject_ptr, ldv_31_container_struct_attribute_ptr, ldv_31_ldv_param_3_2_default); } goto ldv_call_31; } else { return; } return; } } void ldv_struct_sensor_template_group_dummy_resourceless_instance_32(void *arg0 ) { unsigned short (*ldv_32_callback_is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute *ldv_32_container_struct_attribute_ptr ; struct kobject *ldv_32_container_struct_kobject_ptr ; int ldv_32_ldv_param_3_2_default ; int tmp ; { goto ldv_call_32; return; ldv_call_32: { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dummy_resourceless_instance_callback_32_3(ldv_32_callback_is_visible, ldv_32_container_struct_kobject_ptr, ldv_32_container_struct_attribute_ptr, ldv_32_ldv_param_3_2_default); } goto ldv_call_32; } else { return; } return; } } void ldv_struct_sensor_template_group_dummy_resourceless_instance_33(void *arg0 ) { unsigned short (*ldv_33_callback_is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute *ldv_33_container_struct_attribute_ptr ; struct kobject *ldv_33_container_struct_kobject_ptr ; int ldv_33_ldv_param_3_2_default ; int tmp ; { goto ldv_call_33; return; ldv_call_33: { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dummy_resourceless_instance_callback_33_3(ldv_33_callback_is_visible, ldv_33_container_struct_kobject_ptr, ldv_33_container_struct_attribute_ptr, ldv_33_ldv_param_3_2_default); } goto ldv_call_33; } else { return; } return; } } __inline static void *ERR_PTR(long error ) { void *tmp ; { { tmp = ldv_err_ptr(error); } return (tmp); } } __inline static long PTR_ERR(void const *ptr ) { long tmp ; { { tmp = ldv_ptr_err(ptr); } return (tmp); } } static void ldv_mutex_lock_96(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_97(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_lock_98(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_99(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_lock_100(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_101(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_lock_102(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_103(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_lock_104(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_105(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_lock_106(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_107(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_lock_108(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_109(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_lock_110(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_111(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_lock_112(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_113(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_lock_114(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_115(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_lock_116(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_117(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_lock_118(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_119(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_lock_120(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_121(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_lock_122(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_123(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_lock_124(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_125(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_lock_126(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_127(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_lock_128(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_129(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_lock_130(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_131(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_lock_132(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_133(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_lock_134(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_135(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_lock_136(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_137(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_lock_138(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_139(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_lock_140(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_141(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_lock_142(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_143(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_lock_144(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_145(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_update_lock_of_nct6775_data(ldv_func_arg1); } return; } } static int ldv___platform_driver_register_146(struct platform_driver *ldv_func_arg1 , struct module *ldv_func_arg2 ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __platform_driver_register(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv___platform_driver_register(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static void ldv_platform_driver_unregister_147(struct platform_driver *ldv_func_arg1 ) { { { platform_driver_unregister(ldv_func_arg1); ldv_platform_driver_unregister((void *)0, ldv_func_arg1); } return; } } static void ldv_platform_driver_unregister_148(struct platform_driver *ldv_func_arg1 ) { { { platform_driver_unregister(ldv_func_arg1); ldv_platform_driver_unregister((void *)0, ldv_func_arg1); } return; } } static int ldv_ldv_post_init_149(int ldv_func_arg1 ) { int tmp ; { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); tmp = ldv_post_init(ldv_func_arg1); } return (tmp); } } static void ldv_ldv_check_final_state_150(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_check_final_state_151(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_initialize_152(void) { { { ldv_linux_lib_find_bit_initialize(); } return; } } static void ldv_ldv_pre_probe_153(void) { { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); ldv_pre_probe(); } return; } } static int ldv_ldv_post_probe_154(int retval ) { int tmp ; { { ldv_linux_net_register_check_return_value_probe(retval); ldv_linux_usb_register_check_return_value_probe(retval); tmp = ldv_post_probe(retval); } return (tmp); } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) ; bool ldv_in_interrupt_context(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) { bool tmp ; int tmp___0 ; { { tmp = ldv_in_interrupt_context(); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } { ldv_assert_linux_alloc_irq__wrong_flags(tmp___0 || flags == 32U); } return; } } void ldv_linux_alloc_irq_check_alloc_nonatomic(void) { bool tmp ; { { tmp = ldv_in_interrupt_context(); } if ((int )tmp) { { ldv_assert_linux_alloc_irq__nonatomic(0); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_linux_alloc_spinlock_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_linux_alloc_spinlock_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) ; int ldv_linux_alloc_usb_lock_lock = 1; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) { { if (ldv_linux_alloc_usb_lock_lock == 2) { { ldv_assert_linux_alloc_usb_lock__wrong_flags(flags == 16U || flags == 32U); } } else { } return; } } void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) { { { ldv_assert_linux_alloc_usb_lock__nonatomic(ldv_linux_alloc_usb_lock_lock == 1); } return; } } void ldv_linux_alloc_usb_lock_usb_lock_device(void) { { ldv_linux_alloc_usb_lock_lock = 2; return; } } int ldv_linux_alloc_usb_lock_usb_trylock_device(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_alloc_usb_lock_usb_lock_device_for_reset(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (0); } else { return (-1); } } else { return (-1); } } } void ldv_linux_alloc_usb_lock_usb_unlock_device(void) { { ldv_linux_alloc_usb_lock_lock = 1; return; } } void ldv_linux_usb_dev_atomic_add(int i , atomic_t *v ) { { v->counter = v->counter + i; return; } } void ldv_linux_usb_dev_atomic_sub(int i , atomic_t *v ) { { v->counter = v->counter - i; return; } } int ldv_linux_usb_dev_atomic_sub_and_test(int i , atomic_t *v ) { { v->counter = v->counter - i; if (v->counter != 0) { return (0); } else { } return (1); } } void ldv_linux_usb_dev_atomic_inc(atomic_t *v ) { { v->counter = v->counter + 1; return; } } void ldv_linux_usb_dev_atomic_dec(atomic_t *v ) { { v->counter = v->counter - 1; return; } } int ldv_linux_usb_dev_atomic_dec_and_test(atomic_t *v ) { { v->counter = v->counter - 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_inc_and_test(atomic_t *v ) { { v->counter = v->counter + 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_add_return(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter); } } int ldv_linux_usb_dev_atomic_add_negative(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter < 0); } } int ldv_linux_usb_dev_atomic_inc_short(short *v ) { { *v = (short )((unsigned int )((unsigned short )*v) + 1U); return ((int )*v); } } void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) ; void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) ; void *ldv_undef_ptr(void) ; int ldv_linux_arch_io_iomem = 0; void *ldv_linux_arch_io_io_mem_remap(void) { void *ptr ; void *tmp ; { { tmp = ldv_undef_ptr(); ptr = tmp; } if ((unsigned long )ptr != (unsigned long )((void *)0)) { ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem + 1; return (ptr); } else { } return (ptr); } } void ldv_linux_arch_io_io_mem_unmap(void) { { { ldv_assert_linux_arch_io__less_initial_decrement(ldv_linux_arch_io_iomem > 0); ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem - 1; } return; } } void ldv_linux_arch_io_check_final_state(void) { { { ldv_assert_linux_arch_io__more_initial_at_exit(ldv_linux_arch_io_iomem == 0); } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) ; void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) ; void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) ; static int ldv_linux_block_genhd_disk_state = 0; struct gendisk *ldv_linux_block_genhd_alloc_disk(void) { struct gendisk *res ; void *tmp ; { { tmp = ldv_undef_ptr(); res = (struct gendisk *)tmp; ldv_assert_linux_block_genhd__double_allocation(ldv_linux_block_genhd_disk_state == 0); } if ((unsigned long )res != (unsigned long )((struct gendisk *)0)) { ldv_linux_block_genhd_disk_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_genhd_add_disk(void) { { { ldv_assert_linux_block_genhd__use_before_allocation(ldv_linux_block_genhd_disk_state == 1); ldv_linux_block_genhd_disk_state = 2; } return; } } void ldv_linux_block_genhd_del_gendisk(void) { { { ldv_assert_linux_block_genhd__delete_before_add(ldv_linux_block_genhd_disk_state == 2); ldv_linux_block_genhd_disk_state = 1; } return; } } void ldv_linux_block_genhd_put_disk(struct gendisk *disk ) { { if ((unsigned long )disk != (unsigned long )((struct gendisk *)0)) { { ldv_assert_linux_block_genhd__free_before_allocation(ldv_linux_block_genhd_disk_state > 0); ldv_linux_block_genhd_disk_state = 0; } } else { } return; } } void ldv_linux_block_genhd_check_final_state(void) { { { ldv_assert_linux_block_genhd__more_initial_at_exit(ldv_linux_block_genhd_disk_state == 0); } return; } } void ldv_assert_linux_block_queue__double_allocation(int expr ) ; void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_queue__use_before_allocation(int expr ) ; static int ldv_linux_block_queue_queue_state = 0; struct request_queue *ldv_linux_block_queue_request_queue(void) { struct request_queue *res ; void *tmp ; { { tmp = ldv_undef_ptr(); res = (struct request_queue *)tmp; ldv_assert_linux_block_queue__double_allocation(ldv_linux_block_queue_queue_state == 0); } if ((unsigned long )res != (unsigned long )((struct request_queue *)0)) { ldv_linux_block_queue_queue_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_queue_blk_cleanup_queue(void) { { { ldv_assert_linux_block_queue__use_before_allocation(ldv_linux_block_queue_queue_state == 1); ldv_linux_block_queue_queue_state = 0; } return; } } void ldv_linux_block_queue_check_final_state(void) { { { ldv_assert_linux_block_queue__more_initial_at_exit(ldv_linux_block_queue_queue_state == 0); } return; } } void ldv_assert_linux_block_request__double_get(int expr ) ; void ldv_assert_linux_block_request__double_put(int expr ) ; void ldv_assert_linux_block_request__get_at_exit(int expr ) ; long ldv_is_err(void const *ptr ) ; int ldv_linux_block_request_blk_rq = 0; struct request *ldv_linux_block_request_blk_get_request(gfp_t mask ) { struct request *res ; void *tmp ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_undef_ptr(); res = (struct request *)tmp; } if ((mask == 16U || mask == 208U) || mask == 16U) { { ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); } } else { } if ((unsigned long )res != (unsigned long )((struct request *)0)) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } struct request *ldv_linux_block_request_blk_make_request(gfp_t mask ) { struct request *res ; void *tmp ; long tmp___0 ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_undef_ptr(); res = (struct request *)tmp; ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); tmp___0 = ldv_is_err((void const *)res); } if (tmp___0 == 0L) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } void ldv_linux_block_request_put_blk_rq(void) { { { ldv_assert_linux_block_request__double_put(ldv_linux_block_request_blk_rq == 1); ldv_linux_block_request_blk_rq = 0; } return; } } void ldv_linux_block_request_check_final_state(void) { { { ldv_assert_linux_block_request__get_at_exit(ldv_linux_block_request_blk_rq == 0); } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) ; void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) ; int ldv_undef_int_nonpositive(void) ; int ldv_linux_drivers_base_class_usb_gadget_class = 0; void *ldv_linux_drivers_base_class_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_undef_ptr(); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_got); } } int ldv_linux_drivers_base_class_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_reg); } } void ldv_linux_drivers_base_class_unregister_class(void) { { { ldv_assert_linux_drivers_base_class__double_deregistration(ldv_linux_drivers_base_class_usb_gadget_class == 1); ldv_linux_drivers_base_class_usb_gadget_class = 0; } return; } } void ldv_linux_drivers_base_class_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_drivers_base_class_unregister_class(); } return; } } void ldv_linux_drivers_base_class_check_final_state(void) { { { ldv_assert_linux_drivers_base_class__registered_at_exit(ldv_linux_drivers_base_class_usb_gadget_class == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2176UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) ; void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) ; int ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; int ldv_linux_fs_char_dev_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_fs_char_dev_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } } else { } return (is_reg); } } void ldv_linux_fs_char_dev_unregister_chrdev_region(void) { { { ldv_assert_linux_fs_char_dev__double_deregistration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 1); ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; } return; } } void ldv_linux_fs_char_dev_check_final_state(void) { { { ldv_assert_linux_fs_char_dev__registered_at_exit(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); } return; } } void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) ; void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) ; int ldv_linux_fs_sysfs_sysfs = 0; int ldv_linux_fs_sysfs_sysfs_create_group(void) { int res ; int tmp ; { { tmp = ldv_undef_int_nonpositive(); res = tmp; } if (res == 0) { ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs + 1; return (0); } else { } return (res); } } void ldv_linux_fs_sysfs_sysfs_remove_group(void) { { { ldv_assert_linux_fs_sysfs__less_initial_decrement(ldv_linux_fs_sysfs_sysfs > 0); ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs - 1; } return; } } void ldv_linux_fs_sysfs_check_final_state(void) { { { ldv_assert_linux_fs_sysfs__more_initial_at_exit(ldv_linux_fs_sysfs_sysfs == 0); } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) ; int ldv_linux_kernel_locking_rwlock_rlock = 1; int ldv_linux_kernel_locking_rwlock_wlock = 1; void ldv_linux_kernel_locking_rwlock_read_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; } return; } } void ldv_linux_kernel_locking_rwlock_read_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(ldv_linux_kernel_locking_rwlock_rlock > 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + -1; } return; } } void ldv_linux_kernel_locking_rwlock_write_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_wlock = 2; } return; } } void ldv_linux_kernel_locking_rwlock_write_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(ldv_linux_kernel_locking_rwlock_wlock != 1); ldv_linux_kernel_locking_rwlock_wlock = 1; } return; } } int ldv_linux_kernel_locking_rwlock_read_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_kernel_locking_rwlock_write_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_wlock = 2; return (1); } else { return (0); } } else { return (0); } } } void ldv_linux_kernel_locking_rwlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(ldv_linux_kernel_locking_rwlock_rlock == 1); ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(ldv_linux_kernel_locking_rwlock_wlock == 1); } return; } } void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) ; void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) ; int ldv_linux_kernel_module_module_refcounter = 1; void ldv_linux_kernel_module_module_get(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; } else { } return; } } int ldv_linux_kernel_module_try_module_get(struct module *module ) { int tmp ; { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { tmp = ldv_undef_int(); } if (tmp == 1) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; return (1); } else { return (0); } } else { } return (0); } } void ldv_linux_kernel_module_module_put(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { ldv_assert_linux_kernel_module__less_initial_decrement(ldv_linux_kernel_module_module_refcounter > 1); ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter - 1; } } else { } return; } } void ldv_linux_kernel_module_module_put_and_exit(void) { { { ldv_linux_kernel_module_module_put((struct module *)1); } LDV_LINUX_KERNEL_MODULE_STOP: ; goto LDV_LINUX_KERNEL_MODULE_STOP; } } unsigned int ldv_linux_kernel_module_module_refcount(void) { { return ((unsigned int )(ldv_linux_kernel_module_module_refcounter + -1)); } } void ldv_linux_kernel_module_check_final_state(void) { { { ldv_assert_linux_kernel_module__more_initial_at_exit(ldv_linux_kernel_module_module_refcounter == 1); } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_srcu_srcu_nested = 0; void ldv_linux_kernel_rcu_srcu_srcu_read_lock(void) { { ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested + 1; return; } } void ldv_linux_kernel_rcu_srcu_srcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_srcu__more_unlocks(ldv_linux_kernel_rcu_srcu_srcu_nested > 0); ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_srcu_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = 0; void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_lock_bh(void) { { ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh + 1; return; } } void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_unlock_bh(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh > 0); ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = 0; void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_lock_sched(void) { { ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched + 1; return; } } void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_unlock_sched(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched > 0); ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_rcu_nested = 0; void ldv_linux_kernel_rcu_update_lock_rcu_read_lock(void) { { ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested + 1; return; } } void ldv_linux_kernel_rcu_update_lock_rcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(ldv_linux_kernel_rcu_update_lock_rcu_nested > 0); ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } int ldv_filter_err_code(int ret_val ) ; static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } void ldv_switch_to_interrupt_context(void) ; void ldv_switch_to_process_context(void) ; static bool __ldv_in_interrupt_context = 0; void ldv_switch_to_interrupt_context(void) { { __ldv_in_interrupt_context = 1; return; } } void ldv_switch_to_process_context(void) { { __ldv_in_interrupt_context = 0; return; } } bool ldv_in_interrupt_context(void) { { return (__ldv_in_interrupt_context); } } void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) ; extern int nr_cpu_ids ; unsigned long ldv_undef_ulong(void) ; unsigned long ldv_linux_lib_find_bit_find_next_bit(unsigned long size , unsigned long offset ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assert_linux_lib_find_bit__offset_out_of_range(offset <= size); ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } unsigned long ldv_linux_lib_find_bit_find_first_bit(unsigned long size ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } void ldv_linux_lib_find_bit_initialize(void) { { { ldv_assume(nr_cpu_ids > 0); } return; } } extern void ldv_after_alloc(void * ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) ; unsigned short ldv_linux_mmc_sdio_func_sdio_element = 0U; void ldv_linux_mmc_sdio_func_check_context(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__wrong_params((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); } return; } } void ldv_linux_mmc_sdio_func_sdio_claim_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__double_claim((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); ldv_linux_mmc_sdio_func_sdio_element = (unsigned short )((func->card)->host)->index; } return; } } void ldv_linux_mmc_sdio_func_sdio_release_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__release_without_claim((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); ldv_linux_mmc_sdio_func_sdio_element = 0U; } return; } } void ldv_linux_mmc_sdio_func_check_final_state(void) { { { ldv_assert_linux_mmc_sdio_func__unreleased_at_exit((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); } return; } } void ldv_assert_linux_net_register__wrong_return_value(int expr ) ; int ldv_pre_register_netdev(void) ; int ldv_linux_net_register_probe_state = 0; int ldv_pre_register_netdev(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_net_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_net_register_reset_error_counter(void) { { ldv_linux_net_register_probe_state = 0; return; } } void ldv_linux_net_register_check_return_value_probe(int retval ) { { if (ldv_linux_net_register_probe_state == 1) { { ldv_assert_linux_net_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_net_register_reset_error_counter(); } return; } } void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) ; void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) ; void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) ; int rtnllocknumber = 0; void ldv_linux_net_rtnetlink_past_rtnl_unlock(void) { { { ldv_assert_linux_net_rtnetlink__double_unlock(rtnllocknumber == 1); rtnllocknumber = 0; } return; } } void ldv_linux_net_rtnetlink_past_rtnl_lock(void) { { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); rtnllocknumber = 1; } return; } } void ldv_linux_net_rtnetlink_before_ieee80211_unregister_hw(void) { { { ldv_linux_net_rtnetlink_past_rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } int ldv_linux_net_rtnetlink_rtnl_is_locked(void) { int tmp ; { if (rtnllocknumber != 0) { return (rtnllocknumber); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_net_rtnetlink_rtnl_trylock(void) { int tmp ; { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); tmp = ldv_linux_net_rtnetlink_rtnl_is_locked(); } if (tmp == 0) { rtnllocknumber = 1; return (1); } else { return (0); } } } void ldv_linux_net_rtnetlink_check_final_state(void) { { { ldv_assert_linux_net_rtnetlink__lock_on_exit(rtnllocknumber == 0); } return; } } void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) ; void ldv_assert_linux_net_sock__double_release(int expr ) ; int locksocknumber = 0; void ldv_linux_net_sock_past_lock_sock_nested(void) { { locksocknumber = locksocknumber + 1; return; } } bool ldv_linux_net_sock_lock_sock_fast(void) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { locksocknumber = locksocknumber + 1; return (1); } else { } return (0); } } void ldv_linux_net_sock_unlock_sock_fast(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_before_release_sock(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_check_final_state(void) { { { ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(locksocknumber == 0); } return; } } void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) ; int ldv_linux_usb_coherent_coherent_state = 0; void *ldv_linux_usb_coherent_usb_alloc_coherent(void) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return (arbitrary_memory); } else { } ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + 1; return (arbitrary_memory); } } void ldv_linux_usb_coherent_usb_free_coherent(void *addr ) { { if ((unsigned long )addr != (unsigned long )((void *)0)) { { ldv_assert_linux_usb_coherent__less_initial_decrement(ldv_linux_usb_coherent_coherent_state > 0); ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + -1; } } else { } return; } } void ldv_linux_usb_coherent_check_final_state(void) { { { ldv_assert_linux_usb_coherent__more_initial_at_exit(ldv_linux_usb_coherent_coherent_state == 0); } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) ; void ldv_assert_linux_usb_dev__probe_failed(int expr ) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) ; ldv_map LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS ; struct usb_device *ldv_linux_usb_dev_usb_get_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0 ? LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + 1 : 1; } else { } return (dev); } } void ldv_linux_usb_dev_usb_put_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { { ldv_assert_linux_usb_dev__unincremented_counter_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0); ldv_assert_linux_usb_dev__less_initial_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 0); } if (LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 1) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + -1; } else { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; } } else { } return; } } void ldv_linux_usb_dev_check_return_value_probe(int retval ) { { if (retval != 0) { { ldv_assert_linux_usb_dev__probe_failed(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } } else { } return; } } void ldv_linux_usb_dev_initialize(void) { { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; return; } } void ldv_linux_usb_dev_check_final_state(void) { { { ldv_assert_linux_usb_dev__more_initial_at_exit(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) ; void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) ; int ldv_linux_usb_gadget_usb_gadget = 0; void *ldv_linux_usb_gadget_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_undef_ptr(); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_got); } } int ldv_linux_usb_gadget_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_class(void) { { { ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_linux_usb_gadget_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_usb_gadget_unregister_class(); } return; } } int ldv_linux_usb_gadget_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_usb_gadget_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_chrdev_region(void) { { { ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } int ldv_linux_usb_gadget_register_usb_gadget(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__double_usb_gadget_registration(ldv_linux_usb_gadget_usb_gadget == 0); ldv_linux_usb_gadget_usb_gadget = 1; } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_usb_gadget(void) { { { ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(ldv_linux_usb_gadget_usb_gadget == 1); ldv_linux_usb_gadget_usb_gadget = 0; } return; } } void ldv_linux_usb_gadget_check_final_state(void) { { { ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_assert_linux_usb_register__wrong_return_value(int expr ) ; int ldv_pre_usb_register_driver(void) ; int ldv_linux_usb_register_probe_state = 0; int ldv_pre_usb_register_driver(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_usb_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_usb_register_reset_error_counter(void) { { ldv_linux_usb_register_probe_state = 0; return; } } void ldv_linux_usb_register_check_return_value_probe(int retval ) { { if (ldv_linux_usb_register_probe_state == 1) { { ldv_assert_linux_usb_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_usb_register_reset_error_counter(); } return; } } void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) ; int ldv_linux_usb_urb_urb_state = 0; struct urb *ldv_linux_usb_urb_usb_alloc_urb(void) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return ((struct urb *)arbitrary_memory); } else { } ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + 1; return ((struct urb *)arbitrary_memory); } } void ldv_linux_usb_urb_usb_free_urb(struct urb *urb ) { { if ((unsigned long )urb != (unsigned long )((struct urb *)0)) { { ldv_assert_linux_usb_urb__less_initial_decrement(ldv_linux_usb_urb_urb_state > 0); ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + -1; } } else { } return; } } void ldv_linux_usb_urb_check_final_state(void) { { { ldv_assert_linux_usb_urb__more_initial_at_exit(ldv_linux_usb_urb_urb_state == 0); } return; } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *external_allocated_data(void) ; void *ldv_calloc_unknown_size(void) ; void *ldv_zalloc_unknown_size(void) ; void *ldv_xmalloc_unknown_size(size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; extern void *memset(void * , int , size_t ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_malloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; memset(res, 0, 8UL); ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc_unknown_size(void) { void *tmp ; { { tmp = ldv_calloc_unknown_size(); } return (tmp); } } void *ldv_xmalloc_unknown_size(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } int ldv_undef_int_negative(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { { tmp = __VERIFIER_nondet_pointer(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) ; ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode ; void ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock ; void ldv_linux_kernel_locking_mutex_mutex_lock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_lock(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device ; void ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_nct6775_data ; void ldv_linux_kernel_locking_mutex_mutex_lock_update_lock_of_nct6775_data(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_nct6775_data); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_nct6775_data = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_update_lock_of_nct6775_data(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_nct6775_data); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_nct6775_data = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_update_lock_of_nct6775_data(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_nct6775_data) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_update_lock_of_nct6775_data(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_nct6775_data); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_update_lock_of_nct6775_data(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_nct6775_data = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_update_lock_of_nct6775_data(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_update_lock_of_nct6775_data(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_update_lock_of_nct6775_data(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_nct6775_data); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_nct6775_data = 0; } return; } } void ldv_linux_kernel_locking_mutex_initialize(void) { { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_nct6775_data = 0; return; } } void ldv_linux_kernel_locking_mutex_check_final_state(void) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_nct6775_data); } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_linux_kernel_locking_spinlock_spin_lock = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_linux_kernel_locking_spinlock_spin_lock = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } void ldv_linux_kernel_locking_spinlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2) { return (1); } else { } return (0); } } void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) ; void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) ; static int ldv_linux_kernel_sched_completion_completion = 0; void ldv_linux_kernel_sched_completion_init_completion(void) { { ldv_linux_kernel_sched_completion_completion = 1; return; } } void ldv_linux_kernel_sched_completion_init_completion_macro(void) { { { ldv_assert_linux_kernel_sched_completion__double_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 1; } return; } } void ldv_linux_kernel_sched_completion_wait_for_completion(void) { { { ldv_assert_linux_kernel_sched_completion__wait_without_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 2; } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) ; void ldv_assert_linux_lib_idr__double_init(int expr ) ; void ldv_assert_linux_lib_idr__more_at_exit(int expr ) ; void ldv_assert_linux_lib_idr__not_initialized(int expr ) ; static int ldv_linux_lib_idr_idr = 0; void ldv_linux_lib_idr_idr_init(void) { { { ldv_assert_linux_lib_idr__double_init(ldv_linux_lib_idr_idr == 0); ldv_linux_lib_idr_idr = 1; } return; } } void ldv_linux_lib_idr_idr_alloc(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_find(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_remove(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_destroy(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 3; } return; } } void ldv_linux_lib_idr_check_final_state(void) { { { ldv_assert_linux_lib_idr__more_at_exit(ldv_linux_lib_idr_idr == 0 || ldv_linux_lib_idr_idr == 3); } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_lib_idr__double_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__not_initialized(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__more_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_register__wrong_return_value(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_sock__double_release(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__probe_failed(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_request__double_get(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_request__double_put(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_request__get_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_queue__double_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_queue__use_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_register__wrong_return_value(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } }