/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef unsigned char u_char; typedef unsigned long u_long; typedef unsigned int uint; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u16 uint16_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct class; struct device; struct completion; struct gendisk; struct module; struct mutex; struct request_queue; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_10 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_11 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_9 { struct __anonstruct____missing_field_name_10 __annonCompField5 ; struct __anonstruct____missing_field_name_11 __annonCompField6 ; }; struct desc_struct { union __anonunion____missing_field_name_9 __annonCompField7 ; }; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_12 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_12 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_13 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_13 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; typedef void (*ctor_fn_t)(void); struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned char flags ; }; struct file_operations; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_16 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_16 __annonCompField8 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct static_key; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_21 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_22 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_20 { struct __anonstruct____missing_field_name_21 __annonCompField12 ; struct __anonstruct____missing_field_name_22 __annonCompField13 ; }; union __anonunion____missing_field_name_23 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_20 __annonCompField14 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_23 __annonCompField15 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndreg { u64 lower_bound ; u64 upper_bound ; }; struct bndcsr { u64 bndcfgu ; u64 bndstatus ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndreg bndreg[4U] ; struct bndcsr bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_27 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_26 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_27 __annonCompField17 ; }; struct spinlock { union __anonunion____missing_field_name_26 __annonCompField18 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_28 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_28 rwlock_t; struct ldv_thread; struct optimistic_spin_queue { atomic_t tail ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct compat_timespec; struct __anonstruct_futex_30 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_31 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_32 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_29 { struct __anonstruct_futex_30 futex ; struct __anonstruct_nanosleep_31 nanosleep ; struct __anonstruct_poll_32 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_29 __annonCompField19 ; }; typedef int pao_T__; typedef int pao_T_____0; struct jump_entry; struct static_key_mod; struct static_key { atomic_t enabled ; struct jump_entry *entries ; struct static_key_mod *next ; }; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_45 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_45 seqlock_t; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct notifier_block; union __anonunion____missing_field_name_46 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_46 __annonCompField20 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_47 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_47 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct user_namespace; struct __anonstruct_kuid_t_48 { uid_t val ; }; typedef struct __anonstruct_kuid_t_48 kuid_t; struct __anonstruct_kgid_t_49 { gid_t val ; }; typedef struct __anonstruct_kgid_t_49 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct inode; struct cdev { struct kobject kobj ; struct module *owner ; struct file_operations const *ops ; struct list_head list ; dev_t dev ; unsigned int count ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_50 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_50 nodemask_t; struct path; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; }; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct __anonstruct_mm_context_t_115 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_115 mm_context_t; struct bio_vec; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct pdev_archdata { }; struct device_private; struct device_driver; struct driver_private; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; typedef unsigned long kernel_ulong_t; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct platform_device_id { char name[20U] ; kernel_ulong_t driver_data ; }; struct mfd_cell; struct platform_device { char const *name ; int id ; bool id_auto ; struct device dev ; u32 num_resources ; struct resource *resource ; struct platform_device_id const *id_entry ; char *driver_override ; struct mfd_cell *mfd_cell ; struct pdev_archdata archdata ; }; struct platform_driver { int (*probe)(struct platform_device * ) ; int (*remove)(struct platform_device * ) ; void (*shutdown)(struct platform_device * ) ; int (*suspend)(struct platform_device * , pm_message_t ) ; int (*resume)(struct platform_device * ) ; struct device_driver driver ; struct platform_device_id const *id_table ; bool prevent_deferred_probe ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_146 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_145 { struct __anonstruct____missing_field_name_146 __annonCompField32 ; }; struct lockref { union __anonunion____missing_field_name_145 __annonCompField33 ; }; struct vfsmount; struct __anonstruct____missing_field_name_148 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_147 { struct __anonstruct____missing_field_name_148 __annonCompField34 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_147 __annonCompField35 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_149 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_149 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct mem_cgroup; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct __anonstruct____missing_field_name_151 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_150 { struct __anonstruct____missing_field_name_151 __annonCompField36 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_150 __annonCompField37 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct io_context; struct bio_vec { struct page *bv_page ; unsigned int bv_len ; unsigned int bv_offset ; }; struct backing_dev_info; struct export_operations; struct iovec; struct nameidata; struct kiocb; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct cred; struct swap_info_struct; struct iov_iter; struct vm_fault; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_154 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_154 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_155 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_155 __annonCompField39 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; struct address_space; struct writeback_control; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct hd_struct; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_158 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_159 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; union __anonunion____missing_field_name_160 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_158 __annonCompField40 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_159 __annonCompField41 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_160 __annonCompField42 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_161 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_161 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_get_owner)(struct file_lock * , struct file_lock * ) ; void (*lm_put_owner)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct net; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_163 { struct list_head link ; int state ; }; union __anonunion_fl_u_162 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_163 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_162 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; void (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; int (*dentry_open)(struct dentry * , struct file * , struct cred const * ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_169 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_170 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_168 { struct __anonstruct____missing_field_name_169 __annonCompField45 ; struct __anonstruct____missing_field_name_170 __annonCompField46 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_168 __annonCompField47 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_171 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_173 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_177 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_176 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_177 __annonCompField50 ; int units ; }; struct __anonstruct____missing_field_name_175 { union __anonunion____missing_field_name_176 __annonCompField51 ; atomic_t _count ; }; union __anonunion____missing_field_name_174 { unsigned long counters ; struct __anonstruct____missing_field_name_175 __annonCompField52 ; unsigned int active ; }; struct __anonstruct____missing_field_name_172 { union __anonunion____missing_field_name_173 __annonCompField49 ; union __anonunion____missing_field_name_174 __annonCompField53 ; }; struct __anonstruct____missing_field_name_179 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_180 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_178 { struct list_head lru ; struct __anonstruct____missing_field_name_179 __annonCompField55 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_180 __annonCompField56 ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_181 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_171 __annonCompField48 ; struct __anonstruct____missing_field_name_172 __annonCompField54 ; union __anonunion____missing_field_name_178 __annonCompField57 ; union __anonunion____missing_field_name_181 __annonCompField58 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_182 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_182 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct user_struct; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *cow_page ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; struct page *(*find_special_page)(struct vm_area_struct * , unsigned long ) ; }; struct kvec; struct exception_table_entry { int insn ; int fixup ; }; struct nsproxy; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_194 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_194 __annonCompField64 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; enum fwnode_type { FWNODE_INVALID = 0, FWNODE_OF = 1, FWNODE_ACPI = 2 } ; struct fwnode_handle { enum fwnode_type type ; }; typedef u32 phandle; struct property { char *name ; int length ; void *value ; struct property *next ; unsigned long _flags ; unsigned int unique_id ; struct bin_attribute attr ; }; struct device_node { char const *name ; char const *type ; phandle phandle ; char const *full_name ; struct fwnode_handle fwnode ; struct property *properties ; struct property *deadprops ; struct device_node *parent ; struct device_node *child ; struct device_node *sibling ; struct kobject kobj ; unsigned long _flags ; void *data ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; typedef unsigned long cputime_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_195 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_195 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_197 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_198 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_199 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_200 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_202 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_201 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_202 _addr_bnd ; }; struct __anonstruct__sigpoll_203 { long _band ; int _fd ; }; struct __anonstruct__sigsys_204 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_196 { int _pad[28U] ; struct __anonstruct__kill_197 _kill ; struct __anonstruct__timer_198 _timer ; struct __anonstruct__rt_199 _rt ; struct __anonstruct__sigchld_200 _sigchld ; struct __anonstruct__sigfault_201 _sigfault ; struct __anonstruct__sigpoll_203 _sigpoll ; struct __anonstruct__sigsys_204 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_196 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int in_hrtirq ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_207 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_208 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_210 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_209 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_210 __annonCompField67 ; }; union __anonunion_type_data_211 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_213 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_212 { union __anonunion_payload_213 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_207 __annonCompField65 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_208 __annonCompField66 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_209 __annonCompField68 ; union __anonunion_type_data_211 type_data ; union __anonunion____missing_field_name_212 __annonCompField69 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned char brk_randomized : 1 ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct kvec { void *iov_base ; size_t iov_len ; }; union __anonunion____missing_field_name_218 { struct iovec const *iov ; struct kvec const *kvec ; struct bio_vec const *bvec ; }; struct iov_iter { int type ; size_t iov_offset ; size_t count ; union __anonunion____missing_field_name_218 __annonCompField73 ; unsigned long nr_segs ; }; struct otp_info { __u32 start ; __u32 length ; __u32 locked ; }; struct nand_oobfree { __u32 offset ; __u32 length ; }; struct mtd_ecc_stats { __u32 corrected ; __u32 failed ; __u32 badblocks ; __u32 bbtblocks ; }; struct erase_info { struct mtd_info *mtd ; uint64_t addr ; uint64_t len ; uint64_t fail_addr ; u_long time ; u_long retries ; unsigned int dev ; unsigned int cell ; void (*callback)(struct erase_info * ) ; u_long priv ; u_char state ; struct erase_info *next ; }; struct mtd_erase_region_info { uint64_t offset ; uint32_t erasesize ; uint32_t numblocks ; unsigned long *lockmap ; }; struct mtd_oob_ops { unsigned int mode ; size_t len ; size_t retlen ; size_t ooblen ; size_t oobretlen ; uint32_t ooboffs ; uint8_t *datbuf ; uint8_t *oobbuf ; }; struct nand_ecclayout { __u32 eccbytes ; __u32 eccpos[640U] ; __u32 oobavail ; struct nand_oobfree oobfree[32U] ; }; struct mtd_info { u_char type ; uint32_t flags ; uint64_t size ; uint32_t erasesize ; uint32_t writesize ; uint32_t writebufsize ; uint32_t oobsize ; uint32_t oobavail ; unsigned int erasesize_shift ; unsigned int writesize_shift ; unsigned int erasesize_mask ; unsigned int writesize_mask ; unsigned int bitflip_threshold ; char const *name ; int index ; struct nand_ecclayout *ecclayout ; unsigned int ecc_step_size ; unsigned int ecc_strength ; int numeraseregions ; struct mtd_erase_region_info *eraseregions ; int (*_erase)(struct mtd_info * , struct erase_info * ) ; int (*_point)(struct mtd_info * , loff_t , size_t , size_t * , void ** , resource_size_t * ) ; int (*_unpoint)(struct mtd_info * , loff_t , size_t ) ; unsigned long (*_get_unmapped_area)(struct mtd_info * , unsigned long , unsigned long , unsigned long ) ; int (*_read)(struct mtd_info * , loff_t , size_t , size_t * , u_char * ) ; int (*_write)(struct mtd_info * , loff_t , size_t , size_t * , u_char const * ) ; int (*_panic_write)(struct mtd_info * , loff_t , size_t , size_t * , u_char const * ) ; int (*_read_oob)(struct mtd_info * , loff_t , struct mtd_oob_ops * ) ; int (*_write_oob)(struct mtd_info * , loff_t , struct mtd_oob_ops * ) ; int (*_get_fact_prot_info)(struct mtd_info * , size_t , size_t * , struct otp_info * ) ; int (*_read_fact_prot_reg)(struct mtd_info * , loff_t , size_t , size_t * , u_char * ) ; int (*_get_user_prot_info)(struct mtd_info * , size_t , size_t * , struct otp_info * ) ; int (*_read_user_prot_reg)(struct mtd_info * , loff_t , size_t , size_t * , u_char * ) ; int (*_write_user_prot_reg)(struct mtd_info * , loff_t , size_t , size_t * , u_char * ) ; int (*_lock_user_prot_reg)(struct mtd_info * , loff_t , size_t ) ; int (*_writev)(struct mtd_info * , struct kvec const * , unsigned long , loff_t , size_t * ) ; void (*_sync)(struct mtd_info * ) ; int (*_lock)(struct mtd_info * , loff_t , uint64_t ) ; int (*_unlock)(struct mtd_info * , loff_t , uint64_t ) ; int (*_is_locked)(struct mtd_info * , loff_t , uint64_t ) ; int (*_block_isreserved)(struct mtd_info * , loff_t ) ; int (*_block_isbad)(struct mtd_info * , loff_t ) ; int (*_block_markbad)(struct mtd_info * , loff_t ) ; int (*_suspend)(struct mtd_info * ) ; void (*_resume)(struct mtd_info * ) ; void (*_reboot)(struct mtd_info * ) ; int (*_get_device)(struct mtd_info * ) ; void (*_put_device)(struct mtd_info * ) ; struct backing_dev_info *backing_dev_info ; struct notifier_block reboot_notifier ; struct mtd_ecc_stats ecc_stats ; int subpage_sft ; void *priv ; struct module *owner ; struct device dev ; int usecount ; }; struct mtd_partition; struct mtd_part_parser_data; struct mtd_partition { char const *name ; uint64_t size ; uint64_t offset ; uint32_t mask_flags ; struct nand_ecclayout *ecclayout ; }; struct mtd_part_parser_data { unsigned long origin ; struct device_node *of_node ; }; struct gf_poly; struct bch_control { unsigned int m ; unsigned int n ; unsigned int t ; unsigned int ecc_bits ; unsigned int ecc_bytes ; uint16_t *a_pow_tab ; uint16_t *a_log_tab ; uint32_t *mod8_tab ; uint32_t *ecc_buf ; uint32_t *ecc_buf2 ; unsigned int *xi_tab ; unsigned int *syn ; int *cache ; struct gf_poly *elp ; struct gf_poly *poly_2t[4U] ; }; struct docg3_cascade { struct mtd_info *floors[4U] ; void *base ; struct bch_control *bch ; struct mutex lock ; }; struct docg3 { struct device *dev ; struct docg3_cascade *cascade ; unsigned char device_id : 4 ; unsigned char if_cfg : 1 ; unsigned char reliable : 2 ; int max_block ; u8 *bbt ; loff_t oob_write_ofs ; int oob_autoecc ; u8 oob_write_buf[16U] ; struct dentry *debugfs_root ; }; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct static_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct pollfd { int fd ; short events ; short revents ; }; struct poll_table_struct { void (*_qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long _key ; }; struct ring_buffer; struct ring_buffer_iter; struct trace_seq; struct seq_buf { char *buffer ; size_t size ; size_t len ; loff_t readpos ; }; struct trace_seq { unsigned char buffer[4096U] ; struct seq_buf seq ; int full ; }; union __anonunion____missing_field_name_220 { __u64 sample_period ; __u64 sample_freq ; }; union __anonunion____missing_field_name_221 { __u32 wakeup_events ; __u32 wakeup_watermark ; }; union __anonunion____missing_field_name_222 { __u64 bp_addr ; __u64 config1 ; }; union __anonunion____missing_field_name_223 { __u64 bp_len ; __u64 config2 ; }; struct perf_event_attr { __u32 type ; __u32 size ; __u64 config ; union __anonunion____missing_field_name_220 __annonCompField74 ; __u64 sample_type ; __u64 read_format ; unsigned char disabled : 1 ; unsigned char inherit : 1 ; unsigned char pinned : 1 ; unsigned char exclusive : 1 ; unsigned char exclude_user : 1 ; unsigned char exclude_kernel : 1 ; unsigned char exclude_hv : 1 ; unsigned char exclude_idle : 1 ; unsigned char mmap : 1 ; unsigned char comm : 1 ; unsigned char freq : 1 ; unsigned char inherit_stat : 1 ; unsigned char enable_on_exec : 1 ; unsigned char task : 1 ; unsigned char watermark : 1 ; unsigned char precise_ip : 2 ; unsigned char mmap_data : 1 ; unsigned char sample_id_all : 1 ; unsigned char exclude_host : 1 ; unsigned char exclude_guest : 1 ; unsigned char exclude_callchain_kernel : 1 ; unsigned char exclude_callchain_user : 1 ; unsigned char mmap2 : 1 ; unsigned char comm_exec : 1 ; unsigned long __reserved_1 : 39 ; union __anonunion____missing_field_name_221 __annonCompField75 ; __u32 bp_type ; union __anonunion____missing_field_name_222 __annonCompField76 ; union __anonunion____missing_field_name_223 __annonCompField77 ; __u64 branch_sample_type ; __u64 sample_regs_user ; __u32 sample_stack_user ; __u32 __reserved_2 ; __u64 sample_regs_intr ; }; struct __anonstruct____missing_field_name_226 { unsigned char mem_op : 5 ; unsigned short mem_lvl : 14 ; unsigned char mem_snoop : 5 ; unsigned char mem_lock : 2 ; unsigned char mem_dtlb : 7 ; unsigned int mem_rsvd : 31 ; }; union perf_mem_data_src { __u64 val ; struct __anonstruct____missing_field_name_226 __annonCompField80 ; }; struct perf_branch_entry { __u64 from ; __u64 to ; unsigned char mispred : 1 ; unsigned char predicted : 1 ; unsigned char in_tx : 1 ; unsigned char abort : 1 ; unsigned long reserved : 60 ; }; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct proc_ns_operations; struct ns_common { atomic_long_t stashed ; struct proc_ns_operations const *ops ; unsigned int inum ; }; struct pidmap { atomic_t nr_free ; void *page ; }; struct fs_pin; struct pid_namespace { struct kref kref ; struct pidmap pidmap[128U] ; struct callback_head rcu ; int last_pid ; unsigned int nr_hashed ; struct task_struct *child_reaper ; struct kmem_cache *pid_cachep ; unsigned int level ; struct pid_namespace *parent ; struct vfsmount *proc_mnt ; struct dentry *proc_self ; struct dentry *proc_thread_self ; struct fs_pin *bacct ; struct user_namespace *user_ns ; struct work_struct proc_work ; kgid_t pid_gid ; int hide_pid ; int reboot ; struct ns_common ns ; }; struct __anonstruct_local_t_230 { atomic_long_t a ; }; typedef struct __anonstruct_local_t_230 local_t; struct __anonstruct_local64_t_231 { local_t a ; }; typedef struct __anonstruct_local64_t_231 local64_t; struct arch_hw_breakpoint { unsigned long address ; unsigned long mask ; u8 len ; u8 type ; }; struct pmu; typedef s32 compat_time_t; struct compat_timespec { compat_time_t tv_sec ; s32 tv_nsec ; }; struct ftrace_hash; struct ftrace_ops; struct ftrace_ops_hash { struct ftrace_hash *notrace_hash ; struct ftrace_hash *filter_hash ; struct mutex regex_lock ; }; struct ftrace_ops { void (*func)(unsigned long , unsigned long , struct ftrace_ops * , struct pt_regs * ) ; struct ftrace_ops *next ; unsigned long flags ; void *private ; int *disabled ; int nr_trampolines ; struct ftrace_ops_hash local_hash ; struct ftrace_ops_hash *func_hash ; struct ftrace_ops_hash old_hash ; unsigned long trampoline ; unsigned long trampoline_size ; }; struct ftrace_ret_stack { unsigned long ret ; unsigned long func ; unsigned long long calltime ; unsigned long long subtime ; unsigned long fp ; }; struct irq_work { unsigned long flags ; struct llist_node llnode ; void (*func)(struct irq_work * ) ; }; struct perf_regs { __u64 abi ; struct pt_regs *regs ; }; struct perf_callchain_entry { __u64 nr ; __u64 ip[127U] ; }; struct perf_raw_record { u32 size ; void *data ; }; struct perf_branch_stack { __u64 nr ; struct perf_branch_entry entries[0U] ; }; struct hw_perf_event_extra { u64 config ; unsigned int reg ; int alloc ; int idx ; }; struct event_constraint; struct __anonstruct____missing_field_name_242 { u64 config ; u64 last_tag ; unsigned long config_base ; unsigned long event_base ; int event_base_rdpmc ; int idx ; int last_cpu ; int flags ; struct hw_perf_event_extra extra_reg ; struct hw_perf_event_extra branch_reg ; struct event_constraint *constraint ; }; struct __anonstruct____missing_field_name_243 { struct hrtimer hrtimer ; }; struct __anonstruct____missing_field_name_244 { struct task_struct *tp_target ; struct list_head tp_list ; }; struct __anonstruct____missing_field_name_245 { struct task_struct *bp_target ; struct arch_hw_breakpoint info ; struct list_head bp_list ; }; union __anonunion____missing_field_name_241 { struct __anonstruct____missing_field_name_242 __annonCompField81 ; struct __anonstruct____missing_field_name_243 __annonCompField82 ; struct __anonstruct____missing_field_name_244 __annonCompField83 ; struct __anonstruct____missing_field_name_245 __annonCompField84 ; }; struct hw_perf_event { union __anonunion____missing_field_name_241 __annonCompField85 ; int state ; local64_t prev_count ; u64 sample_period ; u64 last_period ; local64_t period_left ; u64 interrupts_seq ; u64 interrupts ; u64 freq_time_stamp ; u64 freq_count_stamp ; }; struct perf_cpu_context; struct pmu { struct list_head entry ; struct module *module ; struct device *dev ; struct attribute_group const **attr_groups ; char const *name ; int type ; int capabilities ; int *pmu_disable_count ; struct perf_cpu_context *pmu_cpu_context ; int task_ctx_nr ; int hrtimer_interval_ms ; void (*pmu_enable)(struct pmu * ) ; void (*pmu_disable)(struct pmu * ) ; int (*event_init)(struct perf_event * ) ; void (*event_mapped)(struct perf_event * ) ; void (*event_unmapped)(struct perf_event * ) ; int (*add)(struct perf_event * , int ) ; void (*del)(struct perf_event * , int ) ; void (*start)(struct perf_event * , int ) ; void (*stop)(struct perf_event * , int ) ; void (*read)(struct perf_event * ) ; void (*start_txn)(struct pmu * ) ; int (*commit_txn)(struct pmu * ) ; void (*cancel_txn)(struct pmu * ) ; int (*event_idx)(struct perf_event * ) ; void (*flush_branch_stack)(void) ; }; enum perf_event_active_state { PERF_EVENT_STATE_EXIT = -3, PERF_EVENT_STATE_ERROR = -2, PERF_EVENT_STATE_OFF = -1, PERF_EVENT_STATE_INACTIVE = 0, PERF_EVENT_STATE_ACTIVE = 1 } ; struct perf_sample_data; struct perf_cgroup; struct event_filter; struct perf_event { struct list_head event_entry ; struct list_head group_entry ; struct list_head sibling_list ; struct list_head migrate_entry ; struct hlist_node hlist_entry ; struct list_head active_entry ; int nr_siblings ; int group_flags ; struct perf_event *group_leader ; struct pmu *pmu ; enum perf_event_active_state state ; unsigned int attach_state ; local64_t count ; atomic64_t child_count ; u64 total_time_enabled ; u64 total_time_running ; u64 tstamp_enabled ; u64 tstamp_running ; u64 tstamp_stopped ; u64 shadow_ctx_time ; struct perf_event_attr attr ; u16 header_size ; u16 id_header_size ; u16 read_size ; struct hw_perf_event hw ; struct perf_event_context *ctx ; atomic_long_t refcount ; atomic64_t child_total_time_enabled ; atomic64_t child_total_time_running ; struct mutex child_mutex ; struct list_head child_list ; struct perf_event *parent ; int oncpu ; int cpu ; struct list_head owner_entry ; struct task_struct *owner ; struct mutex mmap_mutex ; atomic_t mmap_count ; struct ring_buffer *rb ; struct list_head rb_entry ; unsigned long rcu_batches ; int rcu_pending ; wait_queue_head_t waitq ; struct fasync_struct *fasync ; int pending_wakeup ; int pending_kill ; int pending_disable ; struct irq_work pending ; atomic_t event_limit ; void (*destroy)(struct perf_event * ) ; struct callback_head callback_head ; struct pid_namespace *ns ; u64 id ; void (*overflow_handler)(struct perf_event * , struct perf_sample_data * , struct pt_regs * ) ; void *overflow_handler_context ; struct ftrace_event_call *tp_event ; struct event_filter *filter ; struct ftrace_ops ftrace_ops ; struct perf_cgroup *cgrp ; int cgrp_defer_enabled ; }; struct perf_event_context { struct pmu *pmu ; raw_spinlock_t lock ; struct mutex mutex ; struct list_head active_ctx_list ; struct list_head pinned_groups ; struct list_head flexible_groups ; struct list_head event_list ; int nr_events ; int nr_active ; int is_active ; int nr_stat ; int nr_freq ; int rotate_disable ; atomic_t refcount ; struct task_struct *task ; u64 time ; u64 timestamp ; struct perf_event_context *parent_ctx ; u64 parent_gen ; u64 generation ; int pin_count ; int nr_cgroups ; int nr_branch_stack ; struct callback_head callback_head ; struct delayed_work orphans_remove ; bool orphans_remove_sched ; }; struct perf_cpu_context { struct perf_event_context ctx ; struct perf_event_context *task_ctx ; int active_oncpu ; int exclusive ; struct hrtimer hrtimer ; ktime_t hrtimer_interval ; struct pmu *unique_pmu ; struct perf_cgroup *cgrp ; }; struct __anonstruct_tid_entry_246 { u32 pid ; u32 tid ; }; struct __anonstruct_cpu_entry_247 { u32 cpu ; u32 reserved ; }; struct perf_sample_data { u64 addr ; struct perf_raw_record *raw ; struct perf_branch_stack *br_stack ; u64 period ; u64 weight ; u64 txn ; union perf_mem_data_src data_src ; u64 type ; u64 ip ; struct __anonstruct_tid_entry_246 tid_entry ; u64 time ; u64 id ; u64 stream_id ; struct __anonstruct_cpu_entry_247 cpu_entry ; struct perf_callchain_entry *callchain ; struct perf_regs regs_user ; struct pt_regs regs_user_copy ; struct perf_regs regs_intr ; u64 stack_user_size ; }; struct trace_array; struct trace_buffer; struct tracer; struct trace_iterator; struct trace_event; struct trace_entry { unsigned short type ; unsigned char flags ; unsigned char preempt_count ; int pid ; }; struct trace_iterator { struct trace_array *tr ; struct tracer *trace ; struct trace_buffer *trace_buffer ; void *private ; int cpu_file ; struct mutex mutex ; struct ring_buffer_iter **buffer_iter ; unsigned long iter_flags ; struct trace_seq tmp_seq ; cpumask_var_t started ; bool snapshot ; struct trace_seq seq ; struct trace_entry *ent ; unsigned long lost_events ; int leftover ; int ent_size ; int cpu ; u64 ts ; loff_t pos ; long idx ; }; enum print_line_t; struct trace_event_functions { enum print_line_t (*trace)(struct trace_iterator * , int , struct trace_event * ) ; enum print_line_t (*raw)(struct trace_iterator * , int , struct trace_event * ) ; enum print_line_t (*hex)(struct trace_iterator * , int , struct trace_event * ) ; enum print_line_t (*binary)(struct trace_iterator * , int , struct trace_event * ) ; }; struct trace_event { struct hlist_node node ; struct list_head list ; int type ; struct trace_event_functions *funcs ; }; enum print_line_t { TRACE_TYPE_PARTIAL_LINE = 0, TRACE_TYPE_HANDLED = 1, TRACE_TYPE_UNHANDLED = 2, TRACE_TYPE_NO_CONSUME = 3 } ; enum trace_reg { TRACE_REG_REGISTER = 0, TRACE_REG_UNREGISTER = 1, TRACE_REG_PERF_REGISTER = 2, TRACE_REG_PERF_UNREGISTER = 3, TRACE_REG_PERF_OPEN = 4, TRACE_REG_PERF_CLOSE = 5, TRACE_REG_PERF_ADD = 6, TRACE_REG_PERF_DEL = 7 } ; struct ftrace_event_class { char *system ; void *probe ; void *perf_probe ; int (*reg)(struct ftrace_event_call * , enum trace_reg , void * ) ; int (*define_fields)(struct ftrace_event_call * ) ; struct list_head *(*get_fields)(struct ftrace_event_call * ) ; struct list_head fields ; int (*raw_init)(struct ftrace_event_call * ) ; }; union __anonunion____missing_field_name_248 { char *name ; struct tracepoint *tp ; }; struct ftrace_event_call { struct list_head list ; struct ftrace_event_class *class ; union __anonunion____missing_field_name_248 __annonCompField86 ; struct trace_event event ; char const *print_fmt ; struct event_filter *filter ; void *mod ; void *data ; int flags ; int perf_refcount ; struct hlist_head *perf_events ; int (*perf_perm)(struct ftrace_event_call * , struct perf_event * ) ; }; struct ftrace_raw_docg3_io { struct trace_entry ent ; int op ; unsigned char width ; u16 reg ; int val ; char __data[0U] ; }; struct ldv_struct_platform_driver_unregister_10 { struct platform_driver *arg0 ; int signal_pending ; }; struct ldv_struct_platform_instance_4 { int signal_pending ; }; struct request; struct device_private { void *driver_data ; }; typedef short s16; typedef u64 dma_addr_t; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; struct kthread_worker *worker ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; struct dma_chan; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool (*can_dma)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool idling ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; bool cur_msg_mapped ; struct completion xfer_completion ; size_t max_dma_len ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; struct dma_chan *dma_tx ; struct dma_chan *dma_rx ; void *dummy_rx ; void *dummy_tx ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; struct sg_table tx_sg ; struct sg_table rx_sg ; unsigned char cs_change : 1 ; unsigned char tx_nbits : 3 ; unsigned char rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned char is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; enum hrtimer_restart; struct ratelimit_state { raw_spinlock_t lock ; int interval ; int burst ; int printed ; int missed ; unsigned long begin ; }; typedef unsigned int mmc_pm_flag_t; struct mmc_card; struct sdio_func; typedef void sdio_irq_handler_t(struct sdio_func * ); struct sdio_func_tuple { struct sdio_func_tuple *next ; unsigned char code ; unsigned char size ; unsigned char data[0U] ; }; struct sdio_func { struct mmc_card *card ; struct device dev ; sdio_irq_handler_t *irq_handler ; unsigned int num ; unsigned char class ; unsigned short vendor ; unsigned short device ; unsigned int max_blksize ; unsigned int cur_blksize ; unsigned int enable_timeout ; unsigned int state ; u8 tmpbuf[4U] ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; }; enum led_brightness { LED_OFF = 0, LED_HALF = 127, LED_FULL = 255 } ; struct led_trigger; struct led_classdev { char const *name ; enum led_brightness brightness ; enum led_brightness max_brightness ; int flags ; void (*brightness_set)(struct led_classdev * , enum led_brightness ) ; int (*brightness_set_sync)(struct led_classdev * , enum led_brightness ) ; enum led_brightness (*brightness_get)(struct led_classdev * ) ; int (*blink_set)(struct led_classdev * , unsigned long * , unsigned long * ) ; struct device *dev ; struct attribute_group const **groups ; struct list_head node ; char const *default_trigger ; unsigned long blink_delay_on ; unsigned long blink_delay_off ; struct timer_list blink_timer ; int blink_brightness ; void (*flash_resume)(struct led_classdev * ) ; struct work_struct set_brightness_work ; int delayed_set_value ; struct rw_semaphore trigger_lock ; struct led_trigger *trigger ; struct list_head trig_list ; void *trigger_data ; bool activated ; struct mutex led_access ; }; struct led_trigger { char const *name ; void (*activate)(struct led_classdev * ) ; void (*deactivate)(struct led_classdev * ) ; rwlock_t leddev_list_lock ; struct list_head led_cdevs ; struct list_head next_trig ; }; struct fault_attr { unsigned long probability ; unsigned long interval ; atomic_t times ; atomic_t space ; unsigned long verbose ; u32 task_filter ; unsigned long stacktrace_depth ; unsigned long require_start ; unsigned long require_end ; unsigned long reject_start ; unsigned long reject_end ; unsigned long count ; struct ratelimit_state ratelimit_state ; struct dentry *dname ; }; struct mmc_data; struct mmc_request; struct mmc_command { u32 opcode ; u32 arg ; u32 resp[4U] ; unsigned int flags ; unsigned int retries ; unsigned int error ; unsigned int busy_timeout ; bool sanitize_busy ; struct mmc_data *data ; struct mmc_request *mrq ; }; struct mmc_data { unsigned int timeout_ns ; unsigned int timeout_clks ; unsigned int blksz ; unsigned int blocks ; unsigned int error ; unsigned int flags ; unsigned int bytes_xfered ; struct mmc_command *stop ; struct mmc_request *mrq ; unsigned int sg_len ; struct scatterlist *sg ; s32 host_cookie ; }; struct mmc_host; struct mmc_request { struct mmc_command *sbc ; struct mmc_command *cmd ; struct mmc_data *data ; struct mmc_command *stop ; struct completion completion ; void (*done)(struct mmc_request * ) ; struct mmc_host *host ; }; struct mmc_async_req; struct mmc_cid { unsigned int manfid ; char prod_name[8U] ; unsigned char prv ; unsigned int serial ; unsigned short oemid ; unsigned short year ; unsigned char hwrev ; unsigned char fwrev ; unsigned char month ; }; struct mmc_csd { unsigned char structure ; unsigned char mmca_vsn ; unsigned short cmdclass ; unsigned short tacc_clks ; unsigned int tacc_ns ; unsigned int c_size ; unsigned int r2w_factor ; unsigned int max_dtr ; unsigned int erase_size ; unsigned int read_blkbits ; unsigned int write_blkbits ; unsigned int capacity ; unsigned char read_partial : 1 ; unsigned char read_misalign : 1 ; unsigned char write_partial : 1 ; unsigned char write_misalign : 1 ; unsigned char dsr_imp : 1 ; }; struct mmc_ext_csd { u8 rev ; u8 erase_group_def ; u8 sec_feature_support ; u8 rel_sectors ; u8 rel_param ; u8 part_config ; u8 cache_ctrl ; u8 rst_n_function ; u8 max_packed_writes ; u8 max_packed_reads ; u8 packed_event_en ; unsigned int part_time ; unsigned int sa_timeout ; unsigned int generic_cmd6_time ; unsigned int power_off_longtime ; u8 power_off_notification ; unsigned int hs_max_dtr ; unsigned int hs200_max_dtr ; unsigned int sectors ; unsigned int hc_erase_size ; unsigned int hc_erase_timeout ; unsigned int sec_trim_mult ; unsigned int sec_erase_mult ; unsigned int trim_timeout ; bool partition_setting_completed ; unsigned long long enhanced_area_offset ; unsigned int enhanced_area_size ; unsigned int cache_size ; bool hpi_en ; bool hpi ; unsigned int hpi_cmd ; bool bkops ; bool man_bkops_en ; unsigned int data_sector_size ; unsigned int data_tag_unit_size ; unsigned int boot_ro_lock ; bool boot_ro_lockable ; bool ffu_capable ; u8 fwrev[8U] ; u8 raw_exception_status ; u8 raw_partition_support ; u8 raw_rpmb_size_mult ; u8 raw_erased_mem_count ; u8 raw_ext_csd_structure ; u8 raw_card_type ; u8 out_of_int_time ; u8 raw_pwr_cl_52_195 ; u8 raw_pwr_cl_26_195 ; u8 raw_pwr_cl_52_360 ; u8 raw_pwr_cl_26_360 ; u8 raw_s_a_timeout ; u8 raw_hc_erase_gap_size ; u8 raw_erase_timeout_mult ; u8 raw_hc_erase_grp_size ; u8 raw_sec_trim_mult ; u8 raw_sec_erase_mult ; u8 raw_sec_feature_support ; u8 raw_trim_mult ; u8 raw_pwr_cl_200_195 ; u8 raw_pwr_cl_200_360 ; u8 raw_pwr_cl_ddr_52_195 ; u8 raw_pwr_cl_ddr_52_360 ; u8 raw_pwr_cl_ddr_200_360 ; u8 raw_bkops_status ; u8 raw_sectors[4U] ; unsigned int feature_support ; }; struct sd_scr { unsigned char sda_vsn ; unsigned char sda_spec3 ; unsigned char bus_widths ; unsigned char cmds ; }; struct sd_ssr { unsigned int au ; unsigned int erase_timeout ; unsigned int erase_offset ; }; struct sd_switch_caps { unsigned int hs_max_dtr ; unsigned int uhs_max_dtr ; unsigned int sd3_bus_mode ; unsigned int sd3_drv_type ; unsigned int sd3_curr_limit ; }; struct sdio_cccr { unsigned int sdio_vsn ; unsigned int sd_vsn ; unsigned char multi_block : 1 ; unsigned char low_speed : 1 ; unsigned char wide_bus : 1 ; unsigned char high_power : 1 ; unsigned char high_speed : 1 ; unsigned char disable_cd : 1 ; }; struct sdio_cis { unsigned short vendor ; unsigned short device ; unsigned short blksize ; unsigned int max_dtr ; }; struct mmc_ios; struct mmc_part { unsigned int size ; unsigned int part_cfg ; char name[20U] ; bool force_ro ; unsigned int area_type ; }; struct mmc_card { struct mmc_host *host ; struct device dev ; u32 ocr ; unsigned int rca ; unsigned int type ; unsigned int state ; unsigned int quirks ; unsigned int erase_size ; unsigned int erase_shift ; unsigned int pref_erase ; u8 erased_byte ; u32 raw_cid[4U] ; u32 raw_csd[4U] ; u32 raw_scr[2U] ; struct mmc_cid cid ; struct mmc_csd csd ; struct mmc_ext_csd ext_csd ; struct sd_scr scr ; struct sd_ssr ssr ; struct sd_switch_caps sw_caps ; unsigned int sdio_funcs ; struct sdio_cccr cccr ; struct sdio_cis cis ; struct sdio_func *sdio_func[7U] ; struct sdio_func *sdio_single_irq ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; unsigned int sd_bus_speed ; unsigned int mmc_avail_type ; struct dentry *debugfs_root ; struct mmc_part part[7U] ; unsigned int nr_parts ; }; struct mmc_ios { unsigned int clock ; unsigned short vdd ; unsigned char bus_mode ; unsigned char chip_select ; unsigned char power_mode ; unsigned char bus_width ; unsigned char timing ; unsigned char signal_voltage ; unsigned char drv_type ; }; struct mmc_host_ops { int (*enable)(struct mmc_host * ) ; int (*disable)(struct mmc_host * ) ; void (*post_req)(struct mmc_host * , struct mmc_request * , int ) ; void (*pre_req)(struct mmc_host * , struct mmc_request * , bool ) ; void (*request)(struct mmc_host * , struct mmc_request * ) ; void (*set_ios)(struct mmc_host * , struct mmc_ios * ) ; int (*get_ro)(struct mmc_host * ) ; int (*get_cd)(struct mmc_host * ) ; void (*enable_sdio_irq)(struct mmc_host * , int ) ; void (*init_card)(struct mmc_host * , struct mmc_card * ) ; int (*start_signal_voltage_switch)(struct mmc_host * , struct mmc_ios * ) ; int (*card_busy)(struct mmc_host * ) ; int (*execute_tuning)(struct mmc_host * , u32 ) ; int (*prepare_hs400_tuning)(struct mmc_host * , struct mmc_ios * ) ; int (*select_drive_strength)(unsigned int , int , int ) ; void (*hw_reset)(struct mmc_host * ) ; void (*card_event)(struct mmc_host * ) ; int (*multi_io_quirk)(struct mmc_card * , unsigned int , int ) ; }; struct mmc_async_req { struct mmc_request *mrq ; int (*err_check)(struct mmc_card * , struct mmc_async_req * ) ; }; struct mmc_slot { int cd_irq ; void *handler_priv ; }; struct mmc_context_info { bool is_done_rcv ; bool is_new_req ; bool is_waiting_last_req ; wait_queue_head_t wait ; spinlock_t lock ; }; struct regulator; struct mmc_pwrseq; struct mmc_supply { struct regulator *vmmc ; struct regulator *vqmmc ; }; struct mmc_bus_ops; struct mmc_host { struct device *parent ; struct device class_dev ; int index ; struct mmc_host_ops const *ops ; struct mmc_pwrseq *pwrseq ; unsigned int f_min ; unsigned int f_max ; unsigned int f_init ; u32 ocr_avail ; u32 ocr_avail_sdio ; u32 ocr_avail_sd ; u32 ocr_avail_mmc ; struct notifier_block pm_notify ; u32 max_current_330 ; u32 max_current_300 ; u32 max_current_180 ; u32 caps ; u32 caps2 ; mmc_pm_flag_t pm_caps ; int clk_requests ; unsigned int clk_delay ; bool clk_gated ; struct delayed_work clk_gate_work ; unsigned int clk_old ; spinlock_t clk_lock ; struct mutex clk_gate_mutex ; struct device_attribute clkgate_delay_attr ; unsigned long clkgate_delay ; unsigned int max_seg_size ; unsigned short max_segs ; unsigned short unused ; unsigned int max_req_size ; unsigned int max_blk_size ; unsigned int max_blk_count ; unsigned int max_busy_timeout ; spinlock_t lock ; struct mmc_ios ios ; unsigned char use_spi_crc : 1 ; unsigned char claimed : 1 ; unsigned char bus_dead : 1 ; unsigned char removed : 1 ; int rescan_disable ; int rescan_entered ; bool trigger_card_event ; struct mmc_card *card ; wait_queue_head_t wq ; struct task_struct *claimer ; int claim_cnt ; struct delayed_work detect ; int detect_change ; struct mmc_slot slot ; struct mmc_bus_ops const *bus_ops ; unsigned int bus_refs ; unsigned int sdio_irqs ; struct task_struct *sdio_irq_thread ; bool sdio_irq_pending ; atomic_t sdio_irq_thread_abort ; mmc_pm_flag_t pm_flags ; struct led_trigger *led ; bool regulator_enabled ; struct mmc_supply supply ; struct dentry *debugfs_root ; struct mmc_async_req *areq ; struct mmc_context_info context_info ; struct fault_attr fail_mmc_request ; unsigned int actual_clock ; unsigned int slotno ; int dsr_req ; u32 dsr ; unsigned long private[0U] ; }; typedef int ldv_map; struct usb_device; struct urb; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; typedef _Bool ldv_set; long ldv__builtin_expect(long exp , long c ) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_irq_check_alloc_nonatomic(void) ; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) ; void ldv_linux_arch_io_check_final_state(void) ; void ldv_linux_block_genhd_check_final_state(void) ; void ldv_linux_block_queue_check_final_state(void) ; void ldv_linux_block_request_check_final_state(void) ; void *ldv_linux_drivers_base_class_create_class(void) ; int ldv_linux_drivers_base_class_register_class(void) ; void ldv_linux_drivers_base_class_check_final_state(void) ; void ldv_linux_fs_char_dev_check_final_state(void) ; void ldv_linux_fs_sysfs_check_final_state(void) ; void ldv_linux_kernel_locking_rwlock_check_final_state(void) ; void ldv_linux_kernel_module_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_check_final_state(void) ; void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) ; void ldv_linux_kernel_rcu_srcu_check_final_state(void) ; void ldv_linux_lib_find_bit_initialize(void) ; void ldv_linux_lib_idr_check_final_state(void) ; void ldv_linux_mmc_sdio_func_check_final_state(void) ; void ldv_linux_net_register_reset_error_counter(void) ; void ldv_linux_net_register_check_return_value_probe(int retval ) ; void ldv_linux_net_rtnetlink_check_final_state(void) ; void ldv_linux_net_sock_check_final_state(void) ; void ldv_linux_usb_coherent_check_final_state(void) ; void *ldv_linux_usb_gadget_create_class(void) ; int ldv_linux_usb_gadget_register_class(void) ; void ldv_linux_usb_gadget_check_final_state(void) ; void ldv_linux_usb_register_reset_error_counter(void) ; void ldv_linux_usb_register_check_return_value_probe(int retval ) ; void ldv_linux_usb_urb_check_final_state(void) ; void ldv_check_alloc_nonatomic(void) { { { ldv_linux_alloc_irq_check_alloc_nonatomic(); ldv_linux_alloc_usb_lock_check_alloc_nonatomic(); } return; } } void ldv_check_alloc_flags(gfp_t flags ) { { { ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return; } } void ldv_check_for_read_section(void) { { { ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_check_for_read_section(); ldv_linux_kernel_rcu_srcu_check_for_read_section(); } return; } } void *ldv_create_class(void) { void *res1 ; void *tmp ; void *res2 ; void *tmp___0 ; { { tmp = ldv_linux_drivers_base_class_create_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_create_class(); res2 = tmp___0; ldv_assume((unsigned long )res1 == (unsigned long )res2); } return (res1); } } int ldv_register_class(void) { int res1 ; int tmp ; int res2 ; int tmp___0 ; { { tmp = ldv_linux_drivers_base_class_register_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_register_class(); res2 = tmp___0; ldv_assume(res1 == res2); } return (res1); } } void *ldv_err_ptr(long error ) ; long ldv_ptr_err(void const *ptr ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) ; int ldv_undef_int(void) ; static void ldv_ldv_initialize_122(void) ; int ldv_post_init(int init_ret_val ) ; static int ldv_ldv_post_init_119(int ldv_func_arg1 ) ; extern void ldv_pre_probe(void) ; static void ldv_ldv_pre_probe_123(void) ; static void ldv_ldv_pre_probe_125(void) ; int ldv_post_probe(int probe_ret_val ) ; static int ldv_ldv_post_probe_124(int retval ) ; static int ldv_ldv_post_probe_126(int retval ) ; int ldv_filter_err_code(int ret_val ) ; static void ldv_ldv_check_final_state_120(void) ; static void ldv_ldv_check_final_state_121(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; void *ldv_malloc_unknown_size(void) ; void *ldv_alloc_macro(gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } static void ldv_mutex_lock_96(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_98(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_100(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_102(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_104(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_106(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_108(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_110(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_112(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_114(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_116(struct mutex *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_docg3_cascade(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_lock_of_docg3_cascade(struct mutex *lock ) ; extern struct module __this_module ; extern struct pv_irq_ops pv_irq_ops ; __inline static void change_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btc %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } extern void __dynamic_dev_dbg(struct _ddebug * , struct device const * , char const * , ...) ; extern int sprintf(char * , char const * , ...) ; extern char *kasprintf(gfp_t , char const * , ...) ; extern void __bad_percpu_size(void) ; extern void *__memcpy(void * , void const * , size_t ) ; extern void *__memset(void * , int , size_t ) ; __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"./arch/x86/include/asm/paravirt.h"), "i" (804), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static void *ERR_PTR(long error ) ; __inline static long PTR_ERR(void const *ptr ) ; __inline static bool IS_ERR(void const *ptr ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )ptr > 0xfffffffffffff000UL, 0L); } return (tmp != 0L); } } __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } __inline static void rep_nop(void) { { __asm__ volatile ("rep; nop": : : "memory"); return; } } __inline static void cpu_relax(void) { { { rep_nop(); } return; } } extern int debug_locks ; extern int lock_is_held(struct lockdep_map * ) ; extern void lockdep_rcu_suspicious(char const * , int const , char const * ) ; extern void __mutex_init(struct mutex * , char const * , struct lock_class_key * ) ; static void ldv_mutex_unlock_97(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_99(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_101(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_103(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_105(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_107(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_109(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_111(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_113(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_115(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_117(struct mutex *ldv_func_arg1 ) ; extern int __preempt_count ; __inline static int preempt_count(void) { int pfo_ret__ ; { { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret__): "m" (__preempt_count)); goto ldv_7157; case_2: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_7157; case_4: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_7157; case_8: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_7157; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_7157: ; return (pfo_ret__ & 2147483647); } } __inline static void __preempt_count_add(int val ) { int pao_ID__ ; { pao_ID__ = 0; { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incb %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decb %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addb %1, %%gs:%0": "+m" (__preempt_count): "qi" (val)); } goto ldv_7214; case_2: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incw %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decw %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addw %1, %%gs:%0": "+m" (__preempt_count): "ri" (val)); } goto ldv_7214; case_4: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incl %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decl %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addl %1, %%gs:%0": "+m" (__preempt_count): "ri" (val)); } goto ldv_7214; case_8: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incq %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decq %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addq %1, %%gs:%0": "+m" (__preempt_count): "re" (val)); } goto ldv_7214; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_7214: ; return; } } __inline static void __preempt_count_sub(int val ) { int pao_ID__ ; { pao_ID__ = 0; { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incb %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decb %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addb %1, %%gs:%0": "+m" (__preempt_count): "qi" (- val)); } goto ldv_7226; case_2: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incw %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decw %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addw %1, %%gs:%0": "+m" (__preempt_count): "ri" (- val)); } goto ldv_7226; case_4: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incl %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decl %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addl %1, %%gs:%0": "+m" (__preempt_count): "ri" (- val)); } goto ldv_7226; case_8: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incq %%gs:%0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decq %%gs:%0": "+m" (__preempt_count)); } else { __asm__ ("addq %1, %%gs:%0": "+m" (__preempt_count): "re" (- val)); } goto ldv_7226; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_7226: ; return; } } __inline static bool arch_static_branch(struct static_key *key ) { { __asm__ volatile ("":); return (0); return (1); } } __inline static bool static_key_false(struct static_key *key ) { bool tmp ; { { tmp = arch_static_branch(key); } return (tmp); } } extern bool rcu_is_watching(void) ; extern bool rcu_lockdep_current_cpu_online(void) ; extern struct lockdep_map rcu_sched_lock_map ; extern int debug_lockdep_rcu_enabled(void) ; __inline static int rcu_read_lock_sched_held(void) { int lockdep_opinion ; int tmp ; bool tmp___0 ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; int tmp___4 ; unsigned long _flags ; int tmp___5 ; int tmp___6 ; { { lockdep_opinion = 0; tmp = debug_lockdep_rcu_enabled(); } if (tmp == 0) { return (1); } else { } { tmp___0 = rcu_is_watching(); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (0); } else { } { tmp___2 = rcu_lockdep_current_cpu_online(); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { return (0); } else { } if (debug_locks != 0) { { lockdep_opinion = lock_is_held(& rcu_sched_lock_map); } } else { } if (lockdep_opinion != 0) { tmp___6 = 1; } else { { tmp___4 = preempt_count(); } if (tmp___4 != 0) { tmp___6 = 1; } else { { _flags = arch_local_save_flags(); tmp___5 = arch_irqs_disabled_flags(_flags); } if (tmp___5 != 0) { tmp___6 = 1; } else { tmp___6 = 0; } } } return (tmp___6); } } __inline static void rcu_read_lock_sched_notrace(void) { { { __preempt_count_add(1); __asm__ volatile ("": : : "memory"); } return; } } __inline static void rcu_read_unlock_sched_notrace(void) { { { __asm__ volatile ("": : : "memory"); __preempt_count_sub(1); } return; } } extern ssize_t seq_read(struct file * , char * , size_t , loff_t * ) ; extern loff_t seq_lseek(struct file * , loff_t , int ) ; extern int seq_puts(struct seq_file * , char const * ) ; extern int seq_printf(struct seq_file * , char const * , ...) ; extern int single_open(struct file * , int (*)(struct seq_file * , void * ) , void * ) ; extern int single_release(struct inode * , struct file * ) ; __inline static unsigned char readb(void const volatile *addr ) { unsigned char ret ; { __asm__ volatile ("movb %1,%0": "=q" (ret): "m" (*((unsigned char volatile *)addr)): "memory"); return (ret); } } __inline static unsigned short readw(void const volatile *addr ) { unsigned short ret ; { __asm__ volatile ("movw %1,%0": "=r" (ret): "m" (*((unsigned short volatile *)addr)): "memory"); return (ret); } } __inline static void writeb(unsigned char val , void volatile *addr ) { { __asm__ volatile ("movb %0,%1": : "q" (val), "m" (*((unsigned char volatile *)addr)): "memory"); return; } } __inline static void writew(unsigned short val , void volatile *addr ) { { __asm__ volatile ("movw %0,%1": : "r" (val), "m" (*((unsigned short volatile *)addr)): "memory"); return; } } extern int device_create_file(struct device * , struct device_attribute const * ) ; extern void device_remove_file(struct device * , struct device_attribute const * ) ; extern void *devm_kmalloc(struct device * , size_t , gfp_t ) ; __inline static void *devm_kzalloc(struct device *dev , size_t size , gfp_t gfp ) { void *tmp ; { { tmp = devm_kmalloc(dev, size, gfp | 32768U); } return (tmp); } } __inline static void *dev_get_drvdata(struct device const *dev ) { { return ((void *)dev->driver_data); } } __inline static void dev_set_drvdata(struct device *dev , void *data ) { { dev->driver_data = data; return; } } extern void dev_err(struct device const * , char const * , ...) ; extern void _dev_info(struct device const * , char const * , ...) ; extern struct resource *platform_get_resource(struct platform_device * , unsigned int , unsigned int ) ; extern void platform_driver_unregister(struct platform_driver * ) ; static void ldv_platform_driver_unregister_118(struct platform_driver *ldv_func_arg1 ) ; extern int __platform_driver_probe(struct platform_driver * , int (*)(struct platform_device * ) , struct module * ) ; __inline static void *platform_get_drvdata(struct platform_device const *pdev ) { void *tmp ; { { tmp = dev_get_drvdata(& pdev->dev); } return (tmp); } } __inline static void platform_set_drvdata(struct platform_device *pdev , void *data ) { { { dev_set_drvdata(& pdev->dev, data); } return; } } extern void *devm_ioremap(struct device * , resource_size_t , resource_size_t ) ; extern void kfree(void const * ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; extern void msleep(unsigned int ) ; extern void usleep_range(unsigned long , unsigned long ) ; extern int mtd_device_parse_register(struct mtd_info * , char const * const * , struct mtd_part_parser_data * , struct mtd_partition const * , int ) ; extern int mtd_device_unregister(struct mtd_info * ) ; extern u8 const byte_rev_table[256U] ; __inline static u8 __bitrev8(u8 byte ) { { return ((u8 )byte_rev_table[(int )byte]); } } extern struct bch_control *init_bch(int , int , unsigned int ) ; extern void free_bch(struct bch_control * ) ; extern int decode_bch(struct bch_control * , uint8_t const * , unsigned int , uint8_t const * , uint8_t const * , unsigned int const * , unsigned int * ) ; extern struct dentry *debugfs_create_file(char const * , umode_t , struct dentry * , void * , struct file_operations const * ) ; extern struct dentry *debugfs_create_dir(char const * , struct dentry * ) ; extern void debugfs_remove_recursive(struct dentry * ) ; struct tracepoint __tracepoint_docg3_io ; __inline static void trace_docg3_io(int op , int width , u16 reg , int val ) { struct tracepoint_func *it_func_ptr ; void *it_func ; void *__data ; struct tracepoint_func *________p1 ; struct tracepoint_func *_________p1 ; struct tracepoint_func *__var ; bool __warned ; int tmp ; int tmp___0 ; bool tmp___1 ; struct tracepoint_func *________p1___0 ; struct tracepoint_func *_________p1___0 ; struct tracepoint_func *__var___0 ; bool __warned___0 ; int tmp___2 ; int tmp___3 ; { { tmp___1 = static_key_false(& __tracepoint_docg3_io.key); } if ((int )tmp___1) { { rcu_read_lock_sched_notrace(); __var = (struct tracepoint_func *)0; _________p1 = *((struct tracepoint_func * volatile *)(& __tracepoint_docg3_io.funcs)); ________p1 = _________p1; tmp = debug_lockdep_rcu_enabled(); } if (tmp != 0 && ! __warned) { { tmp___0 = rcu_read_lock_sched_held(); } if (tmp___0 == 0) { { __warned = 1; lockdep_rcu_suspicious("drivers/mtd/devices/docg3.h", 362, "suspicious rcu_dereference_check() usage"); } } else { } } else { } it_func_ptr = ________p1; if ((unsigned long )it_func_ptr != (unsigned long )((struct tracepoint_func *)0)) { ldv_32185: { it_func = it_func_ptr->func; __data = it_func_ptr->data; (*((void (*)(void * , int , int , u16 , int ))it_func))(__data, op, width, (int )reg, val); it_func_ptr = it_func_ptr + 1; } if ((unsigned long )it_func_ptr->func != (unsigned long )((void *)0)) { goto ldv_32185; } else { } } else { } { rcu_read_unlock_sched_notrace(); } } else { } { rcu_read_lock_sched_notrace(); __var___0 = (struct tracepoint_func *)0; _________p1___0 = *((struct tracepoint_func * volatile *)(& __tracepoint_docg3_io.funcs)); ________p1___0 = _________p1___0; tmp___2 = debug_lockdep_rcu_enabled(); } if (tmp___2 != 0 && ! __warned___0) { { tmp___3 = rcu_read_lock_sched_held(); } if (tmp___3 == 0) { { __warned___0 = 1; lockdep_rcu_suspicious("drivers/mtd/devices/docg3.h", 362, "suspicious rcu_dereference_check() usage"); } } else { } } else { } { rcu_read_unlock_sched_notrace(); } return; } } static char const __tpstrtab_docg3_io[9U] = { 'd', 'o', 'c', 'g', '3', '_', 'i', 'o', '\000'}; struct tracepoint __tracepoint_docg3_io = {(char const *)(& __tpstrtab_docg3_io), {{0}, (struct jump_entry *)0, 0}, (void (*)(void))0, (void (*)(void))0, (struct tracepoint_func *)0}; __inline static bool seq_buf_has_overflowed(struct seq_buf *s ) { { return (s->len > s->size); } } __inline static bool trace_seq_has_overflowed(struct trace_seq *s ) { bool tmp ; int tmp___0 ; { if (s->full != 0) { tmp___0 = 1; } else { { tmp = seq_buf_has_overflowed(& s->seq); } if ((int )tmp) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((bool )tmp___0); } } extern void trace_seq_printf(struct trace_seq * , char const * , ...) ; extern int ftrace_raw_output_prep(struct trace_iterator * , struct trace_event * ) ; __inline static enum print_line_t trace_handle_return(struct trace_seq *s ) { bool tmp ; { { tmp = trace_seq_has_overflowed(s); } return ((int )tmp ? 0 : 1); } } extern int ftrace_event_reg(struct ftrace_event_call * , enum trace_reg , void * ) ; extern int trace_event_raw_init(struct ftrace_event_call * ) ; extern int trace_define_field(struct ftrace_event_call * , char const * , char const * , int , int , int , int ) ; static enum print_line_t ftrace_raw_output_docg3_io(struct trace_iterator *iter , int flags , struct trace_event *trace_event ) { struct trace_seq *s ; struct trace_seq *p ; struct ftrace_raw_docg3_io *field ; int ret ; enum print_line_t tmp ; { { s = & iter->seq; p = & iter->tmp_seq; field = (struct ftrace_raw_docg3_io *)iter->ent; ret = ftrace_raw_output_prep(iter, trace_event); } if (ret != 1) { return ((enum print_line_t )ret); } else { } { trace_seq_printf(s, "docg3: %s%02d reg=%04x, val=%04x\n", field->op != 0 ? (char *)"write" : (char *)"read", (int )field->width, (int )field->reg, field->val); tmp = trace_handle_return(s); } return (tmp); } } static int ftrace_define_fields_docg3_io(struct ftrace_event_call *event_call ) { int ret ; { { ret = trace_define_field(event_call, "int", "op", 8, 4, 1, 0); } if (ret != 0) { return (ret); } else { } { ret = trace_define_field(event_call, "unsigned char", "width", 12, 1, 0, 0); } if (ret != 0) { return (ret); } else { } { ret = trace_define_field(event_call, "u16", "reg", 14, 2, 0, 0); } if (ret != 0) { return (ret); } else { } { ret = trace_define_field(event_call, "int", "val", 16, 4, 1, 0); } if (ret != 0) { return (ret); } else { } return (ret); } } static unsigned int reliable_mode ; static struct nand_ecclayout docg3_oobinfo = {8U, {7U, 8U, 9U, 10U, 11U, 12U, 13U, 14U}, 8U, {{0U, 7U}, {15U, 1U}}}; __inline static u8 doc_readb(struct docg3 *docg3 , u16 reg ) { u8 val ; unsigned char tmp ; { { tmp = readb((void const volatile *)(docg3->cascade)->base + (unsigned long )reg); val = tmp; trace_docg3_io(0, 8, (int )reg, (int )val); } return (val); } } __inline static u16 doc_readw(struct docg3 *docg3 , u16 reg ) { u16 val ; unsigned short tmp ; { { tmp = readw((void const volatile *)(docg3->cascade)->base + (unsigned long )reg); val = tmp; trace_docg3_io(0, 16, (int )reg, (int )val); } return (val); } } __inline static void doc_writeb(struct docg3 *docg3 , u8 val , u16 reg ) { { { writeb((int )val, (void volatile *)(docg3->cascade)->base + (unsigned long )reg); trace_docg3_io(1, 8, (int )reg, (int )val); } return; } } __inline static void doc_writew(struct docg3 *docg3 , u16 val , u16 reg ) { { { writew((int )val, (void volatile *)(docg3->cascade)->base + (unsigned long )reg); trace_docg3_io(1, 16, (int )reg, (int )val); } return; } } __inline static void doc_flash_command(struct docg3 *docg3 , u8 cmd ) { { { doc_writeb(docg3, (int )cmd, 4148); } return; } } __inline static void doc_flash_sequence(struct docg3 *docg3 , u8 seq ) { { { doc_writeb(docg3, (int )seq, 4146); } return; } } __inline static void doc_flash_address(struct docg3 *docg3 , u8 addr ) { { { doc_writeb(docg3, (int )addr, 4150); } return; } } static char const * const part_probes[3U] = { "cmdlinepart", "saftlpart", (char const *)0}; static int doc_register_readb(struct docg3 *docg3 , int reg ) { u8 val ; { { doc_writew(docg3, (int )((u16 )reg), 4122); val = doc_readb(docg3, (int )((u16 )reg)); } return ((int )val); } } static int doc_register_readw(struct docg3 *docg3 , int reg ) { u16 val ; { { doc_writew(docg3, (int )((u16 )reg), 4122); val = doc_readw(docg3, (int )((u16 )reg)); } return ((int )val); } } static void doc_delay(struct docg3 *docg3 , int nbNOPs ) { int i ; { i = 0; goto ldv_35385; ldv_35384: { doc_writeb(docg3, 0, 4158); i = i + 1; } ldv_35385: ; if (i < nbNOPs) { goto ldv_35384; } else { } return; } } static int is_prot_seq_error(struct docg3 *docg3 ) { int ctrl ; { { ctrl = doc_register_readb(docg3, 4152); } return (ctrl & 6); } } static int doc_is_ready(struct docg3 *docg3 ) { int ctrl ; { { ctrl = doc_register_readb(docg3, 4152); } return (ctrl & 1); } } static int doc_wait_ready(struct docg3 *docg3 ) { int maxWaitCycles ; int tmp ; int tmp___0 ; { maxWaitCycles = 100; ldv_35399: { doc_delay(docg3, 4); cpu_relax(); tmp = doc_is_ready(docg3); } if (tmp == 0) { tmp___0 = maxWaitCycles; maxWaitCycles = maxWaitCycles - 1; if (tmp___0 != 0) { goto ldv_35399; } else { goto ldv_35400; } } else { } ldv_35400: { doc_delay(docg3, 2); } if (maxWaitCycles > 0) { return (0); } else { return (-5); } } } static int doc_reset_seq(struct docg3 *docg3 ) { int ret ; struct _ddebug descriptor ; long tmp ; { { doc_writeb(docg3, 16, 4152); doc_flash_sequence(docg3, 0); doc_flash_command(docg3, 255); doc_delay(docg3, 2); ret = doc_wait_ready(docg3); descriptor.modname = "docg3"; descriptor.function = "doc_reset_seq"; descriptor.filename = "drivers/mtd/devices/docg3.c"; descriptor.format = "doc_reset_seq() -> isReady=%s\n"; descriptor.lineno = 210U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)docg3->dev, "doc_reset_seq() -> isReady=%s\n", ret != 0 ? (char *)"false" : (char *)"true"); } } else { } return (ret); } } static void doc_read_data_area(struct docg3 *docg3 , void *buf , int len , int first ) { int i ; int cdr ; int len4 ; u16 data16 ; u16 *dst16 ; u8 data8 ; u8 *dst8 ; struct _ddebug descriptor ; long tmp ; { { descriptor.modname = "docg3"; descriptor.function = "doc_read_data_area"; descriptor.filename = "drivers/mtd/devices/docg3.c"; descriptor.format = "doc_read_data_area(buf=%p, len=%d)\n"; descriptor.lineno = 230U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)docg3->dev, "doc_read_data_area(buf=%p, len=%d)\n", buf, len); } } else { } cdr = len & 1; len4 = len - cdr; if (first != 0) { { doc_writew(docg3, 2048, 4122); } } else { } dst16 = (u16 *)buf; i = 0; goto ldv_35423; ldv_35422: { data16 = doc_readw(docg3, 2048); } if ((unsigned long )dst16 != (unsigned long )((u16 *)0U)) { *dst16 = data16; dst16 = dst16 + 1; } else { } i = i + 2; ldv_35423: ; if (i < len4) { goto ldv_35422; } else { } if (cdr != 0) { { doc_writew(docg3, 18432, 4122); doc_delay(docg3, 1); dst8 = (u8 *)dst16; i = 0; } goto ldv_35426; ldv_35425: { data8 = doc_readb(docg3, 2048); } if ((unsigned long )dst8 != (unsigned long )((u8 *)0U)) { *dst8 = data8; dst8 = dst8 + 1; } else { } i = i + 1; ldv_35426: ; if (i < cdr) { goto ldv_35425; } else { } } else { } return; } } static void doc_write_data_area(struct docg3 *docg3 , void const *buf , int len ) { int i ; int cdr ; int len4 ; u16 *src16 ; u8 *src8 ; struct _ddebug descriptor ; long tmp ; { { descriptor.modname = "docg3"; descriptor.function = "doc_write_data_area"; descriptor.filename = "drivers/mtd/devices/docg3.c"; descriptor.format = "doc_write_data_area(buf=%p, len=%d)\n"; descriptor.lineno = 274U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)docg3->dev, "doc_write_data_area(buf=%p, len=%d)\n", buf, len); } } else { } { cdr = len & 3; len4 = len - cdr; doc_writew(docg3, 2048, 4122); src16 = (u16 *)buf; i = 0; } goto ldv_35441; ldv_35440: { doc_writew(docg3, (int )*src16, 2048); src16 = src16 + 1; i = i + 2; } ldv_35441: ; if (i < len4) { goto ldv_35440; } else { } src8 = (u8 *)src16; i = 0; goto ldv_35444; ldv_35443: { doc_writew(docg3, 18432, 4122); doc_writeb(docg3, (int )*src8, 2048); src8 = src8 + 1; i = i + 1; } ldv_35444: ; if (i < cdr) { goto ldv_35443; } else { } return; } } static void doc_set_reliable_mode(struct docg3 *docg3 ) { char *strmode[4U] ; struct _ddebug descriptor ; long tmp ; { { strmode[0] = (char *)"normal"; strmode[1] = (char *)"fast"; strmode[2] = (char *)"reliable"; strmode[3] = (char *)"invalid"; descriptor.modname = "docg3"; descriptor.function = "doc_set_reliable_mode"; descriptor.filename = "drivers/mtd/devices/docg3.c"; descriptor.format = "doc_set_reliable_mode(%s)\n"; descriptor.lineno = 313U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)docg3->dev, "doc_set_reliable_mode(%s)\n", strmode[(int )docg3->reliable]); } } else { } { if ((int )docg3->reliable == 0) { goto case_0; } else { } if ((int )docg3->reliable == 1) { goto case_1; } else { } if ((int )docg3->reliable == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; goto ldv_35453; case_1: /* CIL Label */ { doc_flash_sequence(docg3, 5); doc_flash_command(docg3, 162); } goto ldv_35453; case_2: /* CIL Label */ { doc_flash_sequence(docg3, 9); doc_flash_command(docg3, 162); doc_flash_command(docg3, 34); } goto ldv_35453; switch_default: /* CIL Label */ { dev_err((struct device const *)docg3->dev, "doc_set_reliable_mode(): invalid mode\n"); } goto ldv_35453; switch_break: /* CIL Label */ ; } ldv_35453: { doc_delay(docg3, 2); } return; } } static void doc_set_asic_mode(struct docg3 *docg3 , u8 mode ) { int i ; struct _ddebug descriptor ; long tmp ; { i = 0; goto ldv_35463; ldv_35462: { doc_readb(docg3, 0); i = i + 1; } ldv_35463: ; if (i <= 11) { goto ldv_35462; } else { } { mode = (u8 )((unsigned int )mode | 4U); descriptor.modname = "docg3"; descriptor.function = "doc_set_asic_mode"; descriptor.filename = "drivers/mtd/devices/docg3.c"; descriptor.format = "doc_set_asic_mode(%02x)\n"; descriptor.lineno = 351U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)docg3->dev, "doc_set_asic_mode(%02x)\n", (int )mode); } } else { } { doc_writeb(docg3, (int )mode, 4108); doc_writeb(docg3, ~ ((int )mode), 4210); doc_delay(docg3, 1); } return; } } static void doc_set_device_id(struct docg3 *docg3 , int id ) { u8 ctrl ; struct _ddebug descriptor ; long tmp ; int tmp___0 ; { { descriptor.modname = "docg3"; descriptor.function = "doc_set_device_id"; descriptor.filename = "drivers/mtd/devices/docg3.c"; descriptor.format = "doc_set_device_id(%d)\n"; descriptor.lineno = 369U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)docg3->dev, "doc_set_device_id(%d)\n", id); } } else { } { doc_writeb(docg3, (int )((u8 )id), 4106); tmp___0 = doc_register_readb(docg3, 4152); ctrl = (u8 )tmp___0; ctrl = (unsigned int )ctrl & 223U; ctrl = (u8 )((unsigned int )ctrl | 16U); doc_writeb(docg3, (int )ctrl, 4152); } return; } } static int doc_set_extra_page_mode(struct docg3 *docg3 ) { int fctrl ; struct _ddebug descriptor ; long tmp ; { { descriptor.modname = "docg3"; descriptor.function = "doc_set_extra_page_mode"; descriptor.filename = "drivers/mtd/devices/docg3.c"; descriptor.format = "doc_set_extra_page_mode()\n"; descriptor.lineno = 393U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)docg3->dev, "doc_set_extra_page_mode()\n"); } } else { } { doc_flash_sequence(docg3, 3); doc_flash_command(docg3, 60); doc_delay(docg3, 2); fctrl = doc_register_readb(docg3, 4152); } if ((fctrl & 6) != 0) { return (-5); } else { return (0); } } } static void doc_setup_addr_sector(struct docg3 *docg3 , int sector ) { { { doc_delay(docg3, 1); doc_flash_address(docg3, (int )((u8 )sector)); doc_flash_address(docg3, (int )((u8 )(sector >> 8))); doc_flash_address(docg3, (int )((u8 )(sector >> 16))); doc_delay(docg3, 1); } return; } } static void doc_setup_writeaddr_sector(struct docg3 *docg3 , int sector , int ofs ) { { { ofs = ofs >> 2; doc_delay(docg3, 1); doc_flash_address(docg3, (int )((u8 )ofs)); doc_flash_address(docg3, (int )((u8 )sector)); doc_flash_address(docg3, (int )((u8 )(sector >> 8))); doc_flash_address(docg3, (int )((u8 )(sector >> 16))); doc_delay(docg3, 1); } return; } } static int doc_read_seek(struct docg3 *docg3 , int block0 , int block1 , int page , int wear , int ofs ) { int sector ; int ret ; struct _ddebug descriptor ; long tmp ; { { ret = 0; descriptor.modname = "docg3"; descriptor.function = "doc_read_seek"; descriptor.filename = "drivers/mtd/devices/docg3.c"; descriptor.format = "doc_seek(blocks=(%d,%d), page=%d, ofs=%d, wear=%d)\n"; descriptor.lineno = 454U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)docg3->dev, "doc_seek(blocks=(%d,%d), page=%d, ofs=%d, wear=%d)\n", block0, block1, page, ofs, wear); } } else { } if (wear == 0 && ofs <= 1023) { { doc_flash_sequence(docg3, 14); doc_flash_command(docg3, 0); doc_delay(docg3, 2); } } else { { doc_flash_sequence(docg3, 16); doc_flash_command(docg3, 80); doc_delay(docg3, 2); } } { doc_set_reliable_mode(docg3); } if (wear != 0) { { ret = doc_set_extra_page_mode(docg3); } } else { } if (ret != 0) { goto out; } else { } { doc_flash_sequence(docg3, 18); sector = (block0 << 6) + (page & 63); doc_flash_command(docg3, 96); doc_setup_addr_sector(docg3, sector); sector = (block1 << 6) + (page & 63); doc_flash_command(docg3, 96); doc_setup_addr_sector(docg3, sector); doc_delay(docg3, 1); } out: ; return (ret); } } static int doc_write_seek(struct docg3 *docg3 , int block0 , int block1 , int page , int ofs ) { int ret ; int sector ; struct _ddebug descriptor ; long tmp ; { { ret = 0; descriptor.modname = "docg3"; descriptor.function = "doc_write_seek"; descriptor.filename = "drivers/mtd/devices/docg3.c"; descriptor.format = "doc_write_seek(blocks=(%d,%d), page=%d, ofs=%d)\n"; descriptor.lineno = 503U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)docg3->dev, "doc_write_seek(blocks=(%d,%d), page=%d, ofs=%d)\n", block0, block1, page, ofs); } } else { } { doc_set_reliable_mode(docg3); } if (ofs <= 1023) { { doc_flash_sequence(docg3, 14); doc_flash_command(docg3, 0); doc_delay(docg3, 2); } } else { { doc_flash_sequence(docg3, 16); doc_flash_command(docg3, 80); doc_delay(docg3, 2); } } { doc_flash_sequence(docg3, 29); doc_flash_command(docg3, 128); sector = (block0 << 6) + (page & 63); doc_setup_writeaddr_sector(docg3, sector, ofs); doc_flash_command(docg3, 17); doc_delay(docg3, 2); ret = doc_wait_ready(docg3); } if (ret != 0) { goto out; } else { } { doc_flash_command(docg3, 128); sector = (block1 << 6) + (page & 63); doc_setup_writeaddr_sector(docg3, sector, ofs); doc_delay(docg3, 1); } out: ; return (ret); } } static int doc_read_page_ecc_init(struct docg3 *docg3 , int len ) { int tmp ; { { doc_writew(docg3, (int )((u16 )(((int )((short )len) & 2047) | -26624)), 4160); doc_delay(docg3, 4); doc_register_readb(docg3, 4152); tmp = doc_wait_ready(docg3); } return (tmp); } } static int doc_write_page_ecc_init(struct docg3 *docg3 , int len ) { int tmp ; { { doc_writew(docg3, (int )((u16 )(((int )((short )len) & 2047) | 6144)), 4160); doc_delay(docg3, 4); doc_register_readb(docg3, 4152); tmp = doc_wait_ready(docg3); } return (tmp); } } static void doc_ecc_disable(struct docg3 *docg3 ) { { { doc_writew(docg3, 32768, 4160); doc_delay(docg3, 4); } return; } } static void doc_hamming_ecc_init(struct docg3 *docg3 , int nb_bytes ) { u8 ecc_conf1 ; int tmp ; { { tmp = doc_register_readb(docg3, 4162); ecc_conf1 = (u8 )tmp; ecc_conf1 = (unsigned int )ecc_conf1 & 240U; ecc_conf1 = (u8 )((int )((signed char )ecc_conf1) | ((int )((signed char )nb_bytes) & 15)); doc_writeb(docg3, (int )ecc_conf1, 4162); } return; } } static int doc_ecc_bch_fix_data(struct docg3 *docg3 , void *buf , u8 *hwecc ) { u8 ecc[7U] ; int errorpos[4U] ; int i ; int numerrs ; u8 __x ; u8 tmp ; long tmp___0 ; struct _ddebug descriptor ; long tmp___1 ; { i = 0; goto ldv_35544; ldv_35543: { __x = *(hwecc + (unsigned long )i); tmp = __bitrev8((int )__x); ecc[i] = (u8 )((int )tmp); i = i + 1; } ldv_35544: ; if (i <= 6) { goto ldv_35543; } else { } { numerrs = decode_bch((docg3->cascade)->bch, (uint8_t const *)0U, 520U, (uint8_t const *)0U, (uint8_t const *)(& ecc), (unsigned int const *)0U, (unsigned int *)(& errorpos)); tmp___0 = ldv__builtin_expect(numerrs == -22, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/mtd/devices/docg3.c"), "i" (645), "i" (12UL)); __builtin_unreachable(); } } else { } if (numerrs < 0) { goto out; } else { } i = 0; goto ldv_35548; ldv_35547: errorpos[i] = (errorpos[i] & -8) | (~ errorpos[i] & 7); i = i + 1; ldv_35548: ; if (i < numerrs) { goto ldv_35547; } else { } i = 0; goto ldv_35551; ldv_35550: ; if (errorpos[i] <= 4159) { { change_bit((long )errorpos[i], (unsigned long volatile *)buf); } } else { } i = i + 1; ldv_35551: ; if (i < numerrs) { goto ldv_35550; } else { } out: { descriptor.modname = "docg3"; descriptor.function = "doc_ecc_bch_fix_data"; descriptor.filename = "drivers/mtd/devices/docg3.c"; descriptor.format = "doc_ecc_bch_fix_data: flipped %d bits\n"; descriptor.lineno = 656U; descriptor.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___1 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)docg3->dev, "doc_ecc_bch_fix_data: flipped %d bits\n", numerrs); } } else { } return (numerrs); } } static int doc_read_page_prepare(struct docg3 *docg3 , int block0 , int block1 , int page , int offset ) { int wear_area ; int ret ; struct _ddebug descriptor ; long tmp ; { { wear_area = 0; ret = 0; descriptor.modname = "docg3"; descriptor.function = "doc_read_page_prepare"; descriptor.filename = "drivers/mtd/devices/docg3.c"; descriptor.format = "doc_read_page_prepare(blocks=(%d,%d), page=%d, ofsInPage=%d)\n"; descriptor.lineno = 693U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)docg3->dev, "doc_read_page_prepare(blocks=(%d,%d), page=%d, ofsInPage=%d)\n", block0, block1, page, offset); } } else { } if (offset > 1055) { wear_area = 1; } else { } if (wear_area == 0 && offset > 1056) { return (-22); } else { } { doc_set_device_id(docg3, (int )docg3->device_id); ret = doc_reset_seq(docg3); } if (ret != 0) { goto err; } else { } { ret = doc_read_seek(docg3, block0, block1, page, wear_area, offset); } if (ret != 0) { goto err; } else { } { doc_flash_command(docg3, 48); doc_delay(docg3, 2); doc_wait_ready(docg3); doc_flash_command(docg3, 5); doc_delay(docg3, 1); } if (offset > 1023) { offset = offset + -1024; } else { } { doc_flash_address(docg3, (int )((u8 )(offset >> 2))); doc_delay(docg3, 1); doc_wait_ready(docg3); doc_flash_command(docg3, 224); } return (0); err: { doc_writeb(docg3, 0, 4126); doc_delay(docg3, 2); } return (-5); } } static int doc_read_page_getbytes(struct docg3 *docg3 , int len , u_char *buf , int first , int last_odd ) { { if (last_odd != 0 && len > 0) { { doc_read_data_area(docg3, (void *)buf, 1, first); doc_read_data_area(docg3, (unsigned long )buf != (unsigned long )((u_char *)0U) ? (void *)buf + 1U : (void *)buf, len + -1, 0); } } else { { doc_read_data_area(docg3, (void *)buf, len, first); } } { doc_delay(docg3, 2); } return (len); } } static void doc_write_page_putbytes(struct docg3 *docg3 , int len , u_char const *buf ) { { { doc_write_data_area(docg3, (void const *)buf, len); doc_delay(docg3, 2); } return; } } static void doc_get_bch_hw_ecc(struct docg3 *docg3 , u8 *hwecc ) { int i ; int tmp ; { i = 0; goto ldv_35585; ldv_35584: { tmp = doc_register_readb(docg3, i + 4168); *(hwecc + (unsigned long )i) = (u8 )tmp; i = i + 1; } ldv_35585: ; if (i <= 6) { goto ldv_35584; } else { } return; } } static void doc_page_finish(struct docg3 *docg3 ) { { { doc_writeb(docg3, 0, 4126); doc_delay(docg3, 2); } return; } } static void doc_read_page_finish(struct docg3 *docg3 ) { { { doc_page_finish(docg3); doc_set_device_id(docg3, 0); } return; } } static void calc_block_sector(loff_t from , int *block0 , int *block1 , int *page , int *ofs , int reliable ) { uint sector ; uint pages_biblock ; { pages_biblock = 128U; if ((unsigned int )reliable - 1U <= 1U) { pages_biblock = pages_biblock / 2U; } else { } sector = (uint )(from / 512LL); *block0 = (int )((sector / pages_biblock) * 2U); *block1 = *block0 + 1; *page = (int )(sector % pages_biblock); *page = *page / 2; if ((unsigned int )reliable - 1U <= 1U) { *page = *page * 2; } else { } if ((int )sector & 1) { *ofs = 528; } else { *ofs = 0; } return; } } static int doc_read_oob(struct mtd_info *mtd , loff_t from , struct mtd_oob_ops *ops ) { struct docg3 *docg3 ; int block0 ; int block1 ; int page ; int ret ; int skip ; int ofs ; u8 *oobbuf ; u8 *buf ; size_t len ; size_t ooblen ; size_t nbdata ; size_t nboob ; u8 hwecc[7U] ; u8 eccconf1 ; int max_bitflips ; struct _ddebug descriptor ; long tmp ; size_t __min1 ; size_t __min2 ; size_t __min1___0 ; size_t __min2___0 ; int tmp___0 ; struct _ddebug descriptor___0 ; long tmp___1 ; struct _ddebug descriptor___1 ; long tmp___2 ; struct _ddebug descriptor___2 ; long tmp___3 ; struct _ddebug descriptor___3 ; long tmp___4 ; struct _ddebug descriptor___4 ; long tmp___5 ; struct _ddebug descriptor___5 ; long tmp___6 ; int tmp___7 ; int _max1 ; int _max2 ; { docg3 = (struct docg3 *)mtd->priv; ofs = 0; oobbuf = ops->oobbuf; buf = ops->datbuf; max_bitflips = 0; if ((unsigned long )buf != (unsigned long )((u8 *)0U)) { len = ops->len; } else { len = 0UL; } if ((unsigned long )oobbuf != (unsigned long )((u8 *)0U)) { ooblen = ops->ooblen; } else { ooblen = 0UL; } if ((unsigned long )oobbuf != (unsigned long )((u8 *)0U) && ops->mode == 0U) { oobbuf = oobbuf + (unsigned long )ops->ooboffs; } else { } { descriptor.modname = "docg3"; descriptor.function = "doc_read_oob"; descriptor.filename = "drivers/mtd/devices/docg3.c"; descriptor.format = "doc_read_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n"; descriptor.lineno = 881U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)docg3->dev, "doc_read_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n", from, ops->mode, buf, len, oobbuf, ooblen); } } else { } if ((ooblen & 15UL) != 0UL) { return (-22); } else { } if ((unsigned long long )from + (unsigned long long )len > mtd->size) { return (-22); } else { } { ops->oobretlen = 0UL; ops->retlen = 0UL; ret = 0; skip = (int )(from % 512LL); ldv_mutex_lock_96(& (docg3->cascade)->lock); } goto ldv_35644; ldv_35643: { calc_block_sector(from - (loff_t )skip, & block0, & block1, & page, & ofs, (int )docg3->reliable); __min1 = len; __min2 = (size_t )(512 - skip); nbdata = __min1 < __min2 ? __min1 : __min2; __min1___0 = ooblen; __min2___0 = 16UL; nboob = __min1___0 < __min2___0 ? __min1___0 : __min2___0; ret = doc_read_page_prepare(docg3, block0, block1, page, ofs); } if (ret < 0) { goto out; } else { } { ret = doc_read_page_ecc_init(docg3, 527); } if (ret < 0) { goto err_in_read; } else { } { ret = doc_read_page_getbytes(docg3, skip, (u_char *)0U, 1, 0); } if (ret < skip) { goto err_in_read; } else { } { ret = doc_read_page_getbytes(docg3, (int )nbdata, buf, 0, skip % 2); } if ((size_t )ret < nbdata) { goto err_in_read; } else { } { doc_read_page_getbytes(docg3, (int )((- ((unsigned int )nbdata) - (unsigned int )skip) + 512U), (u_char *)0U, 0, (int )((unsigned int )skip + (unsigned int )nbdata) & 1); ret = doc_read_page_getbytes(docg3, (int )nboob, oobbuf, 0, 0); } if ((size_t )ret < nboob) { goto err_in_read; } else { } { doc_read_page_getbytes(docg3, (int )(16U - (unsigned int )nboob), (u_char *)0U, 0, (int )nboob & 1); doc_get_bch_hw_ecc(docg3, (u8 *)(& hwecc)); tmp___0 = doc_register_readb(docg3, 4162); eccconf1 = (u8 )tmp___0; } if (nboob > 15UL) { { descriptor___0.modname = "docg3"; descriptor___0.function = "doc_read_oob"; descriptor___0.filename = "drivers/mtd/devices/docg3.c"; descriptor___0.format = "OOB - INFO: %*phC\n"; descriptor___0.lineno = 923U; descriptor___0.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___1 != 0L) { { __dynamic_dev_dbg(& descriptor___0, (struct device const *)docg3->dev, "OOB - INFO: %*phC\n", 7, oobbuf); } } else { } { descriptor___1.modname = "docg3"; descriptor___1.function = "doc_read_oob"; descriptor___1.filename = "drivers/mtd/devices/docg3.c"; descriptor___1.format = "OOB - HAMMING: %02x\n"; descriptor___1.lineno = 924U; descriptor___1.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___2 != 0L) { { __dynamic_dev_dbg(& descriptor___1, (struct device const *)docg3->dev, "OOB - HAMMING: %02x\n", (int )*(oobbuf + 7UL)); } } else { } { descriptor___2.modname = "docg3"; descriptor___2.function = "doc_read_oob"; descriptor___2.filename = "drivers/mtd/devices/docg3.c"; descriptor___2.format = "OOB - BCH_ECC: %*phC\n"; descriptor___2.lineno = 925U; descriptor___2.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___3 != 0L) { { __dynamic_dev_dbg(& descriptor___2, (struct device const *)docg3->dev, "OOB - BCH_ECC: %*phC\n", 7, oobbuf + 8UL); } } else { } { descriptor___3.modname = "docg3"; descriptor___3.function = "doc_read_oob"; descriptor___3.filename = "drivers/mtd/devices/docg3.c"; descriptor___3.format = "OOB - UNUSED: %02x\n"; descriptor___3.lineno = 926U; descriptor___3.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); } if (tmp___4 != 0L) { { __dynamic_dev_dbg(& descriptor___3, (struct device const *)docg3->dev, "OOB - UNUSED: %02x\n", (int )*(oobbuf + 15UL)); } } else { } } else { } { descriptor___4.modname = "docg3"; descriptor___4.function = "doc_read_oob"; descriptor___4.filename = "drivers/mtd/devices/docg3.c"; descriptor___4.format = "ECC checks: ECCConf1=%x\n"; descriptor___4.lineno = 928U; descriptor___4.flags = 0U; tmp___5 = ldv__builtin_expect((long )descriptor___4.flags & 1L, 0L); } if (tmp___5 != 0L) { { __dynamic_dev_dbg(& descriptor___4, (struct device const *)docg3->dev, "ECC checks: ECCConf1=%x\n", (int )eccconf1); } } else { } { descriptor___5.modname = "docg3"; descriptor___5.function = "doc_read_oob"; descriptor___5.filename = "drivers/mtd/devices/docg3.c"; descriptor___5.format = "ECC HW_ECC: %*phC\n"; descriptor___5.lineno = 929U; descriptor___5.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___5.flags & 1L, 0L); } if (tmp___6 != 0L) { { __dynamic_dev_dbg(& descriptor___5, (struct device const *)docg3->dev, "ECC HW_ECC: %*phC\n", 7, (u8 *)(& hwecc)); } } else { } { ret = -5; tmp___7 = is_prot_seq_error(docg3); } if (tmp___7 != 0) { goto err_in_read; } else { } ret = 0; if (((block0 > 5 && (int )((signed char )eccconf1) < 0) && ((int )eccconf1 & 32) != 0) && (ops->mode != 2U && nbdata == 512UL)) { { ret = doc_ecc_bch_fix_data(docg3, (void *)buf, (u8 *)(& hwecc)); } if (ret < 0) { mtd->ecc_stats.failed = mtd->ecc_stats.failed + 1U; ret = -74; } else { } if (ret > 0) { mtd->ecc_stats.corrected = mtd->ecc_stats.corrected + (__u32 )ret; _max1 = max_bitflips; _max2 = ret; max_bitflips = _max1 > _max2 ? _max1 : _max2; ret = max_bitflips; } else { } } else { } { doc_read_page_finish(docg3); ops->retlen = ops->retlen + nbdata; ops->oobretlen = ops->oobretlen + nboob; buf = buf + nbdata; oobbuf = oobbuf + nboob; len = len - nbdata; ooblen = ooblen - nboob; from = from + 512LL; skip = 0; } ldv_35644: ; if (ret >= 0 && (len | ooblen) != 0UL) { goto ldv_35643; } else { } out: { ldv_mutex_unlock_97(& (docg3->cascade)->lock); } return (ret); err_in_read: { doc_read_page_finish(docg3); } goto out; } } static int doc_read(struct mtd_info *mtd , loff_t from , size_t len , size_t *retlen , u_char *buf ) { struct mtd_oob_ops ops ; size_t ret ; int tmp ; { { __memset((void *)(& ops), 0, 64UL); ops.datbuf = buf; ops.len = len; ops.mode = 1U; tmp = doc_read_oob(mtd, from, & ops); ret = (size_t )tmp; *retlen = ops.retlen; } return ((int )ret); } } static int doc_reload_bbt(struct docg3 *docg3 ) { int block ; int ret ; int nbpages ; int page ; u_char *buf ; { block = 0; ret = 0; buf = docg3->bbt; nbpages = (docg3->max_block + 4096) / 4096; page = 0; goto ldv_35664; ldv_35663: { ret = doc_read_page_prepare(docg3, block, block + 1, page + 4, 0); } if (ret == 0) { { ret = doc_read_page_ecc_init(docg3, 512); } } else { } if (ret == 0) { { doc_read_page_getbytes(docg3, 512, buf, 1, 0); } } else { } buf = buf + 512UL; page = page + 1; ldv_35664: ; if (ret == 0 && page < nbpages) { goto ldv_35663; } else { } { doc_read_page_finish(docg3); } return (ret); } } static int doc_block_isbad(struct mtd_info *mtd , loff_t from ) { struct docg3 *docg3 ; int block0 ; int block1 ; int page ; int ofs ; int is_good ; struct _ddebug descriptor ; long tmp ; { { docg3 = (struct docg3 *)mtd->priv; calc_block_sector(from, & block0, & block1, & page, & ofs, (int )docg3->reliable); descriptor.modname = "docg3"; descriptor.function = "doc_block_isbad"; descriptor.filename = "drivers/mtd/devices/docg3.c"; descriptor.format = "doc_block_isbad(from=%lld) => block=(%d,%d), page=%d, ofs=%d\n"; descriptor.lineno = 1038U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)docg3->dev, "doc_block_isbad(from=%lld) => block=(%d,%d), page=%d, ofs=%d\n", from, block0, block1, page, ofs); } } else { } if (block0 <= 5) { return (0); } else { } if (block1 > docg3->max_block) { return (-22); } else { } is_good = (int )*(docg3->bbt + (unsigned long )(block0 >> 3)) & (1 << (block0 & 7)); return (is_good == 0); } } static int doc_get_op_status(struct docg3 *docg3 ) { u8 status ; { { doc_flash_sequence(docg3, 49); doc_flash_command(docg3, 113); doc_delay(docg3, 5); doc_ecc_disable(docg3); doc_read_data_area(docg3, (void *)(& status), 1, 1); } return ((int )status); } } static int doc_write_erase_wait_status(struct docg3 *docg3 ) { int i ; int status ; int ret ; int tmp ; struct _ddebug descriptor ; long tmp___0 ; int tmp___1 ; struct _ddebug descriptor___0 ; long tmp___2 ; { ret = 0; i = 0; goto ldv_35689; ldv_35688: { msleep(20U); i = i + 1; } ldv_35689: { tmp = doc_is_ready(docg3); } if (tmp == 0 && i <= 4) { goto ldv_35688; } else { } { tmp___1 = doc_is_ready(docg3); } if (tmp___1 == 0) { { descriptor.modname = "docg3"; descriptor.function = "doc_write_erase_wait_status"; descriptor.filename = "drivers/mtd/devices/docg3.c"; descriptor.format = "Timeout reached and the chip is still not ready\n"; descriptor.lineno = 1131U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)docg3->dev, "Timeout reached and the chip is still not ready\n"); } } else { } ret = -11; goto out; } else { } { status = doc_get_op_status(docg3); } if (status & 1) { { descriptor___0.modname = "docg3"; descriptor___0.function = "doc_write_erase_wait_status"; descriptor___0.filename = "drivers/mtd/devices/docg3.c"; descriptor___0.format = "Erase/Write failed on (a) plane(s), status = %x\n"; descriptor___0.lineno = 1139U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___2 != 0L) { { __dynamic_dev_dbg(& descriptor___0, (struct device const *)docg3->dev, "Erase/Write failed on (a) plane(s), status = %x\n", status); } } else { } ret = -5; } else { } out: { doc_page_finish(docg3); } return (ret); } } static int doc_erase_block(struct docg3 *docg3 , int block0 , int block1 ) { int ret ; int sector ; struct _ddebug descriptor ; long tmp ; int tmp___0 ; int tmp___1 ; { { descriptor.modname = "docg3"; descriptor.function = "doc_erase_block"; descriptor.filename = "drivers/mtd/devices/docg3.c"; descriptor.format = "doc_erase_block(blocks=(%d,%d))\n"; descriptor.lineno = 1163U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)docg3->dev, "doc_erase_block(blocks=(%d,%d))\n", block0, block1); } } else { } { ret = doc_reset_seq(docg3); } if (ret != 0) { return (-5); } else { } { doc_set_reliable_mode(docg3); doc_flash_sequence(docg3, 39); sector = block0 << 6; doc_flash_command(docg3, 96); doc_setup_addr_sector(docg3, sector); sector = block1 << 6; doc_flash_command(docg3, 96); doc_setup_addr_sector(docg3, sector); doc_delay(docg3, 1); doc_flash_command(docg3, 208); doc_delay(docg3, 2); tmp___0 = is_prot_seq_error(docg3); } if (tmp___0 != 0) { { dev_err((struct device const *)docg3->dev, "Erase blocks %d,%d error\n", block0, block1); } return (-5); } else { } { tmp___1 = doc_write_erase_wait_status(docg3); } return (tmp___1); } } static int doc_erase(struct mtd_info *mtd , struct erase_info *info ) { struct docg3 *docg3 ; uint64_t len ; int block0 ; int block1 ; int page ; int ret ; int ofs ; struct _ddebug descriptor ; long tmp ; { { docg3 = (struct docg3 *)mtd->priv; ofs = 0; descriptor.modname = "docg3"; descriptor.function = "doc_erase"; descriptor.filename = "drivers/mtd/devices/docg3.c"; descriptor.format = "doc_erase(from=%lld, len=%lld\n"; descriptor.lineno = 1207U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)docg3->dev, "doc_erase(from=%lld, len=%lld\n", info->addr, info->len); } } else { } { info->state = 1U; calc_block_sector((loff_t )(info->addr + info->len), & block0, & block1, & page, & ofs, (int )docg3->reliable); ret = -22; } if ((info->addr + info->len > mtd->size || page != 0) || ofs != 0) { goto reset_err; } else { } { ret = 0; calc_block_sector((loff_t )info->addr, & block0, & block1, & page, & ofs, (int )docg3->reliable); ldv_mutex_lock_98(& (docg3->cascade)->lock); doc_set_device_id(docg3, (int )docg3->device_id); doc_set_reliable_mode(docg3); len = info->len; } goto ldv_35719; ldv_35718: { info->state = 2U; ret = doc_erase_block(docg3, block0, block1); block0 = block0 + 2; block1 = block1 + 2; len = len - (uint64_t )mtd->erasesize; } ldv_35719: ; if (ret == 0 && len != 0ULL) { goto ldv_35718; } else { } { ldv_mutex_unlock_99(& (docg3->cascade)->lock); } if (ret != 0) { goto reset_err; } else { } info->state = 8U; return (0); reset_err: info->state = 16U; return (ret); } } static int doc_write_page(struct docg3 *docg3 , loff_t to , u_char const *buf , u_char const *oob , int autoecc ) { int block0 ; int block1 ; int page ; int ret ; int ofs ; u8 hwecc[7U] ; u8 hamming ; struct _ddebug descriptor ; long tmp ; int tmp___0 ; { { ofs = 0; descriptor.modname = "docg3"; descriptor.function = "doc_write_page"; descriptor.filename = "drivers/mtd/devices/docg3.c"; descriptor.format = "doc_write_page(to=%lld)\n"; descriptor.lineno = 1266U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)docg3->dev, "doc_write_page(to=%lld)\n", to); } } else { } { calc_block_sector(to, & block0, & block1, & page, & ofs, (int )docg3->reliable); doc_set_device_id(docg3, (int )docg3->device_id); ret = doc_reset_seq(docg3); } if (ret != 0) { goto err; } else { } { ret = doc_write_seek(docg3, block0, block1, page, ofs); } if (ret != 0) { goto err; } else { } { doc_write_page_ecc_init(docg3, 527); doc_delay(docg3, 2); doc_write_page_putbytes(docg3, 512, buf); } if ((unsigned long )oob != (unsigned long )((u_char const *)0U) && autoecc != 0) { { doc_write_page_putbytes(docg3, 7, oob); doc_delay(docg3, 2); oob = oob + 15UL; tmp___0 = doc_register_readb(docg3, 4166); hamming = (u8 )tmp___0; doc_delay(docg3, 2); doc_write_page_putbytes(docg3, 1, (u_char const *)(& hamming)); doc_delay(docg3, 2); doc_get_bch_hw_ecc(docg3, (u8 *)(& hwecc)); doc_write_page_putbytes(docg3, 7, (u_char const *)(& hwecc)); doc_delay(docg3, 2); doc_write_page_putbytes(docg3, 1, oob); } } else { } if ((unsigned long )oob != (unsigned long )((u_char const *)0U) && autoecc == 0) { { doc_write_page_putbytes(docg3, 16, oob); } } else { } { doc_delay(docg3, 2); doc_page_finish(docg3); doc_delay(docg3, 2); doc_flash_command(docg3, 16); doc_delay(docg3, 2); ret = doc_write_erase_wait_status(docg3); } return (ret); err: { doc_read_page_finish(docg3); } return (ret); } } static int doc_guess_autoecc(struct mtd_oob_ops *ops ) { int autoecc ; { { if (ops->mode == 0U) { goto case_0; } else { } if (ops->mode == 1U) { goto case_1; } else { } if (ops->mode == 2U) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; case_1: /* CIL Label */ autoecc = 1; goto ldv_35744; case_2: /* CIL Label */ autoecc = 0; goto ldv_35744; switch_default: /* CIL Label */ autoecc = -22; switch_break: /* CIL Label */ ; } ldv_35744: ; return (autoecc); } } static void doc_fill_autooob(u8 *dst , u8 *oobsrc ) { { { __memcpy((void *)dst, (void const *)oobsrc, 7UL); *(dst + 15UL) = *(oobsrc + 7UL); } return; } } static int doc_backup_oob(struct docg3 *docg3 , loff_t to , struct mtd_oob_ops *ops ) { int ooblen ; int autoecc ; { ooblen = (int )ops->ooblen; if (ooblen != 16) { return (-22); } else { } { autoecc = doc_guess_autoecc(ops); } if (autoecc < 0) { return (autoecc); } else { } docg3->oob_write_ofs = to; docg3->oob_autoecc = autoecc; if (ops->mode == 1U) { { doc_fill_autooob((u8 *)(& docg3->oob_write_buf), ops->oobbuf); ops->oobretlen = 8UL; } } else { { __memcpy((void *)(& docg3->oob_write_buf), (void const *)ops->oobbuf, 16UL); ops->oobretlen = 16UL; } } return (0); } } static int doc_write_oob(struct mtd_info *mtd , loff_t ofs , struct mtd_oob_ops *ops ) { struct docg3 *docg3 ; int ret ; int autoecc ; int oobdelta ; u8 *oobbuf ; u8 *buf ; size_t len ; size_t ooblen ; u8 oob[16U] ; struct _ddebug descriptor ; long tmp ; int tmp___0 ; { docg3 = (struct docg3 *)mtd->priv; oobbuf = ops->oobbuf; buf = ops->datbuf; if ((unsigned long )buf != (unsigned long )((u8 *)0U)) { len = ops->len; } else { len = 0UL; } if ((unsigned long )oobbuf != (unsigned long )((u8 *)0U)) { ooblen = ops->ooblen; } else { ooblen = 0UL; } if ((unsigned long )oobbuf != (unsigned long )((u8 *)0U) && ops->mode == 0U) { oobbuf = oobbuf + (unsigned long )ops->ooboffs; } else { } { descriptor.modname = "docg3"; descriptor.function = "doc_write_oob"; descriptor.filename = "drivers/mtd/devices/docg3.c"; descriptor.format = "doc_write_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n"; descriptor.lineno = 1434U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)docg3->dev, "doc_write_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n", ofs, ops->mode, buf, len, oobbuf, ooblen); } } else { } { if (ops->mode == 0U) { goto case_0; } else { } if (ops->mode == 2U) { goto case_2; } else { } if (ops->mode == 1U) { goto case_1; } else { } goto switch_default; case_0: /* CIL Label */ ; case_2: /* CIL Label */ oobdelta = (int )mtd->oobsize; goto ldv_35776; case_1: /* CIL Label */ oobdelta = (int )(mtd->ecclayout)->oobavail; goto ldv_35776; switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } ldv_35776: ; if (((len & 511UL) != 0UL || ooblen % (size_t )oobdelta != 0UL) || ((unsigned long )ofs & 511UL) != 0UL) { return (-22); } else { } if ((len != 0UL && ooblen != 0UL) && len / 512UL != ooblen / (size_t )oobdelta) { return (-22); } else { } if ((unsigned long long )ofs + (unsigned long long )len > mtd->size) { return (-22); } else { } ops->oobretlen = 0UL; ops->retlen = 0UL; ret = 0; if ((len | ooblen) == 0UL) { return (-22); } else { } if (len == 0UL && ooblen != 0UL) { { tmp___0 = doc_backup_oob(docg3, ofs, ops); } return (tmp___0); } else { } { autoecc = doc_guess_autoecc(ops); } if (autoecc < 0) { return (autoecc); } else { } { ldv_mutex_lock_100(& (docg3->cascade)->lock); } goto ldv_35780; ldv_35779: { __memset((void *)(& oob), 0, 16UL); } if (ofs == docg3->oob_write_ofs) { { __memcpy((void *)(& oob), (void const *)(& docg3->oob_write_buf), 16UL); } } else if (ooblen != 0UL && ops->mode == 1U) { { doc_fill_autooob((u8 *)(& oob), oobbuf); } } else if (ooblen != 0UL) { { __memcpy((void *)(& oob), (void const *)oobbuf, 16UL); } } else { } { ret = doc_write_page(docg3, ofs, (u_char const *)buf, (u_char const *)(& oob), autoecc); ofs = ofs + 512LL; len = len - 512UL; buf = buf + 512UL; } if (ooblen != 0UL) { oobbuf = oobbuf + (unsigned long )oobdelta; ooblen = ooblen - (size_t )oobdelta; ops->oobretlen = ops->oobretlen + (size_t )oobdelta; } else { } ops->retlen = ops->retlen + 512UL; ldv_35780: ; if (ret == 0 && len != 0UL) { goto ldv_35779; } else { } { doc_set_device_id(docg3, 0); ldv_mutex_unlock_101(& (docg3->cascade)->lock); } return (ret); } } static int doc_write(struct mtd_info *mtd , loff_t to , size_t len , size_t *retlen , u_char const *buf ) { struct docg3 *docg3 ; int ret ; struct mtd_oob_ops ops ; struct _ddebug descriptor ; long tmp ; { { docg3 = (struct docg3 *)mtd->priv; descriptor.modname = "docg3"; descriptor.function = "doc_write"; descriptor.filename = "drivers/mtd/devices/docg3.c"; descriptor.format = "doc_write(to=%lld, len=%zu)\n"; descriptor.lineno = 1514U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)docg3->dev, "doc_write(to=%lld, len=%zu)\n", to, len); } } else { } { ops.datbuf = (uint8_t *)buf; ops.len = len; ops.mode = 0U; ops.oobbuf = (uint8_t *)0U; ops.ooblen = 0UL; ops.ooboffs = 0U; ret = doc_write_oob(mtd, to, & ops); *retlen = ops.retlen; } return (ret); } } static struct docg3 *sysfs_dev2docg3(struct device *dev , struct device_attribute *attr ) { int floor ; struct platform_device *pdev ; struct device const *__mptr ; struct mtd_info **docg3_floors ; void *tmp ; { { __mptr = (struct device const *)dev; pdev = (struct platform_device *)__mptr + 0xfffffffffffffff0UL; tmp = platform_get_drvdata((struct platform_device const *)pdev); docg3_floors = (struct mtd_info **)tmp; floor = (int )*(attr->attr.name + 1UL) + -48; } if ((unsigned int )floor > 3U) { return ((struct docg3 *)0); } else { return ((struct docg3 *)(*(docg3_floors + (unsigned long )floor))->priv); } } } static ssize_t dps0_is_key_locked(struct device *dev , struct device_attribute *attr , char *buf ) { struct docg3 *docg3 ; struct docg3 *tmp ; int dps0 ; int tmp___0 ; { { tmp = sysfs_dev2docg3(dev, attr); docg3 = tmp; ldv_mutex_lock_102(& (docg3->cascade)->lock); doc_set_device_id(docg3, (int )docg3->device_id); dps0 = doc_register_readb(docg3, 4204); doc_set_device_id(docg3, 0); ldv_mutex_unlock_103(& (docg3->cascade)->lock); tmp___0 = sprintf(buf, "%d\n", (dps0 & 128) == 0); } return ((ssize_t )tmp___0); } } static ssize_t dps1_is_key_locked(struct device *dev , struct device_attribute *attr , char *buf ) { struct docg3 *docg3 ; struct docg3 *tmp ; int dps1 ; int tmp___0 ; { { tmp = sysfs_dev2docg3(dev, attr); docg3 = tmp; ldv_mutex_lock_104(& (docg3->cascade)->lock); doc_set_device_id(docg3, (int )docg3->device_id); dps1 = doc_register_readb(docg3, 4206); doc_set_device_id(docg3, 0); ldv_mutex_unlock_105(& (docg3->cascade)->lock); tmp___0 = sprintf(buf, "%d\n", (dps1 & 128) == 0); } return ((ssize_t )tmp___0); } } static ssize_t dps0_insert_key(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct docg3 *docg3 ; struct docg3 *tmp ; int i ; { { tmp = sysfs_dev2docg3(dev, attr); docg3 = tmp; } if (count != 8UL) { return (-22L); } else { } { ldv_mutex_lock_106(& (docg3->cascade)->lock); doc_set_device_id(docg3, (int )docg3->device_id); i = 0; } goto ldv_35826; ldv_35825: { doc_writeb(docg3, (int )((u8 )*(buf + (unsigned long )i)), 4188); i = i + 1; } ldv_35826: ; if (i <= 7) { goto ldv_35825; } else { } { doc_set_device_id(docg3, 0); ldv_mutex_unlock_107(& (docg3->cascade)->lock); } return ((ssize_t )count); } } static ssize_t dps1_insert_key(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct docg3 *docg3 ; struct docg3 *tmp ; int i ; { { tmp = sysfs_dev2docg3(dev, attr); docg3 = tmp; } if (count != 8UL) { return (-22L); } else { } { ldv_mutex_lock_108(& (docg3->cascade)->lock); doc_set_device_id(docg3, (int )docg3->device_id); i = 0; } goto ldv_35837; ldv_35836: { doc_writeb(docg3, (int )((u8 )*(buf + (unsigned long )i)), 4190); i = i + 1; } ldv_35837: ; if (i <= 7) { goto ldv_35836; } else { } { doc_set_device_id(docg3, 0); ldv_mutex_unlock_109(& (docg3->cascade)->lock); } return ((ssize_t )count); } } static struct device_attribute doc_sys_attrs[4U][4U] = { { {{"f0_dps0_is_keylocked", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & dps0_is_key_locked, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, {{"f0_dps1_is_keylocked", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & dps1_is_key_locked, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, {{"f0_dps0_protection_key", 144U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, (ssize_t (*)(struct device * , struct device_attribute * , char * ))0, & dps0_insert_key}, {{"f0_dps1_protection_key", 144U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, (ssize_t (*)(struct device * , struct device_attribute * , char * ))0, & dps1_insert_key}}, { {{"f1_dps0_is_keylocked", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & dps0_is_key_locked, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, {{"f1_dps1_is_keylocked", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & dps1_is_key_locked, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, {{"f1_dps0_protection_key", 144U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, (ssize_t (*)(struct device * , struct device_attribute * , char * ))0, & dps0_insert_key}, {{"f1_dps1_protection_key", 144U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, (ssize_t (*)(struct device * , struct device_attribute * , char * ))0, & dps1_insert_key}}, { {{"f2_dps0_is_keylocked", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & dps0_is_key_locked, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, {{"f2_dps1_is_keylocked", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & dps1_is_key_locked, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, {{"f2_dps0_protection_key", 144U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, (ssize_t (*)(struct device * , struct device_attribute * , char * ))0, & dps0_insert_key}, {{"f2_dps1_protection_key", 144U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, (ssize_t (*)(struct device * , struct device_attribute * , char * ))0, & dps1_insert_key}}, { {{"f3_dps0_is_keylocked", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & dps0_is_key_locked, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, {{"f3_dps1_is_keylocked", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & dps1_is_key_locked, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, {{"f3_dps0_protection_key", 144U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, (ssize_t (*)(struct device * , struct device_attribute * , char * ))0, & dps0_insert_key}, {{"f3_dps1_protection_key", 144U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, (ssize_t (*)(struct device * , struct device_attribute * , char * ))0, & dps1_insert_key}}}; static int doc_register_sysfs(struct platform_device *pdev , struct docg3_cascade *cascade ) { int ret ; int floor ; int i ; struct device *dev ; { ret = 0; i = 0; dev = & pdev->dev; floor = 0; goto ldv_36012; ldv_36011: i = 0; goto ldv_36009; ldv_36008: { ret = device_create_file(dev, (struct device_attribute const *)(& doc_sys_attrs) + ((unsigned long )floor + (unsigned long )i)); i = i + 1; } ldv_36009: ; if (ret == 0 && i <= 3) { goto ldv_36008; } else { } floor = floor + 1; ldv_36012: ; if ((ret == 0 && floor <= 3) && (unsigned long )cascade->floors[floor] != (unsigned long )((struct mtd_info *)0)) { goto ldv_36011; } else { } if (ret == 0) { return (0); } else { } ldv_36017: ; goto ldv_36015; ldv_36014: { device_remove_file(dev, (struct device_attribute const *)(& doc_sys_attrs) + ((unsigned long )floor + (unsigned long )i)); } ldv_36015: i = i - 1; if (i >= 0) { goto ldv_36014; } else { } i = 4; floor = floor - 1; if (floor >= 0) { goto ldv_36017; } else { } return (ret); } } static void doc_unregister_sysfs(struct platform_device *pdev , struct docg3_cascade *cascade ) { struct device *dev ; int floor ; int i ; { dev = & pdev->dev; floor = 0; goto ldv_36030; ldv_36029: i = 0; goto ldv_36027; ldv_36026: { device_remove_file(dev, (struct device_attribute const *)(& doc_sys_attrs) + ((unsigned long )floor + (unsigned long )i)); i = i + 1; } ldv_36027: ; if (i <= 3) { goto ldv_36026; } else { } floor = floor + 1; ldv_36030: ; if (floor <= 3 && (unsigned long )cascade->floors[floor] != (unsigned long )((struct mtd_info *)0)) { goto ldv_36029; } else { } return; } } static int dbg_flashctrl_show(struct seq_file *s , void *p ) { struct docg3 *docg3 ; u8 fctrl ; int tmp ; { { docg3 = (struct docg3 *)s->private; ldv_mutex_lock_110(& (docg3->cascade)->lock); tmp = doc_register_readb(docg3, 4152); fctrl = (u8 )tmp; ldv_mutex_unlock_111(& (docg3->cascade)->lock); seq_printf(s, "FlashControl : 0x%02x (%s,CE# %s,%s,%s,flash %s)\n", (int )fctrl, ((int )fctrl & 32) != 0 ? (char *)"protocol violation" : (char *)"-", ((int )fctrl & 16) != 0 ? (char *)"active" : (char *)"inactive", ((int )fctrl & 4) != 0 ? (char *)"protection error" : (char *)"-", ((int )fctrl & 2) != 0 ? (char *)"sequence error" : (char *)"-", (int )fctrl & 1 ? (char *)"ready" : (char *)"not ready"); } return (0); } } static int flashcontrol_open(struct inode *inode , struct file *file ) { int tmp ; { { tmp = single_open(file, & dbg_flashctrl_show, inode->i_private); } return (tmp); } } static struct file_operations const flashcontrol_fops = {& __this_module, & seq_lseek, & seq_read, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & flashcontrol_open, 0, & single_release, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static int dbg_asicmode_show(struct seq_file *s , void *p ) { struct docg3 *docg3 ; int pctrl ; int mode ; { { docg3 = (struct docg3 *)s->private; ldv_mutex_lock_112(& (docg3->cascade)->lock); pctrl = doc_register_readb(docg3, 4108); mode = pctrl & 3; ldv_mutex_unlock_113(& (docg3->cascade)->lock); seq_printf(s, "%04x : RAM_WE=%d,RSTIN_RESET=%d,BDETCT_RESET=%d,WRITE_ENABLE=%d,POWERDOWN=%d,MODE=%d%d (", pctrl, (pctrl & 32) != 0, (pctrl & 16) != 0, (pctrl & 8) != 0, (pctrl & 4) != 0, (pctrl & 2) != 0, mode >> 1, mode & 1); } { if (mode == 0) { goto case_0; } else { } if (mode == 1) { goto case_1; } else { } if (mode == 2) { goto case_2; } else { } goto switch_break; case_0: /* CIL Label */ { seq_puts(s, "reset"); } goto ldv_36051; case_1: /* CIL Label */ { seq_puts(s, "normal"); } goto ldv_36051; case_2: /* CIL Label */ { seq_puts(s, "powerdown"); } goto ldv_36051; switch_break: /* CIL Label */ ; } ldv_36051: { seq_puts(s, ")\n"); } return (0); } } static int asic_mode_open(struct inode *inode , struct file *file ) { int tmp ; { { tmp = single_open(file, & dbg_asicmode_show, inode->i_private); } return (tmp); } } static struct file_operations const asic_mode_fops = {& __this_module, & seq_lseek, & seq_read, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & asic_mode_open, 0, & single_release, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static int dbg_device_id_show(struct seq_file *s , void *p ) { struct docg3 *docg3 ; int id ; { { docg3 = (struct docg3 *)s->private; ldv_mutex_lock_114(& (docg3->cascade)->lock); id = doc_register_readb(docg3, 4106); ldv_mutex_unlock_115(& (docg3->cascade)->lock); seq_printf(s, "DeviceId = %d\n", id); } return (0); } } static int device_id_open(struct inode *inode , struct file *file ) { int tmp ; { { tmp = single_open(file, & dbg_device_id_show, inode->i_private); } return (tmp); } } static struct file_operations const device_id_fops = {& __this_module, & seq_lseek, & seq_read, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & device_id_open, 0, & single_release, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static int dbg_protection_show(struct seq_file *s , void *p ) { struct docg3 *docg3 ; int protect ; int dps0 ; int dps0_low ; int dps0_high ; int dps1 ; int dps1_low ; int dps1_high ; { { docg3 = (struct docg3 *)s->private; ldv_mutex_lock_116(& (docg3->cascade)->lock); protect = doc_register_readb(docg3, 4182); dps0 = doc_register_readb(docg3, 4204); dps0_low = doc_register_readw(docg3, 4192); dps0_high = doc_register_readw(docg3, 4194); dps1 = doc_register_readb(docg3, 4206); dps1_low = doc_register_readw(docg3, 4196); dps1_high = doc_register_readw(docg3, 4198); ldv_mutex_unlock_117(& (docg3->cascade)->lock); seq_printf(s, "Protection = 0x%02x (", protect); } if (protect & 1) { { seq_puts(s, "FOUNDRY_OTP_LOCK,"); } } else { } if ((protect & 2) != 0) { { seq_puts(s, "CUSTOMER_OTP_LOCK,"); } } else { } if ((protect & 4) != 0) { { seq_puts(s, "LOCK_INPUT,"); } } else { } if ((protect & 8) != 0) { { seq_puts(s, "STICKY_LOCK,"); } } else { } if ((protect & 16) != 0) { { seq_puts(s, "PROTECTION ON,"); } } else { } if ((protect & 32) != 0) { { seq_puts(s, "IPL_DOWNLOAD_LOCK,"); } } else { } if ((protect & 128) != 0) { { seq_puts(s, "PROTECT_ERR,"); } } else { { seq_puts(s, "NO_PROTECT_ERR"); } } { seq_puts(s, ")\n"); seq_printf(s, "DPS0 = 0x%02x : Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n", dps0, dps0_low, dps0_high, dps0 & 1, (dps0 & 2) != 0, (dps0 & 4) != 0, (dps0 & 8) != 0, (dps0 & 128) != 0); seq_printf(s, "DPS1 = 0x%02x : Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n", dps1, dps1_low, dps1_high, dps1 & 1, (dps1 & 2) != 0, (dps1 & 4) != 0, (dps1 & 8) != 0, (dps1 & 128) != 0); } return (0); } } static int protection_open(struct inode *inode , struct file *file ) { int tmp ; { { tmp = single_open(file, & dbg_protection_show, inode->i_private); } return (tmp); } } static struct file_operations const protection_fops = {& __this_module, & seq_lseek, & seq_read, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & protection_open, 0, & single_release, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static int doc_dbg_register(struct docg3 *docg3 ) { struct dentry *root ; struct dentry *entry ; { { root = debugfs_create_dir("docg3", (struct dentry *)0); } if ((unsigned long )root == (unsigned long )((struct dentry *)0)) { return (-12); } else { } { entry = debugfs_create_file("flashcontrol", 256, root, (void *)docg3, & flashcontrol_fops); } if ((unsigned long )entry != (unsigned long )((struct dentry *)0)) { { entry = debugfs_create_file("asic_mode", 256, root, (void *)docg3, & asic_mode_fops); } } else { } if ((unsigned long )entry != (unsigned long )((struct dentry *)0)) { { entry = debugfs_create_file("device_id", 256, root, (void *)docg3, & device_id_fops); } } else { } if ((unsigned long )entry != (unsigned long )((struct dentry *)0)) { { entry = debugfs_create_file("protection", 256, root, (void *)docg3, & protection_fops); } } else { } if ((unsigned long )entry != (unsigned long )((struct dentry *)0)) { docg3->debugfs_root = root; return (0); } else { { debugfs_remove_recursive(root); } return (-12); } } } static void doc_dbg_unregister(struct docg3 *docg3 ) { { { debugfs_remove_recursive(docg3->debugfs_root); } return; } } static void doc_set_driver_info(int chip_id , struct mtd_info *mtd ) { struct docg3 *docg3 ; int cfg ; char *tmp ; uint32_t tmp___0 ; { { docg3 = (struct docg3 *)mtd->priv; cfg = doc_register_readb(docg3, 4110); docg3->if_cfg = (cfg & 128) != 0; docg3->reliable = (unsigned char )reliable_mode; } { if (chip_id == 512) { goto case_512; } else { } goto switch_break; case_512: /* CIL Label */ { tmp = kasprintf(208U, "docg3.%d", (int )docg3->device_id); mtd->name = (char const *)tmp; docg3->max_block = 2047; } goto ldv_36102; switch_break: /* CIL Label */ ; } ldv_36102: mtd->type = 4U; mtd->flags = 1024U; mtd->size = (uint64_t )((docg3->max_block + 1) * 32768); if ((unsigned int )*((unsigned char *)docg3 + 16UL) == 64U) { mtd->size = mtd->size / 2ULL; } else { } mtd->erasesize = 65536U; if ((unsigned int )*((unsigned char *)docg3 + 16UL) == 64U) { mtd->erasesize = mtd->erasesize / 2U; } else { } tmp___0 = 512U; mtd->writesize = tmp___0; mtd->writebufsize = tmp___0; mtd->oobsize = 16U; mtd->owner = & __this_module; mtd->_erase = & doc_erase; mtd->_read = & doc_read; mtd->_write = & doc_write; mtd->_read_oob = & doc_read_oob; mtd->_write_oob = & doc_write_oob; mtd->_block_isbad = & doc_block_isbad; mtd->ecclayout = & docg3_oobinfo; mtd->ecc_strength = 4U; return; } } static struct mtd_info *doc_probe_device(struct docg3_cascade *cascade , int floor , struct device *dev ) { int ret ; int bbt_nbpages ; u16 chip_id ; u16 chip_id_inv ; struct docg3 *docg3 ; struct mtd_info *mtd ; void *tmp ; void *tmp___0 ; void *tmp___1 ; int tmp___2 ; int tmp___3 ; void *tmp___4 ; { { ret = -12; tmp = kzalloc(72UL, 208U); docg3 = (struct docg3 *)tmp; } if ((unsigned long )docg3 == (unsigned long )((struct docg3 *)0)) { goto nomem1; } else { } { tmp___0 = kzalloc(1816UL, 208U); mtd = (struct mtd_info *)tmp___0; } if ((unsigned long )mtd == (unsigned long )((struct mtd_info *)0)) { goto nomem2; } else { } { mtd->priv = (void *)docg3; bbt_nbpages = (docg3->max_block + 4096) / 4096; tmp___1 = kzalloc((size_t )(bbt_nbpages * 512), 208U); docg3->bbt = (u8 *)tmp___1; } if ((unsigned long )docg3->bbt == (unsigned long )((u8 *)0U)) { goto nomem3; } else { } { docg3->dev = dev; docg3->device_id = (unsigned char )floor; docg3->cascade = cascade; doc_set_device_id(docg3, (int )docg3->device_id); } if (floor == 0) { { doc_set_asic_mode(docg3, 0); } } else { } { doc_set_asic_mode(docg3, 1); tmp___2 = doc_register_readw(docg3, 4096); chip_id = (u16 )tmp___2; tmp___3 = doc_register_readw(docg3, 4212); chip_id_inv = (u16 )tmp___3; ret = 0; } if ((int )chip_id != ~ ((int )chip_id_inv)) { goto nomem3; } else { } { if ((int )chip_id == 512) { goto case_512; } else { } goto switch_default; case_512: /* CIL Label */ { _dev_info((struct device const *)docg3->dev, "Found a G3 DiskOnChip at addr %p, floor %d\n", (docg3->cascade)->base, floor); } goto ldv_36118; switch_default: /* CIL Label */ { dev_err((struct device const *)docg3->dev, "Chip id %04x is not a DiskOnChip G3 chip\n", (int )chip_id); } goto nomem3; switch_break: /* CIL Label */ ; } ldv_36118: { doc_set_driver_info((int )chip_id, mtd); doc_hamming_ecc_init(docg3, 7); doc_reload_bbt(docg3); } return (mtd); nomem3: { kfree((void const *)mtd); } nomem2: { kfree((void const *)docg3); } nomem1: { tmp___4 = ERR_PTR((long )ret); } return ((struct mtd_info *)tmp___4); } } static void doc_release_device(struct mtd_info *mtd ) { struct docg3 *docg3 ; { { docg3 = (struct docg3 *)mtd->priv; mtd_device_unregister(mtd); kfree((void const *)docg3->bbt); kfree((void const *)docg3); kfree((void const *)mtd->name); kfree((void const *)mtd); } return; } } static int docg3_resume(struct platform_device *pdev ) { int i ; struct docg3_cascade *cascade ; struct mtd_info **docg3_floors ; struct mtd_info *mtd ; struct docg3 *docg3 ; void *tmp ; struct _ddebug descriptor ; long tmp___0 ; { { tmp = platform_get_drvdata((struct platform_device const *)pdev); cascade = (struct docg3_cascade *)tmp; docg3_floors = (struct mtd_info **)(& cascade->floors); mtd = *docg3_floors; docg3 = (struct docg3 *)mtd->priv; descriptor.modname = "docg3"; descriptor.function = "docg3_resume"; descriptor.filename = "drivers/mtd/devices/docg3.c"; descriptor.format = "docg3_resume()\n"; descriptor.lineno = 1963U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)docg3->dev, "docg3_resume()\n"); } } else { } i = 0; goto ldv_36135; ldv_36134: { doc_readb(docg3, 0); i = i + 1; } ldv_36135: ; if (i <= 11) { goto ldv_36134; } else { } return (0); } } static int docg3_suspend(struct platform_device *pdev , pm_message_t state ) { int floor ; int i ; struct docg3_cascade *cascade ; struct mtd_info **docg3_floors ; struct mtd_info *mtd ; struct docg3 *docg3 ; u8 ctrl ; u8 pwr_down ; void *tmp ; int tmp___0 ; int tmp___1 ; struct _ddebug descriptor ; long tmp___2 ; { { tmp = platform_get_drvdata((struct platform_device const *)pdev); cascade = (struct docg3_cascade *)tmp; docg3_floors = (struct mtd_info **)(& cascade->floors); floor = 0; } goto ldv_36156; ldv_36155: mtd = *(docg3_floors + (unsigned long )floor); if ((unsigned long )mtd == (unsigned long )((struct mtd_info *)0)) { goto ldv_36149; } else { } { docg3 = (struct docg3 *)mtd->priv; doc_writeb(docg3, (int )((u8 )floor), 4106); tmp___0 = doc_register_readb(docg3, 4152); ctrl = (u8 )tmp___0; ctrl = (unsigned int )ctrl & 207U; doc_writeb(docg3, (int )ctrl, 4152); i = 0; } goto ldv_36152; ldv_36151: { usleep_range(3000UL, 4000UL); tmp___1 = doc_register_readb(docg3, 4220); pwr_down = (u8 )tmp___1; } if ((int )((signed char )pwr_down) < 0) { goto ldv_36150; } else { } i = i + 1; ldv_36152: ; if (i <= 9) { goto ldv_36151; } else { } ldv_36150: ; if ((int )((signed char )pwr_down) < 0) { { descriptor.modname = "docg3"; descriptor.function = "docg3_suspend"; descriptor.filename = "drivers/mtd/devices/docg3.c"; descriptor.format = "docg3_suspend(): floor %d powerdown ok\n"; descriptor.lineno = 2007U; descriptor.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___2 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)docg3->dev, "docg3_suspend(): floor %d powerdown ok\n", floor); } } else { } } else { { dev_err((struct device const *)docg3->dev, "docg3_suspend(): floor %d powerdown failed\n", floor); } return (-5); } ldv_36149: floor = floor + 1; ldv_36156: ; if (floor <= 3) { goto ldv_36155; } else { } { mtd = *docg3_floors; docg3 = (struct docg3 *)mtd->priv; doc_set_asic_mode(docg3, 2); } return (0); } } static int docg3_probe(struct platform_device *pdev ) { struct device *dev ; struct mtd_info *mtd ; struct resource *ress ; void *base ; int ret ; int floor ; int found ; struct docg3_cascade *cascade ; void *tmp ; struct lock_class_key __key ; long tmp___0 ; bool tmp___1 ; { { dev = & pdev->dev; found = 0; ret = -6; ress = platform_get_resource(pdev, 512U, 0U); } if ((unsigned long )ress == (unsigned long )((struct resource *)0)) { { dev_err((struct device const *)dev, "No I/O memory resource defined\n"); } return (ret); } else { } { base = devm_ioremap(dev, ress->start, 8192ULL); ret = -12; tmp = devm_kzalloc(dev, 832UL, 208U); cascade = (struct docg3_cascade *)tmp; } if ((unsigned long )cascade == (unsigned long )((struct docg3_cascade *)0)) { return (ret); } else { } { cascade->base = base; __mutex_init(& cascade->lock, "&cascade->lock", & __key); cascade->bch = init_bch(14, 4, 17475U); } if ((unsigned long )cascade->bch == (unsigned long )((struct bch_control *)0)) { return (ret); } else { } floor = 0; goto ldv_36174; ldv_36173: { mtd = doc_probe_device(cascade, floor, dev); tmp___1 = IS_ERR((void const *)mtd); } if ((int )tmp___1) { { tmp___0 = PTR_ERR((void const *)mtd); ret = (int )tmp___0; } goto err_probe; } else { } if ((unsigned long )mtd == (unsigned long )((struct mtd_info *)0)) { if (floor == 0) { goto notfound; } else { goto ldv_36172; } } else { } { cascade->floors[floor] = mtd; ret = mtd_device_parse_register(mtd, (char const * const *)(& part_probes), (struct mtd_part_parser_data *)0, (struct mtd_partition const *)0, 0); } if (ret != 0) { goto err_probe; } else { } found = found + 1; ldv_36172: floor = floor + 1; ldv_36174: ; if (floor <= 3) { goto ldv_36173; } else { } { ret = doc_register_sysfs(pdev, cascade); } if (ret != 0) { goto err_probe; } else { } if (found == 0) { goto notfound; } else { } { platform_set_drvdata(pdev, (void *)cascade); doc_dbg_register((struct docg3 *)(cascade->floors[0])->priv); } return (0); notfound: { ret = -19; _dev_info((struct device const *)dev, "No supported DiskOnChip found\n"); } err_probe: { free_bch(cascade->bch); floor = 0; } goto ldv_36177; ldv_36176: ; if ((unsigned long )cascade->floors[floor] != (unsigned long )((struct mtd_info *)0)) { { doc_release_device(cascade->floors[floor]); } } else { } floor = floor + 1; ldv_36177: ; if (floor <= 3) { goto ldv_36176; } else { } return (ret); } } static int docg3_release(struct platform_device *pdev ) { struct docg3_cascade *cascade ; void *tmp ; struct docg3 *docg3 ; int floor ; { { tmp = platform_get_drvdata((struct platform_device const *)pdev); cascade = (struct docg3_cascade *)tmp; docg3 = (struct docg3 *)(cascade->floors[0])->priv; doc_unregister_sysfs(pdev, cascade); doc_dbg_unregister(docg3); floor = 0; } goto ldv_36186; ldv_36185: ; if ((unsigned long )cascade->floors[floor] != (unsigned long )((struct mtd_info *)0)) { { doc_release_device(cascade->floors[floor]); } } else { } floor = floor + 1; ldv_36186: ; if (floor <= 3) { goto ldv_36185; } else { } { free_bch((docg3->cascade)->bch); } return (0); } } static struct platform_driver g3_driver = {0, & docg3_release, 0, & docg3_suspend, & docg3_resume, {"docg3", 0, 0, 0, (_Bool)0, (struct of_device_id const *)0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 0, (_Bool)0}; static int g3_driver_init(void) { int tmp ; { { tmp = __platform_driver_probe(& g3_driver, & docg3_probe, & __this_module); } return (tmp); } } static void g3_driver_exit(void) { { { ldv_platform_driver_unregister_118(& g3_driver); } return; } } void ldv_EMGentry_exit_g3_driver_exit_11_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_g3_driver_init_11_14(int (*arg0)(void) ) ; void ldv_dispatch_deregister_10_1(struct platform_driver *arg0 ) ; void ldv_dispatch_deregister_dummy_resourceless_instance_5_11_4(void) ; void ldv_dispatch_deregister_dummy_resourceless_instance_6_11_5(void) ; void ldv_dispatch_deregister_file_operations_instance_2_11_6(void) ; void ldv_dispatch_pm_deregister_4_5(void) ; void ldv_dispatch_pm_deregister_5_5(void) ; void ldv_dispatch_pm_register_4_6(void) ; void ldv_dispatch_pm_register_5_6(void) ; void ldv_dispatch_register_dummy_resourceless_instance_5_11_7(void) ; void ldv_dispatch_register_dummy_resourceless_instance_6_11_8(void) ; void ldv_dispatch_register_file_operations_instance_2_11_9(void) ; void ldv_dispatch_register_platform_instance_3_11_10(void) ; void ldv_dummy_resourceless_instance_callback_7_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_7_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_8_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_8_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_9_3(int (*arg0)(struct ftrace_event_call * ) , struct ftrace_event_call *arg1 ) ; void ldv_dummy_resourceless_instance_callback_9_7(int (*arg0)(struct ftrace_event_call * ) , struct ftrace_event_call *arg1 ) ; void ldv_dummy_resourceless_instance_callback_9_8(int (*arg0)(struct ftrace_event_call * , enum trace_reg , void * ) , struct ftrace_event_call *arg1 , enum trace_reg arg2 , void *arg3 ) ; void ldv_dummy_resourceless_instance_callback_9_9(enum print_line_t (*arg0)(struct trace_iterator * , int , struct trace_event * ) , struct trace_iterator *arg1 , int arg2 , struct trace_event *arg3 ) ; void ldv_entry_EMGentry_11(void *arg0 ) ; int main(void) ; void ldv_file_operations_file_operations_instance_0(void *arg0 ) ; void ldv_file_operations_file_operations_instance_1(void *arg0 ) ; void ldv_file_operations_file_operations_instance_2(void *arg0 ) ; void ldv_file_operations_file_operations_instance_3(void *arg0 ) ; void ldv_file_operations_instance_callback_0_22(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_callback_0_5(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) ; void ldv_file_operations_instance_callback_1_22(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_callback_1_5(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) ; void ldv_file_operations_instance_callback_2_22(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_callback_2_5(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) ; void ldv_file_operations_instance_callback_3_22(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_callback_3_5(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) ; int ldv_file_operations_instance_probe_0_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; int ldv_file_operations_instance_probe_1_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; int ldv_file_operations_instance_probe_2_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; int ldv_file_operations_instance_probe_3_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_release_0_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_release_1_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_release_2_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_release_3_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_write_0_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_write_1_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_write_2_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_write_3_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_platform_driver_unregister(void *arg0 , struct platform_driver *arg1 ) ; void ldv_platform_instance_callback_4_20(int (*arg0)(struct platform_device * , struct pm_message ) , struct platform_device *arg1 , struct pm_message arg2 ) ; void ldv_platform_instance_callback_4_7(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) ; void ldv_platform_instance_callback_5_20(int (*arg0)(struct platform_device * , struct pm_message ) , struct platform_device *arg1 , struct pm_message arg2 ) ; void ldv_platform_instance_callback_5_7(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) ; int ldv_platform_instance_probe_4_14(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) ; int ldv_platform_instance_probe_5_14(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) ; void ldv_platform_instance_release_4_3(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) ; void ldv_platform_instance_release_5_3(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) ; void ldv_platform_platform_instance_4(void *arg0 ) ; void ldv_platform_platform_instance_5(void *arg0 ) ; void ldv_platform_pm_ops_instance_6(void *arg0 ) ; void ldv_pm_ops_instance_complete_6_3(void (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_6_15(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_late_6_14(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_noirq_6_12(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_6_9(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_late_6_8(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_noirq_6_6(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_prepare_6_22(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_6_4(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_early_6_7(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_noirq_6_5(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_6_16(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_early_6_17(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_noirq_6_19(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_idle_6_27(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_resume_6_24(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_suspend_6_25(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_6_21(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_late_6_18(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_noirq_6_20(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_6_10(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_early_6_13(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_noirq_6_11(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_struct_device_attribute_dummy_resourceless_instance_7(void *arg0 ) ; void ldv_struct_device_attribute_dummy_resourceless_instance_8(void *arg0 ) ; void ldv_struct_trace_event_functions_dummy_resourceless_instance_9(void *arg0 ) ; struct ldv_thread ldv_thread_0 ; struct ldv_thread ldv_thread_1 ; struct ldv_thread ldv_thread_11 ; struct ldv_thread ldv_thread_2 ; struct ldv_thread ldv_thread_3 ; struct ldv_thread ldv_thread_4 ; struct ldv_thread ldv_thread_5 ; struct ldv_thread ldv_thread_6 ; struct ldv_thread ldv_thread_7 ; struct ldv_thread ldv_thread_8 ; struct ldv_thread ldv_thread_9 ; void ldv_EMGentry_exit_g3_driver_exit_11_2(void (*arg0)(void) ) { { { g3_driver_exit(); } return; } } int ldv_EMGentry_init_g3_driver_init_11_14(int (*arg0)(void) ) { int tmp ; { { tmp = g3_driver_init(); } return (tmp); } } void ldv_dispatch_deregister_10_1(struct platform_driver *arg0 ) { int tmp ; { { tmp = ldv_undef_int(); } return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_5_11_4(void) { { return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_6_11_5(void) { { return; } } void ldv_dispatch_deregister_file_operations_instance_2_11_6(void) { { return; } } void ldv_dispatch_pm_deregister_4_5(void) { { return; } } void ldv_dispatch_pm_deregister_5_5(void) { { return; } } void ldv_dispatch_pm_register_4_6(void) { struct ldv_struct_platform_instance_4 *cf_arg_6 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_6 = (struct ldv_struct_platform_instance_4 *)tmp; ldv_platform_pm_ops_instance_6((void *)cf_arg_6); } return; } } void ldv_dispatch_pm_register_5_6(void) { struct ldv_struct_platform_instance_4 *cf_arg_6 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_6 = (struct ldv_struct_platform_instance_4 *)tmp; ldv_platform_pm_ops_instance_6((void *)cf_arg_6); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_5_11_7(void) { struct ldv_struct_platform_instance_4 *cf_arg_8 ; struct ldv_struct_platform_instance_4 *cf_arg_7 ; void *tmp ; void *tmp___0 ; { { tmp = ldv_xmalloc(4UL); cf_arg_8 = (struct ldv_struct_platform_instance_4 *)tmp; ldv_struct_device_attribute_dummy_resourceless_instance_8((void *)cf_arg_8); tmp___0 = ldv_xmalloc(4UL); cf_arg_7 = (struct ldv_struct_platform_instance_4 *)tmp___0; ldv_struct_device_attribute_dummy_resourceless_instance_7((void *)cf_arg_7); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_6_11_8(void) { struct ldv_struct_platform_instance_4 *cf_arg_9 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_9 = (struct ldv_struct_platform_instance_4 *)tmp; ldv_struct_trace_event_functions_dummy_resourceless_instance_9((void *)cf_arg_9); } return; } } void ldv_dispatch_register_file_operations_instance_2_11_9(void) { struct ldv_struct_platform_instance_4 *cf_arg_0 ; struct ldv_struct_platform_instance_4 *cf_arg_1 ; struct ldv_struct_platform_instance_4 *cf_arg_2 ; struct ldv_struct_platform_instance_4 *cf_arg_3 ; void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; { { tmp = ldv_xmalloc(4UL); cf_arg_0 = (struct ldv_struct_platform_instance_4 *)tmp; ldv_file_operations_file_operations_instance_0((void *)cf_arg_0); tmp___0 = ldv_xmalloc(4UL); cf_arg_1 = (struct ldv_struct_platform_instance_4 *)tmp___0; ldv_file_operations_file_operations_instance_1((void *)cf_arg_1); tmp___1 = ldv_xmalloc(4UL); cf_arg_2 = (struct ldv_struct_platform_instance_4 *)tmp___1; ldv_file_operations_file_operations_instance_2((void *)cf_arg_2); tmp___2 = ldv_xmalloc(4UL); cf_arg_3 = (struct ldv_struct_platform_instance_4 *)tmp___2; ldv_file_operations_file_operations_instance_3((void *)cf_arg_3); } return; } } void ldv_dispatch_register_platform_instance_3_11_10(void) { struct ldv_struct_platform_instance_4 *cf_arg_4 ; struct ldv_struct_platform_instance_4 *cf_arg_5 ; void *tmp ; void *tmp___0 ; { { tmp = ldv_xmalloc(4UL); cf_arg_4 = (struct ldv_struct_platform_instance_4 *)tmp; ldv_platform_platform_instance_4((void *)cf_arg_4); tmp___0 = ldv_xmalloc(4UL); cf_arg_5 = (struct ldv_struct_platform_instance_4 *)tmp___0; ldv_platform_platform_instance_5((void *)cf_arg_5); } return; } } void ldv_dummy_resourceless_instance_callback_7_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { dps0_is_key_locked(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_7_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { dps0_insert_key(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_8_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { dps1_is_key_locked(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_8_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { dps1_insert_key(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_9_3(int (*arg0)(struct ftrace_event_call * ) , struct ftrace_event_call *arg1 ) { { { ftrace_define_fields_docg3_io(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_9_7(int (*arg0)(struct ftrace_event_call * ) , struct ftrace_event_call *arg1 ) { { { trace_event_raw_init(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_9_8(int (*arg0)(struct ftrace_event_call * , enum trace_reg , void * ) , struct ftrace_event_call *arg1 , enum trace_reg arg2 , void *arg3 ) { { { ftrace_event_reg(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_9_9(enum print_line_t (*arg0)(struct trace_iterator * , int , struct trace_event * ) , struct trace_iterator *arg1 , int arg2 , struct trace_event *arg3 ) { { { ftrace_raw_output_docg3_io(arg1, arg2, arg3); } return; } } void ldv_entry_EMGentry_11(void *arg0 ) { void (*ldv_11_exit_g3_driver_exit_default)(void) ; int (*ldv_11_init_g3_driver_init_default)(void) ; int ldv_11_ret_default ; int tmp ; int tmp___0 ; { { ldv_11_ret_default = ldv_EMGentry_init_g3_driver_init_11_14(ldv_11_init_g3_driver_init_default); ldv_11_ret_default = ldv_ldv_post_init_119(ldv_11_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_11_ret_default != 0); ldv_ldv_check_final_state_120(); ldv_stop(); } return; } else { { ldv_assume(ldv_11_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dispatch_register_platform_instance_3_11_10(); ldv_dispatch_register_file_operations_instance_2_11_9(); ldv_dispatch_register_dummy_resourceless_instance_6_11_8(); ldv_dispatch_register_dummy_resourceless_instance_5_11_7(); ldv_dispatch_deregister_file_operations_instance_2_11_6(); ldv_dispatch_deregister_dummy_resourceless_instance_6_11_5(); ldv_dispatch_deregister_dummy_resourceless_instance_5_11_4(); } } else { } { ldv_EMGentry_exit_g3_driver_exit_11_2(ldv_11_exit_g3_driver_exit_default); ldv_ldv_check_final_state_121(); ldv_stop(); } return; } return; } } int main(void) { { { ldv_ldv_initialize_122(); ldv_entry_EMGentry_11((void *)0); } return 0; } } void ldv_file_operations_file_operations_instance_0(void *arg0 ) { long long (*ldv_0_callback_llseek)(struct file * , long long , int ) ; long (*ldv_0_callback_read)(struct file * , char * , unsigned long , long long * ) ; struct file_operations *ldv_0_container_file_operations ; char *ldv_0_ldv_param_22_1_default ; long long *ldv_0_ldv_param_22_3_default ; char *ldv_0_ldv_param_4_1_default ; long long *ldv_0_ldv_param_4_3_default ; long long ldv_0_ldv_param_5_1_default ; int ldv_0_ldv_param_5_2_default ; struct file *ldv_0_resource_file ; struct inode *ldv_0_resource_inode ; int ldv_0_ret_default ; unsigned long ldv_0_size_cnt_write_size ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; void *tmp___8 ; int tmp___9 ; { { ldv_0_ret_default = 1; tmp = ldv_xmalloc(504UL); ldv_0_resource_file = (struct file *)tmp; tmp___0 = ldv_xmalloc(976UL); ldv_0_resource_inode = (struct inode *)tmp___0; tmp___1 = ldv_undef_int(); ldv_0_size_cnt_write_size = (unsigned long )tmp___1; } goto ldv_main_0; return; ldv_main_0: { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { ldv_0_ret_default = ldv_file_operations_instance_probe_0_12(ldv_0_container_file_operations->open, ldv_0_resource_inode, ldv_0_resource_file); ldv_0_ret_default = ldv_filter_err_code(ldv_0_ret_default); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_assume(ldv_0_ret_default == 0); } goto ldv_call_0; } else { { ldv_assume(ldv_0_ret_default != 0); } goto ldv_main_0; } } else { { ldv_free((void *)ldv_0_resource_file); ldv_free((void *)ldv_0_resource_inode); } return; } return; ldv_call_0: { tmp___4 = ldv_undef_int(); } { if (tmp___4 == 1) { goto case_1; } else { } if (tmp___4 == 2) { goto case_2; } else { } if (tmp___4 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___5 = ldv_xmalloc(1UL); ldv_0_ldv_param_4_1_default = (char *)tmp___5; tmp___6 = ldv_xmalloc(8UL); ldv_0_ldv_param_4_3_default = (long long *)tmp___6; ldv_assume(ldv_0_size_cnt_write_size <= 2147479552UL); } if ((unsigned long )ldv_0_container_file_operations->write != (unsigned long )((ssize_t (*)(struct file * , char const * , size_t , loff_t * ))0)) { { ldv_file_operations_instance_write_0_4((long (*)(struct file * , char * , unsigned long , long long * ))ldv_0_container_file_operations->write, ldv_0_resource_file, ldv_0_ldv_param_4_1_default, ldv_0_size_cnt_write_size, ldv_0_ldv_param_4_3_default); } } else { } { ldv_free((void *)ldv_0_ldv_param_4_1_default); ldv_free((void *)ldv_0_ldv_param_4_3_default); } goto ldv_call_0; case_2: /* CIL Label */ { ldv_file_operations_instance_release_0_2(ldv_0_container_file_operations->release, ldv_0_resource_inode, ldv_0_resource_file); } goto ldv_main_0; case_3: /* CIL Label */ { tmp___9 = ldv_undef_int(); } if (tmp___9 != 0) { { tmp___7 = ldv_xmalloc(1UL); ldv_0_ldv_param_22_1_default = (char *)tmp___7; tmp___8 = ldv_xmalloc(8UL); ldv_0_ldv_param_22_3_default = (long long *)tmp___8; ldv_file_operations_instance_callback_0_22(ldv_0_callback_read, ldv_0_resource_file, ldv_0_ldv_param_22_1_default, ldv_0_size_cnt_write_size, ldv_0_ldv_param_22_3_default); ldv_free((void *)ldv_0_ldv_param_22_1_default); ldv_free((void *)ldv_0_ldv_param_22_3_default); } } else { { ldv_file_operations_instance_callback_0_5(ldv_0_callback_llseek, ldv_0_resource_file, ldv_0_ldv_param_5_1_default, ldv_0_ldv_param_5_2_default); } } goto ldv_36802; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_36802: ; goto ldv_call_0; goto ldv_call_0; return; } } void ldv_file_operations_file_operations_instance_1(void *arg0 ) { long long (*ldv_1_callback_llseek)(struct file * , long long , int ) ; long (*ldv_1_callback_read)(struct file * , char * , unsigned long , long long * ) ; struct file_operations *ldv_1_container_file_operations ; char *ldv_1_ldv_param_22_1_default ; long long *ldv_1_ldv_param_22_3_default ; char *ldv_1_ldv_param_4_1_default ; long long *ldv_1_ldv_param_4_3_default ; long long ldv_1_ldv_param_5_1_default ; int ldv_1_ldv_param_5_2_default ; struct file *ldv_1_resource_file ; struct inode *ldv_1_resource_inode ; int ldv_1_ret_default ; unsigned long ldv_1_size_cnt_write_size ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; void *tmp___8 ; int tmp___9 ; { { ldv_1_ret_default = 1; tmp = ldv_xmalloc(504UL); ldv_1_resource_file = (struct file *)tmp; tmp___0 = ldv_xmalloc(976UL); ldv_1_resource_inode = (struct inode *)tmp___0; tmp___1 = ldv_undef_int(); ldv_1_size_cnt_write_size = (unsigned long )tmp___1; } goto ldv_main_1; return; ldv_main_1: { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { ldv_1_ret_default = ldv_file_operations_instance_probe_1_12(ldv_1_container_file_operations->open, ldv_1_resource_inode, ldv_1_resource_file); ldv_1_ret_default = ldv_filter_err_code(ldv_1_ret_default); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_assume(ldv_1_ret_default == 0); } goto ldv_call_1; } else { { ldv_assume(ldv_1_ret_default != 0); } goto ldv_main_1; } } else { { ldv_free((void *)ldv_1_resource_file); ldv_free((void *)ldv_1_resource_inode); } return; } return; ldv_call_1: { tmp___4 = ldv_undef_int(); } { if (tmp___4 == 1) { goto case_1; } else { } if (tmp___4 == 2) { goto case_2; } else { } if (tmp___4 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___5 = ldv_xmalloc(1UL); ldv_1_ldv_param_4_1_default = (char *)tmp___5; tmp___6 = ldv_xmalloc(8UL); ldv_1_ldv_param_4_3_default = (long long *)tmp___6; ldv_assume(ldv_1_size_cnt_write_size <= 2147479552UL); } if ((unsigned long )ldv_1_container_file_operations->write != (unsigned long )((ssize_t (*)(struct file * , char const * , size_t , loff_t * ))0)) { { ldv_file_operations_instance_write_1_4((long (*)(struct file * , char * , unsigned long , long long * ))ldv_1_container_file_operations->write, ldv_1_resource_file, ldv_1_ldv_param_4_1_default, ldv_1_size_cnt_write_size, ldv_1_ldv_param_4_3_default); } } else { } { ldv_free((void *)ldv_1_ldv_param_4_1_default); ldv_free((void *)ldv_1_ldv_param_4_3_default); } goto ldv_call_1; case_2: /* CIL Label */ { ldv_file_operations_instance_release_1_2(ldv_1_container_file_operations->release, ldv_1_resource_inode, ldv_1_resource_file); } goto ldv_main_1; case_3: /* CIL Label */ { tmp___9 = ldv_undef_int(); } if (tmp___9 != 0) { { tmp___7 = ldv_xmalloc(1UL); ldv_1_ldv_param_22_1_default = (char *)tmp___7; tmp___8 = ldv_xmalloc(8UL); ldv_1_ldv_param_22_3_default = (long long *)tmp___8; ldv_file_operations_instance_callback_1_22(ldv_1_callback_read, ldv_1_resource_file, ldv_1_ldv_param_22_1_default, ldv_1_size_cnt_write_size, ldv_1_ldv_param_22_3_default); ldv_free((void *)ldv_1_ldv_param_22_1_default); ldv_free((void *)ldv_1_ldv_param_22_3_default); } } else { { ldv_file_operations_instance_callback_1_5(ldv_1_callback_llseek, ldv_1_resource_file, ldv_1_ldv_param_5_1_default, ldv_1_ldv_param_5_2_default); } } goto ldv_36832; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_36832: ; goto ldv_call_1; goto ldv_call_1; return; } } void ldv_file_operations_file_operations_instance_2(void *arg0 ) { long long (*ldv_2_callback_llseek)(struct file * , long long , int ) ; long (*ldv_2_callback_read)(struct file * , char * , unsigned long , long long * ) ; struct file_operations *ldv_2_container_file_operations ; char *ldv_2_ldv_param_22_1_default ; long long *ldv_2_ldv_param_22_3_default ; char *ldv_2_ldv_param_4_1_default ; long long *ldv_2_ldv_param_4_3_default ; long long ldv_2_ldv_param_5_1_default ; int ldv_2_ldv_param_5_2_default ; struct file *ldv_2_resource_file ; struct inode *ldv_2_resource_inode ; int ldv_2_ret_default ; unsigned long ldv_2_size_cnt_write_size ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; void *tmp___8 ; int tmp___9 ; { { ldv_2_ret_default = 1; tmp = ldv_xmalloc(504UL); ldv_2_resource_file = (struct file *)tmp; tmp___0 = ldv_xmalloc(976UL); ldv_2_resource_inode = (struct inode *)tmp___0; tmp___1 = ldv_undef_int(); ldv_2_size_cnt_write_size = (unsigned long )tmp___1; } goto ldv_main_2; return; ldv_main_2: { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { ldv_2_ret_default = ldv_file_operations_instance_probe_2_12(ldv_2_container_file_operations->open, ldv_2_resource_inode, ldv_2_resource_file); ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_assume(ldv_2_ret_default == 0); } goto ldv_call_2; } else { { ldv_assume(ldv_2_ret_default != 0); } goto ldv_main_2; } } else { { ldv_free((void *)ldv_2_resource_file); ldv_free((void *)ldv_2_resource_inode); } return; } return; ldv_call_2: { tmp___4 = ldv_undef_int(); } { if (tmp___4 == 1) { goto case_1; } else { } if (tmp___4 == 2) { goto case_2; } else { } if (tmp___4 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___5 = ldv_xmalloc(1UL); ldv_2_ldv_param_4_1_default = (char *)tmp___5; tmp___6 = ldv_xmalloc(8UL); ldv_2_ldv_param_4_3_default = (long long *)tmp___6; ldv_assume(ldv_2_size_cnt_write_size <= 2147479552UL); } if ((unsigned long )ldv_2_container_file_operations->write != (unsigned long )((ssize_t (*)(struct file * , char const * , size_t , loff_t * ))0)) { { ldv_file_operations_instance_write_2_4((long (*)(struct file * , char * , unsigned long , long long * ))ldv_2_container_file_operations->write, ldv_2_resource_file, ldv_2_ldv_param_4_1_default, ldv_2_size_cnt_write_size, ldv_2_ldv_param_4_3_default); } } else { } { ldv_free((void *)ldv_2_ldv_param_4_1_default); ldv_free((void *)ldv_2_ldv_param_4_3_default); } goto ldv_call_2; case_2: /* CIL Label */ { ldv_file_operations_instance_release_2_2(ldv_2_container_file_operations->release, ldv_2_resource_inode, ldv_2_resource_file); } goto ldv_main_2; case_3: /* CIL Label */ { tmp___9 = ldv_undef_int(); } if (tmp___9 != 0) { { tmp___7 = ldv_xmalloc(1UL); ldv_2_ldv_param_22_1_default = (char *)tmp___7; tmp___8 = ldv_xmalloc(8UL); ldv_2_ldv_param_22_3_default = (long long *)tmp___8; ldv_file_operations_instance_callback_2_22(ldv_2_callback_read, ldv_2_resource_file, ldv_2_ldv_param_22_1_default, ldv_2_size_cnt_write_size, ldv_2_ldv_param_22_3_default); ldv_free((void *)ldv_2_ldv_param_22_1_default); ldv_free((void *)ldv_2_ldv_param_22_3_default); } } else { { ldv_file_operations_instance_callback_2_5(ldv_2_callback_llseek, ldv_2_resource_file, ldv_2_ldv_param_5_1_default, ldv_2_ldv_param_5_2_default); } } goto ldv_36862; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_36862: ; goto ldv_call_2; goto ldv_call_2; return; } } void ldv_file_operations_file_operations_instance_3(void *arg0 ) { long long (*ldv_3_callback_llseek)(struct file * , long long , int ) ; long (*ldv_3_callback_read)(struct file * , char * , unsigned long , long long * ) ; struct file_operations *ldv_3_container_file_operations ; char *ldv_3_ldv_param_22_1_default ; long long *ldv_3_ldv_param_22_3_default ; char *ldv_3_ldv_param_4_1_default ; long long *ldv_3_ldv_param_4_3_default ; long long ldv_3_ldv_param_5_1_default ; int ldv_3_ldv_param_5_2_default ; struct file *ldv_3_resource_file ; struct inode *ldv_3_resource_inode ; int ldv_3_ret_default ; unsigned long ldv_3_size_cnt_write_size ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; void *tmp___8 ; int tmp___9 ; { { ldv_3_ret_default = 1; tmp = ldv_xmalloc(504UL); ldv_3_resource_file = (struct file *)tmp; tmp___0 = ldv_xmalloc(976UL); ldv_3_resource_inode = (struct inode *)tmp___0; tmp___1 = ldv_undef_int(); ldv_3_size_cnt_write_size = (unsigned long )tmp___1; } goto ldv_main_3; return; ldv_main_3: { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { ldv_3_ret_default = ldv_file_operations_instance_probe_3_12(ldv_3_container_file_operations->open, ldv_3_resource_inode, ldv_3_resource_file); ldv_3_ret_default = ldv_filter_err_code(ldv_3_ret_default); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_assume(ldv_3_ret_default == 0); } goto ldv_call_3; } else { { ldv_assume(ldv_3_ret_default != 0); } goto ldv_main_3; } } else { { ldv_free((void *)ldv_3_resource_file); ldv_free((void *)ldv_3_resource_inode); } return; } return; ldv_call_3: { tmp___4 = ldv_undef_int(); } { if (tmp___4 == 1) { goto case_1; } else { } if (tmp___4 == 2) { goto case_2; } else { } if (tmp___4 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___5 = ldv_xmalloc(1UL); ldv_3_ldv_param_4_1_default = (char *)tmp___5; tmp___6 = ldv_xmalloc(8UL); ldv_3_ldv_param_4_3_default = (long long *)tmp___6; ldv_assume(ldv_3_size_cnt_write_size <= 2147479552UL); } if ((unsigned long )ldv_3_container_file_operations->write != (unsigned long )((ssize_t (*)(struct file * , char const * , size_t , loff_t * ))0)) { { ldv_file_operations_instance_write_3_4((long (*)(struct file * , char * , unsigned long , long long * ))ldv_3_container_file_operations->write, ldv_3_resource_file, ldv_3_ldv_param_4_1_default, ldv_3_size_cnt_write_size, ldv_3_ldv_param_4_3_default); } } else { } { ldv_free((void *)ldv_3_ldv_param_4_1_default); ldv_free((void *)ldv_3_ldv_param_4_3_default); } goto ldv_call_3; case_2: /* CIL Label */ { ldv_file_operations_instance_release_3_2(ldv_3_container_file_operations->release, ldv_3_resource_inode, ldv_3_resource_file); } goto ldv_main_3; case_3: /* CIL Label */ { tmp___9 = ldv_undef_int(); } if (tmp___9 != 0) { { tmp___7 = ldv_xmalloc(1UL); ldv_3_ldv_param_22_1_default = (char *)tmp___7; tmp___8 = ldv_xmalloc(8UL); ldv_3_ldv_param_22_3_default = (long long *)tmp___8; ldv_file_operations_instance_callback_3_22(ldv_3_callback_read, ldv_3_resource_file, ldv_3_ldv_param_22_1_default, ldv_3_size_cnt_write_size, ldv_3_ldv_param_22_3_default); ldv_free((void *)ldv_3_ldv_param_22_1_default); ldv_free((void *)ldv_3_ldv_param_22_3_default); } } else { { ldv_file_operations_instance_callback_3_5(ldv_3_callback_llseek, ldv_3_resource_file, ldv_3_ldv_param_5_1_default, ldv_3_ldv_param_5_2_default); } } goto ldv_36892; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_36892: ; goto ldv_call_3; goto ldv_call_3; return; } } void ldv_file_operations_instance_callback_0_22(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { seq_read(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_0_5(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) { { { seq_lseek(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_1_22(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { seq_read(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_1_5(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) { { { seq_lseek(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_2_22(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { seq_read(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_2_5(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) { { { seq_lseek(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_3_22(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { seq_read(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_3_5(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) { { { seq_lseek(arg1, arg2, arg3); } return; } } int ldv_file_operations_instance_probe_0_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { int tmp ; { { tmp = asic_mode_open(arg1, arg2); } return (tmp); } } int ldv_file_operations_instance_probe_1_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { int tmp ; { { tmp = device_id_open(arg1, arg2); } return (tmp); } } int ldv_file_operations_instance_probe_2_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { int tmp ; { { tmp = flashcontrol_open(arg1, arg2); } return (tmp); } } int ldv_file_operations_instance_probe_3_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { int tmp ; { { tmp = protection_open(arg1, arg2); } return (tmp); } } void ldv_file_operations_instance_release_0_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { { { single_release(arg1, arg2); } return; } } void ldv_file_operations_instance_release_1_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { { { single_release(arg1, arg2); } return; } } void ldv_file_operations_instance_release_2_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { { { single_release(arg1, arg2); } return; } } void ldv_file_operations_instance_release_3_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { { { single_release(arg1, arg2); } return; } } void ldv_file_operations_instance_write_0_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { (*arg0)(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_write_1_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { (*arg0)(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_write_2_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { (*arg0)(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_write_3_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { (*arg0)(arg1, arg2, arg3, arg4); } return; } } void ldv_platform_driver_unregister(void *arg0 , struct platform_driver *arg1 ) { struct platform_driver *ldv_10_platform_driver_platform_driver ; { { ldv_10_platform_driver_platform_driver = arg1; ldv_dispatch_deregister_10_1(ldv_10_platform_driver_platform_driver); } return; return; } } void ldv_platform_instance_callback_4_20(int (*arg0)(struct platform_device * , struct pm_message ) , struct platform_device *arg1 , struct pm_message arg2 ) { { { docg3_suspend(arg1, arg2); } return; } } void ldv_platform_instance_callback_4_7(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) { { { docg3_resume(arg1); } return; } } void ldv_platform_instance_callback_5_20(int (*arg0)(struct platform_device * , struct pm_message ) , struct platform_device *arg1 , struct pm_message arg2 ) { { { docg3_suspend(arg1, arg2); } return; } } void ldv_platform_instance_callback_5_7(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) { { { docg3_probe(arg1); } return; } } int ldv_platform_instance_probe_4_14(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) { int tmp ; { { tmp = docg3_probe(arg1); } return (tmp); } } int ldv_platform_instance_probe_5_14(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) { int tmp ; { { tmp = docg3_probe(arg1); } return (tmp); } } void ldv_platform_instance_release_4_3(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) { { { docg3_release(arg1); } return; } } void ldv_platform_instance_release_5_3(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) { { { docg3_probe(arg1); } return; } } void ldv_platform_platform_instance_4(void *arg0 ) { int (*ldv_4_callback_resume)(struct platform_device * ) ; int (*ldv_4_callback_suspend)(struct platform_device * , struct pm_message ) ; struct platform_driver *ldv_4_container_platform_driver ; int ldv_4_probed_default ; struct platform_device *ldv_4_resource_platform_device ; struct pm_message ldv_4_resource_struct_pm_message ; void *tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { ldv_4_probed_default = 1; tmp = ldv_xmalloc(1464UL); ldv_4_resource_platform_device = (struct platform_device *)tmp; } goto ldv_main_4; return; ldv_main_4: { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { ldv_ldv_pre_probe_123(); ldv_4_probed_default = ldv_platform_instance_probe_4_14(ldv_4_container_platform_driver->probe, ldv_4_resource_platform_device); ldv_4_probed_default = ldv_ldv_post_probe_124(ldv_4_probed_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_4_probed_default == 0); } goto ldv_call_4; } else { { ldv_assume(ldv_4_probed_default != 0); } goto ldv_main_4; } } else { { ldv_free((void *)ldv_4_resource_platform_device); } return; } return; ldv_call_4: { tmp___2 = ldv_undef_int(); } { if (tmp___2 == 1) { goto case_1; } else { } if (tmp___2 == 2) { goto case_2; } else { } if (tmp___2 == 3) { goto case_3; } else { } if (tmp___2 == 4) { goto case_4; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_platform_instance_callback_4_20(ldv_4_callback_suspend, ldv_4_resource_platform_device, ldv_4_resource_struct_pm_message); } goto ldv_call_4; case_2: /* CIL Label */ { ldv_platform_instance_callback_4_7(ldv_4_callback_resume, ldv_4_resource_platform_device); } goto ldv_call_4; goto ldv_call_4; case_3: /* CIL Label */ { ldv_dispatch_pm_register_4_6(); ldv_dispatch_pm_deregister_4_5(); } goto ldv_call_4; goto ldv_call_4; goto ldv_call_4; case_4: /* CIL Label */ { ldv_platform_instance_release_4_3(ldv_4_container_platform_driver->remove, ldv_4_resource_platform_device); ldv_4_probed_default = 1; } goto ldv_main_4; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_platform_platform_instance_5(void *arg0 ) { int (*ldv_5_callback_resume)(struct platform_device * ) ; int (*ldv_5_callback_suspend)(struct platform_device * , struct pm_message ) ; struct platform_driver *ldv_5_container_platform_driver ; int ldv_5_probed_default ; struct platform_device *ldv_5_resource_platform_device ; struct pm_message ldv_5_resource_struct_pm_message ; void *tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { ldv_5_probed_default = 1; tmp = ldv_xmalloc(1464UL); ldv_5_resource_platform_device = (struct platform_device *)tmp; } goto ldv_main_5; return; ldv_main_5: { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { ldv_ldv_pre_probe_125(); ldv_5_probed_default = ldv_platform_instance_probe_5_14(ldv_5_container_platform_driver->probe, ldv_5_resource_platform_device); ldv_5_probed_default = ldv_ldv_post_probe_126(ldv_5_probed_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_5_probed_default == 0); } goto ldv_call_5; } else { { ldv_assume(ldv_5_probed_default != 0); } goto ldv_main_5; } } else { { ldv_free((void *)ldv_5_resource_platform_device); } return; } return; ldv_call_5: { tmp___2 = ldv_undef_int(); } { if (tmp___2 == 1) { goto case_1; } else { } if (tmp___2 == 2) { goto case_2; } else { } if (tmp___2 == 3) { goto case_3; } else { } if (tmp___2 == 4) { goto case_4; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_platform_instance_callback_5_20(ldv_5_callback_suspend, ldv_5_resource_platform_device, ldv_5_resource_struct_pm_message); } goto ldv_call_5; case_2: /* CIL Label */ { ldv_platform_instance_callback_5_7(ldv_5_callback_resume, ldv_5_resource_platform_device); } goto ldv_call_5; goto ldv_call_5; case_3: /* CIL Label */ { ldv_dispatch_pm_register_5_6(); ldv_dispatch_pm_deregister_5_5(); } goto ldv_call_5; goto ldv_call_5; goto ldv_call_5; case_4: /* CIL Label */ { ldv_platform_instance_release_5_3(ldv_5_container_platform_driver->remove, ldv_5_resource_platform_device); ldv_5_probed_default = 1; } goto ldv_main_5; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_platform_pm_ops_instance_6(void *arg0 ) { struct device *ldv_6_device_device ; struct dev_pm_ops *ldv_6_pm_ops_dev_pm_ops ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { goto ldv_do_6; return; ldv_do_6: { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } goto switch_default___0; case_1: /* CIL Label */ ; if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->runtime_idle != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_idle_6_27(ldv_6_pm_ops_dev_pm_ops->runtime_idle, ldv_6_device_device); } } else { } goto ldv_do_6; case_2: /* CIL Label */ ; if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->runtime_suspend != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_suspend_6_25(ldv_6_pm_ops_dev_pm_ops->runtime_suspend, ldv_6_device_device); } } else { } if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->runtime_resume != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_resume_6_24(ldv_6_pm_ops_dev_pm_ops->runtime_resume, ldv_6_device_device); } } else { } goto ldv_do_6; case_3: /* CIL Label */ ; if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->prepare != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_prepare_6_22(ldv_6_pm_ops_dev_pm_ops->prepare, ldv_6_device_device); } } else { } { tmp___0 = ldv_undef_int(); } { if (tmp___0 == 1) { goto case_1___0; } else { } if (tmp___0 == 2) { goto case_2___0; } else { } if (tmp___0 == 3) { goto case_3___0; } else { } goto switch_default; case_1___0: /* CIL Label */ ; if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->suspend != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_suspend_6_21(ldv_6_pm_ops_dev_pm_ops->suspend, ldv_6_device_device); } } else { } { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->suspend_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_suspend_noirq_6_20(ldv_6_pm_ops_dev_pm_ops->suspend_noirq, ldv_6_device_device); } } else { } if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->resume_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_resume_noirq_6_19(ldv_6_pm_ops_dev_pm_ops->resume_noirq, ldv_6_device_device); } } else { } } else { if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->suspend_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_suspend_late_6_18(ldv_6_pm_ops_dev_pm_ops->suspend_late, ldv_6_device_device); } } else { } if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->resume_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_resume_early_6_17(ldv_6_pm_ops_dev_pm_ops->resume_early, ldv_6_device_device); } } else { } } if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->resume != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_resume_6_16(ldv_6_pm_ops_dev_pm_ops->resume, ldv_6_device_device); } } else { } goto ldv_37171; case_2___0: /* CIL Label */ ; if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->freeze != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_freeze_6_15(ldv_6_pm_ops_dev_pm_ops->freeze, ldv_6_device_device); } } else { } { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->freeze_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_freeze_late_6_14(ldv_6_pm_ops_dev_pm_ops->freeze_late, ldv_6_device_device); } } else { } if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->thaw_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_thaw_early_6_13(ldv_6_pm_ops_dev_pm_ops->thaw_early, ldv_6_device_device); } } else { } } else { if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->freeze_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_freeze_noirq_6_12(ldv_6_pm_ops_dev_pm_ops->freeze_noirq, ldv_6_device_device); } } else { } if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->thaw_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_thaw_noirq_6_11(ldv_6_pm_ops_dev_pm_ops->thaw_noirq, ldv_6_device_device); } } else { } } if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->thaw != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_thaw_6_10(ldv_6_pm_ops_dev_pm_ops->thaw, ldv_6_device_device); } } else { } goto ldv_37171; case_3___0: /* CIL Label */ ; if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->poweroff != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_poweroff_6_9(ldv_6_pm_ops_dev_pm_ops->poweroff, ldv_6_device_device); } } else { } { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->poweroff_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_poweroff_late_6_8(ldv_6_pm_ops_dev_pm_ops->poweroff_late, ldv_6_device_device); } } else { } if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->restore_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_restore_early_6_7(ldv_6_pm_ops_dev_pm_ops->restore_early, ldv_6_device_device); } } else { } } else { if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->poweroff_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_poweroff_noirq_6_6(ldv_6_pm_ops_dev_pm_ops->poweroff_noirq, ldv_6_device_device); } } else { } if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->restore_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_restore_noirq_6_5(ldv_6_pm_ops_dev_pm_ops->restore_noirq, ldv_6_device_device); } } else { } } if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->restore != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_restore_6_4(ldv_6_pm_ops_dev_pm_ops->restore, ldv_6_device_device); } } else { } goto ldv_37171; switch_default: /* CIL Label */ { ldv_stop(); } switch_break___0: /* CIL Label */ ; } ldv_37171: ; if ((unsigned long )ldv_6_pm_ops_dev_pm_ops->complete != (unsigned long )((void (*)(struct device * ))0)) { { ldv_pm_ops_instance_complete_6_3(ldv_6_pm_ops_dev_pm_ops->complete, ldv_6_device_device); } } else { } goto ldv_do_6; case_4: /* CIL Label */ ; return; switch_default___0: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_pm_ops_instance_complete_6_3(void (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_freeze_6_15(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_freeze_late_6_14(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_freeze_noirq_6_12(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_poweroff_6_9(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_poweroff_late_6_8(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_poweroff_noirq_6_6(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_prepare_6_22(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_restore_6_4(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_restore_early_6_7(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_restore_noirq_6_5(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_resume_6_16(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_resume_early_6_17(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_resume_noirq_6_19(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_idle_6_27(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_resume_6_24(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_suspend_6_25(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_suspend_6_21(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_suspend_late_6_18(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_suspend_noirq_6_20(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_thaw_6_10(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_thaw_early_6_13(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_thaw_noirq_6_11(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_struct_device_attribute_dummy_resourceless_instance_7(void *arg0 ) { long (*ldv_7_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_7_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_7_container_struct_device_attribute ; struct device *ldv_7_container_struct_device_ptr ; char *ldv_7_ldv_param_3_2_default ; char *ldv_7_ldv_param_9_2_default ; unsigned long ldv_7_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_7; return; ldv_call_7: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_7_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_7_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_7_9(ldv_7_callback_store, ldv_7_container_struct_device_ptr, ldv_7_container_struct_device_attribute, ldv_7_ldv_param_9_2_default, ldv_7_ldv_param_9_3_default); ldv_free((void *)ldv_7_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_7_3(ldv_7_callback_show, ldv_7_container_struct_device_ptr, ldv_7_container_struct_device_attribute, ldv_7_ldv_param_3_2_default); } } { ldv_free((void *)ldv_7_ldv_param_3_2_default); } goto ldv_call_7; } else { return; } return; } } void ldv_struct_device_attribute_dummy_resourceless_instance_8(void *arg0 ) { long (*ldv_8_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_8_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_8_container_struct_device_attribute ; struct device *ldv_8_container_struct_device_ptr ; char *ldv_8_ldv_param_3_2_default ; char *ldv_8_ldv_param_9_2_default ; unsigned long ldv_8_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_8; return; ldv_call_8: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_8_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_8_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_8_9(ldv_8_callback_store, ldv_8_container_struct_device_ptr, ldv_8_container_struct_device_attribute, ldv_8_ldv_param_9_2_default, ldv_8_ldv_param_9_3_default); ldv_free((void *)ldv_8_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_8_3(ldv_8_callback_show, ldv_8_container_struct_device_ptr, ldv_8_container_struct_device_attribute, ldv_8_ldv_param_3_2_default); } } { ldv_free((void *)ldv_8_ldv_param_3_2_default); } goto ldv_call_8; } else { return; } return; } } void ldv_struct_trace_event_functions_dummy_resourceless_instance_9(void *arg0 ) { int (*ldv_9_callback_define_fields)(struct ftrace_event_call * ) ; int (*ldv_9_callback_raw_init)(struct ftrace_event_call * ) ; int (*ldv_9_callback_reg)(struct ftrace_event_call * , enum trace_reg , void * ) ; enum print_line_t (*ldv_9_callback_trace)(struct trace_iterator * , int , struct trace_event * ) ; enum trace_reg ldv_9_container_enum_trace_reg ; struct ftrace_event_call *ldv_9_container_struct_ftrace_event_call ; struct trace_event *ldv_9_container_struct_trace_event ; struct trace_iterator *ldv_9_container_struct_trace_iterator_ptr ; int ldv_9_ldv_param_9_1_default ; int tmp ; { goto ldv_call_9; return; ldv_call_9: { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_9_9(ldv_9_callback_trace, ldv_9_container_struct_trace_iterator_ptr, ldv_9_ldv_param_9_1_default, ldv_9_container_struct_trace_event); } goto ldv_call_9; case_2: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_9_8(ldv_9_callback_reg, ldv_9_container_struct_ftrace_event_call, ldv_9_container_enum_trace_reg, (void *)ldv_9_container_struct_trace_iterator_ptr); } goto ldv_call_9; goto ldv_call_9; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_9_7(ldv_9_callback_raw_init, ldv_9_container_struct_ftrace_event_call); } goto ldv_call_9; goto ldv_call_9; goto ldv_call_9; case_4: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_9_3(ldv_9_callback_define_fields, ldv_9_container_struct_ftrace_event_call); } goto ldv_call_9; goto ldv_call_9; goto ldv_call_9; goto ldv_call_9; case_5: /* CIL Label */ ; return; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } __inline static void *ERR_PTR(long error ) { void *tmp ; { { tmp = ldv_err_ptr(error); } return (tmp); } } __inline static long PTR_ERR(void const *ptr ) { long tmp ; { { tmp = ldv_ptr_err(ptr); } return (tmp); } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = ldv_kzalloc(size, flags); } return (tmp); } } static void ldv_mutex_lock_96(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_docg3_cascade(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_97(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_lock_of_docg3_cascade(ldv_func_arg1); } return; } } static void ldv_mutex_lock_98(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_docg3_cascade(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_99(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_lock_of_docg3_cascade(ldv_func_arg1); } return; } } static void ldv_mutex_lock_100(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_docg3_cascade(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_101(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_lock_of_docg3_cascade(ldv_func_arg1); } return; } } static void ldv_mutex_lock_102(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_docg3_cascade(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_103(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_lock_of_docg3_cascade(ldv_func_arg1); } return; } } static void ldv_mutex_lock_104(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_docg3_cascade(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_105(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_lock_of_docg3_cascade(ldv_func_arg1); } return; } } static void ldv_mutex_lock_106(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_docg3_cascade(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_107(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_lock_of_docg3_cascade(ldv_func_arg1); } return; } } static void ldv_mutex_lock_108(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_docg3_cascade(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_109(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_lock_of_docg3_cascade(ldv_func_arg1); } return; } } static void ldv_mutex_lock_110(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_docg3_cascade(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_111(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_lock_of_docg3_cascade(ldv_func_arg1); } return; } } static void ldv_mutex_lock_112(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_docg3_cascade(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_113(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_lock_of_docg3_cascade(ldv_func_arg1); } return; } } static void ldv_mutex_lock_114(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_docg3_cascade(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_115(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_lock_of_docg3_cascade(ldv_func_arg1); } return; } } static void ldv_mutex_lock_116(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_docg3_cascade(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_117(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_lock_of_docg3_cascade(ldv_func_arg1); } return; } } static void ldv_platform_driver_unregister_118(struct platform_driver *ldv_func_arg1 ) { { { platform_driver_unregister(ldv_func_arg1); ldv_platform_driver_unregister((void *)0, ldv_func_arg1); } return; } } static int ldv_ldv_post_init_119(int ldv_func_arg1 ) { int tmp ; { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); tmp = ldv_post_init(ldv_func_arg1); } return (tmp); } } static void ldv_ldv_check_final_state_120(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_check_final_state_121(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_initialize_122(void) { { { ldv_linux_lib_find_bit_initialize(); } return; } } static void ldv_ldv_pre_probe_123(void) { { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); ldv_pre_probe(); } return; } } static int ldv_ldv_post_probe_124(int retval ) { int tmp ; { { ldv_linux_net_register_check_return_value_probe(retval); ldv_linux_usb_register_check_return_value_probe(retval); tmp = ldv_post_probe(retval); } return (tmp); } } static void ldv_ldv_pre_probe_125(void) { { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); ldv_pre_probe(); } return; } } static int ldv_ldv_post_probe_126(int retval ) { int tmp ; { { ldv_linux_net_register_check_return_value_probe(retval); ldv_linux_usb_register_check_return_value_probe(retval); tmp = ldv_post_probe(retval); } return (tmp); } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) ; bool ldv_in_interrupt_context(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) { bool tmp ; int tmp___0 ; { { tmp = ldv_in_interrupt_context(); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } { ldv_assert_linux_alloc_irq__wrong_flags(tmp___0 || flags == 32U); } return; } } void ldv_linux_alloc_irq_check_alloc_nonatomic(void) { bool tmp ; { { tmp = ldv_in_interrupt_context(); } if ((int )tmp) { { ldv_assert_linux_alloc_irq__nonatomic(0); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_linux_alloc_spinlock_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_linux_alloc_spinlock_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) ; int ldv_linux_alloc_usb_lock_lock = 1; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) { { if (ldv_linux_alloc_usb_lock_lock == 2) { { ldv_assert_linux_alloc_usb_lock__wrong_flags(flags == 16U || flags == 32U); } } else { } return; } } void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) { { { ldv_assert_linux_alloc_usb_lock__nonatomic(ldv_linux_alloc_usb_lock_lock == 1); } return; } } void ldv_linux_alloc_usb_lock_usb_lock_device(void) { { ldv_linux_alloc_usb_lock_lock = 2; return; } } int ldv_linux_alloc_usb_lock_usb_trylock_device(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_alloc_usb_lock_usb_lock_device_for_reset(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (0); } else { return (-1); } } else { return (-1); } } } void ldv_linux_alloc_usb_lock_usb_unlock_device(void) { { ldv_linux_alloc_usb_lock_lock = 1; return; } } void ldv_linux_usb_dev_atomic_add(int i , atomic_t *v ) { { v->counter = v->counter + i; return; } } void ldv_linux_usb_dev_atomic_sub(int i , atomic_t *v ) { { v->counter = v->counter - i; return; } } int ldv_linux_usb_dev_atomic_sub_and_test(int i , atomic_t *v ) { { v->counter = v->counter - i; if (v->counter != 0) { return (0); } else { } return (1); } } void ldv_linux_usb_dev_atomic_inc(atomic_t *v ) { { v->counter = v->counter + 1; return; } } void ldv_linux_usb_dev_atomic_dec(atomic_t *v ) { { v->counter = v->counter - 1; return; } } int ldv_linux_usb_dev_atomic_dec_and_test(atomic_t *v ) { { v->counter = v->counter - 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_inc_and_test(atomic_t *v ) { { v->counter = v->counter + 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_add_return(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter); } } int ldv_linux_usb_dev_atomic_add_negative(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter < 0); } } int ldv_linux_usb_dev_atomic_inc_short(short *v ) { { *v = (short )((unsigned int )((unsigned short )*v) + 1U); return ((int )*v); } } void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) ; void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) ; void *ldv_undef_ptr(void) ; int ldv_linux_arch_io_iomem = 0; void *ldv_linux_arch_io_io_mem_remap(void) { void *ptr ; void *tmp ; { { tmp = ldv_undef_ptr(); ptr = tmp; } if ((unsigned long )ptr != (unsigned long )((void *)0)) { ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem + 1; return (ptr); } else { } return (ptr); } } void ldv_linux_arch_io_io_mem_unmap(void) { { { ldv_assert_linux_arch_io__less_initial_decrement(ldv_linux_arch_io_iomem > 0); ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem - 1; } return; } } void ldv_linux_arch_io_check_final_state(void) { { { ldv_assert_linux_arch_io__more_initial_at_exit(ldv_linux_arch_io_iomem == 0); } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) ; void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) ; void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) ; static int ldv_linux_block_genhd_disk_state = 0; struct gendisk *ldv_linux_block_genhd_alloc_disk(void) { struct gendisk *res ; void *tmp ; { { tmp = ldv_undef_ptr(); res = (struct gendisk *)tmp; ldv_assert_linux_block_genhd__double_allocation(ldv_linux_block_genhd_disk_state == 0); } if ((unsigned long )res != (unsigned long )((struct gendisk *)0)) { ldv_linux_block_genhd_disk_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_genhd_add_disk(void) { { { ldv_assert_linux_block_genhd__use_before_allocation(ldv_linux_block_genhd_disk_state == 1); ldv_linux_block_genhd_disk_state = 2; } return; } } void ldv_linux_block_genhd_del_gendisk(void) { { { ldv_assert_linux_block_genhd__delete_before_add(ldv_linux_block_genhd_disk_state == 2); ldv_linux_block_genhd_disk_state = 1; } return; } } void ldv_linux_block_genhd_put_disk(struct gendisk *disk ) { { if ((unsigned long )disk != (unsigned long )((struct gendisk *)0)) { { ldv_assert_linux_block_genhd__free_before_allocation(ldv_linux_block_genhd_disk_state > 0); ldv_linux_block_genhd_disk_state = 0; } } else { } return; } } void ldv_linux_block_genhd_check_final_state(void) { { { ldv_assert_linux_block_genhd__more_initial_at_exit(ldv_linux_block_genhd_disk_state == 0); } return; } } void ldv_assert_linux_block_queue__double_allocation(int expr ) ; void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_queue__use_before_allocation(int expr ) ; static int ldv_linux_block_queue_queue_state = 0; struct request_queue *ldv_linux_block_queue_request_queue(void) { struct request_queue *res ; void *tmp ; { { tmp = ldv_undef_ptr(); res = (struct request_queue *)tmp; ldv_assert_linux_block_queue__double_allocation(ldv_linux_block_queue_queue_state == 0); } if ((unsigned long )res != (unsigned long )((struct request_queue *)0)) { ldv_linux_block_queue_queue_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_queue_blk_cleanup_queue(void) { { { ldv_assert_linux_block_queue__use_before_allocation(ldv_linux_block_queue_queue_state == 1); ldv_linux_block_queue_queue_state = 0; } return; } } void ldv_linux_block_queue_check_final_state(void) { { { ldv_assert_linux_block_queue__more_initial_at_exit(ldv_linux_block_queue_queue_state == 0); } return; } } void ldv_assert_linux_block_request__double_get(int expr ) ; void ldv_assert_linux_block_request__double_put(int expr ) ; void ldv_assert_linux_block_request__get_at_exit(int expr ) ; long ldv_is_err(void const *ptr ) ; int ldv_linux_block_request_blk_rq = 0; struct request *ldv_linux_block_request_blk_get_request(gfp_t mask ) { struct request *res ; void *tmp ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_undef_ptr(); res = (struct request *)tmp; } if ((mask == 16U || mask == 208U) || mask == 16U) { { ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); } } else { } if ((unsigned long )res != (unsigned long )((struct request *)0)) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } struct request *ldv_linux_block_request_blk_make_request(gfp_t mask ) { struct request *res ; void *tmp ; long tmp___0 ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_undef_ptr(); res = (struct request *)tmp; ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); tmp___0 = ldv_is_err((void const *)res); } if (tmp___0 == 0L) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } void ldv_linux_block_request_put_blk_rq(void) { { { ldv_assert_linux_block_request__double_put(ldv_linux_block_request_blk_rq == 1); ldv_linux_block_request_blk_rq = 0; } return; } } void ldv_linux_block_request_check_final_state(void) { { { ldv_assert_linux_block_request__get_at_exit(ldv_linux_block_request_blk_rq == 0); } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) ; void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) ; int ldv_undef_int_nonpositive(void) ; int ldv_linux_drivers_base_class_usb_gadget_class = 0; void *ldv_linux_drivers_base_class_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_undef_ptr(); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_got); } } int ldv_linux_drivers_base_class_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_reg); } } void ldv_linux_drivers_base_class_unregister_class(void) { { { ldv_assert_linux_drivers_base_class__double_deregistration(ldv_linux_drivers_base_class_usb_gadget_class == 1); ldv_linux_drivers_base_class_usb_gadget_class = 0; } return; } } void ldv_linux_drivers_base_class_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_drivers_base_class_unregister_class(); } return; } } void ldv_linux_drivers_base_class_check_final_state(void) { { { ldv_assert_linux_drivers_base_class__registered_at_exit(ldv_linux_drivers_base_class_usb_gadget_class == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2176UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) ; void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) ; int ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; int ldv_linux_fs_char_dev_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_fs_char_dev_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } } else { } return (is_reg); } } void ldv_linux_fs_char_dev_unregister_chrdev_region(void) { { { ldv_assert_linux_fs_char_dev__double_deregistration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 1); ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; } return; } } void ldv_linux_fs_char_dev_check_final_state(void) { { { ldv_assert_linux_fs_char_dev__registered_at_exit(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); } return; } } void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) ; void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) ; int ldv_linux_fs_sysfs_sysfs = 0; int ldv_linux_fs_sysfs_sysfs_create_group(void) { int res ; int tmp ; { { tmp = ldv_undef_int_nonpositive(); res = tmp; } if (res == 0) { ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs + 1; return (0); } else { } return (res); } } void ldv_linux_fs_sysfs_sysfs_remove_group(void) { { { ldv_assert_linux_fs_sysfs__less_initial_decrement(ldv_linux_fs_sysfs_sysfs > 0); ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs - 1; } return; } } void ldv_linux_fs_sysfs_check_final_state(void) { { { ldv_assert_linux_fs_sysfs__more_initial_at_exit(ldv_linux_fs_sysfs_sysfs == 0); } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) ; int ldv_linux_kernel_locking_rwlock_rlock = 1; int ldv_linux_kernel_locking_rwlock_wlock = 1; void ldv_linux_kernel_locking_rwlock_read_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; } return; } } void ldv_linux_kernel_locking_rwlock_read_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(ldv_linux_kernel_locking_rwlock_rlock > 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + -1; } return; } } void ldv_linux_kernel_locking_rwlock_write_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_wlock = 2; } return; } } void ldv_linux_kernel_locking_rwlock_write_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(ldv_linux_kernel_locking_rwlock_wlock != 1); ldv_linux_kernel_locking_rwlock_wlock = 1; } return; } } int ldv_linux_kernel_locking_rwlock_read_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_kernel_locking_rwlock_write_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_wlock = 2; return (1); } else { return (0); } } else { return (0); } } } void ldv_linux_kernel_locking_rwlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(ldv_linux_kernel_locking_rwlock_rlock == 1); ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(ldv_linux_kernel_locking_rwlock_wlock == 1); } return; } } void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) ; void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) ; int ldv_linux_kernel_module_module_refcounter = 1; void ldv_linux_kernel_module_module_get(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; } else { } return; } } int ldv_linux_kernel_module_try_module_get(struct module *module ) { int tmp ; { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { tmp = ldv_undef_int(); } if (tmp == 1) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; return (1); } else { return (0); } } else { } return (0); } } void ldv_linux_kernel_module_module_put(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { ldv_assert_linux_kernel_module__less_initial_decrement(ldv_linux_kernel_module_module_refcounter > 1); ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter - 1; } } else { } return; } } void ldv_linux_kernel_module_module_put_and_exit(void) { { { ldv_linux_kernel_module_module_put((struct module *)1); } LDV_LINUX_KERNEL_MODULE_STOP: ; goto LDV_LINUX_KERNEL_MODULE_STOP; } } unsigned int ldv_linux_kernel_module_module_refcount(void) { { return ((unsigned int )(ldv_linux_kernel_module_module_refcounter + -1)); } } void ldv_linux_kernel_module_check_final_state(void) { { { ldv_assert_linux_kernel_module__more_initial_at_exit(ldv_linux_kernel_module_module_refcounter == 1); } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_srcu_srcu_nested = 0; void ldv_linux_kernel_rcu_srcu_srcu_read_lock(void) { { ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested + 1; return; } } void ldv_linux_kernel_rcu_srcu_srcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_srcu__more_unlocks(ldv_linux_kernel_rcu_srcu_srcu_nested > 0); ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_srcu_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = 0; void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_lock_bh(void) { { ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh + 1; return; } } void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_unlock_bh(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh > 0); ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = 0; void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_lock_sched(void) { { ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched + 1; return; } } void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_unlock_sched(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched > 0); ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_rcu_nested = 0; void ldv_linux_kernel_rcu_update_lock_rcu_read_lock(void) { { ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested + 1; return; } } void ldv_linux_kernel_rcu_update_lock_rcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(ldv_linux_kernel_rcu_update_lock_rcu_nested > 0); ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } void ldv_switch_to_interrupt_context(void) ; void ldv_switch_to_process_context(void) ; static bool __ldv_in_interrupt_context = 0; void ldv_switch_to_interrupt_context(void) { { __ldv_in_interrupt_context = 1; return; } } void ldv_switch_to_process_context(void) { { __ldv_in_interrupt_context = 0; return; } } bool ldv_in_interrupt_context(void) { { return (__ldv_in_interrupt_context); } } void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) ; extern int nr_cpu_ids ; unsigned long ldv_undef_ulong(void) ; unsigned long ldv_linux_lib_find_bit_find_next_bit(unsigned long size , unsigned long offset ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assert_linux_lib_find_bit__offset_out_of_range(offset <= size); ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } unsigned long ldv_linux_lib_find_bit_find_first_bit(unsigned long size ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } void ldv_linux_lib_find_bit_initialize(void) { { { ldv_assume(nr_cpu_ids > 0); } return; } } extern void ldv_after_alloc(void * ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) ; unsigned short ldv_linux_mmc_sdio_func_sdio_element = 0U; void ldv_linux_mmc_sdio_func_check_context(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__wrong_params((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); } return; } } void ldv_linux_mmc_sdio_func_sdio_claim_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__double_claim((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); ldv_linux_mmc_sdio_func_sdio_element = (unsigned short )((func->card)->host)->index; } return; } } void ldv_linux_mmc_sdio_func_sdio_release_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__release_without_claim((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); ldv_linux_mmc_sdio_func_sdio_element = 0U; } return; } } void ldv_linux_mmc_sdio_func_check_final_state(void) { { { ldv_assert_linux_mmc_sdio_func__unreleased_at_exit((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); } return; } } void ldv_assert_linux_net_register__wrong_return_value(int expr ) ; int ldv_pre_register_netdev(void) ; int ldv_linux_net_register_probe_state = 0; int ldv_pre_register_netdev(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_net_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_net_register_reset_error_counter(void) { { ldv_linux_net_register_probe_state = 0; return; } } void ldv_linux_net_register_check_return_value_probe(int retval ) { { if (ldv_linux_net_register_probe_state == 1) { { ldv_assert_linux_net_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_net_register_reset_error_counter(); } return; } } void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) ; void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) ; void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) ; int rtnllocknumber = 0; void ldv_linux_net_rtnetlink_past_rtnl_unlock(void) { { { ldv_assert_linux_net_rtnetlink__double_unlock(rtnllocknumber == 1); rtnllocknumber = 0; } return; } } void ldv_linux_net_rtnetlink_past_rtnl_lock(void) { { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); rtnllocknumber = 1; } return; } } void ldv_linux_net_rtnetlink_before_ieee80211_unregister_hw(void) { { { ldv_linux_net_rtnetlink_past_rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } int ldv_linux_net_rtnetlink_rtnl_is_locked(void) { int tmp ; { if (rtnllocknumber != 0) { return (rtnllocknumber); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_net_rtnetlink_rtnl_trylock(void) { int tmp ; { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); tmp = ldv_linux_net_rtnetlink_rtnl_is_locked(); } if (tmp == 0) { rtnllocknumber = 1; return (1); } else { return (0); } } } void ldv_linux_net_rtnetlink_check_final_state(void) { { { ldv_assert_linux_net_rtnetlink__lock_on_exit(rtnllocknumber == 0); } return; } } void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) ; void ldv_assert_linux_net_sock__double_release(int expr ) ; int locksocknumber = 0; void ldv_linux_net_sock_past_lock_sock_nested(void) { { locksocknumber = locksocknumber + 1; return; } } bool ldv_linux_net_sock_lock_sock_fast(void) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { locksocknumber = locksocknumber + 1; return (1); } else { } return (0); } } void ldv_linux_net_sock_unlock_sock_fast(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_before_release_sock(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_check_final_state(void) { { { ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(locksocknumber == 0); } return; } } void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) ; int ldv_linux_usb_coherent_coherent_state = 0; void *ldv_linux_usb_coherent_usb_alloc_coherent(void) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return (arbitrary_memory); } else { } ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + 1; return (arbitrary_memory); } } void ldv_linux_usb_coherent_usb_free_coherent(void *addr ) { { if ((unsigned long )addr != (unsigned long )((void *)0)) { { ldv_assert_linux_usb_coherent__less_initial_decrement(ldv_linux_usb_coherent_coherent_state > 0); ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + -1; } } else { } return; } } void ldv_linux_usb_coherent_check_final_state(void) { { { ldv_assert_linux_usb_coherent__more_initial_at_exit(ldv_linux_usb_coherent_coherent_state == 0); } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) ; void ldv_assert_linux_usb_dev__probe_failed(int expr ) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) ; ldv_map LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS ; struct usb_device *ldv_linux_usb_dev_usb_get_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0 ? LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + 1 : 1; } else { } return (dev); } } void ldv_linux_usb_dev_usb_put_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { { ldv_assert_linux_usb_dev__unincremented_counter_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0); ldv_assert_linux_usb_dev__less_initial_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 0); } if (LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 1) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + -1; } else { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; } } else { } return; } } void ldv_linux_usb_dev_check_return_value_probe(int retval ) { { if (retval != 0) { { ldv_assert_linux_usb_dev__probe_failed(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } } else { } return; } } void ldv_linux_usb_dev_initialize(void) { { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; return; } } void ldv_linux_usb_dev_check_final_state(void) { { { ldv_assert_linux_usb_dev__more_initial_at_exit(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) ; void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) ; int ldv_linux_usb_gadget_usb_gadget = 0; void *ldv_linux_usb_gadget_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_undef_ptr(); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_got); } } int ldv_linux_usb_gadget_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_class(void) { { { ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_linux_usb_gadget_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_usb_gadget_unregister_class(); } return; } } int ldv_linux_usb_gadget_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_usb_gadget_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_chrdev_region(void) { { { ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } int ldv_linux_usb_gadget_register_usb_gadget(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__double_usb_gadget_registration(ldv_linux_usb_gadget_usb_gadget == 0); ldv_linux_usb_gadget_usb_gadget = 1; } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_usb_gadget(void) { { { ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(ldv_linux_usb_gadget_usb_gadget == 1); ldv_linux_usb_gadget_usb_gadget = 0; } return; } } void ldv_linux_usb_gadget_check_final_state(void) { { { ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_assert_linux_usb_register__wrong_return_value(int expr ) ; int ldv_pre_usb_register_driver(void) ; int ldv_linux_usb_register_probe_state = 0; int ldv_pre_usb_register_driver(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_usb_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_usb_register_reset_error_counter(void) { { ldv_linux_usb_register_probe_state = 0; return; } } void ldv_linux_usb_register_check_return_value_probe(int retval ) { { if (ldv_linux_usb_register_probe_state == 1) { { ldv_assert_linux_usb_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_usb_register_reset_error_counter(); } return; } } void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) ; int ldv_linux_usb_urb_urb_state = 0; struct urb *ldv_linux_usb_urb_usb_alloc_urb(void) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return ((struct urb *)arbitrary_memory); } else { } ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + 1; return ((struct urb *)arbitrary_memory); } } void ldv_linux_usb_urb_usb_free_urb(struct urb *urb ) { { if ((unsigned long )urb != (unsigned long )((struct urb *)0)) { { ldv_assert_linux_usb_urb__less_initial_decrement(ldv_linux_usb_urb_urb_state > 0); ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + -1; } } else { } return; } } void ldv_linux_usb_urb_check_final_state(void) { { { ldv_assert_linux_usb_urb__more_initial_at_exit(ldv_linux_usb_urb_urb_state == 0); } return; } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *external_allocated_data(void) ; void *ldv_calloc_unknown_size(void) ; void *ldv_zalloc_unknown_size(void) ; void *ldv_xmalloc_unknown_size(size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; extern void *memset(void * , int , size_t ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_malloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; memset(res, 0, 8UL); ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc_unknown_size(void) { void *tmp ; { { tmp = ldv_calloc_unknown_size(); } return (tmp); } } void *ldv_xmalloc_unknown_size(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } int ldv_undef_int_negative(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { { tmp = __VERIFIER_nondet_pointer(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) ; ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode ; void ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock ; void ldv_linux_kernel_locking_mutex_mutex_lock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_lock(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_docg3_cascade ; void ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_docg3_cascade(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_docg3_cascade); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_docg3_cascade = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_lock_of_docg3_cascade(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_docg3_cascade); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_docg3_cascade = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_lock_of_docg3_cascade(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_docg3_cascade) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_lock_of_docg3_cascade(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_docg3_cascade); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_lock_of_docg3_cascade(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_docg3_cascade = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_lock_of_docg3_cascade(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_docg3_cascade(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_lock_of_docg3_cascade(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_docg3_cascade); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_docg3_cascade = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device ; void ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; } return; } } void ldv_linux_kernel_locking_mutex_initialize(void) { { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_docg3_cascade = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; return; } } void ldv_linux_kernel_locking_mutex_check_final_state(void) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_docg3_cascade); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_linux_kernel_locking_spinlock_spin_lock = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_linux_kernel_locking_spinlock_spin_lock = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_ptl = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_linux_kernel_locking_spinlock_spin_ptl = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_linux_kernel_locking_spinlock_spin_ptl = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } void ldv_linux_kernel_locking_spinlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2) { return (1); } else { } return (0); } } void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) ; void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) ; static int ldv_linux_kernel_sched_completion_completion = 0; void ldv_linux_kernel_sched_completion_init_completion(void) { { ldv_linux_kernel_sched_completion_completion = 1; return; } } void ldv_linux_kernel_sched_completion_init_completion_macro(void) { { { ldv_assert_linux_kernel_sched_completion__double_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 1; } return; } } void ldv_linux_kernel_sched_completion_wait_for_completion(void) { { { ldv_assert_linux_kernel_sched_completion__wait_without_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 2; } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) ; void ldv_assert_linux_lib_idr__double_init(int expr ) ; void ldv_assert_linux_lib_idr__more_at_exit(int expr ) ; void ldv_assert_linux_lib_idr__not_initialized(int expr ) ; static int ldv_linux_lib_idr_idr = 0; void ldv_linux_lib_idr_idr_init(void) { { { ldv_assert_linux_lib_idr__double_init(ldv_linux_lib_idr_idr == 0); ldv_linux_lib_idr_idr = 1; } return; } } void ldv_linux_lib_idr_idr_alloc(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_find(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_remove(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_destroy(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 3; } return; } } void ldv_linux_lib_idr_check_final_state(void) { { { ldv_assert_linux_lib_idr__more_at_exit(ldv_linux_lib_idr_idr == 0 || ldv_linux_lib_idr_idr == 3); } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_lib_idr__double_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__not_initialized(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__more_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_register__wrong_return_value(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_sock__double_release(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__probe_failed(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_request__double_get(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_request__double_put(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_request__get_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_queue__double_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_queue__use_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_register__wrong_return_value(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } }