/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __be16; typedef __u32 __be32; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct class; struct device; struct completion; struct gendisk; struct module; struct mutex; struct request_queue; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_10 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_11 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_9 { struct __anonstruct____missing_field_name_10 __annonCompField5 ; struct __anonstruct____missing_field_name_11 __annonCompField6 ; }; struct desc_struct { union __anonunion____missing_field_name_9 __annonCompField7 ; }; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_12 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_12 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_13 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_13 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; typedef void (*ctor_fn_t)(void); struct net_device; struct file_operations; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_16 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_16 __annonCompField8 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_21 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_22 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_20 { struct __anonstruct____missing_field_name_21 __annonCompField12 ; struct __anonstruct____missing_field_name_22 __annonCompField13 ; }; union __anonunion____missing_field_name_23 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_20 __annonCompField14 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_23 __annonCompField15 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndreg { u64 lower_bound ; u64 upper_bound ; }; struct bndcsr { u64 bndcfgu ; u64 bndstatus ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndreg bndreg[4U] ; struct bndcsr bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_27 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_26 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_27 __annonCompField17 ; }; struct spinlock { union __anonunion____missing_field_name_26 __annonCompField18 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_28 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_28 rwlock_t; struct ldv_thread; struct optimistic_spin_queue { atomic_t tail ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct compat_timespec; struct __anonstruct_futex_30 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_31 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_32 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_29 { struct __anonstruct_futex_30 futex ; struct __anonstruct_nanosleep_31 nanosleep ; struct __anonstruct_poll_32 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_29 __annonCompField19 ; }; struct jump_entry; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_45 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_45 seqlock_t; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct notifier_block; union __anonunion____missing_field_name_46 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_46 __annonCompField20 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_47 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_47 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct user_namespace; struct __anonstruct_kuid_t_48 { uid_t val ; }; typedef struct __anonstruct_kuid_t_48 kuid_t; struct __anonstruct_kgid_t_49 { gid_t val ; }; typedef struct __anonstruct_kgid_t_49 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct inode; struct cdev { struct kobject kobj ; struct module *owner ; struct file_operations const *ops ; struct list_head list ; dev_t dev ; unsigned int count ; }; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_50 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_50 nodemask_t; struct path; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; }; struct ctl_table; struct __anonstruct_mm_context_t_115 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_115 mm_context_t; struct bio_vec; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct pm_qos_flags_request { struct list_head node ; s32 flags ; }; enum dev_pm_qos_req_type { DEV_PM_QOS_RESUME_LATENCY = 1, DEV_PM_QOS_LATENCY_TOLERANCE = 2, DEV_PM_QOS_FLAGS = 3 } ; union __anonunion_data_142 { struct plist_node pnode ; struct pm_qos_flags_request flr ; }; struct dev_pm_qos_request { enum dev_pm_qos_req_type type ; union __anonunion_data_142 data ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2, PM_QOS_SUM = 3 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; s32 no_constraint_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct pm_qos_flags { struct list_head list ; s32 effective_flags ; }; struct dev_pm_qos { struct pm_qos_constraints resume_latency ; struct pm_qos_constraints latency_tolerance ; struct pm_qos_flags flags ; struct dev_pm_qos_request *resume_latency_req ; struct dev_pm_qos_request *latency_tolerance_req ; struct dev_pm_qos_request *flags_req ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct kvec { void *iov_base ; size_t iov_len ; }; union __anonunion____missing_field_name_143 { struct iovec const *iov ; struct kvec const *kvec ; struct bio_vec const *bvec ; }; struct iov_iter { int type ; size_t iov_offset ; size_t count ; union __anonunion____missing_field_name_143 __annonCompField32 ; unsigned long nr_segs ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_149 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_150 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_148 { struct __anonstruct____missing_field_name_149 __annonCompField35 ; struct __anonstruct____missing_field_name_150 __annonCompField36 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_148 __annonCompField37 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; struct mem_cgroup; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_151 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_153 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_157 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_156 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_157 __annonCompField40 ; int units ; }; struct __anonstruct____missing_field_name_155 { union __anonunion____missing_field_name_156 __annonCompField41 ; atomic_t _count ; }; union __anonunion____missing_field_name_154 { unsigned long counters ; struct __anonstruct____missing_field_name_155 __annonCompField42 ; unsigned int active ; }; struct __anonstruct____missing_field_name_152 { union __anonunion____missing_field_name_153 __annonCompField39 ; union __anonunion____missing_field_name_154 __annonCompField43 ; }; struct __anonstruct____missing_field_name_159 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_160 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_158 { struct list_head lru ; struct __anonstruct____missing_field_name_159 __annonCompField45 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_160 __annonCompField46 ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_161 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_151 __annonCompField38 ; struct __anonstruct____missing_field_name_152 __annonCompField44 ; union __anonunion____missing_field_name_158 __annonCompField47 ; union __anonunion____missing_field_name_161 __annonCompField48 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_162 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_162 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct file_ra_state; struct user_struct; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *cow_page ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; struct page *(*find_special_page)(struct vm_area_struct * , unsigned long ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; typedef unsigned short __kernel_sa_family_t; struct pid; struct cred; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct __anonstruct_sync_serial_settings_165 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_165 sync_serial_settings; struct __anonstruct_te1_settings_166 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_166 te1_settings; struct __anonstruct_raw_hdlc_proto_167 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_167 raw_hdlc_proto; struct __anonstruct_fr_proto_168 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_168 fr_proto; struct __anonstruct_fr_proto_pvc_169 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_169 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_170 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_170 fr_proto_pvc_info; struct __anonstruct_cisco_proto_171 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_171 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_172 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_172 ifs_ifsu ; }; union __anonunion_ifr_ifrn_173 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_174 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_173 ifr_ifrn ; union __anonunion_ifr_ifru_174 ifr_ifru ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_177 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_176 { struct __anonstruct____missing_field_name_177 __annonCompField49 ; }; struct lockref { union __anonunion____missing_field_name_176 __annonCompField50 ; }; struct vfsmount; struct __anonstruct____missing_field_name_179 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_178 { struct __anonstruct____missing_field_name_179 __annonCompField51 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_178 __annonCompField52 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_180 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_180 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct __anonstruct____missing_field_name_182 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_181 { struct __anonstruct____missing_field_name_182 __annonCompField53 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_181 __annonCompField54 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct io_context; struct cgroup_subsys_state; struct bio_vec { struct page *bv_page ; unsigned int bv_len ; unsigned int bv_offset ; }; struct backing_dev_info; struct export_operations; struct nameidata; struct kiocb; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_185 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_185 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_186 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_186 __annonCompField56 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct hd_struct; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_189 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_190 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; union __anonunion____missing_field_name_191 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_189 __annonCompField57 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_190 __annonCompField58 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_191 __annonCompField59 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_192 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_192 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_get_owner)(struct file_lock * , struct file_lock * ) ; void (*lm_put_owner)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct net; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_194 { struct list_head link ; int state ; }; union __anonunion_fl_u_193 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_194 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_193 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; void (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; int (*dentry_open)(struct dentry * , struct file * , struct cred const * ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; typedef unsigned long cputime_t; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_195 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_195 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_197 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_198 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_199 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_200 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_202 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_201 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_202 _addr_bnd ; }; struct __anonstruct__sigpoll_203 { long _band ; int _fd ; }; struct __anonstruct__sigsys_204 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_196 { int _pad[28U] ; struct __anonstruct__kill_197 _kill ; struct __anonstruct__timer_198 _timer ; struct __anonstruct__rt_199 _rt ; struct __anonstruct__sigchld_200 _sigchld ; struct __anonstruct__sigfault_201 _sigfault ; struct __anonstruct__sigpoll_203 _sigpoll ; struct __anonstruct__sigsys_204 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_196 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int in_hrtirq ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct____missing_field_name_208 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion____missing_field_name_207 { struct __anonstruct____missing_field_name_208 __annonCompField60 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion____missing_field_name_207 __annonCompField61 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_209 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_210 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_212 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_211 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_212 __annonCompField64 ; }; union __anonunion_type_data_213 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_215 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_214 { union __anonunion_payload_215 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_209 __annonCompField62 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_210 __annonCompField63 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_211 __annonCompField65 ; union __anonunion_type_data_213 type_data ; union __anonunion____missing_field_name_214 __annonCompField66 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned char brk_randomized : 1 ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; }; typedef s32 compat_time_t; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_timespec { compat_time_t tv_sec ; s32 tv_nsec ; }; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; struct exception_table_entry { int insn ; int fixup ; }; struct sk_buff; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; typedef u64 netdev_features_t; struct napi_struct; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; typedef unsigned int sk_buff_data_t; struct __anonstruct____missing_field_name_237 { u32 stamp_us ; u32 stamp_jiffies ; }; union __anonunion____missing_field_name_236 { u64 v64 ; struct __anonstruct____missing_field_name_237 __annonCompField71 ; }; struct skb_mstamp { union __anonunion____missing_field_name_236 __annonCompField72 ; }; union __anonunion____missing_field_name_240 { ktime_t tstamp ; struct skb_mstamp skb_mstamp ; }; struct __anonstruct____missing_field_name_239 { struct sk_buff *next ; struct sk_buff *prev ; union __anonunion____missing_field_name_240 __annonCompField73 ; }; union __anonunion____missing_field_name_238 { struct __anonstruct____missing_field_name_239 __annonCompField74 ; struct rb_node rbnode ; }; struct sec_path; struct __anonstruct____missing_field_name_242 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_241 { __wsum csum ; struct __anonstruct____missing_field_name_242 __annonCompField76 ; }; union __anonunion____missing_field_name_243 { unsigned int napi_id ; unsigned int sender_cpu ; }; union __anonunion____missing_field_name_244 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; union __anonunion____missing_field_name_245 { __be16 inner_protocol ; __u8 inner_ipproto ; }; struct sk_buff { union __anonunion____missing_field_name_238 __annonCompField75 ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; void (*destructor)(struct sk_buff * ) ; struct sec_path *sp ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; __u16 queue_mapping ; unsigned char cloned : 1 ; unsigned char nohdr : 1 ; unsigned char fclone : 2 ; unsigned char peeked : 1 ; unsigned char head_frag : 1 ; unsigned char xmit_more : 1 ; __u32 headers_start[0U] ; __u8 __pkt_type_offset[0U] ; unsigned char pkt_type : 3 ; unsigned char pfmemalloc : 1 ; unsigned char ignore_df : 1 ; unsigned char nfctinfo : 3 ; unsigned char nf_trace : 1 ; unsigned char ip_summed : 2 ; unsigned char ooo_okay : 1 ; unsigned char l4_hash : 1 ; unsigned char sw_hash : 1 ; unsigned char wifi_acked_valid : 1 ; unsigned char wifi_acked : 1 ; unsigned char no_fcs : 1 ; unsigned char encapsulation : 1 ; unsigned char encap_hdr_csum : 1 ; unsigned char csum_valid : 1 ; unsigned char csum_complete_sw : 1 ; unsigned char csum_level : 2 ; unsigned char csum_bad : 1 ; unsigned char ndisc_nodetype : 2 ; unsigned char ipvs_property : 1 ; unsigned char inner_protocol_type : 1 ; unsigned char remcsum_offload : 1 ; __u16 tc_index ; __u16 tc_verd ; union __anonunion____missing_field_name_241 __annonCompField77 ; __u32 priority ; int skb_iif ; __u32 hash ; __be16 vlan_proto ; __u16 vlan_tci ; union __anonunion____missing_field_name_243 __annonCompField78 ; __u32 secmark ; union __anonunion____missing_field_name_244 __annonCompField79 ; union __anonunion____missing_field_name_245 __annonCompField80 ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __be16 protocol ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; __u32 headers_end[0U] ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char erom_version[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_tunable { __u32 cmd ; __u32 id ; __u32 type_id ; __u32 len ; void *data[0U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_key_size)(struct net_device * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh)(struct net_device * , u32 * , u8 * , u8 * ) ; int (*set_rxfh)(struct net_device * , u32 const * , u8 const * , u8 const ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; int (*get_tunable)(struct net_device * , struct ethtool_tunable const * , void * ) ; int (*set_tunable)(struct net_device * , struct ethtool_tunable const * , void const * ) ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[9U] ; }; struct linux_mib { unsigned long mibs[113U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct proc_dir_entry; struct netns_mib { struct tcp_mib *tcp_statistics ; struct ipstats_mib *ip_statistics ; struct linux_mib *net_statistics ; struct udp_mib *udp_statistics ; struct udp_mib *udplite_statistics ; struct icmp_mib *icmp_statistics ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6 ; struct udp_mib *udplite_stats_in6 ; struct ipstats_mib *ipv6_statistics ; struct icmpv6_mib *icmpv6_statistics ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct tcpm_hash_bucket; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; }; struct ping_group_range { seqlock_t lock ; kgid_t range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct inet_peer_base *peers ; struct tcpm_hash_bucket *tcp_metrics_hash ; unsigned int tcp_metrics_hash_log ; struct sock **tcp_sk ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports ip_local_ports ; int sysctl_tcp_ecn ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; int sysctl_ip_nonlocal_bind ; int sysctl_fwmark_reflect ; int sysctl_tcp_fwmark_accept ; int sysctl_tcp_mtu_probing ; int sysctl_tcp_base_mss ; struct ping_group_range ping_group_range ; atomic_t dev_addr_genid ; unsigned long *sysctl_local_reserved_ports ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int auto_flowlabels ; int icmpv6_time ; int anycast_src_echo_reply ; int fwmark_reflect ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t fib6_sernum ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct netns_sysctl_lowpan { struct ctl_table_header *frags_hdr ; }; struct netns_ieee802154_lowpan { struct netns_sysctl_lowpan sysctl ; struct netns_frags frags ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; struct nlattr; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ct_pcpu { spinlock_t lock ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct delayed_work ecache_dwork ; bool ecache_dwork_pending ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; seqcount_t generation ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct ct_pcpu *pcpu_lists ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; unsigned int base_seq ; u8 gencursor ; }; struct tasklet_struct { struct tasklet_struct *next ; unsigned long state ; atomic_t count ; void (*func)(unsigned long ) ; unsigned long data ; }; struct flow_cache_percpu { struct hlist_head *hash_table ; int hash_count ; u32 hash_rnd ; int hash_rnd_recalc ; struct tasklet_struct flush_tasklet ; }; struct flow_cache { u32 hash_shift ; struct flow_cache_percpu *percpu ; struct notifier_block hotcpu_notifier ; int low_watermark ; int high_watermark ; struct timer_list rnd_timer ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; u8 dbits4 ; u8 sbits4 ; u8 dbits6 ; u8 sbits6 ; }; struct xfrm_policy_hthresh { struct work_struct work ; seqlock_t lock ; u8 lbits4 ; u8 rbits4 ; u8 lbits6 ; u8 rbits6 ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[3U] ; struct xfrm_policy_hash policy_bydst[3U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct xfrm_policy_hthresh policy_hthresh ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; struct flow_cache flow_cache_global ; atomic_t flow_cache_genid ; struct list_head flow_cache_gc_list ; spinlock_t flow_cache_gc_lock ; struct work_struct flow_cache_gc_work ; struct work_struct flow_cache_flush_work ; struct mutex flow_flush_sem ; }; struct proc_ns_operations; struct ns_common { atomic_long_t stashed ; struct proc_ns_operations const *ops ; unsigned int inum ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; struct idr netns_ids ; struct ns_common ns ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_ieee802154_lowpan ieee802154_lowpan ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; typedef unsigned long kernel_ulong_t; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; enum fwnode_type { FWNODE_INVALID = 0, FWNODE_OF = 1, FWNODE_ACPI = 2 } ; struct fwnode_handle { enum fwnode_type type ; }; typedef u32 phandle; struct property { char *name ; int length ; void *value ; struct property *next ; unsigned long _flags ; unsigned int unique_id ; struct bin_attribute attr ; }; struct device_node { char const *name ; char const *type ; phandle phandle ; char const *full_name ; struct fwnode_handle fwnode ; struct property *properties ; struct property *deadprops ; struct device_node *parent ; struct device_node *child ; struct device_node *sibling ; struct kobject kobj ; unsigned long _flags ; void *data ; }; enum ldv_27598 { PHY_INTERFACE_MODE_NA = 0, PHY_INTERFACE_MODE_MII = 1, PHY_INTERFACE_MODE_GMII = 2, PHY_INTERFACE_MODE_SGMII = 3, PHY_INTERFACE_MODE_TBI = 4, PHY_INTERFACE_MODE_REVMII = 5, PHY_INTERFACE_MODE_RMII = 6, PHY_INTERFACE_MODE_RGMII = 7, PHY_INTERFACE_MODE_RGMII_ID = 8, PHY_INTERFACE_MODE_RGMII_RXID = 9, PHY_INTERFACE_MODE_RGMII_TXID = 10, PHY_INTERFACE_MODE_RTBI = 11, PHY_INTERFACE_MODE_SMII = 12, PHY_INTERFACE_MODE_XGMII = 13, PHY_INTERFACE_MODE_MOCA = 14, PHY_INTERFACE_MODE_QSGMII = 15, PHY_INTERFACE_MODE_MAX = 16 } ; typedef enum ldv_27598 phy_interface_t; enum ldv_27651 { MDIOBUS_ALLOCATED = 1, MDIOBUS_REGISTERED = 2, MDIOBUS_UNREGISTERED = 3, MDIOBUS_RELEASED = 4 } ; struct phy_device; struct mii_bus { char const *name ; char id[17U] ; void *priv ; int (*read)(struct mii_bus * , int , int ) ; int (*write)(struct mii_bus * , int , int , u16 ) ; int (*reset)(struct mii_bus * ) ; struct mutex mdio_lock ; struct device *parent ; enum ldv_27651 state ; struct device dev ; struct phy_device *phy_map[32U] ; u32 phy_mask ; int *irq ; }; enum phy_state { PHY_DOWN = 0, PHY_STARTING = 1, PHY_READY = 2, PHY_PENDING = 3, PHY_UP = 4, PHY_AN = 5, PHY_RUNNING = 6, PHY_NOLINK = 7, PHY_FORCING = 8, PHY_CHANGELINK = 9, PHY_HALTED = 10, PHY_RESUMING = 11 } ; struct phy_c45_device_ids { u32 devices_in_package ; u32 device_ids[8U] ; }; struct phy_driver; struct phy_device { struct phy_driver *drv ; struct mii_bus *bus ; struct device dev ; u32 phy_id ; struct phy_c45_device_ids c45_ids ; bool is_c45 ; bool is_internal ; bool has_fixups ; bool suspended ; enum phy_state state ; u32 dev_flags ; phy_interface_t interface ; int addr ; int speed ; int duplex ; int pause ; int asym_pause ; int link ; u32 interrupts ; u32 supported ; u32 advertising ; u32 lp_advertising ; int autoneg ; int link_timeout ; int irq ; void *priv ; struct work_struct phy_queue ; struct delayed_work state_queue ; atomic_t irq_disable ; struct mutex lock ; struct net_device *attached_dev ; void (*adjust_link)(struct net_device * ) ; }; struct phy_driver { u32 phy_id ; char *name ; unsigned int phy_id_mask ; u32 features ; u32 flags ; void const *driver_data ; int (*soft_reset)(struct phy_device * ) ; int (*config_init)(struct phy_device * ) ; int (*probe)(struct phy_device * ) ; int (*suspend)(struct phy_device * ) ; int (*resume)(struct phy_device * ) ; int (*config_aneg)(struct phy_device * ) ; int (*aneg_done)(struct phy_device * ) ; int (*read_status)(struct phy_device * ) ; int (*ack_interrupt)(struct phy_device * ) ; int (*config_intr)(struct phy_device * ) ; int (*did_interrupt)(struct phy_device * ) ; void (*remove)(struct phy_device * ) ; int (*match_phy_device)(struct phy_device * ) ; int (*ts_info)(struct phy_device * , struct ethtool_ts_info * ) ; int (*hwtstamp)(struct phy_device * , struct ifreq * ) ; bool (*rxtstamp)(struct phy_device * , struct sk_buff * , int ) ; void (*txtstamp)(struct phy_device * , struct sk_buff * , int ) ; int (*set_wol)(struct phy_device * , struct ethtool_wolinfo * ) ; void (*get_wol)(struct phy_device * , struct ethtool_wolinfo * ) ; void (*link_change_notify)(struct phy_device * ) ; int (*read_mmd_indirect)(struct phy_device * , int , int , int ) ; void (*write_mmd_indirect)(struct phy_device * , int , int , int , u32 ) ; int (*module_info)(struct phy_device * , struct ethtool_modinfo * ) ; int (*module_eeprom)(struct phy_device * , struct ethtool_eeprom * , u8 * ) ; struct device_driver driver ; }; struct fixed_phy_status { int link ; int speed ; int duplex ; int pause ; int asym_pause ; }; enum dsa_tag_protocol { DSA_TAG_PROTO_NONE = 0, DSA_TAG_PROTO_DSA = 1, DSA_TAG_PROTO_TRAILER = 2, DSA_TAG_PROTO_EDSA = 3, DSA_TAG_PROTO_BRCM = 4 } ; struct dsa_chip_data { struct device *host_dev ; int sw_addr ; int eeprom_len ; struct device_node *of_node ; char *port_names[12U] ; struct device_node *port_dn[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct packet_type; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; int (*rcv)(struct sk_buff * , struct net_device * , struct packet_type * , struct net_device * ) ; enum dsa_tag_protocol tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct device *master_dev ; char hwmon_name[24U] ; struct device *hwmon_dev ; u32 dsa_port_mask ; u32 phys_port_mask ; u32 phys_mii_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; enum dsa_tag_protocol tag_protocol ; int priv_size ; char *(*probe)(struct device * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; u32 (*get_phy_flags)(struct dsa_switch * , int ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*adjust_link)(struct dsa_switch * , int , struct phy_device * ) ; void (*fixed_link_update)(struct dsa_switch * , int , struct fixed_phy_status * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; void (*get_wol)(struct dsa_switch * , int , struct ethtool_wolinfo * ) ; int (*set_wol)(struct dsa_switch * , int , struct ethtool_wolinfo * ) ; int (*suspend)(struct dsa_switch * ) ; int (*resume)(struct dsa_switch * ) ; int (*port_enable)(struct dsa_switch * , int , struct phy_device * ) ; void (*port_disable)(struct dsa_switch * , int , struct phy_device * ) ; int (*set_eee)(struct dsa_switch * , int , struct phy_device * , struct ethtool_eee * ) ; int (*get_eee)(struct dsa_switch * , int , struct ethtool_eee * ) ; int (*get_temp)(struct dsa_switch * , int * ) ; int (*get_temp_limit)(struct dsa_switch * , int * ) ; int (*set_temp_limit)(struct dsa_switch * , int ) ; int (*get_temp_alarm)(struct dsa_switch * , bool * ) ; int (*get_eeprom_len)(struct dsa_switch * ) ; int (*get_eeprom)(struct dsa_switch * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct dsa_switch * , struct ethtool_eeprom * , u8 * ) ; int (*get_regs_len)(struct dsa_switch * , int ) ; void (*get_regs)(struct dsa_switch * , int , struct ethtool_regs * , void * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; int (*setapp)(struct net_device * , u8 , u16 , u8 ) ; int (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_long_t count ; unsigned long percpu_count_ptr ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_switch ; bool force_atomic ; struct callback_head rcu ; }; struct cgroup_root; struct cgroup_subsys; struct cgroup; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; struct list_head sibling ; struct list_head children ; int id ; unsigned int flags ; u64 serial_nr ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct cgroup { struct cgroup_subsys_state self ; unsigned long flags ; int id ; int populated_cnt ; struct kernfs_node *kn ; struct kernfs_node *populated_kn ; unsigned int subtree_control ; unsigned int child_subsys_mask ; struct cgroup_subsys_state *subsys[12U] ; struct cgroup_root *root ; struct list_head cset_links ; struct list_head e_csets[12U] ; struct list_head pidlists ; struct mutex pidlist_mutex ; wait_queue_head_t offline_waitq ; struct work_struct release_agent_work ; }; struct cgroup_root { struct kernfs_root *kf_root ; unsigned int subsys_mask ; int hierarchy_id ; struct cgroup cgrp ; atomic_t nr_cgrps ; struct list_head root_list ; unsigned int flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head mg_tasks ; struct list_head cgrp_links ; struct cgroup *dfl_cgrp ; struct cgroup_subsys_state *subsys[12U] ; struct list_head mg_preload_node ; struct list_head mg_node ; struct cgroup *mg_src_cgrp ; struct css_set *mg_dst_cset ; struct list_head e_cset_node[12U] ; struct callback_head callback_head ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; struct list_head node ; struct kernfs_ops *kf_ops ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; struct lock_class_key lockdep_key ; }; struct cgroup_taskset; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_released)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; void (*css_reset)(struct cgroup_subsys_state * ) ; void (*css_e_css_changed)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; int id ; char const *name ; struct cgroup_root *root ; struct idr css_idr ; struct list_head cfts ; struct cftype *dfl_cftypes ; struct cftype *legacy_cftypes ; unsigned int depends_on ; }; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 spoofchk ; __u32 linkstate ; __u32 min_tx_rate ; __u32 max_tx_rate ; }; struct netpoll_info; struct wireless_dev; struct wpan_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct hrtimer timer ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_item_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_rate)(struct net_device * , int , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * , u16 ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * , u16 ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_item_id * ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; int (*ndo_get_lock_subclass)(struct net_device * ) ; netdev_features_t (*ndo_features_check)(struct sk_buff * , struct net_device * , netdev_features_t ) ; int (*ndo_switch_parent_id_get)(struct net_device * , struct netdev_phys_item_id * ) ; int (*ndo_switch_port_stp_update)(struct net_device * , u8 ) ; }; struct __anonstruct_adj_list_264 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_265 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct forwarding_accel_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion____missing_field_name_266 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct list_head ptype_all ; struct list_head ptype_specific ; struct __anonstruct_adj_list_264 adj_list ; struct __anonstruct_all_adj_list_265 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; atomic_long_t tx_dropped ; atomic_t carrier_changes ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct forwarding_accel_ops const *fwd_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; unsigned short dev_port ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; unsigned char name_assign_type ; bool uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; struct wpan_dev *ieee802154_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; unsigned long gro_flush_timeout ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; unsigned char broadcast[32U] ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; struct cpu_rmap *rx_cpu_rmap ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; unsigned char reg_state ; bool dismantle ; unsigned short rtnl_link_state ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion____missing_field_name_266 __annonCompField86 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; u16 gso_min_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; int group ; struct pm_qos_request pm_qos_req ; }; struct packet_type { __be16 type ; struct net_device *dev ; int (*func)(struct sk_buff * , struct net_device * , struct packet_type * , struct net_device * ) ; bool (*id_match)(struct packet_type * , struct sock * ) ; void *af_packet_priv ; struct list_head list ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_271 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_271 __annonCompField87 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct pollfd { int fd ; short events ; short revents ; }; struct poll_table_struct { void (*_qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long _key ; }; struct dvb_device; struct dvb_adapter { int num ; struct list_head list_head ; struct list_head device_list ; char const *name ; u8 proposed_mac[6U] ; void *priv ; struct device *device ; struct module *module ; int mfe_shared ; struct dvb_device *mfe_dvbdev ; struct mutex mfe_lock ; }; struct dvb_device { struct list_head list_head ; struct file_operations const *fops ; struct dvb_adapter *adapter ; int type ; int minor ; u32 id ; int readers ; int writers ; int users ; wait_queue_head_t wait_queue ; int (*kernel_ioctl)(struct file * , unsigned int , void * ) ; void *priv ; }; struct ldv_struct_EMGentry_17 { int signal_pending ; }; struct ldv_struct_file_operations_instance_0 { struct file_operations *arg0 ; int signal_pending ; }; struct ldv_struct_timer_instance_8 { struct timer_list *arg0 ; int signal_pending ; }; typedef int ldv_func_ret_type___1; struct __wait_queue; typedef struct __wait_queue wait_queue_t; struct __wait_queue { unsigned int flags ; void *private ; int (*func)(wait_queue_t * , unsigned int , int , void * ) ; struct list_head task_list ; }; enum hrtimer_restart; typedef struct poll_table_struct poll_table; enum ldv_33433 { DMX_OUT_DECODER = 0, DMX_OUT_TAP = 1, DMX_OUT_TS_TAP = 2, DMX_OUT_TSDEMUX_TAP = 3 } ; typedef enum ldv_33433 dmx_output_t; enum ldv_33435 { DMX_IN_FRONTEND = 0, DMX_IN_DVR = 1 } ; typedef enum ldv_33435 dmx_input_t; enum dmx_ts_pes { DMX_PES_AUDIO0 = 0, DMX_PES_VIDEO0 = 1, DMX_PES_TELETEXT0 = 2, DMX_PES_SUBTITLE0 = 3, DMX_PES_PCR0 = 4, DMX_PES_AUDIO1 = 5, DMX_PES_VIDEO1 = 6, DMX_PES_TELETEXT1 = 7, DMX_PES_SUBTITLE1 = 8, DMX_PES_PCR1 = 9, DMX_PES_AUDIO2 = 10, DMX_PES_VIDEO2 = 11, DMX_PES_TELETEXT2 = 12, DMX_PES_SUBTITLE2 = 13, DMX_PES_PCR2 = 14, DMX_PES_AUDIO3 = 15, DMX_PES_VIDEO3 = 16, DMX_PES_TELETEXT3 = 17, DMX_PES_SUBTITLE3 = 18, DMX_PES_PCR3 = 19, DMX_PES_OTHER = 20 } ; typedef enum dmx_ts_pes dmx_pes_type_t; struct dmx_filter { __u8 filter[16U] ; __u8 mask[16U] ; __u8 mode[16U] ; }; typedef struct dmx_filter dmx_filter_t; struct dmx_sct_filter_params { __u16 pid ; dmx_filter_t filter ; __u32 timeout ; __u32 flags ; }; struct dmx_pes_filter_params { __u16 pid ; dmx_input_t input ; dmx_output_t output ; dmx_pes_type_t pes_type ; __u32 flags ; }; struct dmx_caps { __u32 caps ; int num_decoders ; }; enum ldv_33451 { DMX_SOURCE_FRONT0 = 0, DMX_SOURCE_FRONT1 = 1, DMX_SOURCE_FRONT2 = 2, DMX_SOURCE_FRONT3 = 3, DMX_SOURCE_DVR0 = 16, DMX_SOURCE_DVR1 = 17, DMX_SOURCE_DVR2 = 18, DMX_SOURCE_DVR3 = 19 } ; typedef enum ldv_33451 dmx_source_t; struct dmx_stc { unsigned int num ; unsigned int base ; __u64 stc ; }; enum dmx_success { DMX_OK = 0, DMX_LENGTH_ERROR = 1, DMX_OVERRUN_ERROR = 2, DMX_CRC_ERROR = 3, DMX_FRAME_ERROR = 4, DMX_FIFO_ERROR = 5, DMX_MISSED_ERROR = 6 } ; struct dmx_demux; struct dmx_ts_feed { int is_filtering ; struct dmx_demux *parent ; void *priv ; int (*set)(struct dmx_ts_feed * , u16 , int , enum dmx_ts_pes , size_t , struct timespec ) ; int (*start_filtering)(struct dmx_ts_feed * ) ; int (*stop_filtering)(struct dmx_ts_feed * ) ; }; struct dmx_section_feed; struct dmx_section_filter { u8 filter_value[18U] ; u8 filter_mask[18U] ; u8 filter_mode[18U] ; struct dmx_section_feed *parent ; void *priv ; }; struct dmx_section_feed { int is_filtering ; struct dmx_demux *parent ; void *priv ; int check_crc ; u32 crc_val ; u8 *secbuf ; u8 secbuf_base[4284U] ; u16 secbufp ; u16 seclen ; u16 tsfeedp ; int (*set)(struct dmx_section_feed * , u16 , size_t , int ) ; int (*allocate_filter)(struct dmx_section_feed * , struct dmx_section_filter ** ) ; int (*release_filter)(struct dmx_section_feed * , struct dmx_section_filter * ) ; int (*start_filtering)(struct dmx_section_feed * ) ; int (*stop_filtering)(struct dmx_section_feed * ) ; }; enum dmx_frontend_source { DMX_MEMORY_FE = 0, DMX_FRONTEND_0 = 1, DMX_FRONTEND_1 = 2, DMX_FRONTEND_2 = 3, DMX_FRONTEND_3 = 4, DMX_STREAM_0 = 5, DMX_STREAM_1 = 6, DMX_STREAM_2 = 7, DMX_STREAM_3 = 8 } ; struct dmx_frontend { struct list_head connectivity_list ; enum dmx_frontend_source source ; }; struct dmx_demux { u32 capabilities ; struct dmx_frontend *frontend ; void *priv ; int (*open)(struct dmx_demux * ) ; int (*close)(struct dmx_demux * ) ; int (*write)(struct dmx_demux * , char const * , size_t ) ; int (*allocate_ts_feed)(struct dmx_demux * , struct dmx_ts_feed ** , int (*)(u8 const * , size_t , u8 const * , size_t , struct dmx_ts_feed * , enum dmx_success ) ) ; int (*release_ts_feed)(struct dmx_demux * , struct dmx_ts_feed * ) ; int (*allocate_section_feed)(struct dmx_demux * , struct dmx_section_feed ** , int (*)(u8 const * , size_t , u8 const * , size_t , struct dmx_section_filter * , enum dmx_success ) ) ; int (*release_section_feed)(struct dmx_demux * , struct dmx_section_feed * ) ; int (*add_frontend)(struct dmx_demux * , struct dmx_frontend * ) ; int (*remove_frontend)(struct dmx_demux * , struct dmx_frontend * ) ; struct list_head *(*get_frontends)(struct dmx_demux * ) ; int (*connect_frontend)(struct dmx_demux * , struct dmx_frontend * ) ; int (*disconnect_frontend)(struct dmx_demux * ) ; int (*get_pes_pids)(struct dmx_demux * , u16 * ) ; int (*get_caps)(struct dmx_demux * , struct dmx_caps * ) ; int (*set_source)(struct dmx_demux * , dmx_source_t const * ) ; int (*get_stc)(struct dmx_demux * , unsigned int , u64 * , unsigned int * ) ; }; struct dvb_ringbuffer { u8 *data ; ssize_t size ; ssize_t pread ; ssize_t pwrite ; int error ; wait_queue_head_t queue ; spinlock_t lock ; }; enum dmxdev_type { DMXDEV_TYPE_NONE = 0, DMXDEV_TYPE_SEC = 1, DMXDEV_TYPE_PES = 2 } ; enum dmxdev_state { DMXDEV_STATE_FREE = 0, DMXDEV_STATE_ALLOCATED = 1, DMXDEV_STATE_SET = 2, DMXDEV_STATE_GO = 3, DMXDEV_STATE_DONE = 4, DMXDEV_STATE_TIMEDOUT = 5 } ; struct dmxdev_feed { u16 pid ; struct dmx_ts_feed *ts ; struct list_head next ; }; union __anonunion_filter_273 { struct dmx_section_filter *sec ; }; union __anonunion_feed_274 { struct list_head ts ; struct dmx_section_feed *sec ; }; union __anonunion_params_275 { struct dmx_sct_filter_params sec ; struct dmx_pes_filter_params pes ; }; struct dmxdev; struct dmxdev_filter { union __anonunion_filter_273 filter ; union __anonunion_feed_274 feed ; union __anonunion_params_275 params ; enum dmxdev_type type ; enum dmxdev_state state ; struct dmxdev *dev ; struct dvb_ringbuffer buffer ; struct mutex mutex ; struct timer_list timer ; int todo ; u8 secheader[3U] ; }; struct dmxdev { struct dvb_device *dvbdev ; struct dvb_device *dvr_dvbdev ; struct dmxdev_filter *filter ; struct dmx_demux *demux ; int filternum ; int capabilities ; unsigned char exit : 1 ; struct dmx_frontend *dvr_orig_fe ; struct dvb_ringbuffer dvr_buffer ; struct mutex mutex ; spinlock_t lock ; }; typedef int ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; struct exec_domain; struct map_segment; struct exec_domain { char const *name ; void (*handler)(int , struct pt_regs * ) ; unsigned char pers_low ; unsigned char pers_high ; unsigned long *signal_map ; unsigned long *signal_invmap ; struct map_segment *err_map ; struct map_segment *socktype_map ; struct map_segment *sockopt_map ; struct map_segment *af_map ; struct module *module ; struct exec_domain *next ; }; struct __anonstruct_mm_segment_t_25 { unsigned long seg ; }; typedef struct __anonstruct_mm_segment_t_25 mm_segment_t; struct thread_info { struct task_struct *task ; struct exec_domain *exec_domain ; __u32 flags ; __u32 status ; __u32 cpu ; int saved_preempt_count ; mm_segment_t addr_limit ; void *sysenter_return ; unsigned char sig_on_uaccess_error : 1 ; unsigned char uaccess_err : 1 ; }; enum hrtimer_restart; struct dvb_demux_feed; struct dvb_demux_filter { struct dmx_section_filter filter ; u8 maskandmode[18U] ; u8 maskandnotmode[18U] ; int doneq ; struct dvb_demux_filter *next ; struct dvb_demux_feed *feed ; int index ; int state ; int type ; u16 hw_handle ; struct timer_list timer ; }; union __anonunion_feed_273 { struct dmx_ts_feed ts ; struct dmx_section_feed sec ; }; union __anonunion_cb_274 { int (*ts)(u8 const * , size_t , u8 const * , size_t , struct dmx_ts_feed * , enum dmx_success ) ; int (*sec)(u8 const * , size_t , u8 const * , size_t , struct dmx_section_filter * , enum dmx_success ) ; }; struct dvb_demux; struct dvb_demux_feed { union __anonunion_feed_273 feed ; union __anonunion_cb_274 cb ; struct dvb_demux *demux ; void *priv ; int type ; int state ; u16 pid ; u8 *buffer ; int buffer_size ; struct timespec timeout ; struct dvb_demux_filter *filter ; int ts_type ; enum dmx_ts_pes pes_type ; int cc ; int pusi_seen ; u16 peslen ; struct list_head list_head ; unsigned int index ; }; struct dvb_demux { struct dmx_demux dmx ; void *priv ; int filternum ; int feednum ; int (*start_feed)(struct dvb_demux_feed * ) ; int (*stop_feed)(struct dvb_demux_feed * ) ; int (*write_to_decoder)(struct dvb_demux_feed * , u8 const * , size_t ) ; u32 (*check_crc32)(struct dvb_demux_feed * , u8 const * , size_t ) ; void (*memcopy)(struct dvb_demux_feed * , u8 * , u8 const * , size_t ) ; int users ; struct dvb_demux_filter *filter ; struct dvb_demux_feed *feed ; struct list_head frontend_list ; struct dvb_demux_feed *pesfilter[20U] ; u16 pids[20U] ; int playing ; int recording ; struct list_head feed_list ; u8 tsbuf[204U] ; int tsbufp ; struct mutex mutex ; spinlock_t lock ; uint8_t *cnt_storage ; struct timespec speed_last_time ; uint32_t speed_pkts_cnt ; }; typedef int dvb_filter_pes2ts_cb_t(void * , unsigned char * ); struct dvb_filter_pes2ts { unsigned char buf[188U] ; unsigned char cc ; dvb_filter_pes2ts_cb_t *cb ; void *priv ; }; struct dvb_audio_info { int layer ; u32 bit_rate ; u32 frequency ; u32 mode ; u32 mode_extension ; u32 emphasis ; u32 framesize ; u32 off ; }; enum hrtimer_restart; struct ca_slot_info { int num ; int type ; unsigned int flags ; }; struct ca_caps { unsigned int slot_num ; unsigned int slot_type ; unsigned int descr_num ; unsigned int descr_type ; }; struct dvb_ca_en50221 { struct module *owner ; int (*read_attribute_mem)(struct dvb_ca_en50221 * , int , int ) ; int (*write_attribute_mem)(struct dvb_ca_en50221 * , int , int , u8 ) ; int (*read_cam_control)(struct dvb_ca_en50221 * , int , u8 ) ; int (*write_cam_control)(struct dvb_ca_en50221 * , int , u8 , u8 ) ; int (*slot_reset)(struct dvb_ca_en50221 * , int ) ; int (*slot_shutdown)(struct dvb_ca_en50221 * , int ) ; int (*slot_ts_enable)(struct dvb_ca_en50221 * , int ) ; int (*poll_slot_status)(struct dvb_ca_en50221 * , int , int ) ; void *data ; void *private ; }; struct dvb_ca_slot { int slot_state ; struct mutex slot_lock ; atomic_t camchange_count ; int camchange_type ; u32 config_base ; u8 config_option ; unsigned char da_irq_supported : 1 ; int link_buf_size ; struct dvb_ringbuffer rx_buffer ; unsigned long timeout ; }; struct dvb_ca_private { struct dvb_ca_en50221 *pub ; struct dvb_device *dvbdev ; u32 flags ; unsigned int slot_count ; struct dvb_ca_slot *slot_info ; wait_queue_head_t wait_queue ; struct task_struct *thread ; unsigned char open : 1 ; unsigned char wakeup : 1 ; unsigned long delay ; int next_read_slot ; struct mutex ioctl_mutex ; }; typedef long long __s64; typedef __kernel_long_t __kernel_suseconds_t; struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned char flags ; }; struct timeval { __kernel_time_t tv_sec ; __kernel_suseconds_t tv_usec ; }; enum hrtimer_restart; struct ratelimit_state { raw_spinlock_t lock ; int interval ; int burst ; int printed ; int missed ; unsigned long begin ; }; struct semaphore { raw_spinlock_t lock ; unsigned int count ; struct list_head wait_list ; }; enum fe_type { FE_QPSK = 0, FE_QAM = 1, FE_OFDM = 2, FE_ATSC = 3 } ; typedef enum fe_type fe_type_t; enum fe_caps { FE_IS_STUPID = 0, FE_CAN_INVERSION_AUTO = 1, FE_CAN_FEC_1_2 = 2, FE_CAN_FEC_2_3 = 4, FE_CAN_FEC_3_4 = 8, FE_CAN_FEC_4_5 = 16, FE_CAN_FEC_5_6 = 32, FE_CAN_FEC_6_7 = 64, FE_CAN_FEC_7_8 = 128, FE_CAN_FEC_8_9 = 256, FE_CAN_FEC_AUTO = 512, FE_CAN_QPSK = 1024, FE_CAN_QAM_16 = 2048, FE_CAN_QAM_32 = 4096, FE_CAN_QAM_64 = 8192, FE_CAN_QAM_128 = 16384, FE_CAN_QAM_256 = 32768, FE_CAN_QAM_AUTO = 65536, FE_CAN_TRANSMISSION_MODE_AUTO = 131072, FE_CAN_BANDWIDTH_AUTO = 262144, FE_CAN_GUARD_INTERVAL_AUTO = 524288, FE_CAN_HIERARCHY_AUTO = 1048576, FE_CAN_8VSB = 2097152, FE_CAN_16VSB = 4194304, FE_HAS_EXTENDED_CAPS = 8388608, FE_CAN_MULTISTREAM = 67108864, FE_CAN_TURBO_FEC = 134217728, FE_CAN_2G_MODULATION = 268435456, FE_NEEDS_BENDING = 536870912, FE_CAN_RECOVER = 1073741824, FE_CAN_MUTE_TS = 2147483648U } ; typedef enum fe_caps fe_caps_t; struct dvb_frontend_info { char name[128U] ; fe_type_t type ; __u32 frequency_min ; __u32 frequency_max ; __u32 frequency_stepsize ; __u32 frequency_tolerance ; __u32 symbol_rate_min ; __u32 symbol_rate_max ; __u32 symbol_rate_tolerance ; __u32 notifier_delay ; fe_caps_t caps ; }; struct dvb_diseqc_master_cmd { __u8 msg[6U] ; __u8 msg_len ; }; struct dvb_diseqc_slave_reply { __u8 msg[4U] ; __u8 msg_len ; int timeout ; }; enum fe_sec_voltage { SEC_VOLTAGE_13 = 0, SEC_VOLTAGE_18 = 1, SEC_VOLTAGE_OFF = 2 } ; typedef enum fe_sec_voltage fe_sec_voltage_t; enum fe_sec_tone_mode { SEC_TONE_ON = 0, SEC_TONE_OFF = 1 } ; typedef enum fe_sec_tone_mode fe_sec_tone_mode_t; enum fe_sec_mini_cmd { SEC_MINI_A = 0, SEC_MINI_B = 1 } ; typedef enum fe_sec_mini_cmd fe_sec_mini_cmd_t; enum fe_status { FE_HAS_SIGNAL = 1, FE_HAS_CARRIER = 2, FE_HAS_VITERBI = 4, FE_HAS_SYNC = 8, FE_HAS_LOCK = 16, FE_TIMEDOUT = 32, FE_REINIT = 64 } ; typedef enum fe_status fe_status_t; enum fe_spectral_inversion { INVERSION_OFF = 0, INVERSION_ON = 1, INVERSION_AUTO = 2 } ; typedef enum fe_spectral_inversion fe_spectral_inversion_t; enum fe_code_rate { FEC_NONE = 0, FEC_1_2 = 1, FEC_2_3 = 2, FEC_3_4 = 3, FEC_4_5 = 4, FEC_5_6 = 5, FEC_6_7 = 6, FEC_7_8 = 7, FEC_8_9 = 8, FEC_AUTO = 9, FEC_3_5 = 10, FEC_9_10 = 11, FEC_2_5 = 12 } ; typedef enum fe_code_rate fe_code_rate_t; enum fe_modulation { QPSK = 0, QAM_16 = 1, QAM_32 = 2, QAM_64 = 3, QAM_128 = 4, QAM_256 = 5, QAM_AUTO = 6, VSB_8 = 7, VSB_16 = 8, PSK_8 = 9, APSK_16 = 10, APSK_32 = 11, DQPSK = 12, QAM_4_NR = 13 } ; typedef enum fe_modulation fe_modulation_t; enum fe_transmit_mode { TRANSMISSION_MODE_2K = 0, TRANSMISSION_MODE_8K = 1, TRANSMISSION_MODE_AUTO = 2, TRANSMISSION_MODE_4K = 3, TRANSMISSION_MODE_1K = 4, TRANSMISSION_MODE_16K = 5, TRANSMISSION_MODE_32K = 6, TRANSMISSION_MODE_C1 = 7, TRANSMISSION_MODE_C3780 = 8 } ; typedef enum fe_transmit_mode fe_transmit_mode_t; enum fe_bandwidth { BANDWIDTH_8_MHZ = 0, BANDWIDTH_7_MHZ = 1, BANDWIDTH_6_MHZ = 2, BANDWIDTH_AUTO = 3, BANDWIDTH_5_MHZ = 4, BANDWIDTH_10_MHZ = 5, BANDWIDTH_1_712_MHZ = 6 } ; typedef enum fe_bandwidth fe_bandwidth_t; enum fe_guard_interval { GUARD_INTERVAL_1_32 = 0, GUARD_INTERVAL_1_16 = 1, GUARD_INTERVAL_1_8 = 2, GUARD_INTERVAL_1_4 = 3, GUARD_INTERVAL_AUTO = 4, GUARD_INTERVAL_1_128 = 5, GUARD_INTERVAL_19_128 = 6, GUARD_INTERVAL_19_256 = 7, GUARD_INTERVAL_PN420 = 8, GUARD_INTERVAL_PN595 = 9, GUARD_INTERVAL_PN945 = 10 } ; typedef enum fe_guard_interval fe_guard_interval_t; enum fe_hierarchy { HIERARCHY_NONE = 0, HIERARCHY_1 = 1, HIERARCHY_2 = 2, HIERARCHY_4 = 3, HIERARCHY_AUTO = 4 } ; typedef enum fe_hierarchy fe_hierarchy_t; enum fe_interleaving { INTERLEAVING_NONE = 0, INTERLEAVING_AUTO = 1, INTERLEAVING_240 = 2, INTERLEAVING_720 = 3 } ; struct dvb_qpsk_parameters { __u32 symbol_rate ; fe_code_rate_t fec_inner ; }; struct dvb_qam_parameters { __u32 symbol_rate ; fe_code_rate_t fec_inner ; fe_modulation_t modulation ; }; struct dvb_vsb_parameters { fe_modulation_t modulation ; }; struct dvb_ofdm_parameters { fe_bandwidth_t bandwidth ; fe_code_rate_t code_rate_HP ; fe_code_rate_t code_rate_LP ; fe_modulation_t constellation ; fe_transmit_mode_t transmission_mode ; fe_guard_interval_t guard_interval ; fe_hierarchy_t hierarchy_information ; }; union __anonunion_u_273 { struct dvb_qpsk_parameters qpsk ; struct dvb_qam_parameters qam ; struct dvb_ofdm_parameters ofdm ; struct dvb_vsb_parameters vsb ; }; struct dvb_frontend_parameters { __u32 frequency ; fe_spectral_inversion_t inversion ; union __anonunion_u_273 u ; }; struct dvb_frontend_event { fe_status_t status ; struct dvb_frontend_parameters parameters ; }; enum fe_pilot { PILOT_ON = 0, PILOT_OFF = 1, PILOT_AUTO = 2 } ; typedef enum fe_pilot fe_pilot_t; enum fe_rolloff { ROLLOFF_35 = 0, ROLLOFF_20 = 1, ROLLOFF_25 = 2, ROLLOFF_AUTO = 3 } ; typedef enum fe_rolloff fe_rolloff_t; enum fe_delivery_system { SYS_UNDEFINED = 0, SYS_DVBC_ANNEX_A = 1, SYS_DVBC_ANNEX_B = 2, SYS_DVBT = 3, SYS_DSS = 4, SYS_DVBS = 5, SYS_DVBS2 = 6, SYS_DVBH = 7, SYS_ISDBT = 8, SYS_ISDBS = 9, SYS_ISDBC = 10, SYS_ATSC = 11, SYS_ATSCMH = 12, SYS_DTMB = 13, SYS_CMMB = 14, SYS_DAB = 15, SYS_DVBT2 = 16, SYS_TURBO = 17, SYS_DVBC_ANNEX_C = 18 } ; typedef enum fe_delivery_system fe_delivery_system_t; struct dtv_cmds_h { char *name ; __u32 cmd ; unsigned char set : 1 ; unsigned char buffer : 1 ; unsigned int reserved : 30 ; }; union __anonunion____missing_field_name_274 { __u64 uvalue ; __s64 svalue ; }; struct dtv_stats { __u8 scale ; union __anonunion____missing_field_name_274 __annonCompField88 ; }; struct dtv_fe_stats { __u8 len ; struct dtv_stats stat[4U] ; }; struct __anonstruct_buffer_276 { __u8 data[32U] ; __u32 len ; __u32 reserved1[3U] ; void *reserved2 ; }; union __anonunion_u_275 { __u32 data ; struct dtv_fe_stats st ; struct __anonstruct_buffer_276 buffer ; }; struct dtv_property { __u32 cmd ; __u32 reserved[3U] ; union __anonunion_u_275 u ; int result ; }; struct dtv_properties { __u32 num ; struct dtv_property *props ; }; struct dvb_frontend; struct dvb_frontend_tune_settings { int min_delay_ms ; int step_size ; int max_drift ; }; struct dvb_tuner_info { char name[128U] ; u32 frequency_min ; u32 frequency_max ; u32 frequency_step ; u32 bandwidth_min ; u32 bandwidth_max ; u32 bandwidth_step ; }; struct analog_parameters { unsigned int frequency ; unsigned int mode ; unsigned int audmode ; u64 std ; }; enum tuner_param { DVBFE_TUNER_FREQUENCY = 1, DVBFE_TUNER_TUNERSTEP = 2, DVBFE_TUNER_IFFREQ = 4, DVBFE_TUNER_BANDWIDTH = 8, DVBFE_TUNER_REFCLOCK = 16, DVBFE_TUNER_IQSENSE = 32, DVBFE_TUNER_DUMMY = (-0x7FFFFFFF-1) } ; enum dvbfe_algo { DVBFE_ALGO_HW = 1, DVBFE_ALGO_SW = 2, DVBFE_ALGO_CUSTOM = 4, DVBFE_ALGO_RECOVERY = (-0x7FFFFFFF-1) } ; struct tuner_state { u32 frequency ; u32 tunerstep ; u32 ifreq ; u32 bandwidth ; u32 iqsense ; u32 refclock ; }; enum dvbfe_search { DVBFE_ALGO_SEARCH_SUCCESS = 1, DVBFE_ALGO_SEARCH_ASLEEP = 2, DVBFE_ALGO_SEARCH_FAILED = 4, DVBFE_ALGO_SEARCH_INVALID = 8, DVBFE_ALGO_SEARCH_AGAIN = 16, DVBFE_ALGO_SEARCH_ERROR = (-0x7FFFFFFF-1) } ; struct dvb_tuner_ops { struct dvb_tuner_info info ; int (*release)(struct dvb_frontend * ) ; int (*init)(struct dvb_frontend * ) ; int (*sleep)(struct dvb_frontend * ) ; int (*suspend)(struct dvb_frontend * ) ; int (*resume)(struct dvb_frontend * ) ; int (*set_params)(struct dvb_frontend * ) ; int (*set_analog_params)(struct dvb_frontend * , struct analog_parameters * ) ; int (*calc_regs)(struct dvb_frontend * , u8 * , int ) ; int (*set_config)(struct dvb_frontend * , void * ) ; int (*get_frequency)(struct dvb_frontend * , u32 * ) ; int (*get_bandwidth)(struct dvb_frontend * , u32 * ) ; int (*get_if_frequency)(struct dvb_frontend * , u32 * ) ; int (*get_status)(struct dvb_frontend * , u32 * ) ; int (*get_rf_strength)(struct dvb_frontend * , u16 * ) ; int (*get_afc)(struct dvb_frontend * , s32 * ) ; int (*set_frequency)(struct dvb_frontend * , u32 ) ; int (*set_bandwidth)(struct dvb_frontend * , u32 ) ; int (*set_state)(struct dvb_frontend * , enum tuner_param , struct tuner_state * ) ; int (*get_state)(struct dvb_frontend * , enum tuner_param , struct tuner_state * ) ; }; struct analog_demod_info { char *name ; }; struct analog_demod_ops { struct analog_demod_info info ; void (*set_params)(struct dvb_frontend * , struct analog_parameters * ) ; int (*has_signal)(struct dvb_frontend * , u16 * ) ; int (*get_afc)(struct dvb_frontend * , s32 * ) ; void (*tuner_status)(struct dvb_frontend * ) ; void (*standby)(struct dvb_frontend * ) ; void (*release)(struct dvb_frontend * ) ; int (*i2c_gate_ctrl)(struct dvb_frontend * , int ) ; int (*set_config)(struct dvb_frontend * , void * ) ; }; struct dtv_frontend_properties; struct dvb_frontend_ops { struct dvb_frontend_info info ; u8 delsys[8U] ; void (*release)(struct dvb_frontend * ) ; void (*release_sec)(struct dvb_frontend * ) ; int (*init)(struct dvb_frontend * ) ; int (*sleep)(struct dvb_frontend * ) ; int (*write)(struct dvb_frontend * , u8 const * , int ) ; int (*tune)(struct dvb_frontend * , bool , unsigned int , unsigned int * , fe_status_t * ) ; enum dvbfe_algo (*get_frontend_algo)(struct dvb_frontend * ) ; int (*set_frontend)(struct dvb_frontend * ) ; int (*get_tune_settings)(struct dvb_frontend * , struct dvb_frontend_tune_settings * ) ; int (*get_frontend)(struct dvb_frontend * ) ; int (*read_status)(struct dvb_frontend * , fe_status_t * ) ; int (*read_ber)(struct dvb_frontend * , u32 * ) ; int (*read_signal_strength)(struct dvb_frontend * , u16 * ) ; int (*read_snr)(struct dvb_frontend * , u16 * ) ; int (*read_ucblocks)(struct dvb_frontend * , u32 * ) ; int (*diseqc_reset_overload)(struct dvb_frontend * ) ; int (*diseqc_send_master_cmd)(struct dvb_frontend * , struct dvb_diseqc_master_cmd * ) ; int (*diseqc_recv_slave_reply)(struct dvb_frontend * , struct dvb_diseqc_slave_reply * ) ; int (*diseqc_send_burst)(struct dvb_frontend * , fe_sec_mini_cmd_t ) ; int (*set_tone)(struct dvb_frontend * , fe_sec_tone_mode_t ) ; int (*set_voltage)(struct dvb_frontend * , fe_sec_voltage_t ) ; int (*enable_high_lnb_voltage)(struct dvb_frontend * , long ) ; int (*dishnetwork_send_legacy_command)(struct dvb_frontend * , unsigned long ) ; int (*i2c_gate_ctrl)(struct dvb_frontend * , int ) ; int (*ts_bus_ctrl)(struct dvb_frontend * , int ) ; int (*set_lna)(struct dvb_frontend * ) ; enum dvbfe_search (*search)(struct dvb_frontend * ) ; struct dvb_tuner_ops tuner_ops ; struct analog_demod_ops analog_ops ; int (*set_property)(struct dvb_frontend * , struct dtv_property * ) ; int (*get_property)(struct dvb_frontend * , struct dtv_property * ) ; }; struct dvb_fe_events { struct dvb_frontend_event events[8U] ; int eventw ; int eventr ; int overflow ; wait_queue_head_t wait_queue ; struct mutex mtx ; }; struct __anonstruct_layer_277 { u8 segment_count ; fe_code_rate_t fec ; fe_modulation_t modulation ; u8 interleaving ; }; struct dtv_frontend_properties { u32 state ; u32 frequency ; fe_modulation_t modulation ; fe_sec_voltage_t voltage ; fe_sec_tone_mode_t sectone ; fe_spectral_inversion_t inversion ; fe_code_rate_t fec_inner ; fe_transmit_mode_t transmission_mode ; u32 bandwidth_hz ; fe_guard_interval_t guard_interval ; fe_hierarchy_t hierarchy ; u32 symbol_rate ; fe_code_rate_t code_rate_HP ; fe_code_rate_t code_rate_LP ; fe_pilot_t pilot ; fe_rolloff_t rolloff ; fe_delivery_system_t delivery_system ; enum fe_interleaving interleaving ; u8 isdbt_partial_reception ; u8 isdbt_sb_mode ; u8 isdbt_sb_subchannel ; u32 isdbt_sb_segment_idx ; u32 isdbt_sb_segment_count ; u8 isdbt_layer_enabled ; struct __anonstruct_layer_277 layer[3U] ; u32 stream_id ; u8 atscmh_fic_ver ; u8 atscmh_parade_id ; u8 atscmh_nog ; u8 atscmh_tnog ; u8 atscmh_sgn ; u8 atscmh_prc ; u8 atscmh_rs_frame_mode ; u8 atscmh_rs_frame_ensemble ; u8 atscmh_rs_code_mode_pri ; u8 atscmh_rs_code_mode_sec ; u8 atscmh_sccc_block_mode ; u8 atscmh_sccc_code_mode_a ; u8 atscmh_sccc_code_mode_b ; u8 atscmh_sccc_code_mode_c ; u8 atscmh_sccc_code_mode_d ; u32 lna ; struct dtv_fe_stats strength ; struct dtv_fe_stats cnr ; struct dtv_fe_stats pre_bit_error ; struct dtv_fe_stats pre_bit_count ; struct dtv_fe_stats post_bit_error ; struct dtv_fe_stats post_bit_count ; struct dtv_fe_stats block_error ; struct dtv_fe_stats block_count ; }; struct dvb_frontend { struct dvb_frontend_ops ops ; struct dvb_adapter *dvb ; void *demodulator_priv ; void *tuner_priv ; void *frontend_priv ; void *sec_priv ; void *analog_demod_priv ; struct dtv_frontend_properties dtv_property_cache ; int (*callback)(void * , int , int , int ) ; int id ; unsigned int exit ; }; struct dvb_frontend_private { struct dvb_device *dvbdev ; struct dvb_frontend_parameters parameters_out ; struct dvb_fe_events events ; struct semaphore sem ; struct list_head list_head ; wait_queue_head_t wait_queue ; struct task_struct *thread ; unsigned long release_jiffies ; unsigned int wakeup ; fe_status_t status ; unsigned long tune_mode_flags ; unsigned int delay ; unsigned int reinitialise ; int tone ; int voltage ; unsigned int state ; unsigned int bending ; int lnb_drift ; unsigned int inversion ; unsigned int auto_step ; unsigned int auto_sub_step ; unsigned int started_auto_step ; unsigned int min_delay ; unsigned int max_drift ; unsigned int step_size ; int quality ; unsigned int check_wrapped ; enum dvbfe_search algo_status ; }; enum dvbv3_emulation_type { DVBV3_UNKNOWN = 0, DVBV3_QPSK = 1, DVBV3_QAM = 2, DVBV3_OFDM = 3, DVBV3_ATSC = 4 } ; enum hrtimer_restart; struct netdev_hw_addr { struct list_head list ; unsigned char addr[32U] ; unsigned char type ; bool global_use ; int sync_cnt ; int refcount ; int synced ; struct callback_head callback_head ; }; struct dvb_net_if { __u16 pid ; __u16 if_num ; __u8 feedtype ; }; struct __dvb_net_if_old { __u16 pid ; __u16 if_num ; }; struct ipv4_devconf { void *sysctl ; int data[28U] ; unsigned long state[1U] ; }; struct in_ifaddr; struct ip_mc_list; struct in_device { struct net_device *dev ; atomic_t refcnt ; int dead ; struct in_ifaddr *ifa_list ; struct ip_mc_list *mc_list ; struct ip_mc_list **mc_hash ; int mc_count ; spinlock_t mc_tomb_lock ; struct ip_mc_list *mc_tomb ; unsigned long mr_v1_seen ; unsigned long mr_v2_seen ; unsigned long mr_maxdelay ; unsigned char mr_qrv ; unsigned char mr_gq_running ; unsigned char mr_ifc_count ; struct timer_list mr_gq_timer ; struct timer_list mr_ifc_timer ; struct neigh_parms *arp_parms ; struct ipv4_devconf cnf ; struct callback_head callback_head ; }; struct in_ifaddr { struct hlist_node hash ; struct in_ifaddr *ifa_next ; struct in_device *ifa_dev ; struct callback_head callback_head ; __be32 ifa_local ; __be32 ifa_address ; __be32 ifa_mask ; __be32 ifa_broadcast ; unsigned char ifa_scope ; unsigned char ifa_prefixlen ; __u32 ifa_flags ; char ifa_label[16U] ; __u32 ifa_valid_lft ; __u32 ifa_preferred_lft ; unsigned long ifa_cstamp ; unsigned long ifa_tstamp ; }; struct dvb_net { struct dvb_device *dvbdev ; struct net_device *device[10U] ; int state[10U] ; unsigned char exit : 1 ; struct dmx_demux *demux ; struct mutex ioctl_mutex ; }; struct dvb_net_priv { int in_use ; u16 pid ; struct net_device *net ; struct dvb_net *host ; struct dmx_demux *demux ; struct dmx_section_feed *secfeed ; struct dmx_section_filter *secfilter ; struct dmx_ts_feed *tsfeed ; int multi_num ; struct dmx_section_filter *multi_secfilter[10U] ; unsigned char multi_macs[10U][6U] ; int rx_mode ; struct work_struct set_multicast_list_wq ; struct work_struct restart_net_feed_wq ; unsigned char feedtype ; int need_pusi ; unsigned char tscc ; struct sk_buff *ule_skb ; unsigned char *ule_next_hdr ; unsigned short ule_sndu_len ; unsigned short ule_sndu_type ; unsigned char ule_sndu_type_1 ; unsigned char ule_dbit ; unsigned char ule_bridged ; int ule_sndu_remain ; unsigned long ts_count ; struct mutex mutex ; }; struct ldv_struct_dummy_resourceless_instance_6 { struct net_device *arg0 ; int signal_pending ; }; typedef struct net_device *ldv_func_ret_type___4; struct request; struct device_private { void *driver_data ; }; typedef short s16; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; struct kthread_worker *worker ; }; struct dma_chan; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool (*can_dma)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool idling ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; bool cur_msg_mapped ; struct completion xfer_completion ; size_t max_dma_len ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; struct dma_chan *dma_tx ; struct dma_chan *dma_rx ; void *dummy_rx ; void *dummy_tx ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; struct sg_table tx_sg ; struct sg_table rx_sg ; unsigned char cs_change : 1 ; unsigned char tx_nbits : 3 ; unsigned char rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned char is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; enum hrtimer_restart; typedef unsigned int mmc_pm_flag_t; struct mmc_card; struct sdio_func; typedef void sdio_irq_handler_t(struct sdio_func * ); struct sdio_func_tuple { struct sdio_func_tuple *next ; unsigned char code ; unsigned char size ; unsigned char data[0U] ; }; struct sdio_func { struct mmc_card *card ; struct device dev ; sdio_irq_handler_t *irq_handler ; unsigned int num ; unsigned char class ; unsigned short vendor ; unsigned short device ; unsigned int max_blksize ; unsigned int cur_blksize ; unsigned int enable_timeout ; unsigned int state ; u8 tmpbuf[4U] ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; }; enum led_brightness { LED_OFF = 0, LED_HALF = 127, LED_FULL = 255 } ; struct led_trigger; struct led_classdev { char const *name ; enum led_brightness brightness ; enum led_brightness max_brightness ; int flags ; void (*brightness_set)(struct led_classdev * , enum led_brightness ) ; int (*brightness_set_sync)(struct led_classdev * , enum led_brightness ) ; enum led_brightness (*brightness_get)(struct led_classdev * ) ; int (*blink_set)(struct led_classdev * , unsigned long * , unsigned long * ) ; struct device *dev ; struct attribute_group const **groups ; struct list_head node ; char const *default_trigger ; unsigned long blink_delay_on ; unsigned long blink_delay_off ; struct timer_list blink_timer ; int blink_brightness ; void (*flash_resume)(struct led_classdev * ) ; struct work_struct set_brightness_work ; int delayed_set_value ; struct rw_semaphore trigger_lock ; struct led_trigger *trigger ; struct list_head trig_list ; void *trigger_data ; bool activated ; struct mutex led_access ; }; struct led_trigger { char const *name ; void (*activate)(struct led_classdev * ) ; void (*deactivate)(struct led_classdev * ) ; rwlock_t leddev_list_lock ; struct list_head led_cdevs ; struct list_head next_trig ; }; struct fault_attr { unsigned long probability ; unsigned long interval ; atomic_t times ; atomic_t space ; unsigned long verbose ; u32 task_filter ; unsigned long stacktrace_depth ; unsigned long require_start ; unsigned long require_end ; unsigned long reject_start ; unsigned long reject_end ; unsigned long count ; struct ratelimit_state ratelimit_state ; struct dentry *dname ; }; struct mmc_data; struct mmc_request; struct mmc_command { u32 opcode ; u32 arg ; u32 resp[4U] ; unsigned int flags ; unsigned int retries ; unsigned int error ; unsigned int busy_timeout ; bool sanitize_busy ; struct mmc_data *data ; struct mmc_request *mrq ; }; struct mmc_data { unsigned int timeout_ns ; unsigned int timeout_clks ; unsigned int blksz ; unsigned int blocks ; unsigned int error ; unsigned int flags ; unsigned int bytes_xfered ; struct mmc_command *stop ; struct mmc_request *mrq ; unsigned int sg_len ; struct scatterlist *sg ; s32 host_cookie ; }; struct mmc_host; struct mmc_request { struct mmc_command *sbc ; struct mmc_command *cmd ; struct mmc_data *data ; struct mmc_command *stop ; struct completion completion ; void (*done)(struct mmc_request * ) ; struct mmc_host *host ; }; struct mmc_async_req; struct mmc_cid { unsigned int manfid ; char prod_name[8U] ; unsigned char prv ; unsigned int serial ; unsigned short oemid ; unsigned short year ; unsigned char hwrev ; unsigned char fwrev ; unsigned char month ; }; struct mmc_csd { unsigned char structure ; unsigned char mmca_vsn ; unsigned short cmdclass ; unsigned short tacc_clks ; unsigned int tacc_ns ; unsigned int c_size ; unsigned int r2w_factor ; unsigned int max_dtr ; unsigned int erase_size ; unsigned int read_blkbits ; unsigned int write_blkbits ; unsigned int capacity ; unsigned char read_partial : 1 ; unsigned char read_misalign : 1 ; unsigned char write_partial : 1 ; unsigned char write_misalign : 1 ; unsigned char dsr_imp : 1 ; }; struct mmc_ext_csd { u8 rev ; u8 erase_group_def ; u8 sec_feature_support ; u8 rel_sectors ; u8 rel_param ; u8 part_config ; u8 cache_ctrl ; u8 rst_n_function ; u8 max_packed_writes ; u8 max_packed_reads ; u8 packed_event_en ; unsigned int part_time ; unsigned int sa_timeout ; unsigned int generic_cmd6_time ; unsigned int power_off_longtime ; u8 power_off_notification ; unsigned int hs_max_dtr ; unsigned int hs200_max_dtr ; unsigned int sectors ; unsigned int hc_erase_size ; unsigned int hc_erase_timeout ; unsigned int sec_trim_mult ; unsigned int sec_erase_mult ; unsigned int trim_timeout ; bool partition_setting_completed ; unsigned long long enhanced_area_offset ; unsigned int enhanced_area_size ; unsigned int cache_size ; bool hpi_en ; bool hpi ; unsigned int hpi_cmd ; bool bkops ; bool man_bkops_en ; unsigned int data_sector_size ; unsigned int data_tag_unit_size ; unsigned int boot_ro_lock ; bool boot_ro_lockable ; bool ffu_capable ; u8 fwrev[8U] ; u8 raw_exception_status ; u8 raw_partition_support ; u8 raw_rpmb_size_mult ; u8 raw_erased_mem_count ; u8 raw_ext_csd_structure ; u8 raw_card_type ; u8 out_of_int_time ; u8 raw_pwr_cl_52_195 ; u8 raw_pwr_cl_26_195 ; u8 raw_pwr_cl_52_360 ; u8 raw_pwr_cl_26_360 ; u8 raw_s_a_timeout ; u8 raw_hc_erase_gap_size ; u8 raw_erase_timeout_mult ; u8 raw_hc_erase_grp_size ; u8 raw_sec_trim_mult ; u8 raw_sec_erase_mult ; u8 raw_sec_feature_support ; u8 raw_trim_mult ; u8 raw_pwr_cl_200_195 ; u8 raw_pwr_cl_200_360 ; u8 raw_pwr_cl_ddr_52_195 ; u8 raw_pwr_cl_ddr_52_360 ; u8 raw_pwr_cl_ddr_200_360 ; u8 raw_bkops_status ; u8 raw_sectors[4U] ; unsigned int feature_support ; }; struct sd_scr { unsigned char sda_vsn ; unsigned char sda_spec3 ; unsigned char bus_widths ; unsigned char cmds ; }; struct sd_ssr { unsigned int au ; unsigned int erase_timeout ; unsigned int erase_offset ; }; struct sd_switch_caps { unsigned int hs_max_dtr ; unsigned int uhs_max_dtr ; unsigned int sd3_bus_mode ; unsigned int sd3_drv_type ; unsigned int sd3_curr_limit ; }; struct sdio_cccr { unsigned int sdio_vsn ; unsigned int sd_vsn ; unsigned char multi_block : 1 ; unsigned char low_speed : 1 ; unsigned char wide_bus : 1 ; unsigned char high_power : 1 ; unsigned char high_speed : 1 ; unsigned char disable_cd : 1 ; }; struct sdio_cis { unsigned short vendor ; unsigned short device ; unsigned short blksize ; unsigned int max_dtr ; }; struct mmc_ios; struct mmc_part { unsigned int size ; unsigned int part_cfg ; char name[20U] ; bool force_ro ; unsigned int area_type ; }; struct mmc_card { struct mmc_host *host ; struct device dev ; u32 ocr ; unsigned int rca ; unsigned int type ; unsigned int state ; unsigned int quirks ; unsigned int erase_size ; unsigned int erase_shift ; unsigned int pref_erase ; u8 erased_byte ; u32 raw_cid[4U] ; u32 raw_csd[4U] ; u32 raw_scr[2U] ; struct mmc_cid cid ; struct mmc_csd csd ; struct mmc_ext_csd ext_csd ; struct sd_scr scr ; struct sd_ssr ssr ; struct sd_switch_caps sw_caps ; unsigned int sdio_funcs ; struct sdio_cccr cccr ; struct sdio_cis cis ; struct sdio_func *sdio_func[7U] ; struct sdio_func *sdio_single_irq ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; unsigned int sd_bus_speed ; unsigned int mmc_avail_type ; struct dentry *debugfs_root ; struct mmc_part part[7U] ; unsigned int nr_parts ; }; struct mmc_ios { unsigned int clock ; unsigned short vdd ; unsigned char bus_mode ; unsigned char chip_select ; unsigned char power_mode ; unsigned char bus_width ; unsigned char timing ; unsigned char signal_voltage ; unsigned char drv_type ; }; struct mmc_host_ops { int (*enable)(struct mmc_host * ) ; int (*disable)(struct mmc_host * ) ; void (*post_req)(struct mmc_host * , struct mmc_request * , int ) ; void (*pre_req)(struct mmc_host * , struct mmc_request * , bool ) ; void (*request)(struct mmc_host * , struct mmc_request * ) ; void (*set_ios)(struct mmc_host * , struct mmc_ios * ) ; int (*get_ro)(struct mmc_host * ) ; int (*get_cd)(struct mmc_host * ) ; void (*enable_sdio_irq)(struct mmc_host * , int ) ; void (*init_card)(struct mmc_host * , struct mmc_card * ) ; int (*start_signal_voltage_switch)(struct mmc_host * , struct mmc_ios * ) ; int (*card_busy)(struct mmc_host * ) ; int (*execute_tuning)(struct mmc_host * , u32 ) ; int (*prepare_hs400_tuning)(struct mmc_host * , struct mmc_ios * ) ; int (*select_drive_strength)(unsigned int , int , int ) ; void (*hw_reset)(struct mmc_host * ) ; void (*card_event)(struct mmc_host * ) ; int (*multi_io_quirk)(struct mmc_card * , unsigned int , int ) ; }; struct mmc_async_req { struct mmc_request *mrq ; int (*err_check)(struct mmc_card * , struct mmc_async_req * ) ; }; struct mmc_slot { int cd_irq ; void *handler_priv ; }; struct mmc_context_info { bool is_done_rcv ; bool is_new_req ; bool is_waiting_last_req ; wait_queue_head_t wait ; spinlock_t lock ; }; struct regulator; struct mmc_pwrseq; struct mmc_supply { struct regulator *vmmc ; struct regulator *vqmmc ; }; struct mmc_bus_ops; struct mmc_host { struct device *parent ; struct device class_dev ; int index ; struct mmc_host_ops const *ops ; struct mmc_pwrseq *pwrseq ; unsigned int f_min ; unsigned int f_max ; unsigned int f_init ; u32 ocr_avail ; u32 ocr_avail_sdio ; u32 ocr_avail_sd ; u32 ocr_avail_mmc ; struct notifier_block pm_notify ; u32 max_current_330 ; u32 max_current_300 ; u32 max_current_180 ; u32 caps ; u32 caps2 ; mmc_pm_flag_t pm_caps ; int clk_requests ; unsigned int clk_delay ; bool clk_gated ; struct delayed_work clk_gate_work ; unsigned int clk_old ; spinlock_t clk_lock ; struct mutex clk_gate_mutex ; struct device_attribute clkgate_delay_attr ; unsigned long clkgate_delay ; unsigned int max_seg_size ; unsigned short max_segs ; unsigned short unused ; unsigned int max_req_size ; unsigned int max_blk_size ; unsigned int max_blk_count ; unsigned int max_busy_timeout ; spinlock_t lock ; struct mmc_ios ios ; unsigned char use_spi_crc : 1 ; unsigned char claimed : 1 ; unsigned char bus_dead : 1 ; unsigned char removed : 1 ; int rescan_disable ; int rescan_entered ; bool trigger_card_event ; struct mmc_card *card ; wait_queue_head_t wq ; struct task_struct *claimer ; int claim_cnt ; struct delayed_work detect ; int detect_change ; struct mmc_slot slot ; struct mmc_bus_ops const *bus_ops ; unsigned int bus_refs ; unsigned int sdio_irqs ; struct task_struct *sdio_irq_thread ; bool sdio_irq_pending ; atomic_t sdio_irq_thread_abort ; mmc_pm_flag_t pm_flags ; struct led_trigger *led ; bool regulator_enabled ; struct mmc_supply supply ; struct dentry *debugfs_root ; struct mmc_async_req *areq ; struct mmc_context_info context_info ; struct fault_attr fail_mmc_request ; unsigned int actual_clock ; unsigned int slotno ; int dsr_req ; u32 dsr ; unsigned long private[0U] ; }; typedef int ldv_map; struct usb_device; struct urb; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; typedef _Bool ldv_set; long ldv__builtin_expect(long exp , long c ) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_irq_check_alloc_nonatomic(void) ; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) ; void ldv_linux_arch_io_check_final_state(void) ; void ldv_linux_block_genhd_check_final_state(void) ; void ldv_linux_block_queue_check_final_state(void) ; void ldv_linux_block_request_check_final_state(void) ; void *ldv_linux_drivers_base_class_create_class(void) ; int ldv_linux_drivers_base_class_register_class(void) ; void ldv_linux_drivers_base_class_destroy_class(struct class *cls ) ; void ldv_linux_drivers_base_class_check_final_state(void) ; int ldv_linux_fs_char_dev_register_chrdev_region(void) ; void ldv_linux_fs_char_dev_unregister_chrdev_region(void) ; void ldv_linux_fs_char_dev_check_final_state(void) ; void ldv_linux_fs_sysfs_check_final_state(void) ; void ldv_linux_kernel_locking_rwlock_check_final_state(void) ; void ldv_linux_kernel_module_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_check_final_state(void) ; void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) ; void ldv_linux_kernel_rcu_srcu_check_final_state(void) ; void ldv_linux_lib_find_bit_initialize(void) ; void ldv_linux_lib_idr_check_final_state(void) ; void ldv_linux_mmc_sdio_func_check_final_state(void) ; void ldv_linux_net_register_reset_error_counter(void) ; void ldv_linux_net_rtnetlink_check_final_state(void) ; void ldv_linux_net_sock_check_final_state(void) ; void ldv_linux_usb_coherent_check_final_state(void) ; void *ldv_linux_usb_gadget_create_class(void) ; int ldv_linux_usb_gadget_register_class(void) ; void ldv_linux_usb_gadget_destroy_class(struct class *cls ) ; int ldv_linux_usb_gadget_register_chrdev_region(void) ; void ldv_linux_usb_gadget_unregister_chrdev_region(void) ; void ldv_linux_usb_gadget_check_final_state(void) ; void ldv_linux_usb_register_reset_error_counter(void) ; void ldv_linux_usb_urb_check_final_state(void) ; void ldv_check_alloc_nonatomic(void) { { { ldv_linux_alloc_irq_check_alloc_nonatomic(); ldv_linux_alloc_usb_lock_check_alloc_nonatomic(); } return; } } void ldv_check_alloc_flags(gfp_t flags ) { { { ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return; } } void ldv_check_for_read_section(void) { { { ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_check_for_read_section(); ldv_linux_kernel_rcu_srcu_check_for_read_section(); } return; } } void *ldv_create_class(void) { void *res1 ; void *tmp ; void *res2 ; void *tmp___0 ; { { tmp = ldv_linux_drivers_base_class_create_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_create_class(); res2 = tmp___0; ldv_assume((unsigned long )res1 == (unsigned long )res2); } return (res1); } } int ldv_register_class(void) { int res1 ; int tmp ; int res2 ; int tmp___0 ; { { tmp = ldv_linux_drivers_base_class_register_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_register_class(); res2 = tmp___0; ldv_assume(res1 == res2); } return (res1); } } long ldv_ptr_err(void const *ptr ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) ; int ldv_undef_int(void) ; static void ldv_ldv_initialize_147(void) ; int ldv_post_init(int init_ret_val ) ; static int ldv_ldv_post_init_144(int ldv_func_arg1 ) ; int ldv_filter_err_code(int ret_val ) ; static void ldv_ldv_check_final_state_145(void) ; static void ldv_ldv_check_final_state_146(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; void *ldv_malloc_unknown_size(void) ; extern void ldv_after_alloc(void * ) ; void *ldv_alloc_macro(gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } int ldv_linux_kernel_module_try_module_get(struct module *module ) ; void ldv_linux_kernel_module_module_put(struct module *module ) ; static void ldv_mutex_lock_121(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_126(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_132(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_135(struct mutex *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_mutex_mutex_lock_dvbdev_mutex(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_dvbdev_mutex(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_lock_dvbdev_register_lock(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_dvbdev_register_lock(struct mutex *lock ) ; extern struct module __this_module ; extern int printk(char const * , ...) ; extern void might_fault(void) ; extern char *kasprintf(gfp_t , char const * , ...) ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void __list_add(struct list_head * , struct list_head * , struct list_head * ) ; __inline static void list_add_tail(struct list_head *new , struct list_head *head ) { { { __list_add(new, head->prev, head); } return; } } extern void list_del(struct list_head * ) ; extern void *__memcpy(void * , void const * , size_t ) ; extern void *__memset(void * , int , size_t ) ; __inline static long PTR_ERR(void const *ptr ) ; __inline static bool IS_ERR(void const *ptr ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )ptr > 0xfffffffffffff000UL, 0L); } return (tmp != 0L); } } void ldv_switch_to_interrupt_context(void) ; void ldv_switch_to_process_context(void) ; extern void __mutex_init(struct mutex * , char const * , struct lock_class_key * ) ; static void ldv_mutex_unlock_124(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_125(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_127(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_128(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_129(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_130(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_131(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_133(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_134(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_136(struct mutex *ldv_func_arg1 ) ; extern void __init_waitqueue_head(wait_queue_head_t * , char const * , struct lock_class_key * ) ; extern int add_uevent_var(struct kobj_uevent_env * , char const * , ...) ; extern void cdev_init(struct cdev * , struct file_operations const * ) ; static void ldv_cdev_init_138(struct cdev *ldv_func_arg1 , struct file_operations const *ldv_func_arg2 ) ; extern int cdev_add(struct cdev * , dev_t , unsigned int ) ; extern void cdev_del(struct cdev * ) ; static void ldv_cdev_del_139(struct cdev *ldv_func_arg1 ) ; static void ldv_cdev_del_142(struct cdev *ldv_func_arg1 ) ; extern void down_read(struct rw_semaphore * ) ; extern void down_write(struct rw_semaphore * ) ; extern void up_read(struct rw_semaphore * ) ; extern void up_write(struct rw_semaphore * ) ; static void ldv_class_destroy_141(struct class *cls ) ; __inline static void *dev_get_drvdata(struct device const *dev ) { { return ((void *)dev->driver_data); } } extern struct device *device_create(struct class * , struct device * , dev_t , void * , char const * , ...) ; extern void device_destroy(struct class * , dev_t ) ; __inline static unsigned int iminor(struct inode const *inode ) { { return ((unsigned int )inode->i_rdev & 1048575U); } } extern int register_chrdev_region(dev_t , unsigned int , char const * ) ; static int ldv_register_chrdev_region_137(dev_t ldv_func_arg1 , unsigned int ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void unregister_chrdev_region(dev_t , unsigned int ) ; static void ldv_unregister_chrdev_region_140(dev_t ldv_func_arg1 , unsigned int ldv_func_arg2 ) ; static void ldv_unregister_chrdev_region_143(dev_t ldv_func_arg1 , unsigned int ldv_func_arg2 ) ; extern loff_t noop_llseek(struct file * , loff_t , int ) ; extern void kfree(void const * ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; extern unsigned long _copy_from_user(void * , void const * , unsigned int ) ; extern unsigned long _copy_to_user(void * , void const * , unsigned int ) ; extern void __copy_from_user_overflow(void) ; extern void __copy_to_user_overflow(void) ; __inline static unsigned long copy_from_user(void *to , void const *from , unsigned long n ) { int sz ; long tmp ; long tmp___0 ; { { sz = -1; might_fault(); tmp = ldv__builtin_expect(sz < 0, 1L); } if (tmp != 0L) { { n = _copy_from_user(to, from, (unsigned int )n); } } else { { tmp___0 = ldv__builtin_expect((unsigned long )sz >= n, 1L); } if (tmp___0 != 0L) { { n = _copy_from_user(to, from, (unsigned int )n); } } else { { __copy_from_user_overflow(); } } } return (n); } } __inline static unsigned long copy_to_user(void *to , void const *from , unsigned long n ) { int sz ; long tmp ; long tmp___0 ; { { sz = -1; might_fault(); tmp = ldv__builtin_expect(sz < 0, 1L); } if (tmp != 0L) { { n = _copy_to_user(to, from, (unsigned int )n); } } else { { tmp___0 = ldv__builtin_expect((unsigned long )sz >= n, 1L); } if (tmp___0 != 0L) { { n = _copy_to_user(to, from, (unsigned int )n); } } else { { __copy_to_user_overflow(); } } } return (n); } } static bool ldv_try_module_get_122(struct module *ldv_func_arg1 ) ; static void ldv_module_put_123(struct module *ldv_func_arg1 ) ; int dvb_register_adapter(struct dvb_adapter *adap , char const *name , struct module *module , struct device *device , short *adapter_nums ) ; int dvb_unregister_adapter(struct dvb_adapter *adap ) ; int dvb_register_device(struct dvb_adapter *adap , struct dvb_device **pdvbdev , struct dvb_device const *template , void *priv , int type ) ; void dvb_unregister_device(struct dvb_device *dvbdev ) ; int dvb_generic_open(struct inode *inode , struct file *file ) ; int dvb_generic_release(struct inode *inode , struct file *file ) ; long dvb_generic_ioctl(struct file *file , unsigned int cmd , unsigned long arg ) ; int dvb_usercopy(struct file *file , unsigned int cmd , unsigned long arg , int (*func)(struct file * , unsigned int , void * ) ) ; static struct mutex dvbdev_mutex = {{1}, {{{{{0U}}, 3735899821U, 4294967295U, (void *)-1, {0, {0, 0}, "dvbdev_mutex.wait_lock", 0, 0UL}}}}, {& dvbdev_mutex.wait_list, & dvbdev_mutex.wait_list}, 0, (void *)(& dvbdev_mutex), {0, {0, 0}, "dvbdev_mutex", 0, 0UL}}; static int dvbdev_debug ; static struct list_head dvb_adapter_list = {& dvb_adapter_list, & dvb_adapter_list}; static struct mutex dvbdev_register_lock = {{1}, {{{{{0U}}, 3735899821U, 4294967295U, (void *)-1, {0, {0, 0}, "dvbdev_register_lock.wait_lock", 0, 0UL}}}}, {& dvbdev_register_lock.wait_list, & dvbdev_register_lock.wait_list}, 0, (void *)(& dvbdev_register_lock), {0, {0, 0}, "dvbdev_register_lock", 0, 0UL}}; static char const * const dnames[9U] = { "video", "audio", "sec", "frontend", "demux", "dvr", "ca", "net", "osd"}; static struct class *dvb_class ; static struct dvb_device *dvb_minors[256U] ; static struct rw_semaphore minor_rwsem = {0L, {& minor_rwsem.wait_list, & minor_rwsem.wait_list}, {{{0U}}, 3735899821U, 4294967295U, (void *)-1, {0, {0, 0}, "minor_rwsem.wait_lock", 0, 0UL}}, {{0}}, (struct task_struct *)0, {0, {0, 0}, "minor_rwsem", 0, 0UL}}; static int dvb_device_open(struct inode *inode , struct file *file ) { struct dvb_device *dvbdev ; unsigned int tmp ; int err ; struct file_operations const *new_fops ; bool tmp___1 ; struct file *__file ; struct file_operations const *tmp___2 ; long tmp___3 ; { { ldv_mutex_lock_121(& dvbdev_mutex); down_read(& minor_rwsem); tmp = iminor((struct inode const *)inode); dvbdev = dvb_minors[tmp]; } if ((unsigned long )dvbdev != (unsigned long )((struct dvb_device *)0) && (unsigned long )dvbdev->fops != (unsigned long )((struct file_operations const *)0)) { err = 0; if ((unsigned long )dvbdev->fops != (unsigned long )((struct file_operations const *)0)) { { tmp___1 = ldv_try_module_get_122((dvbdev->fops)->owner); } if ((int )tmp___1) { new_fops = dvbdev->fops; } else { new_fops = (struct file_operations const *)0; } } else { new_fops = (struct file_operations const *)0; } if ((unsigned long )new_fops == (unsigned long )((struct file_operations const *)0)) { goto fail; } else { } file->private_data = (void *)dvbdev; __file = file; if ((unsigned long )__file->f_op != (unsigned long )((struct file_operations const *)0)) { { ldv_module_put_123((__file->f_op)->owner); } } else { } { tmp___2 = new_fops; __file->f_op = tmp___2; tmp___3 = ldv__builtin_expect((unsigned long )tmp___2 == (unsigned long )((struct file_operations const *)0), 0L); } if (tmp___3 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/media/dvb-core/dvbdev.c"), "i" (83), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )(file->f_op)->open != (unsigned long )((int (*/* const */)(struct inode * , struct file * ))0)) { { err = (*((file->f_op)->open))(inode, file); } } else { } { up_read(& minor_rwsem); ldv_mutex_unlock_124(& dvbdev_mutex); } return (err); } else { } fail: { up_read(& minor_rwsem); ldv_mutex_unlock_125(& dvbdev_mutex); } return (-19); } } static struct file_operations const dvb_device_fops = {& __this_module, & noop_llseek, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & dvb_device_open, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct cdev dvb_device_cdev ; int dvb_generic_open(struct inode *inode , struct file *file ) { struct dvb_device *dvbdev ; { dvbdev = (struct dvb_device *)file->private_data; if ((unsigned long )dvbdev == (unsigned long )((struct dvb_device *)0)) { return (-19); } else { } if (dvbdev->users == 0) { return (-16); } else { } if ((file->f_flags & 3U) == 0U) { if (dvbdev->readers == 0) { return (-16); } else { } dvbdev->readers = dvbdev->readers - 1; } else { if (dvbdev->writers == 0) { return (-16); } else { } dvbdev->writers = dvbdev->writers - 1; } dvbdev->users = dvbdev->users - 1; return (0); } } static char const __kstrtab_dvb_generic_open[17U] = { 'd', 'v', 'b', '_', 'g', 'e', 'n', 'e', 'r', 'i', 'c', '_', 'o', 'p', 'e', 'n', '\000'}; struct kernel_symbol const __ksymtab_dvb_generic_open ; struct kernel_symbol const __ksymtab_dvb_generic_open = {(unsigned long )(& dvb_generic_open), (char const *)(& __kstrtab_dvb_generic_open)}; int dvb_generic_release(struct inode *inode , struct file *file ) { struct dvb_device *dvbdev ; { dvbdev = (struct dvb_device *)file->private_data; if ((unsigned long )dvbdev == (unsigned long )((struct dvb_device *)0)) { return (-19); } else { } if ((file->f_flags & 3U) == 0U) { dvbdev->readers = dvbdev->readers + 1; } else { dvbdev->writers = dvbdev->writers + 1; } dvbdev->users = dvbdev->users + 1; return (0); } } static char const __kstrtab_dvb_generic_release[20U] = { 'd', 'v', 'b', '_', 'g', 'e', 'n', 'e', 'r', 'i', 'c', '_', 'r', 'e', 'l', 'e', 'a', 's', 'e', '\000'}; struct kernel_symbol const __ksymtab_dvb_generic_release ; struct kernel_symbol const __ksymtab_dvb_generic_release = {(unsigned long )(& dvb_generic_release), (char const *)(& __kstrtab_dvb_generic_release)}; long dvb_generic_ioctl(struct file *file , unsigned int cmd , unsigned long arg ) { struct dvb_device *dvbdev ; int tmp ; { dvbdev = (struct dvb_device *)file->private_data; if ((unsigned long )dvbdev == (unsigned long )((struct dvb_device *)0)) { return (-19L); } else { } if ((unsigned long )dvbdev->kernel_ioctl == (unsigned long )((int (*)(struct file * , unsigned int , void * ))0)) { return (-22L); } else { } { tmp = dvb_usercopy(file, cmd, arg, dvbdev->kernel_ioctl); } return ((long )tmp); } } static char const __kstrtab_dvb_generic_ioctl[18U] = { 'd', 'v', 'b', '_', 'g', 'e', 'n', 'e', 'r', 'i', 'c', '_', 'i', 'o', 'c', 't', 'l', '\000'}; struct kernel_symbol const __ksymtab_dvb_generic_ioctl ; struct kernel_symbol const __ksymtab_dvb_generic_ioctl = {(unsigned long )(& dvb_generic_ioctl), (char const *)(& __kstrtab_dvb_generic_ioctl)}; static int dvbdev_get_free_id(struct dvb_adapter *adap , int type ) { u32 id ; struct dvb_device *dev ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { id = 0U; goto ldv_46323; ldv_46322: __mptr = (struct list_head const *)adap->device_list.next; dev = (struct dvb_device *)__mptr; goto ldv_46320; ldv_46319: ; if (dev->type == type && dev->id == id) { goto skip; } else { } __mptr___0 = (struct list_head const *)dev->list_head.next; dev = (struct dvb_device *)__mptr___0; ldv_46320: ; if ((unsigned long )(& dev->list_head) != (unsigned long )(& adap->device_list)) { goto ldv_46319; } else { } return ((int )id); skip: id = id + 1U; ldv_46323: ; if (id <= 255U) { goto ldv_46322; } else { } return (-23); } } int dvb_register_device(struct dvb_adapter *adap , struct dvb_device **pdvbdev , struct dvb_device const *template , void *priv , int type ) { struct dvb_device *dvbdev ; struct file_operations *dvbdevfops ; struct device *clsdev ; int minor ; int id ; void *tmp ; void *tmp___0 ; struct lock_class_key __key ; long tmp___1 ; long tmp___2 ; bool tmp___3 ; { { ldv_mutex_lock_126(& dvbdev_register_lock); id = dvbdev_get_free_id(adap, type); } if (id < 0) { { ldv_mutex_unlock_127(& dvbdev_register_lock); *pdvbdev = (struct dvb_device *)0; printk("\v%s: couldn\'t find free device id\n", "dvb_register_device"); } return (-23); } else { } { tmp = kmalloc(160UL, 208U); dvbdev = (struct dvb_device *)tmp; *pdvbdev = dvbdev; } if ((unsigned long )dvbdev == (unsigned long )((struct dvb_device *)0)) { { ldv_mutex_unlock_128(& dvbdev_register_lock); } return (-12); } else { } { tmp___0 = kzalloc(240UL, 208U); dvbdevfops = (struct file_operations *)tmp___0; } if ((unsigned long )dvbdevfops == (unsigned long )((struct file_operations *)0)) { { kfree((void const *)dvbdev); ldv_mutex_unlock_129(& dvbdev_register_lock); } return (-12); } else { } { __memcpy((void *)dvbdev, (void const *)template, 160UL); dvbdev->type = type; dvbdev->id = (u32 )id; dvbdev->adapter = adap; dvbdev->priv = priv; dvbdev->fops = (struct file_operations const *)dvbdevfops; __init_waitqueue_head(& dvbdev->wait_queue, "&dvbdev->wait_queue", & __key); __memcpy((void *)dvbdevfops, (void const *)template->fops, 240UL); dvbdevfops->owner = adap->module; list_add_tail(& dvbdev->list_head, & adap->device_list); down_write(& minor_rwsem); minor = 0; } goto ldv_46341; ldv_46340: ; if ((unsigned long )dvb_minors[minor] == (unsigned long )((struct dvb_device *)0)) { goto ldv_46339; } else { } minor = minor + 1; ldv_46341: ; if (minor <= 255) { goto ldv_46340; } else { } ldv_46339: ; if (minor == 256) { { kfree((void const *)dvbdevfops); kfree((void const *)dvbdev); up_write(& minor_rwsem); ldv_mutex_unlock_130(& dvbdev_register_lock); } return (-22); } else { } { dvbdev->minor = minor; dvb_minors[minor] = dvbdev; up_write(& minor_rwsem); ldv_mutex_unlock_131(& dvbdev_register_lock); clsdev = device_create(dvb_class, adap->device, (dev_t )(minor | 222298112), (void *)dvbdev, "dvb%d.%s%d", adap->num, dnames[type], id); tmp___3 = IS_ERR((void const *)clsdev); } if ((int )tmp___3) { { tmp___1 = PTR_ERR((void const *)clsdev); printk("\v%s: failed to create device dvb%d.%s%d (%ld)\n", "dvb_register_device", adap->num, dnames[type], id, tmp___1); tmp___2 = PTR_ERR((void const *)clsdev); } return ((int )tmp___2); } else { } if (dvbdev_debug != 0) { { printk("\017DVB: register adapter%d/%s%d @ minor: %i (0x%02x)\n", adap->num, dnames[type], id, minor, minor); } } else { } return (0); } } static char const __kstrtab_dvb_register_device[20U] = { 'd', 'v', 'b', '_', 'r', 'e', 'g', 'i', 's', 't', 'e', 'r', '_', 'd', 'e', 'v', 'i', 'c', 'e', '\000'}; struct kernel_symbol const __ksymtab_dvb_register_device ; struct kernel_symbol const __ksymtab_dvb_register_device = {(unsigned long )(& dvb_register_device), (char const *)(& __kstrtab_dvb_register_device)}; void dvb_unregister_device(struct dvb_device *dvbdev ) { { if ((unsigned long )dvbdev == (unsigned long )((struct dvb_device *)0)) { return; } else { } { down_write(& minor_rwsem); dvb_minors[dvbdev->minor] = (struct dvb_device *)0; up_write(& minor_rwsem); device_destroy(dvb_class, (dev_t )(dvbdev->minor | 222298112)); list_del(& dvbdev->list_head); kfree((void const *)dvbdev->fops); kfree((void const *)dvbdev); } return; } } static char const __kstrtab_dvb_unregister_device[22U] = { 'd', 'v', 'b', '_', 'u', 'n', 'r', 'e', 'g', 'i', 's', 't', 'e', 'r', '_', 'd', 'e', 'v', 'i', 'c', 'e', '\000'}; struct kernel_symbol const __ksymtab_dvb_unregister_device ; struct kernel_symbol const __ksymtab_dvb_unregister_device = {(unsigned long )(& dvb_unregister_device), (char const *)(& __kstrtab_dvb_unregister_device)}; static int dvbdev_check_free_adapter_num(int num ) { struct list_head *entry ; struct dvb_adapter *adap ; struct list_head const *__mptr ; { entry = dvb_adapter_list.next; goto ldv_46371; ldv_46370: __mptr = (struct list_head const *)entry; adap = (struct dvb_adapter *)__mptr + 0xfffffffffffffff8UL; if (adap->num == num) { return (0); } else { } entry = entry->next; ldv_46371: ; if ((unsigned long )entry != (unsigned long )(& dvb_adapter_list)) { goto ldv_46370; } else { } return (1); } } static int dvbdev_get_free_adapter_num(void) { int num ; int tmp ; { num = 0; goto ldv_46378; ldv_46377: { tmp = dvbdev_check_free_adapter_num(num); } if (tmp != 0) { return (num); } else { } num = num + 1; ldv_46378: ; if (num <= 7) { goto ldv_46377; } else { } return (-23); } } int dvb_register_adapter(struct dvb_adapter *adap , char const *name , struct module *module , struct device *device , short *adapter_nums ) { int i ; int num ; int tmp ; struct lock_class_key __key ; { { ldv_mutex_lock_132(& dvbdev_register_lock); i = 0; } goto ldv_46391; ldv_46390: num = (int )*(adapter_nums + (unsigned long )i); if ((unsigned int )num <= 7U) { { tmp = dvbdev_check_free_adapter_num(num); } if (tmp != 0) { goto ldv_46389; } else { } } else { { num = dvbdev_get_free_adapter_num(); } goto ldv_46389; } num = -1; i = i + 1; ldv_46391: ; if (i <= 7) { goto ldv_46390; } else { } ldv_46389: ; if (num < 0) { { ldv_mutex_unlock_133(& dvbdev_register_lock); } return (-23); } else { } { __memset((void *)adap, 0, 256UL); INIT_LIST_HEAD(& adap->device_list); printk("\016DVB: registering new adapter (%s)\n", name); adap->num = num; adap->name = name; adap->module = module; adap->device = device; adap->mfe_shared = 0; adap->mfe_dvbdev = (struct dvb_device *)0; __mutex_init(& adap->mfe_lock, "&adap->mfe_lock", & __key); list_add_tail(& adap->list_head, & dvb_adapter_list); ldv_mutex_unlock_134(& dvbdev_register_lock); } return (num); } } static char const __kstrtab_dvb_register_adapter[21U] = { 'd', 'v', 'b', '_', 'r', 'e', 'g', 'i', 's', 't', 'e', 'r', '_', 'a', 'd', 'a', 'p', 't', 'e', 'r', '\000'}; struct kernel_symbol const __ksymtab_dvb_register_adapter ; struct kernel_symbol const __ksymtab_dvb_register_adapter = {(unsigned long )(& dvb_register_adapter), (char const *)(& __kstrtab_dvb_register_adapter)}; int dvb_unregister_adapter(struct dvb_adapter *adap ) { { { ldv_mutex_lock_135(& dvbdev_register_lock); list_del(& adap->list_head); ldv_mutex_unlock_136(& dvbdev_register_lock); } return (0); } } static char const __kstrtab_dvb_unregister_adapter[23U] = { 'd', 'v', 'b', '_', 'u', 'n', 'r', 'e', 'g', 'i', 's', 't', 'e', 'r', '_', 'a', 'd', 'a', 'p', 't', 'e', 'r', '\000'}; struct kernel_symbol const __ksymtab_dvb_unregister_adapter ; struct kernel_symbol const __ksymtab_dvb_unregister_adapter = {(unsigned long )(& dvb_unregister_adapter), (char const *)(& __kstrtab_dvb_unregister_adapter)}; int dvb_usercopy(struct file *file , unsigned int cmd , unsigned long arg , int (*func)(struct file * , unsigned int , void * ) ) { char sbuf[128U] ; void *mbuf ; void *parg ; int err ; unsigned long tmp ; unsigned long tmp___0 ; { mbuf = (void *)0; parg = (void *)0; err = -22; { if (cmd >> 30 == 0U) { goto case_0; } else { } if (cmd >> 30 == 2U) { goto case_2; } else { } if (cmd >> 30 == 1U) { goto case_1; } else { } if (cmd >> 30 == 3U) { goto case_3; } else { } goto switch_break; case_0: /* CIL Label */ parg = (void *)arg; goto ldv_46428; case_2: /* CIL Label */ ; case_1: /* CIL Label */ ; case_3: /* CIL Label */ ; if (((cmd >> 16) & 16383U) <= 128U) { parg = (void *)(& sbuf); } else { { mbuf = kmalloc((size_t )(cmd >> 16) & 16383UL, 208U); } if ((unsigned long )mbuf == (unsigned long )((void *)0)) { return (-12); } else { } parg = mbuf; } { err = -14; tmp = copy_from_user(parg, (void const *)arg, (unsigned long )(cmd >> 16) & 16383UL); } if (tmp != 0UL) { goto out; } else { } goto ldv_46428; switch_break: /* CIL Label */ ; } ldv_46428: { err = (*func)(file, cmd, parg); } if (err == -515) { err = -25; } else { } if (err < 0) { goto out; } else { } { if (cmd >> 30 == 2U) { goto case_2___0; } else { } if (cmd >> 30 == 3U) { goto case_3___0; } else { } goto switch_break___0; case_2___0: /* CIL Label */ ; case_3___0: /* CIL Label */ { tmp___0 = copy_to_user((void *)arg, (void const *)parg, (unsigned long )(cmd >> 16) & 16383UL); } if (tmp___0 != 0UL) { err = -14; } else { } goto ldv_46435; switch_break___0: /* CIL Label */ ; } ldv_46435: ; out: { kfree((void const *)mbuf); } return (err); } } static int dvb_uevent(struct device *dev , struct kobj_uevent_env *env ) { struct dvb_device *dvbdev ; void *tmp ; { { tmp = dev_get_drvdata((struct device const *)dev); dvbdev = (struct dvb_device *)tmp; add_uevent_var(env, "DVB_ADAPTER_NUM=%d", (dvbdev->adapter)->num); add_uevent_var(env, "DVB_DEVICE_TYPE=%s", dnames[dvbdev->type]); add_uevent_var(env, "DVB_DEVICE_NUM=%d", dvbdev->id); } return (0); } } static char *dvb_devnode(struct device *dev , umode_t *mode ) { struct dvb_device *dvbdev ; void *tmp ; char *tmp___0 ; { { tmp = dev_get_drvdata((struct device const *)dev); dvbdev = (struct dvb_device *)tmp; tmp___0 = kasprintf(208U, "dvb/adapter%d/%s%d", (dvbdev->adapter)->num, dnames[dvbdev->type], dvbdev->id); } return (tmp___0); } } static int init_dvbdev(void) { int retval ; dev_t dev ; void *tmp ; long tmp___0 ; bool tmp___1 ; { { dev = 222298112U; retval = ldv_register_chrdev_region_137(dev, 256U, "DVB"); } if (retval != 0) { { printk("\vdvb-core: unable to get major %d\n", 212); } return (retval); } else { } { ldv_cdev_init_138(& dvb_device_cdev, & dvb_device_fops); retval = cdev_add(& dvb_device_cdev, dev, 256U); } if (retval != 0) { { printk("\vdvb-core: unable register character device\n"); } goto error; } else { } { tmp = ldv_create_class(); dvb_class = (struct class *)tmp; tmp___1 = IS_ERR((void const *)dvb_class); } if ((int )tmp___1) { { tmp___0 = PTR_ERR((void const *)dvb_class); retval = (int )tmp___0; } goto error; } else { } dvb_class->dev_uevent = & dvb_uevent; dvb_class->devnode = & dvb_devnode; return (0); error: { ldv_cdev_del_139(& dvb_device_cdev); ldv_unregister_chrdev_region_140(dev, 256U); } return (retval); } } static void exit_dvbdev(void) { { { ldv_class_destroy_141(dvb_class); ldv_cdev_del_142(& dvb_device_cdev); ldv_unregister_chrdev_region_143(222298112U, 256U); } return; } } void ldv_EMGentry_exit_exit_dvbdev_17_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_init_dvbdev_17_11(int (*arg0)(void) ) ; void ldv_cdev_del(void *arg0 , struct cdev *arg1 ) ; void ldv_cdev_init(void *arg0 , struct cdev *arg1 , struct file_operations *arg2 ) ; void ldv_dispatch_deregister_11_1(struct file_operations *arg0 ) ; void ldv_dispatch_deregister_dummy_factory_12_17_4(void) ; void ldv_dispatch_deregister_dummy_resourceless_instance_10_17_5(void) ; void ldv_dispatch_instance_register_9_3(struct timer_list *arg0 ) ; void ldv_dispatch_register_12_1(struct file_operations *arg0 ) ; void ldv_dispatch_register_dummy_factory_12_17_6(void) ; void ldv_dispatch_register_dummy_resourceless_instance_10_17_7(void) ; void ldv_dummy_resourceless_instance_callback_7_12(int (*arg0)(struct sk_buff * ) , struct sk_buff *arg1 ) ; void ldv_dummy_resourceless_instance_callback_7_3(int (*arg0)(struct sk_buff * , struct net_device * , unsigned short , void * , void * , unsigned int ) , struct sk_buff *arg1 , struct net_device *arg2 , unsigned short arg3 , void *arg4 , void *arg5 , unsigned int arg6 ) ; void ldv_dummy_resourceless_instance_callback_7_9(int (*arg0)(struct sk_buff * , unsigned char * ) , struct sk_buff *arg1 , unsigned char *arg2 ) ; void ldv_entry_EMGentry_17(void *arg0 ) ; int main(void) ; void ldv_file_operations_file_operations_instance_0(void *arg0 ) ; void ldv_file_operations_file_operations_instance_1(void *arg0 ) ; void ldv_file_operations_file_operations_instance_2(void *arg0 ) ; void ldv_file_operations_file_operations_instance_3(void *arg0 ) ; void ldv_file_operations_file_operations_instance_4(void *arg0 ) ; void ldv_file_operations_file_operations_instance_5(void *arg0 ) ; void ldv_file_operations_instance_callback_0_5(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) ; void ldv_file_operations_instance_callback_2_22(unsigned int (*arg0)(struct file * , struct poll_table_struct * ) , struct file *arg1 , struct poll_table_struct *arg2 ) ; void ldv_file_operations_instance_callback_2_23(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_callback_2_26(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) ; void ldv_file_operations_instance_callback_2_5(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) ; void ldv_file_operations_instance_callback_4_23(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_callback_4_5(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) ; void ldv_file_operations_instance_callback_5_22(unsigned int (*arg0)(struct file * , struct poll_table_struct * ) , struct file *arg1 , struct poll_table_struct *arg2 ) ; void ldv_file_operations_instance_callback_5_23(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_callback_5_5(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) ; int ldv_file_operations_instance_probe_2_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_release_2_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_write_1_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_write_2_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_write_4_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_write_5_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_struct_header_ops_dummy_resourceless_instance_7(void *arg0 ) ; void ldv_timer_dummy_factory_9(void *arg0 ) ; void ldv_timer_instance_callback_8_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) ; void ldv_timer_timer_instance_8(void *arg0 ) ; struct ldv_thread ldv_thread_17 ; struct ldv_thread ldv_thread_2 ; struct ldv_thread ldv_thread_7 ; struct ldv_thread ldv_thread_8 ; struct ldv_thread ldv_thread_9 ; void ldv_EMGentry_exit_exit_dvbdev_17_2(void (*arg0)(void) ) { { { exit_dvbdev(); } return; } } int ldv_EMGentry_init_init_dvbdev_17_11(int (*arg0)(void) ) { int tmp ; { { tmp = init_dvbdev(); } return (tmp); } } void ldv_cdev_del(void *arg0 , struct cdev *arg1 ) { struct cdev *ldv_11_cdev_cdev ; struct file_operations *ldv_11_file_operations_file_operations ; { { ldv_11_cdev_cdev = arg1; ldv_11_file_operations_file_operations = (struct file_operations *)ldv_11_cdev_cdev->ops; ldv_dispatch_deregister_11_1(ldv_11_file_operations_file_operations); } return; return; } } void ldv_cdev_init(void *arg0 , struct cdev *arg1 , struct file_operations *arg2 ) { struct cdev *ldv_12_cdev_cdev ; struct file_operations *ldv_12_file_operations_file_operations ; { { ldv_12_cdev_cdev = arg1; ldv_12_file_operations_file_operations = arg2; ldv_12_cdev_cdev->ops = (struct file_operations const *)ldv_12_file_operations_file_operations; ldv_dispatch_register_12_1(ldv_12_file_operations_file_operations); } return; return; } } void ldv_dispatch_deregister_11_1(struct file_operations *arg0 ) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } goto switch_default; case_0: /* CIL Label */ ; goto ldv_46750; case_1: /* CIL Label */ ; goto ldv_46750; case_2: /* CIL Label */ ; goto ldv_46750; case_3: /* CIL Label */ ; goto ldv_46750; case_4: /* CIL Label */ ; goto ldv_46750; case_5: /* CIL Label */ ; goto ldv_46750; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_46750: ; return; } } void ldv_dispatch_deregister_dummy_factory_12_17_4(void) { { return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_10_17_5(void) { { return; } } void ldv_dispatch_instance_register_9_3(struct timer_list *arg0 ) { struct ldv_struct_timer_instance_8 *cf_arg_8 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_8 = (struct ldv_struct_timer_instance_8 *)tmp; cf_arg_8->arg0 = arg0; ldv_timer_timer_instance_8((void *)cf_arg_8); } return; } } void ldv_dispatch_register_12_1(struct file_operations *arg0 ) { struct ldv_struct_file_operations_instance_0 *cf_arg_0 ; struct ldv_struct_file_operations_instance_0 *cf_arg_1 ; struct ldv_struct_file_operations_instance_0 *cf_arg_2 ; struct ldv_struct_file_operations_instance_0 *cf_arg_3 ; struct ldv_struct_file_operations_instance_0 *cf_arg_4 ; struct ldv_struct_file_operations_instance_0 *cf_arg_5 ; int tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; void *tmp___5 ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } goto switch_default; case_0: /* CIL Label */ { tmp___0 = ldv_xmalloc(16UL); cf_arg_0 = (struct ldv_struct_file_operations_instance_0 *)tmp___0; cf_arg_0->arg0 = arg0; ldv_file_operations_file_operations_instance_0((void *)cf_arg_0); } goto ldv_46781; case_1: /* CIL Label */ { tmp___1 = ldv_xmalloc(16UL); cf_arg_1 = (struct ldv_struct_file_operations_instance_0 *)tmp___1; cf_arg_1->arg0 = arg0; ldv_file_operations_file_operations_instance_1((void *)cf_arg_1); } goto ldv_46781; case_2: /* CIL Label */ { tmp___2 = ldv_xmalloc(16UL); cf_arg_2 = (struct ldv_struct_file_operations_instance_0 *)tmp___2; cf_arg_2->arg0 = arg0; ldv_file_operations_file_operations_instance_2((void *)cf_arg_2); } goto ldv_46781; case_3: /* CIL Label */ { tmp___3 = ldv_xmalloc(16UL); cf_arg_3 = (struct ldv_struct_file_operations_instance_0 *)tmp___3; cf_arg_3->arg0 = arg0; ldv_file_operations_file_operations_instance_3((void *)cf_arg_3); } goto ldv_46781; case_4: /* CIL Label */ { tmp___4 = ldv_xmalloc(16UL); cf_arg_4 = (struct ldv_struct_file_operations_instance_0 *)tmp___4; cf_arg_4->arg0 = arg0; ldv_file_operations_file_operations_instance_4((void *)cf_arg_4); } goto ldv_46781; case_5: /* CIL Label */ { tmp___5 = ldv_xmalloc(16UL); cf_arg_5 = (struct ldv_struct_file_operations_instance_0 *)tmp___5; cf_arg_5->arg0 = arg0; ldv_file_operations_file_operations_instance_5((void *)cf_arg_5); } goto ldv_46781; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_46781: ; return; } } void ldv_dispatch_register_dummy_factory_12_17_6(void) { struct ldv_struct_EMGentry_17 *cf_arg_9 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_9 = (struct ldv_struct_EMGentry_17 *)tmp; ldv_timer_dummy_factory_9((void *)cf_arg_9); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_10_17_7(void) { struct ldv_struct_EMGentry_17 *cf_arg_7 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_7 = (struct ldv_struct_EMGentry_17 *)tmp; ldv_struct_header_ops_dummy_resourceless_instance_7((void *)cf_arg_7); } return; } } void ldv_entry_EMGentry_17(void *arg0 ) { void (*ldv_17_exit_exit_dvbdev_default)(void) ; int (*ldv_17_init_init_dvbdev_default)(void) ; int ldv_17_ret_default ; int tmp ; int tmp___0 ; { { ldv_17_ret_default = ldv_EMGentry_init_init_dvbdev_17_11(ldv_17_init_init_dvbdev_default); ldv_17_ret_default = ldv_ldv_post_init_144(ldv_17_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_17_ret_default != 0); ldv_ldv_check_final_state_145(); ldv_stop(); } return; } else { { ldv_assume(ldv_17_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dispatch_register_dummy_resourceless_instance_10_17_7(); ldv_dispatch_register_dummy_factory_12_17_6(); ldv_dispatch_deregister_dummy_resourceless_instance_10_17_5(); ldv_dispatch_deregister_dummy_factory_12_17_4(); } } else { } { ldv_EMGentry_exit_exit_dvbdev_17_2(ldv_17_exit_exit_dvbdev_default); ldv_ldv_check_final_state_146(); ldv_stop(); } return; } return; } } int main(void) { { { ldv_ldv_initialize_147(); ldv_entry_EMGentry_17((void *)0); } return 0; } } void ldv_file_operations_file_operations_instance_2(void *arg0 ) { long long (*ldv_2_callback_llseek)(struct file * , long long , int ) ; unsigned int (*ldv_2_callback_poll)(struct file * , struct poll_table_struct * ) ; long (*ldv_2_callback_read)(struct file * , char * , unsigned long , long long * ) ; long (*ldv_2_callback_unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; struct file_operations *ldv_2_container_file_operations ; char *ldv_2_ldv_param_23_1_default ; long long *ldv_2_ldv_param_23_3_default ; unsigned int ldv_2_ldv_param_26_1_default ; char *ldv_2_ldv_param_4_1_default ; long long *ldv_2_ldv_param_4_3_default ; long long ldv_2_ldv_param_5_1_default ; int ldv_2_ldv_param_5_2_default ; struct file *ldv_2_resource_file ; struct inode *ldv_2_resource_inode ; int ldv_2_ret_default ; struct poll_table_struct *ldv_2_size_cnt_struct_poll_table_struct_ptr ; unsigned long ldv_2_size_cnt_write_size ; struct ldv_struct_file_operations_instance_0 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; void *tmp___5 ; void *tmp___6 ; int tmp___7 ; void *tmp___8 ; void *tmp___9 ; { data = (struct ldv_struct_file_operations_instance_0 *)arg0; ldv_2_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_file_operations_instance_0 *)0)) { { ldv_2_container_file_operations = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(504UL); ldv_2_resource_file = (struct file *)tmp; tmp___0 = ldv_xmalloc(976UL); ldv_2_resource_inode = (struct inode *)tmp___0; tmp___1 = ldv_undef_int(); ldv_2_size_cnt_struct_poll_table_struct_ptr = (struct poll_table_struct *)((long )tmp___1); } goto ldv_main_2; return; ldv_main_2: { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { ldv_2_ret_default = ldv_file_operations_instance_probe_2_12(ldv_2_container_file_operations->open, ldv_2_resource_inode, ldv_2_resource_file); ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_assume(ldv_2_ret_default == 0); } goto ldv_call_2; } else { { ldv_assume(ldv_2_ret_default != 0); } goto ldv_main_2; } } else { { ldv_free((void *)ldv_2_resource_file); ldv_free((void *)ldv_2_resource_inode); } return; } return; ldv_call_2: { tmp___4 = ldv_undef_int(); } { if (tmp___4 == 1) { goto case_1; } else { } if (tmp___4 == 2) { goto case_2; } else { } if (tmp___4 == 3) { goto case_3; } else { } goto switch_default___0; case_1: /* CIL Label */ { tmp___5 = ldv_xmalloc(1UL); ldv_2_ldv_param_4_1_default = (char *)tmp___5; tmp___6 = ldv_xmalloc(8UL); ldv_2_ldv_param_4_3_default = (long long *)tmp___6; ldv_assume((unsigned long )ldv_2_size_cnt_struct_poll_table_struct_ptr <= (unsigned long )((struct poll_table_struct *)2147479552)); } if ((unsigned long )ldv_2_container_file_operations->write != (unsigned long )((ssize_t (*)(struct file * , char const * , size_t , loff_t * ))0)) { { ldv_file_operations_instance_write_2_4((long (*)(struct file * , char * , unsigned long , long long * ))ldv_2_container_file_operations->write, ldv_2_resource_file, ldv_2_ldv_param_4_1_default, ldv_2_size_cnt_write_size, ldv_2_ldv_param_4_3_default); } } else { } { ldv_free((void *)ldv_2_ldv_param_4_1_default); ldv_free((void *)ldv_2_ldv_param_4_3_default); } goto ldv_call_2; case_2: /* CIL Label */ ; if ((unsigned long )ldv_2_container_file_operations->release != (unsigned long )((int (*)(struct inode * , struct file * ))0)) { { ldv_file_operations_instance_release_2_2(ldv_2_container_file_operations->release, ldv_2_resource_inode, ldv_2_resource_file); } } else { } goto ldv_main_2; case_3: /* CIL Label */ { tmp___7 = ldv_undef_int(); } { if (tmp___7 == 1) { goto case_1___0; } else { } if (tmp___7 == 2) { goto case_2___0; } else { } if (tmp___7 == 3) { goto case_3___0; } else { } if (tmp___7 == 4) { goto case_4; } else { } goto switch_default; case_1___0: /* CIL Label */ ; if ((unsigned long )ldv_2_callback_unlocked_ioctl != (unsigned long )((long (*)(struct file * , unsigned int , unsigned long ))0)) { { ldv_file_operations_instance_callback_2_26(ldv_2_callback_unlocked_ioctl, ldv_2_resource_file, ldv_2_ldv_param_26_1_default, ldv_2_size_cnt_write_size); } } else { } goto ldv_46845; case_2___0: /* CIL Label */ { tmp___8 = ldv_xmalloc(1UL); ldv_2_ldv_param_23_1_default = (char *)tmp___8; tmp___9 = ldv_xmalloc(8UL); ldv_2_ldv_param_23_3_default = (long long *)tmp___9; } if ((unsigned long )ldv_2_callback_read != (unsigned long )((long (*)(struct file * , char * , unsigned long , long long * ))0)) { { ldv_file_operations_instance_callback_2_23(ldv_2_callback_read, ldv_2_resource_file, ldv_2_ldv_param_23_1_default, ldv_2_size_cnt_write_size, ldv_2_ldv_param_23_3_default); } } else { } { ldv_free((void *)ldv_2_ldv_param_23_1_default); ldv_free((void *)ldv_2_ldv_param_23_3_default); } goto ldv_46845; case_3___0: /* CIL Label */ ; if ((unsigned long )ldv_2_callback_poll != (unsigned long )((unsigned int (*)(struct file * , struct poll_table_struct * ))0)) { { ldv_file_operations_instance_callback_2_22(ldv_2_callback_poll, ldv_2_resource_file, ldv_2_size_cnt_struct_poll_table_struct_ptr); } } else { } goto ldv_46845; case_4: /* CIL Label */ { ldv_file_operations_instance_callback_2_5(ldv_2_callback_llseek, ldv_2_resource_file, ldv_2_ldv_param_5_1_default, ldv_2_ldv_param_5_2_default); } goto ldv_46845; switch_default: /* CIL Label */ { ldv_stop(); } switch_break___0: /* CIL Label */ ; } ldv_46845: ; goto ldv_46850; switch_default___0: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_46850: ; goto ldv_call_2; goto ldv_call_2; return; } } void ldv_file_operations_instance_callback_0_5(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) { { { noop_llseek(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_2_22(unsigned int (*arg0)(struct file * , struct poll_table_struct * ) , struct file *arg1 , struct poll_table_struct *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_file_operations_instance_callback_2_23(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { (*arg0)(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_2_26(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) { { { (*arg0)(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_2_5(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) { { { noop_llseek(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_4_23(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { (*arg0)(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_4_5(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) { { { noop_llseek(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_5_22(unsigned int (*arg0)(struct file * , struct poll_table_struct * ) , struct file *arg1 , struct poll_table_struct *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_file_operations_instance_callback_5_23(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { (*arg0)(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_5_5(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) { { { noop_llseek(arg1, arg2, arg3); } return; } } int ldv_file_operations_instance_probe_2_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { int tmp ; { { tmp = dvb_device_open(arg1, arg2); } return (tmp); } } void ldv_file_operations_instance_release_2_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_file_operations_instance_write_1_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { (*arg0)(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_write_2_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { (*arg0)(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_write_4_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { (*arg0)(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_write_5_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { (*arg0)(arg1, arg2, arg3, arg4); } return; } } void ldv_struct_header_ops_dummy_resourceless_instance_7(void *arg0 ) { int (*ldv_7_callback_create)(struct sk_buff * , struct net_device * , unsigned short , void * , void * , unsigned int ) ; int (*ldv_7_callback_parse)(struct sk_buff * , unsigned char * ) ; int (*ldv_7_callback_rebuild)(struct sk_buff * ) ; struct net_device *ldv_7_container_struct_net_device_ptr ; struct sk_buff *ldv_7_container_struct_sk_buff_ptr ; unsigned short ldv_7_ldv_param_3_2_default ; void *ldv_7_ldv_param_3_3_default ; void *ldv_7_ldv_param_3_4_default ; unsigned int ldv_7_ldv_param_3_5_default ; unsigned char *ldv_7_ldv_param_9_1_default ; int tmp ; void *tmp___0 ; int tmp___1 ; { goto ldv_call_7; return; ldv_call_7: { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { ldv_7_ldv_param_3_3_default = ldv_xmalloc(1UL); ldv_7_ldv_param_3_4_default = ldv_xmalloc(1UL); tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_12(ldv_7_callback_rebuild, ldv_7_container_struct_sk_buff_ptr); } goto ldv_47026; case_2: /* CIL Label */ { tmp___0 = ldv_xmalloc(1UL); ldv_7_ldv_param_9_1_default = (unsigned char *)tmp___0; ldv_dummy_resourceless_instance_callback_7_9(ldv_7_callback_parse, ldv_7_container_struct_sk_buff_ptr, ldv_7_ldv_param_9_1_default); ldv_free((void *)ldv_7_ldv_param_9_1_default); } goto ldv_47026; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_3(ldv_7_callback_create, ldv_7_container_struct_sk_buff_ptr, ldv_7_container_struct_net_device_ptr, (int )ldv_7_ldv_param_3_2_default, ldv_7_ldv_param_3_3_default, ldv_7_ldv_param_3_4_default, ldv_7_ldv_param_3_5_default); } goto ldv_47026; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_47026: { ldv_free(ldv_7_ldv_param_3_3_default); ldv_free(ldv_7_ldv_param_3_4_default); } goto ldv_call_7; } else { return; } return; } } void ldv_timer_dummy_factory_9(void *arg0 ) { struct timer_list *ldv_9_container_timer_list ; { { ldv_dispatch_instance_register_9_3(ldv_9_container_timer_list); } return; return; } } void ldv_timer_instance_callback_8_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_timer_timer_instance_8(void *arg0 ) { struct timer_list *ldv_8_container_timer_list ; struct ldv_struct_timer_instance_8 *data ; { data = (struct ldv_struct_timer_instance_8 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_timer_instance_8 *)0)) { { ldv_8_container_timer_list = data->arg0; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); } if ((unsigned long )ldv_8_container_timer_list->function != (unsigned long )((void (*)(unsigned long ))0)) { { ldv_timer_instance_callback_8_2(ldv_8_container_timer_list->function, ldv_8_container_timer_list->data); } } else { } { ldv_switch_to_process_context(); } return; return; } } __inline static long PTR_ERR(void const *ptr ) { long tmp ; { { tmp = ldv_ptr_err(ptr); } return (tmp); } } __inline static void *kmalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_malloc_unknown_size(); ldv_after_alloc(res); } return (res); } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = ldv_kzalloc(size, flags); } return (tmp); } } static void ldv_mutex_lock_121(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_dvbdev_mutex(ldv_func_arg1); } return; } } static bool ldv_try_module_get_122(struct module *ldv_func_arg1 ) { int tmp ; { { tmp = ldv_linux_kernel_module_try_module_get(ldv_func_arg1); } return (tmp != 0); } } static void ldv_module_put_123(struct module *ldv_func_arg1 ) { { { ldv_linux_kernel_module_module_put(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_124(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_dvbdev_mutex(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_125(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_dvbdev_mutex(ldv_func_arg1); } return; } } static void ldv_mutex_lock_126(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_dvbdev_register_lock(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_127(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_dvbdev_register_lock(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_128(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_dvbdev_register_lock(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_129(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_dvbdev_register_lock(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_130(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_dvbdev_register_lock(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_131(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_dvbdev_register_lock(ldv_func_arg1); } return; } } static void ldv_mutex_lock_132(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_dvbdev_register_lock(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_133(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_dvbdev_register_lock(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_134(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_dvbdev_register_lock(ldv_func_arg1); } return; } } static void ldv_mutex_lock_135(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_dvbdev_register_lock(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_136(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_dvbdev_register_lock(ldv_func_arg1); } return; } } static int ldv_register_chrdev_region_137(dev_t ldv_func_arg1 , unsigned int ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int res1 ; int tmp___0 ; int res2 ; int tmp___1 ; { { tmp = register_chrdev_region(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv_linux_fs_char_dev_register_chrdev_region(); res1 = tmp___0; tmp___1 = ldv_linux_usb_gadget_register_chrdev_region(); res2 = tmp___1; ldv_assume(res1 == res2); } return (res1); return (ldv_func_res); } } static void ldv_cdev_init_138(struct cdev *ldv_func_arg1 , struct file_operations const *ldv_func_arg2 ) { { { cdev_init(ldv_func_arg1, ldv_func_arg2); ldv_cdev_init((void *)0, ldv_func_arg1, (struct file_operations *)ldv_func_arg2); } return; } } static void ldv_cdev_del_139(struct cdev *ldv_func_arg1 ) { { { cdev_del(ldv_func_arg1); ldv_cdev_del((void *)0, ldv_func_arg1); } return; } } static void ldv_unregister_chrdev_region_140(dev_t ldv_func_arg1 , unsigned int ldv_func_arg2 ) { { { unregister_chrdev_region(ldv_func_arg1, ldv_func_arg2); ldv_linux_fs_char_dev_unregister_chrdev_region(); ldv_linux_usb_gadget_unregister_chrdev_region(); } return; } } static void ldv_class_destroy_141(struct class *cls ) { { { ldv_linux_drivers_base_class_destroy_class(cls); ldv_linux_usb_gadget_destroy_class(cls); } return; } } static void ldv_cdev_del_142(struct cdev *ldv_func_arg1 ) { { { cdev_del(ldv_func_arg1); ldv_cdev_del((void *)0, ldv_func_arg1); } return; } } static void ldv_unregister_chrdev_region_143(dev_t ldv_func_arg1 , unsigned int ldv_func_arg2 ) { { { unregister_chrdev_region(ldv_func_arg1, ldv_func_arg2); ldv_linux_fs_char_dev_unregister_chrdev_region(); ldv_linux_usb_gadget_unregister_chrdev_region(); } return; } } static int ldv_ldv_post_init_144(int ldv_func_arg1 ) { int tmp ; { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); tmp = ldv_post_init(ldv_func_arg1); } return (tmp); } } static void ldv_ldv_check_final_state_145(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_check_final_state_146(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_initialize_147(void) { { { ldv_linux_lib_find_bit_initialize(); } return; } } static void ldv_mutex_lock_130(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_164(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_165(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_193(struct mutex *ldv_func_arg1 ) ; static int ldv_mutex_lock_interruptible_121(struct mutex *ldv_func_arg1 ) ; static int ldv_mutex_lock_interruptible_135(struct mutex *ldv_func_arg1 ) ; static int ldv_mutex_lock_interruptible_161(struct mutex *ldv_func_arg1 ) ; static int ldv_mutex_lock_interruptible_170(struct mutex *ldv_func_arg1 ) ; static int ldv_mutex_lock_interruptible_172(struct mutex *ldv_func_arg1 ) ; static int ldv_mutex_lock_interruptible_173(struct mutex *ldv_func_arg1 ) ; static int ldv_mutex_lock_interruptible_176(struct mutex *ldv_func_arg1 ) ; static int ldv_mutex_lock_interruptible_179(struct mutex *ldv_func_arg1 ) ; static int ldv_mutex_lock_interruptible_182(struct mutex *ldv_func_arg1 ) ; static int ldv_mutex_lock_interruptible_185(struct mutex *ldv_func_arg1 ) ; static int ldv_mutex_lock_interruptible_188(struct mutex *ldv_func_arg1 ) ; static int ldv_mutex_lock_interruptible_190(struct mutex *ldv_func_arg1 ) ; static int ldv_mutex_lock_interruptible_196(struct mutex *ldv_func_arg1 ) ; int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_dmxdev(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_dmxdev(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dmxdev(struct mutex *lock ) ; int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_dmxdev_filter(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_dmxdev_filter(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dmxdev_filter(struct mutex *lock ) ; extern void __might_sleep(char const * , int , int ) ; __inline static void list_add(struct list_head *new , struct list_head *head ) { { { __list_add(new, head, head->next); } return; } } __inline static int list_empty(struct list_head const *head ) { { return ((unsigned long )((struct list_head const *)head->next) == (unsigned long )head); } } void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_dmxdev(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_dmxdev(void) ; static void ldv_mutex_unlock_122(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_123(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_124___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_126(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_127___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_128___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_129___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_133___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_134___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_136___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_137(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_162(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_163(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_168(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_169(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_171(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_174(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_175(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_177(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_178(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_180(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_181(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_183(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_184(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_186(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_187(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_189(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_191(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_192(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_194(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_195(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_197(struct mutex *ldv_func_arg1 ) ; extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_lock_irq(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irq(raw_spinlock_t * ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField18.rlock); } } __inline static void spin_lock(spinlock_t *lock ) { { { _raw_spin_lock(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_lock_149(spinlock_t *lock ) ; __inline static void ldv_spin_lock_149(spinlock_t *lock ) ; __inline static void spin_lock_irq(spinlock_t *lock ) { { { _raw_spin_lock_irq(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_lock_irq_131(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_131(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_131(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_131(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_131(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_131(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_131(spinlock_t *lock ) ; __inline static void spin_unlock(spinlock_t *lock ) { { { _raw_spin_unlock(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_unlock_150(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_150(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_150(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_150(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_150(spinlock_t *lock ) ; __inline static void spin_unlock_irq(spinlock_t *lock ) { { { _raw_spin_unlock_irq(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_unlock_irq_132(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_132(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_132(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_132(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_132(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_132(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_132(spinlock_t *lock ) ; extern void __wake_up(wait_queue_head_t * , unsigned int , int , void * ) ; extern long prepare_to_wait_event(wait_queue_head_t * , wait_queue_t * , int ) ; extern void finish_wait(wait_queue_head_t * , wait_queue_t * ) ; extern unsigned long volatile jiffies ; extern void init_timer_key(struct timer_list * , unsigned int , char const * , struct lock_class_key * ) ; extern int del_timer(struct timer_list * ) ; static int ldv_del_timer_148(struct timer_list *ldv_func_arg1 ) ; static int ldv_del_timer_151(struct timer_list *ldv_func_arg1 ) ; static int ldv_del_timer_157(struct timer_list *ldv_func_arg1 ) ; extern void add_timer(struct timer_list * ) ; static void *ldv_vmalloc_125(unsigned long ldv_func_arg1 ) ; static void *ldv_vmalloc_138(unsigned long ldv_func_arg1 ) ; static void *ldv_vmalloc_143(unsigned long ldv_func_arg1 ) ; static void *ldv_vmalloc_158(unsigned long ldv_func_arg1 ) ; static void *ldv_vmalloc_198(unsigned long ldv_func_arg1 ) ; extern void vfree(void const * ) ; extern loff_t default_llseek(struct file * , loff_t , int ) ; extern void schedule(void) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; __inline static void poll_wait(struct file *filp , wait_queue_head_t *wait_address , poll_table *p ) { { if ((unsigned long )p != (unsigned long )((poll_table *)0) && ((unsigned long )p->_qproc != (unsigned long )((void (*)(struct file * , wait_queue_head_t * , struct poll_table_struct * ))0) && (unsigned long )wait_address != (unsigned long )((wait_queue_head_t *)0))) { { (*(p->_qproc))(filp, wait_address, p); } } else { } return; } } void dvb_ringbuffer_init(struct dvb_ringbuffer *rbuf , void *data , size_t len ) ; int dvb_ringbuffer_empty(struct dvb_ringbuffer *rbuf ) ; ssize_t dvb_ringbuffer_free(struct dvb_ringbuffer *rbuf ) ; ssize_t dvb_ringbuffer_avail(struct dvb_ringbuffer *rbuf ) ; void dvb_ringbuffer_reset(struct dvb_ringbuffer *rbuf ) ; void dvb_ringbuffer_flush(struct dvb_ringbuffer *rbuf ) ; ssize_t dvb_ringbuffer_read_user(struct dvb_ringbuffer *rbuf , u8 *buf , size_t len ) ; ssize_t dvb_ringbuffer_write(struct dvb_ringbuffer *rbuf , u8 const *buf , size_t len ) ; int dvb_dmxdev_init(struct dmxdev *dmxdev , struct dvb_adapter *dvb_adapter ) ; void dvb_dmxdev_release(struct dmxdev *dmxdev ) ; static int debug ; static int dvb_dmxdev_buffer_write(struct dvb_ringbuffer *buf , u8 const *src , size_t len ) { ssize_t free___0 ; ssize_t tmp ; { if (len == 0UL) { return (0); } else { } if ((unsigned long )buf->data == (unsigned long )((u8 *)0U)) { return (0); } else { } { free___0 = dvb_ringbuffer_free(buf); } if (len > (unsigned long )free___0) { if (debug != 0) { { printk("dmxdev: buffer overflow\n"); } } else { } return (-75); } else { } { tmp = dvb_ringbuffer_write(buf, src, len); } return ((int )tmp); } } static ssize_t dvb_dmxdev_buffer_read(struct dvb_ringbuffer *src , int non_blocking , char *buf , size_t count , loff_t *ppos ) { size_t todo ; ssize_t avail ; ssize_t ret ; int tmp ; int __ret ; wait_queue_t __wait ; long __ret___0 ; long __int ; long tmp___0 ; int tmp___1 ; int tmp___2 ; { ret = 0L; if ((unsigned long )src->data == (unsigned long )((u8 *)0U)) { return (0L); } else { } if (src->error != 0) { { ret = (ssize_t )src->error; dvb_ringbuffer_flush(src); } return (ret); } else { } todo = count; goto ldv_46805; ldv_46804: ; if (non_blocking != 0) { { tmp = dvb_ringbuffer_empty(src); } if (tmp != 0) { ret = -11L; goto ldv_46794; } else { } } else { } { __ret = 0; __might_sleep("drivers/media/dvb-core/dmxdev.c", 85, 0); tmp___2 = dvb_ringbuffer_empty(src); } if (tmp___2 != 0 && src->error == 0) { { __ret___0 = 0L; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; } ldv_46801: { tmp___0 = prepare_to_wait_event(& src->queue, & __wait, 1); __int = tmp___0; tmp___1 = dvb_ringbuffer_empty(src); } if (tmp___1 == 0 || src->error != 0) { goto ldv_46800; } else { } if (__int != 0L) { __ret___0 = __int; goto ldv_46800; } else { } { schedule(); } goto ldv_46801; ldv_46800: { finish_wait(& src->queue, & __wait); } __ret = (int )__ret___0; } else { } ret = (ssize_t )__ret; if (ret < 0L) { goto ldv_46794; } else { } if (src->error != 0) { { ret = (ssize_t )src->error; dvb_ringbuffer_flush(src); } goto ldv_46794; } else { } { avail = dvb_ringbuffer_avail(src); } if ((unsigned long )avail > todo) { avail = (ssize_t )todo; } else { } { ret = dvb_ringbuffer_read_user(src, (u8 *)buf, (size_t )avail); } if (ret < 0L) { goto ldv_46794; } else { } buf = buf + (unsigned long )ret; todo = todo - (unsigned long )ret; ldv_46805: ; if (todo != 0UL) { goto ldv_46804; } else { } ldv_46794: ; return (count != todo ? (ssize_t )(count - todo) : ret); } } static struct dmx_frontend *get_fe(struct dmx_demux *demux , int type ) { struct list_head *head ; struct list_head *pos ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { { head = (*(demux->get_frontends))(demux); } if ((unsigned long )head == (unsigned long )((struct list_head *)0)) { return ((struct dmx_frontend *)0); } else { } pos = head->next; goto ldv_46817; ldv_46816: __mptr___0 = (struct list_head const *)pos; if ((unsigned int )((struct dmx_frontend *)__mptr___0)->source == (unsigned int )type) { __mptr = (struct list_head const *)pos; return ((struct dmx_frontend *)__mptr); } else { } pos = pos->next; ldv_46817: ; if ((unsigned long )pos != (unsigned long )head) { goto ldv_46816; } else { } return ((struct dmx_frontend *)0); } } static int dvb_dvr_open(struct inode *inode , struct file *file ) { struct dvb_device *dvbdev ; struct dmxdev *dmxdev ; struct dmx_frontend *front ; int tmp ; void *mem ; { dvbdev = (struct dvb_device *)file->private_data; dmxdev = (struct dmxdev *)dvbdev->priv; if (debug != 0) { { printk("function : %s\n", "dvb_dvr_open"); } } else { } { tmp = ldv_mutex_lock_interruptible_121(& dmxdev->mutex); } if (tmp != 0) { return (-512); } else { } if ((unsigned int )*((unsigned char *)dmxdev + 40UL) != 0U) { { ldv_mutex_unlock_122(& dmxdev->mutex); } return (-19); } else { } if ((file->f_flags & 3U) == 2U) { if ((dmxdev->capabilities & 1) == 0) { { ldv_mutex_unlock_123(& dmxdev->mutex); } return (-95); } else { } } else { } if ((file->f_flags & 3U) == 0U) { if (dvbdev->readers == 0) { { ldv_mutex_unlock_124___0(& dmxdev->mutex); } return (-16); } else { } { mem = ldv_vmalloc_125(1925120UL); } if ((unsigned long )mem == (unsigned long )((void *)0)) { { ldv_mutex_unlock_126(& dmxdev->mutex); } return (-12); } else { } { dvb_ringbuffer_init(& dmxdev->dvr_buffer, mem, 1925120UL); dvbdev->readers = dvbdev->readers - 1; } } else { } if ((file->f_flags & 3U) == 1U) { dmxdev->dvr_orig_fe = (dmxdev->demux)->frontend; if ((unsigned long )(dmxdev->demux)->write == (unsigned long )((int (*)(struct dmx_demux * , char const * , size_t ))0)) { { ldv_mutex_unlock_127___0(& dmxdev->mutex); } return (-95); } else { } { front = get_fe(dmxdev->demux, 0); } if ((unsigned long )front == (unsigned long )((struct dmx_frontend *)0)) { { ldv_mutex_unlock_128___0(& dmxdev->mutex); } return (-22); } else { } { (*((dmxdev->demux)->disconnect_frontend))(dmxdev->demux); (*((dmxdev->demux)->connect_frontend))(dmxdev->demux, front); } } else { } { dvbdev->users = dvbdev->users + 1; ldv_mutex_unlock_129___0(& dmxdev->mutex); } return (0); } } static int dvb_dvr_release(struct inode *inode , struct file *file ) { struct dvb_device *dvbdev ; struct dmxdev *dmxdev ; void *mem ; { { dvbdev = (struct dvb_device *)file->private_data; dmxdev = (struct dmxdev *)dvbdev->priv; ldv_mutex_lock_130(& dmxdev->mutex); } if ((file->f_flags & 3U) == 1U) { { (*((dmxdev->demux)->disconnect_frontend))(dmxdev->demux); (*((dmxdev->demux)->connect_frontend))(dmxdev->demux, dmxdev->dvr_orig_fe); } } else { } if ((file->f_flags & 3U) == 0U) { dvbdev->readers = dvbdev->readers + 1; if ((unsigned long )dmxdev->dvr_buffer.data != (unsigned long )((u8 *)0U)) { { mem = (void *)dmxdev->dvr_buffer.data; __asm__ volatile ("mfence": : : "memory"); ldv_spin_lock_irq_131(& dmxdev->lock); dmxdev->dvr_buffer.data = (u8 *)0U; ldv_spin_unlock_irq_132(& dmxdev->lock); vfree((void const *)mem); } } else { } } else { } dvbdev->users = dvbdev->users - 1; if (dvbdev->users == 1 && (unsigned int )*((unsigned char *)dmxdev + 40UL) != 0U) { { ldv_mutex_unlock_133___0(& dmxdev->mutex); __wake_up(& dvbdev->wait_queue, 3U, 1, (void *)0); } } else { { ldv_mutex_unlock_134___0(& dmxdev->mutex); } } return (0); } } static ssize_t dvb_dvr_write(struct file *file , char const *buf , size_t count , loff_t *ppos ) { struct dvb_device *dvbdev ; struct dmxdev *dmxdev ; int ret ; int tmp ; { dvbdev = (struct dvb_device *)file->private_data; dmxdev = (struct dmxdev *)dvbdev->priv; if ((unsigned long )(dmxdev->demux)->write == (unsigned long )((int (*)(struct dmx_demux * , char const * , size_t ))0)) { return (-95L); } else { } if ((file->f_flags & 3U) != 1U) { return (-22L); } else { } { tmp = ldv_mutex_lock_interruptible_135(& dmxdev->mutex); } if (tmp != 0) { return (-512L); } else { } if ((unsigned int )*((unsigned char *)dmxdev + 40UL) != 0U) { { ldv_mutex_unlock_136___0(& dmxdev->mutex); } return (-19L); } else { } { ret = (*((dmxdev->demux)->write))(dmxdev->demux, buf, count); ldv_mutex_unlock_137(& dmxdev->mutex); } return ((ssize_t )ret); } } static ssize_t dvb_dvr_read(struct file *file , char *buf , size_t count , loff_t *ppos ) { struct dvb_device *dvbdev ; struct dmxdev *dmxdev ; ssize_t tmp ; { dvbdev = (struct dvb_device *)file->private_data; dmxdev = (struct dmxdev *)dvbdev->priv; if ((unsigned int )*((unsigned char *)dmxdev + 40UL) != 0U) { return (-19L); } else { } { tmp = dvb_dmxdev_buffer_read(& dmxdev->dvr_buffer, (int )file->f_flags & 2048, buf, count, ppos); } return (tmp); } } static int dvb_dvr_set_buffer_size(struct dmxdev *dmxdev , unsigned long size ) { struct dvb_ringbuffer *buf ; void *newmem ; void *oldmem ; { buf = & dmxdev->dvr_buffer; if (debug != 0) { { printk("function : %s\n", "dvb_dvr_set_buffer_size"); } } else { } if ((unsigned long )buf->size == size) { return (0); } else { } if (size == 0UL) { return (-22); } else { } { newmem = ldv_vmalloc_138(size); } if ((unsigned long )newmem == (unsigned long )((void *)0)) { return (-12); } else { } { oldmem = (void *)buf->data; ldv_spin_lock_irq_131(& dmxdev->lock); buf->data = (u8 *)newmem; buf->size = (ssize_t )size; dvb_ringbuffer_reset(buf); ldv_spin_unlock_irq_132(& dmxdev->lock); vfree((void const *)oldmem); } return (0); } } __inline static void dvb_dmxdev_filter_state_set(struct dmxdev_filter *dmxdevfilter , int state ) { { { ldv_spin_lock_irq_131(& (dmxdevfilter->dev)->lock); dmxdevfilter->state = (enum dmxdev_state )state; ldv_spin_unlock_irq_132(& (dmxdevfilter->dev)->lock); } return; } } static int dvb_dmxdev_set_buffer_size(struct dmxdev_filter *dmxdevfilter , unsigned long size ) { struct dvb_ringbuffer *buf ; void *newmem ; void *oldmem ; { buf = & dmxdevfilter->buffer; if ((unsigned long )buf->size == size) { return (0); } else { } if (size == 0UL) { return (-22); } else { } if ((unsigned int )dmxdevfilter->state > 2U) { return (-16); } else { } { newmem = ldv_vmalloc_143(size); } if ((unsigned long )newmem == (unsigned long )((void *)0)) { return (-12); } else { } { oldmem = (void *)buf->data; ldv_spin_lock_irq_131(& (dmxdevfilter->dev)->lock); buf->data = (u8 *)newmem; buf->size = (ssize_t )size; dvb_ringbuffer_reset(buf); ldv_spin_unlock_irq_132(& (dmxdevfilter->dev)->lock); vfree((void const *)oldmem); } return (0); } } static void dvb_dmxdev_filter_timeout(unsigned long data ) { struct dmxdev_filter *dmxdevfilter ; { { dmxdevfilter = (struct dmxdev_filter *)data; dmxdevfilter->buffer.error = -110; ldv_spin_lock_irq_131(& (dmxdevfilter->dev)->lock); dmxdevfilter->state = 5; ldv_spin_unlock_irq_132(& (dmxdevfilter->dev)->lock); __wake_up(& dmxdevfilter->buffer.queue, 3U, 1, (void *)0); } return; } } static void dvb_dmxdev_filter_timer(struct dmxdev_filter *dmxdevfilter ) { struct dmx_sct_filter_params *para ; { { para = & dmxdevfilter->params.sec; ldv_del_timer_148(& dmxdevfilter->timer); } if (para->timeout != 0U) { { dmxdevfilter->timer.function = & dvb_dmxdev_filter_timeout; dmxdevfilter->timer.data = (unsigned long )dmxdevfilter; dmxdevfilter->timer.expires = ((unsigned long )jiffies + (unsigned long )((para->timeout * 250U + 125U) / 1000U)) + 1UL; add_timer(& dmxdevfilter->timer); } } else { } return; } } static int dvb_dmxdev_section_callback(u8 const *buffer1 , size_t buffer1_len , u8 const *buffer2 , size_t buffer2_len , struct dmx_section_filter *filter , enum dmx_success success ) { struct dmxdev_filter *dmxdevfilter ; int ret ; { dmxdevfilter = (struct dmxdev_filter *)filter->priv; if (dmxdevfilter->buffer.error != 0) { { __wake_up(& dmxdevfilter->buffer.queue, 3U, 1, (void *)0); } return (0); } else { } { ldv_spin_lock_149(& (dmxdevfilter->dev)->lock); } if ((unsigned int )dmxdevfilter->state != 3U) { { ldv_spin_unlock_150(& (dmxdevfilter->dev)->lock); } return (0); } else { } { ldv_del_timer_151(& dmxdevfilter->timer); } if (debug != 0) { { printk("dmxdev: section callback %*ph\n", 6, buffer1); } } else { } { ret = dvb_dmxdev_buffer_write(& dmxdevfilter->buffer, buffer1, buffer1_len); } if ((size_t )ret == buffer1_len) { { ret = dvb_dmxdev_buffer_write(& dmxdevfilter->buffer, buffer2, buffer2_len); } } else { } if (ret < 0) { dmxdevfilter->buffer.error = ret; } else { } if ((dmxdevfilter->params.sec.flags & 2U) != 0U) { dmxdevfilter->state = 4; } else { } { ldv_spin_unlock_150(& (dmxdevfilter->dev)->lock); __wake_up(& dmxdevfilter->buffer.queue, 3U, 1, (void *)0); } return (0); } } static int dvb_dmxdev_ts_callback(u8 const *buffer1 , size_t buffer1_len , u8 const *buffer2 , size_t buffer2_len , struct dmx_ts_feed *feed , enum dmx_success success ) { struct dmxdev_filter *dmxdevfilter ; struct dvb_ringbuffer *buffer ; int ret ; { { dmxdevfilter = (struct dmxdev_filter *)feed->priv; ldv_spin_lock_149(& (dmxdevfilter->dev)->lock); } if ((unsigned int )dmxdevfilter->params.pes.output == 0U) { { ldv_spin_unlock_150(& (dmxdevfilter->dev)->lock); } return (0); } else { } if ((unsigned int )dmxdevfilter->params.pes.output == 1U || (unsigned int )dmxdevfilter->params.pes.output == 3U) { buffer = & dmxdevfilter->buffer; } else { buffer = & (dmxdevfilter->dev)->dvr_buffer; } if (buffer->error != 0) { { ldv_spin_unlock_150(& (dmxdevfilter->dev)->lock); __wake_up(& buffer->queue, 3U, 1, (void *)0); } return (0); } else { } { ret = dvb_dmxdev_buffer_write(buffer, buffer1, buffer1_len); } if ((size_t )ret == buffer1_len) { { ret = dvb_dmxdev_buffer_write(buffer, buffer2, buffer2_len); } } else { } if (ret < 0) { buffer->error = ret; } else { } { ldv_spin_unlock_150(& (dmxdevfilter->dev)->lock); __wake_up(& buffer->queue, 3U, 1, (void *)0); } return (0); } } static int dvb_dmxdev_feed_stop(struct dmxdev_filter *dmxdevfilter ) { struct dmxdev_feed *feed ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { { dvb_dmxdev_filter_state_set(dmxdevfilter, 2); } { if ((unsigned int )dmxdevfilter->type == 1U) { goto case_1; } else { } if ((unsigned int )dmxdevfilter->type == 2U) { goto case_2; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_del_timer_157(& dmxdevfilter->timer); (*((dmxdevfilter->feed.sec)->stop_filtering))(dmxdevfilter->feed.sec); } goto ldv_46905; case_2: /* CIL Label */ __mptr = (struct list_head const *)dmxdevfilter->feed.ts.next; feed = (struct dmxdev_feed *)__mptr + 0xfffffffffffffff0UL; goto ldv_46912; ldv_46911: { (*((feed->ts)->stop_filtering))(feed->ts); __mptr___0 = (struct list_head const *)feed->next.next; feed = (struct dmxdev_feed *)__mptr___0 + 0xfffffffffffffff0UL; } ldv_46912: ; if ((unsigned long )(& feed->next) != (unsigned long )(& dmxdevfilter->feed.ts)) { goto ldv_46911; } else { } goto ldv_46905; switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } ldv_46905: ; return (0); } } static int dvb_dmxdev_feed_start(struct dmxdev_filter *filter ) { struct dmxdev_feed *feed ; int ret ; int tmp ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { { dvb_dmxdev_filter_state_set(filter, 3); } { if ((unsigned int )filter->type == 1U) { goto case_1; } else { } if ((unsigned int )filter->type == 2U) { goto case_2; } else { } goto switch_default; case_1: /* CIL Label */ { tmp = (*((filter->feed.sec)->start_filtering))(filter->feed.sec); } return (tmp); case_2: /* CIL Label */ __mptr = (struct list_head const *)filter->feed.ts.next; feed = (struct dmxdev_feed *)__mptr + 0xfffffffffffffff0UL; goto ldv_46927; ldv_46926: { ret = (*((feed->ts)->start_filtering))(feed->ts); } if (ret < 0) { { dvb_dmxdev_feed_stop(filter); } return (ret); } else { } __mptr___0 = (struct list_head const *)feed->next.next; feed = (struct dmxdev_feed *)__mptr___0 + 0xfffffffffffffff0UL; ldv_46927: ; if ((unsigned long )(& feed->next) != (unsigned long )(& filter->feed.ts)) { goto ldv_46926; } else { } goto ldv_46929; switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } ldv_46929: ; return (0); } } static int dvb_dmxdev_feed_restart(struct dmxdev_filter *filter ) { int i ; struct dmxdev *dmxdev ; u16 pid ; { dmxdev = filter->dev; pid = filter->params.sec.pid; i = 0; goto ldv_46938; ldv_46937: ; if (((unsigned int )(dmxdev->filter + (unsigned long )i)->state > 2U && (unsigned int )(dmxdev->filter + (unsigned long )i)->type == 1U) && (int )(dmxdev->filter + (unsigned long )i)->params.sec.pid == (int )pid) { { dvb_dmxdev_feed_start(dmxdev->filter + (unsigned long )i); } return (0); } else { } i = i + 1; ldv_46938: ; if (i < dmxdev->filternum) { goto ldv_46937; } else { } { (*(((filter->dev)->demux)->release_section_feed))(dmxdev->demux, filter->feed.sec); } return (0); } } static int dvb_dmxdev_filter_stop(struct dmxdev_filter *dmxdevfilter ) { struct dmxdev_feed *feed ; struct dmx_demux *demux ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { if ((unsigned int )dmxdevfilter->state <= 2U) { return (0); } else { } { if ((unsigned int )dmxdevfilter->type == 1U) { goto case_1; } else { } if ((unsigned int )dmxdevfilter->type == 2U) { goto case_2; } else { } goto switch_default; case_1: /* CIL Label */ ; if ((unsigned long )dmxdevfilter->feed.sec == (unsigned long )((struct dmx_section_feed *)0)) { goto ldv_46946; } else { } { dvb_dmxdev_feed_stop(dmxdevfilter); } if ((unsigned long )dmxdevfilter->filter.sec != (unsigned long )((struct dmx_section_filter *)0)) { { (*((dmxdevfilter->feed.sec)->release_filter))(dmxdevfilter->feed.sec, dmxdevfilter->filter.sec); } } else { } { dvb_dmxdev_feed_restart(dmxdevfilter); dmxdevfilter->feed.sec = (struct dmx_section_feed *)0; } goto ldv_46946; case_2: /* CIL Label */ { dvb_dmxdev_feed_stop(dmxdevfilter); demux = (dmxdevfilter->dev)->demux; __mptr = (struct list_head const *)dmxdevfilter->feed.ts.next; feed = (struct dmxdev_feed *)__mptr + 0xfffffffffffffff0UL; } goto ldv_46953; ldv_46952: { (*(demux->release_ts_feed))(demux, feed->ts); feed->ts = (struct dmx_ts_feed *)0; __mptr___0 = (struct list_head const *)feed->next.next; feed = (struct dmxdev_feed *)__mptr___0 + 0xfffffffffffffff0UL; } ldv_46953: ; if ((unsigned long )(& feed->next) != (unsigned long )(& dmxdevfilter->feed.ts)) { goto ldv_46952; } else { } goto ldv_46946; switch_default: /* CIL Label */ ; if ((unsigned int )dmxdevfilter->state == 1U) { return (0); } else { } return (-22); switch_break: /* CIL Label */ ; } ldv_46946: { dvb_ringbuffer_flush(& dmxdevfilter->buffer); } return (0); } } static void dvb_dmxdev_delete_pids(struct dmxdev_filter *dmxdevfilter ) { struct dmxdev_feed *feed ; struct dmxdev_feed *tmp ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; int tmp___0 ; long tmp___1 ; { __mptr = (struct list_head const *)dmxdevfilter->feed.ts.next; feed = (struct dmxdev_feed *)__mptr + 0xfffffffffffffff0UL; __mptr___0 = (struct list_head const *)feed->next.next; tmp = (struct dmxdev_feed *)__mptr___0 + 0xfffffffffffffff0UL; goto ldv_46968; ldv_46967: { list_del(& feed->next); kfree((void const *)feed); feed = tmp; __mptr___1 = (struct list_head const *)tmp->next.next; tmp = (struct dmxdev_feed *)__mptr___1 + 0xfffffffffffffff0UL; } ldv_46968: ; if ((unsigned long )(& feed->next) != (unsigned long )(& dmxdevfilter->feed.ts)) { goto ldv_46967; } else { } { tmp___0 = list_empty((struct list_head const *)(& dmxdevfilter->feed.ts)); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/media/dvb-core/dmxdev.c"), "i" (541), "i" (12UL)); __builtin_unreachable(); } } else { } return; } } __inline static int dvb_dmxdev_filter_reset(struct dmxdev_filter *dmxdevfilter ) { { if ((unsigned int )dmxdevfilter->state <= 1U) { return (0); } else { } if ((unsigned int )dmxdevfilter->type == 2U) { { dvb_dmxdev_delete_pids(dmxdevfilter); } } else { } { dmxdevfilter->type = 0; dvb_dmxdev_filter_state_set(dmxdevfilter, 1); } return (0); } } static int dvb_dmxdev_start_feed(struct dmxdev *dmxdev , struct dmxdev_filter *filter , struct dmxdev_feed *feed ) { struct timespec timeout ; struct dmx_pes_filter_params *para ; dmx_output_t otype ; int ret ; int ts_type ; enum dmx_ts_pes ts_pes ; struct dmx_ts_feed *tsfeed ; { timeout.tv_sec = 0L; timeout.tv_nsec = 0L; para = & filter->params.pes; feed->ts = (struct dmx_ts_feed *)0; otype = para->output; ts_pes = para->pes_type; if ((unsigned int )ts_pes <= 19U) { ts_type = 4; } else { ts_type = 0; } if ((unsigned int )otype == 2U) { ts_type = ts_type | 1; } else if ((unsigned int )otype == 3U) { ts_type = ts_type | 9; } else if ((unsigned int )otype == 1U) { ts_type = ts_type | 11; } else { } { ret = (*((dmxdev->demux)->allocate_ts_feed))(dmxdev->demux, & feed->ts, & dvb_dmxdev_ts_callback); } if (ret < 0) { return (ret); } else { } { tsfeed = feed->ts; tsfeed->priv = (void *)filter; ret = (*(tsfeed->set))(tsfeed, (int )feed->pid, ts_type, ts_pes, 32768UL, timeout); } if (ret < 0) { { (*((dmxdev->demux)->release_ts_feed))(dmxdev->demux, tsfeed); } return (ret); } else { } { ret = (*(tsfeed->start_filtering))(tsfeed); } if (ret < 0) { { (*((dmxdev->demux)->release_ts_feed))(dmxdev->demux, tsfeed); } return (ret); } else { } return (0); } } static int dvb_dmxdev_filter_start(struct dmxdev_filter *filter ) { struct dmxdev *dmxdev ; struct dmxdev_feed *feed ; void *mem ; int ret ; int i ; struct dmx_sct_filter_params *para ; struct dmx_section_filter **secfilter ; struct dmx_section_feed **secfeed ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { dmxdev = filter->dev; if ((unsigned int )filter->state <= 1U) { return (-22); } else { } if ((unsigned int )filter->state > 2U) { { dvb_dmxdev_filter_stop(filter); } } else { } if ((unsigned long )filter->buffer.data == (unsigned long )((u8 *)0U)) { { mem = ldv_vmalloc_158((unsigned long )filter->buffer.size); } if ((unsigned long )mem == (unsigned long )((void *)0)) { return (-12); } else { } { ldv_spin_lock_irq_131(& (filter->dev)->lock); filter->buffer.data = (u8 *)mem; ldv_spin_unlock_irq_132(& (filter->dev)->lock); } } else { } { dvb_ringbuffer_flush(& filter->buffer); } { if ((unsigned int )filter->type == 1U) { goto case_1; } else { } if ((unsigned int )filter->type == 2U) { goto case_2; } else { } goto switch_default; case_1: /* CIL Label */ para = & filter->params.sec; secfilter = & filter->filter.sec; secfeed = & filter->feed.sec; *secfilter = (struct dmx_section_filter *)0; *secfeed = (struct dmx_section_feed *)0; i = 0; goto ldv_46999; ldv_46998: ; if (((unsigned int )(dmxdev->filter + (unsigned long )i)->state > 2U && (unsigned int )(dmxdev->filter + (unsigned long )i)->type == 1U) && (int )(dmxdev->filter + (unsigned long )i)->params.sec.pid == (int )para->pid) { *secfeed = (dmxdev->filter + (unsigned long )i)->feed.sec; goto ldv_46997; } else { } i = i + 1; ldv_46999: ; if (i < dmxdev->filternum) { goto ldv_46998; } else { } ldv_46997: ; if ((unsigned long )*secfeed == (unsigned long )((struct dmx_section_feed *)0)) { { ret = (*((dmxdev->demux)->allocate_section_feed))(dmxdev->demux, secfeed, & dvb_dmxdev_section_callback); } if (ret < 0) { { printk("DVB (%s): could not alloc feed\n", "dvb_dmxdev_filter_start"); } return (ret); } else { } { ret = (*((*secfeed)->set))(*secfeed, (int )para->pid, 32768UL, (int )para->flags & 1); } if (ret < 0) { { printk("DVB (%s): could not set feed\n", "dvb_dmxdev_filter_start"); dvb_dmxdev_feed_restart(filter); } return (ret); } else { } } else { { dvb_dmxdev_feed_stop(filter); } } { ret = (*((*secfeed)->allocate_filter))(*secfeed, secfilter); } if (ret < 0) { { dvb_dmxdev_feed_restart(filter); (*((filter->feed.sec)->start_filtering))(*secfeed); } if (debug != 0) { { printk("could not get filter\n"); } } else { } return (ret); } else { } { (*secfilter)->priv = (void *)filter; __memcpy((void *)(& (*secfilter)->filter_value) + 3U, (void const *)(& para->filter.filter) + 1U, 15UL); __memcpy((void *)(& (*secfilter)->filter_mask) + 3U, (void const *)(& para->filter.mask) + 1U, 15UL); __memcpy((void *)(& (*secfilter)->filter_mode) + 3U, (void const *)(& para->filter.mode) + 1U, 15UL); (*secfilter)->filter_value[0] = para->filter.filter[0]; (*secfilter)->filter_mask[0] = para->filter.mask[0]; (*secfilter)->filter_mode[0] = para->filter.mode[0]; (*secfilter)->filter_mask[1] = 0U; (*secfilter)->filter_mask[2] = 0U; filter->todo = 0; ret = (*((filter->feed.sec)->start_filtering))(filter->feed.sec); } if (ret < 0) { return (ret); } else { } { dvb_dmxdev_filter_timer(filter); } goto ldv_47001; case_2: /* CIL Label */ __mptr = (struct list_head const *)filter->feed.ts.next; feed = (struct dmxdev_feed *)__mptr + 0xfffffffffffffff0UL; goto ldv_47008; ldv_47007: { ret = dvb_dmxdev_start_feed(dmxdev, filter, feed); } if (ret < 0) { { dvb_dmxdev_filter_stop(filter); } return (ret); } else { } __mptr___0 = (struct list_head const *)feed->next.next; feed = (struct dmxdev_feed *)__mptr___0 + 0xfffffffffffffff0UL; ldv_47008: ; if ((unsigned long )(& feed->next) != (unsigned long )(& filter->feed.ts)) { goto ldv_47007; } else { } goto ldv_47001; switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } ldv_47001: { dvb_dmxdev_filter_state_set(filter, 3); } return (0); } } static int dvb_demux_open(struct inode *inode , struct file *file ) { struct dvb_device *dvbdev ; struct dmxdev *dmxdev ; int i ; struct dmxdev_filter *dmxdevfilter ; int tmp ; struct lock_class_key __key ; struct lock_class_key __key___0 ; { dvbdev = (struct dvb_device *)file->private_data; dmxdev = (struct dmxdev *)dvbdev->priv; if ((unsigned long )dmxdev->filter == (unsigned long )((struct dmxdev_filter *)0)) { return (-22); } else { } { tmp = ldv_mutex_lock_interruptible_161(& dmxdev->mutex); } if (tmp != 0) { return (-512); } else { } i = 0; goto ldv_47021; ldv_47020: ; if ((unsigned int )(dmxdev->filter + (unsigned long )i)->state == 0U) { goto ldv_47019; } else { } i = i + 1; ldv_47021: ; if (i < dmxdev->filternum) { goto ldv_47020; } else { } ldv_47019: ; if (i == dmxdev->filternum) { { ldv_mutex_unlock_162(& dmxdev->mutex); } return (-24); } else { } { dmxdevfilter = dmxdev->filter + (unsigned long )i; __mutex_init(& dmxdevfilter->mutex, "&dmxdevfilter->mutex", & __key); file->private_data = (void *)dmxdevfilter; dvb_ringbuffer_init(& dmxdevfilter->buffer, (void *)0, 8192UL); dmxdevfilter->type = 0; dvb_dmxdev_filter_state_set(dmxdevfilter, 1); init_timer_key(& dmxdevfilter->timer, 0U, "(&dmxdevfilter->timer)", & __key___0); dvbdev->users = dvbdev->users + 1; ldv_mutex_unlock_163(& dmxdev->mutex); } return (0); } } static int dvb_dmxdev_filter_free(struct dmxdev *dmxdev , struct dmxdev_filter *dmxdevfilter ) { void *mem ; { { ldv_mutex_lock_164(& dmxdev->mutex); ldv_mutex_lock_165(& dmxdevfilter->mutex); dvb_dmxdev_filter_stop(dmxdevfilter); dvb_dmxdev_filter_reset(dmxdevfilter); } if ((unsigned long )dmxdevfilter->buffer.data != (unsigned long )((u8 *)0U)) { { mem = (void *)dmxdevfilter->buffer.data; ldv_spin_lock_irq_131(& dmxdev->lock); dmxdevfilter->buffer.data = (u8 *)0U; ldv_spin_unlock_irq_132(& dmxdev->lock); vfree((void const *)mem); } } else { } { dvb_dmxdev_filter_state_set(dmxdevfilter, 0); __wake_up(& dmxdevfilter->buffer.queue, 3U, 1, (void *)0); ldv_mutex_unlock_168(& dmxdevfilter->mutex); ldv_mutex_unlock_169(& dmxdev->mutex); } return (0); } } __inline static void invert_mode(dmx_filter_t *filter ) { int i ; { i = 0; goto ldv_47034; ldv_47033: filter->mode[i] = ~ ((int )filter->mode[i]); i = i + 1; ldv_47034: ; if (i <= 15) { goto ldv_47033; } else { } return; } } static int dvb_dmxdev_add_pid(struct dmxdev *dmxdev , struct dmxdev_filter *filter , u16 pid ) { struct dmxdev_feed *feed ; int tmp ; void *tmp___0 ; int tmp___1 ; { if ((unsigned int )filter->type != 2U || (unsigned int )filter->state <= 1U) { return (-22); } else { } if ((unsigned int )filter->params.pes.output != 3U) { { tmp = list_empty((struct list_head const *)(& filter->feed.ts)); } if (tmp == 0) { return (-22); } else { } } else { } { tmp___0 = kzalloc(32UL, 208U); feed = (struct dmxdev_feed *)tmp___0; } if ((unsigned long )feed == (unsigned long )((struct dmxdev_feed *)0)) { return (-12); } else { } { feed->pid = pid; list_add(& feed->next, & filter->feed.ts); } if ((unsigned int )filter->state > 2U) { { tmp___1 = dvb_dmxdev_start_feed(dmxdev, filter, feed); } return (tmp___1); } else { } return (0); } } static int dvb_dmxdev_remove_pid(struct dmxdev *dmxdev , struct dmxdev_filter *filter , u16 pid ) { struct dmxdev_feed *feed ; struct dmxdev_feed *tmp ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; { if ((unsigned int )filter->type != 2U || (unsigned int )filter->state <= 1U) { return (-22); } else { } __mptr = (struct list_head const *)filter->feed.ts.next; feed = (struct dmxdev_feed *)__mptr + 0xfffffffffffffff0UL; __mptr___0 = (struct list_head const *)feed->next.next; tmp = (struct dmxdev_feed *)__mptr___0 + 0xfffffffffffffff0UL; goto ldv_47056; ldv_47055: ; if ((int )feed->pid == (int )pid && (unsigned long )feed->ts != (unsigned long )((struct dmx_ts_feed *)0)) { { (*((feed->ts)->stop_filtering))(feed->ts); (*(((filter->dev)->demux)->release_ts_feed))((filter->dev)->demux, feed->ts); list_del(& feed->next); kfree((void const *)feed); } } else { } feed = tmp; __mptr___1 = (struct list_head const *)tmp->next.next; tmp = (struct dmxdev_feed *)__mptr___1 + 0xfffffffffffffff0UL; ldv_47056: ; if ((unsigned long )(& feed->next) != (unsigned long )(& filter->feed.ts)) { goto ldv_47055; } else { } return (0); } } static int dvb_dmxdev_filter_set(struct dmxdev *dmxdev , struct dmxdev_filter *dmxdevfilter , struct dmx_sct_filter_params *params ) { int tmp ; { if (debug != 0) { { printk("function : %s, PID=0x%04x, flags=%02x, timeout=%d\n", "dvb_dmxdev_filter_set", (int )params->pid, params->flags, params->timeout); } } else { } { dvb_dmxdev_filter_stop(dmxdevfilter); dmxdevfilter->type = 1; __memcpy((void *)(& dmxdevfilter->params.sec), (void const *)params, 60UL); invert_mode(& dmxdevfilter->params.sec.filter); dvb_dmxdev_filter_state_set(dmxdevfilter, 2); } if ((params->flags & 4U) != 0U) { { tmp = dvb_dmxdev_filter_start(dmxdevfilter); } return (tmp); } else { } return (0); } } static int dvb_dmxdev_pes_filter_set(struct dmxdev *dmxdev , struct dmxdev_filter *dmxdevfilter , struct dmx_pes_filter_params *params ) { int ret ; int tmp ; { { dvb_dmxdev_filter_stop(dmxdevfilter); dvb_dmxdev_filter_reset(dmxdevfilter); } if ((unsigned int )params->pes_type > 20U) { return (-22); } else { } { dmxdevfilter->type = 2; __memcpy((void *)(& dmxdevfilter->params), (void const *)params, 20UL); INIT_LIST_HEAD(& dmxdevfilter->feed.ts); dvb_dmxdev_filter_state_set(dmxdevfilter, 2); ret = dvb_dmxdev_add_pid(dmxdev, dmxdevfilter, (int )dmxdevfilter->params.pes.pid); } if (ret < 0) { return (ret); } else { } if ((params->flags & 4U) != 0U) { { tmp = dvb_dmxdev_filter_start(dmxdevfilter); } return (tmp); } else { } return (0); } } static ssize_t dvb_dmxdev_read_sec(struct dmxdev_filter *dfil , struct file *file , char *buf , size_t count , loff_t *ppos ) { int result ; int hcount ; int done ; ssize_t tmp ; unsigned long tmp___0 ; ssize_t tmp___1 ; { done = 0; if (dfil->todo <= 0) { hcount = dfil->todo + 3; if ((size_t )hcount > count) { hcount = (int )count; } else { } { tmp = dvb_dmxdev_buffer_read(& dfil->buffer, (int )file->f_flags & 2048, buf, (size_t )hcount, ppos); result = (int )tmp; } if (result < 0) { dfil->todo = 0; return ((ssize_t )result); } else { } { tmp___0 = copy_from_user((void *)(& dfil->secheader) + - ((unsigned long )dfil->todo), (void const *)buf, (unsigned long )result); } if (tmp___0 != 0UL) { return (-14L); } else { } buf = buf + (unsigned long )result; done = result; count = count - (size_t )result; dfil->todo = dfil->todo - result; if (dfil->todo >= -2) { return ((ssize_t )done); } else { } dfil->todo = (((int )dfil->secheader[1] << 8) | (int )dfil->secheader[2]) & 4095; if (count == 0UL) { return ((ssize_t )done); } else { } } else { } if (count > (size_t )dfil->todo) { count = (size_t )dfil->todo; } else { } { tmp___1 = dvb_dmxdev_buffer_read(& dfil->buffer, (int )file->f_flags & 2048, buf, count, ppos); result = (int )tmp___1; } if (result < 0) { return ((ssize_t )result); } else { } dfil->todo = dfil->todo - result; return ((ssize_t )(result + done)); } } static ssize_t dvb_demux_read(struct file *file , char *buf , size_t count , loff_t *ppos ) { struct dmxdev_filter *dmxdevfilter ; int ret ; int tmp ; ssize_t tmp___0 ; ssize_t tmp___1 ; { { dmxdevfilter = (struct dmxdev_filter *)file->private_data; tmp = ldv_mutex_lock_interruptible_170(& dmxdevfilter->mutex); } if (tmp != 0) { return (-512L); } else { } if ((unsigned int )dmxdevfilter->type == 1U) { { tmp___0 = dvb_dmxdev_read_sec(dmxdevfilter, file, buf, count, ppos); ret = (int )tmp___0; } } else { { tmp___1 = dvb_dmxdev_buffer_read(& dmxdevfilter->buffer, (int )file->f_flags & 2048, buf, count, ppos); ret = (int )tmp___1; } } { ldv_mutex_unlock_171(& dmxdevfilter->mutex); } return ((ssize_t )ret); } } static int dvb_demux_do_ioctl(struct file *file , unsigned int cmd , void *parg ) { struct dmxdev_filter *dmxdevfilter ; struct dmxdev *dmxdev ; unsigned long arg ; int ret ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; { { dmxdevfilter = (struct dmxdev_filter *)file->private_data; dmxdev = dmxdevfilter->dev; arg = (unsigned long )parg; ret = 0; tmp = ldv_mutex_lock_interruptible_172(& dmxdev->mutex); } if (tmp != 0) { return (-512); } else { } { if (cmd == 28457U) { goto case_28457; } else { } if (cmd == 28458U) { goto case_28458; } else { } if (cmd == 1077702443U) { goto case_1077702443; } else { } if (cmd == 1075081004U) { goto case_1075081004; } else { } if (cmd == 28461U) { goto case_28461; } else { } if (cmd == 2148167471U) { goto case_2148167471; } else { } if (cmd == 2148036400U) { goto case_2148036400; } else { } if (cmd == 1074032433U) { goto case_1074032433; } else { } if (cmd == 3222302514U) { goto case_3222302514; } else { } if (cmd == 1073901363U) { goto case_1073901363; } else { } if (cmd == 1073901364U) { goto case_1073901364; } else { } goto switch_default; case_28457: /* CIL Label */ { tmp___0 = ldv_mutex_lock_interruptible_173(& dmxdevfilter->mutex); } if (tmp___0 != 0) { { ldv_mutex_unlock_174(& dmxdev->mutex); } return (-512); } else { } if ((unsigned int )dmxdevfilter->state <= 1U) { ret = -22; } else { { ret = dvb_dmxdev_filter_start(dmxdevfilter); } } { ldv_mutex_unlock_175(& dmxdevfilter->mutex); } goto ldv_47098; case_28458: /* CIL Label */ { tmp___1 = ldv_mutex_lock_interruptible_176(& dmxdevfilter->mutex); } if (tmp___1 != 0) { { ldv_mutex_unlock_177(& dmxdev->mutex); } return (-512); } else { } { ret = dvb_dmxdev_filter_stop(dmxdevfilter); ldv_mutex_unlock_178(& dmxdevfilter->mutex); } goto ldv_47098; case_1077702443: /* CIL Label */ { tmp___2 = ldv_mutex_lock_interruptible_179(& dmxdevfilter->mutex); } if (tmp___2 != 0) { { ldv_mutex_unlock_180(& dmxdev->mutex); } return (-512); } else { } { ret = dvb_dmxdev_filter_set(dmxdev, dmxdevfilter, (struct dmx_sct_filter_params *)parg); ldv_mutex_unlock_181(& dmxdevfilter->mutex); } goto ldv_47098; case_1075081004: /* CIL Label */ { tmp___3 = ldv_mutex_lock_interruptible_182(& dmxdevfilter->mutex); } if (tmp___3 != 0) { { ldv_mutex_unlock_183(& dmxdev->mutex); } return (-512); } else { } { ret = dvb_dmxdev_pes_filter_set(dmxdev, dmxdevfilter, (struct dmx_pes_filter_params *)parg); ldv_mutex_unlock_184(& dmxdevfilter->mutex); } goto ldv_47098; case_28461: /* CIL Label */ { tmp___4 = ldv_mutex_lock_interruptible_185(& dmxdevfilter->mutex); } if (tmp___4 != 0) { { ldv_mutex_unlock_186(& dmxdev->mutex); } return (-512); } else { } { ret = dvb_dmxdev_set_buffer_size(dmxdevfilter, arg); ldv_mutex_unlock_187(& dmxdevfilter->mutex); } goto ldv_47098; case_2148167471: /* CIL Label */ ; if ((unsigned long )(dmxdev->demux)->get_pes_pids == (unsigned long )((int (*)(struct dmx_demux * , u16 * ))0)) { ret = -22; goto ldv_47098; } else { } { (*((dmxdev->demux)->get_pes_pids))(dmxdev->demux, (u16 *)parg); } goto ldv_47098; case_2148036400: /* CIL Label */ ; if ((unsigned long )(dmxdev->demux)->get_caps == (unsigned long )((int (*)(struct dmx_demux * , struct dmx_caps * ))0)) { ret = -22; goto ldv_47098; } else { } { ret = (*((dmxdev->demux)->get_caps))(dmxdev->demux, (struct dmx_caps *)parg); } goto ldv_47098; case_1074032433: /* CIL Label */ ; if ((unsigned long )(dmxdev->demux)->set_source == (unsigned long )((int (*)(struct dmx_demux * , dmx_source_t const * ))0)) { ret = -22; goto ldv_47098; } else { } { ret = (*((dmxdev->demux)->set_source))(dmxdev->demux, (dmx_source_t const *)parg); } goto ldv_47098; case_3222302514: /* CIL Label */ ; if ((unsigned long )(dmxdev->demux)->get_stc == (unsigned long )((int (*)(struct dmx_demux * , unsigned int , u64 * , unsigned int * ))0)) { ret = -22; goto ldv_47098; } else { } { ret = (*((dmxdev->demux)->get_stc))(dmxdev->demux, ((struct dmx_stc *)parg)->num, & ((struct dmx_stc *)parg)->stc, & ((struct dmx_stc *)parg)->base); } goto ldv_47098; case_1073901363: /* CIL Label */ { tmp___5 = ldv_mutex_lock_interruptible_188(& dmxdevfilter->mutex); } if (tmp___5 != 0) { ret = -512; goto ldv_47098; } else { } { ret = dvb_dmxdev_add_pid(dmxdev, dmxdevfilter, (int )*((u16 *)parg)); ldv_mutex_unlock_189(& dmxdevfilter->mutex); } goto ldv_47098; case_1073901364: /* CIL Label */ { tmp___6 = ldv_mutex_lock_interruptible_190(& dmxdevfilter->mutex); } if (tmp___6 != 0) { ret = -512; goto ldv_47098; } else { } { ret = dvb_dmxdev_remove_pid(dmxdev, dmxdevfilter, (int )*((u16 *)parg)); ldv_mutex_unlock_191(& dmxdevfilter->mutex); } goto ldv_47098; switch_default: /* CIL Label */ ret = -22; goto ldv_47098; switch_break: /* CIL Label */ ; } ldv_47098: { ldv_mutex_unlock_192(& dmxdev->mutex); } return (ret); } } static long dvb_demux_ioctl(struct file *file , unsigned int cmd , unsigned long arg ) { int tmp ; { { tmp = dvb_usercopy(file, cmd, arg, & dvb_demux_do_ioctl); } return ((long )tmp); } } static unsigned int dvb_demux_poll(struct file *file , poll_table *wait ) { struct dmxdev_filter *dmxdevfilter ; unsigned int mask ; int tmp ; { dmxdevfilter = (struct dmxdev_filter *)file->private_data; mask = 0U; if ((unsigned long )dmxdevfilter == (unsigned long )((struct dmxdev_filter *)0) || (unsigned int )*((unsigned char *)dmxdevfilter->dev + 40UL) != 0U) { return (8U); } else { } { poll_wait(file, & dmxdevfilter->buffer.queue, wait); } if ((unsigned int )dmxdevfilter->state - 3U > 2U) { return (0U); } else { } if (dmxdevfilter->buffer.error != 0) { mask = mask | 75U; } else { } { tmp = dvb_ringbuffer_empty(& dmxdevfilter->buffer); } if (tmp == 0) { mask = mask | 67U; } else { } return (mask); } } static int dvb_demux_release(struct inode *inode , struct file *file ) { struct dmxdev_filter *dmxdevfilter ; struct dmxdev *dmxdev ; int ret ; { { dmxdevfilter = (struct dmxdev_filter *)file->private_data; dmxdev = dmxdevfilter->dev; ret = dvb_dmxdev_filter_free(dmxdev, dmxdevfilter); ldv_mutex_lock_193(& dmxdev->mutex); (dmxdev->dvbdev)->users = (dmxdev->dvbdev)->users - 1; } if ((dmxdev->dvbdev)->users == 1 && (unsigned int )*((unsigned char *)dmxdev + 40UL) != 0U) { { ldv_mutex_unlock_194(& dmxdev->mutex); __wake_up(& (dmxdev->dvbdev)->wait_queue, 3U, 1, (void *)0); } } else { { ldv_mutex_unlock_195(& dmxdev->mutex); } } return (ret); } } static struct file_operations const dvb_demux_fops = {& __this_module, & default_llseek, & dvb_demux_read, 0, 0, 0, 0, 0, 0, & dvb_demux_poll, & dvb_demux_ioctl, 0, 0, 0, & dvb_demux_open, 0, & dvb_demux_release, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct dvb_device dvbdev_demux = {{0, 0}, & dvb_demux_fops, 0, 0, 0, 0U, 0, 1, 1, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}, 0, (void *)0}; static int dvb_dvr_do_ioctl(struct file *file , unsigned int cmd , void *parg ) { struct dvb_device *dvbdev ; struct dmxdev *dmxdev ; unsigned long arg ; int ret ; int tmp ; { { dvbdev = (struct dvb_device *)file->private_data; dmxdev = (struct dmxdev *)dvbdev->priv; arg = (unsigned long )parg; tmp = ldv_mutex_lock_interruptible_196(& dmxdev->mutex); } if (tmp != 0) { return (-512); } else { } { if (cmd == 28461U) { goto case_28461; } else { } goto switch_default; case_28461: /* CIL Label */ { ret = dvb_dvr_set_buffer_size(dmxdev, arg); } goto ldv_47140; switch_default: /* CIL Label */ ret = -22; goto ldv_47140; switch_break: /* CIL Label */ ; } ldv_47140: { ldv_mutex_unlock_197(& dmxdev->mutex); } return (ret); } } static long dvb_dvr_ioctl(struct file *file , unsigned int cmd , unsigned long arg ) { int tmp ; { { tmp = dvb_usercopy(file, cmd, arg, & dvb_dvr_do_ioctl); } return ((long )tmp); } } static unsigned int dvb_dvr_poll(struct file *file , poll_table *wait ) { struct dvb_device *dvbdev ; struct dmxdev *dmxdev ; unsigned int mask ; int tmp ; { dvbdev = (struct dvb_device *)file->private_data; dmxdev = (struct dmxdev *)dvbdev->priv; mask = 0U; if (debug != 0) { { printk("function : %s\n", "dvb_dvr_poll"); } } else { } if ((unsigned int )*((unsigned char *)dmxdev + 40UL) != 0U) { return (8U); } else { } { poll_wait(file, & dmxdev->dvr_buffer.queue, wait); } if ((file->f_flags & 3U) == 0U) { if (dmxdev->dvr_buffer.error != 0) { mask = mask | 75U; } else { } { tmp = dvb_ringbuffer_empty(& dmxdev->dvr_buffer); } if (tmp == 0) { mask = mask | 67U; } else { } } else { mask = mask | 262U; } return (mask); } } static struct file_operations const dvb_dvr_fops = {& __this_module, & default_llseek, & dvb_dvr_read, & dvb_dvr_write, 0, 0, 0, 0, 0, & dvb_dvr_poll, & dvb_dvr_ioctl, 0, 0, 0, & dvb_dvr_open, 0, & dvb_dvr_release, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct dvb_device dvbdev_dvr = {{0, 0}, & dvb_dvr_fops, 0, 0, 0, 0U, 1, 0, 1, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}, 0, (void *)0}; int dvb_dmxdev_init(struct dmxdev *dmxdev , struct dvb_adapter *dvb_adapter ) { int i ; int tmp ; void *tmp___0 ; struct lock_class_key __key ; struct lock_class_key __key___0 ; { { tmp = (*((dmxdev->demux)->open))(dmxdev->demux); } if (tmp < 0) { return (-87); } else { } { tmp___0 = ldv_vmalloc_198((unsigned long )dmxdev->filternum * 600UL); dmxdev->filter = (struct dmxdev_filter *)tmp___0; } if ((unsigned long )dmxdev->filter == (unsigned long )((struct dmxdev_filter *)0)) { return (-12); } else { } { __mutex_init(& dmxdev->mutex, "&dmxdev->mutex", & __key); spinlock_check(& dmxdev->lock); __raw_spin_lock_init(& dmxdev->lock.__annonCompField18.rlock, "&(&dmxdev->lock)->rlock", & __key___0); i = 0; } goto ldv_47165; ldv_47164: { (dmxdev->filter + (unsigned long )i)->dev = dmxdev; (dmxdev->filter + (unsigned long )i)->buffer.data = (u8 *)0U; dvb_dmxdev_filter_state_set(dmxdev->filter + (unsigned long )i, 0); i = i + 1; } ldv_47165: ; if (i < dmxdev->filternum) { goto ldv_47164; } else { } { dvb_register_device(dvb_adapter, & dmxdev->dvbdev, (struct dvb_device const *)(& dvbdev_demux), (void *)dmxdev, 4); dvb_register_device(dvb_adapter, & dmxdev->dvr_dvbdev, (struct dvb_device const *)(& dvbdev_dvr), (void *)dmxdev, 5); dvb_ringbuffer_init(& dmxdev->dvr_buffer, (void *)0, 8192UL); } return (0); } } static char const __kstrtab_dvb_dmxdev_init[16U] = { 'd', 'v', 'b', '_', 'd', 'm', 'x', 'd', 'e', 'v', '_', 'i', 'n', 'i', 't', '\000'}; struct kernel_symbol const __ksymtab_dvb_dmxdev_init ; struct kernel_symbol const __ksymtab_dvb_dmxdev_init = {(unsigned long )(& dvb_dmxdev_init), (char const *)(& __kstrtab_dvb_dmxdev_init)}; void dvb_dmxdev_release(struct dmxdev *dmxdev ) { wait_queue_t __wait ; long __ret ; long __int ; long tmp ; wait_queue_t __wait___0 ; long __ret___0 ; long __int___0 ; long tmp___0 ; { dmxdev->exit = 1U; if ((dmxdev->dvbdev)->users > 1) { { __might_sleep("drivers/media/dvb-core/dmxdev.c", 1256, 0); } if ((dmxdev->dvbdev)->users == 1) { goto ldv_47178; } else { } { __ret = 0L; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; } ldv_47184: { tmp = prepare_to_wait_event(& (dmxdev->dvbdev)->wait_queue, & __wait, 2); __int = tmp; } if ((dmxdev->dvbdev)->users == 1) { goto ldv_47183; } else { } { schedule(); } goto ldv_47184; ldv_47183: { finish_wait(& (dmxdev->dvbdev)->wait_queue, & __wait); } ldv_47178: ; } else { } if ((dmxdev->dvr_dvbdev)->users > 1) { { __might_sleep("drivers/media/dvb-core/dmxdev.c", 1260, 0); } if ((dmxdev->dvr_dvbdev)->users == 1) { goto ldv_47186; } else { } { __ret___0 = 0L; INIT_LIST_HEAD(& __wait___0.task_list); __wait___0.flags = 0U; } ldv_47192: { tmp___0 = prepare_to_wait_event(& (dmxdev->dvr_dvbdev)->wait_queue, & __wait___0, 2); __int___0 = tmp___0; } if ((dmxdev->dvr_dvbdev)->users == 1) { goto ldv_47191; } else { } { schedule(); } goto ldv_47192; ldv_47191: { finish_wait(& (dmxdev->dvr_dvbdev)->wait_queue, & __wait___0); } ldv_47186: ; } else { } { dvb_unregister_device(dmxdev->dvbdev); dvb_unregister_device(dmxdev->dvr_dvbdev); vfree((void const *)dmxdev->filter); dmxdev->filter = (struct dmxdev_filter *)0; (*((dmxdev->demux)->close))(dmxdev->demux); } return; } } static char const __kstrtab_dvb_dmxdev_release[19U] = { 'd', 'v', 'b', '_', 'd', 'm', 'x', 'd', 'e', 'v', '_', 'r', 'e', 'l', 'e', 'a', 's', 'e', '\000'}; struct kernel_symbol const __ksymtab_dvb_dmxdev_release ; struct kernel_symbol const __ksymtab_dvb_dmxdev_release = {(unsigned long )(& dvb_dmxdev_release), (char const *)(& __kstrtab_dvb_dmxdev_release)}; int ldv_del_timer(int arg0 , struct timer_list *arg1 ) ; void ldv_dispatch_instance_deregister_13_1(struct timer_list *arg0 ) ; void ldv_file_operations_instance_callback_1_22(unsigned int (*arg0)(struct file * , struct poll_table_struct * ) , struct file *arg1 , struct poll_table_struct *arg2 ) ; void ldv_file_operations_instance_callback_1_23(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_callback_1_26(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) ; void ldv_file_operations_instance_callback_1_5(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) ; void ldv_file_operations_instance_callback_3_22(unsigned int (*arg0)(struct file * , struct poll_table_struct * ) , struct file *arg1 , struct poll_table_struct *arg2 ) ; void ldv_file_operations_instance_callback_3_23(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_callback_3_26(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) ; void ldv_file_operations_instance_callback_3_5(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) ; int ldv_file_operations_instance_probe_1_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; int ldv_file_operations_instance_probe_3_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_release_1_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_release_3_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_write_3_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; struct ldv_thread ldv_thread_1 ; struct ldv_thread ldv_thread_3 ; int ldv_del_timer(int arg0 , struct timer_list *arg1 ) { struct timer_list *ldv_13_timer_list_timer_list ; { { ldv_13_timer_list_timer_list = arg1; ldv_dispatch_instance_deregister_13_1(ldv_13_timer_list_timer_list); } return (arg0); return (arg0); } } void ldv_dispatch_instance_deregister_13_1(struct timer_list *arg0 ) { { return; } } void ldv_file_operations_file_operations_instance_1(void *arg0 ) { long long (*ldv_1_callback_llseek)(struct file * , long long , int ) ; unsigned int (*ldv_1_callback_poll)(struct file * , struct poll_table_struct * ) ; long (*ldv_1_callback_read)(struct file * , char * , unsigned long , long long * ) ; long (*ldv_1_callback_unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; struct file_operations *ldv_1_container_file_operations ; char *ldv_1_ldv_param_23_1_default ; long long *ldv_1_ldv_param_23_3_default ; unsigned int ldv_1_ldv_param_26_1_default ; char *ldv_1_ldv_param_4_1_default ; long long *ldv_1_ldv_param_4_3_default ; long long ldv_1_ldv_param_5_1_default ; int ldv_1_ldv_param_5_2_default ; struct file *ldv_1_resource_file ; struct inode *ldv_1_resource_inode ; int ldv_1_ret_default ; struct poll_table_struct *ldv_1_size_cnt_struct_poll_table_struct_ptr ; unsigned long ldv_1_size_cnt_write_size ; struct ldv_struct_file_operations_instance_0 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; void *tmp___5 ; void *tmp___6 ; int tmp___7 ; void *tmp___8 ; void *tmp___9 ; { data = (struct ldv_struct_file_operations_instance_0 *)arg0; ldv_1_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_file_operations_instance_0 *)0)) { { ldv_1_container_file_operations = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(504UL); ldv_1_resource_file = (struct file *)tmp; tmp___0 = ldv_xmalloc(976UL); ldv_1_resource_inode = (struct inode *)tmp___0; tmp___1 = ldv_undef_int(); ldv_1_size_cnt_struct_poll_table_struct_ptr = (struct poll_table_struct *)((long )tmp___1); } goto ldv_main_1; return; ldv_main_1: { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { ldv_1_ret_default = ldv_file_operations_instance_probe_1_12(ldv_1_container_file_operations->open, ldv_1_resource_inode, ldv_1_resource_file); ldv_1_ret_default = ldv_filter_err_code(ldv_1_ret_default); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_assume(ldv_1_ret_default == 0); } goto ldv_call_1; } else { { ldv_assume(ldv_1_ret_default != 0); } goto ldv_main_1; } } else { { ldv_free((void *)ldv_1_resource_file); ldv_free((void *)ldv_1_resource_inode); } return; } return; ldv_call_1: { tmp___4 = ldv_undef_int(); } { if (tmp___4 == 1) { goto case_1; } else { } if (tmp___4 == 2) { goto case_2; } else { } if (tmp___4 == 3) { goto case_3; } else { } goto switch_default___0; case_1: /* CIL Label */ { tmp___5 = ldv_xmalloc(1UL); ldv_1_ldv_param_4_1_default = (char *)tmp___5; tmp___6 = ldv_xmalloc(8UL); ldv_1_ldv_param_4_3_default = (long long *)tmp___6; ldv_assume((unsigned long )ldv_1_size_cnt_struct_poll_table_struct_ptr <= (unsigned long )((struct poll_table_struct *)2147479552)); } if ((unsigned long )ldv_1_container_file_operations->write != (unsigned long )((ssize_t (*)(struct file * , char const * , size_t , loff_t * ))0)) { { ldv_file_operations_instance_write_1_4((long (*)(struct file * , char * , unsigned long , long long * ))ldv_1_container_file_operations->write, ldv_1_resource_file, ldv_1_ldv_param_4_1_default, ldv_1_size_cnt_write_size, ldv_1_ldv_param_4_3_default); } } else { } { ldv_free((void *)ldv_1_ldv_param_4_1_default); ldv_free((void *)ldv_1_ldv_param_4_3_default); } goto ldv_call_1; case_2: /* CIL Label */ { ldv_file_operations_instance_release_1_2(ldv_1_container_file_operations->release, ldv_1_resource_inode, ldv_1_resource_file); } goto ldv_main_1; case_3: /* CIL Label */ { tmp___7 = ldv_undef_int(); } { if (tmp___7 == 1) { goto case_1___0; } else { } if (tmp___7 == 2) { goto case_2___0; } else { } if (tmp___7 == 3) { goto case_3___0; } else { } if (tmp___7 == 4) { goto case_4; } else { } goto switch_default; case_1___0: /* CIL Label */ { ldv_file_operations_instance_callback_1_26(ldv_1_callback_unlocked_ioctl, ldv_1_resource_file, ldv_1_ldv_param_26_1_default, ldv_1_size_cnt_write_size); } goto ldv_47382; case_2___0: /* CIL Label */ { tmp___8 = ldv_xmalloc(1UL); ldv_1_ldv_param_23_1_default = (char *)tmp___8; tmp___9 = ldv_xmalloc(8UL); ldv_1_ldv_param_23_3_default = (long long *)tmp___9; ldv_file_operations_instance_callback_1_23(ldv_1_callback_read, ldv_1_resource_file, ldv_1_ldv_param_23_1_default, ldv_1_size_cnt_write_size, ldv_1_ldv_param_23_3_default); ldv_free((void *)ldv_1_ldv_param_23_1_default); ldv_free((void *)ldv_1_ldv_param_23_3_default); } goto ldv_47382; case_3___0: /* CIL Label */ { ldv_file_operations_instance_callback_1_22(ldv_1_callback_poll, ldv_1_resource_file, ldv_1_size_cnt_struct_poll_table_struct_ptr); } goto ldv_47382; case_4: /* CIL Label */ { ldv_file_operations_instance_callback_1_5(ldv_1_callback_llseek, ldv_1_resource_file, ldv_1_ldv_param_5_1_default, ldv_1_ldv_param_5_2_default); } goto ldv_47382; switch_default: /* CIL Label */ { ldv_stop(); } switch_break___0: /* CIL Label */ ; } ldv_47382: ; goto ldv_47387; switch_default___0: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_47387: ; goto ldv_call_1; goto ldv_call_1; return; } } void ldv_file_operations_file_operations_instance_3(void *arg0 ) { long long (*ldv_3_callback_llseek)(struct file * , long long , int ) ; unsigned int (*ldv_3_callback_poll)(struct file * , struct poll_table_struct * ) ; long (*ldv_3_callback_read)(struct file * , char * , unsigned long , long long * ) ; long (*ldv_3_callback_unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; struct file_operations *ldv_3_container_file_operations ; char *ldv_3_ldv_param_23_1_default ; long long *ldv_3_ldv_param_23_3_default ; unsigned int ldv_3_ldv_param_26_1_default ; char *ldv_3_ldv_param_4_1_default ; long long *ldv_3_ldv_param_4_3_default ; long long ldv_3_ldv_param_5_1_default ; int ldv_3_ldv_param_5_2_default ; struct file *ldv_3_resource_file ; struct inode *ldv_3_resource_inode ; int ldv_3_ret_default ; struct poll_table_struct *ldv_3_size_cnt_struct_poll_table_struct_ptr ; unsigned long ldv_3_size_cnt_write_size ; struct ldv_struct_file_operations_instance_0 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; void *tmp___5 ; void *tmp___6 ; int tmp___7 ; void *tmp___8 ; void *tmp___9 ; { data = (struct ldv_struct_file_operations_instance_0 *)arg0; ldv_3_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_file_operations_instance_0 *)0)) { { ldv_3_container_file_operations = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(504UL); ldv_3_resource_file = (struct file *)tmp; tmp___0 = ldv_xmalloc(976UL); ldv_3_resource_inode = (struct inode *)tmp___0; tmp___1 = ldv_undef_int(); ldv_3_size_cnt_struct_poll_table_struct_ptr = (struct poll_table_struct *)((long )tmp___1); } goto ldv_main_3; return; ldv_main_3: { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { ldv_3_ret_default = ldv_file_operations_instance_probe_3_12(ldv_3_container_file_operations->open, ldv_3_resource_inode, ldv_3_resource_file); ldv_3_ret_default = ldv_filter_err_code(ldv_3_ret_default); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_assume(ldv_3_ret_default == 0); } goto ldv_call_3; } else { { ldv_assume(ldv_3_ret_default != 0); } goto ldv_main_3; } } else { { ldv_free((void *)ldv_3_resource_file); ldv_free((void *)ldv_3_resource_inode); } return; } return; ldv_call_3: { tmp___4 = ldv_undef_int(); } { if (tmp___4 == 1) { goto case_1; } else { } if (tmp___4 == 2) { goto case_2; } else { } if (tmp___4 == 3) { goto case_3; } else { } goto switch_default___0; case_1: /* CIL Label */ { tmp___5 = ldv_xmalloc(1UL); ldv_3_ldv_param_4_1_default = (char *)tmp___5; tmp___6 = ldv_xmalloc(8UL); ldv_3_ldv_param_4_3_default = (long long *)tmp___6; ldv_assume((unsigned long )ldv_3_size_cnt_struct_poll_table_struct_ptr <= (unsigned long )((struct poll_table_struct *)2147479552)); ldv_file_operations_instance_write_3_4((long (*)(struct file * , char * , unsigned long , long long * ))ldv_3_container_file_operations->write, ldv_3_resource_file, ldv_3_ldv_param_4_1_default, ldv_3_size_cnt_write_size, ldv_3_ldv_param_4_3_default); ldv_free((void *)ldv_3_ldv_param_4_1_default); ldv_free((void *)ldv_3_ldv_param_4_3_default); } goto ldv_call_3; case_2: /* CIL Label */ { ldv_file_operations_instance_release_3_2(ldv_3_container_file_operations->release, ldv_3_resource_inode, ldv_3_resource_file); } goto ldv_main_3; case_3: /* CIL Label */ { tmp___7 = ldv_undef_int(); } { if (tmp___7 == 1) { goto case_1___0; } else { } if (tmp___7 == 2) { goto case_2___0; } else { } if (tmp___7 == 3) { goto case_3___0; } else { } if (tmp___7 == 4) { goto case_4; } else { } goto switch_default; case_1___0: /* CIL Label */ { ldv_file_operations_instance_callback_3_26(ldv_3_callback_unlocked_ioctl, ldv_3_resource_file, ldv_3_ldv_param_26_1_default, ldv_3_size_cnt_write_size); } goto ldv_47428; case_2___0: /* CIL Label */ { tmp___8 = ldv_xmalloc(1UL); ldv_3_ldv_param_23_1_default = (char *)tmp___8; tmp___9 = ldv_xmalloc(8UL); ldv_3_ldv_param_23_3_default = (long long *)tmp___9; ldv_file_operations_instance_callback_3_23(ldv_3_callback_read, ldv_3_resource_file, ldv_3_ldv_param_23_1_default, ldv_3_size_cnt_write_size, ldv_3_ldv_param_23_3_default); ldv_free((void *)ldv_3_ldv_param_23_1_default); ldv_free((void *)ldv_3_ldv_param_23_3_default); } goto ldv_47428; case_3___0: /* CIL Label */ { ldv_file_operations_instance_callback_3_22(ldv_3_callback_poll, ldv_3_resource_file, ldv_3_size_cnt_struct_poll_table_struct_ptr); } goto ldv_47428; case_4: /* CIL Label */ { ldv_file_operations_instance_callback_3_5(ldv_3_callback_llseek, ldv_3_resource_file, ldv_3_ldv_param_5_1_default, ldv_3_ldv_param_5_2_default); } goto ldv_47428; switch_default: /* CIL Label */ { ldv_stop(); } switch_break___0: /* CIL Label */ ; } ldv_47428: ; goto ldv_47433; switch_default___0: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_47433: ; goto ldv_call_3; goto ldv_call_3; return; } } void ldv_file_operations_instance_callback_1_22(unsigned int (*arg0)(struct file * , struct poll_table_struct * ) , struct file *arg1 , struct poll_table_struct *arg2 ) { { { dvb_demux_poll(arg1, arg2); } return; } } void ldv_file_operations_instance_callback_1_23(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { dvb_demux_read(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_1_26(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) { { { dvb_demux_ioctl(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_1_5(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) { { { default_llseek(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_3_22(unsigned int (*arg0)(struct file * , struct poll_table_struct * ) , struct file *arg1 , struct poll_table_struct *arg2 ) { { { dvb_dvr_poll(arg1, arg2); } return; } } void ldv_file_operations_instance_callback_3_23(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { dvb_dvr_read(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_3_26(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) { { { dvb_dvr_ioctl(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_3_5(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) { { { default_llseek(arg1, arg2, arg3); } return; } } int ldv_file_operations_instance_probe_1_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { int tmp ; { { tmp = dvb_demux_open(arg1, arg2); } return (tmp); } } int ldv_file_operations_instance_probe_3_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { int tmp ; { { tmp = dvb_dvr_open(arg1, arg2); } return (tmp); } } void ldv_file_operations_instance_release_1_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { { { dvb_demux_release(arg1, arg2); } return; } } void ldv_file_operations_instance_release_3_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { { { dvb_dvr_release(arg1, arg2); } return; } } void ldv_file_operations_instance_write_3_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { dvb_dvr_write(arg1, (char const *)arg2, arg3, arg4); } return; } } static int ldv_mutex_lock_interruptible_121(struct mutex *ldv_func_arg1 ) { int tmp ; { { tmp = ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_dmxdev(ldv_func_arg1); } return (tmp); } } static void ldv_mutex_unlock_122(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dmxdev(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_123(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dmxdev(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_124___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dmxdev(ldv_func_arg1); } return; } } static void *ldv_vmalloc_125(unsigned long ldv_func_arg1 ) { void *tmp ; { { ldv_check_alloc_nonatomic(); tmp = ldv_malloc_unknown_size(); } return (tmp); } } static void ldv_mutex_unlock_126(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dmxdev(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_127___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dmxdev(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_128___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dmxdev(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_129___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dmxdev(ldv_func_arg1); } return; } } static void ldv_mutex_lock_130(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_dmxdev(ldv_func_arg1); } return; } } __inline static void ldv_spin_lock_irq_131(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_dmxdev(); spin_lock_irq(lock); } return; } } __inline static void ldv_spin_unlock_irq_132(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_dmxdev(); spin_unlock_irq(lock); } return; } } static void ldv_mutex_unlock_133___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dmxdev(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_134___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dmxdev(ldv_func_arg1); } return; } } static int ldv_mutex_lock_interruptible_135(struct mutex *ldv_func_arg1 ) { int tmp ; { { tmp = ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_dmxdev(ldv_func_arg1); } return (tmp); } } static void ldv_mutex_unlock_136___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dmxdev(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_137(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dmxdev(ldv_func_arg1); } return; } } static void *ldv_vmalloc_138(unsigned long ldv_func_arg1 ) { void *tmp ; { { ldv_check_alloc_nonatomic(); tmp = ldv_malloc_unknown_size(); } return (tmp); } } static void *ldv_vmalloc_143(unsigned long ldv_func_arg1 ) { void *tmp ; { { ldv_check_alloc_nonatomic(); tmp = ldv_malloc_unknown_size(); } return (tmp); } } static int ldv_del_timer_148(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } __inline static void ldv_spin_lock_149(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_dmxdev(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_150(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_dmxdev(); spin_unlock(lock); } return; } } static int ldv_del_timer_151(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static int ldv_del_timer_157(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void *ldv_vmalloc_158(unsigned long ldv_func_arg1 ) { void *tmp ; { { ldv_check_alloc_nonatomic(); tmp = ldv_malloc_unknown_size(); } return (tmp); } } static int ldv_mutex_lock_interruptible_161(struct mutex *ldv_func_arg1 ) { int tmp ; { { tmp = ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_dmxdev(ldv_func_arg1); } return (tmp); } } static void ldv_mutex_unlock_162(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dmxdev(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_163(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dmxdev(ldv_func_arg1); } return; } } static void ldv_mutex_lock_164(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_dmxdev(ldv_func_arg1); } return; } } static void ldv_mutex_lock_165(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_dmxdev_filter(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_168(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dmxdev_filter(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_169(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dmxdev(ldv_func_arg1); } return; } } static int ldv_mutex_lock_interruptible_170(struct mutex *ldv_func_arg1 ) { int tmp ; { { tmp = ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_dmxdev_filter(ldv_func_arg1); } return (tmp); } } static void ldv_mutex_unlock_171(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dmxdev_filter(ldv_func_arg1); } return; } } static int ldv_mutex_lock_interruptible_172(struct mutex *ldv_func_arg1 ) { int tmp ; { { tmp = ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_dmxdev(ldv_func_arg1); } return (tmp); } } static int ldv_mutex_lock_interruptible_173(struct mutex *ldv_func_arg1 ) { int tmp ; { { tmp = ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_dmxdev_filter(ldv_func_arg1); } return (tmp); } } static void ldv_mutex_unlock_174(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dmxdev(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_175(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dmxdev_filter(ldv_func_arg1); } return; } } static int ldv_mutex_lock_interruptible_176(struct mutex *ldv_func_arg1 ) { int tmp ; { { tmp = ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_dmxdev_filter(ldv_func_arg1); } return (tmp); } } static void ldv_mutex_unlock_177(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dmxdev(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_178(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dmxdev_filter(ldv_func_arg1); } return; } } static int ldv_mutex_lock_interruptible_179(struct mutex *ldv_func_arg1 ) { int tmp ; { { tmp = ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_dmxdev_filter(ldv_func_arg1); } return (tmp); } } static void ldv_mutex_unlock_180(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dmxdev(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_181(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dmxdev_filter(ldv_func_arg1); } return; } } static int ldv_mutex_lock_interruptible_182(struct mutex *ldv_func_arg1 ) { int tmp ; { { tmp = ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_dmxdev_filter(ldv_func_arg1); } return (tmp); } } static void ldv_mutex_unlock_183(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dmxdev(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_184(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dmxdev_filter(ldv_func_arg1); } return; } } static int ldv_mutex_lock_interruptible_185(struct mutex *ldv_func_arg1 ) { int tmp ; { { tmp = ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_dmxdev_filter(ldv_func_arg1); } return (tmp); } } static void ldv_mutex_unlock_186(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dmxdev(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_187(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dmxdev_filter(ldv_func_arg1); } return; } } static int ldv_mutex_lock_interruptible_188(struct mutex *ldv_func_arg1 ) { int tmp ; { { tmp = ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_dmxdev_filter(ldv_func_arg1); } return (tmp); } } static void ldv_mutex_unlock_189(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dmxdev_filter(ldv_func_arg1); } return; } } static int ldv_mutex_lock_interruptible_190(struct mutex *ldv_func_arg1 ) { int tmp ; { { tmp = ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_dmxdev_filter(ldv_func_arg1); } return (tmp); } } static void ldv_mutex_unlock_191(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dmxdev_filter(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_192(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dmxdev(ldv_func_arg1); } return; } } static void ldv_mutex_lock_193(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_dmxdev(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_194(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dmxdev(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_195(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dmxdev(ldv_func_arg1); } return; } } static int ldv_mutex_lock_interruptible_196(struct mutex *ldv_func_arg1 ) { int tmp ; { { tmp = ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_dmxdev(ldv_func_arg1); } return (tmp); } } static void ldv_mutex_unlock_197(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dmxdev(ldv_func_arg1); } return; } } static void *ldv_vmalloc_198(unsigned long ldv_func_arg1 ) { void *tmp ; { { ldv_check_alloc_nonatomic(); tmp = ldv_malloc_unknown_size(); } return (tmp); } } static void ldv_mutex_lock_142(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_152(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_170(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_175(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_178(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_185(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_190(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_192(struct mutex *ldv_func_arg1 ) ; static int ldv_mutex_lock_interruptible_131(struct mutex *ldv_func_arg1 ) ; static int ldv_mutex_lock_interruptible_135___0(struct mutex *ldv_func_arg1 ) ; static int ldv_mutex_lock_interruptible_148(struct mutex *ldv_func_arg1 ) ; static int ldv_mutex_lock_interruptible_155(struct mutex *ldv_func_arg1 ) ; static int ldv_mutex_lock_interruptible_160(struct mutex *ldv_func_arg1 ) ; static int ldv_mutex_lock_interruptible_162(struct mutex *ldv_func_arg1 ) ; static int ldv_mutex_lock_interruptible_182___0(struct mutex *ldv_func_arg1 ) ; static int ldv_mutex_lock_interruptible_188___0(struct mutex *ldv_func_arg1 ) ; int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_dvb_demux(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_dvb_demux(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dvb_demux(struct mutex *lock ) ; __inline static int variable_test_bit(long nr , unsigned long const volatile *addr ) { int oldbit ; { __asm__ volatile ("bt %2,%1\n\tsbb %0,%0": "=r" (oldbit): "m" (*((unsigned long *)addr)), "Ir" (nr)); return (oldbit); } } extern int __printk_ratelimit(char const * ) ; extern void __bad_percpu_size(void) ; extern struct task_struct *current_task ; __inline static struct task_struct *get_current(void) { struct task_struct *pfo_ret__ ; { { if (8UL == 1UL) { goto case_1; } else { } if (8UL == 2UL) { goto case_2; } else { } if (8UL == 4UL) { goto case_4; } else { } if (8UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "p" (& current_task)); goto ldv_3770; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_3770; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_3770; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_3770; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_3770: ; return (pfo_ret__); } } extern void *memdup_user(void const * , size_t ) ; __inline static u64 div64_u64(u64 dividend , u64 divisor ) { { return (dividend / divisor); } } __inline static long PTR_ERR(void const *ptr ) ; extern void __ldv_linux_kernel_locking_spinlock_spin_lock(spinlock_t * ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_121(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_123(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_125(spinlock_t *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_dvb_demux(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_dvb_demux(void) ; static void ldv_mutex_unlock_132(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_133___1(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_134___1(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_136___1(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_137___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_138(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_141(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_143(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_144(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_147(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_149(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_150(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_151(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_153(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_154(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_156(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_159(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_161(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_163___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_164(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_165(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_166(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_169___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_171___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_174___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_176(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_177___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_181___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_183___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_184___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_186___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_187___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_189___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_191___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_193(struct mutex *ldv_func_arg1 ) ; __inline static int test_ti_thread_flag(struct thread_info *ti , int flag ) { int tmp___0 ; { { tmp___0 = variable_test_bit((long )flag, (unsigned long const volatile *)(& ti->flags)); } return (tmp___0); } } extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static void ldv_spin_lock_irq_127(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_127(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_127(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_127(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_127(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_127(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_127(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_127(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_128(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_128(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_128(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_128(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_128(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_128(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_128(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_128(spinlock_t *lock ) ; __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField18.rlock, flags); } return; } } __inline static void ldv_spin_unlock_irqrestore_122(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_122(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_122(spinlock_t *lock , unsigned long flags ) ; extern void set_normalized_timespec(struct timespec * , time_t , s64 ) ; __inline static struct timespec timespec_sub(struct timespec lhs , struct timespec rhs ) { struct timespec ts_delta ; { { set_normalized_timespec(& ts_delta, lhs.tv_sec - rhs.tv_sec, (s64 )(lhs.tv_nsec - rhs.tv_nsec)); } return (ts_delta); } } __inline static s64 timespec_to_ns(struct timespec const *ts ) { { return ((long long )ts->tv_sec * 1000000000LL + (long long )ts->tv_nsec); } } extern struct timespec current_kernel_time(void) ; static void *ldv_vmalloc_194(unsigned long ldv_func_arg1 ) ; static void *ldv_vmalloc_195(unsigned long ldv_func_arg1 ) ; static void *ldv_vmalloc_196(unsigned long ldv_func_arg1 ) ; __inline static int test_tsk_thread_flag(struct task_struct *tsk , int flag ) { int tmp ; { { tmp = test_ti_thread_flag((struct thread_info *)tsk->stack, flag); } return (tmp); } } __inline static int signal_pending(struct task_struct *p ) { int tmp ; long tmp___0 ; { { tmp = test_tsk_thread_flag(p, 2); tmp___0 = ldv__builtin_expect(tmp != 0, 0L); } return ((int )tmp___0); } } extern u32 crc32_be(u32 , unsigned char const * , size_t ) ; int dvb_dmx_init(struct dvb_demux *dvbdemux ) ; void dvb_dmx_release(struct dvb_demux *dvbdemux ) ; void dvb_dmx_swfilter_packets(struct dvb_demux *demux , u8 const *buf , size_t count ) ; void dvb_dmx_swfilter(struct dvb_demux *demux , u8 const *buf , size_t count ) ; void dvb_dmx_swfilter_204(struct dvb_demux *demux , u8 const *buf , size_t count ) ; void dvb_dmx_swfilter_raw(struct dvb_demux *demux , u8 const *buf , size_t count ) ; static int dvb_demux_tscheck ; static int dvb_demux_speedcheck ; static int dvb_demux_feed_err_pkts = 1; __inline static u16 section_length(u8 const *buf ) { { return (((((unsigned int )((u16 )*(buf + 1UL)) & 15U) << 8U) + (unsigned int )((u16 )*(buf + 2UL))) + 3U); } } __inline static u16 ts_pid(u8 const *buf ) { { return ((((unsigned int )((u16 )*(buf + 1UL)) & 31U) << 8U) + (unsigned int )((u16 )*(buf + 2UL))); } } __inline static u8 payload(u8 const *tsp ) { { if (((int )*(tsp + 3UL) & 16) == 0) { return (0U); } else { } if (((int )*(tsp + 3UL) & 32) != 0) { if ((unsigned int )((unsigned char )*(tsp + 4UL)) > 183U) { return (0U); } else { return (183U - (unsigned int )((u8 )*(tsp + 4UL))); } } else { } return (184U); } } static u32 dvb_dmx_crc32(struct dvb_demux_feed *f , u8 const *src , size_t len ) { u32 tmp ; { { tmp = crc32_be(f->feed.sec.crc_val, src, len); f->feed.sec.crc_val = tmp; } return (tmp); } } static void dvb_dmx_memcopy(struct dvb_demux_feed *f , u8 *d , u8 const *s , size_t len ) { { { __memcpy((void *)d, (void const *)s, len); } return; } } __inline static int dvb_dmx_swfilter_payload(struct dvb_demux_feed *feed , u8 const *buf ) { int count ; u8 tmp ; int p ; int tmp___0 ; { { tmp = payload(buf); count = (int )tmp; } if (count == 0) { return (-1); } else { } p = 188 - count; if (((int )*(buf + 1UL) & 64) != 0) { feed->peslen = 65530U; } else { } { feed->peslen = (int )feed->peslen + (int )((u16 )count); tmp___0 = (*(feed->cb.ts))(buf + (unsigned long )p, (size_t )count, (u8 const *)0U, 0UL, & feed->feed.ts, 0); } return (tmp___0); } } static int dvb_dmx_swfilter_sectionfilter(struct dvb_demux_feed *feed , struct dvb_demux_filter *f ) { u8 neq ; int i ; u8 xor ; int tmp ; { neq = 0U; i = 0; goto ldv_46802; ldv_46801: xor = (u8 )((int )f->filter.filter_value[i] ^ (int )*(feed->feed.sec.secbuf + (unsigned long )i)); if ((unsigned int )((int )f->maskandmode[i] & (int )xor) != 0U) { return (0); } else { } neq = (u8 )((int )neq | ((int )f->maskandnotmode[i] & (int )xor)); i = i + 1; ldv_46802: ; if (i <= 17) { goto ldv_46801; } else { } if (f->doneq != 0 && (unsigned int )neq == 0U) { return (0); } else { } { tmp = (*(feed->cb.sec))((u8 const *)feed->feed.sec.secbuf, (size_t )feed->feed.sec.seclen, (u8 const *)0U, 0UL, & f->filter, 0); } return (tmp); } } __inline static int dvb_dmx_swfilter_section_feed(struct dvb_demux_feed *feed ) { struct dvb_demux *demux ; struct dvb_demux_filter *f ; struct dmx_section_feed *sec ; int section_syntax_indicator ; u32 tmp ; int tmp___0 ; { demux = feed->demux; f = feed->filter; sec = & feed->feed.sec; if (sec->is_filtering == 0) { return (0); } else { } if ((unsigned long )f == (unsigned long )((struct dvb_demux_filter *)0)) { return (0); } else { } if (sec->check_crc != 0) { section_syntax_indicator = (int )((signed char )*(sec->secbuf + 1UL)) < 0; if (section_syntax_indicator != 0) { { tmp = (*(demux->check_crc32))(feed, (u8 const *)sec->secbuf, (size_t )sec->seclen); } if (tmp != 0U) { return (-1); } else { } } else { } } else { } ldv_46811: { tmp___0 = dvb_dmx_swfilter_sectionfilter(feed, f); } if (tmp___0 < 0) { return (-1); } else { } f = f->next; if ((unsigned long )f != (unsigned long )((struct dvb_demux_filter *)0) && sec->is_filtering != 0) { goto ldv_46811; } else { } sec->seclen = 0U; return (0); } } static void dvb_dmx_swfilter_section_new(struct dvb_demux_feed *feed ) { struct dmx_section_feed *sec ; u16 tmp ; u16 tmp___0 ; { sec = & feed->feed.sec; tmp___0 = 0U; sec->seclen = tmp___0; tmp = tmp___0; sec->secbufp = tmp; sec->tsfeedp = tmp; sec->secbuf = (u8 *)(& sec->secbuf_base); return; } } static int dvb_dmx_swfilter_section_copy_dump(struct dvb_demux_feed *feed , u8 const *buf , u8 len ) { struct dvb_demux *demux ; struct dmx_section_feed *sec ; u16 limit ; u16 seclen ; u16 n ; { demux = feed->demux; sec = & feed->feed.sec; if ((unsigned int )sec->tsfeedp > 4283U) { return (0); } else { } if ((int )sec->tsfeedp + (int )len > 4284) { len = 188U - (unsigned int )((u8 )sec->tsfeedp); } else { } if ((unsigned int )len == 0U) { return (0); } else { } { (*(demux->memcopy))(feed, (u8 *)(& sec->secbuf_base) + (unsigned long )sec->tsfeedp, buf, (size_t )len); sec->tsfeedp = (int )sec->tsfeedp + (int )((u16 )len); limit = sec->tsfeedp; } if ((unsigned int )limit > 4284U) { return (-1); } else { } sec->secbuf = (u8 *)(& sec->secbuf_base) + (unsigned long )sec->secbufp; n = 0U; goto ldv_46828; ldv_46827: { seclen = section_length((u8 const *)sec->secbuf); } if ((unsigned int )seclen - 1U > 4095U || (int )seclen + (int )sec->secbufp > (int )limit) { return (0); } else { } sec->seclen = seclen; sec->crc_val = 4294967295U; if (feed->pusi_seen != 0) { { dvb_dmx_swfilter_section_feed(feed); } } else { } sec->secbufp = (int )sec->secbufp + (int )seclen; sec->secbuf = sec->secbuf + (unsigned long )seclen; n = (u16 )((int )n + 1); ldv_46828: ; if ((int )sec->secbufp + 2 < (int )limit) { goto ldv_46827; } else { } return (0); } } static int dvb_dmx_swfilter_section_packet(struct dvb_demux_feed *feed , u8 const *buf ) { u8 p ; u8 count ; int ccok ; int dc_i ; u8 cc ; u8 const *before ; u8 before_len ; u8 const *after ; u8 after_len ; { { dc_i = 0; count = payload(buf); } if ((unsigned int )count == 0U) { return (-1); } else { } p = 188U - (unsigned int )count; cc = (unsigned int )((u8 )*(buf + 3UL)) & 15U; ccok = ((feed->cc + 1) & 15) == (int )cc; feed->cc = (int )cc; if (((int )*(buf + 3UL) & 32) != 0) { if ((unsigned int )((unsigned char )*(buf + 4UL)) != 0U && (int )((signed char )*(buf + 5UL)) < 0) { dc_i = 1; } else { } } else { } if (ccok == 0 || dc_i != 0) { { feed->pusi_seen = 0; dvb_dmx_swfilter_section_new(feed); } } else { } if (((int )*(buf + 1UL) & 64) != 0) { if ((unsigned int )count > 1U && (int )((unsigned char )*(buf + (unsigned long )p)) < (int )count) { { before = buf + ((unsigned long )p + 1UL); before_len = *(buf + (unsigned long )p); after = before + (unsigned long )before_len; after_len = (unsigned int )((int )count - (int )before_len) + 255U; dvb_dmx_swfilter_section_copy_dump(feed, before, (int )before_len); feed->pusi_seen = 1; dvb_dmx_swfilter_section_new(feed); dvb_dmx_swfilter_section_copy_dump(feed, after, (int )after_len); } } else { } } else { { dvb_dmx_swfilter_section_copy_dump(feed, buf + (unsigned long )p, (int )count); } } return (0); } } __inline static void dvb_dmx_swfilter_packet_type(struct dvb_demux_feed *feed , u8 const *buf ) { u16 tmp ; int tmp___0 ; { { if (feed->type == 0) { goto case_0; } else { } if (feed->type == 1) { goto case_1; } else { } goto switch_default; case_0: /* CIL Label */ ; if (feed->feed.ts.is_filtering == 0) { goto ldv_46848; } else { } if (feed->ts_type & 1) { if ((feed->ts_type & 2) != 0) { { dvb_dmx_swfilter_payload(feed, buf); } } else { { (*(feed->cb.ts))(buf, 188UL, (u8 const *)0U, 0UL, & feed->feed.ts, 0); } } } else { } if ((feed->ts_type & 4) != 0) { if ((unsigned long )(feed->demux)->write_to_decoder != (unsigned long )((int (*)(struct dvb_demux_feed * , u8 const * , size_t ))0)) { { (*((feed->demux)->write_to_decoder))(feed, buf, 188UL); } } else { } } else { } goto ldv_46848; case_1: /* CIL Label */ ; if (feed->feed.sec.is_filtering == 0) { goto ldv_46848; } else { } { tmp___0 = dvb_dmx_swfilter_section_packet(feed, buf); } if (tmp___0 < 0) { tmp = 0U; feed->feed.sec.secbufp = tmp; feed->feed.sec.seclen = tmp; } else { } goto ldv_46848; switch_default: /* CIL Label */ ; goto ldv_46848; switch_break: /* CIL Label */ ; } ldv_46848: ; return; } } static void dvb_dmx_swfilter_packet(struct dvb_demux *demux , u8 const *buf ) { struct dvb_demux_feed *feed ; u16 pid ; u16 tmp ; int dvr_done ; struct timespec cur_time ; struct timespec delta_time ; u64 speed_bytes ; u64 speed_timedelta ; u64 tmp___0 ; s64 tmp___1 ; u64 tmp___2 ; int tmp___3 ; int tmp___4 ; struct list_head const *__mptr ; int tmp___5 ; struct list_head const *__mptr___0 ; { { tmp = ts_pid(buf); pid = tmp; dvr_done = 0; } if (dvb_demux_speedcheck != 0) { demux->speed_pkts_cnt = demux->speed_pkts_cnt + 1U; if (demux->speed_pkts_cnt % 50000U == 0U) { { cur_time = current_kernel_time(); } if (demux->speed_last_time.tv_sec != 0L && demux->speed_last_time.tv_nsec != 0L) { { delta_time = timespec_sub(cur_time, demux->speed_last_time); speed_bytes = (unsigned long long )demux->speed_pkts_cnt * 1504ULL; tmp___0 = div64_u64(speed_bytes, 1024ULL); speed_bytes = tmp___0 * 1000ULL; tmp___1 = timespec_to_ns((struct timespec const *)(& delta_time)); speed_timedelta = (unsigned long long )tmp___1; speed_timedelta = div64_u64(speed_timedelta, 1000000ULL); tmp___2 = div64_u64(speed_bytes, speed_timedelta); printk("\016TS speed %llu Kbits/sec \n", tmp___2); } } else { } demux->speed_last_time = cur_time; demux->speed_pkts_cnt = 0U; } else { } } else { } if ((int )((signed char )*(buf + 1UL)) < 0) { if (dvb_demux_tscheck != 0) { { tmp___3 = __printk_ratelimit("dvb_dmx_swfilter_packet"); } if (tmp___3 != 0) { { printk("TEI detected. PID=0x%x data1=0x%x\n", (int )pid, (int )*(buf + 1UL)); } } else { } } else { } if (dvb_demux_feed_err_pkts == 0) { return; } else { } } else if ((unsigned long )demux->cnt_storage != (unsigned long )((uint8_t *)0U) && dvb_demux_tscheck != 0) { if ((unsigned int )pid <= 8190U) { if (((int )*(buf + 3UL) & 16) != 0) { *(demux->cnt_storage + (unsigned long )pid) = (unsigned int )((uint8_t )((unsigned int )*(demux->cnt_storage + (unsigned long )pid) + 1U)) & 15U; } else { } if (((int )*(buf + 3UL) & 15) != (int )*(demux->cnt_storage + (unsigned long )pid)) { if (dvb_demux_tscheck != 0) { { tmp___4 = __printk_ratelimit("dvb_dmx_swfilter_packet"); } if (tmp___4 != 0) { { printk("TS packet counter mismatch. PID=0x%x expected 0x%x got 0x%x\n", (int )pid, (int )*(demux->cnt_storage + (unsigned long )pid), (int )*(buf + 3UL) & 15); } } else { } } else { } *(demux->cnt_storage + (unsigned long )pid) = (unsigned int )((uint8_t )*(buf + 3UL)) & 15U; } else { } } else { } } else { } __mptr = (struct list_head const *)demux->feed_list.next; feed = (struct dvb_demux_feed *)__mptr + 0xffffffffffffee80UL; goto ldv_46869; ldv_46868: ; if ((int )feed->pid != (int )pid && (unsigned int )feed->pid != 8192U) { goto ldv_46867; } else { } if ((feed->type == 0 && feed->feed.ts.is_filtering != 0) && (feed->ts_type & 9) == 1) { tmp___5 = dvr_done; dvr_done = dvr_done + 1; if (tmp___5 != 0) { goto ldv_46867; } else { } } else { } if ((int )feed->pid == (int )pid) { { dvb_dmx_swfilter_packet_type(feed, buf); } } else if ((unsigned int )feed->pid == 8192U) { { (*(feed->cb.ts))(buf, 188UL, (u8 const *)0U, 0UL, & feed->feed.ts, 0); } } else { } ldv_46867: __mptr___0 = (struct list_head const *)feed->list_head.next; feed = (struct dvb_demux_feed *)__mptr___0 + 0xffffffffffffee80UL; ldv_46869: ; if ((unsigned long )(& feed->list_head) != (unsigned long )(& demux->feed_list)) { goto ldv_46868; } else { } return; } } void dvb_dmx_swfilter_packets(struct dvb_demux *demux , u8 const *buf , size_t count ) { unsigned long flags ; size_t tmp ; { { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_121(& demux->lock); } goto ldv_46878; ldv_46877: ; if ((unsigned int )((unsigned char )*buf) == 71U) { { dvb_dmx_swfilter_packet(demux, buf); } } else { } buf = buf + 188UL; ldv_46878: tmp = count; count = count - 1UL; if (tmp != 0UL) { goto ldv_46877; } else { } { ldv_spin_unlock_irqrestore_122(& demux->lock, flags); } return; } } static char const __kstrtab_dvb_dmx_swfilter_packets[25U] = { 'd', 'v', 'b', '_', 'd', 'm', 'x', '_', 's', 'w', 'f', 'i', 'l', 't', 'e', 'r', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}; struct kernel_symbol const __ksymtab_dvb_dmx_swfilter_packets ; struct kernel_symbol const __ksymtab_dvb_dmx_swfilter_packets = {(unsigned long )(& dvb_dmx_swfilter_packets), (char const *)(& __kstrtab_dvb_dmx_swfilter_packets)}; __inline static int find_next_packet(u8 const *buf , int pos , size_t count , int const pktsize ) { int start ; int lost ; int backtrack ; { start = pos; goto ldv_46899; ldv_46898: ; if ((unsigned int )((unsigned char )*(buf + (unsigned long )pos)) == 71U || ((int )pktsize == 204 && (unsigned int )((unsigned char )*(buf + (unsigned long )pos)) == 184U)) { goto ldv_46897; } else { } pos = pos + 1; ldv_46899: ; if ((size_t )pos < count) { goto ldv_46898; } else { } ldv_46897: lost = pos - start; if (lost != 0) { backtrack = pos - (int )pktsize; if (backtrack >= 0 && ((unsigned int )((unsigned char )*(buf + (unsigned long )backtrack)) == 71U || ((int )pktsize == 204 && (unsigned int )((unsigned char )*(buf + (unsigned long )backtrack)) == 184U))) { return (backtrack); } else { } } else { } return (pos); } } __inline static void _dvb_dmx_swfilter(struct dvb_demux *demux , u8 const *buf , size_t count , int const pktsize ) { int p ; int i ; int j ; u8 const *q ; unsigned long flags ; { { p = 0; ldv___ldv_linux_kernel_locking_spinlock_spin_lock_123(& demux->lock); } if (demux->tsbufp != 0) { i = demux->tsbufp; j = (int )pktsize - i; if (count < (size_t )j) { { __memcpy((void *)(& demux->tsbuf) + (unsigned long )i, (void const *)buf, count); demux->tsbufp = (int )((unsigned int )demux->tsbufp + (unsigned int )count); } goto bailout; } else { } { __memcpy((void *)(& demux->tsbuf) + (unsigned long )i, (void const *)buf, (size_t )j); } if ((unsigned int )demux->tsbuf[0] == 71U) { { dvb_dmx_swfilter_packet(demux, (u8 const *)(& demux->tsbuf)); } } else { } demux->tsbufp = 0; p = p + j; } else { } ldv_46914: { p = find_next_packet(buf, p, count, pktsize); } if ((size_t )p >= count) { goto ldv_46913; } else { } if (count - (size_t )p < (size_t )pktsize) { goto ldv_46913; } else { } q = buf + (unsigned long )p; if ((int )pktsize == 204 && (unsigned int )((unsigned char )*q) == 184U) { { __memcpy((void *)(& demux->tsbuf), (void const *)q, 188UL); demux->tsbuf[0] = 71U; q = (u8 const *)(& demux->tsbuf); } } else { } { dvb_dmx_swfilter_packet(demux, q); p = p + (int )pktsize; } goto ldv_46914; ldv_46913: i = (int )((unsigned int )count - (unsigned int )p); if (i != 0) { { __memcpy((void *)(& demux->tsbuf), (void const *)buf + (unsigned long )p, (size_t )i); demux->tsbufp = i; } if ((int )pktsize == 204 && (unsigned int )demux->tsbuf[0] == 184U) { demux->tsbuf[0] = 71U; } else { } } else { } bailout: { ldv_spin_unlock_irqrestore_122(& demux->lock, flags); } return; } } void dvb_dmx_swfilter(struct dvb_demux *demux , u8 const *buf , size_t count ) { { { _dvb_dmx_swfilter(demux, buf, count, 188); } return; } } static char const __kstrtab_dvb_dmx_swfilter[17U] = { 'd', 'v', 'b', '_', 'd', 'm', 'x', '_', 's', 'w', 'f', 'i', 'l', 't', 'e', 'r', '\000'}; struct kernel_symbol const __ksymtab_dvb_dmx_swfilter ; struct kernel_symbol const __ksymtab_dvb_dmx_swfilter = {(unsigned long )(& dvb_dmx_swfilter), (char const *)(& __kstrtab_dvb_dmx_swfilter)}; void dvb_dmx_swfilter_204(struct dvb_demux *demux , u8 const *buf , size_t count ) { { { _dvb_dmx_swfilter(demux, buf, count, 204); } return; } } static char const __kstrtab_dvb_dmx_swfilter_204[21U] = { 'd', 'v', 'b', '_', 'd', 'm', 'x', '_', 's', 'w', 'f', 'i', 'l', 't', 'e', 'r', '_', '2', '0', '4', '\000'}; struct kernel_symbol const __ksymtab_dvb_dmx_swfilter_204 ; struct kernel_symbol const __ksymtab_dvb_dmx_swfilter_204 = {(unsigned long )(& dvb_dmx_swfilter_204), (char const *)(& __kstrtab_dvb_dmx_swfilter_204)}; void dvb_dmx_swfilter_raw(struct dvb_demux *demux , u8 const *buf , size_t count ) { unsigned long flags ; { { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_125(& demux->lock); (*((demux->feed)->cb.ts))(buf, count, (u8 const *)0U, 0UL, & (demux->feed)->feed.ts, 0); ldv_spin_unlock_irqrestore_122(& demux->lock, flags); } return; } } static char const __kstrtab_dvb_dmx_swfilter_raw[21U] = { 'd', 'v', 'b', '_', 'd', 'm', 'x', '_', 's', 'w', 'f', 'i', 'l', 't', 'e', 'r', '_', 'r', 'a', 'w', '\000'}; struct kernel_symbol const __ksymtab_dvb_dmx_swfilter_raw ; struct kernel_symbol const __ksymtab_dvb_dmx_swfilter_raw = {(unsigned long )(& dvb_dmx_swfilter_raw), (char const *)(& __kstrtab_dvb_dmx_swfilter_raw)}; static struct dvb_demux_filter *dvb_dmx_filter_alloc(struct dvb_demux *demux ) { int i ; { i = 0; goto ldv_46964; ldv_46963: ; if ((demux->filter + (unsigned long )i)->state == 0) { goto ldv_46962; } else { } i = i + 1; ldv_46964: ; if (i < demux->filternum) { goto ldv_46963; } else { } ldv_46962: ; if (i == demux->filternum) { return ((struct dvb_demux_filter *)0); } else { } (demux->filter + (unsigned long )i)->state = 1; return (demux->filter + (unsigned long )i); } } static struct dvb_demux_feed *dvb_dmx_feed_alloc(struct dvb_demux *demux ) { int i ; { i = 0; goto ldv_46971; ldv_46970: ; if ((demux->feed + (unsigned long )i)->state == 0) { goto ldv_46969; } else { } i = i + 1; ldv_46971: ; if (i < demux->feednum) { goto ldv_46970; } else { } ldv_46969: ; if (i == demux->feednum) { return ((struct dvb_demux_feed *)0); } else { } (demux->feed + (unsigned long )i)->state = 1; return (demux->feed + (unsigned long )i); } } static int dvb_demux_feed_find(struct dvb_demux_feed *feed ) { struct dvb_demux_feed *entry ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { __mptr = (struct list_head const *)(feed->demux)->feed_list.next; entry = (struct dvb_demux_feed *)__mptr + 0xffffffffffffee80UL; goto ldv_46981; ldv_46980: ; if ((unsigned long )entry == (unsigned long )feed) { return (1); } else { } __mptr___0 = (struct list_head const *)entry->list_head.next; entry = (struct dvb_demux_feed *)__mptr___0 + 0xffffffffffffee80UL; ldv_46981: ; if ((unsigned long )(& entry->list_head) != (unsigned long )(& (feed->demux)->feed_list)) { goto ldv_46980; } else { } return (0); } } static void dvb_demux_feed_add(struct dvb_demux_feed *feed ) { int tmp ; { { ldv_spin_lock_irq_127(& (feed->demux)->lock); tmp = dvb_demux_feed_find(feed); } if (tmp != 0) { { printk("\v%s: feed already in list (type=%x state=%x pid=%x)\n", "dvb_demux_feed_add", feed->type, feed->state, (int )feed->pid); } goto out; } else { } { list_add(& feed->list_head, & (feed->demux)->feed_list); } out: { ldv_spin_unlock_irq_128(& (feed->demux)->lock); } return; } } static void dvb_demux_feed_del(struct dvb_demux_feed *feed ) { int tmp ; { { ldv_spin_lock_irq_127(& (feed->demux)->lock); tmp = dvb_demux_feed_find(feed); } if (tmp == 0) { { printk("\v%s: feed not in list (type=%x state=%x pid=%x)\n", "dvb_demux_feed_del", feed->type, feed->state, (int )feed->pid); } goto out; } else { } { list_del(& feed->list_head); } out: { ldv_spin_unlock_irq_128(& (feed->demux)->lock); } return; } } static int dmx_ts_feed_set(struct dmx_ts_feed *ts_feed , u16 pid , int ts_type , enum dmx_ts_pes pes_type , size_t circular_buffer_size , struct timespec timeout ) { struct dvb_demux_feed *feed ; struct dvb_demux *demux ; int tmp ; { feed = (struct dvb_demux_feed *)ts_feed; demux = feed->demux; if ((unsigned int )pid > 8192U) { return (-22); } else { } { tmp = ldv_mutex_lock_interruptible_131(& demux->mutex); } if (tmp != 0) { return (-512); } else { } if ((ts_type & 4) != 0) { if ((unsigned int )pes_type > 19U) { { ldv_mutex_unlock_132(& demux->mutex); } return (-22); } else { } if ((unsigned long )demux->pesfilter[(unsigned int )pes_type] != (unsigned long )((struct dvb_demux_feed *)0) && (unsigned long )demux->pesfilter[(unsigned int )pes_type] != (unsigned long )feed) { { ldv_mutex_unlock_133___1(& demux->mutex); } return (-22); } else { } demux->pesfilter[(unsigned int )pes_type] = feed; demux->pids[(unsigned int )pes_type] = pid; } else { } { dvb_demux_feed_add(feed); feed->pid = pid; feed->buffer_size = (int )circular_buffer_size; feed->timeout = timeout; feed->ts_type = ts_type; feed->pes_type = pes_type; } if (feed->buffer_size != 0) { feed->buffer = (u8 *)0U; } else { } { feed->state = 3; ldv_mutex_unlock_134___1(& demux->mutex); } return (0); } } static int dmx_ts_feed_start_filtering(struct dmx_ts_feed *ts_feed ) { struct dvb_demux_feed *feed ; struct dvb_demux *demux ; int ret ; int tmp ; { { feed = (struct dvb_demux_feed *)ts_feed; demux = feed->demux; tmp = ldv_mutex_lock_interruptible_135___0(& demux->mutex); } if (tmp != 0) { return (-512); } else { } if (((unsigned long )*((long *)feed + 550UL) & 0xffffffffffffffffUL) != 12884901888UL) { { ldv_mutex_unlock_136___1(& demux->mutex); } return (-22); } else { } if ((unsigned long )demux->start_feed == (unsigned long )((int (*)(struct dvb_demux_feed * ))0)) { { ldv_mutex_unlock_137___0(& demux->mutex); } return (-19); } else { } { ret = (*(demux->start_feed))(feed); } if (ret < 0) { { ldv_mutex_unlock_138(& demux->mutex); } return (ret); } else { } { ldv_spin_lock_irq_127(& demux->lock); ts_feed->is_filtering = 1; feed->state = 4; ldv_spin_unlock_irq_128(& demux->lock); ldv_mutex_unlock_141(& demux->mutex); } return (0); } } static int dmx_ts_feed_stop_filtering(struct dmx_ts_feed *ts_feed ) { struct dvb_demux_feed *feed ; struct dvb_demux *demux ; int ret ; { { feed = (struct dvb_demux_feed *)ts_feed; demux = feed->demux; ldv_mutex_lock_142(& demux->mutex); } if (feed->state <= 3) { { ldv_mutex_unlock_143(& demux->mutex); } return (-22); } else { } if ((unsigned long )demux->stop_feed == (unsigned long )((int (*)(struct dvb_demux_feed * ))0)) { { ldv_mutex_unlock_144(& demux->mutex); } return (-19); } else { } { ret = (*(demux->stop_feed))(feed); ldv_spin_lock_irq_127(& demux->lock); ts_feed->is_filtering = 0; feed->state = 1; ldv_spin_unlock_irq_128(& demux->lock); ldv_mutex_unlock_147(& demux->mutex); } return (ret); } } static int dvbdmx_allocate_ts_feed(struct dmx_demux *dmx , struct dmx_ts_feed **ts_feed , int (*callback)(u8 const * , size_t , u8 const * , size_t , struct dmx_ts_feed * , enum dmx_success ) ) { struct dvb_demux *demux ; struct dvb_demux_feed *feed ; int tmp ; struct dvb_demux_filter *tmp___0 ; { { demux = (struct dvb_demux *)dmx; tmp = ldv_mutex_lock_interruptible_148(& demux->mutex); } if (tmp != 0) { return (-512); } else { } { feed = dvb_dmx_feed_alloc(demux); } if ((unsigned long )feed == (unsigned long )((struct dvb_demux_feed *)0)) { { ldv_mutex_unlock_149(& demux->mutex); } return (-16); } else { } { feed->type = 0; feed->cb.ts = callback; feed->demux = demux; feed->pid = 65535U; feed->peslen = 65530U; feed->buffer = (u8 *)0U; *ts_feed = & feed->feed.ts; (*ts_feed)->parent = dmx; (*ts_feed)->priv = (void *)0; (*ts_feed)->is_filtering = 0; (*ts_feed)->start_filtering = & dmx_ts_feed_start_filtering; (*ts_feed)->stop_filtering = & dmx_ts_feed_stop_filtering; (*ts_feed)->set = & dmx_ts_feed_set; tmp___0 = dvb_dmx_filter_alloc(demux); feed->filter = tmp___0; } if ((unsigned long )tmp___0 == (unsigned long )((struct dvb_demux_filter *)0)) { { feed->state = 0; ldv_mutex_unlock_150(& demux->mutex); } return (-16); } else { } { (feed->filter)->type = 0; (feed->filter)->feed = feed; (feed->filter)->state = 3; ldv_mutex_unlock_151(& demux->mutex); } return (0); } } static int dvbdmx_release_ts_feed(struct dmx_demux *dmx , struct dmx_ts_feed *ts_feed ) { struct dvb_demux *demux ; struct dvb_demux_feed *feed ; { { demux = (struct dvb_demux *)dmx; feed = (struct dvb_demux_feed *)ts_feed; ldv_mutex_lock_152(& demux->mutex); } if (feed->state == 0) { { ldv_mutex_unlock_153(& demux->mutex); } return (-22); } else { } { feed->state = 0; (feed->filter)->state = 0; dvb_demux_feed_del(feed); feed->pid = 65535U; } if ((feed->ts_type & 4) != 0 && (unsigned int )feed->pes_type <= 19U) { demux->pesfilter[(unsigned int )feed->pes_type] = (struct dvb_demux_feed *)0; } else { } { ldv_mutex_unlock_154(& demux->mutex); } return (0); } } static int dmx_section_feed_allocate_filter(struct dmx_section_feed *feed , struct dmx_section_filter **filter ) { struct dvb_demux_feed *dvbdmxfeed ; struct dvb_demux *dvbdemux ; struct dvb_demux_filter *dvbdmxfilter ; int tmp ; { { dvbdmxfeed = (struct dvb_demux_feed *)feed; dvbdemux = dvbdmxfeed->demux; tmp = ldv_mutex_lock_interruptible_155(& dvbdemux->mutex); } if (tmp != 0) { return (-512); } else { } { dvbdmxfilter = dvb_dmx_filter_alloc(dvbdemux); } if ((unsigned long )dvbdmxfilter == (unsigned long )((struct dvb_demux_filter *)0)) { { ldv_mutex_unlock_156(& dvbdemux->mutex); } return (-16); } else { } { ldv_spin_lock_irq_127(& dvbdemux->lock); *filter = & dvbdmxfilter->filter; (*filter)->parent = feed; (*filter)->priv = (void *)0; dvbdmxfilter->feed = dvbdmxfeed; dvbdmxfilter->type = 1; dvbdmxfilter->state = 3; dvbdmxfilter->next = dvbdmxfeed->filter; dvbdmxfeed->filter = dvbdmxfilter; ldv_spin_unlock_irq_128(& dvbdemux->lock); ldv_mutex_unlock_159(& dvbdemux->mutex); } return (0); } } static int dmx_section_feed_set(struct dmx_section_feed *feed , u16 pid , size_t circular_buffer_size , int check_crc ) { struct dvb_demux_feed *dvbdmxfeed ; struct dvb_demux *dvbdmx ; int tmp ; { dvbdmxfeed = (struct dvb_demux_feed *)feed; dvbdmx = dvbdmxfeed->demux; if ((unsigned int )pid > 8191U) { return (-22); } else { } { tmp = ldv_mutex_lock_interruptible_160(& dvbdmx->mutex); } if (tmp != 0) { return (-512); } else { } { dvb_demux_feed_add(dvbdmxfeed); dvbdmxfeed->pid = pid; dvbdmxfeed->buffer_size = (int )circular_buffer_size; dvbdmxfeed->feed.sec.check_crc = check_crc; dvbdmxfeed->buffer = (u8 *)0U; dvbdmxfeed->state = 3; ldv_mutex_unlock_161(& dvbdmx->mutex); } return (0); } } static void prepare_secfilters(struct dvb_demux_feed *dvbdmxfeed ) { int i ; struct dvb_demux_filter *f ; struct dmx_section_filter *sf ; u8 mask ; u8 mode ; u8 doneq ; u8 tmp ; { f = dvbdmxfeed->filter; if ((unsigned long )f == (unsigned long )((struct dvb_demux_filter *)0)) { return; } else { } ldv_47055: sf = & f->filter; doneq = 0U; i = 0; goto ldv_47053; ldv_47052: mode = sf->filter_mode[i]; mask = sf->filter_mask[i]; f->maskandmode[i] = (u8 )((int )mask & (int )mode); tmp = (u8 )((int )((signed char )mask) & ~ ((int )((signed char )mode))); f->maskandnotmode[i] = tmp; doneq = (u8 )((int )doneq | (int )tmp); i = i + 1; ldv_47053: ; if (i <= 17) { goto ldv_47052; } else { } f->doneq = (unsigned int )doneq != 0U; f = f->next; if ((unsigned long )f != (unsigned long )((struct dvb_demux_filter *)0)) { goto ldv_47055; } else { } return; } } static int dmx_section_feed_start_filtering(struct dmx_section_feed *feed ) { struct dvb_demux_feed *dvbdmxfeed ; struct dvb_demux *dvbdmx ; int ret ; int tmp ; { { dvbdmxfeed = (struct dvb_demux_feed *)feed; dvbdmx = dvbdmxfeed->demux; tmp = ldv_mutex_lock_interruptible_162(& dvbdmx->mutex); } if (tmp != 0) { return (-512); } else { } if (feed->is_filtering != 0) { { ldv_mutex_unlock_163___0(& dvbdmx->mutex); } return (-16); } else { } if ((unsigned long )dvbdmxfeed->filter == (unsigned long )((struct dvb_demux_filter *)0)) { { ldv_mutex_unlock_164(& dvbdmx->mutex); } return (-22); } else { } dvbdmxfeed->feed.sec.tsfeedp = 0U; dvbdmxfeed->feed.sec.secbuf = (u8 *)(& dvbdmxfeed->feed.sec.secbuf_base); dvbdmxfeed->feed.sec.secbufp = 0U; dvbdmxfeed->feed.sec.seclen = 0U; if ((unsigned long )dvbdmx->start_feed == (unsigned long )((int (*)(struct dvb_demux_feed * ))0)) { { ldv_mutex_unlock_165(& dvbdmx->mutex); } return (-19); } else { } { prepare_secfilters(dvbdmxfeed); ret = (*(dvbdmx->start_feed))(dvbdmxfeed); } if (ret < 0) { { ldv_mutex_unlock_166(& dvbdmx->mutex); } return (ret); } else { } { ldv_spin_lock_irq_127(& dvbdmx->lock); feed->is_filtering = 1; dvbdmxfeed->state = 4; ldv_spin_unlock_irq_128(& dvbdmx->lock); ldv_mutex_unlock_169___0(& dvbdmx->mutex); } return (0); } } static int dmx_section_feed_stop_filtering(struct dmx_section_feed *feed ) { struct dvb_demux_feed *dvbdmxfeed ; struct dvb_demux *dvbdmx ; int ret ; { { dvbdmxfeed = (struct dvb_demux_feed *)feed; dvbdmx = dvbdmxfeed->demux; ldv_mutex_lock_170(& dvbdmx->mutex); } if ((unsigned long )dvbdmx->stop_feed == (unsigned long )((int (*)(struct dvb_demux_feed * ))0)) { { ldv_mutex_unlock_171___0(& dvbdmx->mutex); } return (-19); } else { } { ret = (*(dvbdmx->stop_feed))(dvbdmxfeed); ldv_spin_lock_irq_127(& dvbdmx->lock); dvbdmxfeed->state = 3; feed->is_filtering = 0; ldv_spin_unlock_irq_128(& dvbdmx->lock); ldv_mutex_unlock_174___0(& dvbdmx->mutex); } return (ret); } } static int dmx_section_feed_release_filter(struct dmx_section_feed *feed , struct dmx_section_filter *filter ) { struct dvb_demux_filter *dvbdmxfilter ; struct dvb_demux_filter *f ; struct dvb_demux_feed *dvbdmxfeed ; struct dvb_demux *dvbdmx ; { { dvbdmxfilter = (struct dvb_demux_filter *)filter; dvbdmxfeed = (struct dvb_demux_feed *)feed; dvbdmx = dvbdmxfeed->demux; ldv_mutex_lock_175(& dvbdmx->mutex); } if ((unsigned long )dvbdmxfilter->feed != (unsigned long )dvbdmxfeed) { { ldv_mutex_unlock_176(& dvbdmx->mutex); } return (-22); } else { } if (feed->is_filtering != 0) { { ldv_mutex_unlock_177___0(& dvbdmx->mutex); (*(feed->stop_filtering))(feed); ldv_mutex_lock_178(& dvbdmx->mutex); } } else { } { ldv_spin_lock_irq_127(& dvbdmx->lock); f = dvbdmxfeed->filter; } if ((unsigned long )f == (unsigned long )dvbdmxfilter) { dvbdmxfeed->filter = dvbdmxfilter->next; } else { goto ldv_47078; ldv_47077: f = f->next; ldv_47078: ; if ((unsigned long )f->next != (unsigned long )dvbdmxfilter) { goto ldv_47077; } else { } f->next = (f->next)->next; } { dvbdmxfilter->state = 0; ldv_spin_unlock_irq_128(& dvbdmx->lock); ldv_mutex_unlock_181___0(& dvbdmx->mutex); } return (0); } } static int dvbdmx_allocate_section_feed(struct dmx_demux *demux , struct dmx_section_feed **feed , int (*callback)(u8 const * , size_t , u8 const * , size_t , struct dmx_section_filter * , enum dmx_success ) ) { struct dvb_demux *dvbdmx ; struct dvb_demux_feed *dvbdmxfeed ; int tmp ; u16 tmp___0 ; { { dvbdmx = (struct dvb_demux *)demux; tmp = ldv_mutex_lock_interruptible_182___0(& dvbdmx->mutex); } if (tmp != 0) { return (-512); } else { } { dvbdmxfeed = dvb_dmx_feed_alloc(dvbdmx); } if ((unsigned long )dvbdmxfeed == (unsigned long )((struct dvb_demux_feed *)0)) { { ldv_mutex_unlock_183___0(& dvbdmx->mutex); } return (-16); } else { } { dvbdmxfeed->type = 1; dvbdmxfeed->cb.sec = callback; dvbdmxfeed->demux = dvbdmx; dvbdmxfeed->pid = 65535U; dvbdmxfeed->feed.sec.secbuf = (u8 *)(& dvbdmxfeed->feed.sec.secbuf_base); tmp___0 = 0U; dvbdmxfeed->feed.sec.seclen = tmp___0; dvbdmxfeed->feed.sec.secbufp = tmp___0; dvbdmxfeed->feed.sec.tsfeedp = 0U; dvbdmxfeed->filter = (struct dvb_demux_filter *)0; dvbdmxfeed->buffer = (u8 *)0U; *feed = & dvbdmxfeed->feed.sec; (*feed)->is_filtering = 0; (*feed)->parent = demux; (*feed)->priv = (void *)0; (*feed)->set = & dmx_section_feed_set; (*feed)->allocate_filter = & dmx_section_feed_allocate_filter; (*feed)->start_filtering = & dmx_section_feed_start_filtering; (*feed)->stop_filtering = & dmx_section_feed_stop_filtering; (*feed)->release_filter = & dmx_section_feed_release_filter; ldv_mutex_unlock_184___0(& dvbdmx->mutex); } return (0); } } static int dvbdmx_release_section_feed(struct dmx_demux *demux , struct dmx_section_feed *feed ) { struct dvb_demux_feed *dvbdmxfeed ; struct dvb_demux *dvbdmx ; { { dvbdmxfeed = (struct dvb_demux_feed *)feed; dvbdmx = (struct dvb_demux *)demux; ldv_mutex_lock_185(& dvbdmx->mutex); } if (dvbdmxfeed->state == 0) { { ldv_mutex_unlock_186___0(& dvbdmx->mutex); } return (-22); } else { } { dvbdmxfeed->state = 0; dvb_demux_feed_del(dvbdmxfeed); dvbdmxfeed->pid = 65535U; ldv_mutex_unlock_187___0(& dvbdmx->mutex); } return (0); } } static int dvbdmx_open(struct dmx_demux *demux ) { struct dvb_demux *dvbdemux ; { dvbdemux = (struct dvb_demux *)demux; if (dvbdemux->users > 9) { return (-87); } else { } dvbdemux->users = dvbdemux->users + 1; return (0); } } static int dvbdmx_close(struct dmx_demux *demux ) { struct dvb_demux *dvbdemux ; { dvbdemux = (struct dvb_demux *)demux; if (dvbdemux->users == 0) { return (-19); } else { } dvbdemux->users = dvbdemux->users - 1; return (0); } } static int dvbdmx_write(struct dmx_demux *demux , char const *buf , size_t count ) { struct dvb_demux *dvbdemux ; void *p ; long tmp ; bool tmp___0 ; int tmp___1 ; struct task_struct *tmp___2 ; int tmp___3 ; { dvbdemux = (struct dvb_demux *)demux; if ((unsigned long )demux->frontend == (unsigned long )((struct dmx_frontend *)0) || (unsigned int )(demux->frontend)->source != 0U) { return (-22); } else { } { p = memdup_user((void const *)buf, count); tmp___0 = IS_ERR((void const *)p); } if ((int )tmp___0) { { tmp = PTR_ERR((void const *)p); } return ((int )tmp); } else { } { tmp___1 = ldv_mutex_lock_interruptible_188___0(& dvbdemux->mutex); } if (tmp___1 != 0) { { kfree((void const *)p); } return (-512); } else { } { dvb_dmx_swfilter(dvbdemux, (u8 const *)p, count); kfree((void const *)p); ldv_mutex_unlock_189___0(& dvbdemux->mutex); tmp___2 = get_current(); tmp___3 = signal_pending(tmp___2); } if (tmp___3 != 0) { return (-4); } else { } return ((int )count); } } static int dvbdmx_add_frontend(struct dmx_demux *demux , struct dmx_frontend *frontend ) { struct dvb_demux *dvbdemux ; struct list_head *head ; { { dvbdemux = (struct dvb_demux *)demux; head = & dvbdemux->frontend_list; list_add(& frontend->connectivity_list, head); } return (0); } } static int dvbdmx_remove_frontend(struct dmx_demux *demux , struct dmx_frontend *frontend ) { struct dvb_demux *dvbdemux ; struct list_head *pos ; struct list_head *n ; struct list_head *head ; struct list_head const *__mptr ; { dvbdemux = (struct dvb_demux *)demux; head = & dvbdemux->frontend_list; pos = head->next; n = pos->next; goto ldv_47125; ldv_47124: __mptr = (struct list_head const *)pos; if ((unsigned long )((struct dmx_frontend *)__mptr) == (unsigned long )frontend) { { list_del(pos); } return (0); } else { } pos = n; n = pos->next; ldv_47125: ; if ((unsigned long )pos != (unsigned long )head) { goto ldv_47124; } else { } return (-19); } } static struct list_head *dvbdmx_get_frontends(struct dmx_demux *demux ) { struct dvb_demux *dvbdemux ; int tmp ; { { dvbdemux = (struct dvb_demux *)demux; tmp = list_empty((struct list_head const *)(& dvbdemux->frontend_list)); } if (tmp != 0) { return ((struct list_head *)0); } else { } return (& dvbdemux->frontend_list); } } static int dvbdmx_connect_frontend(struct dmx_demux *demux , struct dmx_frontend *frontend ) { struct dvb_demux *dvbdemux ; { dvbdemux = (struct dvb_demux *)demux; if ((unsigned long )demux->frontend != (unsigned long )((struct dmx_frontend *)0)) { return (-22); } else { } { ldv_mutex_lock_190(& dvbdemux->mutex); demux->frontend = frontend; ldv_mutex_unlock_191___0(& dvbdemux->mutex); } return (0); } } static int dvbdmx_disconnect_frontend(struct dmx_demux *demux ) { struct dvb_demux *dvbdemux ; { { dvbdemux = (struct dvb_demux *)demux; ldv_mutex_lock_192(& dvbdemux->mutex); demux->frontend = (struct dmx_frontend *)0; ldv_mutex_unlock_193(& dvbdemux->mutex); } return (0); } } static int dvbdmx_get_pes_pids(struct dmx_demux *demux , u16 *pids ) { struct dvb_demux *dvbdemux ; { { dvbdemux = (struct dvb_demux *)demux; __memcpy((void *)pids, (void const *)(& dvbdemux->pids), 10UL); } return (0); } } int dvb_dmx_init(struct dvb_demux *dvbdemux ) { int i ; struct dmx_demux *dmx ; void *tmp ; void *tmp___0 ; void *tmp___1 ; struct lock_class_key __key ; struct lock_class_key __key___0 ; { { dmx = & dvbdemux->dmx; dvbdemux->cnt_storage = (uint8_t *)0U; dvbdemux->users = 0; tmp = ldv_vmalloc_194((unsigned long )dvbdemux->filternum * 272UL); dvbdemux->filter = (struct dvb_demux_filter *)tmp; } if ((unsigned long )dvbdemux->filter == (unsigned long )((struct dvb_demux_filter *)0)) { return (-12); } else { } { tmp___0 = ldv_vmalloc_195((unsigned long )dvbdemux->feednum * 4504UL); dvbdemux->feed = (struct dvb_demux_feed *)tmp___0; } if ((unsigned long )dvbdemux->feed == (unsigned long )((struct dvb_demux_feed *)0)) { { vfree((void const *)dvbdemux->filter); dvbdemux->filter = (struct dvb_demux_filter *)0; } return (-12); } else { } i = 0; goto ldv_47151; ldv_47150: (dvbdemux->filter + (unsigned long )i)->state = 0; (dvbdemux->filter + (unsigned long )i)->index = i; i = i + 1; ldv_47151: ; if (i < dvbdemux->filternum) { goto ldv_47150; } else { } i = 0; goto ldv_47154; ldv_47153: (dvbdemux->feed + (unsigned long )i)->state = 0; (dvbdemux->feed + (unsigned long )i)->index = (unsigned int )i; i = i + 1; ldv_47154: ; if (i < dvbdemux->feednum) { goto ldv_47153; } else { } { tmp___1 = ldv_vmalloc_196(8192UL); dvbdemux->cnt_storage = (uint8_t *)tmp___1; } if ((unsigned long )dvbdemux->cnt_storage == (unsigned long )((uint8_t *)0U)) { { printk("\fCouldn\'t allocate memory for TS/TEI check. Disabling it\n"); } } else { } { INIT_LIST_HEAD(& dvbdemux->frontend_list); i = 0; } goto ldv_47157; ldv_47156: dvbdemux->pesfilter[i] = (struct dvb_demux_feed *)0; dvbdemux->pids[i] = 65535U; i = i + 1; ldv_47157: ; if (i <= 19) { goto ldv_47156; } else { } { INIT_LIST_HEAD(& dvbdemux->feed_list); dvbdemux->playing = 0; dvbdemux->recording = 0; dvbdemux->tsbufp = 0; } if ((unsigned long )dvbdemux->check_crc32 == (unsigned long )((u32 (*)(struct dvb_demux_feed * , u8 const * , size_t ))0)) { dvbdemux->check_crc32 = & dvb_dmx_crc32; } else { } if ((unsigned long )dvbdemux->memcopy == (unsigned long )((void (*)(struct dvb_demux_feed * , u8 * , u8 const * , size_t ))0)) { dvbdemux->memcopy = & dvb_dmx_memcopy; } else { } { dmx->frontend = (struct dmx_frontend *)0; dmx->priv = (void *)dvbdemux; dmx->open = & dvbdmx_open; dmx->close = & dvbdmx_close; dmx->write = & dvbdmx_write; dmx->allocate_ts_feed = & dvbdmx_allocate_ts_feed; dmx->release_ts_feed = & dvbdmx_release_ts_feed; dmx->allocate_section_feed = & dvbdmx_allocate_section_feed; dmx->release_section_feed = & dvbdmx_release_section_feed; dmx->add_frontend = & dvbdmx_add_frontend; dmx->remove_frontend = & dvbdmx_remove_frontend; dmx->get_frontends = & dvbdmx_get_frontends; dmx->connect_frontend = & dvbdmx_connect_frontend; dmx->disconnect_frontend = & dvbdmx_disconnect_frontend; dmx->get_pes_pids = & dvbdmx_get_pes_pids; __mutex_init(& dvbdemux->mutex, "&dvbdemux->mutex", & __key); spinlock_check(& dvbdemux->lock); __raw_spin_lock_init(& dvbdemux->lock.__annonCompField18.rlock, "&(&dvbdemux->lock)->rlock", & __key___0); } return (0); } } static char const __kstrtab_dvb_dmx_init[13U] = { 'd', 'v', 'b', '_', 'd', 'm', 'x', '_', 'i', 'n', 'i', 't', '\000'}; struct kernel_symbol const __ksymtab_dvb_dmx_init ; struct kernel_symbol const __ksymtab_dvb_dmx_init = {(unsigned long )(& dvb_dmx_init), (char const *)(& __kstrtab_dvb_dmx_init)}; void dvb_dmx_release(struct dvb_demux *dvbdemux ) { { { vfree((void const *)dvbdemux->cnt_storage); vfree((void const *)dvbdemux->filter); vfree((void const *)dvbdemux->feed); } return; } } static char const __kstrtab_dvb_dmx_release[16U] = { 'd', 'v', 'b', '_', 'd', 'm', 'x', '_', 'r', 'e', 'l', 'e', 'a', 's', 'e', '\000'}; struct kernel_symbol const __ksymtab_dvb_dmx_release ; struct kernel_symbol const __ksymtab_dvb_dmx_release = {(unsigned long )(& dvb_dmx_release), (char const *)(& __kstrtab_dvb_dmx_release)}; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_121(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_dvb_demux(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_122(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_dvb_demux(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_123(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_dvb_demux(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_125(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_dvb_demux(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_lock_irq_127(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_dvb_demux(); spin_lock_irq(lock); } return; } } __inline static void ldv_spin_unlock_irq_128(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_dvb_demux(); spin_unlock_irq(lock); } return; } } static int ldv_mutex_lock_interruptible_131(struct mutex *ldv_func_arg1 ) { int tmp ; { { tmp = ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_dvb_demux(ldv_func_arg1); } return (tmp); } } static void ldv_mutex_unlock_132(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dvb_demux(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_133___1(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dvb_demux(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_134___1(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dvb_demux(ldv_func_arg1); } return; } } static int ldv_mutex_lock_interruptible_135___0(struct mutex *ldv_func_arg1 ) { int tmp ; { { tmp = ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_dvb_demux(ldv_func_arg1); } return (tmp); } } static void ldv_mutex_unlock_136___1(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dvb_demux(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_137___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dvb_demux(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_138(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dvb_demux(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_141(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dvb_demux(ldv_func_arg1); } return; } } static void ldv_mutex_lock_142(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_dvb_demux(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_143(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dvb_demux(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_144(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dvb_demux(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_147(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dvb_demux(ldv_func_arg1); } return; } } static int ldv_mutex_lock_interruptible_148(struct mutex *ldv_func_arg1 ) { int tmp ; { { tmp = ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_dvb_demux(ldv_func_arg1); } return (tmp); } } static void ldv_mutex_unlock_149(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dvb_demux(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_150(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dvb_demux(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_151(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dvb_demux(ldv_func_arg1); } return; } } static void ldv_mutex_lock_152(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_dvb_demux(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_153(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dvb_demux(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_154(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dvb_demux(ldv_func_arg1); } return; } } static int ldv_mutex_lock_interruptible_155(struct mutex *ldv_func_arg1 ) { int tmp ; { { tmp = ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_dvb_demux(ldv_func_arg1); } return (tmp); } } static void ldv_mutex_unlock_156(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dvb_demux(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_159(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dvb_demux(ldv_func_arg1); } return; } } static int ldv_mutex_lock_interruptible_160(struct mutex *ldv_func_arg1 ) { int tmp ; { { tmp = ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_dvb_demux(ldv_func_arg1); } return (tmp); } } static void ldv_mutex_unlock_161(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dvb_demux(ldv_func_arg1); } return; } } static int ldv_mutex_lock_interruptible_162(struct mutex *ldv_func_arg1 ) { int tmp ; { { tmp = ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_dvb_demux(ldv_func_arg1); } return (tmp); } } static void ldv_mutex_unlock_163___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dvb_demux(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_164(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dvb_demux(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_165(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dvb_demux(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_166(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dvb_demux(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_169___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dvb_demux(ldv_func_arg1); } return; } } static void ldv_mutex_lock_170(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_dvb_demux(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_171___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dvb_demux(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_174___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dvb_demux(ldv_func_arg1); } return; } } static void ldv_mutex_lock_175(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_dvb_demux(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_176(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dvb_demux(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_177___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dvb_demux(ldv_func_arg1); } return; } } static void ldv_mutex_lock_178(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_dvb_demux(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_181___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dvb_demux(ldv_func_arg1); } return; } } static int ldv_mutex_lock_interruptible_182___0(struct mutex *ldv_func_arg1 ) { int tmp ; { { tmp = ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_dvb_demux(ldv_func_arg1); } return (tmp); } } static void ldv_mutex_unlock_183___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dvb_demux(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_184___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dvb_demux(ldv_func_arg1); } return; } } static void ldv_mutex_lock_185(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_dvb_demux(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_186___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dvb_demux(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_187___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dvb_demux(ldv_func_arg1); } return; } } static int ldv_mutex_lock_interruptible_188___0(struct mutex *ldv_func_arg1 ) { int tmp ; { { tmp = ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_dvb_demux(ldv_func_arg1); } return (tmp); } } static void ldv_mutex_unlock_189___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dvb_demux(ldv_func_arg1); } return; } } static void ldv_mutex_lock_190(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_dvb_demux(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_191___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dvb_demux(ldv_func_arg1); } return; } } static void ldv_mutex_lock_192(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_dvb_demux(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_193(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dvb_demux(ldv_func_arg1); } return; } } static void *ldv_vmalloc_194(unsigned long ldv_func_arg1 ) { void *tmp ; { { ldv_check_alloc_nonatomic(); tmp = ldv_malloc_unknown_size(); } return (tmp); } } static void *ldv_vmalloc_195(unsigned long ldv_func_arg1 ) { void *tmp ; { { ldv_check_alloc_nonatomic(); tmp = ldv_malloc_unknown_size(); } return (tmp); } } static void *ldv_vmalloc_196(unsigned long ldv_func_arg1 ) { void *tmp ; { { ldv_check_alloc_nonatomic(); tmp = ldv_malloc_unknown_size(); } return (tmp); } } void dvb_filter_pes2ts_init(struct dvb_filter_pes2ts *p2ts , unsigned short pid , dvb_filter_pes2ts_cb_t *cb , void *priv ) ; int dvb_filter_pes2ts(struct dvb_filter_pes2ts *p2ts , unsigned char *pes , int len , int payload_start ) ; int dvb_filter_get_ac3info(u8 *mbuf , int count , struct dvb_audio_info *ai , int pr ) ; static u32 freq[4U] = { 480U, 441U, 320U, 0U}; static unsigned int ac3_bitrates[32U] = { 32U, 40U, 48U, 56U, 64U, 80U, 96U, 112U, 128U, 160U, 192U, 224U, 256U, 320U, 384U, 448U, 512U, 576U, 640U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}; static u32 ac3_frames[3U][32U] = { { 64U, 80U, 96U, 112U, 128U, 160U, 192U, 224U, 256U, 320U, 384U, 448U, 512U, 640U, 768U, 896U, 1024U, 1152U, 1280U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, { 69U, 87U, 104U, 121U, 139U, 174U, 208U, 243U, 278U, 348U, 417U, 487U, 557U, 696U, 835U, 975U, 1114U, 1253U, 1393U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, { 96U, 120U, 144U, 168U, 192U, 240U, 288U, 336U, 384U, 480U, 576U, 672U, 768U, 960U, 1152U, 1344U, 1536U, 1728U, 1920U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}}; int dvb_filter_get_ac3info(u8 *mbuf , int count , struct dvb_audio_info *ai , int pr ) { u8 *headr ; int found ; int c ; u8 frame ; int fr ; u8 *b ; { found = 0; c = 0; frame = 0U; fr = 0; goto ldv_46275; ldv_46274: b = mbuf + (unsigned long )c; if ((unsigned int )*b == 11U && (unsigned int )*(b + 1UL) == 119U) { found = 1; } else { c = c + 1; } ldv_46275: ; if (found == 0 && c < count) { goto ldv_46274; } else { } if (found == 0) { return (-1); } else { } if (pr != 0) { { printk("Audiostream: AC3"); } } else { } ai->off = (u32 )c; if (c + 5 >= count) { return (-1); } else { } ai->layer = 0; headr = mbuf + ((unsigned long )c + 2UL); frame = (unsigned int )*(headr + 2UL) & 63U; ai->bit_rate = ac3_bitrates[(int )frame >> 1] * 1000U; if (pr != 0) { { printk(" BRate: %d kb/s", (int )ai->bit_rate / 1000); } } else { } ai->frequency = (u32 )((int )*(headr + 2UL) >> 6); fr = (int )*(headr + 2UL) >> 6; ai->frequency = freq[fr] * 100U; if (pr != 0) { { printk(" Freq: %d Hz\n", (int )ai->frequency); } } else { } ai->framesize = ac3_frames[fr][(int )frame >> 1]; if (((int )frame & 1) != 0 && fr == 1) { ai->framesize = ai->framesize + 1U; } else { } ai->framesize = ai->framesize << 1; if (pr != 0) { { printk(" Framesize %d\n", (int )ai->framesize); } } else { } return (0); } } static char const __kstrtab_dvb_filter_get_ac3info[23U] = { 'd', 'v', 'b', '_', 'f', 'i', 'l', 't', 'e', 'r', '_', 'g', 'e', 't', '_', 'a', 'c', '3', 'i', 'n', 'f', 'o', '\000'}; struct kernel_symbol const __ksymtab_dvb_filter_get_ac3info ; struct kernel_symbol const __ksymtab_dvb_filter_get_ac3info = {(unsigned long )(& dvb_filter_get_ac3info), (char const *)(& __kstrtab_dvb_filter_get_ac3info)}; void dvb_filter_pes2ts_init(struct dvb_filter_pes2ts *p2ts , unsigned short pid , dvb_filter_pes2ts_cb_t *cb , void *priv ) { unsigned char *buf ; { buf = (unsigned char *)(& p2ts->buf); *buf = 71U; *(buf + 1UL) = (unsigned char )((int )pid >> 8); *(buf + 2UL) = (unsigned char )pid; p2ts->cc = 0U; p2ts->cb = cb; p2ts->priv = priv; return; } } static char const __kstrtab_dvb_filter_pes2ts_init[23U] = { 'd', 'v', 'b', '_', 'f', 'i', 'l', 't', 'e', 'r', '_', 'p', 'e', 's', '2', 't', 's', '_', 'i', 'n', 'i', 't', '\000'}; struct kernel_symbol const __ksymtab_dvb_filter_pes2ts_init ; struct kernel_symbol const __ksymtab_dvb_filter_pes2ts_init = {(unsigned long )(& dvb_filter_pes2ts_init), (char const *)(& __kstrtab_dvb_filter_pes2ts_init)}; int dvb_filter_pes2ts(struct dvb_filter_pes2ts *p2ts , unsigned char *pes , int len , int payload_start ) { unsigned char *buf ; int ret ; int rest ; unsigned char tmp ; unsigned char tmp___0 ; int tmp___1 ; { buf = (unsigned char *)(& p2ts->buf); ret = 0; if (payload_start != 0) { *(buf + 1UL) = (unsigned int )*(buf + 1UL) | 64U; } else { *(buf + 1UL) = (unsigned int )*(buf + 1UL) & 191U; } goto ldv_46314; ldv_46313: { tmp = p2ts->cc; p2ts->cc = (unsigned char )((int )p2ts->cc + 1); *(buf + 3UL) = (unsigned char )(((int )((signed char )tmp) & 15) | 16); __memcpy((void *)buf + 4U, (void const *)pes, 184UL); ret = (*(p2ts->cb))(p2ts->priv, buf); } if (ret != 0) { return (ret); } else { } len = len + -184; pes = pes + 184UL; *(buf + 1UL) = (unsigned int )*(buf + 1UL) & 191U; ldv_46314: ; if (len > 183) { goto ldv_46313; } else { } if (len == 0) { return (0); } else { } tmp___0 = p2ts->cc; p2ts->cc = (unsigned char )((int )p2ts->cc + 1); *(buf + 3UL) = (unsigned char )(((int )((signed char )tmp___0) & 15) | 48); rest = 183 - len; if (rest != 0) { *(buf + 5UL) = 0U; if (rest != 1) { { __memset((void *)buf + 6U, 255, (size_t )(rest + -1)); } } else { } } else { } { *(buf + 4UL) = (unsigned char )rest; __memcpy((void *)(buf + ((unsigned long )rest + 5UL)), (void const *)pes, (size_t )len); tmp___1 = (*(p2ts->cb))(p2ts->priv, buf); } return (tmp___1); } } static char const __kstrtab_dvb_filter_pes2ts[18U] = { 'd', 'v', 'b', '_', 'f', 'i', 'l', 't', 'e', 'r', '_', 'p', 'e', 's', '2', 't', 's', '\000'}; struct kernel_symbol const __ksymtab_dvb_filter_pes2ts ; struct kernel_symbol const __ksymtab_dvb_filter_pes2ts = {(unsigned long )(& dvb_filter_pes2ts), (char const *)(& __kstrtab_dvb_filter_pes2ts)}; void ldv_linux_usb_dev_atomic_inc(atomic_t *v ) ; void ldv_linux_usb_dev_atomic_dec(atomic_t *v ) ; static void ldv_mutex_lock_121___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_125(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_128(struct mutex *ldv_func_arg1 ) ; static int ldv_mutex_lock_interruptible_124(struct mutex *ldv_func_arg1 ) ; int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_ioctl_mutex_of_dvb_ca_private(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_ioctl_mutex_of_dvb_ca_private(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_lock_slot_lock_of_dvb_ca_slot(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_slot_lock_of_dvb_ca_slot(struct mutex *lock ) ; __inline static struct task_struct *get_current___0(void) { struct task_struct *pfo_ret__ ; { { if (8UL == 1UL) { goto case_1; } else { } if (8UL == 2UL) { goto case_2; } else { } if (8UL == 4UL) { goto case_4; } else { } if (8UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "p" (& current_task)); goto ldv_3722; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_3722; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_3722; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_3722; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_3722: ; return (pfo_ret__); } } extern int strncmp(char const * , char const * , __kernel_size_t ) ; __inline static long PTR_ERR(void const *ptr ) ; extern void __xchg_wrong_size(void) ; __inline static int atomic_read(atomic_t const *v ) { int __var ; { __var = 0; return ((int )*((int const volatile *)(& v->counter))); } } __inline static void atomic_set(atomic_t *v , int i ) { { v->counter = i; return; } } __inline static void atomic_inc(atomic_t *v ) ; __inline static void atomic_dec(atomic_t *v ) ; static void ldv_mutex_unlock_123___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_126___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_127___1(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_129___1(struct mutex *ldv_func_arg1 ) ; static void *ldv_vmalloc_122(unsigned long ldv_func_arg1 ) ; extern void msleep(unsigned int ) ; extern long schedule_timeout(long ) ; extern int wake_up_process(struct task_struct * ) ; __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; static bool ldv_try_module_get_130(struct module *ldv_func_arg1 ) ; static void ldv_module_put_131(struct module *ldv_func_arg1 ) ; static void ldv_module_put_132(struct module *ldv_func_arg1 ) ; extern struct task_struct *kthread_create_on_node(int (*)(void * ) , void * , int , char const * , ...) ; extern int kthread_stop(struct task_struct * ) ; extern bool kthread_should_stop(void) ; void dvb_ca_en50221_camchange_irq(struct dvb_ca_en50221 *pubca , int slot , int change_type ) ; void dvb_ca_en50221_camready_irq(struct dvb_ca_en50221 *pubca , int slot ) ; void dvb_ca_en50221_frda_irq(struct dvb_ca_en50221 *pubca , int slot ) ; int dvb_ca_en50221_init(struct dvb_adapter *dvb_adapter , struct dvb_ca_en50221 *pubca , int flags , int slot_count ) ; void dvb_ca_en50221_release(struct dvb_ca_en50221 *pubca ) ; ssize_t dvb_ringbuffer_pkt_write(struct dvb_ringbuffer *rbuf , u8 *buf , size_t len ) ; ssize_t dvb_ringbuffer_pkt_read_user(struct dvb_ringbuffer *rbuf , size_t idx , int offset , u8 *buf , size_t len ) ; ssize_t dvb_ringbuffer_pkt_read(struct dvb_ringbuffer *rbuf , size_t idx , int offset , u8 *buf , size_t len ) ; void dvb_ringbuffer_pkt_dispose(struct dvb_ringbuffer *rbuf , size_t idx ) ; ssize_t dvb_ringbuffer_pkt_next(struct dvb_ringbuffer *rbuf , size_t idx , size_t *pktlen ) ; static int dvb_ca_en50221_debug ; static void dvb_ca_en50221_thread_wakeup(struct dvb_ca_private *ca ) ; static int dvb_ca_en50221_read_data(struct dvb_ca_private *ca , int slot , u8 *ebuf , int ecount ) ; static int dvb_ca_en50221_write_data(struct dvb_ca_private *ca , int slot , u8 *buf , int bytes_write ) ; static char *findstr(char *haystack , int hlen , char *needle , int nlen ) { int i ; int tmp ; { if (hlen < nlen) { return ((char *)0); } else { } i = 0; goto ldv_46427; ldv_46426: { tmp = strncmp((char const *)haystack + (unsigned long )i, (char const *)needle, (__kernel_size_t )nlen); } if (tmp == 0) { return (haystack + (unsigned long )i); } else { } i = i + 1; ldv_46427: ; if (i <= hlen - nlen) { goto ldv_46426; } else { } return ((char *)0); } } static int dvb_ca_en50221_check_camstatus(struct dvb_ca_private *ca , int slot ) { int slot_status ; int cam_present_now ; int cam_changed ; int tmp ; int cam_present_old ; { if ((int )ca->flags & 1) { { tmp = atomic_read((atomic_t const *)(& (ca->slot_info + (unsigned long )slot)->camchange_count)); } return (tmp != 0); } else { } { slot_status = (*((ca->pub)->poll_slot_status))(ca->pub, slot, (int )ca->open); cam_present_now = slot_status & 1; cam_changed = (slot_status & 2) != 0; } if (cam_changed == 0) { cam_present_old = (ca->slot_info + (unsigned long )slot)->slot_state != 0; cam_changed = cam_present_now != cam_present_old; } else { } if (cam_changed != 0) { if (cam_present_now == 0) { (ca->slot_info + (unsigned long )slot)->camchange_type = 0; } else { (ca->slot_info + (unsigned long )slot)->camchange_type = 1; } { atomic_set(& (ca->slot_info + (unsigned long )slot)->camchange_count, 1); } } else if ((ca->slot_info + (unsigned long )slot)->slot_state == 4 && (slot_status & 4) != 0) { (ca->slot_info + (unsigned long )slot)->slot_state = 5; } else { } return (cam_changed); } } static int dvb_ca_en50221_wait_if_status(struct dvb_ca_private *ca , int slot , u8 waitfor , int timeout_hz ) { unsigned long timeout ; unsigned long start ; int res ; int tmp ; { if (dvb_ca_en50221_debug != 0) { { printk("%s\n", "dvb_ca_en50221_wait_if_status"); } } else { } start = jiffies; timeout = (unsigned long )jiffies + (unsigned long )timeout_hz; ldv_46454: { tmp = (*((ca->pub)->read_cam_control))(ca->pub, slot, 1); res = tmp; } if (res < 0) { return (-5); } else { } if ((res & (int )waitfor) != 0) { if (dvb_ca_en50221_debug != 0) { { printk("%s succeeded timeout:%lu\n", "dvb_ca_en50221_wait_if_status", (unsigned long )jiffies - start); } } else { } return (0); } else { } if ((long )(timeout - (unsigned long )jiffies) < 0L) { goto ldv_46453; } else { } { msleep(1U); } goto ldv_46454; ldv_46453: ; if (dvb_ca_en50221_debug != 0) { { printk("%s failed timeout:%lu\n", "dvb_ca_en50221_wait_if_status", (unsigned long )jiffies - start); } } else { } return (-110); } } static int dvb_ca_en50221_link_init(struct dvb_ca_private *ca , int slot ) { int ret ; int buf_size ; u8 buf[2U] ; { if (dvb_ca_en50221_debug != 0) { { printk("%s\n", "dvb_ca_en50221_link_init"); } } else { } { (ca->slot_info + (unsigned long )slot)->da_irq_supported = 0U; (ca->slot_info + (unsigned long )slot)->link_buf_size = 2; ret = (*((ca->pub)->write_cam_control))(ca->pub, slot, 1, 132); } if (ret != 0) { return (ret); } else { } { ret = dvb_ca_en50221_wait_if_status(ca, slot, 128, 25); } if (ret != 0) { return (ret); } else { } { ret = dvb_ca_en50221_read_data(ca, slot, (u8 *)(& buf), 2); } if (ret != 2) { return (-5); } else { } { ret = (*((ca->pub)->write_cam_control))(ca->pub, slot, 1, 128); } if (ret != 0) { return (ret); } else { } buf_size = ((int )buf[0] << 8) | (int )buf[1]; if (buf_size > 512) { buf_size = 512; } else { } (ca->slot_info + (unsigned long )slot)->link_buf_size = buf_size; buf[0] = (u8 )(buf_size >> 8); buf[1] = (u8 )buf_size; if (dvb_ca_en50221_debug != 0) { { printk("Chosen link buffer size of %i\n", buf_size); } } else { } { ret = (*((ca->pub)->write_cam_control))(ca->pub, slot, 1, 130); } if (ret != 0) { return (ret); } else { } { ret = dvb_ca_en50221_wait_if_status(ca, slot, 64, 25); } if (ret != 0) { return (ret); } else { } { ret = dvb_ca_en50221_write_data(ca, slot, (u8 *)(& buf), 2); } if (ret != 2) { return (-5); } else { } { ret = (*((ca->pub)->write_cam_control))(ca->pub, slot, 1, 128); } if (ret != 0) { return (ret); } else { } return (0); } } static int dvb_ca_en50221_read_tuple(struct dvb_ca_private *ca , int slot , int *address , int *tupleType , int *tupleLength , u8 *tuple ) { int i ; int _tupleType ; int _tupleLength ; int _address ; int tmp ; { { _address = *address; _tupleType = (*((ca->pub)->read_attribute_mem))(ca->pub, slot, _address); } if (_tupleType < 0) { return (_tupleType); } else { } if (_tupleType == 255) { if (dvb_ca_en50221_debug != 0) { { printk("END OF CHAIN TUPLE type:0x%x\n", _tupleType); } } else { } *address = *address + 2; *tupleType = _tupleType; *tupleLength = 0; return (0); } else { } { _tupleLength = (*((ca->pub)->read_attribute_mem))(ca->pub, slot, _address + 2); } if (_tupleLength < 0) { return (_tupleLength); } else { } _address = _address + 4; if (dvb_ca_en50221_debug != 0) { { printk("TUPLE type:0x%x length:%i\n", _tupleType, _tupleLength); } } else { } i = 0; goto ldv_46476; ldv_46475: { tmp = (*((ca->pub)->read_attribute_mem))(ca->pub, slot, _address + i * 2); *(tuple + (unsigned long )i) = (u8 )tmp; } if (dvb_ca_en50221_debug != 0) { { printk(" 0x%02x: 0x%02x %c\n", i, (int )*(tuple + (unsigned long )i), (unsigned int )*(tuple + (unsigned long )i) - 32U <= 94U ? (int )*(tuple + (unsigned long )i) : 46); } } else { } i = i + 1; ldv_46476: ; if (i < _tupleLength) { goto ldv_46475; } else { } _address = _address + _tupleLength * 2; *tupleType = _tupleType; *tupleLength = _tupleLength; *address = _address; return (0); } } static int dvb_ca_en50221_parse_attributes(struct dvb_ca_private *ca , int slot ) { int address ; int tupleLength ; int tupleType ; u8 tuple[257U] ; char *dvb_str ; int rasz ; int status ; int got_cftableentry ; int end_chain ; int i ; u16 manfid ; u16 devid ; int tmp ; char *tmp___0 ; char *tmp___1 ; { { address = 0; got_cftableentry = 0; end_chain = 0; manfid = 0U; devid = 0U; status = dvb_ca_en50221_read_tuple(ca, slot, & address, & tupleType, & tupleLength, (u8 *)(& tuple)); } if (status < 0) { return (status); } else { } if (tupleType != 29) { return (-22); } else { } { status = dvb_ca_en50221_read_tuple(ca, slot, & address, & tupleType, & tupleLength, (u8 *)(& tuple)); } if (status < 0) { return (status); } else { } if (tupleType != 28) { return (-22); } else { } { status = dvb_ca_en50221_read_tuple(ca, slot, & address, & tupleType, & tupleLength, (u8 *)(& tuple)); } if (status < 0) { return (status); } else { } if (tupleType != 21) { return (-22); } else { } { status = dvb_ca_en50221_read_tuple(ca, slot, & address, & tupleType, & tupleLength, (u8 *)(& tuple)); } if (status < 0) { return (status); } else { } if (tupleType != 32) { return (-22); } else { } if (tupleLength != 4) { return (-22); } else { } { manfid = (u16 )((int )((short )((int )tuple[1] << 8)) | (int )((short )tuple[0])); devid = (u16 )((int )((short )((int )tuple[3] << 8)) | (int )((short )tuple[2])); status = dvb_ca_en50221_read_tuple(ca, slot, & address, & tupleType, & tupleLength, (u8 *)(& tuple)); } if (status < 0) { return (status); } else { } if (tupleType != 26) { return (-22); } else { } if (tupleLength <= 2) { return (-22); } else { } rasz = (int )tuple[0] & 3; if (tupleLength < rasz + 17) { return (-22); } else { } (ca->slot_info + (unsigned long )slot)->config_base = 0U; i = 0; goto ldv_46495; ldv_46494: (ca->slot_info + (unsigned long )slot)->config_base = (ca->slot_info + (unsigned long )slot)->config_base | (u32 )((int )tuple[i + 2] << i * 8); i = i + 1; ldv_46495: ; if (i < rasz + 1) { goto ldv_46494; } else { } { dvb_str = findstr((char *)(& tuple), tupleLength, (char *)"DVB_CI_V", 8); } if ((unsigned long )dvb_str == (unsigned long )((char *)0)) { return (-22); } else { } if ((long )tupleLength < ((long )dvb_str - (long )(& tuple)) + 12L) { return (-22); } else { } { tmp = strncmp((char const *)dvb_str + 8U, "1.00", 4UL); } if (tmp != 0) { { printk("dvb_ca adapter %d: Unsupported DVB CAM module version %c%c%c%c\n", ((ca->dvbdev)->adapter)->num, (int )*(dvb_str + 8UL), (int )*(dvb_str + 9UL), (int )*(dvb_str + 10UL), (int )*(dvb_str + 11UL)); } return (-22); } else { } goto ldv_46503; ldv_46502: { status = dvb_ca_en50221_read_tuple(ca, slot, & address, & tupleType, & tupleLength, (u8 *)(& tuple)); } if (status < 0) { return (status); } else { } { if (tupleType == 27) { goto case_27; } else { } if (tupleType == 20) { goto case_20; } else { } if (tupleType == 255) { goto case_255; } else { } goto switch_default; case_27: /* CIL Label */ ; if (tupleLength <= 29) { goto ldv_46498; } else { } if (got_cftableentry != 0) { goto ldv_46498; } else { } { (ca->slot_info + (unsigned long )slot)->config_option = (unsigned int )tuple[0] & 63U; tmp___0 = findstr((char *)(& tuple), tupleLength, (char *)"DVB_HOST", 8); } if ((unsigned long )tmp___0 == (unsigned long )((char *)0)) { goto ldv_46498; } else { { tmp___1 = findstr((char *)(& tuple), tupleLength, (char *)"DVB_CI_MODULE", 13); } if ((unsigned long )tmp___1 == (unsigned long )((char *)0)) { goto ldv_46498; } else { } } got_cftableentry = 1; goto ldv_46498; case_20: /* CIL Label */ ; goto ldv_46498; case_255: /* CIL Label */ end_chain = 1; goto ldv_46498; switch_default: /* CIL Label */ ; if (dvb_ca_en50221_debug != 0) { { printk("dvb_ca: Skipping unknown tuple type:0x%x length:0x%x\n", tupleType, tupleLength); } } else { } goto ldv_46498; switch_break: /* CIL Label */ ; } ldv_46498: ; ldv_46503: ; if (end_chain == 0 && address <= 4095) { goto ldv_46502; } else { } if (address > 4096 || got_cftableentry == 0) { return (-22); } else { } if (dvb_ca_en50221_debug != 0) { { printk("Valid DVB CAM detected MANID:%x DEVID:%x CONFIGBASE:0x%x CONFIGOPTION:0x%x\n", (int )manfid, (int )devid, (ca->slot_info + (unsigned long )slot)->config_base, (int )(ca->slot_info + (unsigned long )slot)->config_option); } } else { } return (0); } } static int dvb_ca_en50221_set_configoption(struct dvb_ca_private *ca , int slot ) { int configoption ; { if (dvb_ca_en50221_debug != 0) { { printk("%s\n", "dvb_ca_en50221_set_configoption"); } } else { } { (*((ca->pub)->write_attribute_mem))(ca->pub, slot, (int )(ca->slot_info + (unsigned long )slot)->config_base, (int )(ca->slot_info + (unsigned long )slot)->config_option); configoption = (*((ca->pub)->read_attribute_mem))(ca->pub, slot, (int )(ca->slot_info + (unsigned long )slot)->config_base); } if (dvb_ca_en50221_debug != 0) { { printk("Set configoption 0x%x, read configoption 0x%x\n", (int )(ca->slot_info + (unsigned long )slot)->config_option, configoption & 63); } } else { } return (0); } } static int dvb_ca_en50221_read_data(struct dvb_ca_private *ca , int slot , u8 *ebuf , int ecount ) { int bytes_read ; int status ; u8 buf[512U] ; int i ; int buf_free ; ssize_t tmp ; { if (dvb_ca_en50221_debug != 0) { { printk("%s\n", "dvb_ca_en50221_read_data"); } } else { } if ((unsigned long )ebuf == (unsigned long )((u8 *)0U)) { if ((unsigned long )(ca->slot_info + (unsigned long )slot)->rx_buffer.data == (unsigned long )((u8 *)0U)) { status = -5; goto exit; } else { } { tmp = dvb_ringbuffer_free(& (ca->slot_info + (unsigned long )slot)->rx_buffer); buf_free = (int )tmp; } if (buf_free < (ca->slot_info + (unsigned long )slot)->link_buf_size + 3) { status = -11; goto exit; } else { } } else { } { status = (*((ca->pub)->read_cam_control))(ca->pub, slot, 1); } if (status < 0) { goto exit; } else { } if ((status & 128) == 0) { status = 0; goto exit; } else { } { status = (*((ca->pub)->read_cam_control))(ca->pub, slot, 3); } if (status < 0) { goto exit; } else { } { bytes_read = status << 8; status = (*((ca->pub)->read_cam_control))(ca->pub, slot, 2); } if (status < 0) { goto exit; } else { } bytes_read = bytes_read | status; if ((unsigned long )ebuf == (unsigned long )((u8 *)0U)) { if (bytes_read > (ca->slot_info + (unsigned long )slot)->link_buf_size) { { printk("dvb_ca adapter %d: CAM tried to send a buffer larger than the link buffer size (%i > %i)!\n", ((ca->dvbdev)->adapter)->num, bytes_read, (ca->slot_info + (unsigned long )slot)->link_buf_size); (ca->slot_info + (unsigned long )slot)->slot_state = 7; status = -5; } goto exit; } else { } if (bytes_read <= 1) { { printk("dvb_ca adapter %d: CAM sent a buffer that was less than 2 bytes!\n", ((ca->dvbdev)->adapter)->num); (ca->slot_info + (unsigned long )slot)->slot_state = 7; status = -5; } goto exit; } else { } } else if (bytes_read > ecount) { { printk("dvb_ca adapter %d: CAM tried to send a buffer larger than the ecount size!\n", ((ca->dvbdev)->adapter)->num); status = -5; } goto exit; } else { } i = 0; goto ldv_46525; ldv_46524: { status = (*((ca->pub)->read_cam_control))(ca->pub, slot, 0); } if (status < 0) { goto exit; } else { } buf[i] = (u8 )status; i = i + 1; ldv_46525: ; if (i < bytes_read) { goto ldv_46524; } else { } { status = (*((ca->pub)->read_cam_control))(ca->pub, slot, 1); } if (status < 0) { goto exit; } else { } if (status & 1) { (ca->slot_info + (unsigned long )slot)->slot_state = 7; status = -5; goto exit; } else { } if ((unsigned long )ebuf == (unsigned long )((u8 *)0U)) { if ((unsigned long )(ca->slot_info + (unsigned long )slot)->rx_buffer.data == (unsigned long )((u8 *)0U)) { status = -5; goto exit; } else { } { dvb_ringbuffer_pkt_write(& (ca->slot_info + (unsigned long )slot)->rx_buffer, (u8 *)(& buf), (size_t )bytes_read); } } else { { __memcpy((void *)ebuf, (void const *)(& buf), (size_t )bytes_read); } } if (dvb_ca_en50221_debug != 0) { { printk("Received CA packet for slot %i connection id 0x%x last_frag:%i size:0x%x\n", slot, (int )buf[0], (int )((signed char )buf[1]) >= 0, bytes_read); } } else { } if ((int )((signed char )buf[1]) >= 0) { { __wake_up(& ca->wait_queue, 1U, 1, (void *)0); } } else { } status = bytes_read; exit: ; return (status); } } static int dvb_ca_en50221_write_data(struct dvb_ca_private *ca , int slot , u8 *buf , int bytes_write ) { int status ; int i ; { if (dvb_ca_en50221_debug != 0) { { printk("%s\n", "dvb_ca_en50221_write_data"); } } else { } if (bytes_write > (ca->slot_info + (unsigned long )slot)->link_buf_size) { return (-22); } else { } { status = (*((ca->pub)->read_cam_control))(ca->pub, slot, 1); } if (status < 0) { goto exitnowrite; } else { } if ((status & 129) != 0) { if ((status & 128) != 0) { { dvb_ca_en50221_thread_wakeup(ca); } } else { } status = -11; goto exitnowrite; } else { } { status = (*((ca->pub)->write_cam_control))(ca->pub, slot, 1, 129); } if (status != 0) { goto exit; } else { } { status = (*((ca->pub)->read_cam_control))(ca->pub, slot, 1); } if (status < 0) { goto exit; } else { } if ((status & 64) == 0) { status = -11; goto exit; } else { } { status = (*((ca->pub)->write_cam_control))(ca->pub, slot, 3, (int )((u8 )(bytes_write >> 8))); } if (status != 0) { goto exit; } else { } { status = (*((ca->pub)->write_cam_control))(ca->pub, slot, 2, (int )((u8 )bytes_write)); } if (status != 0) { goto exit; } else { } i = 0; goto ldv_46539; ldv_46538: { status = (*((ca->pub)->write_cam_control))(ca->pub, slot, 0, (int )*(buf + (unsigned long )i)); } if (status != 0) { goto exit; } else { } i = i + 1; ldv_46539: ; if (i < bytes_write) { goto ldv_46538; } else { } { status = (*((ca->pub)->read_cam_control))(ca->pub, slot, 1); } if (status < 0) { goto exit; } else { } if ((status & 2) != 0) { (ca->slot_info + (unsigned long )slot)->slot_state = 7; status = -5; goto exit; } else { } status = bytes_write; if (dvb_ca_en50221_debug != 0) { { printk("Wrote CA packet for slot %i, connection id 0x%x last_frag:%i size:0x%x\n", slot, (int )*buf, (int )((signed char )*(buf + 1UL)) >= 0, bytes_write); } } else { } exit: { (*((ca->pub)->write_cam_control))(ca->pub, slot, 1, 128); } exitnowrite: ; return (status); } } static char const __kstrtab_dvb_ca_en50221_camchange_irq[29U] = { 'd', 'v', 'b', '_', 'c', 'a', '_', 'e', 'n', '5', '0', '2', '2', '1', '_', 'c', 'a', 'm', 'c', 'h', 'a', 'n', 'g', 'e', '_', 'i', 'r', 'q', '\000'}; struct kernel_symbol const __ksymtab_dvb_ca_en50221_camchange_irq ; struct kernel_symbol const __ksymtab_dvb_ca_en50221_camchange_irq = {(unsigned long )(& dvb_ca_en50221_camchange_irq), (char const *)(& __kstrtab_dvb_ca_en50221_camchange_irq)}; static int dvb_ca_en50221_slot_shutdown(struct dvb_ca_private *ca , int slot ) { { if (dvb_ca_en50221_debug != 0) { { printk("%s\n", "dvb_ca_en50221_slot_shutdown"); } } else { } { (*((ca->pub)->slot_shutdown))(ca->pub, slot); (ca->slot_info + (unsigned long )slot)->slot_state = 0; __wake_up(& ca->wait_queue, 1U, 1, (void *)0); } if (dvb_ca_en50221_debug != 0) { { printk("Slot %i shutdown\n", slot); } } else { } return (0); } } static char const __kstrtab_dvb_ca_en50221_camready_irq[28U] = { 'd', 'v', 'b', '_', 'c', 'a', '_', 'e', 'n', '5', '0', '2', '2', '1', '_', 'c', 'a', 'm', 'r', 'e', 'a', 'd', 'y', '_', 'i', 'r', 'q', '\000'}; struct kernel_symbol const __ksymtab_dvb_ca_en50221_camready_irq ; struct kernel_symbol const __ksymtab_dvb_ca_en50221_camready_irq = {(unsigned long )(& dvb_ca_en50221_camready_irq), (char const *)(& __kstrtab_dvb_ca_en50221_camready_irq)}; void dvb_ca_en50221_camchange_irq(struct dvb_ca_en50221 *pubca , int slot , int change_type ) { struct dvb_ca_private *ca ; { ca = (struct dvb_ca_private *)pubca->private; if (dvb_ca_en50221_debug != 0) { { printk("CAMCHANGE IRQ slot:%i change_type:%i\n", slot, change_type); } } else { } { if (change_type == 0) { goto case_0; } else { } if (change_type == 1) { goto case_1; } else { } goto switch_default; case_0: /* CIL Label */ ; case_1: /* CIL Label */ ; goto ldv_46566; switch_default: /* CIL Label */ ; return; switch_break: /* CIL Label */ ; } ldv_46566: { (ca->slot_info + (unsigned long )slot)->camchange_type = change_type; atomic_inc(& (ca->slot_info + (unsigned long )slot)->camchange_count); dvb_ca_en50221_thread_wakeup(ca); } return; } } static char const __kstrtab_dvb_ca_en50221_frda_irq[24U] = { 'd', 'v', 'b', '_', 'c', 'a', '_', 'e', 'n', '5', '0', '2', '2', '1', '_', 'f', 'r', 'd', 'a', '_', 'i', 'r', 'q', '\000'}; struct kernel_symbol const __ksymtab_dvb_ca_en50221_frda_irq ; struct kernel_symbol const __ksymtab_dvb_ca_en50221_frda_irq = {(unsigned long )(& dvb_ca_en50221_frda_irq), (char const *)(& __kstrtab_dvb_ca_en50221_frda_irq)}; void dvb_ca_en50221_camready_irq(struct dvb_ca_en50221 *pubca , int slot ) { struct dvb_ca_private *ca ; { ca = (struct dvb_ca_private *)pubca->private; if (dvb_ca_en50221_debug != 0) { { printk("CAMREADY IRQ slot:%i\n", slot); } } else { } if ((ca->slot_info + (unsigned long )slot)->slot_state == 4) { { (ca->slot_info + (unsigned long )slot)->slot_state = 5; dvb_ca_en50221_thread_wakeup(ca); } } else { } return; } } void dvb_ca_en50221_frda_irq(struct dvb_ca_en50221 *pubca , int slot ) { struct dvb_ca_private *ca ; int flags ; { ca = (struct dvb_ca_private *)pubca->private; if (dvb_ca_en50221_debug != 0) { { printk("FR/DA IRQ slot:%i\n", slot); } } else { } { if ((ca->slot_info + (unsigned long )slot)->slot_state == 7) { goto case_7; } else { } if ((ca->slot_info + (unsigned long )slot)->slot_state == 2) { goto case_2; } else { } goto switch_break; case_7: /* CIL Label */ { flags = (*((ca->pub)->read_cam_control))(pubca, slot, 1); } if ((flags & 128) != 0) { if (dvb_ca_en50221_debug != 0) { { printk("CAM supports DA IRQ\n"); } } else { } (ca->slot_info + (unsigned long )slot)->da_irq_supported = 1U; } else { } goto ldv_46586; case_2: /* CIL Label */ ; if ((unsigned int )*((unsigned char *)ca + 128UL) != 0U) { { dvb_ca_en50221_thread_wakeup(ca); } } else { } goto ldv_46586; switch_break: /* CIL Label */ ; } ldv_46586: ; return; } } static void dvb_ca_en50221_thread_wakeup(struct dvb_ca_private *ca ) { { if (dvb_ca_en50221_debug != 0) { { printk("%s\n", "dvb_ca_en50221_thread_wakeup"); } } else { } { ca->wakeup = 1U; __asm__ volatile ("mfence": : : "memory"); wake_up_process(ca->thread); } return; } } static void dvb_ca_en50221_thread_update_delay(struct dvb_ca_private *ca ) { int delay ; int curdelay ; int slot ; { curdelay = 100000000; slot = 0; goto ldv_46609; ldv_46608: ; { if ((ca->slot_info + (unsigned long )slot)->slot_state == 0) { goto case_0; } else { } if ((ca->slot_info + (unsigned long )slot)->slot_state == 3) { goto case_3; } else { } if ((ca->slot_info + (unsigned long )slot)->slot_state == 1) { goto case_1; } else { } if ((ca->slot_info + (unsigned long )slot)->slot_state == 4) { goto case_4; } else { } if ((ca->slot_info + (unsigned long )slot)->slot_state == 5) { goto case_5; } else { } if ((ca->slot_info + (unsigned long )slot)->slot_state == 6) { goto case_6; } else { } if ((ca->slot_info + (unsigned long )slot)->slot_state == 7) { goto case_7; } else { } if ((ca->slot_info + (unsigned long )slot)->slot_state == 2) { goto case_2; } else { } goto switch_default; switch_default: /* CIL Label */ ; case_0: /* CIL Label */ delay = 15000; if ((ca->flags & 1U) == 0U) { delay = 1250; } else { } goto ldv_46600; case_3: /* CIL Label */ delay = 15000; if ((ca->flags & 1U) == 0U) { delay = 25; } else { } goto ldv_46600; case_1: /* CIL Label */ ; case_4: /* CIL Label */ ; case_5: /* CIL Label */ ; case_6: /* CIL Label */ ; case_7: /* CIL Label */ delay = 25; goto ldv_46600; case_2: /* CIL Label */ delay = 15000; if ((ca->flags & 1U) == 0U) { delay = 25; } else { } if ((unsigned int )*((unsigned char *)ca + 128UL) != 0U) { if ((unsigned int )*((unsigned char *)(ca->slot_info + (unsigned long )slot) + 181UL) == 0U || (ca->flags & 4U) == 0U) { delay = 25; } else { } } else { } goto ldv_46600; switch_break: /* CIL Label */ ; } ldv_46600: ; if (delay < curdelay) { curdelay = delay; } else { } slot = slot + 1; ldv_46609: ; if ((unsigned int )slot < ca->slot_count) { goto ldv_46608; } else { } ca->delay = (unsigned long )curdelay; return; } } static int dvb_ca_en50221_thread(void *data ) { struct dvb_ca_private *ca ; int slot ; int flags ; int status ; int pktcount ; void *rxbuf ; struct task_struct *tmp ; long volatile __ret ; struct task_struct *tmp___0 ; struct task_struct *tmp___1 ; struct task_struct *tmp___2 ; struct task_struct *tmp___3 ; bool tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; bool tmp___11 ; int tmp___12 ; { ca = (struct dvb_ca_private *)data; if (dvb_ca_en50221_debug != 0) { { printk("%s\n", "dvb_ca_en50221_thread"); } } else { } { dvb_ca_en50221_thread_update_delay(ca); } goto ldv_46662; ldv_46661: ; if ((unsigned int )*((unsigned char *)ca + 128UL) == 0U) { { tmp = get_current___0(); } tmp->task_state_change = (unsigned long )((void *)0); __ret = 1L; { if (8UL == 1UL) { goto case_1; } else { } if (8UL == 2UL) { goto case_2; } else { } if (8UL == 4UL) { goto case_4; } else { } if (8UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___0 = get_current___0(); __asm__ volatile ("xchgb %b0, %1\n": "+q" (__ret), "+m" (tmp___0->state): : "memory", "cc"); } goto ldv_46625; case_2: /* CIL Label */ { tmp___1 = get_current___0(); __asm__ volatile ("xchgw %w0, %1\n": "+r" (__ret), "+m" (tmp___1->state): : "memory", "cc"); } goto ldv_46625; case_4: /* CIL Label */ { tmp___2 = get_current___0(); __asm__ volatile ("xchgl %0, %1\n": "+r" (__ret), "+m" (tmp___2->state): : "memory", "cc"); } goto ldv_46625; case_8: /* CIL Label */ { tmp___3 = get_current___0(); __asm__ volatile ("xchgq %q0, %1\n": "+r" (__ret), "+m" (tmp___3->state): : "memory", "cc"); } goto ldv_46625; switch_default: /* CIL Label */ { __xchg_wrong_size(); } switch_break: /* CIL Label */ ; } ldv_46625: { schedule_timeout((long )ca->delay); tmp___4 = kthread_should_stop(); } if ((int )tmp___4) { return (0); } else { } } else { } ca->wakeup = 0U; slot = 0; goto ldv_46659; ldv_46658: { ldv_mutex_lock_121___0(& (ca->slot_info + (unsigned long )slot)->slot_lock); } goto ldv_46632; ldv_46631: ; if ((ca->slot_info + (unsigned long )slot)->slot_state != 0) { { dvb_ca_en50221_slot_shutdown(ca, slot); } } else { } if ((ca->slot_info + (unsigned long )slot)->camchange_type == 1) { (ca->slot_info + (unsigned long )slot)->slot_state = 1; } else { } { dvb_ca_en50221_thread_update_delay(ca); atomic_dec(& (ca->slot_info + (unsigned long )slot)->camchange_count); } ldv_46632: { tmp___5 = dvb_ca_en50221_check_camstatus(ca, slot); } if (tmp___5 != 0) { goto ldv_46631; } else { } { if ((ca->slot_info + (unsigned long )slot)->slot_state == 0) { goto case_0; } else { } if ((ca->slot_info + (unsigned long )slot)->slot_state == 3) { goto case_3; } else { } if ((ca->slot_info + (unsigned long )slot)->slot_state == 1) { goto case_1___0; } else { } if ((ca->slot_info + (unsigned long )slot)->slot_state == 4) { goto case_4___0; } else { } if ((ca->slot_info + (unsigned long )slot)->slot_state == 5) { goto case_5; } else { } if ((ca->slot_info + (unsigned long )slot)->slot_state == 6) { goto case_6; } else { } if ((ca->slot_info + (unsigned long )slot)->slot_state == 7) { goto case_7; } else { } if ((ca->slot_info + (unsigned long )slot)->slot_state == 2) { goto case_2___0; } else { } goto switch_break___0; case_0: /* CIL Label */ ; case_3: /* CIL Label */ ; goto ldv_46636; case_1___0: /* CIL Label */ { (ca->slot_info + (unsigned long )slot)->slot_state = 4; (*((ca->pub)->slot_reset))(ca->pub, slot); (ca->slot_info + (unsigned long )slot)->timeout = (unsigned long )jiffies + 2500UL; } goto ldv_46636; case_4___0: /* CIL Label */ ; if ((long )((ca->slot_info + (unsigned long )slot)->timeout - (unsigned long )jiffies) < 0L) { { printk("dvb_ca adaptor %d: PC card did not respond :(\n", ((ca->dvbdev)->adapter)->num); (ca->slot_info + (unsigned long )slot)->slot_state = 3; dvb_ca_en50221_thread_update_delay(ca); } goto ldv_46636; } else { } goto ldv_46636; case_5: /* CIL Label */ { tmp___6 = dvb_ca_en50221_parse_attributes(ca, slot); } if (tmp___6 != 0) { if ((ca->flags & 1U) == 0U && (unsigned long )(ca->pub)->poll_slot_status != (unsigned long )((int (*)(struct dvb_ca_en50221 * , int , int ))0)) { { status = (*((ca->pub)->poll_slot_status))(ca->pub, slot, 0); } if ((status & 1) == 0) { { (ca->slot_info + (unsigned long )slot)->slot_state = 0; dvb_ca_en50221_thread_update_delay(ca); } goto ldv_46636; } else { } } else { } { printk("dvb_ca adapter %d: Invalid PC card inserted :(\n", ((ca->dvbdev)->adapter)->num); (ca->slot_info + (unsigned long )slot)->slot_state = 3; dvb_ca_en50221_thread_update_delay(ca); } goto ldv_46636; } else { } { tmp___7 = dvb_ca_en50221_set_configoption(ca, slot); } if (tmp___7 != 0) { { printk("dvb_ca adapter %d: Unable to initialise CAM :(\n", ((ca->dvbdev)->adapter)->num); (ca->slot_info + (unsigned long )slot)->slot_state = 3; dvb_ca_en50221_thread_update_delay(ca); } goto ldv_46636; } else { } { tmp___8 = (*((ca->pub)->write_cam_control))(ca->pub, slot, 1, 8); } if (tmp___8 != 0) { { printk("dvb_ca adapter %d: Unable to reset CAM IF\n", ((ca->dvbdev)->adapter)->num); (ca->slot_info + (unsigned long )slot)->slot_state = 3; dvb_ca_en50221_thread_update_delay(ca); } goto ldv_46636; } else { } if (dvb_ca_en50221_debug != 0) { { printk("DVB CAM validated successfully\n"); } } else { } (ca->slot_info + (unsigned long )slot)->timeout = (unsigned long )jiffies + 2500UL; (ca->slot_info + (unsigned long )slot)->slot_state = 6; ca->wakeup = 1U; goto ldv_46636; case_6: /* CIL Label */ ; if ((long )((ca->slot_info + (unsigned long )slot)->timeout - (unsigned long )jiffies) < 0L) { { printk("dvb_ca adapter %d: DVB CAM did not respond :(\n", ((ca->dvbdev)->adapter)->num); (ca->slot_info + (unsigned long )slot)->slot_state = 3; dvb_ca_en50221_thread_update_delay(ca); } goto ldv_46636; } else { } { flags = (*((ca->pub)->read_cam_control))(ca->pub, slot, 1); } if ((flags & 64) != 0) { (ca->slot_info + (unsigned long )slot)->slot_state = 7; ca->wakeup = 1U; } else { } goto ldv_46636; case_7: /* CIL Label */ { tmp___9 = dvb_ca_en50221_link_init(ca, slot); } if (tmp___9 != 0) { if ((ca->flags & 1U) == 0U && (unsigned long )(ca->pub)->poll_slot_status != (unsigned long )((int (*)(struct dvb_ca_en50221 * , int , int ))0)) { { status = (*((ca->pub)->poll_slot_status))(ca->pub, slot, 0); } if ((status & 1) == 0) { { (ca->slot_info + (unsigned long )slot)->slot_state = 0; dvb_ca_en50221_thread_update_delay(ca); } goto ldv_46636; } else { } } else { } { printk("dvb_ca adapter %d: DVB CAM link initialisation failed :(\n", ((ca->dvbdev)->adapter)->num); (ca->slot_info + (unsigned long )slot)->slot_state = 3; dvb_ca_en50221_thread_update_delay(ca); } goto ldv_46636; } else { } if ((unsigned long )(ca->slot_info + (unsigned long )slot)->rx_buffer.data == (unsigned long )((u8 *)0U)) { { rxbuf = ldv_vmalloc_122(65535UL); } if ((unsigned long )rxbuf == (unsigned long )((void *)0)) { { printk("dvb_ca adapter %d: Unable to allocate CAM rx buffer :(\n", ((ca->dvbdev)->adapter)->num); (ca->slot_info + (unsigned long )slot)->slot_state = 3; dvb_ca_en50221_thread_update_delay(ca); } goto ldv_46636; } else { } { dvb_ringbuffer_init(& (ca->slot_info + (unsigned long )slot)->rx_buffer, rxbuf, 65535UL); } } else { } { (*((ca->pub)->slot_ts_enable))(ca->pub, slot); (ca->slot_info + (unsigned long )slot)->slot_state = 2; dvb_ca_en50221_thread_update_delay(ca); printk("dvb_ca adapter %d: DVB CAM detected and initialised successfully\n", ((ca->dvbdev)->adapter)->num); } goto ldv_46636; case_2___0: /* CIL Label */ ; if ((unsigned int )*((unsigned char *)ca + 128UL) == 0U) { goto ldv_46636; } else { } pktcount = 0; goto ldv_46657; ldv_46656: ; if ((unsigned int )*((unsigned char *)ca + 128UL) == 0U) { goto ldv_46655; } else { } { tmp___10 = dvb_ca_en50221_check_camstatus(ca, slot); } if (tmp___10 != 0) { ca->wakeup = 1U; goto ldv_46655; } else { } pktcount = pktcount + 1; if (pktcount > 9) { ca->wakeup = 1U; goto ldv_46655; } else { } ldv_46657: { status = dvb_ca_en50221_read_data(ca, slot, (u8 *)0U, 0); } if (status > 0) { goto ldv_46656; } else { } ldv_46655: ; goto ldv_46636; switch_break___0: /* CIL Label */ ; } ldv_46636: { ldv_mutex_unlock_123___0(& (ca->slot_info + (unsigned long )slot)->slot_lock); slot = slot + 1; } ldv_46659: ; if ((unsigned int )slot < ca->slot_count) { goto ldv_46658; } else { } ldv_46662: { tmp___11 = kthread_should_stop(); } if (tmp___11) { tmp___12 = 0; } else { tmp___12 = 1; } if (tmp___12) { goto ldv_46661; } else { } return (0); } } static int dvb_ca_en50221_io_do_ioctl(struct file *file , unsigned int cmd , void *parg ) { struct dvb_device *dvbdev ; struct dvb_ca_private *ca ; int err ; int slot ; int tmp ; struct ca_caps *caps ; struct ca_slot_info *info ; { dvbdev = (struct dvb_device *)file->private_data; ca = (struct dvb_ca_private *)dvbdev->priv; err = 0; if (dvb_ca_en50221_debug != 0) { { printk("%s\n", "dvb_ca_en50221_io_do_ioctl"); } } else { } { tmp = ldv_mutex_lock_interruptible_124(& ca->ioctl_mutex); } if (tmp != 0) { return (-512); } else { } { if (cmd == 28544U) { goto case_28544; } else { } if (cmd == 2148560769U) { goto case_2148560769; } else { } if (cmd == 2148298626U) { goto case_2148298626; } else { } goto switch_default; case_28544: /* CIL Label */ slot = 0; goto ldv_46676; ldv_46675: { ldv_mutex_lock_125(& (ca->slot_info + (unsigned long )slot)->slot_lock); } if ((ca->slot_info + (unsigned long )slot)->slot_state != 0) { { dvb_ca_en50221_slot_shutdown(ca, slot); } if ((int )ca->flags & 1) { { dvb_ca_en50221_camchange_irq(ca->pub, slot, 1); } } else { } } else { } { ldv_mutex_unlock_126___0(& (ca->slot_info + (unsigned long )slot)->slot_lock); slot = slot + 1; } ldv_46676: ; if ((unsigned int )slot < ca->slot_count) { goto ldv_46675; } else { } { ca->next_read_slot = 0; dvb_ca_en50221_thread_wakeup(ca); } goto ldv_46678; case_2148560769: /* CIL Label */ caps = (struct ca_caps *)parg; caps->slot_num = ca->slot_count; caps->slot_type = 2U; caps->descr_num = 0U; caps->descr_type = 0U; goto ldv_46678; case_2148298626: /* CIL Label */ info = (struct ca_slot_info *)parg; if ((unsigned int )info->num > ca->slot_count || info->num < 0) { err = -22; goto out_unlock; } else { } info->type = 2; info->flags = 0U; if ((ca->slot_info + (unsigned long )info->num)->slot_state != 0 && (ca->slot_info + (unsigned long )info->num)->slot_state != 3) { info->flags = 1U; } else { } if ((ca->slot_info + (unsigned long )info->num)->slot_state == 2) { info->flags = info->flags | 2U; } else { } goto ldv_46678; switch_default: /* CIL Label */ err = -22; goto ldv_46678; switch_break: /* CIL Label */ ; } ldv_46678: ; out_unlock: { ldv_mutex_unlock_127___1(& ca->ioctl_mutex); } return (err); } } static long dvb_ca_en50221_io_ioctl(struct file *file , unsigned int cmd , unsigned long arg ) { int tmp ; { { tmp = dvb_usercopy(file, cmd, arg, & dvb_ca_en50221_io_do_ioctl); } return ((long )tmp); } } static ssize_t dvb_ca_en50221_io_write(struct file *file , char const *buf , size_t count , loff_t *ppos ) { struct dvb_device *dvbdev ; struct dvb_ca_private *ca ; u8 slot ; u8 connection_id ; int status ; u8 fragbuf[512U] ; int fragpos ; int fraglen ; unsigned long timeout ; int written ; unsigned long tmp ; unsigned long tmp___0 ; unsigned long tmp___1 ; { dvbdev = (struct dvb_device *)file->private_data; ca = (struct dvb_ca_private *)dvbdev->priv; fragpos = 0; if (dvb_ca_en50221_debug != 0) { { printk("%s\n", "dvb_ca_en50221_io_write"); } } else { } if (count <= 1UL) { return (-22L); } else { } { tmp = copy_from_user((void *)(& slot), (void const *)buf, 1UL); } if (tmp != 0UL) { return (-14L); } else { } { tmp___0 = copy_from_user((void *)(& connection_id), (void const *)buf + 1U, 1UL); } if (tmp___0 != 0UL) { return (-14L); } else { } buf = buf + 2UL; count = count - 2UL; if ((ca->slot_info + (unsigned long )slot)->slot_state != 2) { return (-22L); } else { } goto ldv_46719; ldv_46718: fraglen = (ca->slot_info + (unsigned long )slot)->link_buf_size + -2; if (fraglen < 0) { goto ldv_46707; } else { } if (fraglen > 510) { fraglen = 510; } else { } if (count - (size_t )fragpos < (size_t )fraglen) { fraglen = (int )((unsigned int )count - (unsigned int )fragpos); } else { } { fragbuf[0] = connection_id; fragbuf[1] = (size_t )(fragpos + fraglen) < count ? 128U : 0U; tmp___1 = copy_from_user((void *)(& fragbuf) + 2U, (void const *)buf + (unsigned long )fragpos, (unsigned long )fraglen); status = (int )tmp___1; } if (status != 0) { status = -14; goto exit; } else { } timeout = (unsigned long )jiffies + 125UL; written = 0; goto ldv_46717; ldv_46716: ; if ((ca->slot_info + (unsigned long )slot)->slot_state != 2) { status = -5; goto exit; } else { } { ldv_mutex_lock_128(& (ca->slot_info + (unsigned long )slot)->slot_lock); status = dvb_ca_en50221_write_data(ca, (int )slot, (u8 *)(& fragbuf), fraglen + 2); ldv_mutex_unlock_129___1(& (ca->slot_info + (unsigned long )slot)->slot_lock); } if (status == fraglen + 2) { written = 1; goto ldv_46715; } else { } if (status != -11) { goto exit; } else { } { msleep(1U); } ldv_46717: ; if ((long )(timeout - (unsigned long )jiffies) >= 0L) { goto ldv_46716; } else { } ldv_46715: ; if (written == 0) { status = -5; goto exit; } else { } fragpos = fragpos + fraglen; ldv_46719: ; if ((size_t )fragpos < count) { goto ldv_46718; } else { } ldv_46707: status = (int )((unsigned int )count + 2U); exit: ; return ((ssize_t )status); } } static int dvb_ca_en50221_io_read_condition(struct dvb_ca_private *ca , int *result , int *_slot ) { int slot ; int slot_count ; int idx ; size_t fraglen ; int connection_id ; int found ; u8 hdr[2U] ; ssize_t tmp ; ssize_t tmp___0 ; { slot_count = 0; connection_id = -1; found = 0; slot = ca->next_read_slot; goto ldv_46737; ldv_46736: ; if ((ca->slot_info + (unsigned long )slot)->slot_state != 2) { goto nextslot; } else { } if ((unsigned long )(ca->slot_info + (unsigned long )slot)->rx_buffer.data == (unsigned long )((u8 *)0U)) { return (0); } else { } { tmp = dvb_ringbuffer_pkt_next(& (ca->slot_info + (unsigned long )slot)->rx_buffer, 0xffffffffffffffffUL, & fraglen); idx = (int )tmp; } goto ldv_46735; ldv_46734: { dvb_ringbuffer_pkt_read(& (ca->slot_info + (unsigned long )slot)->rx_buffer, (size_t )idx, 0, (u8 *)(& hdr), 2UL); } if (connection_id == -1) { connection_id = (int )hdr[0]; } else { } if ((int )hdr[0] == connection_id && (int )((signed char )hdr[1]) >= 0) { *_slot = slot; found = 1; goto ldv_46733; } else { } { tmp___0 = dvb_ringbuffer_pkt_next(& (ca->slot_info + (unsigned long )slot)->rx_buffer, (size_t )idx, & fraglen); idx = (int )tmp___0; } ldv_46735: ; if (idx != -1) { goto ldv_46734; } else { } ldv_46733: ; nextslot: slot = (int )((unsigned int )(slot + 1) % ca->slot_count); slot_count = slot_count + 1; ldv_46737: ; if ((unsigned int )slot_count < ca->slot_count && found == 0) { goto ldv_46736; } else { } ca->next_read_slot = slot; return (found); } } static ssize_t dvb_ca_en50221_io_read(struct file *file , char *buf , size_t count , loff_t *ppos ) { struct dvb_device *dvbdev ; struct dvb_ca_private *ca ; int status ; int result ; u8 hdr[2U] ; int slot ; int connection_id ; size_t idx ; size_t idx2 ; int last_fragment ; size_t fraglen ; int pktlen ; int dispose ; int __ret ; wait_queue_t __wait ; long __ret___0 ; long __int ; long tmp ; int tmp___0 ; int tmp___1 ; ssize_t tmp___2 ; ssize_t tmp___3 ; ssize_t tmp___4 ; unsigned long tmp___5 ; { dvbdev = (struct dvb_device *)file->private_data; ca = (struct dvb_ca_private *)dvbdev->priv; result = 0; connection_id = -1; last_fragment = 0; dispose = 0; if (dvb_ca_en50221_debug != 0) { { printk("%s\n", "dvb_ca_en50221_io_read"); } } else { } if (count <= 1UL) { return (-22L); } else { } { status = dvb_ca_en50221_io_read_condition(ca, & result, & slot); } if (status == 0) { if ((file->f_flags & 2048U) != 0U) { return (-11L); } else { } { __ret = 0; __might_sleep("drivers/media/dvb-core/dvb_ca_en50221.c", 1458, 0); tmp___1 = dvb_ca_en50221_io_read_condition(ca, & result, & slot); } if (tmp___1 == 0) { { __ret___0 = 0L; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; } ldv_46765: { tmp = prepare_to_wait_event(& ca->wait_queue, & __wait, 1); __int = tmp; tmp___0 = dvb_ca_en50221_io_read_condition(ca, & result, & slot); } if (tmp___0 != 0) { goto ldv_46764; } else { } if (__int != 0L) { __ret___0 = __int; goto ldv_46764; } else { } { schedule(); } goto ldv_46765; ldv_46764: { finish_wait(& ca->wait_queue, & __wait); } __ret = (int )__ret___0; } else { } status = __ret; } else { } if (status < 0 || result < 0) { if (result != 0) { return ((ssize_t )result); } else { } return ((ssize_t )status); } else { } { tmp___2 = dvb_ringbuffer_pkt_next(& (ca->slot_info + (unsigned long )slot)->rx_buffer, 0xffffffffffffffffUL, & fraglen); idx = (size_t )tmp___2; pktlen = 2; } ldv_46769: ; if (idx == 0xffffffffffffffffUL) { { printk("dvb_ca adapter %d: BUG: read packet ended before last_fragment encountered\n", ((ca->dvbdev)->adapter)->num); status = -5; } goto exit; } else { } { dvb_ringbuffer_pkt_read(& (ca->slot_info + (unsigned long )slot)->rx_buffer, idx, 0, (u8 *)(& hdr), 2UL); } if (connection_id == -1) { connection_id = (int )hdr[0]; } else { } if ((int )hdr[0] == connection_id) { if ((size_t )pktlen < count) { if (((size_t )pktlen + fraglen) - 2UL > count) { fraglen = count - (size_t )pktlen; } else { fraglen = fraglen - 2UL; } { tmp___3 = dvb_ringbuffer_pkt_read_user(& (ca->slot_info + (unsigned long )slot)->rx_buffer, idx, 2, (u8 *)buf + (unsigned long )pktlen, fraglen); status = (int )tmp___3; } if (status < 0) { goto exit; } else { } pktlen = (int )((unsigned int )pktlen + (unsigned int )fraglen); } else { } if ((int )((signed char )hdr[1]) >= 0) { last_fragment = 1; } else { } dispose = 1; } else { } { tmp___4 = dvb_ringbuffer_pkt_next(& (ca->slot_info + (unsigned long )slot)->rx_buffer, idx, & fraglen); idx2 = (size_t )tmp___4; } if (dispose != 0) { { dvb_ringbuffer_pkt_dispose(& (ca->slot_info + (unsigned long )slot)->rx_buffer, idx); } } else { } idx = idx2; dispose = 0; if (last_fragment == 0) { goto ldv_46769; } else { } { hdr[0] = (u8 )slot; hdr[1] = (u8 )connection_id; tmp___5 = copy_to_user((void *)buf, (void const *)(& hdr), 2UL); status = (int )tmp___5; } if (status != 0) { status = -14; goto exit; } else { } status = pktlen; exit: ; return ((ssize_t )status); } } static int dvb_ca_en50221_io_open(struct inode *inode , struct file *file ) { struct dvb_device *dvbdev ; struct dvb_ca_private *ca ; int err ; int i ; bool tmp ; int tmp___0 ; { dvbdev = (struct dvb_device *)file->private_data; ca = (struct dvb_ca_private *)dvbdev->priv; if (dvb_ca_en50221_debug != 0) { { printk("%s\n", "dvb_ca_en50221_io_open"); } } else { } { tmp = ldv_try_module_get_130((ca->pub)->owner); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (-5); } else { } { err = dvb_generic_open(inode, file); } if (err < 0) { { ldv_module_put_131((ca->pub)->owner); } return (err); } else { } i = 0; goto ldv_46781; ldv_46780: ; if ((ca->slot_info + (unsigned long )i)->slot_state == 2) { if ((unsigned long )(ca->slot_info + (unsigned long )i)->rx_buffer.data != (unsigned long )((u8 *)0U)) { { dvb_ringbuffer_flush(& (ca->slot_info + (unsigned long )i)->rx_buffer); } } else { } } else { } i = i + 1; ldv_46781: ; if ((unsigned int )i < ca->slot_count) { goto ldv_46780; } else { } { ca->open = 1U; dvb_ca_en50221_thread_update_delay(ca); dvb_ca_en50221_thread_wakeup(ca); } return (0); } } static int dvb_ca_en50221_io_release(struct inode *inode , struct file *file ) { struct dvb_device *dvbdev ; struct dvb_ca_private *ca ; int err ; { dvbdev = (struct dvb_device *)file->private_data; ca = (struct dvb_ca_private *)dvbdev->priv; if (dvb_ca_en50221_debug != 0) { { printk("%s\n", "dvb_ca_en50221_io_release"); } } else { } { ca->open = 0U; dvb_ca_en50221_thread_update_delay(ca); err = dvb_generic_release(inode, file); ldv_module_put_132((ca->pub)->owner); } return (err); } } static unsigned int dvb_ca_en50221_io_poll(struct file *file , poll_table *wait ) { struct dvb_device *dvbdev ; struct dvb_ca_private *ca ; unsigned int mask ; int slot ; int result ; int tmp ; int tmp___0 ; { dvbdev = (struct dvb_device *)file->private_data; ca = (struct dvb_ca_private *)dvbdev->priv; mask = 0U; result = 0; if (dvb_ca_en50221_debug != 0) { { printk("%s\n", "dvb_ca_en50221_io_poll"); } } else { } { tmp = dvb_ca_en50221_io_read_condition(ca, & result, & slot); } if (tmp == 1) { mask = mask | 1U; } else { } if (mask != 0U) { return (mask); } else { } { poll_wait(file, & ca->wait_queue, wait); tmp___0 = dvb_ca_en50221_io_read_condition(ca, & result, & slot); } if (tmp___0 == 1) { mask = mask | 1U; } else { } return (mask); } } static char const __kstrtab_dvb_ca_en50221_init[20U] = { 'd', 'v', 'b', '_', 'c', 'a', '_', 'e', 'n', '5', '0', '2', '2', '1', '_', 'i', 'n', 'i', 't', '\000'}; struct kernel_symbol const __ksymtab_dvb_ca_en50221_init ; struct kernel_symbol const __ksymtab_dvb_ca_en50221_init = {(unsigned long )(& dvb_ca_en50221_init), (char const *)(& __kstrtab_dvb_ca_en50221_init)}; static struct file_operations const dvb_ca_fops = {& __this_module, & noop_llseek, & dvb_ca_en50221_io_read, & dvb_ca_en50221_io_write, 0, 0, 0, 0, 0, & dvb_ca_en50221_io_poll, & dvb_ca_en50221_io_ioctl, 0, 0, 0, & dvb_ca_en50221_io_open, 0, & dvb_ca_en50221_io_release, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct dvb_device dvbdev_ca = {{0, 0}, & dvb_ca_fops, 0, 0, 0, 0U, 1, 1, 1, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}, 0, (void *)0}; int dvb_ca_en50221_init(struct dvb_adapter *dvb_adapter , struct dvb_ca_en50221 *pubca , int flags , int slot_count ) { int ret ; struct dvb_ca_private *ca ; int i ; void *tmp ; struct dvb_ca_slot *tmp___0 ; void *tmp___1 ; struct lock_class_key __key ; struct lock_class_key __key___0 ; struct lock_class_key __key___1 ; struct task_struct *tmp___2 ; int tmp___3 ; struct task_struct *__k ; struct task_struct *tmp___4 ; bool tmp___5 ; int tmp___6 ; long tmp___7 ; bool tmp___8 ; { ca = (struct dvb_ca_private *)0; if (dvb_ca_en50221_debug != 0) { { printk("%s\n", "dvb_ca_en50221_init"); } } else { } if (slot_count <= 0) { return (-22); } else { } { tmp = kzalloc(312UL, 208U); ca = (struct dvb_ca_private *)tmp; } if ((unsigned long )ca == (unsigned long )((struct dvb_ca_private *)0)) { ret = -12; goto error; } else { } { ca->pub = pubca; ca->flags = (u32 )flags; ca->slot_count = (unsigned int )slot_count; tmp___1 = kcalloc((size_t )slot_count, 400UL, 208U); tmp___0 = (struct dvb_ca_slot *)tmp___1; ca->slot_info = tmp___0; } if ((unsigned long )tmp___0 == (unsigned long )((struct dvb_ca_slot *)0)) { ret = -12; goto error; } else { } { __init_waitqueue_head(& ca->wait_queue, "&ca->wait_queue", & __key); ca->open = 0U; ca->wakeup = 0U; ca->next_read_slot = 0; pubca->private = (void *)ca; ret = dvb_register_device(dvb_adapter, & ca->dvbdev, (struct dvb_device const *)(& dvbdev_ca), (void *)ca, 6); } if (ret != 0) { goto error; } else { } i = 0; goto ldv_46823; ldv_46822: { __memset((void *)ca->slot_info + (unsigned long )i, 0, 400UL); (ca->slot_info + (unsigned long )i)->slot_state = 0; atomic_set(& (ca->slot_info + (unsigned long )i)->camchange_count, 0); (ca->slot_info + (unsigned long )i)->camchange_type = 0; __mutex_init(& (ca->slot_info + (unsigned long )i)->slot_lock, "&ca->slot_info[i].slot_lock", & __key___0); i = i + 1; } ldv_46823: ; if (i < slot_count) { goto ldv_46822; } else { } { __mutex_init(& ca->ioctl_mutex, "&ca->ioctl_mutex", & __key___1); tmp___2 = get_current___0(); tmp___3 = signal_pending(tmp___2); } if (tmp___3 != 0) { ret = -4; goto error; } else { } { __asm__ volatile ("mfence": : : "memory"); tmp___4 = kthread_create_on_node(& dvb_ca_en50221_thread, (void *)ca, -1, "kdvb-ca-%i:%i", ((ca->dvbdev)->adapter)->num, (ca->dvbdev)->id); __k = tmp___4; tmp___5 = IS_ERR((void const *)__k); } if (tmp___5) { tmp___6 = 0; } else { tmp___6 = 1; } if (tmp___6) { { wake_up_process(__k); } } else { } { ca->thread = __k; tmp___8 = IS_ERR((void const *)ca->thread); } if ((int )tmp___8) { { tmp___7 = PTR_ERR((void const *)ca->thread); ret = (int )tmp___7; printk("dvb_ca_init: failed to start kernel_thread (%d)\n", ret); } goto error; } else { } return (0); error: ; if ((unsigned long )ca != (unsigned long )((struct dvb_ca_private *)0)) { if ((unsigned long )ca->dvbdev != (unsigned long )((struct dvb_device *)0)) { { dvb_unregister_device(ca->dvbdev); } } else { } { kfree((void const *)ca->slot_info); kfree((void const *)ca); } } else { } pubca->private = (void *)0; return (ret); } } static char const __kstrtab_dvb_ca_en50221_release[23U] = { 'd', 'v', 'b', '_', 'c', 'a', '_', 'e', 'n', '5', '0', '2', '2', '1', '_', 'r', 'e', 'l', 'e', 'a', 's', 'e', '\000'}; struct kernel_symbol const __ksymtab_dvb_ca_en50221_release ; struct kernel_symbol const __ksymtab_dvb_ca_en50221_release = {(unsigned long )(& dvb_ca_en50221_release), (char const *)(& __kstrtab_dvb_ca_en50221_release)}; void dvb_ca_en50221_release(struct dvb_ca_en50221 *pubca ) { struct dvb_ca_private *ca ; int i ; { ca = (struct dvb_ca_private *)pubca->private; if (dvb_ca_en50221_debug != 0) { { printk("%s\n", "dvb_ca_en50221_release"); } } else { } { kthread_stop(ca->thread); i = 0; } goto ldv_46841; ldv_46840: { dvb_ca_en50221_slot_shutdown(ca, i); vfree((void const *)(ca->slot_info + (unsigned long )i)->rx_buffer.data); i = i + 1; } ldv_46841: ; if ((unsigned int )i < ca->slot_count) { goto ldv_46840; } else { } { kfree((void const *)ca->slot_info); dvb_unregister_device(ca->dvbdev); kfree((void const *)ca); pubca->private = (void *)0; } return; } } void ldv_file_operations_instance_callback_0_22(unsigned int (*arg0)(struct file * , struct poll_table_struct * ) , struct file *arg1 , struct poll_table_struct *arg2 ) ; void ldv_file_operations_instance_callback_0_23(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_callback_0_26(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) ; int ldv_file_operations_instance_probe_0_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_release_0_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_write_0_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; struct ldv_thread ldv_thread_0 ; void ldv_file_operations_file_operations_instance_0(void *arg0 ) { long long (*ldv_0_callback_llseek)(struct file * , long long , int ) ; unsigned int (*ldv_0_callback_poll)(struct file * , struct poll_table_struct * ) ; long (*ldv_0_callback_read)(struct file * , char * , unsigned long , long long * ) ; long (*ldv_0_callback_unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; struct file_operations *ldv_0_container_file_operations ; char *ldv_0_ldv_param_23_1_default ; long long *ldv_0_ldv_param_23_3_default ; unsigned int ldv_0_ldv_param_26_1_default ; char *ldv_0_ldv_param_4_1_default ; long long *ldv_0_ldv_param_4_3_default ; long long ldv_0_ldv_param_5_1_default ; int ldv_0_ldv_param_5_2_default ; struct file *ldv_0_resource_file ; struct inode *ldv_0_resource_inode ; int ldv_0_ret_default ; struct poll_table_struct *ldv_0_size_cnt_struct_poll_table_struct_ptr ; unsigned long ldv_0_size_cnt_write_size ; struct ldv_struct_file_operations_instance_0 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; void *tmp___5 ; void *tmp___6 ; int tmp___7 ; void *tmp___8 ; void *tmp___9 ; { data = (struct ldv_struct_file_operations_instance_0 *)arg0; ldv_0_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_file_operations_instance_0 *)0)) { { ldv_0_container_file_operations = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(504UL); ldv_0_resource_file = (struct file *)tmp; tmp___0 = ldv_xmalloc(976UL); ldv_0_resource_inode = (struct inode *)tmp___0; tmp___1 = ldv_undef_int(); ldv_0_size_cnt_struct_poll_table_struct_ptr = (struct poll_table_struct *)((long )tmp___1); } goto ldv_main_0; return; ldv_main_0: { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { ldv_0_ret_default = ldv_file_operations_instance_probe_0_12(ldv_0_container_file_operations->open, ldv_0_resource_inode, ldv_0_resource_file); ldv_0_ret_default = ldv_filter_err_code(ldv_0_ret_default); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_assume(ldv_0_ret_default == 0); } goto ldv_call_0; } else { { ldv_assume(ldv_0_ret_default != 0); } goto ldv_main_0; } } else { { ldv_free((void *)ldv_0_resource_file); ldv_free((void *)ldv_0_resource_inode); } return; } return; ldv_call_0: { tmp___4 = ldv_undef_int(); } { if (tmp___4 == 1) { goto case_1; } else { } if (tmp___4 == 2) { goto case_2; } else { } if (tmp___4 == 3) { goto case_3; } else { } goto switch_default___0; case_1: /* CIL Label */ { tmp___5 = ldv_xmalloc(1UL); ldv_0_ldv_param_4_1_default = (char *)tmp___5; tmp___6 = ldv_xmalloc(8UL); ldv_0_ldv_param_4_3_default = (long long *)tmp___6; ldv_assume((unsigned long )ldv_0_size_cnt_struct_poll_table_struct_ptr <= (unsigned long )((struct poll_table_struct *)2147479552)); ldv_file_operations_instance_write_0_4((long (*)(struct file * , char * , unsigned long , long long * ))ldv_0_container_file_operations->write, ldv_0_resource_file, ldv_0_ldv_param_4_1_default, ldv_0_size_cnt_write_size, ldv_0_ldv_param_4_3_default); ldv_free((void *)ldv_0_ldv_param_4_1_default); ldv_free((void *)ldv_0_ldv_param_4_3_default); } goto ldv_call_0; case_2: /* CIL Label */ { ldv_file_operations_instance_release_0_2(ldv_0_container_file_operations->release, ldv_0_resource_inode, ldv_0_resource_file); } goto ldv_main_0; case_3: /* CIL Label */ { tmp___7 = ldv_undef_int(); } { if (tmp___7 == 1) { goto case_1___0; } else { } if (tmp___7 == 2) { goto case_2___0; } else { } if (tmp___7 == 3) { goto case_3___0; } else { } if (tmp___7 == 4) { goto case_4; } else { } goto switch_default; case_1___0: /* CIL Label */ { ldv_file_operations_instance_callback_0_26(ldv_0_callback_unlocked_ioctl, ldv_0_resource_file, ldv_0_ldv_param_26_1_default, ldv_0_size_cnt_write_size); } goto ldv_46950; case_2___0: /* CIL Label */ { tmp___8 = ldv_xmalloc(1UL); ldv_0_ldv_param_23_1_default = (char *)tmp___8; tmp___9 = ldv_xmalloc(8UL); ldv_0_ldv_param_23_3_default = (long long *)tmp___9; ldv_file_operations_instance_callback_0_23(ldv_0_callback_read, ldv_0_resource_file, ldv_0_ldv_param_23_1_default, ldv_0_size_cnt_write_size, ldv_0_ldv_param_23_3_default); ldv_free((void *)ldv_0_ldv_param_23_1_default); ldv_free((void *)ldv_0_ldv_param_23_3_default); } goto ldv_46950; case_3___0: /* CIL Label */ { ldv_file_operations_instance_callback_0_22(ldv_0_callback_poll, ldv_0_resource_file, ldv_0_size_cnt_struct_poll_table_struct_ptr); } goto ldv_46950; case_4: /* CIL Label */ { ldv_file_operations_instance_callback_0_5(ldv_0_callback_llseek, ldv_0_resource_file, ldv_0_ldv_param_5_1_default, ldv_0_ldv_param_5_2_default); } goto ldv_46950; switch_default: /* CIL Label */ { ldv_stop(); } switch_break___0: /* CIL Label */ ; } ldv_46950: ; goto ldv_46955; switch_default___0: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_46955: ; goto ldv_call_0; goto ldv_call_0; return; } } void ldv_file_operations_instance_callback_0_22(unsigned int (*arg0)(struct file * , struct poll_table_struct * ) , struct file *arg1 , struct poll_table_struct *arg2 ) { { { dvb_ca_en50221_io_poll(arg1, arg2); } return; } } void ldv_file_operations_instance_callback_0_23(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { dvb_ca_en50221_io_read(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_0_26(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) { { { dvb_ca_en50221_io_ioctl(arg1, arg2, arg3); } return; } } int ldv_file_operations_instance_probe_0_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { int tmp ; { { tmp = dvb_ca_en50221_io_open(arg1, arg2); } return (tmp); } } void ldv_file_operations_instance_release_0_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { { { dvb_ca_en50221_io_release(arg1, arg2); } return; } } void ldv_file_operations_instance_write_0_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { dvb_ca_en50221_io_write(arg1, (char const *)arg2, arg3, arg4); } return; } } __inline static void atomic_inc(atomic_t *v ) { { { ldv_linux_usb_dev_atomic_inc(v); } return; } } __inline static void atomic_dec(atomic_t *v ) { { { ldv_linux_usb_dev_atomic_dec(v); } return; } } __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_malloc_unknown_size(); ldv_after_alloc(res); } return (res); } } static void ldv_mutex_lock_121___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_slot_lock_of_dvb_ca_slot(ldv_func_arg1); } return; } } static void *ldv_vmalloc_122(unsigned long ldv_func_arg1 ) { void *tmp ; { { ldv_check_alloc_nonatomic(); tmp = ldv_malloc_unknown_size(); } return (tmp); } } static void ldv_mutex_unlock_123___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_slot_lock_of_dvb_ca_slot(ldv_func_arg1); } return; } } static int ldv_mutex_lock_interruptible_124(struct mutex *ldv_func_arg1 ) { int tmp ; { { tmp = ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_ioctl_mutex_of_dvb_ca_private(ldv_func_arg1); } return (tmp); } } static void ldv_mutex_lock_125(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_slot_lock_of_dvb_ca_slot(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_126___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_slot_lock_of_dvb_ca_slot(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_127___1(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_ioctl_mutex_of_dvb_ca_private(ldv_func_arg1); } return; } } static void ldv_mutex_lock_128(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_slot_lock_of_dvb_ca_slot(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_129___1(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_slot_lock_of_dvb_ca_slot(ldv_func_arg1); } return; } } static bool ldv_try_module_get_130(struct module *ldv_func_arg1 ) { int tmp ; { { tmp = ldv_linux_kernel_module_try_module_get(ldv_func_arg1); } return (tmp != 0); } } static void ldv_module_put_131(struct module *ldv_func_arg1 ) { { { ldv_linux_kernel_module_module_put(ldv_func_arg1); } return; } } static void ldv_module_put_132(struct module *ldv_func_arg1 ) { { { ldv_linux_kernel_module_module_put(ldv_func_arg1); } return; } } static void ldv_mutex_lock_121___1(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_123(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_125___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_127(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_129(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_136(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_138(struct mutex *ldv_func_arg1 ) ; static int ldv_mutex_lock_interruptible_133(struct mutex *ldv_func_arg1 ) ; int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_frontend_mutex(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_lock_frontend_mutex(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_frontend_mutex(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_lock_mfe_lock_of_dvb_adapter(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_mfe_lock_of_dvb_adapter(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_lock_mtx_of_dvb_fe_events(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_mtx_of_dvb_fe_events(struct mutex *lock ) ; extern void __dynamic_dev_dbg(struct _ddebug * , struct device const * , char const * , ...) ; __inline static struct task_struct *get_current___1(void) { struct task_struct *pfo_ret__ ; { { if (8UL == 1UL) { goto case_1; } else { } if (8UL == 2UL) { goto case_2; } else { } if (8UL == 4UL) { goto case_4; } else { } if (8UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "p" (& current_task)); goto ldv_3738; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_3738; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_3738; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_3738; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_3738: ; return (pfo_ret__); } } __inline static long PTR_ERR(void const *ptr ) ; extern void debug_check_no_locks_held(void) ; extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; static void ldv_mutex_unlock_122___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_124___1(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_126___1(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_128___1(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_130___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_131___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_132___0(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_134___2(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_135(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_137___1(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_139(struct mutex *ldv_func_arg1 ) ; extern void do_gettimeofday(struct timeval * ) ; extern int ___ratelimit(struct ratelimit_state * , char const * ) ; extern void dev_err(struct device const * , char const * , ...) ; extern void dev_warn(struct device const * , char const * , ...) ; extern void _dev_info(struct device const * , char const * , ...) ; extern void __udelay(unsigned long ) ; extern unsigned long msleep_interruptible(unsigned int ) ; __inline static void sema_init(struct semaphore *sem , int val ) { struct lock_class_key __key ; struct semaphore __constr_expr_0 ; { { __constr_expr_0.lock.raw_lock.__annonCompField4.head_tail = 0U; __constr_expr_0.lock.magic = 3735899821U; __constr_expr_0.lock.owner_cpu = 4294967295U; __constr_expr_0.lock.owner = (void *)-1; __constr_expr_0.lock.dep_map.key = 0; __constr_expr_0.lock.dep_map.class_cache[0] = 0; __constr_expr_0.lock.dep_map.class_cache[1] = 0; __constr_expr_0.lock.dep_map.name = "(*sem).lock"; __constr_expr_0.lock.dep_map.cpu = 0; __constr_expr_0.lock.dep_map.ip = 0UL; __constr_expr_0.count = (unsigned int )val; __constr_expr_0.wait_list.next = & sem->wait_list; __constr_expr_0.wait_list.prev = & sem->wait_list; *sem = __constr_expr_0; lockdep_init_map(& sem->lock.dep_map, "semaphore->lock", & __key, 0); } return; } } extern int down_interruptible(struct semaphore * ) ; extern void up(struct semaphore * ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; extern void symbol_put_addr(void * ) ; extern atomic_t system_freezing_cnt ; extern bool freezing_slow_path(struct task_struct * ) ; __inline static bool freezing(struct task_struct *p ) { int tmp ; long tmp___0 ; bool tmp___1 ; { { tmp = atomic_read((atomic_t const *)(& system_freezing_cnt)); tmp___0 = ldv__builtin_expect(tmp == 0, 1L); } if (tmp___0 != 0L) { return (0); } else { } { tmp___1 = freezing_slow_path(p); } return (tmp___1); } } extern bool __refrigerator(bool ) ; __inline static bool try_to_freeze_unsafe(void) { struct task_struct *tmp ; bool tmp___0 ; int tmp___1 ; long tmp___2 ; bool tmp___3 ; { { __might_sleep("include/linux/freezer.h", 56, 0); tmp = get_current___1(); tmp___0 = freezing(tmp); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } { tmp___2 = ldv__builtin_expect((long )tmp___1, 1L); } if (tmp___2 != 0L) { return (0); } else { } { tmp___3 = __refrigerator(0); } return (tmp___3); } } __inline static bool try_to_freeze(void) { struct task_struct *tmp ; bool tmp___0 ; { { tmp = get_current___1(); } if ((tmp->flags & 32768U) == 0U) { { debug_check_no_locks_held(); } } else { } { tmp___0 = try_to_freeze_unsafe(); } return (tmp___0); } } extern bool set_freezable(void) ; int dvb_register_frontend(struct dvb_adapter *dvb , struct dvb_frontend *fe ) ; int dvb_unregister_frontend(struct dvb_frontend *fe ) ; void dvb_frontend_detach(struct dvb_frontend *fe ) ; void dvb_frontend_reinitialise(struct dvb_frontend *fe ) ; int dvb_frontend_suspend(struct dvb_frontend *fe ) ; int dvb_frontend_resume(struct dvb_frontend *fe ) ; void dvb_frontend_sleep_until(struct timeval *waketime , u32 add_usec ) ; s32 timeval_usec_diff(struct timeval lasttime , struct timeval curtime ) ; static int dvb_frontend_debug ; static int dvb_shutdown_timeout ; static int dvb_force_auto_inversion ; static int dvb_override_tune_delay ; static int dvb_powerdown_on_sleep = 1; static int dvb_mfe_wait_time = 5; static struct mutex frontend_mutex = {{1}, {{{{{0U}}, 3735899821U, 4294967295U, (void *)-1, {0, {0, 0}, "frontend_mutex.wait_lock", 0, 0UL}}}}, {& frontend_mutex.wait_list, & frontend_mutex.wait_list}, 0, (void *)(& frontend_mutex), {0, {0, 0}, "frontend_mutex", 0, 0UL}}; static void dvb_frontend_wakeup(struct dvb_frontend *fe ) ; static int dtv_get_frontend(struct dvb_frontend *fe , struct dvb_frontend_parameters *p_out ) ; static int dtv_property_legacy_params_sync(struct dvb_frontend *fe , struct dvb_frontend_parameters *p ) ; static bool has_get_frontend(struct dvb_frontend *fe ) { { return ((unsigned long )fe->ops.get_frontend != (unsigned long )((int (*)(struct dvb_frontend * ))0)); } } static enum dvbv3_emulation_type dvbv3_type(u32 delivery_system ) { { { if (delivery_system == 1U) { goto case_1; } else { } if (delivery_system == 18U) { goto case_18; } else { } if (delivery_system == 5U) { goto case_5; } else { } if (delivery_system == 6U) { goto case_6; } else { } if (delivery_system == 17U) { goto case_17; } else { } if (delivery_system == 9U) { goto case_9; } else { } if (delivery_system == 4U) { goto case_4; } else { } if (delivery_system == 3U) { goto case_3; } else { } if (delivery_system == 16U) { goto case_16; } else { } if (delivery_system == 8U) { goto case_8; } else { } if (delivery_system == 13U) { goto case_13; } else { } if (delivery_system == 11U) { goto case_11; } else { } if (delivery_system == 12U) { goto case_12; } else { } if (delivery_system == 2U) { goto case_2; } else { } if (delivery_system == 0U) { goto case_0; } else { } if (delivery_system == 10U) { goto case_10; } else { } if (delivery_system == 7U) { goto case_7; } else { } if (delivery_system == 15U) { goto case_15; } else { } goto switch_default; case_1: /* CIL Label */ ; case_18: /* CIL Label */ ; return (2); case_5: /* CIL Label */ ; case_6: /* CIL Label */ ; case_17: /* CIL Label */ ; case_9: /* CIL Label */ ; case_4: /* CIL Label */ ; return (1); case_3: /* CIL Label */ ; case_16: /* CIL Label */ ; case_8: /* CIL Label */ ; case_13: /* CIL Label */ ; return (3); case_11: /* CIL Label */ ; case_12: /* CIL Label */ ; case_2: /* CIL Label */ ; return (4); case_0: /* CIL Label */ ; case_10: /* CIL Label */ ; case_7: /* CIL Label */ ; case_15: /* CIL Label */ ; switch_default: /* CIL Label */ ; return (0); switch_break: /* CIL Label */ ; } } } static void dvb_frontend_add_event(struct dvb_frontend *fe , fe_status_t status ) { struct dvb_frontend_private *fepriv ; struct dvb_fe_events *events ; struct dvb_frontend_event *e ; int wp ; struct _ddebug descriptor ; long tmp ; bool tmp___0 ; { { fepriv = (struct dvb_frontend_private *)fe->frontend_priv; events = & fepriv->events; descriptor.modname = "dvb_core"; descriptor.function = "dvb_frontend_add_event"; descriptor.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor.format = "%s:\n"; descriptor.lineno = 203U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(fe->dvb)->device, "%s:\n", "dvb_frontend_add_event"); } } else { } if (((unsigned int )status & 16U) != 0U) { { tmp___0 = has_get_frontend(fe); } if ((int )tmp___0) { { dtv_get_frontend(fe, & fepriv->parameters_out); } } else { } } else { } { ldv_mutex_lock_121___1(& events->mtx); wp = (events->eventw + 1) % 8; } if (wp == events->eventr) { events->overflow = 1; events->eventr = (events->eventr + 1) % 8; } else { } { e = (struct dvb_frontend_event *)(& events->events) + (unsigned long )events->eventw; e->status = status; e->parameters = fepriv->parameters_out; events->eventw = wp; ldv_mutex_unlock_122___0(& events->mtx); __wake_up(& events->wait_queue, 1U, 1, (void *)0); } return; } } static int dvb_frontend_get_event(struct dvb_frontend *fe , struct dvb_frontend_event *event , int flags ) { struct dvb_frontend_private *fepriv ; struct dvb_fe_events *events ; struct _ddebug descriptor ; long tmp ; int ret ; int __ret ; wait_queue_t __wait ; long __ret___0 ; long __int ; long tmp___0 ; int tmp___1 ; { { fepriv = (struct dvb_frontend_private *)fe->frontend_priv; events = & fepriv->events; descriptor.modname = "dvb_core"; descriptor.function = "dvb_frontend_get_event"; descriptor.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor.format = "%s:\n"; descriptor.lineno = 233U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(fe->dvb)->device, "%s:\n", "dvb_frontend_get_event"); } } else { } if (events->overflow != 0) { events->overflow = 0; return (-75); } else { } if (events->eventw == events->eventr) { if ((flags & 2048) != 0) { return (-11); } else { } { up(& fepriv->sem); __ret = 0; __might_sleep("drivers/media/dvb-core/dvb_frontend.c", 249, 0); } if (events->eventw == events->eventr) { { __ret___0 = 0L; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; } ldv_47453: { tmp___0 = prepare_to_wait_event(& events->wait_queue, & __wait, 1); __int = tmp___0; } if (events->eventw != events->eventr) { goto ldv_47452; } else { } if (__int != 0L) { __ret___0 = __int; goto ldv_47452; } else { } { schedule(); } goto ldv_47453; ldv_47452: { finish_wait(& events->wait_queue, & __wait); } __ret = (int )__ret___0; } else { } { ret = __ret; tmp___1 = down_interruptible(& fepriv->sem); } if (tmp___1 != 0) { return (-512); } else { } if (ret < 0) { return (ret); } else { } } else { } { ldv_mutex_lock_123(& events->mtx); *event = events->events[events->eventr]; events->eventr = (events->eventr + 1) % 8; ldv_mutex_unlock_124___1(& events->mtx); } return (0); } } static void dvb_frontend_clear_events(struct dvb_frontend *fe ) { struct dvb_frontend_private *fepriv ; struct dvb_fe_events *events ; { { fepriv = (struct dvb_frontend_private *)fe->frontend_priv; events = & fepriv->events; ldv_mutex_lock_125___0(& events->mtx); events->eventr = events->eventw; ldv_mutex_unlock_126___1(& events->mtx); } return; } } static void dvb_frontend_init(struct dvb_frontend *fe ) { struct _ddebug descriptor ; long tmp ; { { descriptor.modname = "dvb_core"; descriptor.function = "dvb_frontend_init"; descriptor.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor.format = "%s: initialising adapter %i frontend %i (%s)...\n"; descriptor.lineno = 280U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(fe->dvb)->device, "%s: initialising adapter %i frontend %i (%s)...\n", "dvb_frontend_init", (fe->dvb)->num, fe->id, (char *)(& fe->ops.info.name)); } } else { } if ((unsigned long )fe->ops.init != (unsigned long )((int (*)(struct dvb_frontend * ))0)) { { (*(fe->ops.init))(fe); } } else { } if ((unsigned long )fe->ops.tuner_ops.init != (unsigned long )((int (*)(struct dvb_frontend * ))0)) { if ((unsigned long )fe->ops.i2c_gate_ctrl != (unsigned long )((int (*)(struct dvb_frontend * , int ))0)) { { (*(fe->ops.i2c_gate_ctrl))(fe, 1); } } else { } { (*(fe->ops.tuner_ops.init))(fe); } if ((unsigned long )fe->ops.i2c_gate_ctrl != (unsigned long )((int (*)(struct dvb_frontend * , int ))0)) { { (*(fe->ops.i2c_gate_ctrl))(fe, 0); } } else { } } else { } return; } } void dvb_frontend_reinitialise(struct dvb_frontend *fe ) { struct dvb_frontend_private *fepriv ; { { fepriv = (struct dvb_frontend_private *)fe->frontend_priv; fepriv->reinitialise = 1U; dvb_frontend_wakeup(fe); } return; } } static char const __kstrtab_dvb_frontend_reinitialise[26U] = { 'd', 'v', 'b', '_', 'f', 'r', 'o', 'n', 't', 'e', 'n', 'd', '_', 'r', 'e', 'i', 'n', 'i', 't', 'i', 'a', 'l', 'i', 's', 'e', '\000'}; struct kernel_symbol const __ksymtab_dvb_frontend_reinitialise ; struct kernel_symbol const __ksymtab_dvb_frontend_reinitialise = {(unsigned long )(& dvb_frontend_reinitialise), (char const *)(& __kstrtab_dvb_frontend_reinitialise)}; static void dvb_frontend_swzigzag_update_delay(struct dvb_frontend_private *fepriv , int locked ) { int q2 ; struct dvb_frontend *fe ; struct _ddebug descriptor ; long tmp ; { { fe = (struct dvb_frontend *)(fepriv->dvbdev)->priv; descriptor.modname = "dvb_core"; descriptor.function = "dvb_frontend_swzigzag_update_delay"; descriptor.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor.format = "%s:\n"; descriptor.lineno = 307U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(fe->dvb)->device, "%s:\n", "dvb_frontend_swzigzag_update_delay"); } } else { } if (locked != 0) { fepriv->quality = (fepriv->quality * 220 + 9216) / 256; } else { fepriv->quality = (fepriv->quality * 220) / 256; } q2 = fepriv->quality + -128; q2 = q2 * q2; fepriv->delay = fepriv->min_delay + (unsigned int )((q2 * 250) / 16384); return; } } static int dvb_frontend_swzigzag_autotune(struct dvb_frontend *fe , int check_wrapped ) { int autoinversion ; int ready ; int fe_set_err ; struct dvb_frontend_private *fepriv ; struct dtv_frontend_properties *c ; struct dtv_frontend_properties tmp ; int original_inversion ; u32 original_frequency ; struct _ddebug descriptor ; long tmp___0 ; { ready = 0; fe_set_err = 0; fepriv = (struct dvb_frontend_private *)fe->frontend_priv; c = & fe->dtv_property_cache; original_inversion = (int )c->inversion; original_frequency = c->frequency; autoinversion = ((unsigned int )fe->ops.info.caps & 1U) == 0U && (unsigned int )c->inversion == 2U; goto ldv_47504; ldv_47503: fepriv->lnb_drift = (int )(fepriv->auto_step * fepriv->step_size); if ((unsigned int )fepriv->lnb_drift > fepriv->max_drift) { fepriv->auto_step = 0U; fepriv->auto_sub_step = 0U; fepriv->lnb_drift = 0; } else { } { if (fepriv->auto_sub_step == 0U) { goto case_0; } else { } if (fepriv->auto_sub_step == 1U) { goto case_1; } else { } if (fepriv->auto_sub_step == 2U) { goto case_2; } else { } if (fepriv->auto_sub_step == 3U) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ ready = 1; goto ldv_47498; case_1: /* CIL Label */ ; if (autoinversion == 0) { goto ldv_47498; } else { } fepriv->inversion = fepriv->inversion == 0U; ready = 1; goto ldv_47498; case_2: /* CIL Label */ ; if (fepriv->lnb_drift == 0) { goto ldv_47498; } else { } fepriv->lnb_drift = - fepriv->lnb_drift; ready = 1; goto ldv_47498; case_3: /* CIL Label */ ; if (fepriv->lnb_drift == 0) { goto ldv_47498; } else { } if (autoinversion == 0) { goto ldv_47498; } else { } fepriv->inversion = fepriv->inversion == 0U; fepriv->lnb_drift = - fepriv->lnb_drift; ready = 1; goto ldv_47498; switch_default: /* CIL Label */ fepriv->auto_step = fepriv->auto_step + 1U; fepriv->auto_sub_step = 4294967295U; goto ldv_47498; switch_break: /* CIL Label */ ; } ldv_47498: ; if (ready == 0) { fepriv->auto_sub_step = fepriv->auto_sub_step + 1U; } else { } ldv_47504: ; if (ready == 0) { goto ldv_47503; } else { } if (fepriv->auto_step == fepriv->started_auto_step && (fepriv->auto_sub_step == 0U && check_wrapped != 0)) { return (1); } else { } { descriptor.modname = "dvb_core"; descriptor.function = "dvb_frontend_swzigzag_autotune"; descriptor.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor.format = "%s: drift:%i inversion:%i auto_step:%i auto_sub_step:%i started_auto_step:%i\n"; descriptor.lineno = 403U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(fe->dvb)->device, "%s: drift:%i inversion:%i auto_step:%i auto_sub_step:%i started_auto_step:%i\n", "dvb_frontend_swzigzag_autotune", fepriv->lnb_drift, fepriv->inversion, fepriv->auto_step, fepriv->auto_sub_step, fepriv->started_auto_step); } } else { } c->frequency = c->frequency + (u32 )fepriv->lnb_drift; if (autoinversion != 0) { c->inversion = (fe_spectral_inversion_t )fepriv->inversion; } else { } tmp = *c; if ((unsigned long )fe->ops.set_frontend != (unsigned long )((int (*)(struct dvb_frontend * ))0)) { { fe_set_err = (*(fe->ops.set_frontend))(fe); } } else { } *c = tmp; if (fe_set_err < 0) { fepriv->state = 256U; return (fe_set_err); } else { } c->frequency = original_frequency; c->inversion = (fe_spectral_inversion_t )original_inversion; fepriv->auto_sub_step = fepriv->auto_sub_step + 1U; return (0); } } static void dvb_frontend_swzigzag(struct dvb_frontend *fe ) { fe_status_t s ; int retval ; struct dvb_frontend_private *fepriv ; struct dtv_frontend_properties *c ; struct dtv_frontend_properties tmp ; { s = 0; retval = 0; fepriv = (struct dvb_frontend_private *)fe->frontend_priv; c = & fe->dtv_property_cache; if ((int )fepriv->state & 1) { fepriv->delay = 750U; fepriv->quality = 0; return; } else { } if ((int )fepriv->tune_mode_flags & 1) { if ((fepriv->state & 2U) != 0U) { tmp = *c; if ((unsigned long )fe->ops.set_frontend != (unsigned long )((int (*)(struct dvb_frontend * ))0)) { { retval = (*(fe->ops.set_frontend))(fe); } } else { } *c = tmp; if (retval < 0) { fepriv->state = 256U; } else { fepriv->state = 16U; } } else { } fepriv->delay = 750U; fepriv->quality = 0; return; } else { } if ((fepriv->state & 2U) != 0U) { s = 0; } else { if ((unsigned long )fe->ops.read_status != (unsigned long )((int (*)(struct dvb_frontend * , fe_status_t * ))0)) { { (*(fe->ops.read_status))(fe, & s); } } else { } if ((unsigned int )s != (unsigned int )fepriv->status) { { dvb_frontend_add_event(fe, s); fepriv->status = s; } } else { } } if ((fepriv->state & 236U) != 0U && ((unsigned int )s & 16U) != 0U) { { dvb_frontend_swzigzag_update_delay(fepriv, (int )s & 16); fepriv->state = 16U; } if (((unsigned int )fe->ops.info.caps & 1U) == 0U && (unsigned int )c->inversion == 2U) { c->inversion = (fe_spectral_inversion_t )fepriv->inversion; } else { } return; } else { } if ((fepriv->state & 16U) != 0U) { { dvb_frontend_swzigzag_update_delay(fepriv, (int )s & 16); } if (((unsigned int )s & 16U) != 0U) { return; } else { fepriv->state = 32U; fepriv->started_auto_step = fepriv->auto_step; fepriv->check_wrapped = 0U; } } else { } if (((fepriv->state & 96U) != 0U && ((unsigned int )fe->ops.info.caps & 1073741824U) != 0U) && fepriv->max_drift == 0U) { { dvb_frontend_swzigzag_update_delay(fepriv, (int )s & 16); } return; } else { } if ((fepriv->state & 128U) != 0U) { { dvb_frontend_swzigzag_update_delay(fepriv, (int )s & 16); } return; } else { } if ((fepriv->state & 2U) != 0U) { fepriv->lnb_drift = 0; fepriv->auto_step = 0U; fepriv->auto_sub_step = 0U; fepriv->started_auto_step = 0U; fepriv->check_wrapped = 0U; } else { } if (*((unsigned int *)fepriv + 220UL) != 0U) { { fepriv->delay = fepriv->min_delay; retval = dvb_frontend_swzigzag_autotune(fe, (int )fepriv->check_wrapped); } if (retval < 0) { return; } else if (retval != 0) { fepriv->state = 72U; fepriv->started_auto_step = fepriv->auto_step; return; } else { } fepriv->check_wrapped = 1U; if ((fepriv->state & 2U) != 0U) { fepriv->state = 4U; } else { } } else { } if ((fepriv->state & 72U) != 0U) { { dvb_frontend_swzigzag_update_delay(fepriv, (int )s & 16); dvb_frontend_swzigzag_autotune(fe, 0); } } else { } return; } } static int dvb_frontend_is_exiting(struct dvb_frontend *fe ) { struct dvb_frontend_private *fepriv ; { fepriv = (struct dvb_frontend_private *)fe->frontend_priv; if (fe->exit != 0U) { return (1); } else { } if ((fepriv->dvbdev)->writers == 1) { if ((long )((unsigned long )jiffies - (fepriv->release_jiffies + (unsigned long )(dvb_shutdown_timeout * 250))) >= 0L) { return (1); } else { } } else { } return (0); } } static int dvb_frontend_should_wakeup(struct dvb_frontend *fe ) { struct dvb_frontend_private *fepriv ; int tmp ; { fepriv = (struct dvb_frontend_private *)fe->frontend_priv; if (fepriv->wakeup != 0U) { fepriv->wakeup = 0U; return (1); } else { } { tmp = dvb_frontend_is_exiting(fe); } return (tmp); } } static void dvb_frontend_wakeup(struct dvb_frontend *fe ) { struct dvb_frontend_private *fepriv ; { { fepriv = (struct dvb_frontend_private *)fe->frontend_priv; fepriv->wakeup = 1U; __wake_up(& fepriv->wait_queue, 1U, 1, (void *)0); } return; } } static int dvb_frontend_thread(void *data ) { struct dvb_frontend *fe ; struct dvb_frontend_private *fepriv ; fe_status_t s ; enum dvbfe_algo algo ; bool re_tune ; bool semheld ; struct _ddebug descriptor ; long tmp ; long __ret ; wait_queue_t __wait ; long __ret___0 ; long __int ; long tmp___0 ; bool __cond ; int tmp___1 ; bool tmp___2 ; struct task_struct *tmp___3 ; bool tmp___4 ; int tmp___5 ; bool __cond___0 ; int tmp___6 ; bool tmp___7 ; struct task_struct *tmp___8 ; bool tmp___9 ; int tmp___10 ; int tmp___11 ; bool tmp___12 ; int tmp___13 ; bool tmp___14 ; int tmp___15 ; struct _ddebug descriptor___0 ; long tmp___16 ; struct _ddebug descriptor___1 ; long tmp___17 ; struct _ddebug descriptor___2 ; long tmp___18 ; struct _ddebug descriptor___3 ; long tmp___19 ; struct _ddebug descriptor___4 ; long tmp___20 ; struct _ddebug descriptor___5 ; long tmp___21 ; struct _ddebug descriptor___6 ; long tmp___22 ; bool tmp___23 ; { { fe = (struct dvb_frontend *)data; fepriv = (struct dvb_frontend_private *)fe->frontend_priv; re_tune = 0; semheld = 0; descriptor.modname = "dvb_core"; descriptor.function = "dvb_frontend_thread"; descriptor.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor.format = "%s:\n"; descriptor.lineno = 603U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(fe->dvb)->device, "%s:\n", "dvb_frontend_thread"); } } else { } { fepriv->check_wrapped = 0U; fepriv->quality = 0; fepriv->delay = 750U; fepriv->status = 0; fepriv->wakeup = 0U; fepriv->reinitialise = 0U; dvb_frontend_init(fe); set_freezable(); } ldv_47572: { up(& fepriv->sem); } restart: { __ret = (long )fepriv->delay; __might_sleep("drivers/media/dvb-core/dvb_frontend.c", 621, 0); tmp___6 = dvb_frontend_should_wakeup(fe); } if (tmp___6 != 0) { tmp___10 = 1; } else { { tmp___7 = kthread_should_stop(); } if ((int )tmp___7) { tmp___10 = 1; } else { { tmp___8 = get_current___1(); tmp___9 = freezing(tmp___8); } if ((int )tmp___9) { tmp___10 = 1; } else { tmp___10 = 0; } } } __cond___0 = (bool )tmp___10; if ((int )__cond___0 && __ret == 0L) { __ret = 1L; } else { } if (((int )__cond___0 || __ret == 0L) == 0) { { __ret___0 = (long )fepriv->delay; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; } ldv_47556: { tmp___0 = prepare_to_wait_event(& fepriv->wait_queue, & __wait, 1); __int = tmp___0; tmp___1 = dvb_frontend_should_wakeup(fe); } if (tmp___1 != 0) { tmp___5 = 1; } else { { tmp___2 = kthread_should_stop(); } if ((int )tmp___2) { tmp___5 = 1; } else { { tmp___3 = get_current___1(); tmp___4 = freezing(tmp___3); } if ((int )tmp___4) { tmp___5 = 1; } else { tmp___5 = 0; } } } __cond = (bool )tmp___5; if ((int )__cond && __ret___0 == 0L) { __ret___0 = 1L; } else { } if (((int )__cond || __ret___0 == 0L) != 0) { goto ldv_47555; } else { } if (__int != 0L) { __ret___0 = __int; goto ldv_47555; } else { } { __ret___0 = schedule_timeout(__ret___0); } goto ldv_47556; ldv_47555: { finish_wait(& fepriv->wait_queue, & __wait); } __ret = __ret___0; } else { } { tmp___12 = kthread_should_stop(); } if ((int )tmp___12) { goto _L; } else { { tmp___13 = dvb_frontend_is_exiting(fe); } if (tmp___13 != 0) { _L: /* CIL Label */ { tmp___11 = down_interruptible(& fepriv->sem); } if (tmp___11 == 0) { semheld = 1; } else { } fe->exit = 1U; goto ldv_47559; } else { } } { tmp___14 = try_to_freeze(); } if ((int )tmp___14) { goto restart; } else { } { tmp___15 = down_interruptible(& fepriv->sem); } if (tmp___15 != 0) { goto ldv_47559; } else { } if (fepriv->reinitialise != 0U) { { dvb_frontend_init(fe); } if ((unsigned long )fe->ops.set_tone != (unsigned long )((int (*)(struct dvb_frontend * , fe_sec_tone_mode_t ))0) && fepriv->tone != -1) { { (*(fe->ops.set_tone))(fe, (fe_sec_tone_mode_t )fepriv->tone); } } else { } if ((unsigned long )fe->ops.set_voltage != (unsigned long )((int (*)(struct dvb_frontend * , fe_sec_voltage_t ))0) && fepriv->voltage != -1) { { (*(fe->ops.set_voltage))(fe, (fe_sec_voltage_t )fepriv->voltage); } } else { } fepriv->reinitialise = 0U; } else { } if ((unsigned long )fe->ops.get_frontend_algo != (unsigned long )((enum dvbfe_algo (*)(struct dvb_frontend * ))0)) { { algo = (*(fe->ops.get_frontend_algo))(fe); } { if ((int )algo == 1) { goto case_1; } else { } if ((int )algo == 2) { goto case_2; } else { } if ((int )algo == 4) { goto case_4; } else { } goto switch_default; case_1: /* CIL Label */ { descriptor___0.modname = "dvb_core"; descriptor___0.function = "dvb_frontend_thread"; descriptor___0.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor___0.format = "%s: Frontend ALGO = DVBFE_ALGO_HW\n"; descriptor___0.lineno = 651U; descriptor___0.flags = 0U; tmp___16 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___16 != 0L) { { __dynamic_dev_dbg(& descriptor___0, (struct device const *)(fe->dvb)->device, "%s: Frontend ALGO = DVBFE_ALGO_HW\n", "dvb_frontend_thread"); } } else { } if ((fepriv->state & 2U) != 0U) { { descriptor___1.modname = "dvb_core"; descriptor___1.function = "dvb_frontend_thread"; descriptor___1.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor___1.format = "%s: Retune requested, FESTATE_RETUNE\n"; descriptor___1.lineno = 654U; descriptor___1.flags = 0U; tmp___17 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___17 != 0L) { { __dynamic_dev_dbg(& descriptor___1, (struct device const *)(fe->dvb)->device, "%s: Retune requested, FESTATE_RETUNE\n", "dvb_frontend_thread"); } } else { } re_tune = 1; fepriv->state = 16U; } else { re_tune = 0; } if ((unsigned long )fe->ops.tune != (unsigned long )((int (*)(struct dvb_frontend * , bool , unsigned int , unsigned int * , fe_status_t * ))0)) { { (*(fe->ops.tune))(fe, (int )re_tune, (unsigned int )fepriv->tune_mode_flags, & fepriv->delay, & s); } } else { } if ((unsigned int )s != (unsigned int )fepriv->status && (fepriv->tune_mode_flags & 1UL) == 0UL) { { descriptor___2.modname = "dvb_core"; descriptor___2.function = "dvb_frontend_thread"; descriptor___2.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor___2.format = "%s: state changed, adding current state\n"; descriptor___2.lineno = 665U; descriptor___2.flags = 0U; tmp___18 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___18 != 0L) { { __dynamic_dev_dbg(& descriptor___2, (struct device const *)(fe->dvb)->device, "%s: state changed, adding current state\n", "dvb_frontend_thread"); } } else { } { dvb_frontend_add_event(fe, s); fepriv->status = s; } } else { } goto ldv_47564; case_2: /* CIL Label */ { descriptor___3.modname = "dvb_core"; descriptor___3.function = "dvb_frontend_thread"; descriptor___3.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor___3.format = "%s: Frontend ALGO = DVBFE_ALGO_SW\n"; descriptor___3.lineno = 671U; descriptor___3.flags = 0U; tmp___19 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); } if (tmp___19 != 0L) { { __dynamic_dev_dbg(& descriptor___3, (struct device const *)(fe->dvb)->device, "%s: Frontend ALGO = DVBFE_ALGO_SW\n", "dvb_frontend_thread"); } } else { } { dvb_frontend_swzigzag(fe); } goto ldv_47564; case_4: /* CIL Label */ { descriptor___4.modname = "dvb_core"; descriptor___4.function = "dvb_frontend_thread"; descriptor___4.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor___4.format = "%s: Frontend ALGO = DVBFE_ALGO_CUSTOM, state=%d\n"; descriptor___4.lineno = 675U; descriptor___4.flags = 0U; tmp___20 = ldv__builtin_expect((long )descriptor___4.flags & 1L, 0L); } if (tmp___20 != 0L) { { __dynamic_dev_dbg(& descriptor___4, (struct device const *)(fe->dvb)->device, "%s: Frontend ALGO = DVBFE_ALGO_CUSTOM, state=%d\n", "dvb_frontend_thread", fepriv->state); } } else { } if ((fepriv->state & 2U) != 0U) { { descriptor___5.modname = "dvb_core"; descriptor___5.function = "dvb_frontend_thread"; descriptor___5.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor___5.format = "%s: Retune requested, FESTAT_RETUNE\n"; descriptor___5.lineno = 677U; descriptor___5.flags = 0U; tmp___21 = ldv__builtin_expect((long )descriptor___5.flags & 1L, 0L); } if (tmp___21 != 0L) { { __dynamic_dev_dbg(& descriptor___5, (struct device const *)(fe->dvb)->device, "%s: Retune requested, FESTAT_RETUNE\n", "dvb_frontend_thread"); } } else { } fepriv->state = 16U; } else { } if (((int )fepriv->algo_status & 16) != 0) { if ((unsigned long )fe->ops.search != (unsigned long )((enum dvbfe_search (*)(struct dvb_frontend * ))0)) { { fepriv->algo_status = (*(fe->ops.search))(fe); } } else { fepriv->algo_status = (enum dvbfe_search )((int )fepriv->algo_status & -17); } } else { } if ((int )fepriv->algo_status != 1) { fepriv->algo_status = (enum dvbfe_search )((int )fepriv->algo_status | 16); fepriv->delay = 125U; } else { } { dtv_property_legacy_params_sync(fe, & fepriv->parameters_out); (*(fe->ops.read_status))(fe, & s); } if ((unsigned int )s != (unsigned int )fepriv->status) { { dvb_frontend_add_event(fe, s); fepriv->status = s; } if (((unsigned int )s & 16U) == 0U) { fepriv->delay = 25U; fepriv->algo_status = (enum dvbfe_search )((int )fepriv->algo_status | 16); } else { fepriv->delay = 15000U; } } else { } goto ldv_47564; switch_default: /* CIL Label */ { descriptor___6.modname = "dvb_core"; descriptor___6.function = "dvb_frontend_thread"; descriptor___6.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor___6.format = "%s: UNDEFINED ALGO !\n"; descriptor___6.lineno = 713U; descriptor___6.flags = 0U; tmp___22 = ldv__builtin_expect((long )descriptor___6.flags & 1L, 0L); } if (tmp___22 != 0L) { { __dynamic_dev_dbg(& descriptor___6, (struct device const *)(fe->dvb)->device, "%s: UNDEFINED ALGO !\n", "dvb_frontend_thread"); } } else { } goto ldv_47564; switch_break: /* CIL Label */ ; } ldv_47564: ; } else { { dvb_frontend_swzigzag(fe); } } goto ldv_47572; ldv_47559: ; if (dvb_powerdown_on_sleep != 0) { if ((unsigned long )fe->ops.set_voltage != (unsigned long )((int (*)(struct dvb_frontend * , fe_sec_voltage_t ))0)) { { (*(fe->ops.set_voltage))(fe, 2); } } else { } if ((unsigned long )fe->ops.tuner_ops.sleep != (unsigned long )((int (*)(struct dvb_frontend * ))0)) { if ((unsigned long )fe->ops.i2c_gate_ctrl != (unsigned long )((int (*)(struct dvb_frontend * , int ))0)) { { (*(fe->ops.i2c_gate_ctrl))(fe, 1); } } else { } { (*(fe->ops.tuner_ops.sleep))(fe); } if ((unsigned long )fe->ops.i2c_gate_ctrl != (unsigned long )((int (*)(struct dvb_frontend * , int ))0)) { { (*(fe->ops.i2c_gate_ctrl))(fe, 0); } } else { } } else { } if ((unsigned long )fe->ops.sleep != (unsigned long )((int (*)(struct dvb_frontend * ))0)) { { (*(fe->ops.sleep))(fe); } } else { } } else { } { fepriv->thread = (struct task_struct *)0; tmp___23 = kthread_should_stop(); } if ((int )tmp___23) { fe->exit = 2U; } else { fe->exit = 0U; } __asm__ volatile ("mfence": : : "memory"); if ((int )semheld) { { up(& fepriv->sem); } } else { } { dvb_frontend_wakeup(fe); } return (0); } } static void dvb_frontend_stop(struct dvb_frontend *fe ) { struct dvb_frontend_private *fepriv ; struct _ddebug descriptor ; long tmp ; { { fepriv = (struct dvb_frontend_private *)fe->frontend_priv; descriptor.modname = "dvb_core"; descriptor.function = "dvb_frontend_stop"; descriptor.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor.format = "%s:\n"; descriptor.lineno = 752U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(fe->dvb)->device, "%s:\n", "dvb_frontend_stop"); } } else { } if (fe->exit != 2U) { fe->exit = 1U; } else { } __asm__ volatile ("mfence": : : "memory"); if ((unsigned long )fepriv->thread == (unsigned long )((struct task_struct *)0)) { return; } else { } { kthread_stop(fepriv->thread); sema_init(& fepriv->sem, 1); fepriv->state = 1U; } if ((unsigned long )fepriv->thread != (unsigned long )((struct task_struct *)0)) { { dev_warn((struct device const *)(fe->dvb)->device, "dvb_frontend_stop: warning: thread %p won\'t exit\n", fepriv->thread); } } else { } return; } } s32 timeval_usec_diff(struct timeval lasttime , struct timeval curtime ) { { return (curtime.tv_usec < lasttime.tv_usec ? (s32 )(((unsigned int )curtime.tv_usec - (unsigned int )lasttime.tv_usec) + 1000000U) : (s32 )((unsigned int )curtime.tv_usec - (unsigned int )lasttime.tv_usec)); } } static char const __kstrtab_timeval_usec_diff[18U] = { 't', 'i', 'm', 'e', 'v', 'a', 'l', '_', 'u', 's', 'e', 'c', '_', 'd', 'i', 'f', 'f', '\000'}; struct kernel_symbol const __ksymtab_timeval_usec_diff ; struct kernel_symbol const __ksymtab_timeval_usec_diff = {(unsigned long )(& timeval_usec_diff), (char const *)(& __kstrtab_timeval_usec_diff)}; __inline static void timeval_usec_add(struct timeval *curtime , u32 add_usec ) { { curtime->tv_usec = curtime->tv_usec + (__kernel_suseconds_t )add_usec; if (curtime->tv_usec > 999999L) { curtime->tv_usec = curtime->tv_usec + -1000000L; curtime->tv_sec = curtime->tv_sec + 1L; } else { } return; } } void dvb_frontend_sleep_until(struct timeval *waketime , u32 add_usec ) { struct timeval lasttime ; s32 delta ; s32 newdelta ; { { timeval_usec_add(waketime, add_usec); do_gettimeofday(& lasttime); delta = timeval_usec_diff(lasttime, *waketime); } if (delta > 2500) { { msleep((unsigned int )((delta + -1500) / 1000)); do_gettimeofday(& lasttime); newdelta = timeval_usec_diff(lasttime, *waketime); delta = newdelta <= delta ? newdelta : 0; } } else { } if (delta > 0) { { __udelay((unsigned long )delta); } } else { } return; } } static char const __kstrtab_dvb_frontend_sleep_until[25U] = { 'd', 'v', 'b', '_', 'f', 'r', 'o', 'n', 't', 'e', 'n', 'd', '_', 's', 'l', 'e', 'e', 'p', '_', 'u', 'n', 't', 'i', 'l', '\000'}; struct kernel_symbol const __ksymtab_dvb_frontend_sleep_until ; struct kernel_symbol const __ksymtab_dvb_frontend_sleep_until = {(unsigned long )(& dvb_frontend_sleep_until), (char const *)(& __kstrtab_dvb_frontend_sleep_until)}; static int dvb_frontend_start(struct dvb_frontend *fe ) { int ret ; struct dvb_frontend_private *fepriv ; struct task_struct *fe_thread ; struct _ddebug descriptor ; long tmp ; struct task_struct *tmp___0 ; int tmp___1 ; int tmp___2 ; struct task_struct *__k ; struct task_struct *tmp___3 ; bool tmp___4 ; int tmp___5 ; long tmp___6 ; bool tmp___7 ; { { fepriv = (struct dvb_frontend_private *)fe->frontend_priv; descriptor.modname = "dvb_core"; descriptor.function = "dvb_frontend_start"; descriptor.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor.format = "%s:\n"; descriptor.lineno = 822U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(fe->dvb)->device, "%s:\n", "dvb_frontend_start"); } } else { } if ((unsigned long )fepriv->thread != (unsigned long )((struct task_struct *)0)) { if (fe->exit == 0U) { return (0); } else { { dvb_frontend_stop(fe); } } } else { } { tmp___0 = get_current___1(); tmp___1 = signal_pending(tmp___0); } if (tmp___1 != 0) { return (-4); } else { } { tmp___2 = down_interruptible(& fepriv->sem); } if (tmp___2 != 0) { return (-4); } else { } { fepriv->state = 1U; fe->exit = 0U; fepriv->thread = (struct task_struct *)0; __asm__ volatile ("mfence": : : "memory"); tmp___3 = kthread_create_on_node(& dvb_frontend_thread, (void *)fe, -1, "kdvb-ad-%i-fe-%i", (fe->dvb)->num, fe->id); __k = tmp___3; tmp___4 = IS_ERR((void const *)__k); } if (tmp___4) { tmp___5 = 0; } else { tmp___5 = 1; } if (tmp___5) { { wake_up_process(__k); } } else { } { fe_thread = __k; tmp___7 = IS_ERR((void const *)fe_thread); } if ((int )tmp___7) { { tmp___6 = PTR_ERR((void const *)fe_thread); ret = (int )tmp___6; dev_warn((struct device const *)(fe->dvb)->device, "dvb_frontend_start: failed to start kthread (%d)\n", ret); up(& fepriv->sem); } return (ret); } else { } fepriv->thread = fe_thread; return (0); } } static void dvb_frontend_get_frequency_limits(struct dvb_frontend *fe , u32 *freq_min , u32 *freq_max ) { __u32 _max1 ; u32 _max2 ; __u32 _min1 ; u32 _min2 ; { _max1 = fe->ops.info.frequency_min; _max2 = fe->ops.tuner_ops.info.frequency_min; *freq_min = _max1 > _max2 ? _max1 : _max2; if (fe->ops.info.frequency_max == 0U) { *freq_max = fe->ops.tuner_ops.info.frequency_max; } else if (fe->ops.tuner_ops.info.frequency_max == 0U) { *freq_max = fe->ops.info.frequency_max; } else { _min1 = fe->ops.info.frequency_max; _min2 = fe->ops.tuner_ops.info.frequency_max; *freq_max = _min1 < _min2 ? _min1 : _min2; } if (*freq_min == 0U || *freq_max == 0U) { { dev_warn((struct device const *)(fe->dvb)->device, "DVB: adapter %i frontend %u frequency limits undefined - fix the driver\n", (fe->dvb)->num, fe->id); } } else { } return; } } static int dvb_frontend_check_parameters(struct dvb_frontend *fe ) { struct dtv_frontend_properties *c ; u32 freq_min ; u32 freq_max ; { { c = & fe->dtv_property_cache; dvb_frontend_get_frequency_limits(fe, & freq_min, & freq_max); } if ((freq_min != 0U && c->frequency < freq_min) || (freq_max != 0U && c->frequency > freq_max)) { { dev_warn((struct device const *)(fe->dvb)->device, "DVB: adapter %i frontend %i frequency %u out of range (%u..%u)\n", (fe->dvb)->num, fe->id, c->frequency, freq_min, freq_max); } return (-22); } else { } { if ((unsigned int )c->delivery_system == 5U) { goto case_5; } else { } if ((unsigned int )c->delivery_system == 6U) { goto case_6; } else { } if ((unsigned int )c->delivery_system == 17U) { goto case_17; } else { } if ((unsigned int )c->delivery_system == 1U) { goto case_1; } else { } if ((unsigned int )c->delivery_system == 18U) { goto case_18; } else { } goto switch_default; case_5: /* CIL Label */ ; case_6: /* CIL Label */ ; case_17: /* CIL Label */ ; case_1: /* CIL Label */ ; case_18: /* CIL Label */ ; if ((fe->ops.info.symbol_rate_min != 0U && c->symbol_rate < fe->ops.info.symbol_rate_min) || (fe->ops.info.symbol_rate_max != 0U && c->symbol_rate > fe->ops.info.symbol_rate_max)) { { dev_warn((struct device const *)(fe->dvb)->device, "DVB: adapter %i frontend %i symbol rate %u out of range (%u..%u)\n", (fe->dvb)->num, fe->id, c->symbol_rate, fe->ops.info.symbol_rate_min, fe->ops.info.symbol_rate_max); } return (-22); } else { } switch_default: /* CIL Label */ ; goto ldv_47643; switch_break: /* CIL Label */ ; } ldv_47643: ; return (0); } } static int dvb_frontend_clear_cache(struct dvb_frontend *fe ) { struct dtv_frontend_properties *c ; int i ; u32 delsys ; struct _ddebug descriptor ; long tmp ; { { c = & fe->dtv_property_cache; delsys = (u32 )c->delivery_system; __memset((void *)c, 0, 160UL); c->delivery_system = (fe_delivery_system_t )delsys; c->state = 2U; descriptor.modname = "dvb_core"; descriptor.function = "dvb_frontend_clear_cache"; descriptor.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor.format = "%s: Clearing cache for delivery system %d\n"; descriptor.lineno = 925U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(fe->dvb)->device, "%s: Clearing cache for delivery system %d\n", "dvb_frontend_clear_cache", (unsigned int )c->delivery_system); } } else { } c->transmission_mode = 2; c->bandwidth_hz = 0U; c->guard_interval = 4; c->hierarchy = 4; c->symbol_rate = 0U; c->code_rate_HP = 9; c->code_rate_LP = 9; c->fec_inner = 9; c->rolloff = 3; c->voltage = 2; c->sectone = 1; c->pilot = 2; c->isdbt_partial_reception = 0U; c->isdbt_sb_mode = 0U; c->isdbt_sb_subchannel = 0U; c->isdbt_sb_segment_idx = 0U; c->isdbt_sb_segment_count = 0U; c->isdbt_layer_enabled = 0U; i = 0; goto ldv_47653; ldv_47652: c->layer[i].fec = 9; c->layer[i].modulation = 6; c->layer[i].interleaving = 0U; c->layer[i].segment_count = 0U; i = i + 1; ldv_47653: ; if (i <= 2) { goto ldv_47652; } else { } c->stream_id = 4294967295U; { if ((unsigned int )c->delivery_system == 5U) { goto case_5; } else { } if ((unsigned int )c->delivery_system == 6U) { goto case_6; } else { } if ((unsigned int )c->delivery_system == 17U) { goto case_17; } else { } if ((unsigned int )c->delivery_system == 11U) { goto case_11; } else { } if ((unsigned int )c->delivery_system == 9U) { goto case_9; } else { } goto switch_default; case_5: /* CIL Label */ ; case_6: /* CIL Label */ ; case_17: /* CIL Label */ c->modulation = 0; c->rolloff = 0; goto ldv_47658; case_11: /* CIL Label */ c->modulation = 7; goto ldv_47658; case_9: /* CIL Label */ c->symbol_rate = 28860000U; c->rolloff = 0; c->bandwidth_hz = (c->symbol_rate / 100U) * 135U; goto ldv_47658; switch_default: /* CIL Label */ c->modulation = 6; goto ldv_47658; switch_break: /* CIL Label */ ; } ldv_47658: c->lna = 4294967295U; return (0); } } static struct dtv_cmds_h dtv_cmds[70U] = { {0, 0U, (unsigned char)0, (unsigned char)0, 0U}, {(char *)"DTV_TUNE", 1U, 1U, 0U, 0U}, {(char *)"DTV_CLEAR", 2U, 1U, 0U, 0U}, {(char *)"DTV_FREQUENCY", 3U, 1U, 0U, 0U}, {(char *)"DTV_MODULATION", 4U, 1U, 0U, 0U}, {(char *)"DTV_BANDWIDTH_HZ", 5U, 1U, 0U, 0U}, {(char *)"DTV_INVERSION", 6U, 1U, 0U, 0U}, {(char *)"DTV_DISEQC_MASTER", 7U, 1U, 1U, 0U}, {(char *)"DTV_SYMBOL_RATE", 8U, 1U, 0U, 0U}, {(char *)"DTV_INNER_FEC", 9U, 1U, 0U, 0U}, {(char *)"DTV_VOLTAGE", 10U, 1U, 0U, 0U}, {(char *)"DTV_TONE", 11U, 1U, 0U, 0U}, {(char *)"DTV_PILOT", 12U, 1U, 0U, 0U}, {(char *)"DTV_ROLLOFF", 13U, 1U, 0U, 0U}, {(char *)"DTV_DISEQC_SLAVE_REPLY", 14U, 0U, 1U, 0U}, {0, 0U, (unsigned char)0, (unsigned char)0, 0U}, {0, 0U, (unsigned char)0, (unsigned char)0, 0U}, {(char *)"DTV_DELIVERY_SYSTEM", 17U, 1U, 0U, 0U}, {(char *)"DTV_ISDBT_PARTIAL_RECEPTION", 18U, 1U, 0U, 0U}, {(char *)"DTV_ISDBT_SOUND_BROADCASTING", 19U, 1U, 0U, 0U}, {(char *)"DTV_ISDBT_SB_SUBCHANNEL_ID", 20U, 1U, 0U, 0U}, {(char *)"DTV_ISDBT_SB_SEGMENT_IDX", 21U, 1U, 0U, 0U}, {(char *)"DTV_ISDBT_SB_SEGMENT_COUNT", 22U, 1U, 0U, 0U}, {(char *)"DTV_ISDBT_LAYERA_FEC", 23U, 1U, 0U, 0U}, {(char *)"DTV_ISDBT_LAYERA_MODULATION", 24U, 1U, 0U, 0U}, {(char *)"DTV_ISDBT_LAYERA_SEGMENT_COUNT", 25U, 1U, 0U, 0U}, {(char *)"DTV_ISDBT_LAYERA_TIME_INTERLEAVING", 26U, 1U, 0U, 0U}, {(char *)"DTV_ISDBT_LAYERB_FEC", 27U, 1U, 0U, 0U}, {(char *)"DTV_ISDBT_LAYERB_MODULATION", 28U, 1U, 0U, 0U}, {(char *)"DTV_ISDBT_LAYERB_SEGMENT_COUNT", 29U, 1U, 0U, 0U}, {(char *)"DTV_ISDBT_LAYERB_TIME_INTERLEAVING", 30U, 1U, 0U, 0U}, {(char *)"DTV_ISDBT_LAYERC_FEC", 31U, 1U, 0U, 0U}, {(char *)"DTV_ISDBT_LAYERC_MODULATION", 32U, 1U, 0U, 0U}, {(char *)"DTV_ISDBT_LAYERC_SEGMENT_COUNT", 33U, 1U, 0U, 0U}, {(char *)"DTV_ISDBT_LAYERC_TIME_INTERLEAVING", 34U, 1U, 0U, 0U}, {(char *)"DTV_API_VERSION", 35U, 0U, 0U, 0U}, {(char *)"DTV_CODE_RATE_HP", 36U, 1U, 0U, 0U}, {(char *)"DTV_CODE_RATE_LP", 37U, 1U, 0U, 0U}, {(char *)"DTV_GUARD_INTERVAL", 38U, 1U, 0U, 0U}, {(char *)"DTV_TRANSMISSION_MODE", 39U, 1U, 0U, 0U}, {(char *)"DTV_HIERARCHY", 40U, 1U, 0U, 0U}, {(char *)"DTV_ISDBT_LAYER_ENABLED", 41U, 1U, 0U, 0U}, {(char *)"DTV_STREAM_ID", 42U, 1U, 0U, 0U}, {(char *)"DTV_DVBT2_PLP_ID_LEGACY", 43U, 1U, 0U, 0U}, {(char *)"DTV_ENUM_DELSYS", 44U, 0U, 0U, 0U}, {(char *)"DTV_ATSCMH_FIC_VER", 45U, 0U, 0U, 0U}, {(char *)"DTV_ATSCMH_PARADE_ID", 46U, 1U, 0U, 0U}, {(char *)"DTV_ATSCMH_NOG", 47U, 0U, 0U, 0U}, {(char *)"DTV_ATSCMH_TNOG", 48U, 0U, 0U, 0U}, {(char *)"DTV_ATSCMH_SGN", 49U, 0U, 0U, 0U}, {(char *)"DTV_ATSCMH_PRC", 50U, 0U, 0U, 0U}, {(char *)"DTV_ATSCMH_RS_FRAME_MODE", 51U, 0U, 0U, 0U}, {(char *)"DTV_ATSCMH_RS_FRAME_ENSEMBLE", 52U, 1U, 0U, 0U}, {(char *)"DTV_ATSCMH_RS_CODE_MODE_PRI", 53U, 0U, 0U, 0U}, {(char *)"DTV_ATSCMH_RS_CODE_MODE_SEC", 54U, 0U, 0U, 0U}, {(char *)"DTV_ATSCMH_SCCC_BLOCK_MODE", 55U, 0U, 0U, 0U}, {(char *)"DTV_ATSCMH_SCCC_CODE_MODE_A", 56U, 0U, 0U, 0U}, {(char *)"DTV_ATSCMH_SCCC_CODE_MODE_B", 57U, 0U, 0U, 0U}, {(char *)"DTV_ATSCMH_SCCC_CODE_MODE_C", 58U, 0U, 0U, 0U}, {(char *)"DTV_ATSCMH_SCCC_CODE_MODE_D", 59U, 0U, 0U, 0U}, {(char *)"DTV_INTERLEAVING", 60U, 1U, 0U, 0U}, {(char *)"DTV_LNA", 61U, 1U, 0U, 0U}, {(char *)"DTV_STAT_SIGNAL_STRENGTH", 62U, 0U, 0U, 0U}, {(char *)"DTV_STAT_CNR", 63U, 0U, 0U, 0U}, {(char *)"DTV_STAT_PRE_ERROR_BIT_COUNT", 64U, 0U, 0U, 0U}, {(char *)"DTV_STAT_PRE_TOTAL_BIT_COUNT", 65U, 0U, 0U, 0U}, {(char *)"DTV_STAT_POST_ERROR_BIT_COUNT", 66U, 0U, 0U, 0U}, {(char *)"DTV_STAT_POST_TOTAL_BIT_COUNT", 67U, 0U, 0U, 0U}, {(char *)"DTV_STAT_ERROR_BLOCK_COUNT", 68U, 0U, 0U, 0U}, {(char *)"DTV_STAT_TOTAL_BLOCK_COUNT", 69U, 0U, 0U, 0U}}; static void dtv_property_dump(struct dvb_frontend *fe , struct dtv_property *tvp ) { int i ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; long tmp___1 ; struct _ddebug descriptor___2 ; long tmp___2 ; { if (tvp->cmd - 1U > 68U) { { dev_warn((struct device const *)(fe->dvb)->device, "%s: tvp.cmd = 0x%08x undefined\n", "dtv_property_dump", tvp->cmd); } return; } else { } { descriptor.modname = "dvb_core"; descriptor.function = "dtv_property_dump"; descriptor.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor.format = "%s: tvp.cmd = 0x%08x (%s)\n"; descriptor.lineno = 1080U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(fe->dvb)->device, "%s: tvp.cmd = 0x%08x (%s)\n", "dtv_property_dump", tvp->cmd, dtv_cmds[tvp->cmd].name); } } else { } if ((unsigned int )dtv_cmds[tvp->cmd].buffer != 0U) { { descriptor___0.modname = "dvb_core"; descriptor___0.function = "dtv_property_dump"; descriptor___0.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor___0.format = "%s: tvp.u.buffer.len = 0x%02x\n"; descriptor___0.lineno = 1084U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_dev_dbg(& descriptor___0, (struct device const *)(fe->dvb)->device, "%s: tvp.u.buffer.len = 0x%02x\n", "dtv_property_dump", tvp->u.buffer.len); } } else { } i = 0; goto ldv_47673; ldv_47672: { descriptor___1.modname = "dvb_core"; descriptor___1.function = "dtv_property_dump"; descriptor___1.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor___1.format = "%s: tvp.u.buffer.data[0x%02x] = 0x%02x\n"; descriptor___1.lineno = 1089U; descriptor___1.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___1 != 0L) { { __dynamic_dev_dbg(& descriptor___1, (struct device const *)(fe->dvb)->device, "%s: tvp.u.buffer.data[0x%02x] = 0x%02x\n", "dtv_property_dump", i, (int )tvp->u.buffer.data[i]); } } else { } i = i + 1; ldv_47673: ; if ((__u32 )i < tvp->u.buffer.len) { goto ldv_47672; } else { } } else { { descriptor___2.modname = "dvb_core"; descriptor___2.function = "dtv_property_dump"; descriptor___2.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor___2.format = "%s: tvp.u.data = 0x%08x\n"; descriptor___2.lineno = 1092U; descriptor___2.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___2 != 0L) { { __dynamic_dev_dbg(& descriptor___2, (struct device const *)(fe->dvb)->device, "%s: tvp.u.data = 0x%08x\n", "dtv_property_dump", tvp->u.data); } } else { } } return; } } static int dtv_property_cache_sync(struct dvb_frontend *fe , struct dtv_frontend_properties *c , struct dvb_frontend_parameters const *p ) { enum dvbv3_emulation_type tmp ; struct _ddebug descriptor ; long tmp___0 ; struct _ddebug descriptor___0 ; long tmp___1 ; struct _ddebug descriptor___1 ; long tmp___2 ; struct _ddebug descriptor___2 ; long tmp___3 ; { { c->frequency = p->frequency; c->inversion = p->inversion; tmp = dvbv3_type((u32 )c->delivery_system); } { if ((unsigned int )tmp == 1U) { goto case_1; } else { } if ((unsigned int )tmp == 2U) { goto case_2; } else { } if ((unsigned int )tmp == 3U) { goto case_3; } else { } if ((unsigned int )tmp == 4U) { goto case_4___0; } else { } if ((unsigned int )tmp == 0U) { goto case_0___0; } else { } goto switch_break; case_1: /* CIL Label */ { descriptor.modname = "dvb_core"; descriptor.function = "dtv_property_cache_sync"; descriptor.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor.format = "%s: Preparing QPSK req\n"; descriptor.lineno = 1109U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(fe->dvb)->device, "%s: Preparing QPSK req\n", "dtv_property_cache_sync"); } } else { } c->symbol_rate = p->u.qpsk.symbol_rate; c->fec_inner = p->u.qpsk.fec_inner; goto ldv_47684; case_2: /* CIL Label */ { descriptor___0.modname = "dvb_core"; descriptor___0.function = "dtv_property_cache_sync"; descriptor___0.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor___0.format = "%s: Preparing QAM req\n"; descriptor___0.lineno = 1114U; descriptor___0.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___1 != 0L) { { __dynamic_dev_dbg(& descriptor___0, (struct device const *)(fe->dvb)->device, "%s: Preparing QAM req\n", "dtv_property_cache_sync"); } } else { } c->symbol_rate = p->u.qam.symbol_rate; c->fec_inner = p->u.qam.fec_inner; c->modulation = p->u.qam.modulation; goto ldv_47684; case_3: /* CIL Label */ { descriptor___1.modname = "dvb_core"; descriptor___1.function = "dtv_property_cache_sync"; descriptor___1.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor___1.format = "%s: Preparing OFDM req\n"; descriptor___1.lineno = 1120U; descriptor___1.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___2 != 0L) { { __dynamic_dev_dbg(& descriptor___1, (struct device const *)(fe->dvb)->device, "%s: Preparing OFDM req\n", "dtv_property_cache_sync"); } } else { } { if ((unsigned int )p->u.ofdm.bandwidth == 5U) { goto case_5; } else { } if ((unsigned int )p->u.ofdm.bandwidth == 0U) { goto case_0; } else { } if ((unsigned int )p->u.ofdm.bandwidth == 1U) { goto case_1___0; } else { } if ((unsigned int )p->u.ofdm.bandwidth == 2U) { goto case_2___0; } else { } if ((unsigned int )p->u.ofdm.bandwidth == 4U) { goto case_4; } else { } if ((unsigned int )p->u.ofdm.bandwidth == 6U) { goto case_6; } else { } if ((unsigned int )p->u.ofdm.bandwidth == 3U) { goto case_3___0; } else { } goto switch_break___0; case_5: /* CIL Label */ c->bandwidth_hz = 10000000U; goto ldv_47690; case_0: /* CIL Label */ c->bandwidth_hz = 8000000U; goto ldv_47690; case_1___0: /* CIL Label */ c->bandwidth_hz = 7000000U; goto ldv_47690; case_2___0: /* CIL Label */ c->bandwidth_hz = 6000000U; goto ldv_47690; case_4: /* CIL Label */ c->bandwidth_hz = 5000000U; goto ldv_47690; case_6: /* CIL Label */ c->bandwidth_hz = 1712000U; goto ldv_47690; case_3___0: /* CIL Label */ c->bandwidth_hz = 0U; switch_break___0: /* CIL Label */ ; } ldv_47690: c->code_rate_HP = p->u.ofdm.code_rate_HP; c->code_rate_LP = p->u.ofdm.code_rate_LP; c->modulation = p->u.ofdm.constellation; c->transmission_mode = p->u.ofdm.transmission_mode; c->guard_interval = p->u.ofdm.guard_interval; c->hierarchy = p->u.ofdm.hierarchy_information; goto ldv_47684; case_4___0: /* CIL Label */ { descriptor___2.modname = "dvb_core"; descriptor___2.function = "dtv_property_cache_sync"; descriptor___2.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor___2.format = "%s: Preparing ATSC req\n"; descriptor___2.lineno = 1153U; descriptor___2.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___3 != 0L) { { __dynamic_dev_dbg(& descriptor___2, (struct device const *)(fe->dvb)->device, "%s: Preparing ATSC req\n", "dtv_property_cache_sync"); } } else { } c->modulation = p->u.vsb.modulation; if ((unsigned int )c->delivery_system == 12U) { goto ldv_47684; } else { } if ((unsigned int )c->modulation - 7U <= 1U) { c->delivery_system = 11; } else { c->delivery_system = 2; } goto ldv_47684; case_0___0: /* CIL Label */ { dev_err((struct device const *)(fe->dvb)->device, "%s: doesn\'t know how to handle a DVBv3 call to delivery system %i\n", "dtv_property_cache_sync", (unsigned int )c->delivery_system); } return (-22); switch_break: /* CIL Label */ ; } ldv_47684: ; return (0); } } static int dtv_property_legacy_params_sync(struct dvb_frontend *fe , struct dvb_frontend_parameters *p ) { struct dtv_frontend_properties const *c ; enum dvbv3_emulation_type tmp ; struct _ddebug descriptor ; long tmp___0 ; struct _ddebug descriptor___0 ; long tmp___1 ; struct _ddebug descriptor___1 ; long tmp___2 ; struct _ddebug descriptor___2 ; long tmp___3 ; { { c = (struct dtv_frontend_properties const *)(& fe->dtv_property_cache); p->frequency = c->frequency; p->inversion = c->inversion; tmp = dvbv3_type((u32 )c->delivery_system); } { if ((unsigned int )tmp == 0U) { goto case_0; } else { } if ((unsigned int )tmp == 1U) { goto case_1; } else { } if ((unsigned int )tmp == 2U) { goto case_2; } else { } if ((unsigned int )tmp == 3U) { goto case_3; } else { } if ((unsigned int )tmp == 4U) { goto case_4; } else { } goto switch_break; case_0: /* CIL Label */ { dev_err((struct device const *)(fe->dvb)->device, "%s: doesn\'t know how to handle a DVBv3 call to delivery system %i\n", "dtv_property_legacy_params_sync", (unsigned int )c->delivery_system); } return (-22); case_1: /* CIL Label */ { descriptor.modname = "dvb_core"; descriptor.function = "dtv_property_legacy_params_sync"; descriptor.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor.format = "%s: Preparing QPSK req\n"; descriptor.lineno = 1190U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(fe->dvb)->device, "%s: Preparing QPSK req\n", "dtv_property_legacy_params_sync"); } } else { } p->u.qpsk.symbol_rate = c->symbol_rate; p->u.qpsk.fec_inner = c->fec_inner; goto ldv_47709; case_2: /* CIL Label */ { descriptor___0.modname = "dvb_core"; descriptor___0.function = "dtv_property_legacy_params_sync"; descriptor___0.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor___0.format = "%s: Preparing QAM req\n"; descriptor___0.lineno = 1195U; descriptor___0.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___1 != 0L) { { __dynamic_dev_dbg(& descriptor___0, (struct device const *)(fe->dvb)->device, "%s: Preparing QAM req\n", "dtv_property_legacy_params_sync"); } } else { } p->u.qam.symbol_rate = c->symbol_rate; p->u.qam.fec_inner = c->fec_inner; p->u.qam.modulation = c->modulation; goto ldv_47709; case_3: /* CIL Label */ { descriptor___1.modname = "dvb_core"; descriptor___1.function = "dtv_property_legacy_params_sync"; descriptor___1.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor___1.format = "%s: Preparing OFDM req\n"; descriptor___1.lineno = 1201U; descriptor___1.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___2 != 0L) { { __dynamic_dev_dbg(& descriptor___1, (struct device const *)(fe->dvb)->device, "%s: Preparing OFDM req\n", "dtv_property_legacy_params_sync"); } } else { } { if (c->bandwidth_hz == 10000000U) { goto case_10000000; } else { } if (c->bandwidth_hz == 8000000U) { goto case_8000000; } else { } if (c->bandwidth_hz == 7000000U) { goto case_7000000; } else { } if (c->bandwidth_hz == 6000000U) { goto case_6000000; } else { } if (c->bandwidth_hz == 5000000U) { goto case_5000000; } else { } if (c->bandwidth_hz == 1712000U) { goto case_1712000; } else { } if (c->bandwidth_hz == 0U) { goto case_0___0; } else { } goto switch_default; case_10000000: /* CIL Label */ p->u.ofdm.bandwidth = 5; goto ldv_47715; case_8000000: /* CIL Label */ p->u.ofdm.bandwidth = 0; goto ldv_47715; case_7000000: /* CIL Label */ p->u.ofdm.bandwidth = 1; goto ldv_47715; case_6000000: /* CIL Label */ p->u.ofdm.bandwidth = 2; goto ldv_47715; case_5000000: /* CIL Label */ p->u.ofdm.bandwidth = 4; goto ldv_47715; case_1712000: /* CIL Label */ p->u.ofdm.bandwidth = 6; goto ldv_47715; case_0___0: /* CIL Label */ ; switch_default: /* CIL Label */ p->u.ofdm.bandwidth = 3; switch_break___0: /* CIL Label */ ; } ldv_47715: p->u.ofdm.code_rate_HP = c->code_rate_HP; p->u.ofdm.code_rate_LP = c->code_rate_LP; p->u.ofdm.constellation = c->modulation; p->u.ofdm.transmission_mode = c->transmission_mode; p->u.ofdm.guard_interval = c->guard_interval; p->u.ofdm.hierarchy_information = c->hierarchy; goto ldv_47709; case_4: /* CIL Label */ { descriptor___2.modname = "dvb_core"; descriptor___2.function = "dtv_property_legacy_params_sync"; descriptor___2.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor___2.format = "%s: Preparing VSB req\n"; descriptor___2.lineno = 1233U; descriptor___2.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___3 != 0L) { { __dynamic_dev_dbg(& descriptor___2, (struct device const *)(fe->dvb)->device, "%s: Preparing VSB req\n", "dtv_property_legacy_params_sync"); } } else { } p->u.vsb.modulation = c->modulation; goto ldv_47709; switch_break: /* CIL Label */ ; } ldv_47709: ; return (0); } } static int dtv_get_frontend(struct dvb_frontend *fe , struct dvb_frontend_parameters *p_out ) { int r ; long tmp ; { if ((unsigned long )fe->ops.get_frontend != (unsigned long )((int (*)(struct dvb_frontend * ))0)) { { r = (*(fe->ops.get_frontend))(fe); tmp = ldv__builtin_expect(r < 0, 0L); } if (tmp != 0L) { return (r); } else { } if ((unsigned long )p_out != (unsigned long )((struct dvb_frontend_parameters *)0)) { { dtv_property_legacy_params_sync(fe, p_out); } } else { } return (0); } else { } return (0); } } static int dvb_frontend_ioctl_legacy(struct file *file , unsigned int cmd , void *parg ) ; static int dvb_frontend_ioctl_properties(struct file *file , unsigned int cmd , void *parg ) ; static int dtv_property_process_get(struct dvb_frontend *fe , struct dtv_frontend_properties const *c , struct dtv_property *tvp , struct file *file ) { int r ; int ncaps ; struct _ddebug descriptor ; long tmp ; { { if (tvp->cmd == 44U) { goto case_44; } else { } if (tvp->cmd == 3U) { goto case_3; } else { } if (tvp->cmd == 4U) { goto case_4; } else { } if (tvp->cmd == 5U) { goto case_5; } else { } if (tvp->cmd == 6U) { goto case_6; } else { } if (tvp->cmd == 8U) { goto case_8; } else { } if (tvp->cmd == 9U) { goto case_9; } else { } if (tvp->cmd == 12U) { goto case_12; } else { } if (tvp->cmd == 13U) { goto case_13; } else { } if (tvp->cmd == 17U) { goto case_17; } else { } if (tvp->cmd == 10U) { goto case_10; } else { } if (tvp->cmd == 11U) { goto case_11; } else { } if (tvp->cmd == 35U) { goto case_35; } else { } if (tvp->cmd == 36U) { goto case_36; } else { } if (tvp->cmd == 37U) { goto case_37; } else { } if (tvp->cmd == 38U) { goto case_38; } else { } if (tvp->cmd == 39U) { goto case_39; } else { } if (tvp->cmd == 40U) { goto case_40; } else { } if (tvp->cmd == 60U) { goto case_60; } else { } if (tvp->cmd == 18U) { goto case_18; } else { } if (tvp->cmd == 19U) { goto case_19; } else { } if (tvp->cmd == 20U) { goto case_20; } else { } if (tvp->cmd == 21U) { goto case_21; } else { } if (tvp->cmd == 22U) { goto case_22; } else { } if (tvp->cmd == 41U) { goto case_41; } else { } if (tvp->cmd == 23U) { goto case_23; } else { } if (tvp->cmd == 24U) { goto case_24; } else { } if (tvp->cmd == 25U) { goto case_25; } else { } if (tvp->cmd == 26U) { goto case_26; } else { } if (tvp->cmd == 27U) { goto case_27; } else { } if (tvp->cmd == 28U) { goto case_28; } else { } if (tvp->cmd == 29U) { goto case_29; } else { } if (tvp->cmd == 30U) { goto case_30; } else { } if (tvp->cmd == 31U) { goto case_31; } else { } if (tvp->cmd == 32U) { goto case_32; } else { } if (tvp->cmd == 33U) { goto case_33; } else { } if (tvp->cmd == 34U) { goto case_34; } else { } if (tvp->cmd == 42U) { goto case_42; } else { } if (tvp->cmd == 43U) { goto case_43; } else { } if (tvp->cmd == 45U) { goto case_45; } else { } if (tvp->cmd == 46U) { goto case_46; } else { } if (tvp->cmd == 47U) { goto case_47; } else { } if (tvp->cmd == 48U) { goto case_48; } else { } if (tvp->cmd == 49U) { goto case_49; } else { } if (tvp->cmd == 50U) { goto case_50; } else { } if (tvp->cmd == 51U) { goto case_51; } else { } if (tvp->cmd == 52U) { goto case_52; } else { } if (tvp->cmd == 53U) { goto case_53; } else { } if (tvp->cmd == 54U) { goto case_54; } else { } if (tvp->cmd == 55U) { goto case_55; } else { } if (tvp->cmd == 56U) { goto case_56; } else { } if (tvp->cmd == 57U) { goto case_57; } else { } if (tvp->cmd == 58U) { goto case_58; } else { } if (tvp->cmd == 59U) { goto case_59; } else { } if (tvp->cmd == 61U) { goto case_61; } else { } if (tvp->cmd == 62U) { goto case_62; } else { } if (tvp->cmd == 63U) { goto case_63; } else { } if (tvp->cmd == 64U) { goto case_64; } else { } if (tvp->cmd == 65U) { goto case_65; } else { } if (tvp->cmd == 66U) { goto case_66; } else { } if (tvp->cmd == 67U) { goto case_67; } else { } if (tvp->cmd == 68U) { goto case_68; } else { } if (tvp->cmd == 69U) { goto case_69; } else { } goto switch_default; case_44: /* CIL Label */ ncaps = 0; goto ldv_47748; ldv_47747: tvp->u.buffer.data[ncaps] = fe->ops.delsys[ncaps]; ncaps = ncaps + 1; ldv_47748: ; if (ncaps <= 7 && (unsigned int )fe->ops.delsys[ncaps] != 0U) { goto ldv_47747; } else { } tvp->u.buffer.len = (__u32 )ncaps; goto ldv_47750; case_3: /* CIL Label */ tvp->u.data = c->frequency; goto ldv_47750; case_4: /* CIL Label */ tvp->u.data = (__u32 )c->modulation; goto ldv_47750; case_5: /* CIL Label */ tvp->u.data = c->bandwidth_hz; goto ldv_47750; case_6: /* CIL Label */ tvp->u.data = (__u32 )c->inversion; goto ldv_47750; case_8: /* CIL Label */ tvp->u.data = c->symbol_rate; goto ldv_47750; case_9: /* CIL Label */ tvp->u.data = (__u32 )c->fec_inner; goto ldv_47750; case_12: /* CIL Label */ tvp->u.data = (__u32 )c->pilot; goto ldv_47750; case_13: /* CIL Label */ tvp->u.data = (__u32 )c->rolloff; goto ldv_47750; case_17: /* CIL Label */ tvp->u.data = (__u32 )c->delivery_system; goto ldv_47750; case_10: /* CIL Label */ tvp->u.data = (__u32 )c->voltage; goto ldv_47750; case_11: /* CIL Label */ tvp->u.data = (__u32 )c->sectone; goto ldv_47750; case_35: /* CIL Label */ tvp->u.data = 1290U; goto ldv_47750; case_36: /* CIL Label */ tvp->u.data = (__u32 )c->code_rate_HP; goto ldv_47750; case_37: /* CIL Label */ tvp->u.data = (__u32 )c->code_rate_LP; goto ldv_47750; case_38: /* CIL Label */ tvp->u.data = (__u32 )c->guard_interval; goto ldv_47750; case_39: /* CIL Label */ tvp->u.data = (__u32 )c->transmission_mode; goto ldv_47750; case_40: /* CIL Label */ tvp->u.data = (__u32 )c->hierarchy; goto ldv_47750; case_60: /* CIL Label */ tvp->u.data = (__u32 )c->interleaving; goto ldv_47750; case_18: /* CIL Label */ tvp->u.data = (__u32 )c->isdbt_partial_reception; goto ldv_47750; case_19: /* CIL Label */ tvp->u.data = (__u32 )c->isdbt_sb_mode; goto ldv_47750; case_20: /* CIL Label */ tvp->u.data = (__u32 )c->isdbt_sb_subchannel; goto ldv_47750; case_21: /* CIL Label */ tvp->u.data = c->isdbt_sb_segment_idx; goto ldv_47750; case_22: /* CIL Label */ tvp->u.data = c->isdbt_sb_segment_count; goto ldv_47750; case_41: /* CIL Label */ tvp->u.data = (__u32 )c->isdbt_layer_enabled; goto ldv_47750; case_23: /* CIL Label */ tvp->u.data = (__u32 )c->layer[0].fec; goto ldv_47750; case_24: /* CIL Label */ tvp->u.data = (__u32 )c->layer[0].modulation; goto ldv_47750; case_25: /* CIL Label */ tvp->u.data = (__u32 )c->layer[0].segment_count; goto ldv_47750; case_26: /* CIL Label */ tvp->u.data = (__u32 )c->layer[0].interleaving; goto ldv_47750; case_27: /* CIL Label */ tvp->u.data = (__u32 )c->layer[1].fec; goto ldv_47750; case_28: /* CIL Label */ tvp->u.data = (__u32 )c->layer[1].modulation; goto ldv_47750; case_29: /* CIL Label */ tvp->u.data = (__u32 )c->layer[1].segment_count; goto ldv_47750; case_30: /* CIL Label */ tvp->u.data = (__u32 )c->layer[1].interleaving; goto ldv_47750; case_31: /* CIL Label */ tvp->u.data = (__u32 )c->layer[2].fec; goto ldv_47750; case_32: /* CIL Label */ tvp->u.data = (__u32 )c->layer[2].modulation; goto ldv_47750; case_33: /* CIL Label */ tvp->u.data = (__u32 )c->layer[2].segment_count; goto ldv_47750; case_34: /* CIL Label */ tvp->u.data = (__u32 )c->layer[2].interleaving; goto ldv_47750; case_42: /* CIL Label */ ; case_43: /* CIL Label */ tvp->u.data = c->stream_id; goto ldv_47750; case_45: /* CIL Label */ tvp->u.data = (__u32 )fe->dtv_property_cache.atscmh_fic_ver; goto ldv_47750; case_46: /* CIL Label */ tvp->u.data = (__u32 )fe->dtv_property_cache.atscmh_parade_id; goto ldv_47750; case_47: /* CIL Label */ tvp->u.data = (__u32 )fe->dtv_property_cache.atscmh_nog; goto ldv_47750; case_48: /* CIL Label */ tvp->u.data = (__u32 )fe->dtv_property_cache.atscmh_tnog; goto ldv_47750; case_49: /* CIL Label */ tvp->u.data = (__u32 )fe->dtv_property_cache.atscmh_sgn; goto ldv_47750; case_50: /* CIL Label */ tvp->u.data = (__u32 )fe->dtv_property_cache.atscmh_prc; goto ldv_47750; case_51: /* CIL Label */ tvp->u.data = (__u32 )fe->dtv_property_cache.atscmh_rs_frame_mode; goto ldv_47750; case_52: /* CIL Label */ tvp->u.data = (__u32 )fe->dtv_property_cache.atscmh_rs_frame_ensemble; goto ldv_47750; case_53: /* CIL Label */ tvp->u.data = (__u32 )fe->dtv_property_cache.atscmh_rs_code_mode_pri; goto ldv_47750; case_54: /* CIL Label */ tvp->u.data = (__u32 )fe->dtv_property_cache.atscmh_rs_code_mode_sec; goto ldv_47750; case_55: /* CIL Label */ tvp->u.data = (__u32 )fe->dtv_property_cache.atscmh_sccc_block_mode; goto ldv_47750; case_56: /* CIL Label */ tvp->u.data = (__u32 )fe->dtv_property_cache.atscmh_sccc_code_mode_a; goto ldv_47750; case_57: /* CIL Label */ tvp->u.data = (__u32 )fe->dtv_property_cache.atscmh_sccc_code_mode_b; goto ldv_47750; case_58: /* CIL Label */ tvp->u.data = (__u32 )fe->dtv_property_cache.atscmh_sccc_code_mode_c; goto ldv_47750; case_59: /* CIL Label */ tvp->u.data = (__u32 )fe->dtv_property_cache.atscmh_sccc_code_mode_d; goto ldv_47750; case_61: /* CIL Label */ tvp->u.data = c->lna; goto ldv_47750; case_62: /* CIL Label */ tvp->u.st = c->strength; goto ldv_47750; case_63: /* CIL Label */ tvp->u.st = c->cnr; goto ldv_47750; case_64: /* CIL Label */ tvp->u.st = c->pre_bit_error; goto ldv_47750; case_65: /* CIL Label */ tvp->u.st = c->pre_bit_count; goto ldv_47750; case_66: /* CIL Label */ tvp->u.st = c->post_bit_error; goto ldv_47750; case_67: /* CIL Label */ tvp->u.st = c->post_bit_count; goto ldv_47750; case_68: /* CIL Label */ tvp->u.st = c->block_error; goto ldv_47750; case_69: /* CIL Label */ tvp->u.st = c->block_count; goto ldv_47750; switch_default: /* CIL Label */ { descriptor.modname = "dvb_core"; descriptor.function = "dtv_property_process_get"; descriptor.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor.format = "%s: FE property %d doesn\'t exist\n"; descriptor.lineno = 1485U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(fe->dvb)->device, "%s: FE property %d doesn\'t exist\n", "dtv_property_process_get", tvp->cmd); } } else { } return (-22); switch_break: /* CIL Label */ ; } ldv_47750: ; if ((unsigned long )fe->ops.get_property != (unsigned long )((int (*)(struct dvb_frontend * , struct dtv_property * ))0)) { { r = (*(fe->ops.get_property))(fe, tvp); } if (r < 0) { return (r); } else { } } else { } { dtv_property_dump(fe, tvp); } return (0); } } static int dtv_set_frontend(struct dvb_frontend *fe ) ; static bool is_dvbv3_delsys(u32 delsys ) { bool status ; { status = (bool )((delsys == 3U || delsys == 1U) || (delsys == 5U || delsys == 11U)); return (status); } } static int emulate_delivery_system(struct dvb_frontend *fe , u32 delsys ) { int i ; struct dtv_frontend_properties *c ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; { c = & fe->dtv_property_cache; c->delivery_system = (fe_delivery_system_t )delsys; if ((unsigned int )c->delivery_system == 8U) { { descriptor.modname = "dvb_core"; descriptor.function = "emulate_delivery_system"; descriptor.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor.format = "%s: Using defaults for SYS_ISDBT\n"; descriptor.lineno = 1536U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(fe->dvb)->device, "%s: Using defaults for SYS_ISDBT\n", "emulate_delivery_system"); } } else { } if (c->bandwidth_hz == 0U) { c->bandwidth_hz = 6000000U; } else { } c->isdbt_partial_reception = 0U; c->isdbt_sb_mode = 0U; c->isdbt_sb_subchannel = 0U; c->isdbt_sb_segment_idx = 0U; c->isdbt_sb_segment_count = 0U; c->isdbt_layer_enabled = 7U; i = 0; goto ldv_47831; ldv_47830: c->layer[i].fec = 9; c->layer[i].modulation = 6; c->layer[i].interleaving = 0U; c->layer[i].segment_count = 0U; i = i + 1; ldv_47831: ; if (i <= 2) { goto ldv_47830; } else { } } else { } { descriptor___0.modname = "dvb_core"; descriptor___0.function = "emulate_delivery_system"; descriptor___0.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor___0.format = "%s: change delivery system on cache to %d\n"; descriptor___0.lineno = 1555U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_dev_dbg(& descriptor___0, (struct device const *)(fe->dvb)->device, "%s: change delivery system on cache to %d\n", "emulate_delivery_system", (unsigned int )c->delivery_system); } } else { } return (0); } } static int dvbv5_set_delivery_system(struct dvb_frontend *fe , u32 desired_system ) { int ncaps ; u32 delsys ; struct dtv_frontend_properties *c ; enum dvbv3_emulation_type type ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; bool tmp___1 ; int tmp___2 ; enum dvbv3_emulation_type tmp___3 ; struct _ddebug descriptor___1 ; long tmp___4 ; struct _ddebug descriptor___2 ; long tmp___5 ; int tmp___6 ; { delsys = 0U; c = & fe->dtv_property_cache; if (desired_system == 0U) { desired_system = (u32 )fe->ops.delsys[0]; } else { } ncaps = 0; goto ldv_47845; ldv_47844: ; if ((u32 )fe->ops.delsys[ncaps] == desired_system) { { c->delivery_system = (fe_delivery_system_t )desired_system; descriptor.modname = "dvb_core"; descriptor.function = "dvbv5_set_delivery_system"; descriptor.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor.format = "%s: Changing delivery system to %d\n"; descriptor.lineno = 1605U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(fe->dvb)->device, "%s: Changing delivery system to %d\n", "dvbv5_set_delivery_system", desired_system); } } else { } return (0); } else { } ncaps = ncaps + 1; ldv_47845: ; if (ncaps <= 7 && (unsigned int )fe->ops.delsys[ncaps] != 0U) { goto ldv_47844; } else { } { tmp___1 = is_dvbv3_delsys(desired_system); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { { descriptor___0.modname = "dvb_core"; descriptor___0.function = "dvbv5_set_delivery_system"; descriptor___0.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor___0.format = "%s: Delivery system %d not supported.\n"; descriptor___0.lineno = 1621U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_dev_dbg(& descriptor___0, (struct device const *)(fe->dvb)->device, "%s: Delivery system %d not supported.\n", "dvbv5_set_delivery_system", desired_system); } } else { } return (-22); } else { } { type = dvbv3_type(desired_system); ncaps = 0; } goto ldv_47849; ldv_47848: { tmp___3 = dvbv3_type((u32 )fe->ops.delsys[ncaps]); } if ((unsigned int )tmp___3 == (unsigned int )type) { delsys = (u32 )fe->ops.delsys[ncaps]; } else { } ncaps = ncaps + 1; ldv_47849: ; if (ncaps <= 7 && (unsigned int )fe->ops.delsys[ncaps] != 0U) { goto ldv_47848; } else { } if (delsys == 0U) { { descriptor___1.modname = "dvb_core"; descriptor___1.function = "dvbv5_set_delivery_system"; descriptor___1.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor___1.format = "%s: Delivery system %d not supported on emulation mode.\n"; descriptor___1.lineno = 1642U; descriptor___1.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___4 != 0L) { { __dynamic_dev_dbg(& descriptor___1, (struct device const *)(fe->dvb)->device, "%s: Delivery system %d not supported on emulation mode.\n", "dvbv5_set_delivery_system", desired_system); } } else { } return (-22); } else { } { descriptor___2.modname = "dvb_core"; descriptor___2.function = "dvbv5_set_delivery_system"; descriptor___2.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor___2.format = "%s: Using delivery system %d emulated as if it were %d\n"; descriptor___2.lineno = 1648U; descriptor___2.flags = 0U; tmp___5 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___5 != 0L) { { __dynamic_dev_dbg(& descriptor___2, (struct device const *)(fe->dvb)->device, "%s: Using delivery system %d emulated as if it were %d\n", "dvbv5_set_delivery_system", delsys, desired_system); } } else { } { tmp___6 = emulate_delivery_system(fe, desired_system); } return (tmp___6); } } static int dvbv3_set_delivery_system(struct dvb_frontend *fe ) { int ncaps ; u32 delsys ; struct dtv_frontend_properties *c ; struct _ddebug descriptor ; long tmp ; bool tmp___0 ; enum dvbv3_emulation_type tmp___1 ; struct _ddebug descriptor___0 ; long tmp___2 ; int tmp___3 ; { delsys = 0U; c = & fe->dtv_property_cache; if ((unsigned int )c->delivery_system == 0U) { c->delivery_system = (fe_delivery_system_t )fe->ops.delsys[0]; } else { } { tmp___0 = is_dvbv3_delsys((u32 )c->delivery_system); } if ((int )tmp___0) { { descriptor.modname = "dvb_core"; descriptor.function = "dvbv3_set_delivery_system"; descriptor.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor.format = "%s: Using delivery system to %d\n"; descriptor.lineno = 1698U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(fe->dvb)->device, "%s: Using delivery system to %d\n", "dvbv3_set_delivery_system", (unsigned int )c->delivery_system); } } else { } return (0); } else { } ncaps = 0; goto ldv_47863; ldv_47862: { tmp___1 = dvbv3_type((u32 )fe->ops.delsys[ncaps]); } if ((unsigned int )tmp___1 != 0U) { delsys = (u32 )fe->ops.delsys[ncaps]; goto ldv_47861; } else { } ncaps = ncaps + 1; ldv_47863: ; if (ncaps <= 7 && (unsigned int )fe->ops.delsys[ncaps] != 0U) { goto ldv_47862; } else { } ldv_47861: ; if (delsys == 0U) { { descriptor___0.modname = "dvb_core"; descriptor___0.function = "dvbv3_set_delivery_system"; descriptor___0.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor___0.format = "%s: Couldn\'t find a delivery system that works with FE_SET_FRONTEND\n"; descriptor___0.lineno = 1717U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___2 != 0L) { { __dynamic_dev_dbg(& descriptor___0, (struct device const *)(fe->dvb)->device, "%s: Couldn\'t find a delivery system that works with FE_SET_FRONTEND\n", "dvbv3_set_delivery_system"); } } else { } return (-22); } else { } { tmp___3 = emulate_delivery_system(fe, delsys); } return (tmp___3); } } static int dtv_property_process_set(struct dvb_frontend *fe , struct dtv_property *tvp , struct file *file ) { int r ; struct dtv_frontend_properties *c ; struct _ddebug descriptor ; long tmp ; { r = 0; c = & fe->dtv_property_cache; if ((unsigned long )fe->ops.set_property != (unsigned long )((int (*)(struct dvb_frontend * , struct dtv_property * ))0)) { { r = (*(fe->ops.set_property))(fe, tvp); } if (r < 0) { return (r); } else { } } else { } { if (tvp->cmd == 2U) { goto case_2; } else { } if (tvp->cmd == 1U) { goto case_1; } else { } if (tvp->cmd == 3U) { goto case_3; } else { } if (tvp->cmd == 4U) { goto case_4; } else { } if (tvp->cmd == 5U) { goto case_5; } else { } if (tvp->cmd == 6U) { goto case_6; } else { } if (tvp->cmd == 8U) { goto case_8; } else { } if (tvp->cmd == 9U) { goto case_9; } else { } if (tvp->cmd == 12U) { goto case_12; } else { } if (tvp->cmd == 13U) { goto case_13; } else { } if (tvp->cmd == 17U) { goto case_17; } else { } if (tvp->cmd == 10U) { goto case_10; } else { } if (tvp->cmd == 11U) { goto case_11; } else { } if (tvp->cmd == 36U) { goto case_36; } else { } if (tvp->cmd == 37U) { goto case_37; } else { } if (tvp->cmd == 38U) { goto case_38; } else { } if (tvp->cmd == 39U) { goto case_39; } else { } if (tvp->cmd == 40U) { goto case_40; } else { } if (tvp->cmd == 60U) { goto case_60; } else { } if (tvp->cmd == 18U) { goto case_18; } else { } if (tvp->cmd == 19U) { goto case_19; } else { } if (tvp->cmd == 20U) { goto case_20; } else { } if (tvp->cmd == 21U) { goto case_21; } else { } if (tvp->cmd == 22U) { goto case_22; } else { } if (tvp->cmd == 41U) { goto case_41; } else { } if (tvp->cmd == 23U) { goto case_23; } else { } if (tvp->cmd == 24U) { goto case_24; } else { } if (tvp->cmd == 25U) { goto case_25; } else { } if (tvp->cmd == 26U) { goto case_26; } else { } if (tvp->cmd == 27U) { goto case_27; } else { } if (tvp->cmd == 28U) { goto case_28; } else { } if (tvp->cmd == 29U) { goto case_29; } else { } if (tvp->cmd == 30U) { goto case_30; } else { } if (tvp->cmd == 31U) { goto case_31; } else { } if (tvp->cmd == 32U) { goto case_32; } else { } if (tvp->cmd == 33U) { goto case_33; } else { } if (tvp->cmd == 34U) { goto case_34; } else { } if (tvp->cmd == 42U) { goto case_42; } else { } if (tvp->cmd == 43U) { goto case_43; } else { } if (tvp->cmd == 46U) { goto case_46; } else { } if (tvp->cmd == 52U) { goto case_52; } else { } if (tvp->cmd == 61U) { goto case_61; } else { } goto switch_default; case_2: /* CIL Label */ { dvb_frontend_clear_cache(fe); } goto ldv_47873; case_1: /* CIL Label */ { c->state = tvp->cmd; descriptor.modname = "dvb_core"; descriptor.function = "dtv_property_process_set"; descriptor.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor.format = "%s: Finalised property cache\n"; descriptor.lineno = 1752U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(fe->dvb)->device, "%s: Finalised property cache\n", "dtv_property_process_set"); } } else { } { r = dtv_set_frontend(fe); } goto ldv_47873; case_3: /* CIL Label */ c->frequency = tvp->u.data; goto ldv_47873; case_4: /* CIL Label */ c->modulation = (fe_modulation_t )tvp->u.data; goto ldv_47873; case_5: /* CIL Label */ c->bandwidth_hz = tvp->u.data; goto ldv_47873; case_6: /* CIL Label */ c->inversion = (fe_spectral_inversion_t )tvp->u.data; goto ldv_47873; case_8: /* CIL Label */ c->symbol_rate = tvp->u.data; goto ldv_47873; case_9: /* CIL Label */ c->fec_inner = (fe_code_rate_t )tvp->u.data; goto ldv_47873; case_12: /* CIL Label */ c->pilot = (fe_pilot_t )tvp->u.data; goto ldv_47873; case_13: /* CIL Label */ c->rolloff = (fe_rolloff_t )tvp->u.data; goto ldv_47873; case_17: /* CIL Label */ { r = dvbv5_set_delivery_system(fe, tvp->u.data); } goto ldv_47873; case_10: /* CIL Label */ { c->voltage = (fe_sec_voltage_t )tvp->u.data; r = dvb_frontend_ioctl_legacy(file, 28483U, (void *)((long )c->voltage)); } goto ldv_47873; case_11: /* CIL Label */ { c->sectone = (fe_sec_tone_mode_t )tvp->u.data; r = dvb_frontend_ioctl_legacy(file, 28482U, (void *)((long )c->sectone)); } goto ldv_47873; case_36: /* CIL Label */ c->code_rate_HP = (fe_code_rate_t )tvp->u.data; goto ldv_47873; case_37: /* CIL Label */ c->code_rate_LP = (fe_code_rate_t )tvp->u.data; goto ldv_47873; case_38: /* CIL Label */ c->guard_interval = (fe_guard_interval_t )tvp->u.data; goto ldv_47873; case_39: /* CIL Label */ c->transmission_mode = (fe_transmit_mode_t )tvp->u.data; goto ldv_47873; case_40: /* CIL Label */ c->hierarchy = (fe_hierarchy_t )tvp->u.data; goto ldv_47873; case_60: /* CIL Label */ c->interleaving = (enum fe_interleaving )tvp->u.data; goto ldv_47873; case_18: /* CIL Label */ c->isdbt_partial_reception = (u8 )tvp->u.data; goto ldv_47873; case_19: /* CIL Label */ c->isdbt_sb_mode = (u8 )tvp->u.data; goto ldv_47873; case_20: /* CIL Label */ c->isdbt_sb_subchannel = (u8 )tvp->u.data; goto ldv_47873; case_21: /* CIL Label */ c->isdbt_sb_segment_idx = tvp->u.data; goto ldv_47873; case_22: /* CIL Label */ c->isdbt_sb_segment_count = tvp->u.data; goto ldv_47873; case_41: /* CIL Label */ c->isdbt_layer_enabled = (u8 )tvp->u.data; goto ldv_47873; case_23: /* CIL Label */ c->layer[0].fec = (fe_code_rate_t )tvp->u.data; goto ldv_47873; case_24: /* CIL Label */ c->layer[0].modulation = (fe_modulation_t )tvp->u.data; goto ldv_47873; case_25: /* CIL Label */ c->layer[0].segment_count = (u8 )tvp->u.data; goto ldv_47873; case_26: /* CIL Label */ c->layer[0].interleaving = (u8 )tvp->u.data; goto ldv_47873; case_27: /* CIL Label */ c->layer[1].fec = (fe_code_rate_t )tvp->u.data; goto ldv_47873; case_28: /* CIL Label */ c->layer[1].modulation = (fe_modulation_t )tvp->u.data; goto ldv_47873; case_29: /* CIL Label */ c->layer[1].segment_count = (u8 )tvp->u.data; goto ldv_47873; case_30: /* CIL Label */ c->layer[1].interleaving = (u8 )tvp->u.data; goto ldv_47873; case_31: /* CIL Label */ c->layer[2].fec = (fe_code_rate_t )tvp->u.data; goto ldv_47873; case_32: /* CIL Label */ c->layer[2].modulation = (fe_modulation_t )tvp->u.data; goto ldv_47873; case_33: /* CIL Label */ c->layer[2].segment_count = (u8 )tvp->u.data; goto ldv_47873; case_34: /* CIL Label */ c->layer[2].interleaving = (u8 )tvp->u.data; goto ldv_47873; case_42: /* CIL Label */ ; case_43: /* CIL Label */ c->stream_id = tvp->u.data; goto ldv_47873; case_46: /* CIL Label */ fe->dtv_property_cache.atscmh_parade_id = (u8 )tvp->u.data; goto ldv_47873; case_52: /* CIL Label */ fe->dtv_property_cache.atscmh_rs_frame_ensemble = (u8 )tvp->u.data; goto ldv_47873; case_61: /* CIL Label */ c->lna = tvp->u.data; if ((unsigned long )fe->ops.set_lna != (unsigned long )((int (*)(struct dvb_frontend * ))0)) { { r = (*(fe->ops.set_lna))(fe); } } else { } if (r < 0) { c->lna = 4294967295U; } else { } goto ldv_47873; switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } ldv_47873: ; return (r); } } static int dvb_frontend_ioctl(struct file *file , unsigned int cmd , void *parg ) { struct dvb_device *dvbdev ; struct dvb_frontend *fe ; struct dtv_frontend_properties *c ; struct dvb_frontend_private *fepriv ; int err ; struct _ddebug descriptor ; long tmp ; int tmp___0 ; { { dvbdev = (struct dvb_device *)file->private_data; fe = (struct dvb_frontend *)dvbdev->priv; c = & fe->dtv_property_cache; fepriv = (struct dvb_frontend_private *)fe->frontend_priv; err = -95; descriptor.modname = "dvb_core"; descriptor.function = "dvb_frontend_ioctl"; descriptor.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor.format = "%s: (%d)\n"; descriptor.lineno = 1906U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(fe->dvb)->device, "%s: (%d)\n", "dvb_frontend_ioctl", cmd & 255U); } } else { } { tmp___0 = down_interruptible(& fepriv->sem); } if (tmp___0 != 0) { return (-512); } else { } if (fe->exit != 0U) { { up(& fepriv->sem); } return (-19); } else { } if ((file->f_flags & 3U) == 0U && ((cmd >> 30 != 2U || cmd == 2150133582U) || cmd == 2148298560U)) { { up(& fepriv->sem); } return (-1); } else { } if (cmd == 1074818898U || cmd == 2148560723U) { { err = dvb_frontend_ioctl_properties(file, cmd, parg); } } else { { c->state = 0U; err = dvb_frontend_ioctl_legacy(file, cmd, parg); } } { up(& fepriv->sem); } return (err); } } static int dvb_frontend_ioctl_properties(struct file *file , unsigned int cmd , void *parg ) { struct dvb_device *dvbdev ; struct dvb_frontend *fe ; struct dvb_frontend_private *fepriv ; struct dtv_frontend_properties *c ; int err ; struct dtv_properties *tvps ; struct dtv_property *tvp ; int i ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; long tmp___1 ; void *tmp___2 ; unsigned long tmp___3 ; struct _ddebug descriptor___2 ; long tmp___4 ; struct _ddebug descriptor___3 ; long tmp___5 ; struct _ddebug descriptor___4 ; long tmp___6 ; void *tmp___7 ; unsigned long tmp___8 ; unsigned long tmp___9 ; { { dvbdev = (struct dvb_device *)file->private_data; fe = (struct dvb_frontend *)dvbdev->priv; fepriv = (struct dvb_frontend_private *)fe->frontend_priv; c = & fe->dtv_property_cache; err = 0; tvps = (struct dtv_properties *)parg; tvp = (struct dtv_property *)0; descriptor.modname = "dvb_core"; descriptor.function = "dvb_frontend_ioctl_properties"; descriptor.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor.format = "%s:\n"; descriptor.lineno = 1946U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(fe->dvb)->device, "%s:\n", "dvb_frontend_ioctl_properties"); } } else { } if (cmd == 1074818898U) { { descriptor___0.modname = "dvb_core"; descriptor___0.function = "dvb_frontend_ioctl_properties"; descriptor___0.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor___0.format = "%s: properties.num = %d\n"; descriptor___0.lineno = 1949U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_dev_dbg(& descriptor___0, (struct device const *)(fe->dvb)->device, "%s: properties.num = %d\n", "dvb_frontend_ioctl_properties", tvps->num); } } else { } { descriptor___1.modname = "dvb_core"; descriptor___1.function = "dvb_frontend_ioctl_properties"; descriptor___1.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor___1.format = "%s: properties.props = %p\n"; descriptor___1.lineno = 1950U; descriptor___1.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___1 != 0L) { { __dynamic_dev_dbg(& descriptor___1, (struct device const *)(fe->dvb)->device, "%s: properties.props = %p\n", "dvb_frontend_ioctl_properties", tvps->props); } } else { } if (tvps->num - 1U > 63U) { return (-22); } else { } { tmp___2 = kmalloc((unsigned long )tvps->num * 76UL, 208U); tvp = (struct dtv_property *)tmp___2; } if ((unsigned long )tvp == (unsigned long )((struct dtv_property *)0)) { err = -12; goto out; } else { } { tmp___3 = copy_from_user((void *)tvp, (void const *)tvps->props, (unsigned long )tvps->num * 76UL); } if (tmp___3 != 0UL) { err = -14; goto out; } else { } i = 0; goto ldv_47949; ldv_47948: { err = dtv_property_process_set(fe, tvp + (unsigned long )i, file); } if (err < 0) { goto out; } else { } (tvp + (unsigned long )i)->result = err; i = i + 1; ldv_47949: ; if ((__u32 )i < tvps->num) { goto ldv_47948; } else { } if (c->state == 1U) { { descriptor___2.modname = "dvb_core"; descriptor___2.function = "dvb_frontend_ioctl_properties"; descriptor___2.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor___2.format = "%s: Property cache is full, tuning\n"; descriptor___2.lineno = 1977U; descriptor___2.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___4 != 0L) { { __dynamic_dev_dbg(& descriptor___2, (struct device const *)(fe->dvb)->device, "%s: Property cache is full, tuning\n", "dvb_frontend_ioctl_properties"); } } else { } } else { } } else if (cmd == 2148560723U) { { descriptor___3.modname = "dvb_core"; descriptor___3.function = "dvb_frontend_ioctl_properties"; descriptor___3.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor___3.format = "%s: properties.num = %d\n"; descriptor___3.lineno = 1980U; descriptor___3.flags = 0U; tmp___5 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); } if (tmp___5 != 0L) { { __dynamic_dev_dbg(& descriptor___3, (struct device const *)(fe->dvb)->device, "%s: properties.num = %d\n", "dvb_frontend_ioctl_properties", tvps->num); } } else { } { descriptor___4.modname = "dvb_core"; descriptor___4.function = "dvb_frontend_ioctl_properties"; descriptor___4.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor___4.format = "%s: properties.props = %p\n"; descriptor___4.lineno = 1981U; descriptor___4.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___4.flags & 1L, 0L); } if (tmp___6 != 0L) { { __dynamic_dev_dbg(& descriptor___4, (struct device const *)(fe->dvb)->device, "%s: properties.props = %p\n", "dvb_frontend_ioctl_properties", tvps->props); } } else { } if (tvps->num - 1U > 63U) { return (-22); } else { } { tmp___7 = kmalloc((unsigned long )tvps->num * 76UL, 208U); tvp = (struct dtv_property *)tmp___7; } if ((unsigned long )tvp == (unsigned long )((struct dtv_property *)0)) { err = -12; goto out; } else { } { tmp___8 = copy_from_user((void *)tvp, (void const *)tvps->props, (unsigned long )tvps->num * 76UL); } if (tmp___8 != 0UL) { err = -14; goto out; } else { } if (fepriv->state != 1U) { { err = dtv_get_frontend(fe, (struct dvb_frontend_parameters *)0); } if (err < 0) { goto out; } else { } } else { } i = 0; goto ldv_47955; ldv_47954: { err = dtv_property_process_get(fe, (struct dtv_frontend_properties const *)c, tvp + (unsigned long )i, file); } if (err < 0) { goto out; } else { } (tvp + (unsigned long )i)->result = err; i = i + 1; ldv_47955: ; if ((__u32 )i < tvps->num) { goto ldv_47954; } else { } { tmp___9 = copy_to_user((void *)tvps->props, (void const *)tvp, (unsigned long )tvps->num * 76UL); } if (tmp___9 != 0UL) { err = -14; goto out; } else { } } else { err = -95; } out: { kfree((void const *)tvp); } return (err); } } static int dtv_set_frontend(struct dvb_frontend *fe ) { struct dvb_frontend_private *fepriv ; struct dtv_frontend_properties *c ; struct dvb_frontend_tune_settings fetunesettings ; u32 rolloff ; int tmp ; int tmp___0 ; { { fepriv = (struct dvb_frontend_private *)fe->frontend_priv; c = & fe->dtv_property_cache; rolloff = 0U; tmp = dvb_frontend_check_parameters(fe); } if (tmp < 0) { return (-22); } else { } { dtv_property_legacy_params_sync(fe, & fepriv->parameters_out); } { if ((unsigned int )c->delivery_system == 11U) { goto case_11; } else { } if ((unsigned int )c->delivery_system == 2U) { goto case_2; } else { } if ((unsigned int )c->delivery_system == 1U) { goto case_1; } else { } if ((unsigned int )c->delivery_system == 18U) { goto case_18; } else { } if ((unsigned int )c->delivery_system == 5U) { goto case_5; } else { } if ((unsigned int )c->delivery_system == 17U) { goto case_17; } else { } if ((unsigned int )c->delivery_system == 9U) { goto case_9; } else { } if ((unsigned int )c->delivery_system == 6U) { goto case_6; } else { } goto switch_default___0; case_11: /* CIL Label */ ; case_2: /* CIL Label */ c->bandwidth_hz = 6000000U; goto ldv_47966; case_1: /* CIL Label */ rolloff = 115U; goto ldv_47966; case_18: /* CIL Label */ rolloff = 113U; goto ldv_47966; case_5: /* CIL Label */ ; case_17: /* CIL Label */ ; case_9: /* CIL Label */ rolloff = 135U; goto ldv_47966; case_6: /* CIL Label */ ; { if ((unsigned int )c->rolloff == 1U) { goto case_1___0; } else { } if ((unsigned int )c->rolloff == 2U) { goto case_2___0; } else { } if ((unsigned int )c->rolloff == 0U) { goto case_0; } else { } goto switch_default; case_1___0: /* CIL Label */ rolloff = 120U; goto ldv_47974; case_2___0: /* CIL Label */ rolloff = 125U; goto ldv_47974; switch_default: /* CIL Label */ ; case_0: /* CIL Label */ rolloff = 135U; switch_break___0: /* CIL Label */ ; } ldv_47974: ; goto ldv_47966; switch_default___0: /* CIL Label */ ; goto ldv_47966; switch_break: /* CIL Label */ ; } ldv_47966: ; if (rolloff != 0U) { c->bandwidth_hz = (c->symbol_rate * rolloff) / 100U; } else { } if (dvb_force_auto_inversion != 0) { c->inversion = 2; } else { } if ((unsigned int )c->hierarchy == 0U && (unsigned int )c->code_rate_LP == 0U) { c->code_rate_LP = 9; } else { } { __memset((void *)(& fetunesettings), 0, 12UL); } if ((unsigned long )fe->ops.get_tune_settings != (unsigned long )((int (*)(struct dvb_frontend * , struct dvb_frontend_tune_settings * ))0)) { { tmp___0 = (*(fe->ops.get_tune_settings))(fe, & fetunesettings); } if (tmp___0 == 0) { fepriv->min_delay = (unsigned int )((fetunesettings.min_delay_ms * 250) / 1000); fepriv->max_drift = (unsigned int )fetunesettings.max_drift; fepriv->step_size = (unsigned int )fetunesettings.step_size; } else { goto _L; } } else { _L: /* CIL Label */ { if ((unsigned int )c->delivery_system == 5U) { goto case_5___0; } else { } if ((unsigned int )c->delivery_system == 6U) { goto case_6___0; } else { } if ((unsigned int )c->delivery_system == 9U) { goto case_9___0; } else { } if ((unsigned int )c->delivery_system == 17U) { goto case_17___0; } else { } if ((unsigned int )c->delivery_system == 1U) { goto case_1___1; } else { } if ((unsigned int )c->delivery_system == 18U) { goto case_18___0; } else { } if ((unsigned int )c->delivery_system == 3U) { goto case_3; } else { } if ((unsigned int )c->delivery_system == 16U) { goto case_16; } else { } if ((unsigned int )c->delivery_system == 8U) { goto case_8; } else { } if ((unsigned int )c->delivery_system == 13U) { goto case_13; } else { } goto switch_default___1; case_5___0: /* CIL Label */ ; case_6___0: /* CIL Label */ ; case_9___0: /* CIL Label */ ; case_17___0: /* CIL Label */ ; case_1___1: /* CIL Label */ ; case_18___0: /* CIL Label */ fepriv->min_delay = 12U; fepriv->step_size = c->symbol_rate / 16000U; fepriv->max_drift = c->symbol_rate / 2000U; goto ldv_47985; case_3: /* CIL Label */ ; case_16: /* CIL Label */ ; case_8: /* CIL Label */ ; case_13: /* CIL Label */ fepriv->min_delay = 12U; fepriv->step_size = fe->ops.info.frequency_stepsize * 2U; fepriv->max_drift = fe->ops.info.frequency_stepsize * 2U + 1U; goto ldv_47985; switch_default___1: /* CIL Label */ fepriv->min_delay = 12U; fepriv->step_size = 0U; fepriv->max_drift = 0U; goto ldv_47985; switch_break___1: /* CIL Label */ ; } ldv_47985: ; } if (dvb_override_tune_delay > 0) { fepriv->min_delay = (unsigned int )((dvb_override_tune_delay * 250) / 1000); } else { } { fepriv->state = 2U; fepriv->algo_status = (enum dvbfe_search )((int )fepriv->algo_status | 16); dvb_frontend_clear_events(fe); dvb_frontend_add_event(fe, 0); dvb_frontend_wakeup(fe); fepriv->status = 0; } return (0); } } static int dvb_frontend_ioctl_legacy(struct file *file , unsigned int cmd , void *parg ) { struct dvb_device *dvbdev ; struct dvb_frontend *fe ; struct dvb_frontend_private *fepriv ; struct dtv_frontend_properties *c ; int err ; struct dvb_frontend_info *info ; enum dvbv3_emulation_type tmp ; struct _ddebug descriptor ; long tmp___0 ; fe_status_t *status ; unsigned long swcmd ; struct timeval nexttime ; struct timeval tv[10U] ; int i ; u8 last ; s32 tmp___1 ; { dvbdev = (struct dvb_device *)file->private_data; fe = (struct dvb_frontend *)dvbdev->priv; fepriv = (struct dvb_frontend_private *)fe->frontend_priv; c = & fe->dtv_property_cache; err = -95; { if (cmd == 2158522173U) { goto case_2158522173; } else { } if (cmd == 2147774277U) { goto case_2147774277; } else { } if (cmd == 2147774278U) { goto case_2147774278; } else { } if (cmd == 2147643207U) { goto case_2147643207; } else { } if (cmd == 2147643208U) { goto case_2147643208; } else { } if (cmd == 2147774281U) { goto case_2147774281; } else { } if (cmd == 28478U) { goto case_28478; } else { } if (cmd == 1074229055U) { goto case_1074229055; } else { } if (cmd == 28481U) { goto case_28481; } else { } if (cmd == 28482U) { goto case_28482; } else { } if (cmd == 28483U) { goto case_28483; } else { } if (cmd == 28496U) { goto case_28496; } else { } if (cmd == 2148298560U) { goto case_2148298560; } else { } if (cmd == 28484U) { goto case_28484; } else { } if (cmd == 1076129612U) { goto case_1076129612; } else { } if (cmd == 2150133582U) { goto case_2150133582; } else { } if (cmd == 2149871437U) { goto case_2149871437; } else { } if (cmd == 28497U) { goto case_28497; } else { } goto switch_break; case_2158522173: /* CIL Label */ { info = (struct dvb_frontend_info *)parg; __memcpy((void *)info, (void const *)(& fe->ops.info), 168UL); dvb_frontend_get_frequency_limits(fe, & info->frequency_min, & info->frequency_max); tmp = dvbv3_type((u32 )c->delivery_system); } { if ((unsigned int )tmp == 1U) { goto case_1; } else { } if ((unsigned int )tmp == 4U) { goto case_4; } else { } if ((unsigned int )tmp == 2U) { goto case_2; } else { } if ((unsigned int )tmp == 3U) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ info->type = 0; goto ldv_48004; case_4: /* CIL Label */ info->type = 3; goto ldv_48004; case_2: /* CIL Label */ info->type = 1; goto ldv_48004; case_3: /* CIL Label */ info->type = 2; goto ldv_48004; switch_default: /* CIL Label */ { dev_err((struct device const *)(fe->dvb)->device, "%s: doesn\'t know how to handle a DVBv3 call to delivery system %i\n", "dvb_frontend_ioctl_legacy", (unsigned int )c->delivery_system); fe->ops.info.type = 2; } switch_break___0: /* CIL Label */ ; } ldv_48004: { descriptor.modname = "dvb_core"; descriptor.function = "dvb_frontend_ioctl_legacy"; descriptor.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor.format = "%s: current delivery system on cache: %d, V3 type: %d\n"; descriptor.lineno = 2215U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(fe->dvb)->device, "%s: current delivery system on cache: %d, V3 type: %d\n", "dvb_frontend_ioctl_legacy", (unsigned int )c->delivery_system, (unsigned int )fe->ops.info.type); } } else { } info->caps = (fe_caps_t )((unsigned int )info->caps | 1U); err = 0; goto ldv_48011; case_2147774277: /* CIL Label */ status = (fe_status_t *)parg; if (fepriv->state == 2U || fepriv->state == 256U) { err = 0; *status = 0; goto ldv_48011; } else { } if ((unsigned long )fe->ops.read_status != (unsigned long )((int (*)(struct dvb_frontend * , fe_status_t * ))0)) { { err = (*(fe->ops.read_status))(fe, status); } } else { } goto ldv_48011; case_2147774278: /* CIL Label */ ; if ((unsigned long )fe->ops.read_ber != (unsigned long )((int (*)(struct dvb_frontend * , u32 * ))0)) { if ((unsigned long )fepriv->thread != (unsigned long )((struct task_struct *)0)) { { err = (*(fe->ops.read_ber))(fe, (u32 *)parg); } } else { err = -11; } } else { } goto ldv_48011; case_2147643207: /* CIL Label */ ; if ((unsigned long )fe->ops.read_signal_strength != (unsigned long )((int (*)(struct dvb_frontend * , u16 * ))0)) { if ((unsigned long )fepriv->thread != (unsigned long )((struct task_struct *)0)) { { err = (*(fe->ops.read_signal_strength))(fe, (u16 *)parg); } } else { err = -11; } } else { } goto ldv_48011; case_2147643208: /* CIL Label */ ; if ((unsigned long )fe->ops.read_snr != (unsigned long )((int (*)(struct dvb_frontend * , u16 * ))0)) { if ((unsigned long )fepriv->thread != (unsigned long )((struct task_struct *)0)) { { err = (*(fe->ops.read_snr))(fe, (u16 *)parg); } } else { err = -11; } } else { } goto ldv_48011; case_2147774281: /* CIL Label */ ; if ((unsigned long )fe->ops.read_ucblocks != (unsigned long )((int (*)(struct dvb_frontend * , u32 * ))0)) { if ((unsigned long )fepriv->thread != (unsigned long )((struct task_struct *)0)) { { err = (*(fe->ops.read_ucblocks))(fe, (u32 *)parg); } } else { err = -11; } } else { } goto ldv_48011; case_28478: /* CIL Label */ ; if ((unsigned long )fe->ops.diseqc_reset_overload != (unsigned long )((int (*)(struct dvb_frontend * ))0)) { { err = (*(fe->ops.diseqc_reset_overload))(fe); fepriv->state = 128U; fepriv->status = 0; } } else { } goto ldv_48011; case_1074229055: /* CIL Label */ ; if ((unsigned long )fe->ops.diseqc_send_master_cmd != (unsigned long )((int (*)(struct dvb_frontend * , struct dvb_diseqc_master_cmd * ))0)) { { err = (*(fe->ops.diseqc_send_master_cmd))(fe, (struct dvb_diseqc_master_cmd *)parg); fepriv->state = 128U; fepriv->status = 0; } } else { } goto ldv_48011; case_28481: /* CIL Label */ ; if ((unsigned long )fe->ops.diseqc_send_burst != (unsigned long )((int (*)(struct dvb_frontend * , fe_sec_mini_cmd_t ))0)) { { err = (*(fe->ops.diseqc_send_burst))(fe, (enum fe_sec_mini_cmd )((long )parg)); fepriv->state = 128U; fepriv->status = 0; } } else { } goto ldv_48011; case_28482: /* CIL Label */ ; if ((unsigned long )fe->ops.set_tone != (unsigned long )((int (*)(struct dvb_frontend * , fe_sec_tone_mode_t ))0)) { { err = (*(fe->ops.set_tone))(fe, (enum fe_sec_tone_mode )((long )parg)); fepriv->tone = (int )((long )parg); fepriv->state = 128U; fepriv->status = 0; } } else { } goto ldv_48011; case_28483: /* CIL Label */ ; if ((unsigned long )fe->ops.set_voltage != (unsigned long )((int (*)(struct dvb_frontend * , fe_sec_voltage_t ))0)) { { err = (*(fe->ops.set_voltage))(fe, (enum fe_sec_voltage )((long )parg)); fepriv->voltage = (int )((long )parg); fepriv->state = 128U; fepriv->status = 0; } } else { } goto ldv_48011; case_28496: /* CIL Label */ ; if ((unsigned long )fe->ops.dishnetwork_send_legacy_command != (unsigned long )((int (*)(struct dvb_frontend * , unsigned long ))0)) { { err = (*(fe->ops.dishnetwork_send_legacy_command))(fe, (unsigned long )parg); fepriv->state = 128U; fepriv->status = 0; } } else if ((unsigned long )fe->ops.set_voltage != (unsigned long )((int (*)(struct dvb_frontend * , fe_sec_voltage_t ))0)) { swcmd = (unsigned long )parg << 1; last = 1U; if (dvb_frontend_debug != 0) { { printk("%s switch command: 0x%04lx\n", "dvb_frontend_ioctl_legacy", swcmd); } } else { } { do_gettimeofday(& nexttime); } if (dvb_frontend_debug != 0) { tv[0] = nexttime; } else { } { (*(fe->ops.set_voltage))(fe, 1); dvb_frontend_sleep_until(& nexttime, 32000U); i = 0; } goto ldv_48030; ldv_48029: ; if (dvb_frontend_debug != 0) { { do_gettimeofday((struct timeval *)(& tv) + ((unsigned long )i + 1UL)); } } else { } if ((swcmd & 1UL) != (unsigned long )last) { { (*(fe->ops.set_voltage))(fe, (unsigned int )last == 0U); last = (unsigned int )last == 0U; } } else { } swcmd = swcmd >> 1; if (i != 8) { { dvb_frontend_sleep_until(& nexttime, 8000U); } } else { } i = i + 1; ldv_48030: ; if (i <= 8) { goto ldv_48029; } else { } if (dvb_frontend_debug != 0) { { printk("%s(%d): switch delay (should be 32k followed by all 8k\n", "dvb_frontend_ioctl_legacy", (fe->dvb)->num); i = 1; } goto ldv_48033; ldv_48032: { tmp___1 = timeval_usec_diff(tv[i + -1], tv[i]); printk("%d: %d\n", i, tmp___1); i = i + 1; } ldv_48033: ; if (i <= 9) { goto ldv_48032; } else { } } else { } err = 0; fepriv->state = 128U; fepriv->status = 0; } else { } goto ldv_48011; case_2148298560: /* CIL Label */ ; if ((unsigned long )fe->ops.diseqc_recv_slave_reply != (unsigned long )((int (*)(struct dvb_frontend * , struct dvb_diseqc_slave_reply * ))0)) { { err = (*(fe->ops.diseqc_recv_slave_reply))(fe, (struct dvb_diseqc_slave_reply *)parg); } } else { } goto ldv_48011; case_28484: /* CIL Label */ ; if ((unsigned long )fe->ops.enable_high_lnb_voltage != (unsigned long )((int (*)(struct dvb_frontend * , long ))0)) { { err = (*(fe->ops.enable_high_lnb_voltage))(fe, (long )parg); } } else { } goto ldv_48011; case_1076129612: /* CIL Label */ { err = dvbv3_set_delivery_system(fe); } if (err != 0) { goto ldv_48011; } else { } { err = dtv_property_cache_sync(fe, c, (struct dvb_frontend_parameters const *)parg); } if (err != 0) { goto ldv_48011; } else { } { err = dtv_set_frontend(fe); } goto ldv_48011; case_2150133582: /* CIL Label */ { err = dvb_frontend_get_event(fe, (struct dvb_frontend_event *)parg, (int )file->f_flags); } goto ldv_48011; case_2149871437: /* CIL Label */ { err = dtv_get_frontend(fe, (struct dvb_frontend_parameters *)parg); } goto ldv_48011; case_28497: /* CIL Label */ fepriv->tune_mode_flags = (unsigned long )parg; err = 0; goto ldv_48011; switch_break: /* CIL Label */ ; } ldv_48011: ; return (err); } } static unsigned int dvb_frontend_poll(struct file *file , struct poll_table_struct *wait ) { struct dvb_device *dvbdev ; struct dvb_frontend *fe ; struct dvb_frontend_private *fepriv ; struct ratelimit_state _rs ; struct _ddebug descriptor ; long tmp ; int tmp___0 ; { { dvbdev = (struct dvb_device *)file->private_data; fe = (struct dvb_frontend *)dvbdev->priv; fepriv = (struct dvb_frontend_private *)fe->frontend_priv; _rs.lock.raw_lock.__annonCompField4.head_tail = 0U; _rs.lock.magic = 3735899821U; _rs.lock.owner_cpu = 4294967295U; _rs.lock.owner = (void *)-1; _rs.lock.dep_map.key = 0; _rs.lock.dep_map.class_cache[0] = 0; _rs.lock.dep_map.class_cache[1] = 0; _rs.lock.dep_map.name = "_rs.lock"; _rs.lock.dep_map.cpu = 0; _rs.lock.dep_map.ip = 0UL; _rs.interval = 1250; _rs.burst = 10; _rs.printed = 0; _rs.missed = 0; _rs.begin = 0UL; descriptor.modname = "dvb_core"; descriptor.function = "dvb_frontend_poll"; descriptor.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor.format = "%s:\n"; descriptor.lineno = 2425U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { tmp___0 = ___ratelimit(& _rs, "dvb_frontend_poll"); } if (tmp___0 != 0) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(fe->dvb)->device, "%s:\n", "dvb_frontend_poll"); } } else { } } else { } { poll_wait(file, & fepriv->events.wait_queue, wait); } if (fepriv->events.eventw != fepriv->events.eventr) { return (67U); } else { } return (0U); } } static int dvb_frontend_open(struct inode *inode , struct file *file ) { struct dvb_device *dvbdev ; struct dvb_frontend *fe ; struct dvb_frontend_private *fepriv ; struct dvb_adapter *adapter ; int ret ; struct _ddebug descriptor ; long tmp ; struct dvb_device *mfedev ; struct dvb_frontend *mfe ; struct dvb_frontend_private *mfepriv ; int mferetry ; struct task_struct *tmp___0 ; int tmp___1 ; unsigned long tmp___2 ; int tmp___3 ; int tmp___4 ; { { dvbdev = (struct dvb_device *)file->private_data; fe = (struct dvb_frontend *)dvbdev->priv; fepriv = (struct dvb_frontend_private *)fe->frontend_priv; adapter = fe->dvb; descriptor.modname = "dvb_core"; descriptor.function = "dvb_frontend_open"; descriptor.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor.format = "%s:\n"; descriptor.lineno = 2443U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(fe->dvb)->device, "%s:\n", "dvb_frontend_open"); } } else { } if (fe->exit == 2U) { return (-19); } else { } if (adapter->mfe_shared != 0) { { ldv_mutex_lock_127(& adapter->mfe_lock); } if ((unsigned long )adapter->mfe_dvbdev == (unsigned long )((struct dvb_device *)0)) { adapter->mfe_dvbdev = dvbdev; } else if ((unsigned long )adapter->mfe_dvbdev != (unsigned long )dvbdev) { { mfedev = adapter->mfe_dvbdev; mfe = (struct dvb_frontend *)mfedev->priv; mfepriv = (struct dvb_frontend_private *)mfe->frontend_priv; mferetry = dvb_mfe_wait_time << 1; ldv_mutex_unlock_128___1(& adapter->mfe_lock); } goto ldv_48068; ldv_48067: { tmp___2 = msleep_interruptible(500U); } if (tmp___2 != 0UL) { { tmp___0 = get_current___1(); tmp___1 = signal_pending(tmp___0); } if (tmp___1 != 0) { return (-4); } else { } } else { } ldv_48068: tmp___3 = mferetry; mferetry = mferetry - 1; if (tmp___3 != 0 && (mfedev->users != -1 || (unsigned long )mfepriv->thread != (unsigned long )((struct task_struct *)0))) { goto ldv_48067; } else { } { ldv_mutex_lock_129(& adapter->mfe_lock); } if ((unsigned long )adapter->mfe_dvbdev != (unsigned long )dvbdev) { mfedev = adapter->mfe_dvbdev; mfe = (struct dvb_frontend *)mfedev->priv; mfepriv = (struct dvb_frontend_private *)mfe->frontend_priv; if (mfedev->users != -1 || (unsigned long )mfepriv->thread != (unsigned long )((struct task_struct *)0)) { { ldv_mutex_unlock_130___0(& adapter->mfe_lock); } return (-16); } else { } adapter->mfe_dvbdev = dvbdev; } else { } } else { } } else { } if (dvbdev->users == -1 && (unsigned long )fe->ops.ts_bus_ctrl != (unsigned long )((int (*)(struct dvb_frontend * , int ))0)) { { ret = (*(fe->ops.ts_bus_ctrl))(fe, 1); } if (ret < 0) { goto err0; } else { } fepriv->reinitialise = 1U; } else { } { ret = dvb_generic_open(inode, file); } if (ret < 0) { goto err1; } else { } if ((file->f_flags & 3U) != 0U) { { fepriv->tune_mode_flags = fepriv->tune_mode_flags & 0xfffffffffffffffeUL; fepriv->tone = -1; fepriv->voltage = -1; ret = dvb_frontend_start(fe); } if (ret != 0) { goto err2; } else { } tmp___4 = 0; fepriv->events.eventw = tmp___4; fepriv->events.eventr = tmp___4; } else { } if (adapter->mfe_shared != 0) { { ldv_mutex_unlock_131___0(& adapter->mfe_lock); } } else { } return (ret); err2: { dvb_generic_release(inode, file); } err1: ; if (dvbdev->users == -1 && (unsigned long )fe->ops.ts_bus_ctrl != (unsigned long )((int (*)(struct dvb_frontend * , int ))0)) { { (*(fe->ops.ts_bus_ctrl))(fe, 0); } } else { } err0: ; if (adapter->mfe_shared != 0) { { ldv_mutex_unlock_132___0(& adapter->mfe_lock); } } else { } return (ret); } } static int dvb_frontend_release(struct inode *inode , struct file *file ) { struct dvb_device *dvbdev ; struct dvb_frontend *fe ; struct dvb_frontend_private *fepriv ; int ret ; struct _ddebug descriptor ; long tmp ; { { dvbdev = (struct dvb_device *)file->private_data; fe = (struct dvb_frontend *)dvbdev->priv; fepriv = (struct dvb_frontend_private *)fe->frontend_priv; descriptor.modname = "dvb_core"; descriptor.function = "dvb_frontend_release"; descriptor.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor.format = "%s:\n"; descriptor.lineno = 2538U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(fe->dvb)->device, "%s:\n", "dvb_frontend_release"); } } else { } if ((file->f_flags & 3U) != 0U) { fepriv->release_jiffies = jiffies; __asm__ volatile ("mfence": : : "memory"); } else { } { ret = dvb_generic_release(inode, file); } if (dvbdev->users == -1) { { __wake_up(& fepriv->wait_queue, 3U, 1, (void *)0); } if (fe->exit != 0U) { { __wake_up(& dvbdev->wait_queue, 3U, 1, (void *)0); } } else { } if ((unsigned long )fe->ops.ts_bus_ctrl != (unsigned long )((int (*)(struct dvb_frontend * , int ))0)) { { (*(fe->ops.ts_bus_ctrl))(fe, 0); } } else { } } else { } return (ret); } } static struct file_operations const dvb_frontend_fops = {& __this_module, & noop_llseek, 0, 0, 0, 0, 0, 0, 0, & dvb_frontend_poll, & dvb_generic_ioctl, 0, 0, 0, & dvb_frontend_open, 0, & dvb_frontend_release, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; int dvb_frontend_suspend(struct dvb_frontend *fe ) { int ret ; struct _ddebug descriptor ; long tmp ; { { ret = 0; descriptor.modname = "dvb_core"; descriptor.function = "dvb_frontend_suspend"; descriptor.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor.format = "%s: adap=%d fe=%d\n"; descriptor.lineno = 2572U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(fe->dvb)->device, "%s: adap=%d fe=%d\n", "dvb_frontend_suspend", (fe->dvb)->num, fe->id); } } else { } if ((unsigned long )fe->ops.tuner_ops.suspend != (unsigned long )((int (*)(struct dvb_frontend * ))0)) { { ret = (*(fe->ops.tuner_ops.suspend))(fe); } } else if ((unsigned long )fe->ops.tuner_ops.sleep != (unsigned long )((int (*)(struct dvb_frontend * ))0)) { { ret = (*(fe->ops.tuner_ops.sleep))(fe); } } else { } if ((unsigned long )fe->ops.sleep != (unsigned long )((int (*)(struct dvb_frontend * ))0)) { { ret = (*(fe->ops.sleep))(fe); } } else { } return (ret); } } static char const __kstrtab_dvb_frontend_suspend[21U] = { 'd', 'v', 'b', '_', 'f', 'r', 'o', 'n', 't', 'e', 'n', 'd', '_', 's', 'u', 's', 'p', 'e', 'n', 'd', '\000'}; struct kernel_symbol const __ksymtab_dvb_frontend_suspend ; struct kernel_symbol const __ksymtab_dvb_frontend_suspend = {(unsigned long )(& dvb_frontend_suspend), (char const *)(& __kstrtab_dvb_frontend_suspend)}; int dvb_frontend_resume(struct dvb_frontend *fe ) { struct dvb_frontend_private *fepriv ; int ret ; struct _ddebug descriptor ; long tmp ; { { fepriv = (struct dvb_frontend_private *)fe->frontend_priv; ret = 0; descriptor.modname = "dvb_core"; descriptor.function = "dvb_frontend_resume"; descriptor.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor.format = "%s: adap=%d fe=%d\n"; descriptor.lineno = 2592U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(fe->dvb)->device, "%s: adap=%d fe=%d\n", "dvb_frontend_resume", (fe->dvb)->num, fe->id); } } else { } fe->exit = 3U; if ((unsigned long )fe->ops.init != (unsigned long )((int (*)(struct dvb_frontend * ))0)) { { ret = (*(fe->ops.init))(fe); } } else { } if ((unsigned long )fe->ops.tuner_ops.resume != (unsigned long )((int (*)(struct dvb_frontend * ))0)) { { ret = (*(fe->ops.tuner_ops.resume))(fe); } } else if ((unsigned long )fe->ops.tuner_ops.init != (unsigned long )((int (*)(struct dvb_frontend * ))0)) { { ret = (*(fe->ops.tuner_ops.init))(fe); } } else { } { fe->exit = 0U; fepriv->state = 2U; dvb_frontend_wakeup(fe); } return (ret); } } static char const __kstrtab_dvb_frontend_resume[20U] = { 'd', 'v', 'b', '_', 'f', 'r', 'o', 'n', 't', 'e', 'n', 'd', '_', 'r', 'e', 's', 'u', 'm', 'e', '\000'}; struct kernel_symbol const __ksymtab_dvb_frontend_resume ; struct kernel_symbol const __ksymtab_dvb_frontend_resume = {(unsigned long )(& dvb_frontend_resume), (char const *)(& __kstrtab_dvb_frontend_resume)}; int dvb_register_frontend(struct dvb_adapter *dvb , struct dvb_frontend *fe ) { struct dvb_frontend_private *fepriv ; struct dvb_device dvbdev_template ; struct _ddebug descriptor ; long tmp ; int tmp___0 ; struct lock_class_key __key ; struct lock_class_key __key___0 ; struct lock_class_key __key___1 ; { { dvbdev_template.list_head.next = 0; dvbdev_template.list_head.prev = 0; dvbdev_template.fops = & dvb_frontend_fops; dvbdev_template.adapter = 0; dvbdev_template.type = 0; dvbdev_template.minor = 0; dvbdev_template.id = 0U; dvbdev_template.readers = -2; dvbdev_template.writers = 1; dvbdev_template.users = -1; dvbdev_template.wait_queue.lock.__annonCompField18.rlock.raw_lock.__annonCompField4.head_tail = 0U; dvbdev_template.wait_queue.lock.__annonCompField18.rlock.magic = 0U; dvbdev_template.wait_queue.lock.__annonCompField18.rlock.owner_cpu = 0U; dvbdev_template.wait_queue.lock.__annonCompField18.rlock.owner = 0; dvbdev_template.wait_queue.lock.__annonCompField18.rlock.dep_map.key = 0; dvbdev_template.wait_queue.lock.__annonCompField18.rlock.dep_map.class_cache[0] = 0; dvbdev_template.wait_queue.lock.__annonCompField18.rlock.dep_map.class_cache[1] = 0; dvbdev_template.wait_queue.lock.__annonCompField18.rlock.dep_map.name = 0; dvbdev_template.wait_queue.lock.__annonCompField18.rlock.dep_map.cpu = 0; dvbdev_template.wait_queue.lock.__annonCompField18.rlock.dep_map.ip = 0UL; dvbdev_template.wait_queue.task_list.next = 0; dvbdev_template.wait_queue.task_list.prev = 0; dvbdev_template.kernel_ioctl = & dvb_frontend_ioctl; dvbdev_template.priv = 0; descriptor.modname = "dvb_core"; descriptor.function = "dvb_register_frontend"; descriptor.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor.format = "%s:\n"; descriptor.lineno = 2623U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)dvb->device, "%s:\n", "dvb_register_frontend"); } } else { } { tmp___0 = ldv_mutex_lock_interruptible_133(& frontend_mutex); } if (tmp___0 != 0) { return (-512); } else { } { fe->frontend_priv = kzalloc(936UL, 208U); } if ((unsigned long )fe->frontend_priv == (unsigned long )((void *)0)) { { ldv_mutex_unlock_134___2(& frontend_mutex); } return (-12); } else { } { fepriv = (struct dvb_frontend_private *)fe->frontend_priv; sema_init(& fepriv->sem, 1); __init_waitqueue_head(& fepriv->wait_queue, "&fepriv->wait_queue", & __key); __init_waitqueue_head(& fepriv->events.wait_queue, "&fepriv->events.wait_queue", & __key___0); __mutex_init(& fepriv->events.mtx, "&fepriv->events.mtx", & __key___1); fe->dvb = dvb; fepriv->inversion = 0U; _dev_info((struct device const *)(fe->dvb)->device, "DVB: registering adapter %i frontend %i (%s)...\n", (fe->dvb)->num, fe->id, (char *)(& fe->ops.info.name)); dvb_register_device(fe->dvb, & fepriv->dvbdev, & dvbdev_template, (void *)fe, 3); fe->dtv_property_cache.delivery_system = (fe_delivery_system_t )fe->ops.delsys[0]; dvb_frontend_clear_cache(fe); ldv_mutex_unlock_135(& frontend_mutex); } return (0); } } static char const __kstrtab_dvb_register_frontend[22U] = { 'd', 'v', 'b', '_', 'r', 'e', 'g', 'i', 's', 't', 'e', 'r', '_', 'f', 'r', 'o', 'n', 't', 'e', 'n', 'd', '\000'}; struct kernel_symbol const __ksymtab_dvb_register_frontend ; struct kernel_symbol const __ksymtab_dvb_register_frontend = {(unsigned long )(& dvb_register_frontend), (char const *)(& __kstrtab_dvb_register_frontend)}; int dvb_unregister_frontend(struct dvb_frontend *fe ) { struct dvb_frontend_private *fepriv ; struct _ddebug descriptor ; long tmp ; wait_queue_t __wait ; long __ret ; long __int ; long tmp___0 ; { { fepriv = (struct dvb_frontend_private *)fe->frontend_priv; descriptor.modname = "dvb_core"; descriptor.function = "dvb_unregister_frontend"; descriptor.filename = "drivers/media/dvb-core/dvb_frontend.c"; descriptor.format = "%s:\n"; descriptor.lineno = 2665U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(fe->dvb)->device, "%s:\n", "dvb_unregister_frontend"); } } else { } { ldv_mutex_lock_136(& frontend_mutex); dvb_frontend_stop(fe); ldv_mutex_unlock_137___1(& frontend_mutex); } if ((fepriv->dvbdev)->users < -1) { { __might_sleep("drivers/media/dvb-core/dvb_frontend.c", 2673, 0); } if ((fepriv->dvbdev)->users == -1) { goto ldv_48136; } else { } { __ret = 0L; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; } ldv_48142: { tmp___0 = prepare_to_wait_event(& (fepriv->dvbdev)->wait_queue, & __wait, 2); __int = tmp___0; } if ((fepriv->dvbdev)->users == -1) { goto ldv_48141; } else { } { schedule(); } goto ldv_48142; ldv_48141: { finish_wait(& (fepriv->dvbdev)->wait_queue, & __wait); } ldv_48136: ; } else { } { ldv_mutex_lock_138(& frontend_mutex); dvb_unregister_device(fepriv->dvbdev); kfree((void const *)fepriv); ldv_mutex_unlock_139(& frontend_mutex); } return (0); } } static char const __kstrtab_dvb_unregister_frontend[24U] = { 'd', 'v', 'b', '_', 'u', 'n', 'r', 'e', 'g', 'i', 's', 't', 'e', 'r', '_', 'f', 'r', 'o', 'n', 't', 'e', 'n', 'd', '\000'}; struct kernel_symbol const __ksymtab_dvb_unregister_frontend ; struct kernel_symbol const __ksymtab_dvb_unregister_frontend = {(unsigned long )(& dvb_unregister_frontend), (char const *)(& __kstrtab_dvb_unregister_frontend)}; void dvb_frontend_detach(struct dvb_frontend *fe ) { void *ptr ; { if ((unsigned long )fe->ops.release_sec != (unsigned long )((void (*)(struct dvb_frontend * ))0)) { { (*(fe->ops.release_sec))(fe); symbol_put_addr((void *)fe->ops.release_sec); } } else { } if ((unsigned long )fe->ops.tuner_ops.release != (unsigned long )((int (*)(struct dvb_frontend * ))0)) { { (*(fe->ops.tuner_ops.release))(fe); symbol_put_addr((void *)fe->ops.tuner_ops.release); } } else { } if ((unsigned long )fe->ops.analog_ops.release != (unsigned long )((void (*)(struct dvb_frontend * ))0)) { { (*(fe->ops.analog_ops.release))(fe); symbol_put_addr((void *)fe->ops.analog_ops.release); } } else { } ptr = (void *)fe->ops.release; if ((unsigned long )ptr != (unsigned long )((void *)0)) { { (*(fe->ops.release))(fe); symbol_put_addr(ptr); } } else { } return; } } static char const __kstrtab_dvb_frontend_detach[20U] = { 'd', 'v', 'b', '_', 'f', 'r', 'o', 'n', 't', 'e', 'n', 'd', '_', 'd', 'e', 't', 'a', 'c', 'h', '\000'}; struct kernel_symbol const __ksymtab_dvb_frontend_detach ; struct kernel_symbol const __ksymtab_dvb_frontend_detach = {(unsigned long )(& dvb_frontend_detach), (char const *)(& __kstrtab_dvb_frontend_detach)}; void ldv_file_operations_instance_callback_4_22(unsigned int (*arg0)(struct file * , struct poll_table_struct * ) , struct file *arg1 , struct poll_table_struct *arg2 ) ; void ldv_file_operations_instance_callback_4_26(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) ; int ldv_file_operations_instance_probe_4_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_release_4_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; struct ldv_thread ldv_thread_4 ; void ldv_file_operations_file_operations_instance_4(void *arg0 ) { long long (*ldv_4_callback_llseek)(struct file * , long long , int ) ; unsigned int (*ldv_4_callback_poll)(struct file * , struct poll_table_struct * ) ; long (*ldv_4_callback_read)(struct file * , char * , unsigned long , long long * ) ; long (*ldv_4_callback_unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; struct file_operations *ldv_4_container_file_operations ; char *ldv_4_ldv_param_23_1_default ; long long *ldv_4_ldv_param_23_3_default ; unsigned int ldv_4_ldv_param_26_1_default ; char *ldv_4_ldv_param_4_1_default ; long long *ldv_4_ldv_param_4_3_default ; long long ldv_4_ldv_param_5_1_default ; int ldv_4_ldv_param_5_2_default ; struct file *ldv_4_resource_file ; struct inode *ldv_4_resource_inode ; int ldv_4_ret_default ; struct poll_table_struct *ldv_4_size_cnt_struct_poll_table_struct_ptr ; unsigned long ldv_4_size_cnt_write_size ; struct ldv_struct_file_operations_instance_0 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; void *tmp___5 ; void *tmp___6 ; int tmp___7 ; void *tmp___8 ; void *tmp___9 ; { data = (struct ldv_struct_file_operations_instance_0 *)arg0; ldv_4_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_file_operations_instance_0 *)0)) { { ldv_4_container_file_operations = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(504UL); ldv_4_resource_file = (struct file *)tmp; tmp___0 = ldv_xmalloc(976UL); ldv_4_resource_inode = (struct inode *)tmp___0; tmp___1 = ldv_undef_int(); ldv_4_size_cnt_struct_poll_table_struct_ptr = (struct poll_table_struct *)((long )tmp___1); } goto ldv_main_4; return; ldv_main_4: { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { ldv_4_ret_default = ldv_file_operations_instance_probe_4_12(ldv_4_container_file_operations->open, ldv_4_resource_inode, ldv_4_resource_file); ldv_4_ret_default = ldv_filter_err_code(ldv_4_ret_default); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_assume(ldv_4_ret_default == 0); } goto ldv_call_4; } else { { ldv_assume(ldv_4_ret_default != 0); } goto ldv_main_4; } } else { { ldv_free((void *)ldv_4_resource_file); ldv_free((void *)ldv_4_resource_inode); } return; } return; ldv_call_4: { tmp___4 = ldv_undef_int(); } { if (tmp___4 == 1) { goto case_1; } else { } if (tmp___4 == 2) { goto case_2; } else { } if (tmp___4 == 3) { goto case_3; } else { } goto switch_default___0; case_1: /* CIL Label */ { tmp___5 = ldv_xmalloc(1UL); ldv_4_ldv_param_4_1_default = (char *)tmp___5; tmp___6 = ldv_xmalloc(8UL); ldv_4_ldv_param_4_3_default = (long long *)tmp___6; ldv_assume((unsigned long )ldv_4_size_cnt_struct_poll_table_struct_ptr <= (unsigned long )((struct poll_table_struct *)2147479552)); } if ((unsigned long )ldv_4_container_file_operations->write != (unsigned long )((ssize_t (*)(struct file * , char const * , size_t , loff_t * ))0)) { { ldv_file_operations_instance_write_4_4((long (*)(struct file * , char * , unsigned long , long long * ))ldv_4_container_file_operations->write, ldv_4_resource_file, ldv_4_ldv_param_4_1_default, ldv_4_size_cnt_write_size, ldv_4_ldv_param_4_3_default); } } else { } { ldv_free((void *)ldv_4_ldv_param_4_1_default); ldv_free((void *)ldv_4_ldv_param_4_3_default); } goto ldv_call_4; case_2: /* CIL Label */ { ldv_file_operations_instance_release_4_2(ldv_4_container_file_operations->release, ldv_4_resource_inode, ldv_4_resource_file); } goto ldv_main_4; case_3: /* CIL Label */ { tmp___7 = ldv_undef_int(); } { if (tmp___7 == 1) { goto case_1___0; } else { } if (tmp___7 == 2) { goto case_2___0; } else { } if (tmp___7 == 3) { goto case_3___0; } else { } if (tmp___7 == 4) { goto case_4; } else { } goto switch_default; case_1___0: /* CIL Label */ { ldv_file_operations_instance_callback_4_26(ldv_4_callback_unlocked_ioctl, ldv_4_resource_file, ldv_4_ldv_param_26_1_default, ldv_4_size_cnt_write_size); } goto ldv_48269; case_2___0: /* CIL Label */ { tmp___8 = ldv_xmalloc(1UL); ldv_4_ldv_param_23_1_default = (char *)tmp___8; tmp___9 = ldv_xmalloc(8UL); ldv_4_ldv_param_23_3_default = (long long *)tmp___9; } if ((unsigned long )ldv_4_callback_read != (unsigned long )((long (*)(struct file * , char * , unsigned long , long long * ))0)) { { ldv_file_operations_instance_callback_4_23(ldv_4_callback_read, ldv_4_resource_file, ldv_4_ldv_param_23_1_default, ldv_4_size_cnt_write_size, ldv_4_ldv_param_23_3_default); } } else { } { ldv_free((void *)ldv_4_ldv_param_23_1_default); ldv_free((void *)ldv_4_ldv_param_23_3_default); } goto ldv_48269; case_3___0: /* CIL Label */ { ldv_file_operations_instance_callback_4_22(ldv_4_callback_poll, ldv_4_resource_file, ldv_4_size_cnt_struct_poll_table_struct_ptr); } goto ldv_48269; case_4: /* CIL Label */ { ldv_file_operations_instance_callback_4_5(ldv_4_callback_llseek, ldv_4_resource_file, ldv_4_ldv_param_5_1_default, ldv_4_ldv_param_5_2_default); } goto ldv_48269; switch_default: /* CIL Label */ { ldv_stop(); } switch_break___0: /* CIL Label */ ; } ldv_48269: ; goto ldv_48274; switch_default___0: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_48274: ; goto ldv_call_4; goto ldv_call_4; return; } } void ldv_file_operations_instance_callback_4_22(unsigned int (*arg0)(struct file * , struct poll_table_struct * ) , struct file *arg1 , struct poll_table_struct *arg2 ) { { { dvb_frontend_poll(arg1, arg2); } return; } } void ldv_file_operations_instance_callback_4_26(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) { { { dvb_generic_ioctl(arg1, arg2, arg3); } return; } } int ldv_file_operations_instance_probe_4_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { int tmp ; { { tmp = dvb_frontend_open(arg1, arg2); } return (tmp); } } void ldv_file_operations_instance_release_4_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { { { dvb_frontend_release(arg1, arg2); } return; } } static void ldv_mutex_lock_121___1(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mtx_of_dvb_fe_events(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_122___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mtx_of_dvb_fe_events(ldv_func_arg1); } return; } } static void ldv_mutex_lock_123(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mtx_of_dvb_fe_events(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_124___1(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mtx_of_dvb_fe_events(ldv_func_arg1); } return; } } static void ldv_mutex_lock_125___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mtx_of_dvb_fe_events(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_126___1(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mtx_of_dvb_fe_events(ldv_func_arg1); } return; } } static void ldv_mutex_lock_127(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mfe_lock_of_dvb_adapter(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_128___1(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mfe_lock_of_dvb_adapter(ldv_func_arg1); } return; } } static void ldv_mutex_lock_129(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mfe_lock_of_dvb_adapter(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_130___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mfe_lock_of_dvb_adapter(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_131___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mfe_lock_of_dvb_adapter(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_132___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mfe_lock_of_dvb_adapter(ldv_func_arg1); } return; } } static int ldv_mutex_lock_interruptible_133(struct mutex *ldv_func_arg1 ) { int tmp ; { { tmp = ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_frontend_mutex(ldv_func_arg1); } return (tmp); } } static void ldv_mutex_unlock_134___2(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_frontend_mutex(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_135(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_frontend_mutex(ldv_func_arg1); } return; } } static void ldv_mutex_lock_136(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_frontend_mutex(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_137___1(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_frontend_mutex(ldv_func_arg1); } return; } } static void ldv_mutex_lock_138(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_frontend_mutex(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_139(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_frontend_mutex(ldv_func_arg1); } return; } } int ldv_pre_register_netdev(void) ; static void ldv_mutex_lock_121___2(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_123___0(struct mutex *ldv_func_arg1 ) ; static int ldv_mutex_lock_interruptible_130(struct mutex *ldv_func_arg1 ) ; int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_ioctl_mutex_of_dvb_net(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_ioctl_mutex_of_dvb_net(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_dvb_net_priv(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dvb_net_priv(struct mutex *lock ) ; __inline static int constant_test_bit(long nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr >> 6)) >> ((int )nr & 63)) & 1); } } __inline static __u16 __fswab16(__u16 val ) { { return ((__u16 )((int )((short )((int )val << 8)) | (int )((short )((int )val >> 8)))); } } extern void __dynamic_netdev_dbg(struct _ddebug * , struct net_device const * , char const * , ...) ; extern int snprintf(char * , size_t , char const * , ...) ; extern int memcmp(void const * , void const * , size_t ) ; void ldv_linux_kernel_locking_spinlock_spin_lock_addr_list_lock_of_net_device(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_addr_list_lock_of_net_device(void) ; static void ldv_mutex_unlock_122___1(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_124___2(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_136___2(struct mutex *ldv_func_arg1 ) ; extern void _raw_spin_lock_bh(raw_spinlock_t * ) ; extern void _raw_spin_unlock_bh(raw_spinlock_t * ) ; __inline static void spin_lock_bh(spinlock_t *lock ) { { { _raw_spin_lock_bh(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_lock_bh_118(spinlock_t *lock ) ; __inline static void spin_unlock_bh(spinlock_t *lock ) { { { _raw_spin_unlock_bh(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_unlock_bh_120(spinlock_t *lock ) ; extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *system_wq ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; extern bool flush_work(struct work_struct * ) ; __inline static bool queue_work(struct workqueue_struct *wq , struct work_struct *work ) { bool tmp ; { { tmp = queue_work_on(8192, wq, work); } return (tmp); } } __inline static bool schedule_work(struct work_struct *work ) { bool tmp ; { { tmp = queue_work(system_wq, work); } return (tmp); } } extern bool capable(int ) ; extern void consume_skb(struct sk_buff * ) ; __inline static unsigned char *skb_tail_pointer(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->tail); } } extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; extern unsigned char *skb_push(struct sk_buff * , unsigned int ) ; extern unsigned char *skb_pull(struct sk_buff * , unsigned int ) ; __inline static void skb_reserve(struct sk_buff *skb , int len ) { { skb->data = skb->data + (unsigned long )len; skb->tail = skb->tail + (sk_buff_data_t )len; return; } } __inline static unsigned char *skb_mac_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->mac_header); } } __inline static void skb_reset_mac_header(struct sk_buff *skb ) { { skb->mac_header = (int )((__u16 )((long )skb->data)) - (int )((__u16 )((long )skb->head)); return; } } static struct sk_buff *ldv___netdev_alloc_skb_103(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; __inline static struct sk_buff *netdev_alloc_skb(struct net_device *dev , unsigned int length ) { struct sk_buff *tmp ; { { tmp = ldv___netdev_alloc_skb_103(dev, length, 32U); } return (tmp); } } __inline static struct sk_buff *dev_alloc_skb(unsigned int length ) { struct sk_buff *tmp ; { { tmp = netdev_alloc_skb((struct net_device *)0, length); } return (tmp); } } __inline static void skb_copy_from_linear_data(struct sk_buff const *skb , void *to , unsigned int const len ) { { { __memcpy(to, (void const *)skb->data, (size_t )len); } return; } } __inline static struct ethhdr *eth_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_mac_header(skb); } return ((struct ethhdr *)tmp); } } extern int eth_header_parse(struct sk_buff const * , unsigned char * ) ; __inline static void *netdev_priv(struct net_device const *dev ) { { return ((void *)dev + 3264U); } } extern void free_netdev(struct net_device * ) ; static void ldv_free_netdev_127(struct net_device *ldv_func_arg1 ) ; static void ldv_free_netdev_129(struct net_device *ldv_func_arg1 ) ; __inline static bool netif_running(struct net_device const *dev ) { int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev->state)); } return (tmp != 0); } } extern int netif_rx(struct sk_buff * ) ; __inline static void netif_addr_lock_bh(struct net_device *dev ) { { { ldv_spin_lock_bh_118(& dev->addr_list_lock); } return; } } __inline static void netif_addr_unlock_bh(struct net_device *dev ) { { { ldv_spin_unlock_bh_120(& dev->addr_list_lock); } return; } } extern void ether_setup(struct net_device * ) ; extern struct net_device *alloc_netdev_mqs(int , char const * , unsigned char , void (*)(struct net_device * ) , unsigned int , unsigned int ) ; static struct net_device *ldv_alloc_netdev_mqs_125(int ldv_func_arg1 , char const *ldv_func_arg2 , unsigned char ldv_func_arg3 , void (*ldv_func_arg4)(struct net_device * ) , unsigned int ldv_func_arg5 , unsigned int ldv_func_arg6 ) ; extern int register_netdev(struct net_device * ) ; static int ldv_register_netdev_126(struct net_device *ldv_func_arg1 ) ; extern void unregister_netdev(struct net_device * ) ; static void ldv_unregister_netdev_128(struct net_device *ldv_func_arg1 ) ; static bool ldv_try_module_get_131(struct module *ldv_func_arg1 ) ; static bool ldv_try_module_get_134(struct module *ldv_func_arg1 ) ; static void ldv_module_put_132___0(struct module *ldv_func_arg1 ) ; static void ldv_module_put_133(struct module *ldv_func_arg1 ) ; static void ldv_module_put_135(struct module *ldv_func_arg1 ) ; extern int eth_header(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; extern int eth_rebuild_header(struct sk_buff * ) ; extern int eth_change_mtu(struct net_device * , int ) ; extern int eth_validate_addr(struct net_device * ) ; __inline static bool ether_addr_equal(u8 const *addr1 , u8 const *addr2 ) { u32 fold ; { fold = ((unsigned int )*((u32 const *)addr1) ^ (unsigned int )*((u32 const *)addr2)) | (unsigned int )((int )((unsigned short )*((u16 const *)addr1 + 4U)) ^ (int )((unsigned short )*((u16 const *)addr2 + 4U))); return (fold == 0U); } } void dvb_net_release(struct dvb_net *dvbnet ) ; int dvb_net_init(struct dvb_adapter *adap , struct dvb_net *dvbnet , struct dmx_demux *dmx ) ; __inline static __u32 iov_crc32(__u32 c , struct kvec *iov , unsigned int cnt ) { unsigned int j ; { j = 0U; goto ldv_47323; ldv_47322: { c = crc32_be(c, (unsigned char const *)(iov + (unsigned long )j)->iov_base, (iov + (unsigned long )j)->iov_len); j = j + 1U; } ldv_47323: ; if (j < cnt) { goto ldv_47322; } else { } return (c); } } static __be16 dvb_net_eth_type_trans(struct sk_buff *skb , struct net_device *dev ) { struct ethhdr *eth ; unsigned char *rawp ; bool tmp ; __u16 tmp___0 ; { { skb_reset_mac_header(skb); skb_pull(skb, (unsigned int )dev->hard_header_len); eth = eth_hdr((struct sk_buff const *)skb); } if ((int )*((unsigned char *)(& eth->h_dest)) & 1) { { tmp = ether_addr_equal((u8 const *)(& eth->h_dest), (u8 const *)(& dev->broadcast)); } if ((int )tmp) { skb->pkt_type = 1U; } else { skb->pkt_type = 2U; } } else { } { tmp___0 = __fswab16((int )eth->h_proto); } if ((int )tmp___0 > 1535) { return (eth->h_proto); } else { } rawp = skb->data; if ((unsigned int )*((unsigned short *)rawp) == 65535U) { return (256U); } else { } return (1024U); } } static int ule_test_sndu(struct dvb_net_priv *p ) { { return (-1); } } static int ule_bridged_sndu(struct dvb_net_priv *p ) { struct ethhdr *hdr ; int framelen ; __u16 tmp ; __u16 tmp___0 ; { { hdr = (struct ethhdr *)p->ule_next_hdr; tmp___0 = __fswab16((int )hdr->h_proto); } if ((int )tmp___0 <= 1535) { { framelen = (int )((unsigned int )p->ule_sndu_len + ((unsigned int )((long )(p->ule_skb)->data) - (unsigned int )((long )(p->ule_next_hdr + 14UL)))); tmp = __fswab16((int )hdr->h_proto); } if (framelen != (int )tmp) { return (-1); } else { } } else { } p->ule_bridged = 1U; return (0); } } static int ule_exthdr_padding(struct dvb_net_priv *p ) { { return (0); } } static int handle_one_ule_extension(struct dvb_net_priv *p ) { int (*ule_mandatory_ext_handlers[255U])(struct dvb_net_priv * ) ; unsigned int tmp ; int (*ule_optional_ext_handlers[255U])(struct dvb_net_priv * ) ; unsigned int tmp___0 ; int ext_len ; unsigned char hlen ; unsigned char htype ; __u16 tmp___1 ; __u16 tmp___2 ; __u16 tmp___3 ; { ule_mandatory_ext_handlers[0] = & ule_test_sndu; ule_mandatory_ext_handlers[1] = & ule_bridged_sndu; ule_mandatory_ext_handlers[2] = (int (*)(struct dvb_net_priv * ))0; tmp = 3U; { while (1) { while_continue: /* CIL Label */ ; if (tmp >= 255U) { goto while_break; } else { } ule_mandatory_ext_handlers[tmp] = 0; tmp = tmp + 1U; } while_break: /* CIL Label */ ; } ule_optional_ext_handlers[0] = & ule_exthdr_padding; ule_optional_ext_handlers[1] = (int (*)(struct dvb_net_priv * ))0; tmp___0 = 2U; { while (1) { while_continue___0: /* CIL Label */ ; if (tmp___0 >= 255U) { goto while_break___0; } else { } ule_optional_ext_handlers[tmp___0] = 0; tmp___0 = tmp___0 + 1U; } while_break___0: /* CIL Label */ ; } ext_len = 0; hlen = (unsigned char )(((int )p->ule_sndu_type & 1792) >> 8); htype = (unsigned char )p->ule_sndu_type; if ((unsigned int )hlen == 0U) { if ((unsigned long )ule_mandatory_ext_handlers[(int )htype] != (unsigned long )((int (*)(struct dvb_net_priv * ))0)) { { ext_len = (*(ule_mandatory_ext_handlers[(int )htype]))(p); } if (ext_len >= 0) { p->ule_next_hdr = p->ule_next_hdr + (unsigned long )ext_len; if ((unsigned int )p->ule_bridged == 0U) { { tmp___1 = __fswab16((int )*((__be16 *)p->ule_next_hdr)); p->ule_sndu_type = tmp___1; p->ule_next_hdr = p->ule_next_hdr + 2UL; } } else { { tmp___2 = __fswab16((int )*((__be16 *)p->ule_next_hdr + ((unsigned int )p->ule_dbit != 0U ? 12U : 18U))); p->ule_sndu_type = tmp___2; } } } else { } } else { ext_len = -1; } } else { ext_len = (int )hlen << 1; if ((unsigned long )ule_optional_ext_handlers[(int )htype] != (unsigned long )((int (*)(struct dvb_net_priv * ))0)) { { (*(ule_optional_ext_handlers[(int )htype]))(p); } } else { } { p->ule_next_hdr = p->ule_next_hdr + (unsigned long )ext_len; tmp___3 = __fswab16((int )*((__be16 *)p->ule_next_hdr + 0xfffffffffffffffeUL)); p->ule_sndu_type = tmp___3; } } return (ext_len); } } static int handle_ule_extensions(struct dvb_net_priv *p ) { int total_ext_len ; int l ; { total_ext_len = 0; p->ule_next_hdr = (p->ule_skb)->data; ldv_47385: { l = handle_one_ule_extension(p); } if (l < 0) { return (l); } else { } total_ext_len = total_ext_len + l; if ((unsigned int )p->ule_sndu_type <= 1535U) { goto ldv_47385; } else { } return (total_ext_len); } } __inline static void reset_ule(struct dvb_net_priv *p ) { { p->ule_skb = (struct sk_buff *)0; p->ule_next_hdr = (unsigned char *)0U; p->ule_sndu_len = 0U; p->ule_sndu_type = 0U; p->ule_sndu_type_1 = 0U; p->ule_sndu_remain = 0; p->ule_dbit = 255U; p->ule_bridged = 0U; return; } } static void dvb_net_ule(struct net_device *dev , u8 const *buf , size_t buf_len ) { struct dvb_net_priv *priv ; void *tmp ; unsigned long skipped ; u8 const *ts ; u8 const *ts_end ; u8 const *from_where ; u8 ts_remain ; u8 how_much ; u8 new_ts ; struct ethhdr *ethh ; bool error ; int _min1 ; int _min2 ; unsigned char *tmp___0 ; __be16 ulen ; __u16 tmp___1 ; __be16 utype ; __u16 tmp___2 ; u8 const *tail ; struct kvec iov[3U] ; u32 ule_crc ; u32 expected_crc ; unsigned char *tmp___3 ; u8 dest_addr[6U] ; u8 bc_addr[6U] ; register int drop ; int i ; bool tmp___4 ; int tmp___5 ; bool tmp___6 ; int tmp___7 ; bool tmp___8 ; int tmp___9 ; int l ; int tmp___10 ; __u16 tmp___11 ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dvb_net_priv *)tmp; skipped = 0UL; from_where = (u8 const *)0U; ts_remain = 0U; how_much = 0U; new_ts = 1U; ethh = (struct ethhdr *)0; error = 0; ts = buf; ts_end = buf + buf_len; } goto ldv_47405; ldv_47428: ; if ((unsigned int )new_ts != 0U) { if (((unsigned int )((unsigned char )*ts) != 71U || (int )((signed char )*(ts + 1UL)) < 0) || ((int )*(ts + 3UL) & 192) != 0) { { printk("\f%lu: Invalid TS cell: SYNC %#x, TEI %u, SC %#x.\n", priv->ts_count, (int )*ts, (int )((int const )*(ts + 1UL) >> 7), (int )((int const )*(ts + 3UL) >> 6)); } if ((unsigned long )priv->ule_skb != (unsigned long )((struct sk_buff *)0)) { { consume_skb(priv->ule_skb); dev->stats.rx_errors = dev->stats.rx_errors + 1UL; dev->stats.rx_frame_errors = dev->stats.rx_frame_errors + 1UL; } } else { } { reset_ule(priv); priv->need_pusi = 1; ts = ts + 188UL; priv->ts_count = priv->ts_count + 1UL; } goto ldv_47405; } else { } ts_remain = 184U; from_where = ts + 4UL; } else { } if (priv->need_pusi != 0) { if (((int )*(ts + 1UL) & 64) != 0) { priv->tscc = (unsigned int )((unsigned char )*(ts + 3UL)) & 15U; if ((int )((unsigned char )*(ts + 4UL)) > (int )ts_remain) { { printk("\v%lu: Invalid ULE packet (pointer field %d)\n", priv->ts_count, (int )*(ts + 4UL)); ts = ts + 188UL; priv->ts_count = priv->ts_count + 1UL; } goto ldv_47405; } else { } from_where = ts + ((unsigned long )*(ts + 4UL) + 5UL); ts_remain = (int )ts_remain + ~ ((int )((u8 )*(ts + 4UL))); skipped = 0UL; } else { skipped = skipped + 1UL; ts = ts + 188UL; priv->ts_count = priv->ts_count + 1UL; goto ldv_47405; } } else { } if ((unsigned int )new_ts != 0U) { if (((int )*(ts + 3UL) & 15) == (int )priv->tscc) { priv->tscc = ((unsigned int )priv->tscc + 1U) & 15U; } else { { printk("\f%lu: TS discontinuity: got %#x, expected %#x.\n", priv->ts_count, (int )*(ts + 3UL) & 15, (int )priv->tscc); } if ((unsigned long )priv->ule_skb != (unsigned long )((struct sk_buff *)0)) { { consume_skb(priv->ule_skb); dev->stats.rx_errors = dev->stats.rx_errors + 1UL; dev->stats.rx_frame_errors = dev->stats.rx_frame_errors + 1UL; } } else { } { reset_ule(priv); priv->need_pusi = 1; } goto ldv_47405; } if (((int )*(ts + 1UL) & 64) != 0) { if (priv->need_pusi == 0) { if ((int )*from_where >= (int )ts_remain + -1 || (int )*from_where != priv->ule_sndu_remain) { { printk("\f%lu: Invalid pointer field: %u.\n", priv->ts_count, (int )*from_where); } if ((unsigned long )priv->ule_skb != (unsigned long )((struct sk_buff *)0)) { { error = 1; consume_skb(priv->ule_skb); } } else { } if ((int )error || priv->ule_sndu_remain != 0) { dev->stats.rx_errors = dev->stats.rx_errors + 1UL; dev->stats.rx_frame_errors = dev->stats.rx_frame_errors + 1UL; error = 0; } else { } { reset_ule(priv); priv->need_pusi = 1; } goto ldv_47405; } else { } from_where = from_where + 1UL; ts_remain = (unsigned int )ts_remain + 255U; } else { priv->need_pusi = 0; } if (priv->ule_sndu_remain > 183) { { dev->stats.rx_errors = dev->stats.rx_errors + 1UL; dev->stats.rx_length_errors = dev->stats.rx_length_errors + 1UL; printk("\f%lu: Expected %d more SNDU bytes, but got PUSI (pf %d, ts_remain %d). Flushing incomplete payload.\n", priv->ts_count, priv->ule_sndu_remain, (int )*(ts + 4UL), (int )ts_remain); consume_skb(priv->ule_skb); reset_ule(priv); from_where = from_where + (unsigned long )*(ts + 4UL); ts_remain = (int )ts_remain - (int )((u8 )*(ts + 4UL)); } } else { } } else { } } else { } if ((unsigned long )priv->ule_skb == (unsigned long )((struct sk_buff *)0)) { if ((unsigned int )ts_remain <= 1U) { { printk("\fInvalid payload packing: only %d bytes left in TS. Resyncing.\n", (int )ts_remain); priv->ule_sndu_len = 0U; priv->need_pusi = 1; ts = ts + 188UL; } goto ldv_47405; } else { } if ((unsigned int )priv->ule_sndu_len == 0U) { priv->ule_sndu_len = (unsigned short )((int )((short )((int )*from_where << 8)) | (int )((short )*(from_where + 1UL))); if ((int )((short )priv->ule_sndu_len) < 0) { priv->ule_sndu_len = (unsigned int )priv->ule_sndu_len & 32767U; priv->ule_dbit = 1U; } else { priv->ule_dbit = 0U; } if ((unsigned int )priv->ule_sndu_len <= 4U) { { printk("\f%lu: Invalid ULE SNDU length %u. Resyncing.\n", priv->ts_count, (int )priv->ule_sndu_len); dev->stats.rx_errors = dev->stats.rx_errors + 1UL; dev->stats.rx_length_errors = dev->stats.rx_length_errors + 1UL; priv->ule_sndu_len = 0U; priv->need_pusi = 1; new_ts = 1U; ts = ts + 188UL; priv->ts_count = priv->ts_count + 1UL; } goto ldv_47405; } else { } ts_remain = (unsigned int )ts_remain + 254U; from_where = from_where + 2UL; } else { } priv->ule_sndu_remain = (int )priv->ule_sndu_len + 2; { if ((int )ts_remain == 1) { goto case_1; } else { } if ((int )ts_remain == 0) { goto case_0; } else { } goto switch_default; case_1: /* CIL Label */ priv->ule_sndu_remain = priv->ule_sndu_remain - 1; priv->ule_sndu_type = (int )((unsigned short )*from_where) << 8U; priv->ule_sndu_type_1 = 1U; ts_remain = (unsigned int )ts_remain + 255U; from_where = from_where + 1UL; case_0: /* CIL Label */ new_ts = 1U; ts = ts + 188UL; priv->ts_count = priv->ts_count + 1UL; goto ldv_47405; switch_default: /* CIL Label */ ; if ((unsigned int )priv->ule_sndu_type_1 != 0U) { priv->ule_sndu_type_1 = 0U; priv->ule_sndu_type = (int )priv->ule_sndu_type | (int )((unsigned short )*from_where); from_where = from_where + 1UL; ts_remain = (unsigned int )ts_remain + 255U; } else { priv->ule_sndu_type = (unsigned short )((int )((short )((int )*from_where << 8)) | (int )((short )*(from_where + 1UL))); from_where = from_where + 2UL; ts_remain = (unsigned int )ts_remain + 254U; } goto ldv_47409; switch_break: /* CIL Label */ ; } ldv_47409: { priv->ule_skb = dev_alloc_skb((unsigned int )((int )priv->ule_sndu_len + 20)); } if ((unsigned long )priv->ule_skb == (unsigned long )((struct sk_buff *)0)) { { printk("\r%s: Memory squeeze, dropping packet.\n", (char *)(& dev->name)); dev->stats.rx_dropped = dev->stats.rx_dropped + 1UL; } return; } else { } { priv->ule_sndu_remain = (int )priv->ule_sndu_len; (priv->ule_skb)->dev = dev; skb_reserve(priv->ule_skb, 20); } } else { } { _min1 = priv->ule_sndu_remain; _min2 = (int )ts_remain; how_much = (u8 )(_min1 < _min2 ? _min1 : _min2); tmp___0 = skb_put(priv->ule_skb, (unsigned int )how_much); __memcpy((void *)tmp___0, (void const *)from_where, (size_t )how_much); priv->ule_sndu_remain = priv->ule_sndu_remain - (int )how_much; ts_remain = (int )ts_remain - (int )how_much; from_where = from_where + (unsigned long )how_much; } if (priv->ule_sndu_remain <= 0) { { tmp___1 = __fswab16((int )priv->ule_sndu_len); ulen = tmp___1; tmp___2 = __fswab16((int )priv->ule_sndu_type); utype = tmp___2; iov[0].iov_base = (void *)(& ulen); iov[0].iov_len = 2UL; iov[1].iov_base = (void *)(& utype); iov[1].iov_len = 2UL; iov[2].iov_base = (void *)(priv->ule_skb)->data; iov[2].iov_len = (unsigned long )((priv->ule_skb)->len - 4U); ule_crc = 4294967295U; } if ((unsigned int )priv->ule_dbit != 0U) { ulen = (__be16 )((unsigned int )ulen | 128U); } else { } { ule_crc = iov_crc32(ule_crc, (struct kvec *)(& iov), 3U); tmp___3 = skb_tail_pointer((struct sk_buff const *)priv->ule_skb); tail = (u8 const *)tmp___3; expected_crc = (u32 )(((((int )*(tail + 0xfffffffffffffffcUL) << 24) | ((int )*(tail + 0xfffffffffffffffdUL) << 16)) | ((int )*(tail + 0xfffffffffffffffeUL) << 8)) | (int )*(tail + 0xffffffffffffffffUL)); } if (ule_crc != expected_crc) { { printk("\f%lu: CRC32 check FAILED: %08x / %08x, SNDU len %d type %#x, ts_remain %d, next 2: %x.\n", priv->ts_count, ule_crc, expected_crc, (int )priv->ule_sndu_len, (int )priv->ule_sndu_type, (int )ts_remain, (unsigned int )ts_remain > 2U ? (int )*((unsigned short *)from_where) : 0); dev->stats.rx_errors = dev->stats.rx_errors + 1UL; dev->stats.rx_crc_errors = dev->stats.rx_crc_errors + 1UL; consume_skb(priv->ule_skb); } } else { bc_addr[0] = 255U; bc_addr[1] = 255U; bc_addr[2] = 255U; bc_addr[3] = 255U; bc_addr[4] = 255U; bc_addr[5] = 255U; (priv->ule_skb)->tail = (priv->ule_skb)->tail - 4U; (priv->ule_skb)->len = (priv->ule_skb)->len - 4U; if ((unsigned int )priv->ule_dbit == 0U) { drop = 0; if (priv->rx_mode != 3) { if ((int )*((priv->ule_skb)->data) & 1) { { tmp___6 = ether_addr_equal((u8 const *)(priv->ule_skb)->data, (u8 const *)(& bc_addr)); } if (tmp___6) { tmp___7 = 0; } else { tmp___7 = 1; } if (tmp___7) { if (priv->rx_mode == 1) { i = 0; goto ldv_47424; ldv_47423: i = i + 1; ldv_47424: ; if (i < priv->multi_num) { { tmp___4 = ether_addr_equal((u8 const *)(priv->ule_skb)->data, (u8 const *)(& priv->multi_macs) + (unsigned long )i); } if (tmp___4) { tmp___5 = 0; } else { tmp___5 = 1; } if (tmp___5) { goto ldv_47423; } else { goto ldv_47425; } } else { } ldv_47425: ; if (i == priv->multi_num) { drop = 1; } else { } } else if (priv->rx_mode != 2) { drop = 1; } else { } } else { } } else { { tmp___8 = ether_addr_equal((u8 const *)(priv->ule_skb)->data, (u8 const *)dev->dev_addr); } if (tmp___8) { tmp___9 = 0; } else { tmp___9 = 1; } if (tmp___9) { drop = 1; } else { } } } else { } if (drop != 0) { { consume_skb(priv->ule_skb); } goto sndu_done; } else { { skb_copy_from_linear_data((struct sk_buff const *)priv->ule_skb, (void *)(& dest_addr), 6U); skb_pull(priv->ule_skb, 6U); } } } else { } if ((unsigned int )priv->ule_sndu_type <= 1535U) { { tmp___10 = handle_ule_extensions(priv); l = tmp___10; } if (l < 0) { { consume_skb(priv->ule_skb); } goto sndu_done; } else { } { skb_pull(priv->ule_skb, (unsigned int )l); } } else { } if ((unsigned int )priv->ule_bridged == 0U) { { skb_push(priv->ule_skb, 14U); ethh = (struct ethhdr *)(priv->ule_skb)->data; } if ((unsigned int )priv->ule_dbit == 0U) { { __memcpy((void *)(& ethh->h_dest), (void const *)(& dest_addr), 6UL); __memset((void *)(& ethh->h_source), 0, 6UL); } } else { { __memset((void *)ethh, 0, 12UL); } } { tmp___11 = __fswab16((int )priv->ule_sndu_type); ethh->h_proto = tmp___11; } } else { } { priv->ule_bridged = 0U; (priv->ule_skb)->protocol = dvb_net_eth_type_trans(priv->ule_skb, dev); dev->stats.rx_packets = dev->stats.rx_packets + 1UL; dev->stats.rx_bytes = dev->stats.rx_bytes + (unsigned long )(priv->ule_skb)->len; netif_rx(priv->ule_skb); } } sndu_done: { reset_ule(priv); } } else { } if ((unsigned int )ts_remain > 1U && (unsigned int )*((unsigned short *)from_where) != 65535U) { new_ts = 0U; priv->ule_skb = (struct sk_buff *)0; priv->ule_sndu_type_1 = 0U; priv->ule_sndu_len = 0U; } else { new_ts = 1U; ts = ts + 188UL; priv->ts_count = priv->ts_count + 1UL; if ((unsigned long )priv->ule_skb == (unsigned long )((struct sk_buff *)0)) { priv->need_pusi = 1; priv->ule_sndu_type_1 = 0U; priv->ule_sndu_len = 0U; } else { } } ldv_47405: ; if ((unsigned long )ts < (unsigned long )ts_end) { goto ldv_47428; } else { } return; } } static int dvb_net_ts_callback(u8 const *buffer1 , size_t buffer1_len , u8 const *buffer2 , size_t buffer2_len , struct dmx_ts_feed *feed , enum dmx_success success ) { struct net_device *dev ; { dev = (struct net_device *)feed->priv; if ((unsigned long )buffer2 != (unsigned long )((u8 const *)0U)) { { printk("\fbuffer2 not NULL: %p.\n", buffer2); } } else { } if (buffer1_len > 32768UL) { { printk("\flength > 32k: %zu.\n", buffer1_len); } } else { } { dvb_net_ule(dev, buffer1, buffer1_len); } return (0); } } static void dvb_net_sec(struct net_device *dev , u8 const *pkt , int pkt_len ) { u8 *eth ; struct sk_buff *skb ; struct net_device_stats *stats ; int snap ; int tmp ; unsigned char *tmp___0 ; u8 tmp___1 ; u8 tmp___2 ; u8 tmp___3 ; u8 tmp___4 ; u8 tmp___5 ; { stats = & dev->stats; snap = 0; if (pkt_len <= 15) { { printk("%s: IP/MPE packet length = %d too small.\n", (char *)(& dev->name), pkt_len); stats->rx_errors = stats->rx_errors + 1UL; stats->rx_length_errors = stats->rx_length_errors + 1UL; } return; } else { } if (((int )*(pkt + 5UL) & 60) != 0) { stats->rx_errors = stats->rx_errors + 1UL; stats->rx_crc_errors = stats->rx_crc_errors + 1UL; return; } else { } if (((int )*(pkt + 5UL) & 2) != 0) { if (pkt_len <= 23) { stats->rx_dropped = stats->rx_dropped + 1UL; return; } else { { tmp = memcmp((void const *)pkt + 12U, (void const *)"\252\252\003", 6UL); } if (tmp != 0) { stats->rx_dropped = stats->rx_dropped + 1UL; return; } else { } } snap = 8; } else { } if ((unsigned int )((unsigned char )*(pkt + 7UL)) != 0U) { stats->rx_errors = stats->rx_errors + 1UL; stats->rx_frame_errors = stats->rx_frame_errors + 1UL; return; } else { } { skb = dev_alloc_skb((unsigned int )(pkt_len - snap)); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { stats->rx_dropped = stats->rx_dropped + 1UL; return; } else { } { skb_reserve(skb, 2); skb->dev = dev; tmp___0 = skb_put(skb, (unsigned int )((pkt_len + -2) - snap)); eth = tmp___0; __memcpy((void *)eth + 14U, (void const *)(pkt + ((unsigned long )snap + 12UL)), (size_t )((pkt_len + -16) - snap)); *eth = *(pkt + 11UL); *(eth + 1UL) = *(pkt + 10UL); *(eth + 2UL) = *(pkt + 9UL); *(eth + 3UL) = *(pkt + 8UL); *(eth + 4UL) = *(pkt + 4UL); *(eth + 5UL) = *(pkt + 3UL); tmp___5 = 0U; *(eth + 11UL) = tmp___5; tmp___4 = tmp___5; *(eth + 10UL) = tmp___4; tmp___3 = tmp___4; *(eth + 9UL) = tmp___3; tmp___2 = tmp___3; *(eth + 8UL) = tmp___2; tmp___1 = tmp___2; *(eth + 7UL) = tmp___1; *(eth + 6UL) = tmp___1; } if (snap != 0) { *(eth + 12UL) = *(pkt + 18UL); *(eth + 13UL) = *(pkt + 19UL); } else if ((unsigned int )((int )((unsigned char )*(pkt + 12UL)) >> 4) == 6U) { *(eth + 12UL) = 134U; *(eth + 13UL) = 221U; } else { *(eth + 12UL) = 8U; *(eth + 13UL) = 0U; } { skb->protocol = dvb_net_eth_type_trans(skb, dev); stats->rx_packets = stats->rx_packets + 1UL; stats->rx_bytes = stats->rx_bytes + (unsigned long )skb->len; netif_rx(skb); } return; } } static int dvb_net_sec_callback(u8 const *buffer1 , size_t buffer1_len , u8 const *buffer2 , size_t buffer2_len , struct dmx_section_filter *filter , enum dmx_success success ) { struct net_device *dev ; { { dev = (struct net_device *)filter->priv; dvb_net_sec(dev, buffer1, (int )buffer1_len); } return (0); } } static int dvb_net_tx(struct sk_buff *skb , struct net_device *dev ) { { { consume_skb(skb); } return (0); } } static u8 mask_normal[6U] = { 255U, 255U, 255U, 255U, 255U, 255U}; static u8 mask_allmulti[6U] = { 255U, 255U, 255U, 0U, 0U, 0U}; static u8 mac_allmulti[6U] = { 1U, 0U, 94U, 0U, 0U, 0U}; static u8 mask_promisc[6U] = { 0U, 0U, 0U, 0U, 0U, 0U}; static int dvb_net_filter_sec_set(struct net_device *dev , struct dmx_section_filter **secfilter , u8 *mac , u8 *mac_mask ) { struct dvb_net_priv *priv ; void *tmp ; int ret ; struct _ddebug descriptor ; long tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dvb_net_priv *)tmp; *secfilter = (struct dmx_section_filter *)0; ret = (*((priv->secfeed)->allocate_filter))(priv->secfeed, secfilter); } if (ret < 0) { { printk("%s: could not get filter\n", (char *)(& dev->name)); } return (ret); } else { } { (*secfilter)->priv = (void *)dev; __memset((void *)(& (*secfilter)->filter_value), 0, 18UL); __memset((void *)(& (*secfilter)->filter_mask), 0, 18UL); __memset((void *)(& (*secfilter)->filter_mode), 255, 18UL); (*secfilter)->filter_value[0] = 62U; (*secfilter)->filter_value[3] = *(mac + 5UL); (*secfilter)->filter_value[4] = *(mac + 4UL); (*secfilter)->filter_value[8] = *(mac + 3UL); (*secfilter)->filter_value[9] = *(mac + 2UL); (*secfilter)->filter_value[10] = *(mac + 1UL); (*secfilter)->filter_value[11] = *mac; (*secfilter)->filter_mask[0] = 255U; (*secfilter)->filter_mask[3] = *(mac_mask + 5UL); (*secfilter)->filter_mask[4] = *(mac_mask + 4UL); (*secfilter)->filter_mask[8] = *(mac_mask + 3UL); (*secfilter)->filter_mask[9] = *(mac_mask + 2UL); (*secfilter)->filter_mask[10] = *(mac_mask + 1UL); (*secfilter)->filter_mask[11] = *mac_mask; descriptor.modname = "dvb_core"; descriptor.function = "dvb_net_filter_sec_set"; descriptor.filename = "drivers/media/dvb-core/dvb_net.c"; descriptor.format = "filter mac=%pM mask=%pM\n"; descriptor.lineno = 933U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)dev, "filter mac=%pM mask=%pM\n", mac, mac_mask); } } else { } return (0); } } static int dvb_net_feed_start(struct net_device *dev ) { int ret ; int i ; struct dvb_net_priv *priv ; void *tmp ; struct dmx_demux *demux ; unsigned char *mac ; struct _ddebug descriptor ; long tmp___0 ; struct _ddebug descriptor___0 ; long tmp___1 ; struct _ddebug descriptor___1 ; long tmp___2 ; struct _ddebug descriptor___2 ; long tmp___3 ; struct _ddebug descriptor___3 ; long tmp___4 ; struct _ddebug descriptor___4 ; long tmp___5 ; struct _ddebug descriptor___5 ; long tmp___6 ; struct timespec timeout ; struct _ddebug descriptor___6 ; long tmp___7 ; struct _ddebug descriptor___7 ; long tmp___8 ; { { ret = 0; tmp = netdev_priv((struct net_device const *)dev); priv = (struct dvb_net_priv *)tmp; demux = priv->demux; mac = dev->dev_addr; descriptor.modname = "dvb_core"; descriptor.function = "dvb_net_feed_start"; descriptor.filename = "drivers/media/dvb-core/dvb_net.c"; descriptor.format = "rx_mode %i\n"; descriptor.lineno = 945U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)dev, "rx_mode %i\n", priv->rx_mode); } } else { } { ldv_mutex_lock_121___2(& priv->mutex); } if ((((unsigned long )priv->tsfeed != (unsigned long )((struct dmx_ts_feed *)0) || (unsigned long )priv->secfeed != (unsigned long )((struct dmx_section_feed *)0)) || (unsigned long )priv->secfilter != (unsigned long )((struct dmx_section_filter *)0)) || (unsigned long )priv->multi_secfilter[0] != (unsigned long )((struct dmx_section_filter *)0)) { { printk("%s: BUG %d\n", "dvb_net_feed_start", 948); } } else { } priv->secfeed = (struct dmx_section_feed *)0; priv->secfilter = (struct dmx_section_filter *)0; priv->tsfeed = (struct dmx_ts_feed *)0; if ((unsigned int )priv->feedtype == 0U) { { descriptor___0.modname = "dvb_core"; descriptor___0.function = "dvb_net_feed_start"; descriptor___0.filename = "drivers/media/dvb-core/dvb_net.c"; descriptor___0.format = "alloc secfeed\n"; descriptor___0.lineno = 955U; descriptor___0.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___1 != 0L) { { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)dev, "alloc secfeed\n"); } } else { } { ret = (*(demux->allocate_section_feed))(demux, & priv->secfeed, & dvb_net_sec_callback); } if (ret < 0) { { printk("%s: could not allocate section feed\n", (char *)(& dev->name)); } goto error; } else { } { ret = (*((priv->secfeed)->set))(priv->secfeed, (int )priv->pid, 32768UL, 1); } if (ret < 0) { { printk("%s: could not set section feed\n", (char *)(& dev->name)); (*((priv->demux)->release_section_feed))(priv->demux, priv->secfeed); priv->secfeed = (struct dmx_section_feed *)0; } goto error; } else { } if (priv->rx_mode != 3) { { descriptor___1.modname = "dvb_core"; descriptor___1.function = "dvb_net_feed_start"; descriptor___1.filename = "drivers/media/dvb-core/dvb_net.c"; descriptor___1.format = "set secfilter\n"; descriptor___1.lineno = 973U; descriptor___1.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___2 != 0L) { { __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)dev, "set secfilter\n"); } } else { } { dvb_net_filter_sec_set(dev, & priv->secfilter, mac, (u8 *)(& mask_normal)); } } else { } { if (priv->rx_mode == 1) { goto case_1; } else { } if (priv->rx_mode == 2) { goto case_2; } else { } if (priv->rx_mode == 3) { goto case_3; } else { } goto switch_break; case_1: /* CIL Label */ i = 0; goto ldv_47491; ldv_47490: { descriptor___2.modname = "dvb_core"; descriptor___2.function = "dvb_net_feed_start"; descriptor___2.filename = "drivers/media/dvb-core/dvb_net.c"; descriptor___2.format = "set multi_secfilter[%d]\n"; descriptor___2.lineno = 980U; descriptor___2.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___3 != 0L) { { __dynamic_netdev_dbg(& descriptor___2, (struct net_device const *)dev, "set multi_secfilter[%d]\n", i); } } else { } { dvb_net_filter_sec_set(dev, (struct dmx_section_filter **)(& priv->multi_secfilter) + (unsigned long )i, (u8 *)(& priv->multi_macs) + (unsigned long )i, (u8 *)(& mask_normal)); i = i + 1; } ldv_47491: ; if (i < priv->multi_num) { goto ldv_47490; } else { } goto ldv_47493; case_2: /* CIL Label */ { priv->multi_num = 1; descriptor___3.modname = "dvb_core"; descriptor___3.function = "dvb_net_feed_start"; descriptor___3.filename = "drivers/media/dvb-core/dvb_net.c"; descriptor___3.format = "set multi_secfilter[0]\n"; descriptor___3.lineno = 987U; descriptor___3.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); } if (tmp___4 != 0L) { { __dynamic_netdev_dbg(& descriptor___3, (struct net_device const *)dev, "set multi_secfilter[0]\n"); } } else { } { dvb_net_filter_sec_set(dev, (struct dmx_section_filter **)(& priv->multi_secfilter), (u8 *)(& mac_allmulti), (u8 *)(& mask_allmulti)); } goto ldv_47493; case_3: /* CIL Label */ { priv->multi_num = 0; descriptor___4.modname = "dvb_core"; descriptor___4.function = "dvb_net_feed_start"; descriptor___4.filename = "drivers/media/dvb-core/dvb_net.c"; descriptor___4.format = "set secfilter\n"; descriptor___4.lineno = 993U; descriptor___4.flags = 0U; tmp___5 = ldv__builtin_expect((long )descriptor___4.flags & 1L, 0L); } if (tmp___5 != 0L) { { __dynamic_netdev_dbg(& descriptor___4, (struct net_device const *)dev, "set secfilter\n"); } } else { } { dvb_net_filter_sec_set(dev, & priv->secfilter, mac, (u8 *)(& mask_promisc)); } goto ldv_47493; switch_break: /* CIL Label */ ; } ldv_47493: { descriptor___5.modname = "dvb_core"; descriptor___5.function = "dvb_net_feed_start"; descriptor___5.filename = "drivers/media/dvb-core/dvb_net.c"; descriptor___5.format = "start filtering\n"; descriptor___5.lineno = 998U; descriptor___5.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___5.flags & 1L, 0L); } if (tmp___6 != 0L) { { __dynamic_netdev_dbg(& descriptor___5, (struct net_device const *)dev, "start filtering\n"); } } else { } { (*((priv->secfeed)->start_filtering))(priv->secfeed); } } else if ((unsigned int )priv->feedtype == 1U) { { timeout.tv_sec = 0L; timeout.tv_nsec = 10000000L; descriptor___6.modname = "dvb_core"; descriptor___6.function = "dvb_net_feed_start"; descriptor___6.filename = "drivers/media/dvb-core/dvb_net.c"; descriptor___6.format = "alloc tsfeed\n"; descriptor___6.lineno = 1004U; descriptor___6.flags = 0U; tmp___7 = ldv__builtin_expect((long )descriptor___6.flags & 1L, 0L); } if (tmp___7 != 0L) { { __dynamic_netdev_dbg(& descriptor___6, (struct net_device const *)dev, "alloc tsfeed\n"); } } else { } { ret = (*(demux->allocate_ts_feed))(demux, & priv->tsfeed, & dvb_net_ts_callback); } if (ret < 0) { { printk("%s: could not allocate ts feed\n", (char *)(& dev->name)); } goto error; } else { } { (priv->tsfeed)->priv = (void *)dev; ret = (*((priv->tsfeed)->set))(priv->tsfeed, (int )priv->pid, 1, 20, 32768UL, timeout); } if (ret < 0) { { printk("%s: could not set ts feed\n", (char *)(& dev->name)); (*((priv->demux)->release_ts_feed))(priv->demux, priv->tsfeed); priv->tsfeed = (struct dmx_ts_feed *)0; } goto error; } else { } { descriptor___7.modname = "dvb_core"; descriptor___7.function = "dvb_net_feed_start"; descriptor___7.filename = "drivers/media/dvb-core/dvb_net.c"; descriptor___7.format = "start filtering\n"; descriptor___7.lineno = 1028U; descriptor___7.flags = 0U; tmp___8 = ldv__builtin_expect((long )descriptor___7.flags & 1L, 0L); } if (tmp___8 != 0L) { { __dynamic_netdev_dbg(& descriptor___7, (struct net_device const *)dev, "start filtering\n"); } } else { } { (*((priv->tsfeed)->start_filtering))(priv->tsfeed); } } else { ret = -22; } error: { ldv_mutex_unlock_122___1(& priv->mutex); } return (ret); } } static int dvb_net_feed_stop(struct net_device *dev ) { struct dvb_net_priv *priv ; void *tmp ; int i ; int ret ; struct _ddebug descriptor ; long tmp___0 ; struct _ddebug descriptor___0 ; long tmp___1 ; struct _ddebug descriptor___1 ; long tmp___2 ; struct _ddebug descriptor___2 ; long tmp___3 ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dvb_net_priv *)tmp; ret = 0; ldv_mutex_lock_123___0(& priv->mutex); } if ((unsigned int )priv->feedtype == 0U) { if ((unsigned long )priv->secfeed != (unsigned long )((struct dmx_section_feed *)0)) { if ((priv->secfeed)->is_filtering != 0) { { descriptor.modname = "dvb_core"; descriptor.function = "dvb_net_feed_stop"; descriptor.filename = "drivers/media/dvb-core/dvb_net.c"; descriptor.format = "stop secfeed\n"; descriptor.lineno = 1047U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)dev, "stop secfeed\n"); } } else { } { (*((priv->secfeed)->stop_filtering))(priv->secfeed); } } else { } if ((unsigned long )priv->secfilter != (unsigned long )((struct dmx_section_filter *)0)) { { descriptor___0.modname = "dvb_core"; descriptor___0.function = "dvb_net_feed_stop"; descriptor___0.filename = "drivers/media/dvb-core/dvb_net.c"; descriptor___0.format = "release secfilter\n"; descriptor___0.lineno = 1052U; descriptor___0.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___1 != 0L) { { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)dev, "release secfilter\n"); } } else { } { (*((priv->secfeed)->release_filter))(priv->secfeed, priv->secfilter); priv->secfilter = (struct dmx_section_filter *)0; } } else { } i = 0; goto ldv_47513; ldv_47512: ; if ((unsigned long )priv->multi_secfilter[i] != (unsigned long )((struct dmx_section_filter *)0)) { { descriptor___1.modname = "dvb_core"; descriptor___1.function = "dvb_net_feed_stop"; descriptor___1.filename = "drivers/media/dvb-core/dvb_net.c"; descriptor___1.format = "release multi_filter[%d]\n"; descriptor___1.lineno = 1061U; descriptor___1.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___2 != 0L) { { __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)dev, "release multi_filter[%d]\n", i); } } else { } { (*((priv->secfeed)->release_filter))(priv->secfeed, priv->multi_secfilter[i]); priv->multi_secfilter[i] = (struct dmx_section_filter *)0; } } else { } i = i + 1; ldv_47513: ; if (i < priv->multi_num) { goto ldv_47512; } else { } { (*((priv->demux)->release_section_feed))(priv->demux, priv->secfeed); priv->secfeed = (struct dmx_section_feed *)0; } } else { { printk("%s: no feed to stop\n", (char *)(& dev->name)); } } } else if ((unsigned int )priv->feedtype == 1U) { if ((unsigned long )priv->tsfeed != (unsigned long )((struct dmx_ts_feed *)0)) { if ((priv->tsfeed)->is_filtering != 0) { { descriptor___2.modname = "dvb_core"; descriptor___2.function = "dvb_net_feed_stop"; descriptor___2.filename = "drivers/media/dvb-core/dvb_net.c"; descriptor___2.format = "stop tsfeed\n"; descriptor___2.lineno = 1075U; descriptor___2.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___3 != 0L) { { __dynamic_netdev_dbg(& descriptor___2, (struct net_device const *)dev, "stop tsfeed\n"); } } else { } { (*((priv->tsfeed)->stop_filtering))(priv->tsfeed); } } else { } { (*((priv->demux)->release_ts_feed))(priv->demux, priv->tsfeed); priv->tsfeed = (struct dmx_ts_feed *)0; } } else { { printk("%s: no ts feed to stop\n", (char *)(& dev->name)); } } } else { ret = -22; } { ldv_mutex_unlock_124___2(& priv->mutex); } return (ret); } } static int dvb_set_mc_filter(struct net_device *dev , unsigned char *addr ) { struct dvb_net_priv *priv ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dvb_net_priv *)tmp; } if (priv->multi_num == 10) { return (-12); } else { } { __memcpy((void *)(& priv->multi_macs) + (unsigned long )priv->multi_num, (void const *)addr, 6UL); priv->multi_num = priv->multi_num + 1; } return (0); } } static void wq_set_multicast_list(struct work_struct *work ) { struct dvb_net_priv *priv ; struct work_struct const *__mptr ; struct net_device *dev ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct netdev_hw_addr *ha ; struct _ddebug descriptor___1 ; long tmp___1 ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; { { __mptr = (struct work_struct const *)work; priv = (struct dvb_net_priv *)__mptr + 0xffffffffffffff30UL; dev = priv->net; dvb_net_feed_stop(dev); priv->rx_mode = 0; netif_addr_lock_bh(dev); } if ((dev->flags & 256U) != 0U) { { descriptor.modname = "dvb_core"; descriptor.function = "wq_set_multicast_list"; descriptor.filename = "drivers/media/dvb-core/dvb_net.c"; descriptor.format = "promiscuous mode\n"; descriptor.lineno = 1115U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)dev, "promiscuous mode\n"); } } else { } priv->rx_mode = 3; } else if ((dev->flags & 512U) != 0U) { { descriptor___0.modname = "dvb_core"; descriptor___0.function = "wq_set_multicast_list"; descriptor___0.filename = "drivers/media/dvb-core/dvb_net.c"; descriptor___0.format = "allmulti mode\n"; descriptor___0.lineno = 1118U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)dev, "allmulti mode\n"); } } else { } priv->rx_mode = 2; } else if (dev->mc.count != 0) { { descriptor___1.modname = "dvb_core"; descriptor___1.function = "wq_set_multicast_list"; descriptor___1.filename = "drivers/media/dvb-core/dvb_net.c"; descriptor___1.format = "set_mc_list, %d entries\n"; descriptor___1.lineno = 1124U; descriptor___1.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___1 != 0L) { { __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)dev, "set_mc_list, %d entries\n", dev->mc.count); } } else { } priv->rx_mode = 1; priv->multi_num = 0; __mptr___0 = (struct list_head const *)dev->mc.list.next; ha = (struct netdev_hw_addr *)__mptr___0; goto ldv_47538; ldv_47537: { dvb_set_mc_filter(dev, (unsigned char *)(& ha->addr)); __mptr___1 = (struct list_head const *)ha->list.next; ha = (struct netdev_hw_addr *)__mptr___1; } ldv_47538: ; if ((unsigned long )(& ha->list) != (unsigned long )(& dev->mc.list)) { goto ldv_47537; } else { } } else { } { netif_addr_unlock_bh(dev); dvb_net_feed_start(dev); } return; } } static void dvb_net_set_multicast_list(struct net_device *dev ) { struct dvb_net_priv *priv ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dvb_net_priv *)tmp; schedule_work(& priv->set_multicast_list_wq); } return; } } static void wq_restart_net_feed(struct work_struct *work ) { struct dvb_net_priv *priv ; struct work_struct const *__mptr ; struct net_device *dev ; bool tmp ; { { __mptr = (struct work_struct const *)work; priv = (struct dvb_net_priv *)__mptr + 0xfffffffffffffee0UL; dev = priv->net; tmp = netif_running((struct net_device const *)dev); } if ((int )tmp) { { dvb_net_feed_stop(dev); dvb_net_feed_start(dev); } } else { } return; } } static int dvb_net_set_mac(struct net_device *dev , void *p ) { struct dvb_net_priv *priv ; void *tmp ; struct sockaddr *addr ; bool tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dvb_net_priv *)tmp; addr = (struct sockaddr *)p; __memcpy((void *)dev->dev_addr, (void const *)(& addr->sa_data), (size_t )dev->addr_len); tmp___0 = netif_running((struct net_device const *)dev); } if ((int )tmp___0) { { schedule_work(& priv->restart_net_feed_wq); } } else { } return (0); } } static int dvb_net_open(struct net_device *dev ) { struct dvb_net_priv *priv ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dvb_net_priv *)tmp; priv->in_use = priv->in_use + 1; dvb_net_feed_start(dev); } return (0); } } static int dvb_net_stop(struct net_device *dev ) { struct dvb_net_priv *priv ; void *tmp ; int tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dvb_net_priv *)tmp; priv->in_use = priv->in_use - 1; tmp___0 = dvb_net_feed_stop(dev); } return (tmp___0); } } static struct header_ops const dvb_header_ops = {& eth_header, & eth_header_parse, & eth_rebuild_header, 0, 0}; static struct net_device_ops const dvb_netdev_ops = {0, 0, & dvb_net_open, & dvb_net_stop, (netdev_tx_t (*)(struct sk_buff * , struct net_device * ))(& dvb_net_tx), 0, 0, & dvb_net_set_multicast_list, & dvb_net_set_mac, & eth_validate_addr, 0, 0, & eth_change_mtu, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static void dvb_net_setup(struct net_device *dev ) { { { ether_setup(dev); dev->header_ops = & dvb_header_ops; dev->netdev_ops = & dvb_netdev_ops; dev->mtu = 4096U; dev->flags = dev->flags | 128U; } return; } } static int get_if(struct dvb_net *dvbnet ) { int i ; { i = 0; goto ldv_47576; ldv_47575: ; if (dvbnet->state[i] == 0) { goto ldv_47574; } else { } i = i + 1; ldv_47576: ; if (i <= 9) { goto ldv_47575; } else { } ldv_47574: ; if (i == 10) { return (-1); } else { } dvbnet->state[i] = 1; return (i); } } static int dvb_net_add_if(struct dvb_net *dvbnet , u16 pid , u8 feedtype ) { struct net_device *net ; struct dvb_net_priv *priv ; int result ; int if_num ; void *tmp ; struct lock_class_key __key ; atomic_long_t __constr_expr_0 ; struct lock_class_key __key___0 ; atomic_long_t __constr_expr_1 ; struct lock_class_key __key___1 ; { if ((unsigned int )feedtype > 1U) { return (-22); } else { } { if_num = get_if(dvbnet); } if (if_num < 0) { return (-22); } else { } { net = ldv_alloc_netdev_mqs_125(584, "dvb", 0, & dvb_net_setup, 1U, 1U); } if ((unsigned long )net == (unsigned long )((struct net_device *)0)) { return (-12); } else { } if ((dvbnet->dvbdev)->id != 0U) { { snprintf((char *)(& net->name), 16UL, "dvb%d%u%d", ((dvbnet->dvbdev)->adapter)->num, (dvbnet->dvbdev)->id, if_num); } } else { { snprintf((char *)(& net->name), 16UL, "dvb%d_%d", ((dvbnet->dvbdev)->adapter)->num, if_num); } } { net->addr_len = 6U; __memcpy((void *)net->dev_addr, (void const *)(& ((dvbnet->dvbdev)->adapter)->proposed_mac), 6UL); dvbnet->device[if_num] = net; tmp = netdev_priv((struct net_device const *)net); priv = (struct dvb_net_priv *)tmp; priv->net = net; priv->demux = dvbnet->demux; priv->pid = pid; priv->rx_mode = 0; priv->need_pusi = 1; priv->tscc = 0U; priv->feedtype = feedtype; reset_ule(priv); __init_work(& priv->set_multicast_list_wq, 0); __constr_expr_0.counter = 137438953408L; priv->set_multicast_list_wq.data = __constr_expr_0; lockdep_init_map(& priv->set_multicast_list_wq.lockdep_map, "(&priv->set_multicast_list_wq)", & __key, 0); INIT_LIST_HEAD(& priv->set_multicast_list_wq.entry); priv->set_multicast_list_wq.func = & wq_set_multicast_list; __init_work(& priv->restart_net_feed_wq, 0); __constr_expr_1.counter = 137438953408L; priv->restart_net_feed_wq.data = __constr_expr_1; lockdep_init_map(& priv->restart_net_feed_wq.lockdep_map, "(&priv->restart_net_feed_wq)", & __key___0, 0); INIT_LIST_HEAD(& priv->restart_net_feed_wq.entry); priv->restart_net_feed_wq.func = & wq_restart_net_feed; __mutex_init(& priv->mutex, "&priv->mutex", & __key___1); net->base_addr = (unsigned long )pid; result = ldv_register_netdev_126(net); } if (result < 0) { { dvbnet->device[if_num] = (struct net_device *)0; ldv_free_netdev_127(net); } return (result); } else { } { printk("dvb_net: created network interface %s\n", (char *)(& net->name)); } return (if_num); } } static int dvb_net_remove_if(struct dvb_net *dvbnet , unsigned long num ) { struct net_device *net ; struct dvb_net_priv *priv ; void *tmp ; { net = dvbnet->device[num]; if (dvbnet->state[num] == 0) { return (-22); } else { } { tmp = netdev_priv((struct net_device const *)net); priv = (struct dvb_net_priv *)tmp; } if (priv->in_use != 0) { return (-16); } else { } { dvb_net_stop(net); flush_work(& priv->set_multicast_list_wq); flush_work(& priv->restart_net_feed_wq); printk("dvb_net: removed network interface %s\n", (char *)(& net->name)); ldv_unregister_netdev_128(net); dvbnet->state[num] = 0; dvbnet->device[num] = (struct net_device *)0; ldv_free_netdev_129(net); } return (0); } } static int dvb_net_do_ioctl(struct file *file , unsigned int cmd , void *parg ) { struct dvb_device *dvbdev ; struct dvb_net *dvbnet ; int ret ; int tmp ; struct dvb_net_if *dvbnetif ; int result ; bool tmp___0 ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; struct net_device *netdev ; struct dvb_net_priv *priv_data ; struct dvb_net_if *dvbnetif___0 ; void *tmp___4 ; bool tmp___5 ; int tmp___6 ; struct __dvb_net_if_old *dvbnetif___1 ; int result___0 ; bool tmp___7 ; int tmp___8 ; bool tmp___9 ; int tmp___10 ; struct net_device *netdev___0 ; struct dvb_net_priv *priv_data___0 ; struct __dvb_net_if_old *dvbnetif___2 ; void *tmp___11 ; { dvbdev = (struct dvb_device *)file->private_data; dvbnet = (struct dvb_net *)dvbdev->priv; ret = 0; if ((file->f_flags & 3U) == 0U) { return (-1); } else { } { tmp = ldv_mutex_lock_interruptible_130(& dvbnet->ioctl_mutex); } if (tmp != 0) { return (-512); } else { } { if (cmd == 3221647156U) { goto case_3221647156; } else { } if (cmd == 3221647158U) { goto case_3221647158; } else { } if (cmd == 28469U) { goto case_28469; } else { } if (cmd == 3221516084U) { goto case_3221516084; } else { } if (cmd == 3221516086U) { goto case_3221516086; } else { } goto switch_default; case_3221647156: /* CIL Label */ { dvbnetif = (struct dvb_net_if *)parg; tmp___0 = capable(21); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { ret = -1; goto ioctl_error; } else { } { tmp___2 = ldv_try_module_get_131((dvbdev->adapter)->module); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { ret = -1; goto ioctl_error; } else { } { result = dvb_net_add_if(dvbnet, (int )dvbnetif->pid, (int )dvbnetif->feedtype); } if (result < 0) { { ldv_module_put_132___0((dvbdev->adapter)->module); ret = result; } goto ioctl_error; } else { } dvbnetif->if_num = (__u16 )result; goto ldv_47609; case_3221647158: /* CIL Label */ dvbnetif___0 = (struct dvb_net_if *)parg; if ((unsigned int )dvbnetif___0->if_num > 9U || dvbnet->state[(int )dvbnetif___0->if_num] == 0) { ret = -22; goto ioctl_error; } else { } { netdev = dvbnet->device[(int )dvbnetif___0->if_num]; tmp___4 = netdev_priv((struct net_device const *)netdev); priv_data = (struct dvb_net_priv *)tmp___4; dvbnetif___0->pid = priv_data->pid; dvbnetif___0->feedtype = priv_data->feedtype; } goto ldv_47609; case_28469: /* CIL Label */ { tmp___5 = capable(21); } if (tmp___5) { tmp___6 = 0; } else { tmp___6 = 1; } if (tmp___6) { ret = -1; goto ioctl_error; } else { } if ((unsigned long )parg > 9UL) { ret = -22; goto ioctl_error; } else { } { ret = dvb_net_remove_if(dvbnet, (unsigned long )parg); } if (ret == 0) { { ldv_module_put_133((dvbdev->adapter)->module); } } else { } goto ldv_47609; case_3221516084: /* CIL Label */ { dvbnetif___1 = (struct __dvb_net_if_old *)parg; tmp___7 = capable(21); } if (tmp___7) { tmp___8 = 0; } else { tmp___8 = 1; } if (tmp___8) { ret = -1; goto ioctl_error; } else { } { tmp___9 = ldv_try_module_get_134((dvbdev->adapter)->module); } if (tmp___9) { tmp___10 = 0; } else { tmp___10 = 1; } if (tmp___10) { ret = -1; goto ioctl_error; } else { } { result___0 = dvb_net_add_if(dvbnet, (int )dvbnetif___1->pid, 0); } if (result___0 < 0) { { ldv_module_put_135((dvbdev->adapter)->module); ret = result___0; } goto ioctl_error; } else { } dvbnetif___1->if_num = (__u16 )result___0; goto ldv_47609; case_3221516086: /* CIL Label */ dvbnetif___2 = (struct __dvb_net_if_old *)parg; if ((unsigned int )dvbnetif___2->if_num > 9U || dvbnet->state[(int )dvbnetif___2->if_num] == 0) { ret = -22; goto ioctl_error; } else { } { netdev___0 = dvbnet->device[(int )dvbnetif___2->if_num]; tmp___11 = netdev_priv((struct net_device const *)netdev___0); priv_data___0 = (struct dvb_net_priv *)tmp___11; dvbnetif___2->pid = priv_data___0->pid; } goto ldv_47609; switch_default: /* CIL Label */ ret = -25; goto ldv_47609; switch_break: /* CIL Label */ ; } ldv_47609: ; ioctl_error: { ldv_mutex_unlock_136___2(& dvbnet->ioctl_mutex); } return (ret); } } static long dvb_net_ioctl(struct file *file , unsigned int cmd , unsigned long arg ) { int tmp ; { { tmp = dvb_usercopy(file, cmd, arg, & dvb_net_do_ioctl); } return ((long )tmp); } } static int dvb_net_close(struct inode *inode , struct file *file ) { struct dvb_device *dvbdev ; struct dvb_net *dvbnet ; { { dvbdev = (struct dvb_device *)file->private_data; dvbnet = (struct dvb_net *)dvbdev->priv; dvb_generic_release(inode, file); } if (dvbdev->users == 1 && (unsigned int )*((unsigned char *)dvbnet + 128UL) != 0U) { { __wake_up(& dvbdev->wait_queue, 3U, 1, (void *)0); } } else { } return (0); } } static struct file_operations const dvb_net_fops = {& __this_module, & noop_llseek, 0, 0, 0, 0, 0, 0, 0, 0, & dvb_net_ioctl, 0, 0, 0, & dvb_generic_open, 0, & dvb_net_close, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct dvb_device dvbdev_net = {{0, 0}, & dvb_net_fops, 0, 0, 0, 0U, 0, 1, 1, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}, 0, (void *)0}; void dvb_net_release(struct dvb_net *dvbnet ) { int i ; wait_queue_t __wait ; long __ret ; long __int ; long tmp ; { dvbnet->exit = 1U; if ((dvbnet->dvbdev)->users <= 0) { { __might_sleep("drivers/media/dvb-core/dvb_net.c", 1480, 0); } if ((dvbnet->dvbdev)->users == 1) { goto ldv_47640; } else { } { __ret = 0L; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; } ldv_47646: { tmp = prepare_to_wait_event(& (dvbnet->dvbdev)->wait_queue, & __wait, 2); __int = tmp; } if ((dvbnet->dvbdev)->users == 1) { goto ldv_47645; } else { } { schedule(); } goto ldv_47646; ldv_47645: { finish_wait(& (dvbnet->dvbdev)->wait_queue, & __wait); } ldv_47640: ; } else { } { dvb_unregister_device(dvbnet->dvbdev); i = 0; } goto ldv_47650; ldv_47649: ; if (dvbnet->state[i] == 0) { goto ldv_47648; } else { } { dvb_net_remove_if(dvbnet, (unsigned long )i); } ldv_47648: i = i + 1; ldv_47650: ; if (i <= 9) { goto ldv_47649; } else { } return; } } static char const __kstrtab_dvb_net_release[16U] = { 'd', 'v', 'b', '_', 'n', 'e', 't', '_', 'r', 'e', 'l', 'e', 'a', 's', 'e', '\000'}; struct kernel_symbol const __ksymtab_dvb_net_release ; struct kernel_symbol const __ksymtab_dvb_net_release = {(unsigned long )(& dvb_net_release), (char const *)(& __kstrtab_dvb_net_release)}; int dvb_net_init(struct dvb_adapter *adap , struct dvb_net *dvbnet , struct dmx_demux *dmx ) { int i ; struct lock_class_key __key ; int tmp ; { { __mutex_init(& dvbnet->ioctl_mutex, "&dvbnet->ioctl_mutex", & __key); dvbnet->demux = dmx; i = 0; } goto ldv_47667; ldv_47666: dvbnet->state[i] = 0; i = i + 1; ldv_47667: ; if (i <= 9) { goto ldv_47666; } else { } { tmp = dvb_register_device(adap, & dvbnet->dvbdev, (struct dvb_device const *)(& dvbdev_net), (void *)dvbnet, 7); } return (tmp); } } static char const __kstrtab_dvb_net_init[13U] = { 'd', 'v', 'b', '_', 'n', 'e', 't', '_', 'i', 'n', 'i', 't', '\000'}; struct kernel_symbol const __ksymtab_dvb_net_init ; struct kernel_symbol const __ksymtab_dvb_net_init = {(unsigned long )(& dvb_net_init), (char const *)(& __kstrtab_dvb_net_init)}; struct net_device *ldv_alloc_netdev_mqs(struct net_device *arg0 , int arg1 , char *arg2 , unsigned char arg3 , void (*arg4)(struct net_device * ) , unsigned int arg5 , unsigned int arg6 ) ; void ldv_alloc_netdev_mqs_setup_10_3(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dispatch_deregister_16_1(struct net_device *arg0 ) ; void ldv_dispatch_register_15_4(struct net_device *arg0 ) ; void ldv_dummy_resourceless_instance_callback_6_10(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_6_11(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) ; void ldv_dummy_resourceless_instance_callback_6_12(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_6_3(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_6_9(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) ; void ldv_file_operations_instance_callback_5_26(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) ; int ldv_file_operations_instance_probe_5_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_release_5_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) ; void ldv_net_dummy_resourceless_instance_6(void *arg0 ) ; int ldv_register_netdev(int arg0 , struct net_device *arg1 ) ; int ldv_register_netdev_open_15_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) ; void ldv_unregister_netdev_stop_16_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; struct ldv_thread ldv_thread_5 ; struct ldv_thread ldv_thread_6 ; struct net_device *ldv_alloc_netdev_mqs(struct net_device *arg0 , int arg1 , char *arg2 , unsigned char arg3 , void (*arg4)(struct net_device * ) , unsigned int arg5 , unsigned int arg6 ) { struct net_device *ldv_10_netdev_net_device ; void (*ldv_10_setup_setup)(struct net_device * ) ; void *tmp ; int tmp___0 ; { { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { tmp = ldv_xmalloc(3264UL); ldv_10_netdev_net_device = (struct net_device *)tmp; ldv_10_setup_setup = (void (*)(struct net_device * ))((long )arg3); ldv_alloc_netdev_mqs_setup_10_3(ldv_10_setup_setup, ldv_10_netdev_net_device); } return (ldv_10_netdev_net_device); return (arg0); } else { return ((struct net_device *)0); return (arg0); } return (arg0); } } void ldv_alloc_netdev_mqs_setup_10_3(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { dvb_net_setup(arg1); } return; } } void ldv_dispatch_deregister_16_1(struct net_device *arg0 ) { { return; } } void ldv_dispatch_register_15_4(struct net_device *arg0 ) { struct ldv_struct_dummy_resourceless_instance_6 *cf_arg_6 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_6 = (struct ldv_struct_dummy_resourceless_instance_6 *)tmp; cf_arg_6->arg0 = arg0; ldv_net_dummy_resourceless_instance_6((void *)cf_arg_6); } return; } } void ldv_dummy_resourceless_instance_callback_6_10(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { dvb_net_setup(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_6_11(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) { { { dvb_net_tx(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_6_12(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { eth_validate_addr(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_6_3(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { eth_change_mtu(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_6_9(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) { { { dvb_net_set_mac(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_7_12(int (*arg0)(struct sk_buff * ) , struct sk_buff *arg1 ) { { { eth_rebuild_header(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_7_3(int (*arg0)(struct sk_buff * , struct net_device * , unsigned short , void * , void * , unsigned int ) , struct sk_buff *arg1 , struct net_device *arg2 , unsigned short arg3 , void *arg4 , void *arg5 , unsigned int arg6 ) { { { eth_header(arg1, arg2, (int )arg3, (void const *)arg4, (void const *)arg5, arg6); } return; } } void ldv_dummy_resourceless_instance_callback_7_9(int (*arg0)(struct sk_buff * , unsigned char * ) , struct sk_buff *arg1 , unsigned char *arg2 ) { { { eth_header_parse((struct sk_buff const *)arg1, arg2); } return; } } void ldv_file_operations_file_operations_instance_5(void *arg0 ) { long long (*ldv_5_callback_llseek)(struct file * , long long , int ) ; unsigned int (*ldv_5_callback_poll)(struct file * , struct poll_table_struct * ) ; long (*ldv_5_callback_read)(struct file * , char * , unsigned long , long long * ) ; long (*ldv_5_callback_unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; struct file_operations *ldv_5_container_file_operations ; char *ldv_5_ldv_param_23_1_default ; long long *ldv_5_ldv_param_23_3_default ; unsigned int ldv_5_ldv_param_26_1_default ; char *ldv_5_ldv_param_4_1_default ; long long *ldv_5_ldv_param_4_3_default ; long long ldv_5_ldv_param_5_1_default ; int ldv_5_ldv_param_5_2_default ; struct file *ldv_5_resource_file ; struct inode *ldv_5_resource_inode ; int ldv_5_ret_default ; struct poll_table_struct *ldv_5_size_cnt_struct_poll_table_struct_ptr ; unsigned long ldv_5_size_cnt_write_size ; struct ldv_struct_file_operations_instance_0 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; void *tmp___5 ; void *tmp___6 ; int tmp___7 ; void *tmp___8 ; void *tmp___9 ; { data = (struct ldv_struct_file_operations_instance_0 *)arg0; ldv_5_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_file_operations_instance_0 *)0)) { { ldv_5_container_file_operations = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(504UL); ldv_5_resource_file = (struct file *)tmp; tmp___0 = ldv_xmalloc(976UL); ldv_5_resource_inode = (struct inode *)tmp___0; tmp___1 = ldv_undef_int(); ldv_5_size_cnt_struct_poll_table_struct_ptr = (struct poll_table_struct *)((long )tmp___1); } goto ldv_main_5; return; ldv_main_5: { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { ldv_5_ret_default = ldv_file_operations_instance_probe_5_12(ldv_5_container_file_operations->open, ldv_5_resource_inode, ldv_5_resource_file); ldv_5_ret_default = ldv_filter_err_code(ldv_5_ret_default); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_assume(ldv_5_ret_default == 0); } goto ldv_call_5; } else { { ldv_assume(ldv_5_ret_default != 0); } goto ldv_main_5; } } else { { ldv_free((void *)ldv_5_resource_file); ldv_free((void *)ldv_5_resource_inode); } return; } return; ldv_call_5: { tmp___4 = ldv_undef_int(); } { if (tmp___4 == 1) { goto case_1; } else { } if (tmp___4 == 2) { goto case_2; } else { } if (tmp___4 == 3) { goto case_3; } else { } goto switch_default___0; case_1: /* CIL Label */ { tmp___5 = ldv_xmalloc(1UL); ldv_5_ldv_param_4_1_default = (char *)tmp___5; tmp___6 = ldv_xmalloc(8UL); ldv_5_ldv_param_4_3_default = (long long *)tmp___6; ldv_assume((unsigned long )ldv_5_size_cnt_struct_poll_table_struct_ptr <= (unsigned long )((struct poll_table_struct *)2147479552)); } if ((unsigned long )ldv_5_container_file_operations->write != (unsigned long )((ssize_t (*)(struct file * , char const * , size_t , loff_t * ))0)) { { ldv_file_operations_instance_write_5_4((long (*)(struct file * , char * , unsigned long , long long * ))ldv_5_container_file_operations->write, ldv_5_resource_file, ldv_5_ldv_param_4_1_default, ldv_5_size_cnt_write_size, ldv_5_ldv_param_4_3_default); } } else { } { ldv_free((void *)ldv_5_ldv_param_4_1_default); ldv_free((void *)ldv_5_ldv_param_4_3_default); } goto ldv_call_5; case_2: /* CIL Label */ { ldv_file_operations_instance_release_5_2(ldv_5_container_file_operations->release, ldv_5_resource_inode, ldv_5_resource_file); } goto ldv_main_5; case_3: /* CIL Label */ { tmp___7 = ldv_undef_int(); } { if (tmp___7 == 1) { goto case_1___0; } else { } if (tmp___7 == 2) { goto case_2___0; } else { } if (tmp___7 == 3) { goto case_3___0; } else { } if (tmp___7 == 4) { goto case_4; } else { } goto switch_default; case_1___0: /* CIL Label */ { ldv_file_operations_instance_callback_5_26(ldv_5_callback_unlocked_ioctl, ldv_5_resource_file, ldv_5_ldv_param_26_1_default, ldv_5_size_cnt_write_size); } goto ldv_47958; case_2___0: /* CIL Label */ { tmp___8 = ldv_xmalloc(1UL); ldv_5_ldv_param_23_1_default = (char *)tmp___8; tmp___9 = ldv_xmalloc(8UL); ldv_5_ldv_param_23_3_default = (long long *)tmp___9; } if ((unsigned long )ldv_5_callback_read != (unsigned long )((long (*)(struct file * , char * , unsigned long , long long * ))0)) { { ldv_file_operations_instance_callback_5_23(ldv_5_callback_read, ldv_5_resource_file, ldv_5_ldv_param_23_1_default, ldv_5_size_cnt_write_size, ldv_5_ldv_param_23_3_default); } } else { } { ldv_free((void *)ldv_5_ldv_param_23_1_default); ldv_free((void *)ldv_5_ldv_param_23_3_default); } goto ldv_47958; case_3___0: /* CIL Label */ ; if ((unsigned long )ldv_5_callback_poll != (unsigned long )((unsigned int (*)(struct file * , struct poll_table_struct * ))0)) { { ldv_file_operations_instance_callback_5_22(ldv_5_callback_poll, ldv_5_resource_file, ldv_5_size_cnt_struct_poll_table_struct_ptr); } } else { } goto ldv_47958; case_4: /* CIL Label */ { ldv_file_operations_instance_callback_5_5(ldv_5_callback_llseek, ldv_5_resource_file, ldv_5_ldv_param_5_1_default, ldv_5_ldv_param_5_2_default); } goto ldv_47958; switch_default: /* CIL Label */ { ldv_stop(); } switch_break___0: /* CIL Label */ ; } ldv_47958: ; goto ldv_47963; switch_default___0: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_47963: ; goto ldv_call_5; goto ldv_call_5; return; } } void ldv_file_operations_instance_callback_5_26(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) { { { dvb_net_ioctl(arg1, arg2, arg3); } return; } } int ldv_file_operations_instance_probe_5_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { int tmp ; { { tmp = dvb_generic_open(arg1, arg2); } return (tmp); } } void ldv_file_operations_instance_release_5_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { { { dvb_net_close(arg1, arg2); } return; } } void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_14_netdev_net_device ; { { ldv_14_netdev_net_device = arg1; ldv_free((void *)ldv_14_netdev_net_device); } return; return; } } void ldv_net_dummy_resourceless_instance_6(void *arg0 ) { int (*ldv_6_callback_ndo_change_mtu)(struct net_device * , int ) ; int (*ldv_6_callback_ndo_set_mac_address)(struct net_device * , void * ) ; void (*ldv_6_callback_ndo_set_rx_mode)(struct net_device * ) ; enum netdev_tx (*ldv_6_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; int (*ldv_6_callback_ndo_validate_addr)(struct net_device * ) ; struct net_device *ldv_6_container_net_device ; struct sk_buff *ldv_6_container_struct_sk_buff_ptr ; int ldv_6_ldv_param_3_1_default ; struct ldv_struct_dummy_resourceless_instance_6 *data ; int tmp ; int tmp___0 ; { data = (struct ldv_struct_dummy_resourceless_instance_6 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_dummy_resourceless_instance_6 *)0)) { { ldv_6_container_net_device = data->arg0; ldv_free((void *)data); } } else { } goto ldv_call_6; return; ldv_call_6: { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_12(ldv_6_callback_ndo_validate_addr, ldv_6_container_net_device); } goto ldv_48015; case_2: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_11(ldv_6_callback_ndo_start_xmit, ldv_6_container_struct_sk_buff_ptr, ldv_6_container_net_device); } goto ldv_48015; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_10(ldv_6_callback_ndo_set_rx_mode, ldv_6_container_net_device); } goto ldv_48015; case_4: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_9(ldv_6_callback_ndo_set_mac_address, ldv_6_container_net_device, (void *)ldv_6_container_struct_sk_buff_ptr); } goto ldv_48015; case_5: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_3(ldv_6_callback_ndo_change_mtu, ldv_6_container_net_device, ldv_6_ldv_param_3_1_default); } goto ldv_48015; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_48015: ; goto ldv_call_6; } else { return; } return; } } int ldv_register_netdev(int arg0 , struct net_device *arg1 ) { struct net_device *ldv_15_netdev_net_device ; int ldv_15_ret_default ; int tmp ; int tmp___0 ; { { ldv_15_ret_default = 1; ldv_15_ret_default = ldv_pre_register_netdev(); ldv_15_netdev_net_device = arg1; tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_15_ret_default == 0); ldv_15_ret_default = ldv_register_netdev_open_15_6((ldv_15_netdev_net_device->netdev_ops)->ndo_open, ldv_15_netdev_net_device); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_15_ret_default == 0); ldv_dispatch_register_15_4(ldv_15_netdev_net_device); } } else { { ldv_assume(ldv_15_ret_default != 0); } } } else { { ldv_assume(ldv_15_ret_default != 0); } } return (ldv_15_ret_default); return (arg0); return (arg0); } } int ldv_register_netdev_open_15_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { int tmp ; { { tmp = dvb_net_open(arg1); } return (tmp); } } void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_16_netdev_net_device ; { { ldv_16_netdev_net_device = arg1; ldv_unregister_netdev_stop_16_2((ldv_16_netdev_net_device->netdev_ops)->ndo_stop, ldv_16_netdev_net_device); ldv_dispatch_deregister_16_1(ldv_16_netdev_net_device); } return; return; } } void ldv_unregister_netdev_stop_16_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { dvb_net_stop(arg1); } return; } } static struct sk_buff *ldv___netdev_alloc_skb_103(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return ((struct sk_buff *)tmp); } } __inline static void ldv_spin_lock_bh_118(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_addr_list_lock_of_net_device(); spin_lock_bh(lock); } return; } } __inline static void ldv_spin_unlock_bh_120(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_addr_list_lock_of_net_device(); spin_unlock_bh(lock); } return; } } static void ldv_mutex_lock_121___2(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_dvb_net_priv(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_122___1(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dvb_net_priv(ldv_func_arg1); } return; } } static void ldv_mutex_lock_123___0(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_dvb_net_priv(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_124___2(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dvb_net_priv(ldv_func_arg1); } return; } } static struct net_device *ldv_alloc_netdev_mqs_125(int ldv_func_arg1 , char const *ldv_func_arg2 , unsigned char ldv_func_arg3 , void (*ldv_func_arg4)(struct net_device * ) , unsigned int ldv_func_arg5 , unsigned int ldv_func_arg6 ) { ldv_func_ret_type___4 ldv_func_res ; struct net_device *tmp ; struct net_device *tmp___0 ; { { tmp = alloc_netdev_mqs(ldv_func_arg1, ldv_func_arg2, (int )ldv_func_arg3, ldv_func_arg4, ldv_func_arg5, ldv_func_arg6); ldv_func_res = tmp; tmp___0 = ldv_alloc_netdev_mqs(ldv_func_res, ldv_func_arg1, (char *)ldv_func_arg2, (int )ldv_func_arg3, ldv_func_arg4, ldv_func_arg5, ldv_func_arg6); } return (tmp___0); return (ldv_func_res); } } static int ldv_register_netdev_126(struct net_device *ldv_func_arg1 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = register_netdev(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_register_netdev(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_netdev_127(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_unregister_netdev_128(struct net_device *ldv_func_arg1 ) { { { unregister_netdev(ldv_func_arg1); ldv_unregister_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_free_netdev_129(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static int ldv_mutex_lock_interruptible_130(struct mutex *ldv_func_arg1 ) { int tmp ; { { tmp = ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_ioctl_mutex_of_dvb_net(ldv_func_arg1); } return (tmp); } } static bool ldv_try_module_get_131(struct module *ldv_func_arg1 ) { int tmp ; { { tmp = ldv_linux_kernel_module_try_module_get(ldv_func_arg1); } return (tmp != 0); } } static void ldv_module_put_132___0(struct module *ldv_func_arg1 ) { { { ldv_linux_kernel_module_module_put(ldv_func_arg1); } return; } } static void ldv_module_put_133(struct module *ldv_func_arg1 ) { { { ldv_linux_kernel_module_module_put(ldv_func_arg1); } return; } } static bool ldv_try_module_get_134(struct module *ldv_func_arg1 ) { int tmp ; { { tmp = ldv_linux_kernel_module_try_module_get(ldv_func_arg1); } return (tmp != 0); } } static void ldv_module_put_135(struct module *ldv_func_arg1 ) { { { ldv_linux_kernel_module_module_put(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_136___2(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_ioctl_mutex_of_dvb_net(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_121___0(spinlock_t *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_dvb_ringbuffer(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_dvb_ringbuffer(void) ; __inline static void ldv_spin_unlock_irqrestore_122___0(spinlock_t *lock , unsigned long flags ) ; void dvb_ringbuffer_flush_spinlock_wakeup(struct dvb_ringbuffer *rbuf ) ; void dvb_ringbuffer_read(struct dvb_ringbuffer *rbuf , u8 *buf , size_t len ) ; ssize_t dvb_ringbuffer_write_user(struct dvb_ringbuffer *rbuf , u8 const *buf , size_t len ) ; void dvb_ringbuffer_init(struct dvb_ringbuffer *rbuf , void *data , size_t len ) { ssize_t tmp ; struct lock_class_key __key ; struct lock_class_key __key___0 ; { { tmp = 0L; rbuf->pwrite = tmp; rbuf->pread = tmp; rbuf->data = (u8 *)data; rbuf->size = (ssize_t )len; rbuf->error = 0; __init_waitqueue_head(& rbuf->queue, "&rbuf->queue", & __key); spinlock_check(& rbuf->lock); __raw_spin_lock_init(& rbuf->lock.__annonCompField18.rlock, "&(&(rbuf->lock))->rlock", & __key___0); } return; } } int dvb_ringbuffer_empty(struct dvb_ringbuffer *rbuf ) { { return (rbuf->pread == rbuf->pwrite); } } ssize_t dvb_ringbuffer_free(struct dvb_ringbuffer *rbuf ) { ssize_t free___0 ; { free___0 = rbuf->pread - rbuf->pwrite; if (free___0 <= 0L) { free___0 = free___0 + rbuf->size; } else { } return (free___0 + -1L); } } ssize_t dvb_ringbuffer_avail(struct dvb_ringbuffer *rbuf ) { ssize_t avail ; { avail = rbuf->pwrite - rbuf->pread; if (avail < 0L) { avail = avail + rbuf->size; } else { } return (avail); } } void dvb_ringbuffer_flush(struct dvb_ringbuffer *rbuf ) { { rbuf->pread = rbuf->pwrite; rbuf->error = 0; return; } } static char const __kstrtab_dvb_ringbuffer_flush[21U] = { 'd', 'v', 'b', '_', 'r', 'i', 'n', 'g', 'b', 'u', 'f', 'f', 'e', 'r', '_', 'f', 'l', 'u', 's', 'h', '\000'}; struct kernel_symbol const __ksymtab_dvb_ringbuffer_flush ; struct kernel_symbol const __ksymtab_dvb_ringbuffer_flush = {(unsigned long )(& dvb_ringbuffer_flush), (char const *)(& __kstrtab_dvb_ringbuffer_flush)}; void dvb_ringbuffer_reset(struct dvb_ringbuffer *rbuf ) { ssize_t tmp ; { tmp = 0L; rbuf->pwrite = tmp; rbuf->pread = tmp; rbuf->error = 0; return; } } void dvb_ringbuffer_flush_spinlock_wakeup(struct dvb_ringbuffer *rbuf ) { unsigned long flags ; { { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_121___0(& rbuf->lock); dvb_ringbuffer_flush(rbuf); ldv_spin_unlock_irqrestore_122___0(& rbuf->lock, flags); __wake_up(& rbuf->queue, 3U, 1, (void *)0); } return; } } ssize_t dvb_ringbuffer_read_user(struct dvb_ringbuffer *rbuf , u8 *buf , size_t len ) { size_t todo ; size_t split ; unsigned long tmp ; unsigned long tmp___0 ; { todo = len; split = (unsigned long )rbuf->pread + len > (unsigned long )rbuf->size ? (size_t )(rbuf->size - rbuf->pread) : 0UL; if (split != 0UL) { { tmp = copy_to_user((void *)buf, (void const *)rbuf->data + (unsigned long )rbuf->pread, split); } if (tmp != 0UL) { return (-14L); } else { } buf = buf + split; todo = todo - split; rbuf->pread = 0L; } else { } { tmp___0 = copy_to_user((void *)buf, (void const *)rbuf->data + (unsigned long )rbuf->pread, todo); } if (tmp___0 != 0UL) { return (-14L); } else { } rbuf->pread = (ssize_t )(((unsigned long )rbuf->pread + todo) % (unsigned long )rbuf->size); return ((ssize_t )len); } } void dvb_ringbuffer_read(struct dvb_ringbuffer *rbuf , u8 *buf , size_t len ) { size_t todo ; size_t split ; { todo = len; split = (unsigned long )rbuf->pread + len > (unsigned long )rbuf->size ? (size_t )(rbuf->size - rbuf->pread) : 0UL; if (split != 0UL) { { __memcpy((void *)buf, (void const *)rbuf->data + (unsigned long )rbuf->pread, split); buf = buf + split; todo = todo - split; rbuf->pread = 0L; } } else { } { __memcpy((void *)buf, (void const *)rbuf->data + (unsigned long )rbuf->pread, todo); rbuf->pread = (ssize_t )(((unsigned long )rbuf->pread + todo) % (unsigned long )rbuf->size); } return; } } ssize_t dvb_ringbuffer_write(struct dvb_ringbuffer *rbuf , u8 const *buf , size_t len ) { size_t todo ; size_t split ; { todo = len; split = (unsigned long )rbuf->pwrite + len > (unsigned long )rbuf->size ? (size_t )(rbuf->size - rbuf->pwrite) : 0UL; if (split != 0UL) { { __memcpy((void *)rbuf->data + (unsigned long )rbuf->pwrite, (void const *)buf, split); buf = buf + split; todo = todo - split; rbuf->pwrite = 0L; } } else { } { __memcpy((void *)rbuf->data + (unsigned long )rbuf->pwrite, (void const *)buf, todo); rbuf->pwrite = (ssize_t )(((unsigned long )rbuf->pwrite + todo) % (unsigned long )rbuf->size); } return ((ssize_t )len); } } ssize_t dvb_ringbuffer_write_user(struct dvb_ringbuffer *rbuf , u8 const *buf , size_t len ) { int status ; size_t todo ; size_t split ; unsigned long tmp ; unsigned long tmp___0 ; { todo = len; split = (unsigned long )rbuf->pwrite + len > (unsigned long )rbuf->size ? (size_t )(rbuf->size - rbuf->pwrite) : 0UL; if (split != 0UL) { { tmp = copy_from_user((void *)rbuf->data + (unsigned long )rbuf->pwrite, (void const *)buf, split); status = (int )tmp; } if (status != 0) { return ((ssize_t )(len - todo)); } else { } buf = buf + split; todo = todo - split; rbuf->pwrite = 0L; } else { } { tmp___0 = copy_from_user((void *)rbuf->data + (unsigned long )rbuf->pwrite, (void const *)buf, todo); status = (int )tmp___0; } if (status != 0) { return ((ssize_t )(len - todo)); } else { } rbuf->pwrite = (ssize_t )(((unsigned long )rbuf->pwrite + todo) % (unsigned long )rbuf->size); return ((ssize_t )len); } } ssize_t dvb_ringbuffer_pkt_write(struct dvb_ringbuffer *rbuf , u8 *buf , size_t len ) { int status ; ssize_t oldpwrite ; ssize_t tmp ; { { oldpwrite = rbuf->pwrite; *(rbuf->data + (unsigned long )rbuf->pwrite) = (u8 )(len >> 8); rbuf->pwrite = (rbuf->pwrite + 1L) % rbuf->size; *(rbuf->data + (unsigned long )rbuf->pwrite) = (u8 )len; rbuf->pwrite = (rbuf->pwrite + 1L) % rbuf->size; *(rbuf->data + (unsigned long )rbuf->pwrite) = 0U; rbuf->pwrite = (rbuf->pwrite + 1L) % rbuf->size; tmp = dvb_ringbuffer_write(rbuf, (u8 const *)buf, len); status = (int )tmp; } if (status < 0) { rbuf->pwrite = oldpwrite; } else { } return ((ssize_t )status); } } ssize_t dvb_ringbuffer_pkt_read_user(struct dvb_ringbuffer *rbuf , size_t idx , int offset , u8 *buf , size_t len ) { size_t todo ; size_t split ; size_t pktlen ; unsigned long tmp ; unsigned long tmp___0 ; { pktlen = (size_t )((int )*(rbuf->data + idx) << 8); pktlen = pktlen | (size_t )*(rbuf->data + (idx + 1UL) % (unsigned long )rbuf->size); if ((size_t )offset > pktlen) { return (-22L); } else { } if ((size_t )offset + len > pktlen) { len = pktlen - (size_t )offset; } else { } idx = ((idx + (size_t )offset) + 3UL) % (unsigned long )rbuf->size; todo = len; split = idx + len > (unsigned long )rbuf->size ? (unsigned long )rbuf->size - idx : 0UL; if (split != 0UL) { { tmp = copy_to_user((void *)buf, (void const *)(rbuf->data + idx), split); } if (tmp != 0UL) { return (-14L); } else { } buf = buf + split; todo = todo - split; idx = 0UL; } else { } { tmp___0 = copy_to_user((void *)buf, (void const *)(rbuf->data + idx), todo); } if (tmp___0 != 0UL) { return (-14L); } else { } return ((ssize_t )len); } } ssize_t dvb_ringbuffer_pkt_read(struct dvb_ringbuffer *rbuf , size_t idx , int offset , u8 *buf , size_t len ) { size_t todo ; size_t split ; size_t pktlen ; { pktlen = (size_t )((int )*(rbuf->data + idx) << 8); pktlen = pktlen | (size_t )*(rbuf->data + (idx + 1UL) % (unsigned long )rbuf->size); if ((size_t )offset > pktlen) { return (-22L); } else { } if ((size_t )offset + len > pktlen) { len = pktlen - (size_t )offset; } else { } idx = ((idx + (size_t )offset) + 3UL) % (unsigned long )rbuf->size; todo = len; split = idx + len > (unsigned long )rbuf->size ? (unsigned long )rbuf->size - idx : 0UL; if (split != 0UL) { { __memcpy((void *)buf, (void const *)(rbuf->data + idx), split); buf = buf + split; todo = todo - split; idx = 0UL; } } else { } { __memcpy((void *)buf, (void const *)(rbuf->data + idx), todo); } return ((ssize_t )len); } } void dvb_ringbuffer_pkt_dispose(struct dvb_ringbuffer *rbuf , size_t idx ) { size_t pktlen ; ssize_t tmp ; { *(rbuf->data + (idx + 2UL) % (unsigned long )rbuf->size) = 1U; goto ldv_46125; ldv_46124: ; if ((unsigned int )*(rbuf->data + (unsigned long )((rbuf->pread + 2L) % rbuf->size)) == 1U) { pktlen = (size_t )((int )*(rbuf->data + (unsigned long )(rbuf->pread % rbuf->size)) << 8); pktlen = pktlen | (size_t )*(rbuf->data + (unsigned long )((rbuf->pread + 1L) % rbuf->size)); rbuf->pread = (ssize_t )((((unsigned long )rbuf->pread + pktlen) + 3UL) % (unsigned long )rbuf->size); } else { goto ldv_46123; } ldv_46125: { tmp = dvb_ringbuffer_avail(rbuf); } if (tmp > 3L) { goto ldv_46124; } else { } ldv_46123: ; return; } } ssize_t dvb_ringbuffer_pkt_next(struct dvb_ringbuffer *rbuf , size_t idx , size_t *pktlen ) { int consumed ; int curpktlen ; int curpktstatus ; ssize_t tmp ; { if (idx == 0xffffffffffffffffUL) { idx = (size_t )rbuf->pread; } else { curpktlen = (int )*(rbuf->data + idx) << 8; curpktlen = curpktlen | (int )*(rbuf->data + (idx + 1UL) % (unsigned long )rbuf->size); idx = ((idx + (size_t )curpktlen) + 3UL) % (unsigned long )rbuf->size; } consumed = (int )((idx - (unsigned long )rbuf->pread) % (unsigned long )rbuf->size); goto ldv_46135; ldv_46134: curpktlen = (int )*(rbuf->data + idx) << 8; curpktlen = curpktlen | (int )*(rbuf->data + (idx + 1UL) % (unsigned long )rbuf->size); curpktstatus = (int )*(rbuf->data + (idx + 2UL) % (unsigned long )rbuf->size); if (curpktstatus == 0) { *pktlen = (size_t )curpktlen; return ((ssize_t )idx); } else { } consumed = consumed + (curpktlen + 3); idx = ((idx + (size_t )curpktlen) + 3UL) % (unsigned long )rbuf->size; ldv_46135: { tmp = dvb_ringbuffer_avail(rbuf); } if (tmp - (ssize_t )consumed > 3L) { goto ldv_46134; } else { } return (-1L); } } static char const __kstrtab_dvb_ringbuffer_init[20U] = { 'd', 'v', 'b', '_', 'r', 'i', 'n', 'g', 'b', 'u', 'f', 'f', 'e', 'r', '_', 'i', 'n', 'i', 't', '\000'}; struct kernel_symbol const __ksymtab_dvb_ringbuffer_init ; struct kernel_symbol const __ksymtab_dvb_ringbuffer_init = {(unsigned long )(& dvb_ringbuffer_init), (char const *)(& __kstrtab_dvb_ringbuffer_init)}; static char const __kstrtab_dvb_ringbuffer_empty[21U] = { 'd', 'v', 'b', '_', 'r', 'i', 'n', 'g', 'b', 'u', 'f', 'f', 'e', 'r', '_', 'e', 'm', 'p', 't', 'y', '\000'}; struct kernel_symbol const __ksymtab_dvb_ringbuffer_empty ; struct kernel_symbol const __ksymtab_dvb_ringbuffer_empty = {(unsigned long )(& dvb_ringbuffer_empty), (char const *)(& __kstrtab_dvb_ringbuffer_empty)}; static char const __kstrtab_dvb_ringbuffer_free[20U] = { 'd', 'v', 'b', '_', 'r', 'i', 'n', 'g', 'b', 'u', 'f', 'f', 'e', 'r', '_', 'f', 'r', 'e', 'e', '\000'}; struct kernel_symbol const __ksymtab_dvb_ringbuffer_free ; struct kernel_symbol const __ksymtab_dvb_ringbuffer_free = {(unsigned long )(& dvb_ringbuffer_free), (char const *)(& __kstrtab_dvb_ringbuffer_free)}; static char const __kstrtab_dvb_ringbuffer_avail[21U] = { 'd', 'v', 'b', '_', 'r', 'i', 'n', 'g', 'b', 'u', 'f', 'f', 'e', 'r', '_', 'a', 'v', 'a', 'i', 'l', '\000'}; struct kernel_symbol const __ksymtab_dvb_ringbuffer_avail ; struct kernel_symbol const __ksymtab_dvb_ringbuffer_avail = {(unsigned long )(& dvb_ringbuffer_avail), (char const *)(& __kstrtab_dvb_ringbuffer_avail)}; static char const __kstrtab_dvb_ringbuffer_flush_spinlock_wakeup[37U] = { 'd', 'v', 'b', '_', 'r', 'i', 'n', 'g', 'b', 'u', 'f', 'f', 'e', 'r', '_', 'f', 'l', 'u', 's', 'h', '_', 's', 'p', 'i', 'n', 'l', 'o', 'c', 'k', '_', 'w', 'a', 'k', 'e', 'u', 'p', '\000'}; struct kernel_symbol const __ksymtab_dvb_ringbuffer_flush_spinlock_wakeup ; struct kernel_symbol const __ksymtab_dvb_ringbuffer_flush_spinlock_wakeup = {(unsigned long )(& dvb_ringbuffer_flush_spinlock_wakeup), (char const *)(& __kstrtab_dvb_ringbuffer_flush_spinlock_wakeup)}; static char const __kstrtab_dvb_ringbuffer_read_user[25U] = { 'd', 'v', 'b', '_', 'r', 'i', 'n', 'g', 'b', 'u', 'f', 'f', 'e', 'r', '_', 'r', 'e', 'a', 'd', '_', 'u', 's', 'e', 'r', '\000'}; struct kernel_symbol const __ksymtab_dvb_ringbuffer_read_user ; struct kernel_symbol const __ksymtab_dvb_ringbuffer_read_user = {(unsigned long )(& dvb_ringbuffer_read_user), (char const *)(& __kstrtab_dvb_ringbuffer_read_user)}; static char const __kstrtab_dvb_ringbuffer_read[20U] = { 'd', 'v', 'b', '_', 'r', 'i', 'n', 'g', 'b', 'u', 'f', 'f', 'e', 'r', '_', 'r', 'e', 'a', 'd', '\000'}; struct kernel_symbol const __ksymtab_dvb_ringbuffer_read ; struct kernel_symbol const __ksymtab_dvb_ringbuffer_read = {(unsigned long )(& dvb_ringbuffer_read), (char const *)(& __kstrtab_dvb_ringbuffer_read)}; static char const __kstrtab_dvb_ringbuffer_write[21U] = { 'd', 'v', 'b', '_', 'r', 'i', 'n', 'g', 'b', 'u', 'f', 'f', 'e', 'r', '_', 'w', 'r', 'i', 't', 'e', '\000'}; struct kernel_symbol const __ksymtab_dvb_ringbuffer_write ; struct kernel_symbol const __ksymtab_dvb_ringbuffer_write = {(unsigned long )(& dvb_ringbuffer_write), (char const *)(& __kstrtab_dvb_ringbuffer_write)}; static char const __kstrtab_dvb_ringbuffer_write_user[26U] = { 'd', 'v', 'b', '_', 'r', 'i', 'n', 'g', 'b', 'u', 'f', 'f', 'e', 'r', '_', 'w', 'r', 'i', 't', 'e', '_', 'u', 's', 'e', 'r', '\000'}; struct kernel_symbol const __ksymtab_dvb_ringbuffer_write_user ; struct kernel_symbol const __ksymtab_dvb_ringbuffer_write_user = {(unsigned long )(& dvb_ringbuffer_write_user), (char const *)(& __kstrtab_dvb_ringbuffer_write_user)}; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_121___0(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_dvb_ringbuffer(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_122___0(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_dvb_ringbuffer(); spin_unlock_irqrestore(lock, flags); } return; } } __inline static int fls(int x ) { int r ; { __asm__ ("bsrl %1,%0": "=r" (r): "rm" (x), "0" (-1)); return (r + 1); } } extern void warn_slowpath_null(char const * , int const ) ; unsigned int intlog2(u32 value ) ; unsigned int intlog10(u32 value ) ; static unsigned short const logtable[256U] = { 0U, 369U, 736U, 1102U, 1466U, 1829U, 2190U, 2551U, 2909U, 3267U, 3623U, 3978U, 4331U, 4683U, 5034U, 5384U, 5732U, 6079U, 6425U, 6769U, 7112U, 7454U, 7795U, 8134U, 8473U, 8810U, 9146U, 9480U, 9814U, 10146U, 10477U, 10807U, 11136U, 11464U, 11791U, 12116U, 12440U, 12764U, 13086U, 13407U, 13727U, 14046U, 14363U, 14680U, 14996U, 15310U, 15624U, 15937U, 16248U, 16559U, 16868U, 17177U, 17484U, 17791U, 18096U, 18401U, 18704U, 19007U, 19308U, 19609U, 19909U, 20207U, 20505U, 20802U, 21098U, 21393U, 21687U, 21980U, 22272U, 22564U, 22854U, 23144U, 23433U, 23720U, 24007U, 24293U, 24579U, 24863U, 25146U, 25429U, 25711U, 25992U, 26272U, 26551U, 26830U, 27108U, 27384U, 27660U, 27936U, 28210U, 28484U, 28757U, 29029U, 29300U, 29571U, 29840U, 30109U, 30378U, 30645U, 30912U, 31178U, 31443U, 31707U, 31971U, 32234U, 32496U, 32758U, 33019U, 33279U, 33538U, 33797U, 34055U, 34312U, 34569U, 34825U, 35080U, 35334U, 35588U, 35841U, 36094U, 36346U, 36597U, 36847U, 37097U, 37346U, 37595U, 37842U, 38090U, 38336U, 38582U, 38827U, 39072U, 39316U, 39559U, 39802U, 40044U, 40286U, 40527U, 40767U, 41006U, 41246U, 41484U, 41722U, 41959U, 42196U, 42432U, 42667U, 42902U, 43137U, 43370U, 43603U, 43836U, 44068U, 44300U, 44530U, 44761U, 44990U, 45220U, 45448U, 45676U, 45904U, 46131U, 46357U, 46583U, 46809U, 47034U, 47258U, 47482U, 47705U, 47928U, 48150U, 48372U, 48593U, 48813U, 49034U, 49253U, 49472U, 49691U, 49909U, 50127U, 50344U, 50560U, 50776U, 50992U, 51207U, 51422U, 51636U, 51850U, 52063U, 52276U, 52488U, 52700U, 52911U, 53122U, 53332U, 53542U, 53751U, 53960U, 54169U, 54377U, 54584U, 54791U, 54998U, 55204U, 55410U, 55615U, 55820U, 56025U, 56229U, 56432U, 56635U, 56838U, 57040U, 57242U, 57443U, 57644U, 57845U, 58045U, 58245U, 58444U, 58643U, 58841U, 59039U, 59237U, 59434U, 59631U, 59827U, 60023U, 60219U, 60414U, 60609U, 60803U, 60997U, 61190U, 61384U, 61576U, 61769U, 61961U, 62152U, 62343U, 62534U, 62725U, 62915U, 63104U, 63294U, 63483U, 63671U, 63859U, 64047U, 64234U, 64421U, 64608U, 64794U, 64980U, 65166U, 65351U}; unsigned int intlog2(u32 value ) { unsigned int msb ; unsigned int logentry ; unsigned int significand ; unsigned int interpolation ; int __ret_warn_on ; long tmp ; long tmp___0 ; int tmp___1 ; { { tmp___0 = ldv__builtin_expect(value == 0U, 0L); } if (tmp___0 != 0L) { { __ret_warn_on = 1; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/media/dvb-core/dvb_math.c", 75); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } return (0U); } else { } { tmp___1 = fls((int )value); msb = (unsigned int )(tmp___1 + -1); significand = value << (int )(31U - msb); logentry = (significand >> 23) & 255U; interpolation = (significand & 8388607U) * ((unsigned int )((int )logtable[(logentry + 1U) & 255U] - (int )logtable[logentry]) & 65535U) >> 15; } return (((msb << 24) + (unsigned int )((int )logtable[logentry] << 8)) + interpolation); } } static char const __kstrtab_intlog2[8U] = { 'i', 'n', 't', 'l', 'o', 'g', '2', '\000'}; struct kernel_symbol const __ksymtab_intlog2 ; struct kernel_symbol const __ksymtab_intlog2 = {(unsigned long )(& intlog2), (char const *)(& __kstrtab_intlog2)}; unsigned int intlog10(u32 value ) { u64 log ; int __ret_warn_on ; long tmp ; long tmp___0 ; unsigned int tmp___1 ; { { tmp___0 = ldv__builtin_expect(value == 0U, 0L); } if (tmp___0 != 0L) { { __ret_warn_on = 1; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/media/dvb-core/dvb_math.c", 132); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } return (0U); } else { } { tmp___1 = intlog2(value); log = (u64 )tmp___1; } return ((unsigned int )(log * 646456993ULL >> 31)); } } static char const __kstrtab_intlog10[9U] = { 'i', 'n', 't', 'l', 'o', 'g', '1', '0', '\000'}; struct kernel_symbol const __ksymtab_intlog10 ; struct kernel_symbol const __ksymtab_intlog10 = {(unsigned long )(& intlog10), (char const *)(& __kstrtab_intlog10)}; void ldv_assert_linux_alloc_irq__nonatomic(int expr ) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) ; bool ldv_in_interrupt_context(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) { bool tmp ; int tmp___0 ; { { tmp = ldv_in_interrupt_context(); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } { ldv_assert_linux_alloc_irq__wrong_flags(tmp___0 || flags == 32U); } return; } } void ldv_linux_alloc_irq_check_alloc_nonatomic(void) { bool tmp ; { { tmp = ldv_in_interrupt_context(); } if ((int )tmp) { { ldv_assert_linux_alloc_irq__nonatomic(0); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_linux_alloc_spinlock_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_linux_alloc_spinlock_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) ; int ldv_linux_alloc_usb_lock_lock = 1; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) { { if (ldv_linux_alloc_usb_lock_lock == 2) { { ldv_assert_linux_alloc_usb_lock__wrong_flags(flags == 16U || flags == 32U); } } else { } return; } } void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) { { { ldv_assert_linux_alloc_usb_lock__nonatomic(ldv_linux_alloc_usb_lock_lock == 1); } return; } } void ldv_linux_alloc_usb_lock_usb_lock_device(void) { { ldv_linux_alloc_usb_lock_lock = 2; return; } } int ldv_linux_alloc_usb_lock_usb_trylock_device(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_alloc_usb_lock_usb_lock_device_for_reset(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (0); } else { return (-1); } } else { return (-1); } } } void ldv_linux_alloc_usb_lock_usb_unlock_device(void) { { ldv_linux_alloc_usb_lock_lock = 1; return; } } void ldv_linux_usb_dev_atomic_add(int i , atomic_t *v ) { { v->counter = v->counter + i; return; } } void ldv_linux_usb_dev_atomic_sub(int i , atomic_t *v ) { { v->counter = v->counter - i; return; } } int ldv_linux_usb_dev_atomic_sub_and_test(int i , atomic_t *v ) { { v->counter = v->counter - i; if (v->counter != 0) { return (0); } else { } return (1); } } void ldv_linux_usb_dev_atomic_inc(atomic_t *v ) { { v->counter = v->counter + 1; return; } } void ldv_linux_usb_dev_atomic_dec(atomic_t *v ) { { v->counter = v->counter - 1; return; } } int ldv_linux_usb_dev_atomic_dec_and_test(atomic_t *v ) { { v->counter = v->counter - 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_inc_and_test(atomic_t *v ) { { v->counter = v->counter + 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_add_return(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter); } } int ldv_linux_usb_dev_atomic_add_negative(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter < 0); } } int ldv_linux_usb_dev_atomic_inc_short(short *v ) { { *v = (short )((unsigned int )((unsigned short )*v) + 1U); return ((int )*v); } } void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) ; void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) ; void *ldv_undef_ptr(void) ; int ldv_linux_arch_io_iomem = 0; void *ldv_linux_arch_io_io_mem_remap(void) { void *ptr ; void *tmp ; { { tmp = ldv_undef_ptr(); ptr = tmp; } if ((unsigned long )ptr != (unsigned long )((void *)0)) { ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem + 1; return (ptr); } else { } return (ptr); } } void ldv_linux_arch_io_io_mem_unmap(void) { { { ldv_assert_linux_arch_io__less_initial_decrement(ldv_linux_arch_io_iomem > 0); ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem - 1; } return; } } void ldv_linux_arch_io_check_final_state(void) { { { ldv_assert_linux_arch_io__more_initial_at_exit(ldv_linux_arch_io_iomem == 0); } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) ; void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) ; void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) ; static int ldv_linux_block_genhd_disk_state = 0; struct gendisk *ldv_linux_block_genhd_alloc_disk(void) { struct gendisk *res ; void *tmp ; { { tmp = ldv_undef_ptr(); res = (struct gendisk *)tmp; ldv_assert_linux_block_genhd__double_allocation(ldv_linux_block_genhd_disk_state == 0); } if ((unsigned long )res != (unsigned long )((struct gendisk *)0)) { ldv_linux_block_genhd_disk_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_genhd_add_disk(void) { { { ldv_assert_linux_block_genhd__use_before_allocation(ldv_linux_block_genhd_disk_state == 1); ldv_linux_block_genhd_disk_state = 2; } return; } } void ldv_linux_block_genhd_del_gendisk(void) { { { ldv_assert_linux_block_genhd__delete_before_add(ldv_linux_block_genhd_disk_state == 2); ldv_linux_block_genhd_disk_state = 1; } return; } } void ldv_linux_block_genhd_put_disk(struct gendisk *disk ) { { if ((unsigned long )disk != (unsigned long )((struct gendisk *)0)) { { ldv_assert_linux_block_genhd__free_before_allocation(ldv_linux_block_genhd_disk_state > 0); ldv_linux_block_genhd_disk_state = 0; } } else { } return; } } void ldv_linux_block_genhd_check_final_state(void) { { { ldv_assert_linux_block_genhd__more_initial_at_exit(ldv_linux_block_genhd_disk_state == 0); } return; } } void ldv_assert_linux_block_queue__double_allocation(int expr ) ; void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_queue__use_before_allocation(int expr ) ; static int ldv_linux_block_queue_queue_state = 0; struct request_queue *ldv_linux_block_queue_request_queue(void) { struct request_queue *res ; void *tmp ; { { tmp = ldv_undef_ptr(); res = (struct request_queue *)tmp; ldv_assert_linux_block_queue__double_allocation(ldv_linux_block_queue_queue_state == 0); } if ((unsigned long )res != (unsigned long )((struct request_queue *)0)) { ldv_linux_block_queue_queue_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_queue_blk_cleanup_queue(void) { { { ldv_assert_linux_block_queue__use_before_allocation(ldv_linux_block_queue_queue_state == 1); ldv_linux_block_queue_queue_state = 0; } return; } } void ldv_linux_block_queue_check_final_state(void) { { { ldv_assert_linux_block_queue__more_initial_at_exit(ldv_linux_block_queue_queue_state == 0); } return; } } void ldv_assert_linux_block_request__double_get(int expr ) ; void ldv_assert_linux_block_request__double_put(int expr ) ; void ldv_assert_linux_block_request__get_at_exit(int expr ) ; long ldv_is_err(void const *ptr ) ; int ldv_linux_block_request_blk_rq = 0; struct request *ldv_linux_block_request_blk_get_request(gfp_t mask ) { struct request *res ; void *tmp ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_undef_ptr(); res = (struct request *)tmp; } if ((mask == 16U || mask == 208U) || mask == 16U) { { ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); } } else { } if ((unsigned long )res != (unsigned long )((struct request *)0)) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } struct request *ldv_linux_block_request_blk_make_request(gfp_t mask ) { struct request *res ; void *tmp ; long tmp___0 ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_undef_ptr(); res = (struct request *)tmp; ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); tmp___0 = ldv_is_err((void const *)res); } if (tmp___0 == 0L) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } void ldv_linux_block_request_put_blk_rq(void) { { { ldv_assert_linux_block_request__double_put(ldv_linux_block_request_blk_rq == 1); ldv_linux_block_request_blk_rq = 0; } return; } } void ldv_linux_block_request_check_final_state(void) { { { ldv_assert_linux_block_request__get_at_exit(ldv_linux_block_request_blk_rq == 0); } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) ; void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) ; int ldv_undef_int_nonpositive(void) ; int ldv_linux_drivers_base_class_usb_gadget_class = 0; void *ldv_linux_drivers_base_class_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_undef_ptr(); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_got); } } int ldv_linux_drivers_base_class_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_reg); } } void ldv_linux_drivers_base_class_unregister_class(void) { { { ldv_assert_linux_drivers_base_class__double_deregistration(ldv_linux_drivers_base_class_usb_gadget_class == 1); ldv_linux_drivers_base_class_usb_gadget_class = 0; } return; } } void ldv_linux_drivers_base_class_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_drivers_base_class_unregister_class(); } return; } } void ldv_linux_drivers_base_class_check_final_state(void) { { { ldv_assert_linux_drivers_base_class__registered_at_exit(ldv_linux_drivers_base_class_usb_gadget_class == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2176UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) ; void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) ; int ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; int ldv_linux_fs_char_dev_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_fs_char_dev_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } } else { } return (is_reg); } } void ldv_linux_fs_char_dev_unregister_chrdev_region(void) { { { ldv_assert_linux_fs_char_dev__double_deregistration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 1); ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; } return; } } void ldv_linux_fs_char_dev_check_final_state(void) { { { ldv_assert_linux_fs_char_dev__registered_at_exit(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); } return; } } void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) ; void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) ; int ldv_linux_fs_sysfs_sysfs = 0; int ldv_linux_fs_sysfs_sysfs_create_group(void) { int res ; int tmp ; { { tmp = ldv_undef_int_nonpositive(); res = tmp; } if (res == 0) { ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs + 1; return (0); } else { } return (res); } } void ldv_linux_fs_sysfs_sysfs_remove_group(void) { { { ldv_assert_linux_fs_sysfs__less_initial_decrement(ldv_linux_fs_sysfs_sysfs > 0); ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs - 1; } return; } } void ldv_linux_fs_sysfs_check_final_state(void) { { { ldv_assert_linux_fs_sysfs__more_initial_at_exit(ldv_linux_fs_sysfs_sysfs == 0); } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) ; int ldv_linux_kernel_locking_rwlock_rlock = 1; int ldv_linux_kernel_locking_rwlock_wlock = 1; void ldv_linux_kernel_locking_rwlock_read_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; } return; } } void ldv_linux_kernel_locking_rwlock_read_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(ldv_linux_kernel_locking_rwlock_rlock > 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + -1; } return; } } void ldv_linux_kernel_locking_rwlock_write_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_wlock = 2; } return; } } void ldv_linux_kernel_locking_rwlock_write_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(ldv_linux_kernel_locking_rwlock_wlock != 1); ldv_linux_kernel_locking_rwlock_wlock = 1; } return; } } int ldv_linux_kernel_locking_rwlock_read_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_kernel_locking_rwlock_write_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_wlock = 2; return (1); } else { return (0); } } else { return (0); } } } void ldv_linux_kernel_locking_rwlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(ldv_linux_kernel_locking_rwlock_rlock == 1); ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(ldv_linux_kernel_locking_rwlock_wlock == 1); } return; } } void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) ; void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) ; int ldv_linux_kernel_module_module_refcounter = 1; void ldv_linux_kernel_module_module_get(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; } else { } return; } } int ldv_linux_kernel_module_try_module_get(struct module *module ) { int tmp ; { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { tmp = ldv_undef_int(); } if (tmp == 1) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; return (1); } else { return (0); } } else { } return (0); } } void ldv_linux_kernel_module_module_put(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { ldv_assert_linux_kernel_module__less_initial_decrement(ldv_linux_kernel_module_module_refcounter > 1); ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter - 1; } } else { } return; } } void ldv_linux_kernel_module_module_put_and_exit(void) { { { ldv_linux_kernel_module_module_put((struct module *)1); } LDV_LINUX_KERNEL_MODULE_STOP: ; goto LDV_LINUX_KERNEL_MODULE_STOP; } } unsigned int ldv_linux_kernel_module_module_refcount(void) { { return ((unsigned int )(ldv_linux_kernel_module_module_refcounter + -1)); } } void ldv_linux_kernel_module_check_final_state(void) { { { ldv_assert_linux_kernel_module__more_initial_at_exit(ldv_linux_kernel_module_module_refcounter == 1); } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_srcu_srcu_nested = 0; void ldv_linux_kernel_rcu_srcu_srcu_read_lock(void) { { ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested + 1; return; } } void ldv_linux_kernel_rcu_srcu_srcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_srcu__more_unlocks(ldv_linux_kernel_rcu_srcu_srcu_nested > 0); ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_srcu_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = 0; void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_lock_bh(void) { { ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh + 1; return; } } void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_unlock_bh(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh > 0); ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = 0; void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_lock_sched(void) { { ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched + 1; return; } } void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_unlock_sched(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched > 0); ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_rcu_nested = 0; void ldv_linux_kernel_rcu_update_lock_rcu_read_lock(void) { { ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested + 1; return; } } void ldv_linux_kernel_rcu_update_lock_rcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(ldv_linux_kernel_rcu_update_lock_rcu_nested > 0); ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } int ldv_post_probe(int probe_ret_val ) ; static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } static bool __ldv_in_interrupt_context = 0; void ldv_switch_to_interrupt_context(void) { { __ldv_in_interrupt_context = 1; return; } } void ldv_switch_to_process_context(void) { { __ldv_in_interrupt_context = 0; return; } } bool ldv_in_interrupt_context(void) { { return (__ldv_in_interrupt_context); } } void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) ; extern int nr_cpu_ids ; unsigned long ldv_undef_ulong(void) ; unsigned long ldv_linux_lib_find_bit_find_next_bit(unsigned long size , unsigned long offset ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assert_linux_lib_find_bit__offset_out_of_range(offset <= size); ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } unsigned long ldv_linux_lib_find_bit_find_first_bit(unsigned long size ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } void ldv_linux_lib_find_bit_initialize(void) { { { ldv_assume(nr_cpu_ids > 0); } return; } } void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) ; unsigned short ldv_linux_mmc_sdio_func_sdio_element = 0U; void ldv_linux_mmc_sdio_func_check_context(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__wrong_params((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); } return; } } void ldv_linux_mmc_sdio_func_sdio_claim_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__double_claim((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); ldv_linux_mmc_sdio_func_sdio_element = (unsigned short )((func->card)->host)->index; } return; } } void ldv_linux_mmc_sdio_func_sdio_release_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__release_without_claim((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); ldv_linux_mmc_sdio_func_sdio_element = 0U; } return; } } void ldv_linux_mmc_sdio_func_check_final_state(void) { { { ldv_assert_linux_mmc_sdio_func__unreleased_at_exit((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); } return; } } void ldv_assert_linux_net_register__wrong_return_value(int expr ) ; int ldv_linux_net_register_probe_state = 0; int ldv_pre_register_netdev(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_net_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_net_register_reset_error_counter(void) { { ldv_linux_net_register_probe_state = 0; return; } } void ldv_linux_net_register_check_return_value_probe(int retval ) { { if (ldv_linux_net_register_probe_state == 1) { { ldv_assert_linux_net_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_net_register_reset_error_counter(); } return; } } void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) ; void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) ; void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) ; int rtnllocknumber = 0; void ldv_linux_net_rtnetlink_past_rtnl_unlock(void) { { { ldv_assert_linux_net_rtnetlink__double_unlock(rtnllocknumber == 1); rtnllocknumber = 0; } return; } } void ldv_linux_net_rtnetlink_past_rtnl_lock(void) { { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); rtnllocknumber = 1; } return; } } void ldv_linux_net_rtnetlink_before_ieee80211_unregister_hw(void) { { { ldv_linux_net_rtnetlink_past_rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } int ldv_linux_net_rtnetlink_rtnl_is_locked(void) { int tmp ; { if (rtnllocknumber != 0) { return (rtnllocknumber); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_net_rtnetlink_rtnl_trylock(void) { int tmp ; { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); tmp = ldv_linux_net_rtnetlink_rtnl_is_locked(); } if (tmp == 0) { rtnllocknumber = 1; return (1); } else { return (0); } } } void ldv_linux_net_rtnetlink_check_final_state(void) { { { ldv_assert_linux_net_rtnetlink__lock_on_exit(rtnllocknumber == 0); } return; } } void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) ; void ldv_assert_linux_net_sock__double_release(int expr ) ; int locksocknumber = 0; void ldv_linux_net_sock_past_lock_sock_nested(void) { { locksocknumber = locksocknumber + 1; return; } } bool ldv_linux_net_sock_lock_sock_fast(void) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { locksocknumber = locksocknumber + 1; return (1); } else { } return (0); } } void ldv_linux_net_sock_unlock_sock_fast(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_before_release_sock(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_check_final_state(void) { { { ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(locksocknumber == 0); } return; } } void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) ; int ldv_linux_usb_coherent_coherent_state = 0; void *ldv_linux_usb_coherent_usb_alloc_coherent(void) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return (arbitrary_memory); } else { } ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + 1; return (arbitrary_memory); } } void ldv_linux_usb_coherent_usb_free_coherent(void *addr ) { { if ((unsigned long )addr != (unsigned long )((void *)0)) { { ldv_assert_linux_usb_coherent__less_initial_decrement(ldv_linux_usb_coherent_coherent_state > 0); ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + -1; } } else { } return; } } void ldv_linux_usb_coherent_check_final_state(void) { { { ldv_assert_linux_usb_coherent__more_initial_at_exit(ldv_linux_usb_coherent_coherent_state == 0); } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) ; void ldv_assert_linux_usb_dev__probe_failed(int expr ) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) ; ldv_map LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS ; struct usb_device *ldv_linux_usb_dev_usb_get_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0 ? LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + 1 : 1; } else { } return (dev); } } void ldv_linux_usb_dev_usb_put_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { { ldv_assert_linux_usb_dev__unincremented_counter_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0); ldv_assert_linux_usb_dev__less_initial_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 0); } if (LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 1) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + -1; } else { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; } } else { } return; } } void ldv_linux_usb_dev_check_return_value_probe(int retval ) { { if (retval != 0) { { ldv_assert_linux_usb_dev__probe_failed(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } } else { } return; } } void ldv_linux_usb_dev_initialize(void) { { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; return; } } void ldv_linux_usb_dev_check_final_state(void) { { { ldv_assert_linux_usb_dev__more_initial_at_exit(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) ; void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) ; int ldv_linux_usb_gadget_usb_gadget = 0; void *ldv_linux_usb_gadget_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_undef_ptr(); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_got); } } int ldv_linux_usb_gadget_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_class(void) { { { ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_linux_usb_gadget_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_usb_gadget_unregister_class(); } return; } } int ldv_linux_usb_gadget_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_usb_gadget_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_chrdev_region(void) { { { ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } int ldv_linux_usb_gadget_register_usb_gadget(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__double_usb_gadget_registration(ldv_linux_usb_gadget_usb_gadget == 0); ldv_linux_usb_gadget_usb_gadget = 1; } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_usb_gadget(void) { { { ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(ldv_linux_usb_gadget_usb_gadget == 1); ldv_linux_usb_gadget_usb_gadget = 0; } return; } } void ldv_linux_usb_gadget_check_final_state(void) { { { ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_assert_linux_usb_register__wrong_return_value(int expr ) ; int ldv_pre_usb_register_driver(void) ; int ldv_linux_usb_register_probe_state = 0; int ldv_pre_usb_register_driver(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_usb_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_usb_register_reset_error_counter(void) { { ldv_linux_usb_register_probe_state = 0; return; } } void ldv_linux_usb_register_check_return_value_probe(int retval ) { { if (ldv_linux_usb_register_probe_state == 1) { { ldv_assert_linux_usb_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_usb_register_reset_error_counter(); } return; } } void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) ; int ldv_linux_usb_urb_urb_state = 0; struct urb *ldv_linux_usb_urb_usb_alloc_urb(void) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return ((struct urb *)arbitrary_memory); } else { } ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + 1; return ((struct urb *)arbitrary_memory); } } void ldv_linux_usb_urb_usb_free_urb(struct urb *urb ) { { if ((unsigned long )urb != (unsigned long )((struct urb *)0)) { { ldv_assert_linux_usb_urb__less_initial_decrement(ldv_linux_usb_urb_urb_state > 0); ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + -1; } } else { } return; } } void ldv_linux_usb_urb_check_final_state(void) { { { ldv_assert_linux_usb_urb__more_initial_at_exit(ldv_linux_usb_urb_urb_state == 0); } return; } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *external_allocated_data(void) ; void *ldv_calloc_unknown_size(void) ; void *ldv_zalloc_unknown_size(void) ; void *ldv_xmalloc_unknown_size(size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; extern void *memset(void * , int , size_t ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_malloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; memset(res, 0, 8UL); ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc_unknown_size(void) { void *tmp ; { { tmp = ldv_calloc_unknown_size(); } return (tmp); } } void *ldv_xmalloc_unknown_size(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } int ldv_undef_int_negative(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { { tmp = __VERIFIER_nondet_pointer(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) ; ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_dvbdev_mutex ; void ldv_linux_kernel_locking_mutex_mutex_lock_dvbdev_mutex(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_dvbdev_mutex); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_dvbdev_mutex = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_dvbdev_mutex(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_dvbdev_mutex); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_dvbdev_mutex = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_dvbdev_mutex(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_dvbdev_mutex) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_dvbdev_mutex(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_dvbdev_mutex); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_dvbdev_mutex(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_dvbdev_mutex = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_dvbdev_mutex(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_dvbdev_mutex(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_dvbdev_mutex(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_dvbdev_mutex); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_dvbdev_mutex = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_dvbdev_register_lock ; void ldv_linux_kernel_locking_mutex_mutex_lock_dvbdev_register_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_dvbdev_register_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_dvbdev_register_lock = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_dvbdev_register_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_dvbdev_register_lock); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_dvbdev_register_lock = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_dvbdev_register_lock(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_dvbdev_register_lock) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_dvbdev_register_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_dvbdev_register_lock); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_dvbdev_register_lock(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_dvbdev_register_lock = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_dvbdev_register_lock(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_dvbdev_register_lock(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_dvbdev_register_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_dvbdev_register_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_dvbdev_register_lock = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_frontend_mutex ; void ldv_linux_kernel_locking_mutex_mutex_lock_frontend_mutex(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_frontend_mutex); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_frontend_mutex = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_frontend_mutex(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_frontend_mutex); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_frontend_mutex = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_frontend_mutex(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_frontend_mutex) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_frontend_mutex(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_frontend_mutex); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_frontend_mutex(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_frontend_mutex = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_frontend_mutex(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_frontend_mutex(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_frontend_mutex(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_frontend_mutex); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_frontend_mutex = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode ; void ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_ioctl_mutex_of_dvb_ca_private ; void ldv_linux_kernel_locking_mutex_mutex_lock_ioctl_mutex_of_dvb_ca_private(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_ioctl_mutex_of_dvb_ca_private); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_ioctl_mutex_of_dvb_ca_private = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_ioctl_mutex_of_dvb_ca_private(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_ioctl_mutex_of_dvb_ca_private); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_ioctl_mutex_of_dvb_ca_private = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_ioctl_mutex_of_dvb_ca_private(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_ioctl_mutex_of_dvb_ca_private) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_ioctl_mutex_of_dvb_ca_private(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_ioctl_mutex_of_dvb_ca_private); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_ioctl_mutex_of_dvb_ca_private(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_ioctl_mutex_of_dvb_ca_private = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_ioctl_mutex_of_dvb_ca_private(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_ioctl_mutex_of_dvb_ca_private(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_ioctl_mutex_of_dvb_ca_private(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_ioctl_mutex_of_dvb_ca_private); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_ioctl_mutex_of_dvb_ca_private = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_ioctl_mutex_of_dvb_net ; void ldv_linux_kernel_locking_mutex_mutex_lock_ioctl_mutex_of_dvb_net(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_ioctl_mutex_of_dvb_net); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_ioctl_mutex_of_dvb_net = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_ioctl_mutex_of_dvb_net(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_ioctl_mutex_of_dvb_net); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_ioctl_mutex_of_dvb_net = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_ioctl_mutex_of_dvb_net(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_ioctl_mutex_of_dvb_net) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_ioctl_mutex_of_dvb_net(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_ioctl_mutex_of_dvb_net); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_ioctl_mutex_of_dvb_net(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_ioctl_mutex_of_dvb_net = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_ioctl_mutex_of_dvb_net(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_ioctl_mutex_of_dvb_net(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_ioctl_mutex_of_dvb_net(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_ioctl_mutex_of_dvb_net); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_ioctl_mutex_of_dvb_net = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock ; void ldv_linux_kernel_locking_mutex_mutex_lock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_lock(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mfe_lock_of_dvb_adapter ; void ldv_linux_kernel_locking_mutex_mutex_lock_mfe_lock_of_dvb_adapter(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mfe_lock_of_dvb_adapter); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mfe_lock_of_dvb_adapter = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mfe_lock_of_dvb_adapter(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mfe_lock_of_dvb_adapter); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mfe_lock_of_dvb_adapter = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_mfe_lock_of_dvb_adapter(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mfe_lock_of_dvb_adapter) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_mfe_lock_of_dvb_adapter(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mfe_lock_of_dvb_adapter); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_mfe_lock_of_dvb_adapter(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mfe_lock_of_dvb_adapter = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_mfe_lock_of_dvb_adapter(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_mfe_lock_of_dvb_adapter(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_mfe_lock_of_dvb_adapter(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mfe_lock_of_dvb_adapter); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mfe_lock_of_dvb_adapter = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mtx_of_dvb_fe_events ; void ldv_linux_kernel_locking_mutex_mutex_lock_mtx_of_dvb_fe_events(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mtx_of_dvb_fe_events); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mtx_of_dvb_fe_events = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mtx_of_dvb_fe_events(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mtx_of_dvb_fe_events); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mtx_of_dvb_fe_events = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_mtx_of_dvb_fe_events(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mtx_of_dvb_fe_events) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_mtx_of_dvb_fe_events(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mtx_of_dvb_fe_events); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_mtx_of_dvb_fe_events(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mtx_of_dvb_fe_events = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_mtx_of_dvb_fe_events(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_mtx_of_dvb_fe_events(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_mtx_of_dvb_fe_events(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mtx_of_dvb_fe_events); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mtx_of_dvb_fe_events = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device ; void ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dmxdev ; void ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_dmxdev(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dmxdev); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dmxdev = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_dmxdev(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dmxdev); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dmxdev = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_dmxdev(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dmxdev) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_mutex_of_dmxdev(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dmxdev); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_dmxdev(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dmxdev = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_mutex_of_dmxdev(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_dmxdev(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dmxdev(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dmxdev); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dmxdev = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dmxdev_filter ; void ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_dmxdev_filter(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dmxdev_filter); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dmxdev_filter = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_dmxdev_filter(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dmxdev_filter); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dmxdev_filter = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_dmxdev_filter(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dmxdev_filter) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_mutex_of_dmxdev_filter(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dmxdev_filter); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_dmxdev_filter(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dmxdev_filter = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_mutex_of_dmxdev_filter(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_dmxdev_filter(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dmxdev_filter(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dmxdev_filter); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dmxdev_filter = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dvb_demux ; void ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_dvb_demux(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dvb_demux); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dvb_demux = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_dvb_demux(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dvb_demux); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dvb_demux = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_dvb_demux(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dvb_demux) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_mutex_of_dvb_demux(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dvb_demux); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_dvb_demux(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dvb_demux = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_mutex_of_dvb_demux(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_dvb_demux(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dvb_demux(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dvb_demux); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dvb_demux = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dvb_net_priv ; void ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_dvb_net_priv(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dvb_net_priv); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dvb_net_priv = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_dvb_net_priv(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dvb_net_priv); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dvb_net_priv = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_dvb_net_priv(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dvb_net_priv) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_mutex_of_dvb_net_priv(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dvb_net_priv); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_dvb_net_priv(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dvb_net_priv = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_mutex_of_dvb_net_priv(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_dvb_net_priv(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_dvb_net_priv(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dvb_net_priv); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dvb_net_priv = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_slot_lock_of_dvb_ca_slot ; void ldv_linux_kernel_locking_mutex_mutex_lock_slot_lock_of_dvb_ca_slot(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_slot_lock_of_dvb_ca_slot); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_slot_lock_of_dvb_ca_slot = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_slot_lock_of_dvb_ca_slot(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_slot_lock_of_dvb_ca_slot); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_slot_lock_of_dvb_ca_slot = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_slot_lock_of_dvb_ca_slot(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_slot_lock_of_dvb_ca_slot) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_slot_lock_of_dvb_ca_slot(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_slot_lock_of_dvb_ca_slot); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_slot_lock_of_dvb_ca_slot(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_slot_lock_of_dvb_ca_slot = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_slot_lock_of_dvb_ca_slot(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_slot_lock_of_dvb_ca_slot(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_slot_lock_of_dvb_ca_slot(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_slot_lock_of_dvb_ca_slot); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_slot_lock_of_dvb_ca_slot = 0; } return; } } void ldv_linux_kernel_locking_mutex_initialize(void) { { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_dvbdev_mutex = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_dvbdev_register_lock = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_frontend_mutex = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_ioctl_mutex_of_dvb_ca_private = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_ioctl_mutex_of_dvb_net = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mfe_lock_of_dvb_adapter = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mtx_of_dvb_fe_events = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dmxdev = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dmxdev_filter = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dvb_demux = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dvb_net_priv = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_slot_lock_of_dvb_ca_slot = 0; return; } } void ldv_linux_kernel_locking_mutex_check_final_state(void) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_dvbdev_mutex); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_dvbdev_register_lock); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_frontend_mutex); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_ioctl_mutex_of_dvb_ca_private); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_ioctl_mutex_of_dvb_net); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mfe_lock_of_dvb_adapter); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mtx_of_dvb_fe_events); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dmxdev); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dmxdev_filter); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dvb_demux); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_dvb_net_priv); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_slot_lock_of_dvb_ca_slot); } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 1; void ldv_linux_kernel_locking_spinlock_spin_lock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 2); ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock__xmit_lock_of_netdev_queue(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked__xmit_lock_of_netdev_queue(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended__xmit_lock_of_netdev_queue(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock__xmit_lock_of_netdev_queue(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 2); ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_addr_list_lock_of_net_device(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_addr_list_lock_of_net_device(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_addr_list_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_addr_list_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_linux_kernel_locking_spinlock_spin_lock = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_linux_kernel_locking_spinlock_spin_lock = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_dmxdev = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_dmxdev(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_dmxdev == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_dmxdev == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_dmxdev = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_dmxdev(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_dmxdev == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_dmxdev == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_dmxdev = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_dmxdev(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_dmxdev == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_dmxdev == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_dmxdev = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_dmxdev(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_dmxdev == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_dmxdev == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_dmxdev(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_dmxdev == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_dmxdev(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_dmxdev(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_dmxdev(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_dmxdev(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_dmxdev == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_dmxdev == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_dmxdev = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_dvb_demux = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_dvb_demux(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_dvb_demux == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_dvb_demux == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_dvb_demux = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_dvb_demux(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_dvb_demux == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_dvb_demux == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_dvb_demux = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_dvb_demux(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_dvb_demux == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_dvb_demux == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_dvb_demux = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_dvb_demux(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_dvb_demux == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_dvb_demux == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_dvb_demux(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_dvb_demux == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_dvb_demux(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_dvb_demux(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_dvb_demux(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_dvb_demux(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_dvb_demux == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_dvb_demux == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_dvb_demux = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_dvb_ringbuffer = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_dvb_ringbuffer(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_dvb_ringbuffer == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_dvb_ringbuffer == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_dvb_ringbuffer = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_dvb_ringbuffer(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_dvb_ringbuffer == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_dvb_ringbuffer == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_dvb_ringbuffer = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_dvb_ringbuffer(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_dvb_ringbuffer == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_dvb_ringbuffer == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_dvb_ringbuffer = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_dvb_ringbuffer(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_dvb_ringbuffer == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_dvb_ringbuffer == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_dvb_ringbuffer(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_dvb_ringbuffer == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_dvb_ringbuffer(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_dvb_ringbuffer(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_dvb_ringbuffer(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_dvb_ringbuffer(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_dvb_ringbuffer == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_dvb_ringbuffer == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_dvb_ringbuffer = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_ptl = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_linux_kernel_locking_spinlock_spin_ptl = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_linux_kernel_locking_spinlock_spin_ptl = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 2); ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_tx_global_lock_of_net_device(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_tx_global_lock_of_net_device(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_tx_global_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_tx_global_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 2; return (1); } else { } return (0); } } void ldv_linux_kernel_locking_spinlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_dmxdev == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_dvb_demux == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_dvb_ringbuffer == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_dmxdev == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_dvb_demux == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_dvb_ringbuffer == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 2) { return (1); } else { } return (0); } } void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) ; void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) ; static int ldv_linux_kernel_sched_completion_completion = 0; void ldv_linux_kernel_sched_completion_init_completion(void) { { ldv_linux_kernel_sched_completion_completion = 1; return; } } void ldv_linux_kernel_sched_completion_init_completion_macro(void) { { { ldv_assert_linux_kernel_sched_completion__double_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 1; } return; } } void ldv_linux_kernel_sched_completion_wait_for_completion(void) { { { ldv_assert_linux_kernel_sched_completion__wait_without_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 2; } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) ; void ldv_assert_linux_lib_idr__double_init(int expr ) ; void ldv_assert_linux_lib_idr__more_at_exit(int expr ) ; void ldv_assert_linux_lib_idr__not_initialized(int expr ) ; static int ldv_linux_lib_idr_idr = 0; void ldv_linux_lib_idr_idr_init(void) { { { ldv_assert_linux_lib_idr__double_init(ldv_linux_lib_idr_idr == 0); ldv_linux_lib_idr_idr = 1; } return; } } void ldv_linux_lib_idr_idr_alloc(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_find(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_remove(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_destroy(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 3; } return; } } void ldv_linux_lib_idr_check_final_state(void) { { { ldv_assert_linux_lib_idr__more_at_exit(ldv_linux_lib_idr_idr == 0 || ldv_linux_lib_idr_idr == 3); } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_lib_idr__double_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__not_initialized(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__more_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_register__wrong_return_value(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_sock__double_release(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__probe_failed(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_request__double_get(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_request__double_put(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_request__get_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_queue__double_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_queue__use_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_register__wrong_return_value(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } }