/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef long long __s64; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __be16; typedef __u32 __be32; typedef __u16 __sum16; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct class; struct device; struct completion; struct gendisk; struct module; struct mutex; struct request_queue; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_10 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_11 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_9 { struct __anonstruct____missing_field_name_10 __annonCompField5 ; struct __anonstruct____missing_field_name_11 __annonCompField6 ; }; struct desc_struct { union __anonunion____missing_field_name_9 __annonCompField7 ; }; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_12 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_12 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_13 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_13 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; typedef void (*ctor_fn_t)(void); struct net_device; struct file_operations; enum system_states { SYSTEM_BOOTING = 0, SYSTEM_RUNNING = 1, SYSTEM_HALT = 2, SYSTEM_POWER_OFF = 3, SYSTEM_RESTART = 4 } ; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_16 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_16 __annonCompField8 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct exec_domain; struct map_segment; struct exec_domain { char const *name ; void (*handler)(int , struct pt_regs * ) ; unsigned char pers_low ; unsigned char pers_high ; unsigned long *signal_map ; unsigned long *signal_invmap ; struct map_segment *err_map ; struct map_segment *socktype_map ; struct map_segment *sockopt_map ; struct map_segment *af_map ; struct module *module ; struct exec_domain *next ; }; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_21 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_22 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_20 { struct __anonstruct____missing_field_name_21 __annonCompField12 ; struct __anonstruct____missing_field_name_22 __annonCompField13 ; }; union __anonunion____missing_field_name_23 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_20 __annonCompField14 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_23 __annonCompField15 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndreg { u64 lower_bound ; u64 upper_bound ; }; struct bndcsr { u64 bndcfgu ; u64 bndstatus ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndreg bndreg[4U] ; struct bndcsr bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; struct __anonstruct_mm_segment_t_25 { unsigned long seg ; }; typedef struct __anonstruct_mm_segment_t_25 mm_segment_t; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_27 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_26 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_27 __annonCompField17 ; }; struct spinlock { union __anonunion____missing_field_name_26 __annonCompField18 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_28 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_28 rwlock_t; struct ldv_thread; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct optimistic_spin_queue { atomic_t tail ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct compat_timespec; struct __anonstruct_futex_30 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_31 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_32 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_29 { struct __anonstruct_futex_30 futex ; struct __anonstruct_nanosleep_31 nanosleep ; struct __anonstruct_poll_32 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_29 __annonCompField19 ; }; struct thread_info { struct task_struct *task ; struct exec_domain *exec_domain ; __u32 flags ; __u32 status ; __u32 cpu ; int saved_preempt_count ; mm_segment_t addr_limit ; void *sysenter_return ; unsigned char sig_on_uaccess_error : 1 ; unsigned char uaccess_err : 1 ; }; struct jump_entry; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_45 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_45 seqlock_t; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct notifier_block; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; enum tk_offsets { TK_OFFS_REAL = 0, TK_OFFS_BOOT = 1, TK_OFFS_TAI = 2, TK_OFFS_MAX = 3 } ; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; union __anonunion____missing_field_name_46 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_46 __annonCompField20 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_47 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_47 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct user_namespace; struct __anonstruct_kuid_t_48 { uid_t val ; }; typedef struct __anonstruct_kuid_t_48 kuid_t; struct __anonstruct_kgid_t_49 { gid_t val ; }; typedef struct __anonstruct_kgid_t_49 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_50 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_50 nodemask_t; struct path; struct inode; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; }; struct ctl_table; struct pci_dev; struct pci_bus; struct __anonstruct_mm_context_t_115 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_115 mm_context_t; struct bio_vec; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct pdev_archdata { }; struct device_private; struct device_driver; struct driver_private; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct pm_qos_flags_request { struct list_head node ; s32 flags ; }; enum dev_pm_qos_req_type { DEV_PM_QOS_RESUME_LATENCY = 1, DEV_PM_QOS_LATENCY_TOLERANCE = 2, DEV_PM_QOS_FLAGS = 3 } ; union __anonunion_data_142 { struct plist_node pnode ; struct pm_qos_flags_request flr ; }; struct dev_pm_qos_request { enum dev_pm_qos_req_type type ; union __anonunion_data_142 data ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2, PM_QOS_SUM = 3 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; s32 no_constraint_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct pm_qos_flags { struct list_head list ; s32 effective_flags ; }; struct dev_pm_qos { struct pm_qos_constraints resume_latency ; struct pm_qos_constraints latency_tolerance ; struct pm_qos_flags flags ; struct dev_pm_qos_request *resume_latency_req ; struct dev_pm_qos_request *latency_tolerance_req ; struct dev_pm_qos_request *flags_req ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct kvec { void *iov_base ; size_t iov_len ; }; union __anonunion____missing_field_name_143 { struct iovec const *iov ; struct kvec const *kvec ; struct bio_vec const *bvec ; }; struct iov_iter { int type ; size_t iov_offset ; size_t count ; union __anonunion____missing_field_name_143 __annonCompField32 ; unsigned long nr_segs ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_149 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_150 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_148 { struct __anonstruct____missing_field_name_149 __annonCompField35 ; struct __anonstruct____missing_field_name_150 __annonCompField36 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_148 __annonCompField37 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; struct mem_cgroup; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_151 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_153 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_157 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_156 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_157 __annonCompField40 ; int units ; }; struct __anonstruct____missing_field_name_155 { union __anonunion____missing_field_name_156 __annonCompField41 ; atomic_t _count ; }; union __anonunion____missing_field_name_154 { unsigned long counters ; struct __anonstruct____missing_field_name_155 __annonCompField42 ; unsigned int active ; }; struct __anonstruct____missing_field_name_152 { union __anonunion____missing_field_name_153 __annonCompField39 ; union __anonunion____missing_field_name_154 __annonCompField43 ; }; struct __anonstruct____missing_field_name_159 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_160 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_158 { struct list_head lru ; struct __anonstruct____missing_field_name_159 __annonCompField45 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_160 __annonCompField46 ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_161 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_151 __annonCompField38 ; struct __anonstruct____missing_field_name_152 __annonCompField44 ; union __anonunion____missing_field_name_158 __annonCompField47 ; union __anonunion____missing_field_name_161 __annonCompField48 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_162 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_162 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct file_ra_state; struct user_struct; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *cow_page ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; struct page *(*find_special_page)(struct vm_area_struct * , unsigned long ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; typedef unsigned short __kernel_sa_family_t; struct pid; struct cred; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct msghdr { void *msg_name ; int msg_namelen ; struct iov_iter msg_iter ; void *msg_control ; __kernel_size_t msg_controllen ; unsigned int msg_flags ; }; struct __anonstruct_sync_serial_settings_165 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_165 sync_serial_settings; struct __anonstruct_te1_settings_166 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_166 te1_settings; struct __anonstruct_raw_hdlc_proto_167 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_167 raw_hdlc_proto; struct __anonstruct_fr_proto_168 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_168 fr_proto; struct __anonstruct_fr_proto_pvc_169 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_169 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_170 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_170 fr_proto_pvc_info; struct __anonstruct_cisco_proto_171 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_171 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_172 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_172 ifs_ifsu ; }; union __anonunion_ifr_ifrn_173 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_174 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_173 ifr_ifrn ; union __anonunion_ifr_ifru_174 ifr_ifru ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_177 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_176 { struct __anonstruct____missing_field_name_177 __annonCompField49 ; }; struct lockref { union __anonunion____missing_field_name_176 __annonCompField50 ; }; struct vfsmount; struct __anonstruct____missing_field_name_179 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_178 { struct __anonstruct____missing_field_name_179 __annonCompField51 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_178 __annonCompField52 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_180 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_180 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct __anonstruct____missing_field_name_182 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_181 { struct __anonstruct____missing_field_name_182 __annonCompField53 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_181 __annonCompField54 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct io_context; struct cgroup_subsys_state; struct bio_vec { struct page *bv_page ; unsigned int bv_len ; unsigned int bv_offset ; }; struct backing_dev_info; struct export_operations; struct nameidata; struct kiocb; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_185 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_185 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_186 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_186 __annonCompField56 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct hd_struct; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_189 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_190 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; struct cdev; union __anonunion____missing_field_name_191 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_189 __annonCompField57 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_190 __annonCompField58 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_191 __annonCompField59 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_192 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_192 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_get_owner)(struct file_lock * , struct file_lock * ) ; void (*lm_put_owner)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct net; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_194 { struct list_head link ; int state ; }; union __anonunion_fl_u_193 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_194 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_193 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; void (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; int (*dentry_open)(struct dentry * , struct file * , struct cred const * ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; typedef unsigned long cputime_t; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_195 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_195 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_197 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_198 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_199 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_200 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_202 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_201 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_202 _addr_bnd ; }; struct __anonstruct__sigpoll_203 { long _band ; int _fd ; }; struct __anonstruct__sigsys_204 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_196 { int _pad[28U] ; struct __anonstruct__kill_197 _kill ; struct __anonstruct__timer_198 _timer ; struct __anonstruct__rt_199 _rt ; struct __anonstruct__sigchld_200 _sigchld ; struct __anonstruct__sigfault_201 _sigfault ; struct __anonstruct__sigpoll_203 _sigpoll ; struct __anonstruct__sigsys_204 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_196 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int in_hrtirq ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct____missing_field_name_208 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion____missing_field_name_207 { struct __anonstruct____missing_field_name_208 __annonCompField60 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion____missing_field_name_207 __annonCompField61 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_209 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_210 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_212 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_211 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_212 __annonCompField64 ; }; union __anonunion_type_data_213 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_215 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_214 { union __anonunion_payload_215 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_209 __annonCompField62 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_210 __annonCompField63 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_211 __annonCompField65 ; union __anonunion_type_data_213 type_data ; union __anonunion____missing_field_name_214 __annonCompField66 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned char brk_randomized : 1 ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; }; typedef s32 compat_time_t; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_timespec { compat_time_t tv_sec ; s32 tv_nsec ; }; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; enum ldv_22964 { SS_FREE = 0, SS_UNCONNECTED = 1, SS_CONNECTING = 2, SS_CONNECTED = 3, SS_DISCONNECTING = 4 } ; typedef enum ldv_22964 socket_state; struct socket_wq { wait_queue_head_t wait ; struct fasync_struct *fasync_list ; struct callback_head rcu ; }; struct proto_ops; struct socket { socket_state state ; short type ; unsigned long flags ; struct socket_wq *wq ; struct file *file ; struct sock *sk ; struct proto_ops const *ops ; }; struct proto_ops { int family ; struct module *owner ; int (*release)(struct socket * ) ; int (*bind)(struct socket * , struct sockaddr * , int ) ; int (*connect)(struct socket * , struct sockaddr * , int , int ) ; int (*socketpair)(struct socket * , struct socket * ) ; int (*accept)(struct socket * , struct socket * , int ) ; int (*getname)(struct socket * , struct sockaddr * , int * , int ) ; unsigned int (*poll)(struct file * , struct socket * , struct poll_table_struct * ) ; int (*ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*listen)(struct socket * , int ) ; int (*shutdown)(struct socket * , int ) ; int (*setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct socket * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct socket * , int , int , char * , int * ) ; int (*sendmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t , int ) ; int (*mmap)(struct file * , struct socket * , struct vm_area_struct * ) ; ssize_t (*sendpage)(struct socket * , struct page * , int , size_t , int ) ; ssize_t (*splice_read)(struct socket * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*set_peek_off)(struct sock * , int ) ; }; struct exception_table_entry { int insn ; int fixup ; }; struct in6_addr; struct sk_buff; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; typedef u64 netdev_features_t; struct napi_struct; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; struct skb_frag_struct; typedef struct skb_frag_struct skb_frag_t; struct __anonstruct_page_235 { struct page *p ; }; struct skb_frag_struct { struct __anonstruct_page_235 page ; __u32 page_offset ; __u32 size ; }; struct skb_shared_hwtstamps { ktime_t hwtstamp ; }; struct skb_shared_info { unsigned char nr_frags ; __u8 tx_flags ; unsigned short gso_size ; unsigned short gso_segs ; unsigned short gso_type ; struct sk_buff *frag_list ; struct skb_shared_hwtstamps hwtstamps ; u32 tskey ; __be32 ip6_frag_id ; atomic_t dataref ; void *destructor_arg ; skb_frag_t frags[17U] ; }; typedef unsigned int sk_buff_data_t; struct __anonstruct____missing_field_name_237 { u32 stamp_us ; u32 stamp_jiffies ; }; union __anonunion____missing_field_name_236 { u64 v64 ; struct __anonstruct____missing_field_name_237 __annonCompField71 ; }; struct skb_mstamp { union __anonunion____missing_field_name_236 __annonCompField72 ; }; union __anonunion____missing_field_name_240 { ktime_t tstamp ; struct skb_mstamp skb_mstamp ; }; struct __anonstruct____missing_field_name_239 { struct sk_buff *next ; struct sk_buff *prev ; union __anonunion____missing_field_name_240 __annonCompField73 ; }; union __anonunion____missing_field_name_238 { struct __anonstruct____missing_field_name_239 __annonCompField74 ; struct rb_node rbnode ; }; struct sec_path; struct __anonstruct____missing_field_name_242 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_241 { __wsum csum ; struct __anonstruct____missing_field_name_242 __annonCompField76 ; }; union __anonunion____missing_field_name_243 { unsigned int napi_id ; unsigned int sender_cpu ; }; union __anonunion____missing_field_name_244 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; union __anonunion____missing_field_name_245 { __be16 inner_protocol ; __u8 inner_ipproto ; }; struct sk_buff { union __anonunion____missing_field_name_238 __annonCompField75 ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; void (*destructor)(struct sk_buff * ) ; struct sec_path *sp ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; __u16 queue_mapping ; unsigned char cloned : 1 ; unsigned char nohdr : 1 ; unsigned char fclone : 2 ; unsigned char peeked : 1 ; unsigned char head_frag : 1 ; unsigned char xmit_more : 1 ; __u32 headers_start[0U] ; __u8 __pkt_type_offset[0U] ; unsigned char pkt_type : 3 ; unsigned char pfmemalloc : 1 ; unsigned char ignore_df : 1 ; unsigned char nfctinfo : 3 ; unsigned char nf_trace : 1 ; unsigned char ip_summed : 2 ; unsigned char ooo_okay : 1 ; unsigned char l4_hash : 1 ; unsigned char sw_hash : 1 ; unsigned char wifi_acked_valid : 1 ; unsigned char wifi_acked : 1 ; unsigned char no_fcs : 1 ; unsigned char encapsulation : 1 ; unsigned char encap_hdr_csum : 1 ; unsigned char csum_valid : 1 ; unsigned char csum_complete_sw : 1 ; unsigned char csum_level : 2 ; unsigned char csum_bad : 1 ; unsigned char ndisc_nodetype : 2 ; unsigned char ipvs_property : 1 ; unsigned char inner_protocol_type : 1 ; unsigned char remcsum_offload : 1 ; __u16 tc_index ; __u16 tc_verd ; union __anonunion____missing_field_name_241 __annonCompField77 ; __u32 priority ; int skb_iif ; __u32 hash ; __be16 vlan_proto ; __u16 vlan_tci ; union __anonunion____missing_field_name_243 __annonCompField78 ; __u32 secmark ; union __anonunion____missing_field_name_244 __annonCompField79 ; union __anonunion____missing_field_name_245 __annonCompField80 ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __be16 protocol ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; __u32 headers_end[0U] ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct rtable; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char erom_version[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_tunable { __u32 cmd ; __u32 id ; __u32 type_id ; __u32 len ; void *data[0U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_key_size)(struct net_device * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh)(struct net_device * , u32 * , u8 * , u8 * ) ; int (*set_rxfh)(struct net_device * , u32 const * , u8 const * , u8 const ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; int (*get_tunable)(struct net_device * , struct ethtool_tunable const * , void * ) ; int (*set_tunable)(struct net_device * , struct ethtool_tunable const * , void const * ) ; }; union __anonunion_in6_u_248 { __u8 u6_addr8[16U] ; __be16 u6_addr16[8U] ; __be32 u6_addr32[4U] ; }; struct in6_addr { union __anonunion_in6_u_248 in6_u ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6_mib_device { atomic_long_t mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6msg_mib_device { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[9U] ; }; struct linux_mib { unsigned long mibs[113U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct proc_dir_entry; struct netns_mib { struct tcp_mib *tcp_statistics ; struct ipstats_mib *ip_statistics ; struct linux_mib *net_statistics ; struct udp_mib *udp_statistics ; struct udp_mib *udplite_statistics ; struct icmp_mib *icmp_statistics ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6 ; struct udp_mib *udplite_stats_in6 ; struct ipstats_mib *ipv6_statistics ; struct icmpv6_mib *icmpv6_statistics ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct tcpm_hash_bucket; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; }; struct ping_group_range { seqlock_t lock ; kgid_t range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct inet_peer_base *peers ; struct tcpm_hash_bucket *tcp_metrics_hash ; unsigned int tcp_metrics_hash_log ; struct sock **tcp_sk ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports ip_local_ports ; int sysctl_tcp_ecn ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; int sysctl_ip_nonlocal_bind ; int sysctl_fwmark_reflect ; int sysctl_tcp_fwmark_accept ; int sysctl_tcp_mtu_probing ; int sysctl_tcp_base_mss ; struct ping_group_range ping_group_range ; atomic_t dev_addr_genid ; unsigned long *sysctl_local_reserved_ports ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int auto_flowlabels ; int icmpv6_time ; int anycast_src_echo_reply ; int fwmark_reflect ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t fib6_sernum ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct netns_sysctl_lowpan { struct ctl_table_header *frags_hdr ; }; struct netns_ieee802154_lowpan { struct netns_sysctl_lowpan sysctl ; struct netns_frags frags ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; struct nlattr; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ct_pcpu { spinlock_t lock ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct delayed_work ecache_dwork ; bool ecache_dwork_pending ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; seqcount_t generation ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct ct_pcpu *pcpu_lists ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; unsigned int base_seq ; u8 gencursor ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct tasklet_struct { struct tasklet_struct *next ; unsigned long state ; atomic_t count ; void (*func)(unsigned long ) ; unsigned long data ; }; struct flow_cache_percpu { struct hlist_head *hash_table ; int hash_count ; u32 hash_rnd ; int hash_rnd_recalc ; struct tasklet_struct flush_tasklet ; }; struct flow_cache { u32 hash_shift ; struct flow_cache_percpu *percpu ; struct notifier_block hotcpu_notifier ; int low_watermark ; int high_watermark ; struct timer_list rnd_timer ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; u8 dbits4 ; u8 sbits4 ; u8 dbits6 ; u8 sbits6 ; }; struct xfrm_policy_hthresh { struct work_struct work ; seqlock_t lock ; u8 lbits4 ; u8 rbits4 ; u8 lbits6 ; u8 rbits6 ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[3U] ; struct xfrm_policy_hash policy_bydst[3U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct xfrm_policy_hthresh policy_hthresh ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; struct flow_cache flow_cache_global ; atomic_t flow_cache_genid ; struct list_head flow_cache_gc_list ; spinlock_t flow_cache_gc_lock ; struct work_struct flow_cache_gc_work ; struct work_struct flow_cache_flush_work ; struct mutex flow_flush_sem ; }; struct proc_ns_operations; struct ns_common { atomic_long_t stashed ; struct proc_ns_operations const *ops ; unsigned int inum ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; struct idr netns_ids ; struct ns_common ns ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_ieee802154_lowpan ieee802154_lowpan ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct platform_device_id { char name[20U] ; kernel_ulong_t driver_data ; }; enum fwnode_type { FWNODE_INVALID = 0, FWNODE_OF = 1, FWNODE_ACPI = 2 } ; struct fwnode_handle { enum fwnode_type type ; }; typedef u32 phandle; struct property { char *name ; int length ; void *value ; struct property *next ; unsigned long _flags ; unsigned int unique_id ; struct bin_attribute attr ; }; struct device_node { char const *name ; char const *type ; phandle phandle ; char const *full_name ; struct fwnode_handle fwnode ; struct property *properties ; struct property *deadprops ; struct device_node *parent ; struct device_node *child ; struct device_node *sibling ; struct kobject kobj ; unsigned long _flags ; void *data ; }; struct mii_ioctl_data { __u16 phy_id ; __u16 reg_num ; __u16 val_in ; __u16 val_out ; }; enum ldv_27699 { PHY_INTERFACE_MODE_NA = 0, PHY_INTERFACE_MODE_MII = 1, PHY_INTERFACE_MODE_GMII = 2, PHY_INTERFACE_MODE_SGMII = 3, PHY_INTERFACE_MODE_TBI = 4, PHY_INTERFACE_MODE_REVMII = 5, PHY_INTERFACE_MODE_RMII = 6, PHY_INTERFACE_MODE_RGMII = 7, PHY_INTERFACE_MODE_RGMII_ID = 8, PHY_INTERFACE_MODE_RGMII_RXID = 9, PHY_INTERFACE_MODE_RGMII_TXID = 10, PHY_INTERFACE_MODE_RTBI = 11, PHY_INTERFACE_MODE_SMII = 12, PHY_INTERFACE_MODE_XGMII = 13, PHY_INTERFACE_MODE_MOCA = 14, PHY_INTERFACE_MODE_QSGMII = 15, PHY_INTERFACE_MODE_MAX = 16 } ; typedef enum ldv_27699 phy_interface_t; enum ldv_27752 { MDIOBUS_ALLOCATED = 1, MDIOBUS_REGISTERED = 2, MDIOBUS_UNREGISTERED = 3, MDIOBUS_RELEASED = 4 } ; struct phy_device; struct mii_bus { char const *name ; char id[17U] ; void *priv ; int (*read)(struct mii_bus * , int , int ) ; int (*write)(struct mii_bus * , int , int , u16 ) ; int (*reset)(struct mii_bus * ) ; struct mutex mdio_lock ; struct device *parent ; enum ldv_27752 state ; struct device dev ; struct phy_device *phy_map[32U] ; u32 phy_mask ; int *irq ; }; enum phy_state { PHY_DOWN = 0, PHY_STARTING = 1, PHY_READY = 2, PHY_PENDING = 3, PHY_UP = 4, PHY_AN = 5, PHY_RUNNING = 6, PHY_NOLINK = 7, PHY_FORCING = 8, PHY_CHANGELINK = 9, PHY_HALTED = 10, PHY_RESUMING = 11 } ; struct phy_c45_device_ids { u32 devices_in_package ; u32 device_ids[8U] ; }; struct phy_driver; struct phy_device { struct phy_driver *drv ; struct mii_bus *bus ; struct device dev ; u32 phy_id ; struct phy_c45_device_ids c45_ids ; bool is_c45 ; bool is_internal ; bool has_fixups ; bool suspended ; enum phy_state state ; u32 dev_flags ; phy_interface_t interface ; int addr ; int speed ; int duplex ; int pause ; int asym_pause ; int link ; u32 interrupts ; u32 supported ; u32 advertising ; u32 lp_advertising ; int autoneg ; int link_timeout ; int irq ; void *priv ; struct work_struct phy_queue ; struct delayed_work state_queue ; atomic_t irq_disable ; struct mutex lock ; struct net_device *attached_dev ; void (*adjust_link)(struct net_device * ) ; }; struct phy_driver { u32 phy_id ; char *name ; unsigned int phy_id_mask ; u32 features ; u32 flags ; void const *driver_data ; int (*soft_reset)(struct phy_device * ) ; int (*config_init)(struct phy_device * ) ; int (*probe)(struct phy_device * ) ; int (*suspend)(struct phy_device * ) ; int (*resume)(struct phy_device * ) ; int (*config_aneg)(struct phy_device * ) ; int (*aneg_done)(struct phy_device * ) ; int (*read_status)(struct phy_device * ) ; int (*ack_interrupt)(struct phy_device * ) ; int (*config_intr)(struct phy_device * ) ; int (*did_interrupt)(struct phy_device * ) ; void (*remove)(struct phy_device * ) ; int (*match_phy_device)(struct phy_device * ) ; int (*ts_info)(struct phy_device * , struct ethtool_ts_info * ) ; int (*hwtstamp)(struct phy_device * , struct ifreq * ) ; bool (*rxtstamp)(struct phy_device * , struct sk_buff * , int ) ; void (*txtstamp)(struct phy_device * , struct sk_buff * , int ) ; int (*set_wol)(struct phy_device * , struct ethtool_wolinfo * ) ; void (*get_wol)(struct phy_device * , struct ethtool_wolinfo * ) ; void (*link_change_notify)(struct phy_device * ) ; int (*read_mmd_indirect)(struct phy_device * , int , int , int ) ; void (*write_mmd_indirect)(struct phy_device * , int , int , int , u32 ) ; int (*module_info)(struct phy_device * , struct ethtool_modinfo * ) ; int (*module_eeprom)(struct phy_device * , struct ethtool_eeprom * , u8 * ) ; struct device_driver driver ; }; struct fixed_phy_status { int link ; int speed ; int duplex ; int pause ; int asym_pause ; }; enum dsa_tag_protocol { DSA_TAG_PROTO_NONE = 0, DSA_TAG_PROTO_DSA = 1, DSA_TAG_PROTO_TRAILER = 2, DSA_TAG_PROTO_EDSA = 3, DSA_TAG_PROTO_BRCM = 4 } ; struct dsa_chip_data { struct device *host_dev ; int sw_addr ; int eeprom_len ; struct device_node *of_node ; char *port_names[12U] ; struct device_node *port_dn[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct packet_type; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; int (*rcv)(struct sk_buff * , struct net_device * , struct packet_type * , struct net_device * ) ; enum dsa_tag_protocol tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct device *master_dev ; char hwmon_name[24U] ; struct device *hwmon_dev ; u32 dsa_port_mask ; u32 phys_port_mask ; u32 phys_mii_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; enum dsa_tag_protocol tag_protocol ; int priv_size ; char *(*probe)(struct device * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; u32 (*get_phy_flags)(struct dsa_switch * , int ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*adjust_link)(struct dsa_switch * , int , struct phy_device * ) ; void (*fixed_link_update)(struct dsa_switch * , int , struct fixed_phy_status * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; void (*get_wol)(struct dsa_switch * , int , struct ethtool_wolinfo * ) ; int (*set_wol)(struct dsa_switch * , int , struct ethtool_wolinfo * ) ; int (*suspend)(struct dsa_switch * ) ; int (*resume)(struct dsa_switch * ) ; int (*port_enable)(struct dsa_switch * , int , struct phy_device * ) ; void (*port_disable)(struct dsa_switch * , int , struct phy_device * ) ; int (*set_eee)(struct dsa_switch * , int , struct phy_device * , struct ethtool_eee * ) ; int (*get_eee)(struct dsa_switch * , int , struct ethtool_eee * ) ; int (*get_temp)(struct dsa_switch * , int * ) ; int (*get_temp_limit)(struct dsa_switch * , int * ) ; int (*set_temp_limit)(struct dsa_switch * , int ) ; int (*get_temp_alarm)(struct dsa_switch * , bool * ) ; int (*get_eeprom_len)(struct dsa_switch * ) ; int (*get_eeprom)(struct dsa_switch * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct dsa_switch * , struct ethtool_eeprom * , u8 * ) ; int (*get_regs_len)(struct dsa_switch * , int ) ; void (*get_regs)(struct dsa_switch * , int , struct ethtool_regs * , void * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; int (*setapp)(struct net_device * , u8 , u16 , u8 ) ; int (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_long_t count ; unsigned long percpu_count_ptr ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_switch ; bool force_atomic ; struct callback_head rcu ; }; struct cgroup_root; struct cgroup_subsys; struct cgroup; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; struct list_head sibling ; struct list_head children ; int id ; unsigned int flags ; u64 serial_nr ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct cgroup { struct cgroup_subsys_state self ; unsigned long flags ; int id ; int populated_cnt ; struct kernfs_node *kn ; struct kernfs_node *populated_kn ; unsigned int subtree_control ; unsigned int child_subsys_mask ; struct cgroup_subsys_state *subsys[12U] ; struct cgroup_root *root ; struct list_head cset_links ; struct list_head e_csets[12U] ; struct list_head pidlists ; struct mutex pidlist_mutex ; wait_queue_head_t offline_waitq ; struct work_struct release_agent_work ; }; struct cgroup_root { struct kernfs_root *kf_root ; unsigned int subsys_mask ; int hierarchy_id ; struct cgroup cgrp ; atomic_t nr_cgrps ; struct list_head root_list ; unsigned int flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head mg_tasks ; struct list_head cgrp_links ; struct cgroup *dfl_cgrp ; struct cgroup_subsys_state *subsys[12U] ; struct list_head mg_preload_node ; struct list_head mg_node ; struct cgroup *mg_src_cgrp ; struct css_set *mg_dst_cset ; struct list_head e_cset_node[12U] ; struct callback_head callback_head ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; struct list_head node ; struct kernfs_ops *kf_ops ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; struct lock_class_key lockdep_key ; }; struct cgroup_taskset; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_released)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; void (*css_reset)(struct cgroup_subsys_state * ) ; void (*css_e_css_changed)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; int id ; char const *name ; struct cgroup_root *root ; struct idr css_idr ; struct list_head cfts ; struct cftype *dfl_cftypes ; struct cftype *legacy_cftypes ; unsigned int depends_on ; }; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct xfrm_policy; struct xfrm_state; struct request_sock; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 spoofchk ; __u32 linkstate ; __u32 min_tx_rate ; __u32 max_tx_rate ; }; struct netpoll_info; struct wireless_dev; struct wpan_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr { struct list_head list ; unsigned char addr[32U] ; unsigned char type ; bool global_use ; int sync_cnt ; int refcount ; int synced ; struct callback_head callback_head ; }; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct hrtimer timer ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum gro_result { GRO_MERGED = 0, GRO_MERGED_FREE = 1, GRO_HELD = 2, GRO_NORMAL = 3, GRO_DROP = 4 } ; typedef enum gro_result gro_result_t; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_item_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_rate)(struct net_device * , int , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * , u16 ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * , u16 ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_item_id * ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; int (*ndo_get_lock_subclass)(struct net_device * ) ; netdev_features_t (*ndo_features_check)(struct sk_buff * , struct net_device * , netdev_features_t ) ; int (*ndo_switch_parent_id_get)(struct net_device * , struct netdev_phys_item_id * ) ; int (*ndo_switch_port_stp_update)(struct net_device * , u8 ) ; }; struct __anonstruct_adj_list_264 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_265 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct forwarding_accel_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion____missing_field_name_266 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct list_head ptype_all ; struct list_head ptype_specific ; struct __anonstruct_adj_list_264 adj_list ; struct __anonstruct_all_adj_list_265 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; atomic_long_t tx_dropped ; atomic_t carrier_changes ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct forwarding_accel_ops const *fwd_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; unsigned short dev_port ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; unsigned char name_assign_type ; bool uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; struct wpan_dev *ieee802154_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; unsigned long gro_flush_timeout ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; unsigned char broadcast[32U] ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; struct cpu_rmap *rx_cpu_rmap ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; unsigned char reg_state ; bool dismantle ; unsigned short rtnl_link_state ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion____missing_field_name_266 __annonCompField86 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; u16 gso_min_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; int group ; struct pm_qos_request pm_qos_req ; }; struct packet_type { __be16 type ; struct net_device *dev ; int (*func)(struct sk_buff * , struct net_device * , struct packet_type * , struct net_device * ) ; bool (*id_match)(struct packet_type * , struct sock * ) ; void *af_packet_priv ; struct list_head list ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; enum skb_free_reason { SKB_REASON_CONSUMED = 0, SKB_REASON_DROPPED = 1 } ; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct pci_driver; union __anonunion____missing_field_name_267 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; unsigned char pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; u8 dma_alias_devfn ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned char pme_support : 5 ; unsigned char pme_interrupt : 1 ; unsigned char pme_poll : 1 ; unsigned char d1_support : 1 ; unsigned char d2_support : 1 ; unsigned char no_d1d2 : 1 ; unsigned char no_d3cold : 1 ; unsigned char d3cold_allowed : 1 ; unsigned char mmio_always_on : 1 ; unsigned char wakeup_prepared : 1 ; unsigned char runtime_d3cold : 1 ; unsigned char ignore_hotplug : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned char transparent : 1 ; unsigned char multifunction : 1 ; unsigned char is_added : 1 ; unsigned char is_busmaster : 1 ; unsigned char no_msi : 1 ; unsigned char no_64bit_msi : 1 ; unsigned char block_cfg_access : 1 ; unsigned char broken_parity_status : 1 ; unsigned char irq_reroute_variant : 2 ; unsigned char msi_enabled : 1 ; unsigned char msix_enabled : 1 ; unsigned char ari_enabled : 1 ; unsigned char is_managed : 1 ; unsigned char needs_freset : 1 ; unsigned char state_saved : 1 ; unsigned char is_physfn : 1 ; unsigned char is_virtfn : 1 ; unsigned char reset_fn : 1 ; unsigned char is_hotplug_bridge : 1 ; unsigned char __aer_firmware_first_valid : 1 ; unsigned char __aer_firmware_first : 1 ; unsigned char broken_intx_masking : 1 ; unsigned char io_window_1k : 1 ; unsigned char irq_managed : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_267 __annonCompField87 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; char *driver_override ; }; struct pci_ops; struct msi_controller; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_controller *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned char is_added : 1 ; }; struct pci_ops { void *(*map_bus)(struct pci_bus * , unsigned int , int ) ; int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*reset_notify)(struct pci_dev * , bool ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct msix_entry { u32 vector ; u16 entry ; }; struct mfd_cell; struct platform_device { char const *name ; int id ; bool id_auto ; struct device dev ; u32 num_resources ; struct resource *resource ; struct platform_device_id const *id_entry ; char *driver_override ; struct mfd_cell *mfd_cell ; struct pdev_archdata archdata ; }; struct platform_driver { int (*probe)(struct platform_device * ) ; int (*remove)(struct platform_device * ) ; void (*shutdown)(struct platform_device * ) ; int (*suspend)(struct platform_device * , pm_message_t ) ; int (*resume)(struct platform_device * ) ; struct device_driver driver ; struct platform_device_id const *id_table ; bool prevent_deferred_probe ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_272 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_272 __annonCompField88 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct iphdr { unsigned char ihl : 4 ; unsigned char version : 4 ; __u8 tos ; __be16 tot_len ; __be16 id ; __be16 frag_off ; __u8 ttl ; __u8 protocol ; __sum16 check ; __be32 saddr ; __be32 daddr ; }; struct page_counter { atomic_long_t count ; unsigned long limit ; struct page_counter *parent ; unsigned long watermark ; unsigned long failcnt ; }; struct kioctx; typedef int kiocb_cancel_fn(struct kiocb * ); union __anonunion_ki_obj_277 { void *user ; struct task_struct *tsk ; }; struct eventfd_ctx; struct kiocb { struct file *ki_filp ; struct kioctx *ki_ctx ; kiocb_cancel_fn *ki_cancel ; void *private ; union __anonunion_ki_obj_277 ki_obj ; __u64 ki_user_data ; loff_t ki_pos ; size_t ki_nbytes ; struct list_head ki_list ; struct eventfd_ctx *ki_eventfd ; }; struct sock_filter { __u16 code ; __u8 jt ; __u8 jf ; __u32 k ; }; struct bpf_insn { __u8 code ; unsigned char dst_reg : 4 ; unsigned char src_reg : 4 ; __s16 off ; __s32 imm ; }; struct bpf_prog_aux; struct sock_fprog_kern { u16 len ; struct sock_filter *filter ; }; union __anonunion____missing_field_name_282 { struct sock_filter insns[0U] ; struct bpf_insn insnsi[0U] ; }; struct bpf_prog { u16 pages ; bool jited ; u32 len ; struct sock_fprog_kern *orig_prog ; struct bpf_prog_aux *aux ; unsigned int (*bpf_func)(struct sk_buff const * , struct bpf_insn const * ) ; union __anonunion____missing_field_name_282 __annonCompField93 ; }; struct sk_filter { atomic_t refcnt ; struct callback_head rcu ; struct bpf_prog *prog ; }; struct pollfd { int fd ; short events ; short revents ; }; struct poll_table_struct { void (*_qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long _key ; }; struct nla_policy { u16 type ; u16 len ; }; struct rtnl_link_ops { struct list_head list ; char const *kind ; size_t priv_size ; void (*setup)(struct net_device * ) ; int maxtype ; struct nla_policy const *policy ; int (*validate)(struct nlattr ** , struct nlattr ** ) ; int (*newlink)(struct net * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; int (*changelink)(struct net_device * , struct nlattr ** , struct nlattr ** ) ; void (*dellink)(struct net_device * , struct list_head * ) ; size_t (*get_size)(struct net_device const * ) ; int (*fill_info)(struct sk_buff * , struct net_device const * ) ; size_t (*get_xstats_size)(struct net_device const * ) ; int (*fill_xstats)(struct sk_buff * , struct net_device const * ) ; unsigned int (*get_num_tx_queues)(void) ; unsigned int (*get_num_rx_queues)(void) ; int slave_maxtype ; struct nla_policy const *slave_policy ; int (*slave_validate)(struct nlattr ** , struct nlattr ** ) ; int (*slave_changelink)(struct net_device * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; size_t (*get_slave_size)(struct net_device const * , struct net_device const * ) ; int (*fill_slave_info)(struct sk_buff * , struct net_device const * , struct net_device const * ) ; struct net *(*get_link_net)(struct net_device const * ) ; }; struct neigh_table; struct neigh_parms { struct net *net ; struct net_device *dev ; struct list_head list ; int (*neigh_setup)(struct neighbour * ) ; void (*neigh_cleanup)(struct neighbour * ) ; struct neigh_table *tbl ; void *sysctl_table ; int dead ; atomic_t refcnt ; struct callback_head callback_head ; int reachable_time ; int data[12U] ; unsigned long data_state[1U] ; }; struct neigh_statistics { unsigned long allocs ; unsigned long destroys ; unsigned long hash_grows ; unsigned long res_failed ; unsigned long lookups ; unsigned long hits ; unsigned long rcv_probes_mcast ; unsigned long rcv_probes_ucast ; unsigned long periodic_gc_runs ; unsigned long forced_gc_runs ; unsigned long unres_discards ; }; struct neigh_ops; struct neighbour { struct neighbour *next ; struct neigh_table *tbl ; struct neigh_parms *parms ; unsigned long confirmed ; unsigned long updated ; rwlock_t lock ; atomic_t refcnt ; struct sk_buff_head arp_queue ; unsigned int arp_queue_len_bytes ; struct timer_list timer ; unsigned long used ; atomic_t probes ; __u8 flags ; __u8 nud_state ; __u8 type ; __u8 dead ; seqlock_t ha_lock ; unsigned char ha[32U] ; struct hh_cache hh ; int (*output)(struct neighbour * , struct sk_buff * ) ; struct neigh_ops const *ops ; struct callback_head rcu ; struct net_device *dev ; u8 primary_key[0U] ; }; struct neigh_ops { int family ; void (*solicit)(struct neighbour * , struct sk_buff * ) ; void (*error_report)(struct neighbour * , struct sk_buff * ) ; int (*output)(struct neighbour * , struct sk_buff * ) ; int (*connected_output)(struct neighbour * , struct sk_buff * ) ; }; struct pneigh_entry { struct pneigh_entry *next ; struct net *net ; struct net_device *dev ; u8 flags ; u8 key[0U] ; }; struct neigh_hash_table { struct neighbour **hash_buckets ; unsigned int hash_shift ; __u32 hash_rnd[4U] ; struct callback_head rcu ; }; struct neigh_table { int family ; int entry_size ; int key_len ; __u32 (*hash)(void const * , struct net_device const * , __u32 * ) ; int (*constructor)(struct neighbour * ) ; int (*pconstructor)(struct pneigh_entry * ) ; void (*pdestructor)(struct pneigh_entry * ) ; void (*proxy_redo)(struct sk_buff * ) ; char *id ; struct neigh_parms parms ; struct list_head parms_list ; int gc_interval ; int gc_thresh1 ; int gc_thresh2 ; int gc_thresh3 ; unsigned long last_flush ; struct delayed_work gc_work ; struct timer_list proxy_timer ; struct sk_buff_head proxy_queue ; atomic_t entries ; rwlock_t lock ; unsigned long last_rand ; struct neigh_statistics *stats ; struct neigh_hash_table *nht ; struct pneigh_entry **phash_buckets ; }; struct dn_route; union __anonunion____missing_field_name_284 { struct dst_entry *next ; struct rtable *rt_next ; struct rt6_info *rt6_next ; struct dn_route *dn_next ; }; struct dst_entry { struct callback_head callback_head ; struct dst_entry *child ; struct net_device *dev ; struct dst_ops *ops ; unsigned long _metrics ; unsigned long expires ; struct dst_entry *path ; struct dst_entry *from ; struct xfrm_state *xfrm ; int (*input)(struct sk_buff * ) ; int (*output)(struct sock * , struct sk_buff * ) ; unsigned short flags ; unsigned short pending_confirm ; short error ; short obsolete ; unsigned short header_len ; unsigned short trailer_len ; __u32 tclassid ; long __pad_to_align_refcnt[2U] ; atomic_t __refcnt ; int __use ; unsigned long lastuse ; union __anonunion____missing_field_name_284 __annonCompField94 ; }; struct hwtstamp_config { int flags ; int tx_type ; int rx_filter ; }; struct __anonstruct_socket_lock_t_285 { spinlock_t slock ; int owned ; wait_queue_head_t wq ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_socket_lock_t_285 socket_lock_t; struct proto; typedef __u32 __portpair; typedef __u64 __addrpair; struct __anonstruct____missing_field_name_287 { __be32 skc_daddr ; __be32 skc_rcv_saddr ; }; union __anonunion____missing_field_name_286 { __addrpair skc_addrpair ; struct __anonstruct____missing_field_name_287 __annonCompField95 ; }; union __anonunion____missing_field_name_288 { unsigned int skc_hash ; __u16 skc_u16hashes[2U] ; }; struct __anonstruct____missing_field_name_290 { __be16 skc_dport ; __u16 skc_num ; }; union __anonunion____missing_field_name_289 { __portpair skc_portpair ; struct __anonstruct____missing_field_name_290 __annonCompField98 ; }; union __anonunion____missing_field_name_291 { struct hlist_node skc_bind_node ; struct hlist_nulls_node skc_portaddr_node ; }; union __anonunion____missing_field_name_292 { struct hlist_node skc_node ; struct hlist_nulls_node skc_nulls_node ; }; struct sock_common { union __anonunion____missing_field_name_286 __annonCompField96 ; union __anonunion____missing_field_name_288 __annonCompField97 ; union __anonunion____missing_field_name_289 __annonCompField99 ; unsigned short skc_family ; unsigned char volatile skc_state ; unsigned char skc_reuse : 4 ; unsigned char skc_reuseport : 1 ; unsigned char skc_ipv6only : 1 ; int skc_bound_dev_if ; union __anonunion____missing_field_name_291 __annonCompField100 ; struct proto *skc_prot ; struct net *skc_net ; struct in6_addr skc_v6_daddr ; struct in6_addr skc_v6_rcv_saddr ; int skc_dontcopy_begin[0U] ; union __anonunion____missing_field_name_292 __annonCompField101 ; int skc_tx_queue_mapping ; atomic_t skc_refcnt ; int skc_dontcopy_end[0U] ; }; struct cg_proto; struct __anonstruct_sk_backlog_293 { atomic_t rmem_alloc ; int len ; struct sk_buff *head ; struct sk_buff *tail ; }; struct sock { struct sock_common __sk_common ; socket_lock_t sk_lock ; struct sk_buff_head sk_receive_queue ; struct __anonstruct_sk_backlog_293 sk_backlog ; int sk_forward_alloc ; __u32 sk_rxhash ; u16 sk_incoming_cpu ; __u32 sk_txhash ; unsigned int sk_napi_id ; unsigned int sk_ll_usec ; atomic_t sk_drops ; int sk_rcvbuf ; struct sk_filter *sk_filter ; struct socket_wq *sk_wq ; struct xfrm_policy *sk_policy[2U] ; unsigned long sk_flags ; struct dst_entry *sk_rx_dst ; struct dst_entry *sk_dst_cache ; spinlock_t sk_dst_lock ; atomic_t sk_wmem_alloc ; atomic_t sk_omem_alloc ; int sk_sndbuf ; struct sk_buff_head sk_write_queue ; unsigned char sk_shutdown : 2 ; unsigned char sk_no_check_tx : 1 ; unsigned char sk_no_check_rx : 1 ; unsigned char sk_userlocks : 4 ; unsigned char sk_protocol ; unsigned short sk_type ; int sk_wmem_queued ; gfp_t sk_allocation ; u32 sk_pacing_rate ; u32 sk_max_pacing_rate ; netdev_features_t sk_route_caps ; netdev_features_t sk_route_nocaps ; int sk_gso_type ; unsigned int sk_gso_max_size ; u16 sk_gso_max_segs ; int sk_rcvlowat ; unsigned long sk_lingertime ; struct sk_buff_head sk_error_queue ; struct proto *sk_prot_creator ; rwlock_t sk_callback_lock ; int sk_err ; int sk_err_soft ; unsigned short sk_ack_backlog ; unsigned short sk_max_ack_backlog ; __u32 sk_priority ; __u32 sk_cgrp_prioidx ; struct pid *sk_peer_pid ; struct cred const *sk_peer_cred ; long sk_rcvtimeo ; long sk_sndtimeo ; void *sk_protinfo ; struct timer_list sk_timer ; ktime_t sk_stamp ; u16 sk_tsflags ; u32 sk_tskey ; struct socket *sk_socket ; void *sk_user_data ; struct page_frag sk_frag ; struct sk_buff *sk_send_head ; __s32 sk_peek_off ; int sk_write_pending ; void *sk_security ; __u32 sk_mark ; u32 sk_classid ; struct cg_proto *sk_cgrp ; void (*sk_state_change)(struct sock * ) ; void (*sk_data_ready)(struct sock * ) ; void (*sk_write_space)(struct sock * ) ; void (*sk_error_report)(struct sock * ) ; int (*sk_backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*sk_destruct)(struct sock * ) ; }; struct request_sock_ops; struct timewait_sock_ops; struct inet_hashinfo; struct raw_hashinfo; struct udp_table; union __anonunion_h_294 { struct inet_hashinfo *hashinfo ; struct udp_table *udp_table ; struct raw_hashinfo *raw_hash ; }; struct proto { void (*close)(struct sock * , long ) ; int (*connect)(struct sock * , struct sockaddr * , int ) ; int (*disconnect)(struct sock * , int ) ; struct sock *(*accept)(struct sock * , int , int * ) ; int (*ioctl)(struct sock * , int , unsigned long ) ; int (*init)(struct sock * ) ; void (*destroy)(struct sock * ) ; void (*shutdown)(struct sock * , int ) ; int (*setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_ioctl)(struct sock * , unsigned int , unsigned long ) ; int (*sendmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t , int , int , int * ) ; int (*sendpage)(struct sock * , struct page * , int , size_t , int ) ; int (*bind)(struct sock * , struct sockaddr * , int ) ; int (*backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*release_cb)(struct sock * ) ; void (*hash)(struct sock * ) ; void (*unhash)(struct sock * ) ; void (*rehash)(struct sock * ) ; int (*get_port)(struct sock * , unsigned short ) ; void (*clear_sk)(struct sock * , int ) ; unsigned int inuse_idx ; bool (*stream_memory_free)(struct sock const * ) ; void (*enter_memory_pressure)(struct sock * ) ; atomic_long_t *memory_allocated ; struct percpu_counter *sockets_allocated ; int *memory_pressure ; long *sysctl_mem ; int *sysctl_wmem ; int *sysctl_rmem ; int max_header ; bool no_autobind ; struct kmem_cache *slab ; unsigned int obj_size ; int slab_flags ; struct percpu_counter *orphan_count ; struct request_sock_ops *rsk_prot ; struct timewait_sock_ops *twsk_prot ; union __anonunion_h_294 h ; struct module *owner ; char name[32U] ; struct list_head node ; int (*init_cgroup)(struct mem_cgroup * , struct cgroup_subsys * ) ; void (*destroy_cgroup)(struct mem_cgroup * ) ; struct cg_proto *(*proto_cgroup)(struct mem_cgroup * ) ; }; struct cg_proto { struct page_counter memory_allocated ; struct percpu_counter sockets_allocated ; int memory_pressure ; long sysctl_mem[3U] ; unsigned long flags ; struct mem_cgroup *memcg ; }; struct request_sock_ops { int family ; int obj_size ; struct kmem_cache *slab ; char *slab_name ; int (*rtx_syn_ack)(struct sock * , struct request_sock * ) ; void (*send_ack)(struct sock * , struct sk_buff * , struct request_sock * ) ; void (*send_reset)(struct sock * , struct sk_buff * ) ; void (*destructor)(struct request_sock * ) ; void (*syn_ack_timeout)(struct sock * , struct request_sock * ) ; }; struct request_sock { struct sock_common __req_common ; struct request_sock *dl_next ; u16 mss ; u8 num_retrans ; unsigned char cookie_ts : 1 ; unsigned char num_timeout : 7 ; u32 window_clamp ; u32 rcv_wnd ; u32 ts_recent ; unsigned long expires ; struct request_sock_ops const *rsk_ops ; struct sock *sk ; u32 secid ; u32 peer_secid ; }; struct timewait_sock_ops { struct kmem_cache *twsk_slab ; char *twsk_slab_name ; unsigned int twsk_obj_size ; int (*twsk_unique)(struct sock * , struct sock * , void * ) ; void (*twsk_destructor)(struct sock * ) ; }; struct tcphdr { __be16 source ; __be16 dest ; __be32 seq ; __be32 ack_seq ; unsigned char res1 : 4 ; unsigned char doff : 4 ; unsigned char fin : 1 ; unsigned char syn : 1 ; unsigned char rst : 1 ; unsigned char psh : 1 ; unsigned char ack : 1 ; unsigned char urg : 1 ; unsigned char ece : 1 ; unsigned char cwr : 1 ; __be16 window ; __sum16 check ; __be16 urg_ptr ; }; struct firmware { size_t size ; u8 const *data ; struct page **pages ; void *priv ; }; struct sensor_device_attribute { struct device_attribute dev_attr ; int index ; }; struct ipv6_devconf { __s32 forwarding ; __s32 hop_limit ; __s32 mtu6 ; __s32 accept_ra ; __s32 accept_redirects ; __s32 autoconf ; __s32 dad_transmits ; __s32 rtr_solicits ; __s32 rtr_solicit_interval ; __s32 rtr_solicit_delay ; __s32 force_mld_version ; __s32 mldv1_unsolicited_report_interval ; __s32 mldv2_unsolicited_report_interval ; __s32 use_tempaddr ; __s32 temp_valid_lft ; __s32 temp_prefered_lft ; __s32 regen_max_retry ; __s32 max_desync_factor ; __s32 max_addresses ; __s32 accept_ra_defrtr ; __s32 accept_ra_pinfo ; __s32 accept_ra_rtr_pref ; __s32 rtr_probe_interval ; __s32 accept_ra_rt_info_max_plen ; __s32 proxy_ndp ; __s32 accept_source_route ; __s32 accept_ra_from_local ; __s32 optimistic_dad ; __s32 use_optimistic ; __s32 mc_forwarding ; __s32 disable_ipv6 ; __s32 accept_dad ; __s32 force_tllao ; __s32 ndisc_notify ; __s32 suppress_frag_ndisc ; __s32 accept_ra_mtu ; void *sysctl ; }; struct ip6_sf_list { struct ip6_sf_list *sf_next ; struct in6_addr sf_addr ; unsigned long sf_count[2U] ; unsigned char sf_gsresp ; unsigned char sf_oldin ; unsigned char sf_crcount ; }; struct ifmcaddr6 { struct in6_addr mca_addr ; struct inet6_dev *idev ; struct ifmcaddr6 *next ; struct ip6_sf_list *mca_sources ; struct ip6_sf_list *mca_tomb ; unsigned int mca_sfmode ; unsigned char mca_crcount ; unsigned long mca_sfcount[2U] ; struct timer_list mca_timer ; unsigned int mca_flags ; int mca_users ; atomic_t mca_refcnt ; spinlock_t mca_lock ; unsigned long mca_cstamp ; unsigned long mca_tstamp ; }; struct ifacaddr6 { struct in6_addr aca_addr ; struct inet6_dev *aca_idev ; struct rt6_info *aca_rt ; struct ifacaddr6 *aca_next ; int aca_users ; atomic_t aca_refcnt ; unsigned long aca_cstamp ; unsigned long aca_tstamp ; }; struct ipv6_devstat { struct proc_dir_entry *proc_dir_entry ; struct ipstats_mib *ipv6 ; struct icmpv6_mib_device *icmpv6dev ; struct icmpv6msg_mib_device *icmpv6msgdev ; }; struct inet6_dev { struct net_device *dev ; struct list_head addr_list ; struct ifmcaddr6 *mc_list ; struct ifmcaddr6 *mc_tomb ; spinlock_t mc_lock ; unsigned char mc_qrv ; unsigned char mc_gq_running ; unsigned char mc_ifc_count ; unsigned char mc_dad_count ; unsigned long mc_v1_seen ; unsigned long mc_qi ; unsigned long mc_qri ; unsigned long mc_maxdelay ; struct timer_list mc_gq_timer ; struct timer_list mc_ifc_timer ; struct timer_list mc_dad_timer ; struct ifacaddr6 *ac_list ; rwlock_t lock ; atomic_t refcnt ; __u32 if_flags ; int dead ; u8 rndid[8U] ; struct timer_list regen_timer ; struct list_head tempaddr_list ; struct in6_addr token ; struct neigh_parms *nd_parms ; struct ipv6_devconf cnf ; struct ipv6_devstat stats ; struct timer_list rs_timer ; __u8 rs_probes ; __u8 addr_gen_mode ; unsigned long tstamp ; struct callback_head rcu ; }; union __anonunion____missing_field_name_312 { __be32 a4 ; __be32 a6[4U] ; }; struct inetpeer_addr_base { union __anonunion____missing_field_name_312 __annonCompField105 ; }; struct inetpeer_addr { struct inetpeer_addr_base addr ; __u16 family ; }; union __anonunion____missing_field_name_313 { struct list_head gc_list ; struct callback_head gc_rcu ; }; struct __anonstruct____missing_field_name_315 { atomic_t rid ; }; union __anonunion____missing_field_name_314 { struct __anonstruct____missing_field_name_315 __annonCompField107 ; struct callback_head rcu ; struct inet_peer *gc_next ; }; struct inet_peer { struct inet_peer *avl_left ; struct inet_peer *avl_right ; struct inetpeer_addr daddr ; __u32 avl_height ; u32 metrics[16U] ; u32 rate_tokens ; unsigned long rate_last ; union __anonunion____missing_field_name_313 __annonCompField106 ; union __anonunion____missing_field_name_314 __annonCompField108 ; __u32 dtime ; atomic_t refcnt ; }; struct inet_peer_base { struct inet_peer *root ; seqlock_t lock ; int total ; }; struct uncached_list; struct rtable { struct dst_entry dst ; int rt_genid ; unsigned int rt_flags ; __u16 rt_type ; __u8 rt_is_input ; __u8 rt_uses_gateway ; int rt_iif ; __be32 rt_gateway ; u32 rt_pmtu ; struct list_head rt_uncached ; struct uncached_list *rt_uncached_list ; }; struct cdev { struct kobject kobj ; struct module *owner ; struct file_operations const *ops ; struct list_head list ; dev_t dev ; unsigned int count ; }; struct ptp_clock_time { __s64 sec ; __u32 nsec ; __u32 reserved ; }; struct ptp_extts_request { unsigned int index ; unsigned int flags ; unsigned int rsv[2U] ; }; struct ptp_perout_request { struct ptp_clock_time start ; struct ptp_clock_time period ; unsigned int index ; unsigned int flags ; unsigned int rsv[4U] ; }; enum ptp_pin_function { PTP_PF_NONE = 0, PTP_PF_EXTTS = 1, PTP_PF_PEROUT = 2, PTP_PF_PHYSYNC = 3 } ; struct ptp_pin_desc { char name[64U] ; unsigned int index ; unsigned int func ; unsigned int chan ; unsigned int rsv[5U] ; }; enum ldv_37255 { PTP_CLK_REQ_EXTTS = 0, PTP_CLK_REQ_PEROUT = 1, PTP_CLK_REQ_PPS = 2 } ; union __anonunion____missing_field_name_317 { struct ptp_extts_request extts ; struct ptp_perout_request perout ; }; struct ptp_clock_request { enum ldv_37255 type ; union __anonunion____missing_field_name_317 __annonCompField110 ; }; struct ptp_clock_info { struct module *owner ; char name[16U] ; s32 max_adj ; int n_alarm ; int n_ext_ts ; int n_per_out ; int n_pins ; int pps ; struct ptp_pin_desc *pin_config ; int (*adjfreq)(struct ptp_clock_info * , s32 ) ; int (*adjtime)(struct ptp_clock_info * , s64 ) ; int (*gettime)(struct ptp_clock_info * , struct timespec * ) ; int (*settime)(struct ptp_clock_info * , struct timespec const * ) ; int (*enable)(struct ptp_clock_info * , struct ptp_clock_request * , int ) ; int (*verify)(struct ptp_clock_info * , unsigned int , enum ptp_pin_function , unsigned int ) ; }; struct ptp_clock; struct tg3_tx_buffer_desc { u32 addr_hi ; u32 addr_lo ; u32 len_flags ; u32 vlan_tag ; }; struct tg3_rx_buffer_desc { u32 addr_hi ; u32 addr_lo ; u32 idx_len ; u32 type_flags ; u32 ip_tcp_csum ; u32 err_vlan ; u32 reserved ; u32 opaque ; }; struct __anonstruct_addrlist_319 { u32 addr_hi ; u32 addr_lo ; }; struct tg3_ext_rx_buffer_desc { struct __anonstruct_addrlist_319 addrlist[3U] ; u32 len2_len1 ; u32 resv_len3 ; struct tg3_rx_buffer_desc std ; }; struct tg3_internal_buffer_desc { u32 addr_hi ; u32 addr_lo ; u32 nic_mbuf ; u16 len ; u16 cqid_sqid ; u32 flags ; u32 __cookie1 ; u32 __cookie2 ; u32 __cookie3 ; }; struct __anonstruct_idx_320 { u16 rx_producer ; u16 tx_consumer ; }; struct tg3_hw_status { u32 status ; u32 status_tag ; u16 rx_jumbo_consumer ; u16 rx_consumer ; u16 rx_mini_consumer ; u16 reserved ; struct __anonstruct_idx_320 idx[16U] ; }; struct __anonstruct_tg3_stat64_t_321 { u32 high ; u32 low ; }; typedef struct __anonstruct_tg3_stat64_t_321 tg3_stat64_t; struct tg3_hw_stats { u8 __reserved0[256U] ; tg3_stat64_t rx_octets ; u64 __reserved1 ; tg3_stat64_t rx_fragments ; tg3_stat64_t rx_ucast_packets ; tg3_stat64_t rx_mcast_packets ; tg3_stat64_t rx_bcast_packets ; tg3_stat64_t rx_fcs_errors ; tg3_stat64_t rx_align_errors ; tg3_stat64_t rx_xon_pause_rcvd ; tg3_stat64_t rx_xoff_pause_rcvd ; tg3_stat64_t rx_mac_ctrl_rcvd ; tg3_stat64_t rx_xoff_entered ; tg3_stat64_t rx_frame_too_long_errors ; tg3_stat64_t rx_jabbers ; tg3_stat64_t rx_undersize_packets ; tg3_stat64_t rx_in_length_errors ; tg3_stat64_t rx_out_length_errors ; tg3_stat64_t rx_64_or_less_octet_packets ; tg3_stat64_t rx_65_to_127_octet_packets ; tg3_stat64_t rx_128_to_255_octet_packets ; tg3_stat64_t rx_256_to_511_octet_packets ; tg3_stat64_t rx_512_to_1023_octet_packets ; tg3_stat64_t rx_1024_to_1522_octet_packets ; tg3_stat64_t rx_1523_to_2047_octet_packets ; tg3_stat64_t rx_2048_to_4095_octet_packets ; tg3_stat64_t rx_4096_to_8191_octet_packets ; tg3_stat64_t rx_8192_to_9022_octet_packets ; u64 __unused0[37U] ; tg3_stat64_t tx_octets ; u64 __reserved2 ; tg3_stat64_t tx_collisions ; tg3_stat64_t tx_xon_sent ; tg3_stat64_t tx_xoff_sent ; tg3_stat64_t tx_flow_control ; tg3_stat64_t tx_mac_errors ; tg3_stat64_t tx_single_collisions ; tg3_stat64_t tx_mult_collisions ; tg3_stat64_t tx_deferred ; u64 __reserved3 ; tg3_stat64_t tx_excessive_collisions ; tg3_stat64_t tx_late_collisions ; tg3_stat64_t tx_collide_2times ; tg3_stat64_t tx_collide_3times ; tg3_stat64_t tx_collide_4times ; tg3_stat64_t tx_collide_5times ; tg3_stat64_t tx_collide_6times ; tg3_stat64_t tx_collide_7times ; tg3_stat64_t tx_collide_8times ; tg3_stat64_t tx_collide_9times ; tg3_stat64_t tx_collide_10times ; tg3_stat64_t tx_collide_11times ; tg3_stat64_t tx_collide_12times ; tg3_stat64_t tx_collide_13times ; tg3_stat64_t tx_collide_14times ; tg3_stat64_t tx_collide_15times ; tg3_stat64_t tx_ucast_packets ; tg3_stat64_t tx_mcast_packets ; tg3_stat64_t tx_bcast_packets ; tg3_stat64_t tx_carrier_sense_errors ; tg3_stat64_t tx_discards ; tg3_stat64_t tx_errors ; u64 __unused1[31U] ; tg3_stat64_t COS_rx_packets[16U] ; tg3_stat64_t COS_rx_filter_dropped ; tg3_stat64_t dma_writeq_full ; tg3_stat64_t dma_write_prioq_full ; tg3_stat64_t rxbds_empty ; tg3_stat64_t rx_discards ; tg3_stat64_t rx_errors ; tg3_stat64_t rx_threshold_hit ; u64 __unused2[9U] ; tg3_stat64_t COS_out_packets[16U] ; tg3_stat64_t dma_readq_full ; tg3_stat64_t dma_read_prioq_full ; tg3_stat64_t tx_comp_queue_full ; tg3_stat64_t ring_set_send_prod_index ; tg3_stat64_t ring_status_update ; tg3_stat64_t nic_irqs ; tg3_stat64_t nic_avoided_irqs ; tg3_stat64_t nic_tx_threshold_hit ; tg3_stat64_t mbuf_lwm_thresh_hit ; u8 __reserved4[312U] ; }; struct tg3_ocir { u32 signature ; u16 version_flags ; u16 refresh_int ; u32 refresh_tmr ; u32 update_tmr ; u32 dst_base_addr ; u16 src_hdr_offset ; u16 src_hdr_length ; u16 src_data_offset ; u16 src_data_length ; u16 dst_hdr_offset ; u16 dst_data_offset ; u16 dst_reg_upd_offset ; u16 dst_sem_offset ; u32 reserved1[2U] ; u32 port0_flags ; u32 port1_flags ; u32 port2_flags ; u32 port3_flags ; u32 reserved2[1U] ; }; struct ring_info { u8 *data ; dma_addr_t mapping ; }; struct tg3_tx_ring_info { struct sk_buff *skb ; dma_addr_t mapping ; bool fragmented ; }; struct tg3_link_config { u32 advertising ; u16 speed ; u8 duplex ; u8 autoneg ; u8 flowctrl ; u8 active_flowctrl ; u8 active_duplex ; u16 active_speed ; u32 rmt_adv ; }; struct tg3_bufmgr_config { u32 mbuf_read_dma_low_water ; u32 mbuf_mac_rx_low_water ; u32 mbuf_high_water ; u32 mbuf_read_dma_low_water_jumbo ; u32 mbuf_mac_rx_low_water_jumbo ; u32 mbuf_high_water_jumbo ; u32 dma_low_water ; u32 dma_high_water ; }; struct tg3_ethtool_stats { u64 rx_octets ; u64 rx_fragments ; u64 rx_ucast_packets ; u64 rx_mcast_packets ; u64 rx_bcast_packets ; u64 rx_fcs_errors ; u64 rx_align_errors ; u64 rx_xon_pause_rcvd ; u64 rx_xoff_pause_rcvd ; u64 rx_mac_ctrl_rcvd ; u64 rx_xoff_entered ; u64 rx_frame_too_long_errors ; u64 rx_jabbers ; u64 rx_undersize_packets ; u64 rx_in_length_errors ; u64 rx_out_length_errors ; u64 rx_64_or_less_octet_packets ; u64 rx_65_to_127_octet_packets ; u64 rx_128_to_255_octet_packets ; u64 rx_256_to_511_octet_packets ; u64 rx_512_to_1023_octet_packets ; u64 rx_1024_to_1522_octet_packets ; u64 rx_1523_to_2047_octet_packets ; u64 rx_2048_to_4095_octet_packets ; u64 rx_4096_to_8191_octet_packets ; u64 rx_8192_to_9022_octet_packets ; u64 tx_octets ; u64 tx_collisions ; u64 tx_xon_sent ; u64 tx_xoff_sent ; u64 tx_flow_control ; u64 tx_mac_errors ; u64 tx_single_collisions ; u64 tx_mult_collisions ; u64 tx_deferred ; u64 tx_excessive_collisions ; u64 tx_late_collisions ; u64 tx_collide_2times ; u64 tx_collide_3times ; u64 tx_collide_4times ; u64 tx_collide_5times ; u64 tx_collide_6times ; u64 tx_collide_7times ; u64 tx_collide_8times ; u64 tx_collide_9times ; u64 tx_collide_10times ; u64 tx_collide_11times ; u64 tx_collide_12times ; u64 tx_collide_13times ; u64 tx_collide_14times ; u64 tx_collide_15times ; u64 tx_ucast_packets ; u64 tx_mcast_packets ; u64 tx_bcast_packets ; u64 tx_carrier_sense_errors ; u64 tx_discards ; u64 tx_errors ; u64 dma_writeq_full ; u64 dma_write_prioq_full ; u64 rxbds_empty ; u64 rx_discards ; u64 rx_errors ; u64 rx_threshold_hit ; u64 dma_readq_full ; u64 dma_read_prioq_full ; u64 tx_comp_queue_full ; u64 ring_set_send_prod_index ; u64 ring_status_update ; u64 nic_irqs ; u64 nic_avoided_irqs ; u64 nic_tx_threshold_hit ; u64 mbuf_lwm_thresh_hit ; }; struct tg3_rx_prodring_set { u32 rx_std_prod_idx ; u32 rx_std_cons_idx ; u32 rx_jmb_prod_idx ; u32 rx_jmb_cons_idx ; struct tg3_rx_buffer_desc *rx_std ; struct tg3_ext_rx_buffer_desc *rx_jmb ; struct ring_info *rx_std_buffers ; struct ring_info *rx_jmb_buffers ; dma_addr_t rx_std_mapping ; dma_addr_t rx_jmb_mapping ; }; struct tg3; struct tg3_napi { struct napi_struct napi ; struct tg3 *tp ; struct tg3_hw_status *hw_status ; u32 chk_msi_cnt ; u32 last_tag ; u32 last_irq_tag ; u32 int_mbox ; u32 coal_now ; u32 consmbox ; u32 rx_rcb_ptr ; u32 last_rx_cons ; u16 *rx_rcb_prod_idx ; struct tg3_rx_prodring_set prodring ; struct tg3_rx_buffer_desc *rx_rcb ; u32 tx_prod ; u32 tx_cons ; u32 tx_pending ; u32 last_tx_cons ; u32 prodmbox ; struct tg3_tx_buffer_desc *tx_ring ; struct tg3_tx_ring_info *tx_buffers ; dma_addr_t status_mapping ; dma_addr_t rx_rcb_mapping ; dma_addr_t tx_desc_mapping ; char irq_lbl[16U] ; unsigned int irq_vec ; }; enum TG3_FLAGS { TG3_FLAG_TAGGED_STATUS = 0, TG3_FLAG_TXD_MBOX_HWBUG = 1, TG3_FLAG_USE_LINKCHG_REG = 2, TG3_FLAG_ERROR_PROCESSED = 3, TG3_FLAG_ENABLE_ASF = 4, TG3_FLAG_ASPM_WORKAROUND = 5, TG3_FLAG_POLL_SERDES = 6, TG3_FLAG_POLL_CPMU_LINK = 7, TG3_FLAG_MBOX_WRITE_REORDER = 8, TG3_FLAG_PCIX_TARGET_HWBUG = 9, TG3_FLAG_WOL_SPEED_100MB = 10, TG3_FLAG_WOL_ENABLE = 11, TG3_FLAG_EEPROM_WRITE_PROT = 12, TG3_FLAG_NVRAM = 13, TG3_FLAG_NVRAM_BUFFERED = 14, TG3_FLAG_SUPPORT_MSI = 15, TG3_FLAG_SUPPORT_MSIX = 16, TG3_FLAG_USING_MSI = 17, TG3_FLAG_USING_MSIX = 18, TG3_FLAG_PCIX_MODE = 19, TG3_FLAG_PCI_HIGH_SPEED = 20, TG3_FLAG_PCI_32BIT = 21, TG3_FLAG_SRAM_USE_CONFIG = 22, TG3_FLAG_TX_RECOVERY_PENDING = 23, TG3_FLAG_WOL_CAP = 24, TG3_FLAG_JUMBO_RING_ENABLE = 25, TG3_FLAG_PAUSE_AUTONEG = 26, TG3_FLAG_CPMU_PRESENT = 27, TG3_FLAG_40BIT_DMA_BUG = 28, TG3_FLAG_BROKEN_CHECKSUMS = 29, TG3_FLAG_JUMBO_CAPABLE = 30, TG3_FLAG_CHIP_RESETTING = 31, TG3_FLAG_INIT_COMPLETE = 32, TG3_FLAG_MAX_RXPEND_64 = 33, TG3_FLAG_PCI_EXPRESS = 34, TG3_FLAG_ASF_NEW_HANDSHAKE = 35, TG3_FLAG_HW_AUTONEG = 36, TG3_FLAG_IS_NIC = 37, TG3_FLAG_FLASH = 38, TG3_FLAG_FW_TSO = 39, TG3_FLAG_HW_TSO_1 = 40, TG3_FLAG_HW_TSO_2 = 41, TG3_FLAG_HW_TSO_3 = 42, TG3_FLAG_TSO_CAPABLE = 43, TG3_FLAG_TSO_BUG = 44, TG3_FLAG_ICH_WORKAROUND = 45, TG3_FLAG_1SHOT_MSI = 46, TG3_FLAG_NO_FWARE_REPORTED = 47, TG3_FLAG_NO_NVRAM_ADDR_TRANS = 48, TG3_FLAG_ENABLE_APE = 49, TG3_FLAG_PROTECTED_NVRAM = 50, TG3_FLAG_5701_DMA_BUG = 51, TG3_FLAG_USE_PHYLIB = 52, TG3_FLAG_MDIOBUS_INITED = 53, TG3_FLAG_LRG_PROD_RING_CAP = 54, TG3_FLAG_RGMII_INBAND_DISABLE = 55, TG3_FLAG_RGMII_EXT_IBND_RX_EN = 56, TG3_FLAG_RGMII_EXT_IBND_TX_EN = 57, TG3_FLAG_CLKREQ_BUG = 58, TG3_FLAG_NO_NVRAM = 59, TG3_FLAG_ENABLE_RSS = 60, TG3_FLAG_ENABLE_TSS = 61, TG3_FLAG_SHORT_DMA_BUG = 62, TG3_FLAG_USE_JUMBO_BDFLAG = 63, TG3_FLAG_L1PLLPD_EN = 64, TG3_FLAG_APE_HAS_NCSI = 65, TG3_FLAG_TX_TSTAMP_EN = 66, TG3_FLAG_4K_FIFO_LIMIT = 67, TG3_FLAG_5719_5720_RDMA_BUG = 68, TG3_FLAG_RESET_TASK_PENDING = 69, TG3_FLAG_PTP_CAPABLE = 70, TG3_FLAG_5705_PLUS = 71, TG3_FLAG_IS_5788 = 72, TG3_FLAG_5750_PLUS = 73, TG3_FLAG_5780_CLASS = 74, TG3_FLAG_5755_PLUS = 75, TG3_FLAG_57765_PLUS = 76, TG3_FLAG_57765_CLASS = 77, TG3_FLAG_5717_PLUS = 78, TG3_FLAG_IS_SSB_CORE = 79, TG3_FLAG_FLUSH_POSTED_WRITES = 80, TG3_FLAG_ROBOSWITCH = 81, TG3_FLAG_ONE_DMA_AT_ONCE = 82, TG3_FLAG_RGMII_MODE = 83, TG3_FLAG_NUMBER_OF_FLAGS = 84 } ; struct tg3_firmware_hdr { __be32 version ; __be32 base_addr ; __be32 len ; }; union __anonunion____missing_field_name_322 { unsigned long phy_crc_errors ; unsigned long last_event_jiffies ; }; struct tg3 { unsigned int irq_sync ; spinlock_t lock ; spinlock_t indirect_lock ; u32 (*read32)(struct tg3 * , u32 ) ; void (*write32)(struct tg3 * , u32 , u32 ) ; u32 (*read32_mbox)(struct tg3 * , u32 ) ; void (*write32_mbox)(struct tg3 * , u32 , u32 ) ; void *regs ; void *aperegs ; struct net_device *dev ; struct pci_dev *pdev ; u32 coal_now ; u32 msg_enable ; struct ptp_clock_info ptp_info ; struct ptp_clock *ptp_clock ; s64 ptp_adjust ; void (*write32_tx_mbox)(struct tg3 * , u32 , u32 ) ; u32 dma_limit ; u32 txq_req ; u32 txq_cnt ; u32 txq_max ; struct tg3_napi napi[5U] ; void (*write32_rx_mbox)(struct tg3 * , u32 , u32 ) ; u32 rx_copy_thresh ; u32 rx_std_ring_mask ; u32 rx_jmb_ring_mask ; u32 rx_ret_ring_mask ; u32 rx_pending ; u32 rx_jumbo_pending ; u32 rx_std_max_post ; u32 rx_offset ; u32 rx_pkt_map_sz ; u32 rxq_req ; u32 rxq_cnt ; u32 rxq_max ; bool rx_refill ; unsigned long rx_dropped ; unsigned long tx_dropped ; struct rtnl_link_stats64 net_stats_prev ; struct tg3_ethtool_stats estats_prev ; unsigned long tg3_flags[2U] ; union __anonunion____missing_field_name_322 __annonCompField112 ; struct timer_list timer ; u16 timer_counter ; u16 timer_multiplier ; u32 timer_offset ; u16 asf_counter ; u16 asf_multiplier ; u32 serdes_counter ; struct tg3_link_config link_config ; struct tg3_bufmgr_config bufmgr_config ; u32 rx_mode ; u32 tx_mode ; u32 mac_mode ; u32 mi_mode ; u32 misc_host_ctrl ; u32 grc_mode ; u32 grc_local_ctrl ; u32 dma_rwctrl ; u32 coalesce_mode ; u32 pwrmgmt_thresh ; u32 rxptpctl ; u32 pci_chip_rev_id ; u16 pci_cmd ; u8 pci_cacheline_sz ; u8 pci_lat_timer ; int pci_fn ; int msi_cap ; int pcix_cap ; int pcie_readrq ; struct mii_bus *mdio_bus ; int mdio_irq[32U] ; int old_link ; u8 phy_addr ; u8 phy_ape_lock ; u32 phy_id ; u32 phy_flags ; u32 led_ctrl ; u32 phy_otp ; u32 setlpicnt ; u8 rss_ind_tbl[128U] ; char board_part_number[24U] ; char fw_ver[32U] ; u32 nic_sram_data_cfg ; u32 pci_clock_ctrl ; struct pci_dev *pdev_peer ; struct tg3_hw_stats *hw_stats ; dma_addr_t stats_mapping ; struct work_struct reset_task ; int nvram_lock_cnt ; u32 nvram_size ; u32 nvram_pagesize ; u32 nvram_jedecnum ; unsigned int irq_max ; unsigned int irq_cnt ; struct ethtool_coalesce coal ; struct ethtool_eee eee ; char const *fw_needed ; struct firmware const *fw ; u32 fw_len ; struct device *hwmon_dev ; bool link_up ; bool pcierr_recovery ; }; struct __anonstruct_ethtool_stats_keys_323 { char const string[32U] ; }; struct __anonstruct_ethtool_test_keys_324 { char const string[32U] ; }; struct tg3_fiber_aneginfo { int state ; u32 flags ; unsigned long link_time ; unsigned long cur_time ; u32 ability_match_cfg ; int ability_match_count ; char ability_match ; char idle_match ; char ack_match ; u32 txconfig ; u32 rxconfig ; }; struct __anonstruct_reg_tbl_328 { u16 offset ; u16 flags ; u32 read_mask ; u32 write_mask ; }; struct mem_entry { u32 offset ; u32 len ; }; struct subsys_tbl_ent { u16 subsys_vendor ; u16 subsys_devid ; u32 phy_id ; }; struct tg3_dev_id { u32 vendor ; u32 device ; u32 rev ; }; struct tg3_dev_id___0 { u32 vendor ; u32 device ; }; struct ldv_struct_dummy_resourceless_instance_1 { struct net_device *arg0 ; int signal_pending ; }; struct ldv_struct_dummy_resourceless_instance_5 { struct ptp_clock_info *arg0 ; int signal_pending ; }; struct ldv_struct_free_irq_11 { int arg0 ; int signal_pending ; }; struct ldv_struct_interrupt_instance_0 { int arg0 ; enum irqreturn (*arg1)(int , void * ) ; enum irqreturn (*arg2)(int , void * ) ; void *arg3 ; int signal_pending ; }; struct ldv_struct_pci_instance_2 { struct pci_driver *arg0 ; int signal_pending ; }; struct ldv_struct_platform_instance_4 { int signal_pending ; }; struct ldv_struct_timer_instance_7 { struct timer_list *arg0 ; int signal_pending ; }; typedef int ldv_func_ret_type___1; typedef int ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; typedef struct net_device *ldv_func_ret_type___4; typedef int ldv_func_ret_type___5; typedef struct ptp_clock *ldv_func_ret_type___6; typedef int ldv_func_ret_type___7; struct request; struct device_private { void *driver_data ; }; typedef short s16; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; struct kthread_worker *worker ; }; struct dma_chan; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool (*can_dma)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool idling ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; bool cur_msg_mapped ; struct completion xfer_completion ; size_t max_dma_len ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; struct dma_chan *dma_tx ; struct dma_chan *dma_rx ; void *dummy_rx ; void *dummy_tx ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; struct sg_table tx_sg ; struct sg_table rx_sg ; unsigned char cs_change : 1 ; unsigned char tx_nbits : 3 ; unsigned char rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned char is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; enum hrtimer_restart; struct ratelimit_state { raw_spinlock_t lock ; int interval ; int burst ; int printed ; int missed ; unsigned long begin ; }; typedef unsigned int mmc_pm_flag_t; struct mmc_card; struct sdio_func; typedef void sdio_irq_handler_t(struct sdio_func * ); struct sdio_func_tuple { struct sdio_func_tuple *next ; unsigned char code ; unsigned char size ; unsigned char data[0U] ; }; struct sdio_func { struct mmc_card *card ; struct device dev ; sdio_irq_handler_t *irq_handler ; unsigned int num ; unsigned char class ; unsigned short vendor ; unsigned short device ; unsigned int max_blksize ; unsigned int cur_blksize ; unsigned int enable_timeout ; unsigned int state ; u8 tmpbuf[4U] ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; }; enum led_brightness { LED_OFF = 0, LED_HALF = 127, LED_FULL = 255 } ; struct led_trigger; struct led_classdev { char const *name ; enum led_brightness brightness ; enum led_brightness max_brightness ; int flags ; void (*brightness_set)(struct led_classdev * , enum led_brightness ) ; int (*brightness_set_sync)(struct led_classdev * , enum led_brightness ) ; enum led_brightness (*brightness_get)(struct led_classdev * ) ; int (*blink_set)(struct led_classdev * , unsigned long * , unsigned long * ) ; struct device *dev ; struct attribute_group const **groups ; struct list_head node ; char const *default_trigger ; unsigned long blink_delay_on ; unsigned long blink_delay_off ; struct timer_list blink_timer ; int blink_brightness ; void (*flash_resume)(struct led_classdev * ) ; struct work_struct set_brightness_work ; int delayed_set_value ; struct rw_semaphore trigger_lock ; struct led_trigger *trigger ; struct list_head trig_list ; void *trigger_data ; bool activated ; struct mutex led_access ; }; struct led_trigger { char const *name ; void (*activate)(struct led_classdev * ) ; void (*deactivate)(struct led_classdev * ) ; rwlock_t leddev_list_lock ; struct list_head led_cdevs ; struct list_head next_trig ; }; struct fault_attr { unsigned long probability ; unsigned long interval ; atomic_t times ; atomic_t space ; unsigned long verbose ; u32 task_filter ; unsigned long stacktrace_depth ; unsigned long require_start ; unsigned long require_end ; unsigned long reject_start ; unsigned long reject_end ; unsigned long count ; struct ratelimit_state ratelimit_state ; struct dentry *dname ; }; struct mmc_data; struct mmc_request; struct mmc_command { u32 opcode ; u32 arg ; u32 resp[4U] ; unsigned int flags ; unsigned int retries ; unsigned int error ; unsigned int busy_timeout ; bool sanitize_busy ; struct mmc_data *data ; struct mmc_request *mrq ; }; struct mmc_data { unsigned int timeout_ns ; unsigned int timeout_clks ; unsigned int blksz ; unsigned int blocks ; unsigned int error ; unsigned int flags ; unsigned int bytes_xfered ; struct mmc_command *stop ; struct mmc_request *mrq ; unsigned int sg_len ; struct scatterlist *sg ; s32 host_cookie ; }; struct mmc_host; struct mmc_request { struct mmc_command *sbc ; struct mmc_command *cmd ; struct mmc_data *data ; struct mmc_command *stop ; struct completion completion ; void (*done)(struct mmc_request * ) ; struct mmc_host *host ; }; struct mmc_async_req; struct mmc_cid { unsigned int manfid ; char prod_name[8U] ; unsigned char prv ; unsigned int serial ; unsigned short oemid ; unsigned short year ; unsigned char hwrev ; unsigned char fwrev ; unsigned char month ; }; struct mmc_csd { unsigned char structure ; unsigned char mmca_vsn ; unsigned short cmdclass ; unsigned short tacc_clks ; unsigned int tacc_ns ; unsigned int c_size ; unsigned int r2w_factor ; unsigned int max_dtr ; unsigned int erase_size ; unsigned int read_blkbits ; unsigned int write_blkbits ; unsigned int capacity ; unsigned char read_partial : 1 ; unsigned char read_misalign : 1 ; unsigned char write_partial : 1 ; unsigned char write_misalign : 1 ; unsigned char dsr_imp : 1 ; }; struct mmc_ext_csd { u8 rev ; u8 erase_group_def ; u8 sec_feature_support ; u8 rel_sectors ; u8 rel_param ; u8 part_config ; u8 cache_ctrl ; u8 rst_n_function ; u8 max_packed_writes ; u8 max_packed_reads ; u8 packed_event_en ; unsigned int part_time ; unsigned int sa_timeout ; unsigned int generic_cmd6_time ; unsigned int power_off_longtime ; u8 power_off_notification ; unsigned int hs_max_dtr ; unsigned int hs200_max_dtr ; unsigned int sectors ; unsigned int hc_erase_size ; unsigned int hc_erase_timeout ; unsigned int sec_trim_mult ; unsigned int sec_erase_mult ; unsigned int trim_timeout ; bool partition_setting_completed ; unsigned long long enhanced_area_offset ; unsigned int enhanced_area_size ; unsigned int cache_size ; bool hpi_en ; bool hpi ; unsigned int hpi_cmd ; bool bkops ; bool man_bkops_en ; unsigned int data_sector_size ; unsigned int data_tag_unit_size ; unsigned int boot_ro_lock ; bool boot_ro_lockable ; bool ffu_capable ; u8 fwrev[8U] ; u8 raw_exception_status ; u8 raw_partition_support ; u8 raw_rpmb_size_mult ; u8 raw_erased_mem_count ; u8 raw_ext_csd_structure ; u8 raw_card_type ; u8 out_of_int_time ; u8 raw_pwr_cl_52_195 ; u8 raw_pwr_cl_26_195 ; u8 raw_pwr_cl_52_360 ; u8 raw_pwr_cl_26_360 ; u8 raw_s_a_timeout ; u8 raw_hc_erase_gap_size ; u8 raw_erase_timeout_mult ; u8 raw_hc_erase_grp_size ; u8 raw_sec_trim_mult ; u8 raw_sec_erase_mult ; u8 raw_sec_feature_support ; u8 raw_trim_mult ; u8 raw_pwr_cl_200_195 ; u8 raw_pwr_cl_200_360 ; u8 raw_pwr_cl_ddr_52_195 ; u8 raw_pwr_cl_ddr_52_360 ; u8 raw_pwr_cl_ddr_200_360 ; u8 raw_bkops_status ; u8 raw_sectors[4U] ; unsigned int feature_support ; }; struct sd_scr { unsigned char sda_vsn ; unsigned char sda_spec3 ; unsigned char bus_widths ; unsigned char cmds ; }; struct sd_ssr { unsigned int au ; unsigned int erase_timeout ; unsigned int erase_offset ; }; struct sd_switch_caps { unsigned int hs_max_dtr ; unsigned int uhs_max_dtr ; unsigned int sd3_bus_mode ; unsigned int sd3_drv_type ; unsigned int sd3_curr_limit ; }; struct sdio_cccr { unsigned int sdio_vsn ; unsigned int sd_vsn ; unsigned char multi_block : 1 ; unsigned char low_speed : 1 ; unsigned char wide_bus : 1 ; unsigned char high_power : 1 ; unsigned char high_speed : 1 ; unsigned char disable_cd : 1 ; }; struct sdio_cis { unsigned short vendor ; unsigned short device ; unsigned short blksize ; unsigned int max_dtr ; }; struct mmc_ios; struct mmc_part { unsigned int size ; unsigned int part_cfg ; char name[20U] ; bool force_ro ; unsigned int area_type ; }; struct mmc_card { struct mmc_host *host ; struct device dev ; u32 ocr ; unsigned int rca ; unsigned int type ; unsigned int state ; unsigned int quirks ; unsigned int erase_size ; unsigned int erase_shift ; unsigned int pref_erase ; u8 erased_byte ; u32 raw_cid[4U] ; u32 raw_csd[4U] ; u32 raw_scr[2U] ; struct mmc_cid cid ; struct mmc_csd csd ; struct mmc_ext_csd ext_csd ; struct sd_scr scr ; struct sd_ssr ssr ; struct sd_switch_caps sw_caps ; unsigned int sdio_funcs ; struct sdio_cccr cccr ; struct sdio_cis cis ; struct sdio_func *sdio_func[7U] ; struct sdio_func *sdio_single_irq ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; unsigned int sd_bus_speed ; unsigned int mmc_avail_type ; struct dentry *debugfs_root ; struct mmc_part part[7U] ; unsigned int nr_parts ; }; struct mmc_ios { unsigned int clock ; unsigned short vdd ; unsigned char bus_mode ; unsigned char chip_select ; unsigned char power_mode ; unsigned char bus_width ; unsigned char timing ; unsigned char signal_voltage ; unsigned char drv_type ; }; struct mmc_host_ops { int (*enable)(struct mmc_host * ) ; int (*disable)(struct mmc_host * ) ; void (*post_req)(struct mmc_host * , struct mmc_request * , int ) ; void (*pre_req)(struct mmc_host * , struct mmc_request * , bool ) ; void (*request)(struct mmc_host * , struct mmc_request * ) ; void (*set_ios)(struct mmc_host * , struct mmc_ios * ) ; int (*get_ro)(struct mmc_host * ) ; int (*get_cd)(struct mmc_host * ) ; void (*enable_sdio_irq)(struct mmc_host * , int ) ; void (*init_card)(struct mmc_host * , struct mmc_card * ) ; int (*start_signal_voltage_switch)(struct mmc_host * , struct mmc_ios * ) ; int (*card_busy)(struct mmc_host * ) ; int (*execute_tuning)(struct mmc_host * , u32 ) ; int (*prepare_hs400_tuning)(struct mmc_host * , struct mmc_ios * ) ; int (*select_drive_strength)(unsigned int , int , int ) ; void (*hw_reset)(struct mmc_host * ) ; void (*card_event)(struct mmc_host * ) ; int (*multi_io_quirk)(struct mmc_card * , unsigned int , int ) ; }; struct mmc_async_req { struct mmc_request *mrq ; int (*err_check)(struct mmc_card * , struct mmc_async_req * ) ; }; struct mmc_slot { int cd_irq ; void *handler_priv ; }; struct mmc_context_info { bool is_done_rcv ; bool is_new_req ; bool is_waiting_last_req ; wait_queue_head_t wait ; spinlock_t lock ; }; struct regulator; struct mmc_pwrseq; struct mmc_supply { struct regulator *vmmc ; struct regulator *vqmmc ; }; struct mmc_bus_ops; struct mmc_host { struct device *parent ; struct device class_dev ; int index ; struct mmc_host_ops const *ops ; struct mmc_pwrseq *pwrseq ; unsigned int f_min ; unsigned int f_max ; unsigned int f_init ; u32 ocr_avail ; u32 ocr_avail_sdio ; u32 ocr_avail_sd ; u32 ocr_avail_mmc ; struct notifier_block pm_notify ; u32 max_current_330 ; u32 max_current_300 ; u32 max_current_180 ; u32 caps ; u32 caps2 ; mmc_pm_flag_t pm_caps ; int clk_requests ; unsigned int clk_delay ; bool clk_gated ; struct delayed_work clk_gate_work ; unsigned int clk_old ; spinlock_t clk_lock ; struct mutex clk_gate_mutex ; struct device_attribute clkgate_delay_attr ; unsigned long clkgate_delay ; unsigned int max_seg_size ; unsigned short max_segs ; unsigned short unused ; unsigned int max_req_size ; unsigned int max_blk_size ; unsigned int max_blk_count ; unsigned int max_busy_timeout ; spinlock_t lock ; struct mmc_ios ios ; unsigned char use_spi_crc : 1 ; unsigned char claimed : 1 ; unsigned char bus_dead : 1 ; unsigned char removed : 1 ; int rescan_disable ; int rescan_entered ; bool trigger_card_event ; struct mmc_card *card ; wait_queue_head_t wq ; struct task_struct *claimer ; int claim_cnt ; struct delayed_work detect ; int detect_change ; struct mmc_slot slot ; struct mmc_bus_ops const *bus_ops ; unsigned int bus_refs ; unsigned int sdio_irqs ; struct task_struct *sdio_irq_thread ; bool sdio_irq_pending ; atomic_t sdio_irq_thread_abort ; mmc_pm_flag_t pm_flags ; struct led_trigger *led ; bool regulator_enabled ; struct mmc_supply supply ; struct dentry *debugfs_root ; struct mmc_async_req *areq ; struct mmc_context_info context_info ; struct fault_attr fail_mmc_request ; unsigned int actual_clock ; unsigned int slotno ; int dsr_req ; u32 dsr ; unsigned long private[0U] ; }; typedef int ldv_map; struct usb_device; struct urb; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; typedef _Bool ldv_set; void __builtin_prefetch(void const * , ...) ; long ldv__builtin_expect(long exp , long c ) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_irq_check_alloc_nonatomic(void) ; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) ; void ldv_linux_arch_io_check_final_state(void) ; void ldv_linux_block_genhd_check_final_state(void) ; void ldv_linux_block_queue_check_final_state(void) ; void ldv_linux_block_request_check_final_state(void) ; void *ldv_linux_drivers_base_class_create_class(void) ; int ldv_linux_drivers_base_class_register_class(void) ; void ldv_linux_drivers_base_class_check_final_state(void) ; void ldv_linux_fs_char_dev_check_final_state(void) ; void ldv_linux_fs_sysfs_check_final_state(void) ; void ldv_linux_kernel_locking_rwlock_check_final_state(void) ; void ldv_linux_kernel_module_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_check_final_state(void) ; void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) ; void ldv_linux_kernel_rcu_srcu_check_final_state(void) ; void ldv_linux_lib_find_bit_initialize(void) ; void ldv_linux_lib_idr_check_final_state(void) ; void ldv_linux_mmc_sdio_func_check_final_state(void) ; void ldv_linux_net_register_reset_error_counter(void) ; void ldv_linux_net_register_check_return_value_probe(int retval ) ; void ldv_linux_net_rtnetlink_check_final_state(void) ; void ldv_linux_net_sock_check_final_state(void) ; void ldv_linux_usb_coherent_check_final_state(void) ; void *ldv_linux_usb_gadget_create_class(void) ; int ldv_linux_usb_gadget_register_class(void) ; void ldv_linux_usb_gadget_check_final_state(void) ; void ldv_linux_usb_register_reset_error_counter(void) ; void ldv_linux_usb_register_check_return_value_probe(int retval ) ; void ldv_linux_usb_urb_check_final_state(void) ; void ldv_check_alloc_nonatomic(void) { { { ldv_linux_alloc_irq_check_alloc_nonatomic(); ldv_linux_alloc_usb_lock_check_alloc_nonatomic(); } return; } } void ldv_check_alloc_flags(gfp_t flags ) { { { ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return; } } void ldv_check_for_read_section(void) { { { ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_check_for_read_section(); ldv_linux_kernel_rcu_srcu_check_for_read_section(); } return; } } void *ldv_create_class(void) { void *res1 ; void *tmp ; void *res2 ; void *tmp___0 ; { { tmp = ldv_linux_drivers_base_class_create_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_create_class(); res2 = tmp___0; ldv_assume((unsigned long )res1 == (unsigned long )res2); } return (res1); } } int ldv_register_class(void) { int res1 ; int tmp ; int res2 ; int tmp___0 ; { { tmp = ldv_linux_drivers_base_class_register_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_register_class(); res2 = tmp___0; ldv_assume(res1 == res2); } return (res1); } } long ldv_ptr_err(void const *ptr ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) ; int ldv_undef_int(void) ; void ldv_linux_arch_io_io_mem_unmap(void) ; static void ldv_ldv_initialize_215(void) ; int ldv_post_init(int init_ret_val ) ; static int ldv_ldv_post_init_212(int ldv_func_arg1 ) ; extern void ldv_pre_probe(void) ; static void ldv_ldv_pre_probe_216(void) ; static void ldv_ldv_pre_probe_218(void) ; int ldv_post_probe(int probe_ret_val ) ; static int ldv_ldv_post_probe_217(int retval ) ; static int ldv_ldv_post_probe_219(int retval ) ; int ldv_filter_err_code(int ret_val ) ; int ldv_pre_register_netdev(void) ; static void ldv_ldv_check_final_state_213(void) ; static void ldv_ldv_check_final_state_214(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; void *ldv_malloc_unknown_size(void) ; extern void ldv_after_alloc(void * ) ; void *ldv_alloc_macro(gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } void ldv_linux_net_rtnetlink_past_rtnl_lock(void) ; void ldv_linux_net_rtnetlink_past_rtnl_unlock(void) ; extern struct module __this_module ; extern struct pv_irq_ops pv_irq_ops ; __inline static void set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static int test_and_set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("":); return (0); return (1); } } __inline static int constant_test_bit(long nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr >> 6)) >> ((int )nr & 63)) & 1); } } __inline static int variable_test_bit(long nr , unsigned long const volatile *addr ) { int oldbit ; { __asm__ volatile ("bt %2,%1\n\tsbb %0,%0": "=r" (oldbit): "m" (*((unsigned long *)addr)), "Ir" (nr)); return (oldbit); } } __inline static unsigned int __arch_hweight32(unsigned int w ) { unsigned int res ; { res = 0U; __asm__ ("661:\n\tcall __sw_hweight32\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word ( 4*32+23)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0xf3,0x40,0x0f,0xb8,0xc7\n6641:\n\t.popsection": "=a" (res): "D" (w)); return (res); } } __inline static unsigned int __arch_hweight8(unsigned int w ) { unsigned int tmp ; { { tmp = __arch_hweight32(w & 255U); } return (tmp); } } __inline static __u16 __fswab16(__u16 val ) { { return ((__u16 )((int )((short )((int )val << 8)) | (int )((short )((int )val >> 8)))); } } __inline static __u32 __fswab32(__u32 val ) { int tmp ; { { tmp = __builtin_bswap32(val); } return ((__u32 )tmp); } } extern int printk(char const * , ...) ; extern void ___might_sleep(char const * , int , int ) ; extern void might_fault(void) ; extern int sprintf(char * , char const * , ...) ; extern int snprintf(char * , size_t , char const * , ...) ; extern enum system_states system_state ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void __bad_percpu_size(void) ; extern void __bad_size_call_parameter(void) ; extern struct task_struct *current_task ; __inline static struct task_struct *get_current(void) { struct task_struct *pfo_ret__ ; { { if (8UL == 1UL) { goto case_1; } else { } if (8UL == 2UL) { goto case_2; } else { } if (8UL == 4UL) { goto case_4; } else { } if (8UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "p" (& current_task)); goto ldv_3546; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_3546; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_3546; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_3546; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_3546: ; return (pfo_ret__); } } extern unsigned long __phys_addr(unsigned long ) ; extern void *__memcpy(void * , void const * , size_t ) ; extern void *__memset(void * , int , size_t ) ; extern int memcmp(void const * , void const * , size_t ) ; extern size_t strlen(char const * ) ; extern char *strcpy(char * , char const * ) ; extern char *strcat(char * , char const * ) ; extern size_t strlcpy(char * , char const * , size_t ) ; extern char *strncat(char * , char const * , __kernel_size_t ) ; extern int __bitmap_weight(unsigned long const * , unsigned int ) ; __inline static int bitmap_weight(unsigned long const *src , unsigned int nbits ) { int tmp___0 ; { { tmp___0 = __bitmap_weight(src, nbits); } return (tmp___0); } } extern void warn_slowpath_null(char const * , int const ) ; extern int nr_cpu_ids ; extern struct cpumask const * const cpu_online_mask ; __inline static unsigned int cpumask_weight(struct cpumask const *srcp ) { int tmp ; { { tmp = bitmap_weight((unsigned long const *)(& srcp->bits), (unsigned int )nr_cpu_ids); } return ((unsigned int )tmp); } } __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"./arch/x86/include/asm/paravirt.h"), "i" (804), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static u64 div_u64_rem(u64 dividend , u32 divisor , u32 *remainder ) { { *remainder = (u32 )(dividend % (u64 )divisor); return (dividend / (u64 )divisor); } } __inline static u64 div_u64(u64 dividend , u32 divisor ) { u32 remainder ; u64 tmp ; { { tmp = div_u64_rem(dividend, divisor, & remainder); } return (tmp); } } __inline static long PTR_ERR(void const *ptr ) ; __inline static bool IS_ERR(void const *ptr ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )ptr > 0xfffffffffffff000UL, 0L); } return (tmp != 0L); } } __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } __inline static int atomic_read(atomic_t const *v ) { int __var ; { __var = 0; return ((int )*((int const volatile *)(& v->counter))); } } extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern void __ldv_linux_kernel_locking_spinlock_spin_lock(spinlock_t * ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_127(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_129(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_131(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_133(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_135(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_137(spinlock_t *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_spinlock_spin_lock__xmit_lock_of_netdev_queue(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock__xmit_lock_of_netdev_queue(void) ; void ldv_linux_kernel_locking_spinlock_spin_lock_indirect_lock_of_tg3(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_indirect_lock_of_tg3(void) ; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_tg3(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_tg3(void) ; void ldv_switch_to_interrupt_context(void) ; void ldv_switch_to_process_context(void) ; extern unsigned long kernel_stack ; __inline static struct thread_info *current_thread_info(void) { struct thread_info *ti ; unsigned long pfo_ret__ ; { { if (8UL == 1UL) { goto case_1; } else { } if (8UL == 2UL) { goto case_2; } else { } if (8UL == 4UL) { goto case_4; } else { } if (8UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "p" (& kernel_stack)); goto ldv_7152; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& kernel_stack)); goto ldv_7152; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& kernel_stack)); goto ldv_7152; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& kernel_stack)); goto ldv_7152; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_7152: ti = (struct thread_info *)(pfo_ret__ - 32728UL); return (ti); } } __inline static int test_ti_thread_flag(struct thread_info *ti , int flag ) { int tmp___0 ; { { tmp___0 = variable_test_bit((long )flag, (unsigned long const volatile *)(& ti->flags)); } return (tmp___0); } } extern void __local_bh_disable_ip(unsigned long , unsigned int ) ; __inline static void local_bh_disable(void) { { { __local_bh_disable_ip((unsigned long )((void *)0), 512U); } return; } } extern void __local_bh_enable_ip(unsigned long , unsigned int ) ; __inline static void local_bh_enable(void) { { { __local_bh_enable_ip((unsigned long )((void *)0), 512U); } return; } } extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_lock_bh(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_bh(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField18.rlock); } } __inline static void spin_lock(spinlock_t *lock ) { { { _raw_spin_lock(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_lock_109(spinlock_t *lock ) ; __inline static void ldv_spin_lock_145(spinlock_t *lock ) ; __inline static void ldv_spin_lock_145(spinlock_t *lock ) ; __inline static void spin_lock_bh(spinlock_t *lock ) { { { _raw_spin_lock_bh(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_lock_bh_139(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_139(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_139(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_139(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_139(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_139(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_139(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_139(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_139(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_139(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_139(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_139(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_139(spinlock_t *lock ) ; __inline static void spin_unlock(spinlock_t *lock ) { { { _raw_spin_unlock(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_unlock_112(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_146(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_146(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_146(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_146(spinlock_t *lock ) ; __inline static void spin_unlock_bh(spinlock_t *lock ) { { { _raw_spin_unlock_bh(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_unlock_bh_140(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_140(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_140(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_140(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_140(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_140(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_140(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_140(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_140(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_140(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_140(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_140(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_140(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_140(spinlock_t *lock ) ; __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField18.rlock, flags); } return; } } __inline static void ldv_spin_unlock_irqrestore_128(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_128(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_128(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_128(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_128(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_128(spinlock_t *lock , unsigned long flags ) ; __inline static s64 timespec_to_ns(struct timespec const *ts ) { { return ((long long )ts->tv_sec * 1000000000LL + (long long )ts->tv_nsec); } } extern unsigned long volatile jiffies ; extern unsigned int jiffies_to_usecs(unsigned long const ) ; extern unsigned long usecs_to_jiffies(unsigned int const ) ; __inline static ktime_t ns_to_ktime(u64 ns ) { ktime_t ktime_zero ; ktime_t __constr_expr_0 ; { ktime_zero.tv64 = 0LL; __constr_expr_0.tv64 = (long long )((unsigned long long )ktime_zero.tv64 + ns); return (__constr_expr_0); } } extern ktime_t ktime_get_with_offset(enum tk_offsets ) ; __inline static ktime_t ktime_get_real(void) { ktime_t tmp ; { { tmp = ktime_get_with_offset(0); } return (tmp); } } extern void init_timer_key(struct timer_list * , unsigned int , char const * , struct lock_class_key * ) ; extern void add_timer(struct timer_list * ) ; extern int del_timer_sync(struct timer_list * ) ; static int ldv_del_timer_sync_165(struct timer_list *ldv_func_arg1 ) ; extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *system_wq ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; extern bool cancel_work_sync(struct work_struct * ) ; __inline static bool queue_work(struct workqueue_struct *wq , struct work_struct *work ) { bool tmp ; { { tmp = queue_work_on(8192, wq, work); } return (tmp); } } __inline static bool schedule_work(struct work_struct *work ) { bool tmp ; { { tmp = queue_work(system_wq, work); } return (tmp); } } __inline static char const *kobject_name(struct kobject const *kobj ) { { return ((char const *)kobj->name); } } __inline static unsigned int readl(void const volatile *addr ) { unsigned int ret ; { __asm__ volatile ("movl %1,%0": "=r" (ret): "m" (*((unsigned int volatile *)addr)): "memory"); return (ret); } } __inline static void writel(unsigned int val , void volatile *addr ) { { __asm__ volatile ("movl %0,%1": : "r" (val), "m" (*((unsigned int volatile *)addr)): "memory"); return; } } static void ldv_iounmap_187(void volatile *ldv_func_arg1 ) ; static void ldv_iounmap_191(void volatile *ldv_func_arg1 ) ; static void ldv_iounmap_192(void volatile *ldv_func_arg1 ) ; static void ldv_iounmap_195(void volatile *ldv_func_arg1 ) ; static void ldv_iounmap_196(void volatile *ldv_func_arg1 ) ; extern int cpu_number ; __inline static bool device_can_wakeup(struct device *dev ) { { return ((int )dev->power.can_wakeup != 0); } } __inline static bool device_may_wakeup(struct device *dev ) { { return ((bool )((unsigned int )*((unsigned char *)dev + 524UL) != 0U && (unsigned long )dev->power.wakeup != (unsigned long )((struct wakeup_source *)0))); } } extern void device_set_wakeup_capable(struct device * , bool ) ; extern int device_set_wakeup_enable(struct device * , bool ) ; __inline static char const *dev_name(struct device const *dev ) { char const *tmp ; { if ((unsigned long )dev->init_name != (unsigned long )((char const */* const */)0)) { return ((char const *)dev->init_name); } else { } { tmp = kobject_name(& dev->kobj); } return (tmp); } } __inline static void *dev_get_drvdata(struct device const *dev ) { { return ((void *)dev->driver_data); } } __inline static void dev_set_drvdata(struct device *dev , void *data ) { { dev->driver_data = data; return; } } extern void dev_err(struct device const * , char const * , ...) ; extern void dev_warn(struct device const * , char const * , ...) ; extern void __udelay(unsigned long ) ; extern void __const_udelay(unsigned long ) ; extern void msleep(unsigned int ) ; extern unsigned long msleep_interruptible(unsigned int ) ; extern void usleep_range(unsigned long , unsigned long ) ; __inline static int PageTail(struct page const *page ) { int tmp ; { { tmp = constant_test_bit(15L, (unsigned long const volatile *)(& page->flags)); } return (tmp); } } __inline static struct page *compound_head_fast(struct page *page ) { int tmp ; long tmp___0 ; { { tmp = PageTail((struct page const *)page); tmp___0 = ldv__builtin_expect(tmp != 0, 0L); } if (tmp___0 != 0L) { return (page->__annonCompField48.first_page); } else { } return (page); } } __inline static struct page *virt_to_head_page(void const *x ) { struct page *page ; unsigned long tmp ; struct page *tmp___0 ; { { tmp = __phys_addr((unsigned long )x); page = (struct page *)-24189255811072L + (tmp >> 12); tmp___0 = compound_head_fast(page); } return (tmp___0); } } extern void put_page(struct page * ) ; __inline static void *lowmem_page_address(struct page const *page ) { { return ((void *)((unsigned long )((unsigned long long )(((long )page + 24189255811072L) / 64L) << 12) + 0xffff880000000000UL)); } } __inline static void dql_queued(struct dql *dql , unsigned int count ) { long tmp ; { { tmp = ldv__builtin_expect(count > 268435455U, 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/dynamic_queue_limits.h"), "i" (74), "i" (12UL)); __builtin_unreachable(); } } else { } dql->last_obj_cnt = count; __asm__ volatile ("": : : "memory"); dql->num_queued = dql->num_queued + count; return; } } __inline static int dql_avail(struct dql const *dql ) { unsigned int __var ; unsigned int __var___0 ; { __var = 0U; __var___0 = 0U; return ((int )((unsigned int )*((unsigned int const volatile *)(& dql->adj_limit)) - (unsigned int )*((unsigned int const volatile *)(& dql->num_queued)))); } } extern void dql_completed(struct dql * , unsigned int ) ; extern void dql_reset(struct dql * ) ; __inline static int test_tsk_thread_flag(struct task_struct *tsk , int flag ) { int tmp ; { { tmp = test_ti_thread_flag((struct thread_info *)tsk->stack, flag); } return (tmp); } } __inline static int signal_pending(struct task_struct *p ) { int tmp ; long tmp___0 ; { { tmp = test_tsk_thread_flag(p, 2); tmp___0 = ldv__builtin_expect(tmp != 0, 0L); } return ((int )tmp___0); } } extern int _cond_resched(void) ; __inline static bool need_resched(void) { struct thread_info *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = current_thread_info(); tmp___0 = test_ti_thread_flag(tmp, 3); tmp___1 = ldv__builtin_expect(tmp___0 != 0, 0L); } return (tmp___1 != 0L); } } __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } extern void kfree(void const * ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; extern unsigned long _copy_from_user(void * , void const * , unsigned int ) ; extern unsigned long _copy_to_user(void * , void const * , unsigned int ) ; extern void __copy_from_user_overflow(void) ; extern void __copy_to_user_overflow(void) ; __inline static unsigned long copy_from_user(void *to , void const *from , unsigned long n ) { int sz ; long tmp ; long tmp___0 ; { { sz = -1; might_fault(); tmp = ldv__builtin_expect(sz < 0, 1L); } if (tmp != 0L) { { n = _copy_from_user(to, from, (unsigned int )n); } } else { { tmp___0 = ldv__builtin_expect((unsigned long )sz >= n, 1L); } if (tmp___0 != 0L) { { n = _copy_from_user(to, from, (unsigned int )n); } } else { { __copy_from_user_overflow(); } } } return (n); } } __inline static unsigned long copy_to_user(void *to , void const *from , unsigned long n ) { int sz ; long tmp ; long tmp___0 ; { { sz = -1; might_fault(); tmp = ldv__builtin_expect(sz < 0, 1L); } if (tmp != 0L) { { n = _copy_to_user(to, from, (unsigned int )n); } } else { { tmp___0 = ldv__builtin_expect((unsigned long )sz >= n, 1L); } if (tmp___0 != 0L) { { n = _copy_to_user(to, from, (unsigned int )n); } } else { { __copy_to_user_overflow(); } } } return (n); } } __inline static __sum16 csum_fold(__wsum sum ) { { __asm__ (" addl %1,%0\n adcl $0xffff,%0": "=r" (sum): "r" (sum << 16), "0" (sum & 4294901760U)); return ((__sum16 )(~ sum >> 16)); } } __inline static __wsum csum_tcpudp_nofold(__be32 saddr , __be32 daddr , unsigned short len , unsigned short proto , __wsum sum ) { { __asm__ (" addl %1, %0\n adcl %2, %0\n adcl %3, %0\n adcl $0, %0\n": "=r" (sum): "g" (daddr), "g" (saddr), "g" (((int )len + (int )proto) << 8), "0" (sum)); return (sum); } } __inline static __sum16 csum_tcpudp_magic(__be32 saddr , __be32 daddr , unsigned short len , unsigned short proto , __wsum sum ) { __wsum tmp ; __sum16 tmp___0 ; { { tmp = csum_tcpudp_nofold(saddr, daddr, (int )len, (int )proto, sum); tmp___0 = csum_fold(tmp); } return (tmp___0); } } __inline static int valid_dma_direction(int dma_direction ) { { return ((unsigned int )dma_direction <= 2U); } } __inline static int is_device_dma_capable(struct device *dev ) { { return ((unsigned long )dev->dma_mask != (unsigned long )((u64 *)0ULL) && *(dev->dma_mask) != 0ULL); } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_mapping_error(struct device * , dma_addr_t ) ; extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern void debug_dma_alloc_coherent(struct device * , size_t , dma_addr_t , void * ) ; extern void debug_dma_free_coherent(struct device * , size_t , void * , dma_addr_t ) ; extern void debug_dma_sync_single_for_cpu(struct device * , dma_addr_t , size_t , int ) ; extern void debug_dma_sync_single_for_device(struct device * , dma_addr_t , size_t , int ) ; extern struct device x86_dma_fallback_dev ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); } if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static dma_addr_t dma_map_single_attrs(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, (struct page *)-24189255811072L + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, (struct page *)-24189255811072L + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); } return (addr); } } __inline static void dma_unmap_single_attrs(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (36), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, attrs); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 1); } return; } } __inline static dma_addr_t dma_map_page(struct device *dev , struct page *page , size_t offset , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; void *tmp___0 ; int tmp___1 ; long tmp___2 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = lowmem_page_address((struct page const *)page); kmemcheck_mark_initialized(tmp___0 + offset, (unsigned int )size); tmp___1 = valid_dma_direction((int )dir); tmp___2 = ldv__builtin_expect(tmp___1 == 0, 0L); } if (tmp___2 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (79), "i" (12UL)); __builtin_unreachable(); } } else { } { addr = (*(ops->map_page))(dev, page, offset, size, dir, (struct dma_attrs *)0); debug_dma_map_page(dev, page, offset, size, (int )dir, addr, 0); } return (addr); } } __inline static void dma_unmap_page(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (91), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, (struct dma_attrs *)0); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 0); } return; } } __inline static void dma_sync_single_for_cpu(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (103), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->sync_single_for_cpu != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { { (*(ops->sync_single_for_cpu))(dev, addr, size, dir); } } else { } { debug_dma_sync_single_for_cpu(dev, addr, size, (int )dir); } return; } } __inline static void dma_sync_single_for_device(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (115), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->sync_single_for_device != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { { (*(ops->sync_single_for_device))(dev, addr, size, dir); } } else { } { debug_dma_sync_single_for_device(dev, addr, size, (int )dir); } return; } } __inline static int dma_mapping_error(struct device *dev , dma_addr_t dma_addr ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; { { tmp = get_dma_ops(dev); ops = tmp; debug_dma_mapping_error(dev, dma_addr); } if ((unsigned long )ops->mapping_error != (unsigned long )((int (*)(struct device * , dma_addr_t ))0)) { { tmp___0 = (*(ops->mapping_error))(dev, dma_addr); } return (tmp___0); } else { } return (dma_addr == 0ULL); } } extern int dma_supported(struct device * , u64 ) ; extern int dma_set_mask(struct device * , u64 ) ; __inline static unsigned long dma_alloc_coherent_mask(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; { dma_mask = 0UL; dma_mask = (unsigned long )dev->coherent_dma_mask; if (dma_mask == 0UL) { dma_mask = (int )gfp & 1 ? 16777215UL : 4294967295UL; } else { } return (dma_mask); } } __inline static gfp_t dma_alloc_coherent_gfp_flags(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; unsigned long tmp ; { { tmp = dma_alloc_coherent_mask(dev, gfp); dma_mask = tmp; } if ((unsigned long long )dma_mask <= 16777215ULL) { gfp = gfp | 1U; } else { } if ((unsigned long long )dma_mask <= 4294967295ULL && (gfp & 1U) == 0U) { gfp = gfp | 4U; } else { } return (gfp); } } __inline static void *dma_alloc_attrs(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t gfp , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; void *memory ; int tmp___0 ; gfp_t tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; gfp = gfp & 4294967288U; } if ((unsigned long )dev == (unsigned long )((struct device *)0)) { dev = & x86_dma_fallback_dev; } else { } { tmp___0 = is_device_dma_capable(dev); } if (tmp___0 == 0) { return ((void *)0); } else { } if ((unsigned long )ops->alloc == (unsigned long )((void *(*)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ))0)) { return ((void *)0); } else { } { tmp___1 = dma_alloc_coherent_gfp_flags(dev, gfp); memory = (*(ops->alloc))(dev, size, dma_handle, tmp___1, attrs); debug_dma_alloc_coherent(dev, size, *dma_handle, memory); } return (memory); } } __inline static void dma_free_attrs(struct device *dev , size_t size , void *vaddr , dma_addr_t bus , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int __ret_warn_on ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; _flags = arch_local_save_flags(); tmp___0 = arch_irqs_disabled_flags(_flags); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("./arch/x86/include/asm/dma-mapping.h", 166); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); debug_dma_free_coherent(dev, size, vaddr, bus); } if ((unsigned long )ops->free != (unsigned long )((void (*)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ))0)) { { (*(ops->free))(dev, size, vaddr, bus, attrs); } } else { } return; } } __inline static int dma_set_coherent_mask(struct device *dev , u64 mask ) { int tmp ; { { tmp = dma_supported(dev, mask); } if (tmp == 0) { return (-5); } else { } dev->coherent_dma_mask = mask; return (0); } } __inline static void *dma_zalloc_coherent(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t flags ) ; __inline static unsigned int skb_frag_size(skb_frag_t const *frag ) { { return ((unsigned int )frag->size); } } extern void consume_skb(struct sk_buff * ) ; extern struct sk_buff *build_skb(void * , unsigned int ) ; static struct sk_buff *ldv_skb_copy_151(struct sk_buff const *ldv_func_arg1 , gfp_t flags ) ; static int ldv_pskb_expand_head_106(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) ; static struct sk_buff *ldv_skb_copy_expand_152(struct sk_buff const *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) ; __inline static unsigned char *skb_end_pointer(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->end); } } __inline static struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb ) { unsigned char *tmp ; { { tmp = skb_end_pointer((struct sk_buff const *)skb); } return (& ((struct skb_shared_info *)tmp)->hwtstamps); } } __inline static int skb_header_cloned(struct sk_buff const *skb ) { int dataref ; unsigned char *tmp ; { if ((unsigned int )*((unsigned char *)skb + 142UL) == 0U) { return (0); } else { } { tmp = skb_end_pointer(skb); dataref = atomic_read((atomic_t const *)(& ((struct skb_shared_info *)tmp)->dataref)); dataref = (dataref & 65535) - (dataref >> 16); } return (dataref != 1); } } __inline static bool skb_is_nonlinear(struct sk_buff const *skb ) { { return ((unsigned int )skb->data_len != 0U); } } __inline static unsigned int skb_headlen(struct sk_buff const *skb ) { { return ((unsigned int )skb->len - (unsigned int )skb->data_len); } } extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; __inline static unsigned int skb_headroom(struct sk_buff const *skb ) { { return ((unsigned int )((long )skb->data) - (unsigned int )((long )skb->head)); } } __inline static int skb_tailroom(struct sk_buff const *skb ) { bool tmp ; { { tmp = skb_is_nonlinear(skb); } return ((int )tmp ? 0 : (int )((unsigned int )skb->end - (unsigned int )skb->tail)); } } __inline static void skb_reserve(struct sk_buff *skb , int len ) { { skb->data = skb->data + (unsigned long )len; skb->tail = skb->tail + (sk_buff_data_t )len; return; } } __inline static unsigned char *skb_transport_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->transport_header); } } __inline static unsigned char *skb_network_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->network_header); } } __inline static int skb_transport_offset(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_transport_header(skb); } return ((int )((unsigned int )((long )tmp) - (unsigned int )((long )skb->data))); } } extern void *netdev_alloc_frag(unsigned int ) ; static struct sk_buff *ldv___netdev_alloc_skb_103(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; __inline static struct sk_buff *netdev_alloc_skb(struct net_device *dev , unsigned int length ) { struct sk_buff *tmp ; { { tmp = ldv___netdev_alloc_skb_103(dev, length, 32U); } return (tmp); } } __inline static struct page *skb_frag_page(skb_frag_t const *frag ) { { return ((struct page *)frag->page.p); } } __inline static dma_addr_t skb_frag_dma_map(struct device *dev , skb_frag_t const *frag , size_t offset , size_t size , enum dma_data_direction dir ) { struct page *tmp ; dma_addr_t tmp___0 ; { { tmp = skb_frag_page(frag); tmp___0 = dma_map_page(dev, tmp, (size_t )frag->page_offset + offset, size, dir); } return (tmp___0); } } __inline static int __skb_cow(struct sk_buff *skb , unsigned int headroom , int cloned ) { int delta ; unsigned int tmp ; unsigned int tmp___0 ; int _max1 ; int _max2 ; int _max1___0 ; int _max2___0 ; int tmp___1 ; { { delta = 0; tmp___0 = skb_headroom((struct sk_buff const *)skb); } if (headroom > tmp___0) { { tmp = skb_headroom((struct sk_buff const *)skb); delta = (int )(headroom - tmp); } } else { } if ((delta | cloned) != 0) { { _max1 = 32; _max2 = 64; _max1___0 = 32; _max2___0 = 64; tmp___1 = ldv_pskb_expand_head_106(skb, (delta + ((_max1 > _max2 ? _max1 : _max2) + -1)) & - (_max1___0 > _max2___0 ? _max1___0 : _max2___0), 0, 32U); } return (tmp___1); } else { } return (0); } } __inline static int skb_cow_head(struct sk_buff *skb , unsigned int headroom ) { int tmp ; int tmp___0 ; { { tmp = skb_header_cloned((struct sk_buff const *)skb); tmp___0 = __skb_cow(skb, headroom, tmp); } return (tmp___0); } } extern void skb_clone_tx_timestamp(struct sk_buff * ) ; extern void skb_tstamp_tx(struct sk_buff * , struct skb_shared_hwtstamps * ) ; __inline static void sw_tx_timestamp(struct sk_buff *skb ) { unsigned char *tmp ; unsigned char *tmp___0 ; { { tmp = skb_end_pointer((struct sk_buff const *)skb); } if (((int )((struct skb_shared_info *)tmp)->tx_flags & 2) != 0) { { tmp___0 = skb_end_pointer((struct sk_buff const *)skb); } if (((int )((struct skb_shared_info *)tmp___0)->tx_flags & 4) == 0) { { skb_tstamp_tx(skb, (struct skb_shared_hwtstamps *)0); } } else { } } else { } return; } } __inline static void skb_tx_timestamp(struct sk_buff *skb ) { { { skb_clone_tx_timestamp(skb); sw_tx_timestamp(skb); } return; } } __inline static u16 skb_get_queue_mapping(struct sk_buff const *skb ) { { return ((u16 )skb->queue_mapping); } } __inline static bool skb_is_gso_v6(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_end_pointer(skb); } return (((int )((struct skb_shared_info *)tmp)->gso_type & 16) != 0); } } __inline static void skb_checksum_none_assert(struct sk_buff const *skb ) { { return; } } __inline static void ethtool_cmd_speed_set(struct ethtool_cmd *ep , __u32 speed ) { { ep->speed = (unsigned short )speed; ep->speed_hi = (unsigned short )(speed >> 16); return; } } __inline static __u32 ethtool_cmd_speed(struct ethtool_cmd const *ep ) { { return ((__u32 )(((int )ep->speed_hi << 16) | (int )ep->speed)); } } extern u32 ethtool_op_get_link(struct net_device * ) ; __inline static u32 ethtool_rxfh_indir_default(u32 index , u32 n_rx_rings ) { { return (index % n_rx_rings); } } extern void synchronize_irq(unsigned int ) ; extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); } return (tmp); } } __inline static int ldv_request_irq_169(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; __inline static int ldv_request_irq_171(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; static void ldv_free_irq_170(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_172(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_173(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_174(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_175(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_176(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_177(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; __inline static struct mii_ioctl_data *if_mii(struct ifreq *rq ) { { return ((struct mii_ioctl_data *)(& rq->ifr_ifru)); } } __inline static u32 ethtool_adv_to_mii_adv_t(u32 ethadv ) { u32 result ; { result = 0U; if ((int )ethadv & 1) { result = result | 32U; } else { } if ((ethadv & 2U) != 0U) { result = result | 64U; } else { } if ((ethadv & 4U) != 0U) { result = result | 128U; } else { } if ((ethadv & 8U) != 0U) { result = result | 256U; } else { } if ((ethadv & 8192U) != 0U) { result = result | 1024U; } else { } if ((ethadv & 16384U) != 0U) { result = result | 2048U; } else { } return (result); } } __inline static u32 mii_adv_to_ethtool_adv_t(u32 adv ) { u32 result ; { result = 0U; if ((adv & 32U) != 0U) { result = result | 1U; } else { } if ((adv & 64U) != 0U) { result = result | 2U; } else { } if ((adv & 128U) != 0U) { result = result | 4U; } else { } if ((adv & 256U) != 0U) { result = result | 8U; } else { } if ((adv & 1024U) != 0U) { result = result | 8192U; } else { } if ((adv & 2048U) != 0U) { result = result | 16384U; } else { } return (result); } } __inline static u32 ethtool_adv_to_mii_ctrl1000_t(u32 ethadv ) { u32 result ; { result = 0U; if ((ethadv & 16U) != 0U) { result = result | 256U; } else { } if ((ethadv & 32U) != 0U) { result = result | 512U; } else { } return (result); } } __inline static u32 mii_ctrl1000_to_ethtool_adv_t(u32 adv ) { u32 result ; { result = 0U; if ((adv & 256U) != 0U) { result = result | 16U; } else { } if ((adv & 512U) != 0U) { result = result | 32U; } else { } return (result); } } __inline static u32 mii_lpa_to_ethtool_lpa_t(u32 lpa ) { u32 result ; u32 tmp ; { result = 0U; if ((lpa & 16384U) != 0U) { result = result | 64U; } else { } { tmp = mii_adv_to_ethtool_adv_t(lpa); } return (result | tmp); } } __inline static u32 mii_stat1000_to_ethtool_lpa_t(u32 lpa ) { u32 result ; { result = 0U; if ((lpa & 1024U) != 0U) { result = result | 16U; } else { } if ((lpa & 2048U) != 0U) { result = result | 32U; } else { } return (result); } } __inline static u32 ethtool_adv_to_mii_adv_x(u32 ethadv ) { u32 result ; { result = 0U; if ((ethadv & 16U) != 0U) { result = result | 64U; } else { } if ((ethadv & 32U) != 0U) { result = result | 32U; } else { } if ((ethadv & 8192U) != 0U) { result = result | 128U; } else { } if ((ethadv & 16384U) != 0U) { result = result | 256U; } else { } return (result); } } __inline static u32 mii_adv_to_ethtool_adv_x(u32 adv ) { u32 result ; { result = 0U; if ((adv & 64U) != 0U) { result = result | 16U; } else { } if ((adv & 32U) != 0U) { result = result | 32U; } else { } if ((adv & 128U) != 0U) { result = result | 8192U; } else { } if ((adv & 256U) != 0U) { result = result | 16384U; } else { } return (result); } } __inline static u16 mii_advertise_flowctrl(int cap ) { u16 adv ; { adv = 0U; if ((cap & 2) != 0) { adv = 3072U; } else { } if (cap & 1) { adv = (u16 )((unsigned int )adv ^ 2048U); } else { } return (adv); } } __inline static u8 mii_resolve_flowctrl_fdx(u16 lcladv , u16 rmtadv ) { u8 cap ; { cap = 0U; if ((((int )lcladv & (int )rmtadv) & 1024) != 0) { cap = 3U; } else if ((((int )lcladv & (int )rmtadv) & 2048) != 0) { if (((int )lcladv & 1024) != 0) { cap = 2U; } else if (((int )rmtadv & 1024) != 0) { cap = 1U; } else { } } else { } return (cap); } } extern struct mii_bus *mdiobus_alloc_size(size_t ) ; __inline static struct mii_bus *mdiobus_alloc(void) { struct mii_bus *tmp ; { { tmp = mdiobus_alloc_size(0UL); } return (tmp); } } extern int mdiobus_register(struct mii_bus * ) ; extern void mdiobus_unregister(struct mii_bus * ) ; extern void mdiobus_free(struct mii_bus * ) ; extern struct phy_device *phy_connect(struct net_device * , char const * , void (*)(struct net_device * ) , phy_interface_t ) ; extern void phy_disconnect(struct phy_device * ) ; extern void phy_start(struct phy_device * ) ; extern void phy_stop(struct phy_device * ) ; extern int phy_start_aneg(struct phy_device * ) ; extern int phy_ethtool_sset(struct phy_device * , struct ethtool_cmd * ) ; extern int phy_ethtool_gset(struct phy_device * , struct ethtool_cmd * ) ; extern int phy_mii_ioctl(struct phy_device * , struct ifreq * , int ) ; extern void __napi_schedule(struct napi_struct * ) ; __inline static bool napi_disable_pending(struct napi_struct *n ) { int tmp ; { { tmp = constant_test_bit(1L, (unsigned long const volatile *)(& n->state)); } return (tmp != 0); } } __inline static bool napi_schedule_prep(struct napi_struct *n ) { bool tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = napi_disable_pending(n); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { tmp___1 = test_and_set_bit(0L, (unsigned long volatile *)(& n->state)); } if (tmp___1 == 0) { tmp___2 = 1; } else { tmp___2 = 0; } } else { tmp___2 = 0; } return ((bool )tmp___2); } } __inline static void napi_schedule(struct napi_struct *n ) { bool tmp ; { { tmp = napi_schedule_prep(n); } if ((int )tmp) { { __napi_schedule(n); } } else { } return; } } __inline static void napi_complete(struct napi_struct *n ) { { return; } } extern void napi_disable(struct napi_struct * ) ; __inline static void napi_enable(struct napi_struct *n ) { int tmp ; long tmp___0 ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& n->state)); tmp___0 = ldv__builtin_expect(tmp == 0, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/netdevice.h"), "i" (508), "i" (12UL)); __builtin_unreachable(); } } else { } { __asm__ volatile ("": : : "memory"); clear_bit(0L, (unsigned long volatile *)(& n->state)); } return; } } __inline static struct netdev_queue *netdev_get_tx_queue(struct net_device const *dev , unsigned int index ) { { return ((struct netdev_queue *)dev->_tx + (unsigned long )index); } } __inline static void *netdev_priv(struct net_device const *dev ) { { return ((void *)dev + 3264U); } } extern void netif_napi_add(struct net_device * , struct napi_struct * , int (*)(struct napi_struct * , int ) , int ) ; extern void netif_napi_del(struct napi_struct * ) ; extern int dev_close(struct net_device * ) ; extern void free_netdev(struct net_device * ) ; static void ldv_free_netdev_193(struct net_device *ldv_func_arg1 ) ; static void ldv_free_netdev_197(struct net_device *ldv_func_arg1 ) ; extern void netif_schedule_queue(struct netdev_queue * ) ; __inline static void netif_tx_start_queue(struct netdev_queue *dev_queue ) { { { clear_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_tx_start_all_queues(struct net_device *dev ) { unsigned int i ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { i = 0U; goto ldv_43718; ldv_43717: { tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; netif_tx_start_queue(txq); i = i + 1U; } ldv_43718: ; if (i < dev->num_tx_queues) { goto ldv_43717; } else { } return; } } extern void netif_tx_wake_queue(struct netdev_queue * ) ; __inline static void netif_tx_wake_all_queues(struct net_device *dev ) { unsigned int i ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { i = 0U; goto ldv_43731; ldv_43730: { tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; netif_tx_wake_queue(txq); i = i + 1U; } ldv_43731: ; if (i < dev->num_tx_queues) { goto ldv_43730; } else { } return; } } __inline static void netif_tx_stop_queue(struct netdev_queue *dev_queue ) { int __ret_warn_on ; long tmp ; long tmp___0 ; { { __ret_warn_on = (unsigned long )dev_queue == (unsigned long )((struct netdev_queue *)0); tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("include/linux/netdevice.h", 2547); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { printk("\016netif_stop_queue() cannot be called before register_netdev()\n"); } return; } else { } { set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static bool netif_tx_queue_stopped(struct netdev_queue const *dev_queue ) { int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev_queue->state)); } return (tmp != 0); } } __inline static bool netif_xmit_stopped(struct netdev_queue const *dev_queue ) { { return (((unsigned long )dev_queue->state & 3UL) != 0UL); } } __inline static void netdev_tx_sent_queue(struct netdev_queue *dev_queue , unsigned int bytes ) { int tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; { { dql_queued(& dev_queue->dql, bytes); tmp = dql_avail((struct dql const *)(& dev_queue->dql)); tmp___0 = ldv__builtin_expect(tmp >= 0, 1L); } if (tmp___0 != 0L) { return; } else { } { set_bit(1L, (unsigned long volatile *)(& dev_queue->state)); __asm__ volatile ("mfence": : : "memory"); tmp___1 = dql_avail((struct dql const *)(& dev_queue->dql)); tmp___2 = ldv__builtin_expect(tmp___1 >= 0, 0L); } if (tmp___2 != 0L) { { clear_bit(1L, (unsigned long volatile *)(& dev_queue->state)); } } else { } return; } } __inline static void netdev_tx_completed_queue(struct netdev_queue *dev_queue , unsigned int pkts , unsigned int bytes ) { long tmp ; int tmp___0 ; int tmp___1 ; { { tmp = ldv__builtin_expect(bytes == 0U, 0L); } if (tmp != 0L) { return; } else { } { dql_completed(& dev_queue->dql, bytes); __asm__ volatile ("mfence": : : "memory"); tmp___0 = dql_avail((struct dql const *)(& dev_queue->dql)); } if (tmp___0 < 0) { return; } else { } { tmp___1 = test_and_set_bit(1L, (unsigned long volatile *)(& dev_queue->state)); } if (tmp___1 != 0) { { netif_schedule_queue(dev_queue); } } else { } return; } } __inline static void netdev_tx_reset_queue(struct netdev_queue *q ) { { { clear_bit(1L, (unsigned long volatile *)(& q->state)); dql_reset(& q->dql); } return; } } __inline static bool netif_running(struct net_device const *dev ) { int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev->state)); } return (tmp != 0); } } extern int netif_set_real_num_tx_queues(struct net_device * , unsigned int ) ; extern int netif_set_real_num_rx_queues(struct net_device * , unsigned int ) ; extern int netif_get_num_default_rss_queues(void) ; extern void __dev_kfree_skb_any(struct sk_buff * , enum skb_free_reason ) ; __inline static void dev_kfree_skb_any(struct sk_buff *skb ) { { { __dev_kfree_skb_any(skb, 1); } return; } } extern gro_result_t napi_gro_receive(struct napi_struct * , struct sk_buff * ) ; __inline static bool netif_carrier_ok(struct net_device const *dev ) { int tmp ; { { tmp = constant_test_bit(2L, (unsigned long const volatile *)(& dev->state)); } return (tmp == 0); } } extern void netif_carrier_on(struct net_device * ) ; extern void netif_carrier_off(struct net_device * ) ; extern void netif_device_detach(struct net_device * ) ; extern void netif_device_attach(struct net_device * ) ; __inline static void __netif_tx_lock(struct netdev_queue *txq , int cpu ) { { { ldv_spin_lock_109(& txq->_xmit_lock); txq->xmit_lock_owner = cpu; } return; } } __inline static void __netif_tx_unlock(struct netdev_queue *txq ) { { { txq->xmit_lock_owner = -1; ldv_spin_unlock_112(& txq->_xmit_lock); } return; } } __inline static void netif_tx_disable(struct net_device *dev ) { unsigned int i ; int cpu ; int pscr_ret__ ; void const *__vpp_verify ; int pfo_ret__ ; int pfo_ret_____0 ; int pfo_ret_____1 ; int pfo_ret_____2 ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { { local_bh_disable(); __vpp_verify = (void const *)0; } { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2___0; } else { } if (4UL == 4UL) { goto case_4___1; } else { } if (4UL == 8UL) { goto case_8___2; } else { } goto switch_default___3; case_1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___0; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1___0: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret__): "m" (cpu_number)); goto ldv_44288; case_2: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_44288; case_4: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_44288; case_8: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_44288; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break___0: /* CIL Label */ ; } ldv_44288: pscr_ret__ = pfo_ret__; goto ldv_44294; case_2___0: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___1; } else { } if (4UL == 2UL) { goto case_2___1; } else { } if (4UL == 4UL) { goto case_4___0; } else { } if (4UL == 8UL) { goto case_8___0; } else { } goto switch_default___0; case_1___1: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____0): "m" (cpu_number)); goto ldv_44298; case_2___1: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_44298; case_4___0: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_44298; case_8___0: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_44298; switch_default___0: /* CIL Label */ { __bad_percpu_size(); } switch_break___1: /* CIL Label */ ; } ldv_44298: pscr_ret__ = pfo_ret_____0; goto ldv_44294; case_4___1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___2; } else { } if (4UL == 2UL) { goto case_2___2; } else { } if (4UL == 4UL) { goto case_4___2; } else { } if (4UL == 8UL) { goto case_8___1; } else { } goto switch_default___1; case_1___2: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____1): "m" (cpu_number)); goto ldv_44307; case_2___2: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_44307; case_4___2: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_44307; case_8___1: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_44307; switch_default___1: /* CIL Label */ { __bad_percpu_size(); } switch_break___2: /* CIL Label */ ; } ldv_44307: pscr_ret__ = pfo_ret_____1; goto ldv_44294; case_8___2: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___3; } else { } if (4UL == 2UL) { goto case_2___3; } else { } if (4UL == 4UL) { goto case_4___3; } else { } if (4UL == 8UL) { goto case_8___3; } else { } goto switch_default___2; case_1___3: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____2): "m" (cpu_number)); goto ldv_44316; case_2___3: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_44316; case_4___3: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_44316; case_8___3: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_44316; switch_default___2: /* CIL Label */ { __bad_percpu_size(); } switch_break___3: /* CIL Label */ ; } ldv_44316: pscr_ret__ = pfo_ret_____2; goto ldv_44294; switch_default___3: /* CIL Label */ { __bad_size_call_parameter(); } goto ldv_44294; switch_break: /* CIL Label */ ; } ldv_44294: cpu = pscr_ret__; i = 0U; goto ldv_44326; ldv_44325: { tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; __netif_tx_lock(txq, cpu); netif_tx_stop_queue(txq); __netif_tx_unlock(txq); i = i + 1U; } ldv_44326: ; if (i < dev->num_tx_queues) { goto ldv_44325; } else { } { local_bh_enable(); } return; } } extern int register_netdev(struct net_device * ) ; static int ldv_register_netdev_189(struct net_device *ldv_func_arg1 ) ; extern void unregister_netdev(struct net_device * ) ; static void ldv_unregister_netdev_194(struct net_device *ldv_func_arg1 ) ; extern void netdev_rss_key_fill(void * , size_t ) ; extern int skb_checksum_help(struct sk_buff * ) ; extern struct sk_buff *__skb_gso_segment(struct sk_buff * , netdev_features_t , bool ) ; __inline static struct sk_buff *skb_gso_segment(struct sk_buff *skb , netdev_features_t features ) { struct sk_buff *tmp ; { { tmp = __skb_gso_segment(skb, features, 1); } return (tmp); } } extern void netdev_update_features(struct net_device * ) ; extern void netdev_err(struct net_device const * , char const * , ...) ; extern void netdev_warn(struct net_device const * , char const * , ...) ; extern void netdev_notice(struct net_device const * , char const * , ...) ; extern void netdev_info(struct net_device const * , char const * , ...) ; __inline static int pci_channel_offline(struct pci_dev *pdev ) { { return (pdev->error_state != 1U); } } extern void pci_dev_put(struct pci_dev * ) ; extern int pci_find_capability(struct pci_dev * , int ) ; extern struct pci_dev *pci_get_device(unsigned int , unsigned int , struct pci_dev * ) ; extern struct pci_dev *pci_get_slot(struct pci_bus * , unsigned int ) ; extern int pci_dev_present(struct pci_device_id const * ) ; extern int pci_bus_read_config_byte(struct pci_bus * , unsigned int , int , u8 * ) ; extern int pci_bus_read_config_word(struct pci_bus * , unsigned int , int , u16 * ) ; extern int pci_bus_read_config_dword(struct pci_bus * , unsigned int , int , u32 * ) ; extern int pci_bus_write_config_byte(struct pci_bus * , unsigned int , int , u8 ) ; extern int pci_bus_write_config_word(struct pci_bus * , unsigned int , int , u16 ) ; extern int pci_bus_write_config_dword(struct pci_bus * , unsigned int , int , u32 ) ; __inline static int pci_read_config_byte(struct pci_dev const *dev , int where , u8 *val ) { int tmp ; { { tmp = pci_bus_read_config_byte(dev->bus, dev->devfn, where, val); } return (tmp); } } __inline static int pci_read_config_word(struct pci_dev const *dev , int where , u16 *val ) { int tmp ; { { tmp = pci_bus_read_config_word(dev->bus, dev->devfn, where, val); } return (tmp); } } __inline static int pci_read_config_dword(struct pci_dev const *dev , int where , u32 *val ) { int tmp ; { { tmp = pci_bus_read_config_dword(dev->bus, dev->devfn, where, val); } return (tmp); } } __inline static int pci_write_config_byte(struct pci_dev const *dev , int where , u8 val ) { int tmp ; { { tmp = pci_bus_write_config_byte(dev->bus, dev->devfn, where, (int )val); } return (tmp); } } __inline static int pci_write_config_word(struct pci_dev const *dev , int where , u16 val ) { int tmp ; { { tmp = pci_bus_write_config_word(dev->bus, dev->devfn, where, (int )val); } return (tmp); } } __inline static int pci_write_config_dword(struct pci_dev const *dev , int where , u32 val ) { int tmp ; { { tmp = pci_bus_write_config_dword(dev->bus, dev->devfn, where, val); } return (tmp); } } extern int pcie_capability_read_word(struct pci_dev * , int , u16 * ) ; extern int pcie_capability_write_word(struct pci_dev * , int , u16 ) ; extern int pcie_capability_clear_and_set_word(struct pci_dev * , int , u16 , u16 ) ; __inline static int pcie_capability_set_word(struct pci_dev *dev , int pos , u16 set ) { int tmp ; { { tmp = pcie_capability_clear_and_set_word(dev, pos, 0, (int )set); } return (tmp); } } __inline static int pcie_capability_clear_word(struct pci_dev *dev , int pos , u16 clear ) { int tmp ; { { tmp = pcie_capability_clear_and_set_word(dev, pos, (int )clear, 0); } return (tmp); } } extern int pci_enable_device(struct pci_dev * ) ; __inline static int pci_is_enabled(struct pci_dev *pdev ) { int tmp ; { { tmp = atomic_read((atomic_t const *)(& pdev->enable_cnt)); } return (tmp > 0); } } extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern bool pci_device_is_present(struct pci_dev * ) ; extern int pci_save_state(struct pci_dev * ) ; extern void pci_restore_state(struct pci_dev * ) ; extern int pci_set_power_state(struct pci_dev * , pci_power_t ) ; extern int pci_wake_from_d3(struct pci_dev * , bool ) ; extern ssize_t pci_read_vpd(struct pci_dev * , loff_t , size_t , void * ) ; extern int pci_request_regions(struct pci_dev * , char const * ) ; extern void pci_release_regions(struct pci_dev * ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; static int ldv___pci_register_driver_210(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; static void ldv_pci_unregister_driver_211(struct pci_driver *ldv_func_arg1 ) ; extern void pci_disable_msi(struct pci_dev * ) ; extern void pci_disable_msix(struct pci_dev * ) ; extern int pci_enable_msi_range(struct pci_dev * , int , int ) ; __inline static int pci_enable_msi_exact(struct pci_dev *dev , int nvec ) { int rc ; int tmp ; { { tmp = pci_enable_msi_range(dev, nvec, nvec); rc = tmp; } if (rc < 0) { return (rc); } else { } return (0); } } extern int pci_enable_msix_range(struct pci_dev * , struct msix_entry * , int , int ) ; __inline static dma_addr_t pci_map_single(struct pci_dev *hwdev , void *ptr , size_t size , int direction ) { dma_addr_t tmp ; { { tmp = dma_map_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, ptr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); } return (tmp); } } __inline static void pci_unmap_single(struct pci_dev *hwdev , dma_addr_t dma_addr , size_t size , int direction ) { { { dma_unmap_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_addr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); } return; } } __inline static void pci_unmap_page(struct pci_dev *hwdev , dma_addr_t dma_address , size_t size , int direction ) { { { dma_unmap_page((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_address, size, (enum dma_data_direction )direction); } return; } } __inline static void pci_dma_sync_single_for_cpu(struct pci_dev *hwdev , dma_addr_t dma_handle , size_t size , int direction ) { { { dma_sync_single_for_cpu((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_handle, size, (enum dma_data_direction )direction); } return; } } __inline static void pci_dma_sync_single_for_device(struct pci_dev *hwdev , dma_addr_t dma_handle , size_t size , int direction ) { { { dma_sync_single_for_device((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_handle, size, (enum dma_data_direction )direction); } return; } } __inline static int pci_dma_mapping_error(struct pci_dev *pdev , dma_addr_t dma_addr ) { int tmp ; { { tmp = dma_mapping_error(& pdev->dev, dma_addr); } return (tmp); } } __inline static int pci_set_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_mask(& dev->dev, mask); } return (tmp); } } __inline static int pci_set_consistent_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_coherent_mask(& dev->dev, mask); } return (tmp); } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { { tmp = dev_get_drvdata((struct device const *)(& pdev->dev)); } return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { { dev_set_drvdata(& pdev->dev, data); } return; } } __inline static char const *pci_name(struct pci_dev const *pdev ) { char const *tmp ; { { tmp = dev_name(& pdev->dev); } return (tmp); } } extern void *pci_ioremap_bar(struct pci_dev * , int ) ; __inline static int pci_pcie_cap(struct pci_dev *dev ) { { return ((int )dev->pcie_cap); } } __inline static bool pci_is_pcie(struct pci_dev *dev ) { int tmp ; { { tmp = pci_pcie_cap(dev); } return (tmp != 0); } } __inline static u16 pci_vpd_lrdt_size(u8 const *lrdt ) { { return ((int )((u16 )*(lrdt + 1UL)) + ((int )((u16 )*(lrdt + 2UL)) << 8U)); } } __inline static u8 pci_vpd_info_field_size(u8 const *info_field ) { { return ((u8 )*(info_field + 2UL)); } } extern int pci_vpd_find_tag(u8 const * , unsigned int , unsigned int , u8 ) ; extern int pci_vpd_find_info_keyword(u8 const * , unsigned int , unsigned int , char const * ) ; extern __be16 eth_type_trans(struct sk_buff * , struct net_device * ) ; extern int eth_validate_addr(struct net_device * ) ; extern struct net_device *alloc_etherdev_mqs(int , unsigned int , unsigned int ) ; static struct net_device *ldv_alloc_etherdev_mqs_188(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) ; __inline static bool is_zero_ether_addr(u8 const *addr ) { { return (((unsigned int )*((u32 const *)addr) | (unsigned int )*((u16 const *)addr + 4U)) == 0U); } } __inline static bool is_multicast_ether_addr(u8 const *addr ) { { return (((int )*addr & 1) != 0); } } __inline static bool is_valid_ether_addr(u8 const *addr ) { bool tmp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; { { tmp = is_multicast_ether_addr(addr); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { tmp___1 = is_zero_ether_addr(addr); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { tmp___3 = 1; } else { tmp___3 = 0; } } else { tmp___3 = 0; } return ((bool )tmp___3); } } __inline static u32 mmd_eee_adv_to_ethtool_adv_t(u16 eee_adv ) { u32 adv ; { adv = 0U; if (((int )eee_adv & 2) != 0) { adv = adv | 8U; } else { } if (((int )eee_adv & 4) != 0) { adv = adv | 32U; } else { } if (((int )eee_adv & 8) != 0) { adv = adv | 4096U; } else { } if (((int )eee_adv & 16) != 0) { adv = adv | 131072U; } else { } if (((int )eee_adv & 32) != 0) { adv = adv | 262144U; } else { } if (((int )eee_adv & 64) != 0) { adv = adv | 524288U; } else { } return (adv); } } extern void rtnl_lock(void) ; static void ldv_rtnl_lock_166(void) ; static void ldv_rtnl_lock_198(void) ; static void ldv_rtnl_lock_200(void) ; static void ldv_rtnl_lock_202(void) ; static void ldv_rtnl_lock_204(void) ; static void ldv_rtnl_lock_206(void) ; static void ldv_rtnl_lock_208(void) ; extern void rtnl_unlock(void) ; static void ldv_rtnl_unlock_167(void) ; static void ldv_rtnl_unlock_168(void) ; static void ldv_rtnl_unlock_199(void) ; static void ldv_rtnl_unlock_201(void) ; static void ldv_rtnl_unlock_203(void) ; static void ldv_rtnl_unlock_205(void) ; static void ldv_rtnl_unlock_207(void) ; static void ldv_rtnl_unlock_209(void) ; __inline static void __vlan_hwaccel_put_tag(struct sk_buff *skb , __be16 vlan_proto , u16 vlan_tci ) { { skb->vlan_proto = vlan_proto; skb->vlan_tci = (__u16 )((unsigned int )vlan_tci | 4096U); return; } } __inline static struct iphdr *ip_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_network_header(skb); } return ((struct iphdr *)tmp); } } __inline static struct tcphdr *tcp_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_transport_header(skb); } return ((struct tcphdr *)tmp); } } __inline static unsigned int tcp_hdrlen(struct sk_buff const *skb ) { struct tcphdr *tmp ; { { tmp = tcp_hdr(skb); } return ((unsigned int )((int )tmp->doff * 4)); } } __inline static unsigned int tcp_optlen(struct sk_buff const *skb ) { struct tcphdr *tmp ; { { tmp = tcp_hdr(skb); } return ((unsigned int )(((int )tmp->doff + -5) * 4)); } } extern int request_firmware(struct firmware const ** , char const * , struct device * ) ; extern void release_firmware(struct firmware const * ) ; __inline static bool pdev_is_ssb_gige_core(struct pci_dev *pdev ) { { return (0); } } __inline static int ssb_gige_get_macaddr(struct pci_dev *pdev , u8 *macaddr ) { { return (-19); } } __inline static int ssb_gige_get_phyaddr(struct pci_dev *pdev ) { { return (-19); } } extern struct device *hwmon_device_register_with_groups(struct device * , char const * , void * , struct attribute_group const ** ) ; extern void hwmon_device_unregister(struct device * ) ; extern struct ptp_clock *ptp_clock_register(struct ptp_clock_info * , struct device * ) ; static struct ptp_clock *ldv_ptp_clock_register_190(struct ptp_clock_info *ldv_func_arg1 , struct device *ldv_func_arg2 ) ; extern int ptp_clock_unregister(struct ptp_clock * ) ; extern int ptp_clock_index(struct ptp_clock * ) ; __inline static int _tg3_flag(enum TG3_FLAGS flag , unsigned long *bits ) { int tmp___0 ; { { tmp___0 = variable_test_bit((long )flag, (unsigned long const volatile *)bits); } return (tmp___0); } } __inline static void _tg3_flag_set(enum TG3_FLAGS flag , unsigned long *bits ) { { { set_bit((long )flag, (unsigned long volatile *)bits); } return; } } __inline static void _tg3_flag_clear(enum TG3_FLAGS flag , unsigned long *bits ) { { { clear_bit((long )flag, (unsigned long volatile *)bits); } return; } } static char version[28U] = { 't', 'g', '3', '.', 'c', ':', 'v', '3', '.', '1', '3', '7', ' ', '(', 'M', 'a', 'y', ' ', '1', '1', ',', ' ', '2', '0', '1', '4', ')', '\000'}; static int tg3_debug = -1; static struct pci_device_id const tg3_pci_tbl[97U] = { {5348U, 5700U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5701U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5702U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5703U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5704U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5709U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5715U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5716U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5725U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5726U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5798U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5799U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5800U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5830U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5831U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5782U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5788U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5789U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5901U, 4294967295U, 4294967295U, 0U, 0U, 3UL}, {5348U, 5902U, 4294967295U, 4294967295U, 0U, 0U, 3UL}, {5348U, 5705U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5742U, 4294967295U, 4294967295U, 0U, 0U, 3UL}, {5348U, 5721U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5722U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5750U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5751U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5757U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5758U, 4294967295U, 4294967295U, 0U, 0U, 1UL}, {5348U, 5632U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5633U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5879U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5885U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5886U, 4294967295U, 4294967295U, 0U, 0U, 1UL}, {5348U, 5754U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5746U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5755U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5747U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5748U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5786U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5787U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5779U, 6058U, 12374U, 0U, 0U, 1UL}, {5348U, 5779U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5759U, 4294967295U, 4294967295U, 0U, 0U, 1UL}, {5348U, 5736U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5737U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5752U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5753U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5738U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5739U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5853U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5906U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5907U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5784U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5764U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5723U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5761U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5760U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5768U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5769U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5785U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5792U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5778U, 4133U, 1537U, 0U, 0U, 1UL}, {5348U, 5778U, 4133U, 1554U, 0U, 0U, 1UL}, {5348U, 5778U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5776U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5780U, 4294967295U, 4294967295U, 0U, 0U, 1UL}, {5348U, 5777U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5717U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5733U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5718U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5809U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5813U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5808U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5812U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5810U, 4294967295U, 4294967295U, 0U, 0U, 1UL}, {5348U, 5814U, 4294967295U, 4294967295U, 0U, 0U, 1UL}, {5348U, 5719U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5727U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5762U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5766U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5767U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5699U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5875U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5698U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5763U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5697U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5815U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5811U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4424U, 17408U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4424U, 17664U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5947U, 1000U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5947U, 1001U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5947U, 1003U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5947U, 1002U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4203U, 5701U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4303U, 4514U, 4294967295U, 4294967295U, 0U, 0U, 0UL}}; struct pci_device_id const __mod_pci__tg3_pci_tbl_device_table[97U] ; static struct __anonstruct_ethtool_stats_keys_323 const ethtool_stats_keys[72U] = { {{'r', 'x', '_', 'o', 'c', 't', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', 'f', 'r', 'a', 'g', 'm', 'e', 'n', 't', 's', '\000'}}, {{'r', 'x', '_', 'u', 'c', 'a', 's', 't', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', 'm', 'c', 'a', 's', 't', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', 'b', 'c', 'a', 's', 't', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', 'f', 'c', 's', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}}, {{'r', 'x', '_', 'a', 'l', 'i', 'g', 'n', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}}, {{'r', 'x', '_', 'x', 'o', 'n', '_', 'p', 'a', 'u', 's', 'e', '_', 'r', 'c', 'v', 'd', '\000'}}, {{'r', 'x', '_', 'x', 'o', 'f', 'f', '_', 'p', 'a', 'u', 's', 'e', '_', 'r', 'c', 'v', 'd', '\000'}}, {{'r', 'x', '_', 'm', 'a', 'c', '_', 'c', 't', 'r', 'l', '_', 'r', 'c', 'v', 'd', '\000'}}, {{'r', 'x', '_', 'x', 'o', 'f', 'f', '_', 'e', 'n', 't', 'e', 'r', 'e', 'd', '\000'}}, {{'r', 'x', '_', 'f', 'r', 'a', 'm', 'e', '_', 't', 'o', 'o', '_', 'l', 'o', 'n', 'g', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}}, {{'r', 'x', '_', 'j', 'a', 'b', 'b', 'e', 'r', 's', '\000'}}, {{'r', 'x', '_', 'u', 'n', 'd', 'e', 'r', 's', 'i', 'z', 'e', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', 'i', 'n', '_', 'l', 'e', 'n', 'g', 't', 'h', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}}, {{'r', 'x', '_', 'o', 'u', 't', '_', 'l', 'e', 'n', 'g', 't', 'h', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}}, {{'r', 'x', '_', '6', '4', '_', 'o', 'r', '_', 'l', 'e', 's', 's', '_', 'o', 'c', 't', 'e', 't', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', '6', '5', '_', 't', 'o', '_', '1', '2', '7', '_', 'o', 'c', 't', 'e', 't', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', '1', '2', '8', '_', 't', 'o', '_', '2', '5', '5', '_', 'o', 'c', 't', 'e', 't', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', '2', '5', '6', '_', 't', 'o', '_', '5', '1', '1', '_', 'o', 'c', 't', 'e', 't', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', '5', '1', '2', '_', 't', 'o', '_', '1', '0', '2', '3', '_', 'o', 'c', 't', 'e', 't', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', '1', '0', '2', '4', '_', 't', 'o', '_', '1', '5', '2', '2', '_', 'o', 'c', 't', 'e', 't', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', '1', '5', '2', '3', '_', 't', 'o', '_', '2', '0', '4', '7', '_', 'o', 'c', 't', 'e', 't', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', '2', '0', '4', '8', '_', 't', 'o', '_', '4', '0', '9', '5', '_', 'o', 'c', 't', 'e', 't', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', '4', '0', '9', '6', '_', 't', 'o', '_', '8', '1', '9', '1', '_', 'o', 'c', 't', 'e', 't', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', '8', '1', '9', '2', '_', 't', 'o', '_', '9', '0', '2', '2', '_', 'o', 'c', 't', 'e', 't', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'t', 'x', '_', 'o', 'c', 't', 'e', 't', 's', '\000'}}, {{'t', 'x', '_', 'c', 'o', 'l', 'l', 'i', 's', 'i', 'o', 'n', 's', '\000'}}, {{'t', 'x', '_', 'x', 'o', 'n', '_', 's', 'e', 'n', 't', '\000'}}, {{'t', 'x', '_', 'x', 'o', 'f', 'f', '_', 's', 'e', 'n', 't', '\000'}}, {{'t', 'x', '_', 'f', 'l', 'o', 'w', '_', 'c', 'o', 'n', 't', 'r', 'o', 'l', '\000'}}, {{'t', 'x', '_', 'm', 'a', 'c', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}}, {{'t', 'x', '_', 's', 'i', 'n', 'g', 'l', 'e', '_', 'c', 'o', 'l', 'l', 'i', 's', 'i', 'o', 'n', 's', '\000'}}, {{'t', 'x', '_', 'm', 'u', 'l', 't', '_', 'c', 'o', 'l', 'l', 'i', 's', 'i', 'o', 'n', 's', '\000'}}, {{'t', 'x', '_', 'd', 'e', 'f', 'e', 'r', 'r', 'e', 'd', '\000'}}, {{'t', 'x', '_', 'e', 'x', 'c', 'e', 's', 's', 'i', 'v', 'e', '_', 'c', 'o', 'l', 'l', 'i', 's', 'i', 'o', 'n', 's', '\000'}}, {{'t', 'x', '_', 'l', 'a', 't', 'e', '_', 'c', 'o', 'l', 'l', 'i', 's', 'i', 'o', 'n', 's', '\000'}}, {{'t', 'x', '_', 'c', 'o', 'l', 'l', 'i', 'd', 'e', '_', '2', 't', 'i', 'm', 'e', 's', '\000'}}, {{'t', 'x', '_', 'c', 'o', 'l', 'l', 'i', 'd', 'e', '_', '3', 't', 'i', 'm', 'e', 's', '\000'}}, {{'t', 'x', '_', 'c', 'o', 'l', 'l', 'i', 'd', 'e', '_', '4', 't', 'i', 'm', 'e', 's', '\000'}}, {{'t', 'x', '_', 'c', 'o', 'l', 'l', 'i', 'd', 'e', '_', '5', 't', 'i', 'm', 'e', 's', '\000'}}, {{'t', 'x', '_', 'c', 'o', 'l', 'l', 'i', 'd', 'e', '_', '6', 't', 'i', 'm', 'e', 's', '\000'}}, {{'t', 'x', '_', 'c', 'o', 'l', 'l', 'i', 'd', 'e', '_', '7', 't', 'i', 'm', 'e', 's', '\000'}}, {{'t', 'x', '_', 'c', 'o', 'l', 'l', 'i', 'd', 'e', '_', '8', 't', 'i', 'm', 'e', 's', '\000'}}, {{'t', 'x', '_', 'c', 'o', 'l', 'l', 'i', 'd', 'e', '_', '9', 't', 'i', 'm', 'e', 's', '\000'}}, {{'t', 'x', '_', 'c', 'o', 'l', 'l', 'i', 'd', 'e', '_', '1', '0', 't', 'i', 'm', 'e', 's', '\000'}}, {{'t', 'x', '_', 'c', 'o', 'l', 'l', 'i', 'd', 'e', '_', '1', '1', 't', 'i', 'm', 'e', 's', '\000'}}, {{'t', 'x', '_', 'c', 'o', 'l', 'l', 'i', 'd', 'e', '_', '1', '2', 't', 'i', 'm', 'e', 's', '\000'}}, {{'t', 'x', '_', 'c', 'o', 'l', 'l', 'i', 'd', 'e', '_', '1', '3', 't', 'i', 'm', 'e', 's', '\000'}}, {{'t', 'x', '_', 'c', 'o', 'l', 'l', 'i', 'd', 'e', '_', '1', '4', 't', 'i', 'm', 'e', 's', '\000'}}, {{'t', 'x', '_', 'c', 'o', 'l', 'l', 'i', 'd', 'e', '_', '1', '5', 't', 'i', 'm', 'e', 's', '\000'}}, {{'t', 'x', '_', 'u', 'c', 'a', 's', 't', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'t', 'x', '_', 'm', 'c', 'a', 's', 't', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'t', 'x', '_', 'b', 'c', 'a', 's', 't', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'t', 'x', '_', 'c', 'a', 'r', 'r', 'i', 'e', 'r', '_', 's', 'e', 'n', 's', 'e', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}}, {{'t', 'x', '_', 'd', 'i', 's', 'c', 'a', 'r', 'd', 's', '\000'}}, {{'t', 'x', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}}, {{'d', 'm', 'a', '_', 'w', 'r', 'i', 't', 'e', 'q', '_', 'f', 'u', 'l', 'l', '\000'}}, {{'d', 'm', 'a', '_', 'w', 'r', 'i', 't', 'e', '_', 'p', 'r', 'i', 'o', 'q', '_', 'f', 'u', 'l', 'l', '\000'}}, {{'r', 'x', 'b', 'd', 's', '_', 'e', 'm', 'p', 't', 'y', '\000'}}, {{'r', 'x', '_', 'd', 'i', 's', 'c', 'a', 'r', 'd', 's', '\000'}}, {{'r', 'x', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}}, {{'r', 'x', '_', 't', 'h', 'r', 'e', 's', 'h', 'o', 'l', 'd', '_', 'h', 'i', 't', '\000'}}, {{'d', 'm', 'a', '_', 'r', 'e', 'a', 'd', 'q', '_', 'f', 'u', 'l', 'l', '\000'}}, {{'d', 'm', 'a', '_', 'r', 'e', 'a', 'd', '_', 'p', 'r', 'i', 'o', 'q', '_', 'f', 'u', 'l', 'l', '\000'}}, {{'t', 'x', '_', 'c', 'o', 'm', 'p', '_', 'q', 'u', 'e', 'u', 'e', '_', 'f', 'u', 'l', 'l', '\000'}}, {{'r', 'i', 'n', 'g', '_', 's', 'e', 't', '_', 's', 'e', 'n', 'd', '_', 'p', 'r', 'o', 'd', '_', 'i', 'n', 'd', 'e', 'x', '\000'}}, {{'r', 'i', 'n', 'g', '_', 's', 't', 'a', 't', 'u', 's', '_', 'u', 'p', 'd', 'a', 't', 'e', '\000'}}, {{'n', 'i', 'c', '_', 'i', 'r', 'q', 's', '\000'}}, {{'n', 'i', 'c', '_', 'a', 'v', 'o', 'i', 'd', 'e', 'd', '_', 'i', 'r', 'q', 's', '\000'}}, {{'n', 'i', 'c', '_', 't', 'x', '_', 't', 'h', 'r', 'e', 's', 'h', 'o', 'l', 'd', '_', 'h', 'i', 't', '\000'}}, {{'m', 'b', 'u', 'f', '_', 'l', 'w', 'm', '_', 't', 'h', 'r', 'e', 's', 'h', '_', 'h', 'i', 't', '\000'}}}; static struct __anonstruct_ethtool_test_keys_324 const ethtool_test_keys[8U] = { {{'n', 'v', 'r', 'a', 'm', ' ', 't', 'e', 's', 't', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', '(', 'o', 'n', 'l', 'i', 'n', 'e', ')', ' ', '\000'}}, {{'l', 'i', 'n', 'k', ' ', 't', 'e', 's', 't', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', '(', 'o', 'n', 'l', 'i', 'n', 'e', ')', ' ', '\000'}}, {{'r', 'e', 'g', 'i', 's', 't', 'e', 'r', ' ', 't', 'e', 's', 't', ' ', ' ', ' ', ' ', ' ', '(', 'o', 'f', 'f', 'l', 'i', 'n', 'e', ')', '\000'}}, {{'m', 'e', 'm', 'o', 'r', 'y', ' ', 't', 'e', 's', 't', ' ', ' ', ' ', ' ', ' ', ' ', ' ', '(', 'o', 'f', 'f', 'l', 'i', 'n', 'e', ')', '\000'}}, {{'m', 'a', 'c', ' ', 'l', 'o', 'o', 'p', 'b', 'a', 'c', 'k', ' ', 't', 'e', 's', 't', ' ', '(', 'o', 'f', 'f', 'l', 'i', 'n', 'e', ')', '\000'}}, {{'p', 'h', 'y', ' ', 'l', 'o', 'o', 'p', 'b', 'a', 'c', 'k', ' ', 't', 'e', 's', 't', ' ', '(', 'o', 'f', 'f', 'l', 'i', 'n', 'e', ')', '\000'}}, {{'e', 'x', 't', ' ', 'l', 'o', 'o', 'p', 'b', 'a', 'c', 'k', ' ', 't', 'e', 's', 't', ' ', '(', 'o', 'f', 'f', 'l', 'i', 'n', 'e', ')', '\000'}}, {{'i', 'n', 't', 'e', 'r', 'r', 'u', 'p', 't', ' ', 't', 'e', 's', 't', ' ', ' ', ' ', ' ', '(', 'o', 'f', 'f', 'l', 'i', 'n', 'e', ')', '\000'}}}; static void tg3_write32(struct tg3 *tp , u32 off , u32 val ) { { { writel(val, (void volatile *)tp->regs + (unsigned long )off); } return; } } static u32 tg3_read32(struct tg3 *tp , u32 off ) { unsigned int tmp ; { { tmp = readl((void const volatile *)tp->regs + (unsigned long )off); } return (tmp); } } static void tg3_ape_write32(struct tg3 *tp , u32 off , u32 val ) { { { writel(val, (void volatile *)tp->aperegs + (unsigned long )off); } return; } } static u32 tg3_ape_read32(struct tg3 *tp , u32 off ) { unsigned int tmp ; { { tmp = readl((void const volatile *)tp->aperegs + (unsigned long )off); } return (tmp); } } static void tg3_write_indirect_reg32(struct tg3 *tp , u32 off , u32 val ) { unsigned long flags ; { { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_127(& tp->indirect_lock); pci_write_config_dword((struct pci_dev const *)tp->pdev, 120, off); pci_write_config_dword((struct pci_dev const *)tp->pdev, 128, val); ldv_spin_unlock_irqrestore_128(& tp->indirect_lock, flags); } return; } } static void tg3_write_flush_reg32(struct tg3 *tp , u32 off , u32 val ) { { { writel(val, (void volatile *)tp->regs + (unsigned long )off); readl((void const volatile *)tp->regs + (unsigned long )off); } return; } } static u32 tg3_read_indirect_reg32(struct tg3 *tp , u32 off ) { unsigned long flags ; u32 val ; { { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_129(& tp->indirect_lock); pci_write_config_dword((struct pci_dev const *)tp->pdev, 120, off); pci_read_config_dword((struct pci_dev const *)tp->pdev, 128, & val); ldv_spin_unlock_irqrestore_128(& tp->indirect_lock, flags); } return (val); } } static void tg3_write_indirect_mbox(struct tg3 *tp , u32 off , u32 val ) { unsigned long flags ; { if (off == 644U) { { pci_write_config_dword((struct pci_dev const *)tp->pdev, 164, val); } return; } else { } if (off == 620U) { { pci_write_config_dword((struct pci_dev const *)tp->pdev, 156, val); } return; } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_131(& tp->indirect_lock); pci_write_config_dword((struct pci_dev const *)tp->pdev, 120, off + 22016U); pci_write_config_dword((struct pci_dev const *)tp->pdev, 128, val); ldv_spin_unlock_irqrestore_128(& tp->indirect_lock, flags); } if (off == 516U && val == 1U) { { pci_write_config_dword((struct pci_dev const *)tp->pdev, 144, tp->grc_local_ctrl | 2U); } } else { } return; } } static u32 tg3_read_indirect_mbox(struct tg3 *tp , u32 off ) { unsigned long flags ; u32 val ; { { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_133(& tp->indirect_lock); pci_write_config_dword((struct pci_dev const *)tp->pdev, 120, off + 22016U); pci_read_config_dword((struct pci_dev const *)tp->pdev, 128, & val); ldv_spin_unlock_irqrestore_128(& tp->indirect_lock, flags); } return (val); } } static void _tw32_flush(struct tg3 *tp , u32 off , u32 val , u32 usec_wait ) { int tmp ; int tmp___0 ; { { tmp = _tg3_flag(9, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { { (*(tp->write32))(tp, off, val); } } else { { tmp___0 = _tg3_flag(45, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0) { { (*(tp->write32))(tp, off, val); } } else { { tg3_write32(tp, off, val); } if (usec_wait != 0U) { { __udelay((unsigned long )usec_wait); } } else { } { (*(tp->read32))(tp, off); } } } if (usec_wait != 0U) { { __udelay((unsigned long )usec_wait); } } else { } return; } } __inline static void tw32_mailbox_flush(struct tg3 *tp , u32 off , u32 val ) { int tmp ; int tmp___0 ; int tmp___1 ; { { (*(tp->write32_mbox))(tp, off, val); tmp = _tg3_flag(80, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { { (*(tp->read32_mbox))(tp, off); } } else { { tmp___0 = _tg3_flag(8, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 == 0) { { tmp___1 = _tg3_flag(45, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 == 0) { { (*(tp->read32_mbox))(tp, off); } } else { } } else { } } return; } } static void tg3_write32_tx_mbox(struct tg3 *tp , u32 off , u32 val ) { void *mbox ; int tmp ; int tmp___0 ; int tmp___1 ; { { mbox = tp->regs + (unsigned long )off; writel(val, (void volatile *)mbox); tmp = _tg3_flag(1, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { { writel(val, (void volatile *)mbox); } } else { } { tmp___0 = _tg3_flag(8, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0) { { readl((void const volatile *)mbox); } } else { { tmp___1 = _tg3_flag(80, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 != 0) { { readl((void const volatile *)mbox); } } else { } } return; } } static u32 tg3_read32_mbox_5906(struct tg3 *tp , u32 off ) { unsigned int tmp ; { { tmp = readl((void const volatile *)(tp->regs + ((unsigned long )off + 22016UL))); } return (tmp); } } static void tg3_write32_mbox_5906(struct tg3 *tp , u32 off , u32 val ) { { { writel(val, (void volatile *)(tp->regs + ((unsigned long )off + 22016UL))); } return; } } static void tg3_write_mem(struct tg3 *tp , u32 off , u32 val ) { unsigned long flags ; int tmp ; { if ((tp->pci_chip_rev_id >> 12 == 12U && off > 767U) && off <= 16383U) { return; } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_135(& tp->indirect_lock); tmp = _tg3_flag(22, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { { pci_write_config_dword((struct pci_dev const *)tp->pdev, 124, off); pci_write_config_dword((struct pci_dev const *)tp->pdev, 132, val); pci_write_config_dword((struct pci_dev const *)tp->pdev, 124, 0U); } } else { { _tw32_flush(tp, 124U, off, 0U); _tw32_flush(tp, 132U, val, 0U); _tw32_flush(tp, 124U, 0U, 0U); } } { ldv_spin_unlock_irqrestore_128(& tp->indirect_lock, flags); } return; } } static void tg3_read_mem(struct tg3 *tp , u32 off , u32 *val ) { unsigned long flags ; int tmp ; { if ((tp->pci_chip_rev_id >> 12 == 12U && off > 767U) && off <= 16383U) { *val = 0U; return; } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_137(& tp->indirect_lock); tmp = _tg3_flag(22, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { { pci_write_config_dword((struct pci_dev const *)tp->pdev, 124, off); pci_read_config_dword((struct pci_dev const *)tp->pdev, 132, val); pci_write_config_dword((struct pci_dev const *)tp->pdev, 124, 0U); } } else { { _tw32_flush(tp, 124U, off, 0U); *val = (*(tp->read32))(tp, 132U); _tw32_flush(tp, 124U, 0U, 0U); } } { ldv_spin_unlock_irqrestore_128(& tp->indirect_lock, flags); } return; } } static void tg3_ape_lock_init(struct tg3 *tp ) { int i ; u32 regbase ; u32 bit ; { if (tp->pci_chip_rev_id >> 12 == 22369U) { regbase = 76U; } else { regbase = 33824U; } i = 0; goto ldv_56769; ldv_56768: ; { if (i == 0) { goto case_0; } else { } if (i == 2) { goto case_2; } else { } if (i == 3) { goto case_3; } else { } if (i == 5) { goto case_5; } else { } goto switch_default; case_0: /* CIL Label */ ; case_2: /* CIL Label */ ; case_3: /* CIL Label */ ; case_5: /* CIL Label */ bit = 4096U; goto ldv_56766; switch_default: /* CIL Label */ ; if (tp->pci_fn == 0) { bit = 4096U; } else { bit = (u32 )(1 << tp->pci_fn); } switch_break: /* CIL Label */ ; } ldv_56766: { tg3_ape_write32(tp, regbase + (u32 )(i * 4), bit); i = i + 1; } ldv_56769: ; if (i <= 7) { goto ldv_56768; } else { } return; } } static int tg3_ape_lock(struct tg3 *tp , int locknum ) { int i ; int off ; int ret ; u32 status ; u32 req ; u32 gnt ; u32 bit ; int tmp ; int tmp___0 ; { { ret = 0; tmp = _tg3_flag(49, (unsigned long *)(& tp->tg3_flags)); } if (tmp == 0) { return (0); } else { } { if (locknum == 7) { goto case_7; } else { } if (locknum == 1) { goto case_1; } else { } if (locknum == 4) { goto case_4; } else { } if (locknum == 0) { goto case_0; } else { } if (locknum == 2) { goto case_2; } else { } if (locknum == 3) { goto case_3; } else { } if (locknum == 5) { goto case_5; } else { } goto switch_default; case_7: /* CIL Label */ ; if (tp->pci_chip_rev_id >> 12 == 22369U) { return (0); } else { } case_1: /* CIL Label */ ; case_4: /* CIL Label */ ; if (tp->pci_fn == 0) { bit = 4096U; } else { bit = (u32 )(1 << tp->pci_fn); } goto ldv_56785; case_0: /* CIL Label */ ; case_2: /* CIL Label */ ; case_3: /* CIL Label */ ; case_5: /* CIL Label */ bit = 4096U; goto ldv_56785; switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } ldv_56785: ; if (tp->pci_chip_rev_id >> 12 == 22369U) { req = 44U; gnt = 76U; } else { req = 33792U; gnt = 33824U; } { off = locknum * 4; tg3_ape_write32(tp, req + (u32 )off, bit); i = 0; } goto ldv_56793; ldv_56792: { status = tg3_ape_read32(tp, gnt + (u32 )off); } if (status == bit) { goto ldv_56791; } else { } { tmp___0 = pci_channel_offline(tp->pdev); } if (tmp___0 != 0) { goto ldv_56791; } else { } { __const_udelay(42950UL); i = i + 1; } ldv_56793: ; if (i <= 99) { goto ldv_56792; } else { } ldv_56791: ; if (status != bit) { { tg3_ape_write32(tp, gnt + (u32 )off, bit); ret = -16; } } else { } return (ret); } } static void tg3_ape_unlock(struct tg3 *tp , int locknum ) { u32 gnt ; u32 bit ; int tmp ; { { tmp = _tg3_flag(49, (unsigned long *)(& tp->tg3_flags)); } if (tmp == 0) { return; } else { } { if (locknum == 7) { goto case_7; } else { } if (locknum == 1) { goto case_1; } else { } if (locknum == 4) { goto case_4; } else { } if (locknum == 0) { goto case_0; } else { } if (locknum == 2) { goto case_2; } else { } if (locknum == 3) { goto case_3; } else { } if (locknum == 5) { goto case_5; } else { } goto switch_default; case_7: /* CIL Label */ ; if (tp->pci_chip_rev_id >> 12 == 22369U) { return; } else { } case_1: /* CIL Label */ ; case_4: /* CIL Label */ ; if (tp->pci_fn == 0) { bit = 4096U; } else { bit = (u32 )(1 << tp->pci_fn); } goto ldv_56803; case_0: /* CIL Label */ ; case_2: /* CIL Label */ ; case_3: /* CIL Label */ ; case_5: /* CIL Label */ bit = 4096U; goto ldv_56803; switch_default: /* CIL Label */ ; return; switch_break: /* CIL Label */ ; } ldv_56803: ; if (tp->pci_chip_rev_id >> 12 == 22369U) { gnt = 76U; } else { gnt = 33824U; } { tg3_ape_write32(tp, gnt + (u32 )(locknum * 4), bit); } return; } } static int tg3_ape_event_lock(struct tg3 *tp , u32 timeout_us ) { u32 apedata ; int tmp ; { goto ldv_56816; ldv_56815: { tmp = tg3_ape_lock(tp, 4); } if (tmp != 0) { return (-16); } else { } { apedata = tg3_ape_read32(tp, 17152U); } if ((int )apedata >= 0) { goto ldv_56814; } else { } { tg3_ape_unlock(tp, 4); __const_udelay(42950UL); timeout_us = timeout_us - (10U < timeout_us ? 10U : timeout_us); } ldv_56816: ; if (timeout_us != 0U) { goto ldv_56815; } else { } ldv_56814: ; return (timeout_us != 0U ? 0 : -16); } } static int tg3_ape_wait_for_event(struct tg3 *tp , u32 timeout_us ) { u32 i ; u32 apedata ; { i = 0U; goto ldv_56825; ldv_56824: { apedata = tg3_ape_read32(tp, 17152U); } if ((int )apedata >= 0) { goto ldv_56823; } else { } { __const_udelay(42950UL); i = i + 1U; } ldv_56825: ; if (i < timeout_us / 10U) { goto ldv_56824; } else { } ldv_56823: ; return (i == timeout_us / 10U); } } static int tg3_ape_scratchpad_read(struct tg3 *tp , u32 *data , u32 base_off , u32 len ) { int err ; u32 i ; u32 bufoff ; u32 msgoff ; u32 maxlen ; u32 apedata ; int tmp ; u32 tmp___0 ; u32 length ; int tmp___1 ; u32 val ; u32 tmp___2 ; { { tmp = _tg3_flag(65, (unsigned long *)(& tp->tg3_flags)); } if (tmp == 0) { return (0); } else { } { apedata = tg3_ape_read32(tp, 16384U); } if (apedata != 1095779617U) { return (-19); } else { } { apedata = tg3_ape_read32(tp, 16396U); } if ((apedata & 256U) == 0U) { return (-11); } else { } { tmp___0 = tg3_ape_read32(tp, 16412U); bufoff = tmp___0 + 16384U; msgoff = bufoff + 8U; maxlen = tg3_ape_read32(tp, 16416U); } goto ldv_56844; ldv_56843: { length = maxlen < len ? maxlen : len; len = len - length; apedata = tg3_ape_read32(tp, 16396U); } if ((apedata & 256U) == 0U) { return (-11); } else { } { err = tg3_ape_event_lock(tp, 1000U); } if (err != 0) { return (err); } else { } { apedata = 2147489296U; tg3_ape_write32(tp, 17152U, apedata); tg3_ape_write32(tp, bufoff, base_off); tg3_ape_write32(tp, bufoff + 4U, length); tg3_ape_unlock(tp, 4); tg3_ape_write32(tp, 12U, 1U); base_off = base_off + length; tmp___1 = tg3_ape_wait_for_event(tp, 30000U); } if (tmp___1 != 0) { return (-11); } else { } i = 0U; goto ldv_56841; ldv_56840: { tmp___2 = tg3_ape_read32(tp, msgoff + i); val = tmp___2; __memcpy((void *)data, (void const *)(& val), 4UL); data = data + 1; i = i + 4U; length = length - 4U; } ldv_56841: ; if (length != 0U) { goto ldv_56840; } else { } ldv_56844: ; if (len != 0U) { goto ldv_56843; } else { } return (0); } } static int tg3_ape_send_event(struct tg3 *tp , u32 event ) { int err ; u32 apedata ; { { apedata = tg3_ape_read32(tp, 16384U); } if (apedata != 1095779617U) { return (-11); } else { } { apedata = tg3_ape_read32(tp, 16396U); } if ((apedata & 256U) == 0U) { return (-11); } else { } { err = tg3_ape_event_lock(tp, 1000U); } if (err != 0) { return (err); } else { } { tg3_ape_write32(tp, 17152U, event | 2147483648U); tg3_ape_unlock(tp, 4); tg3_ape_write32(tp, 12U, 1U); } return (0); } } static void tg3_ape_driver_state_change(struct tg3 *tp , int kind ) { u32 event ; u32 apedata ; int tmp ; bool tmp___0 ; int tmp___1 ; { { tmp = _tg3_flag(49, (unsigned long *)(& tp->tg3_flags)); } if (tmp == 0) { return; } else { } { if (kind == 1) { goto case_1; } else { } if (kind == 0) { goto case_0; } else { } goto switch_default; case_1: /* CIL Label */ { tg3_ape_write32(tp, 16896U, 1213158228U); tg3_ape_write32(tp, 16900U, 32U); apedata = tg3_ape_read32(tp, 16904U); apedata = apedata + 1U; tg3_ape_write32(tp, 16904U, apedata); tg3_ape_write32(tp, 16908U, 4026763520U); tg3_ape_write32(tp, 16912U, 1U); tg3_ape_write32(tp, 16924U, 1U); event = 65536U; } goto ldv_56859; case_0: /* CIL Label */ { tg3_ape_write32(tp, 16896U, 0U); tmp___0 = device_may_wakeup(& (tp->pdev)->dev); } if ((int )tmp___0) { { tmp___1 = _tg3_flag(11, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 != 0) { { tg3_ape_write32(tp, 16932U, 32768U); apedata = 3U; } } else { apedata = 2U; } } else { apedata = 2U; } { tg3_ape_write32(tp, 16924U, apedata); event = 131072U; } goto ldv_56859; switch_default: /* CIL Label */ ; return; switch_break: /* CIL Label */ ; } ldv_56859: { event = event | 1296U; tg3_ape_send_event(tp, event); } return; } } static void tg3_disable_ints(struct tg3 *tp ) { int i ; { { (*(tp->write32))(tp, 104U, tp->misc_host_ctrl | 2U); i = 0; } goto ldv_56867; ldv_56866: { tw32_mailbox_flush(tp, tp->napi[i].int_mbox, 1U); i = i + 1; } ldv_56867: ; if ((unsigned int )i < tp->irq_max) { goto ldv_56866; } else { } return; } } static void tg3_enable_ints(struct tg3 *tp ) { int i ; struct tg3_napi *tnapi ; int tmp ; int tmp___0 ; { { tp->irq_sync = 0U; __asm__ volatile ("sfence": : : "memory"); (*(tp->write32))(tp, 104U, tp->misc_host_ctrl & 4294967293U); tp->coal_now = tp->coalesce_mode | 2U; i = 0; } goto ldv_56875; ldv_56874: { tnapi = (struct tg3_napi *)(& tp->napi) + (unsigned long )i; tw32_mailbox_flush(tp, tnapi->int_mbox, tnapi->last_tag << 24); tmp = _tg3_flag(46, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { { tw32_mailbox_flush(tp, tnapi->int_mbox, tnapi->last_tag << 24); } } else { } tp->coal_now = tp->coal_now | tnapi->coal_now; i = i + 1; ldv_56875: ; if ((unsigned int )i < tp->irq_cnt) { goto ldv_56874; } else { } { tmp___0 = _tg3_flag(0, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 == 0 && (int )(tp->napi[0].hw_status)->status & 1) { { (*(tp->write32))(tp, 26632U, tp->grc_local_ctrl | 4U); } } else { { (*(tp->write32))(tp, 15360U, tp->coal_now); } } tp->coal_now = tp->coal_now & ~ (tp->napi[0].coal_now | tp->napi[1].coal_now); return; } } __inline static unsigned int tg3_has_work(struct tg3_napi *tnapi ) { struct tg3 *tp ; struct tg3_hw_status *sblk ; unsigned int work_exists ; int tmp ; int tmp___0 ; { { tp = tnapi->tp; sblk = tnapi->hw_status; work_exists = 0U; tmp = _tg3_flag(2, (unsigned long *)(& tp->tg3_flags)); } if (tmp == 0) { { tmp___0 = _tg3_flag(6, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 == 0) { if ((sblk->status & 2U) != 0U) { work_exists = 1U; } else { } } else { } } else { } if ((u32 )sblk->idx[0].tx_consumer != tnapi->tx_cons) { work_exists = 1U; } else { } if ((unsigned long )tnapi->rx_rcb_prod_idx != (unsigned long )((u16 *)0U) && (u32 )*(tnapi->rx_rcb_prod_idx) != tnapi->rx_rcb_ptr) { work_exists = 1U; } else { } return (work_exists); } } static void tg3_int_reenable(struct tg3_napi *tnapi ) { struct tg3 *tp ; int tmp ; unsigned int tmp___0 ; { { tp = tnapi->tp; (*(tp->write32_mbox))(tp, tnapi->int_mbox, tnapi->last_tag << 24); __asm__ volatile ("": : : "memory"); tmp = _tg3_flag(0, (unsigned long *)(& tp->tg3_flags)); } if (tmp == 0) { { tmp___0 = tg3_has_work(tnapi); } if (tmp___0 != 0U) { { (*(tp->write32))(tp, 15360U, (tp->coalesce_mode | tnapi->coal_now) | 2U); } } else { } } else { } return; } } static void tg3_switch_clocks(struct tg3 *tp ) { u32 clock_ctrl ; u32 orig_clock_ctrl ; int tmp ; int tmp___0 ; int tmp___1 ; { { tmp = _tg3_flag(27, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { return; } else { { tmp___0 = _tg3_flag(74, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0) { return; } else { } } { clock_ctrl = (*(tp->read32))(tp, 116U); orig_clock_ctrl = clock_ctrl; clock_ctrl = clock_ctrl & 6291487U; tp->pci_clock_ctrl = clock_ctrl; tmp___1 = _tg3_flag(71, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 != 0) { if ((orig_clock_ctrl & 1048576U) != 0U) { { _tw32_flush(tp, 116U, clock_ctrl | 1048576U, 40U); } } else { } } else if ((orig_clock_ctrl & 262144U) != 0U) { { _tw32_flush(tp, 116U, clock_ctrl | 266240U, 40U); _tw32_flush(tp, 116U, clock_ctrl | 4096U, 40U); } } else { } { _tw32_flush(tp, 116U, clock_ctrl, 40U); } return; } } static int __tg3_readphy(struct tg3 *tp , unsigned int phy_addr , int reg , u32 *val ) { u32 frame_val ; unsigned int loops ; int ret ; { if ((tp->mi_mode & 16U) != 0U) { { _tw32_flush(tp, 1108U, tp->mi_mode & 4294967279U, 0U); __const_udelay(343600UL); } } else { } { tg3_ape_lock(tp, (int )tp->phy_ape_lock); *val = 0U; frame_val = (phy_addr << 21) & 65011712U; frame_val = frame_val | ((u32 )(reg << 16) & 2031616U); frame_val = frame_val | 671088640U; _tw32_flush(tp, 1100U, frame_val, 0U); loops = 5000U; } goto ldv_56903; ldv_56902: { __const_udelay(42950UL); frame_val = (*(tp->read32))(tp, 1100U); } if ((frame_val & 536870912U) == 0U) { { __const_udelay(21475UL); frame_val = (*(tp->read32))(tp, 1100U); } goto ldv_56901; } else { } loops = loops - 1U; ldv_56903: ; if (loops != 0U) { goto ldv_56902; } else { } ldv_56901: ret = -16; if (loops != 0U) { *val = frame_val & 65535U; ret = 0; } else { } if ((tp->mi_mode & 16U) != 0U) { { _tw32_flush(tp, 1108U, tp->mi_mode, 0U); __const_udelay(343600UL); } } else { } { tg3_ape_unlock(tp, (int )tp->phy_ape_lock); } return (ret); } } static int tg3_readphy(struct tg3 *tp , int reg , u32 *val ) { int tmp ; { { tmp = __tg3_readphy(tp, (unsigned int )tp->phy_addr, reg, val); } return (tmp); } } static int __tg3_writephy(struct tg3 *tp , unsigned int phy_addr , int reg , u32 val ) { u32 frame_val ; unsigned int loops ; int ret ; { if ((tp->phy_flags & 64U) != 0U && (reg == 9 || reg == 24)) { return (0); } else { } if ((tp->mi_mode & 16U) != 0U) { { _tw32_flush(tp, 1108U, tp->mi_mode & 4294967279U, 0U); __const_udelay(343600UL); } } else { } { tg3_ape_lock(tp, (int )tp->phy_ape_lock); frame_val = (phy_addr << 21) & 65011712U; frame_val = frame_val | ((u32 )(reg << 16) & 2031616U); frame_val = frame_val | (val & 65535U); frame_val = frame_val | 603979776U; _tw32_flush(tp, 1100U, frame_val, 0U); loops = 5000U; } goto ldv_56920; ldv_56919: { __const_udelay(42950UL); frame_val = (*(tp->read32))(tp, 1100U); } if ((frame_val & 536870912U) == 0U) { { __const_udelay(21475UL); frame_val = (*(tp->read32))(tp, 1100U); } goto ldv_56918; } else { } loops = loops - 1U; ldv_56920: ; if (loops != 0U) { goto ldv_56919; } else { } ldv_56918: ret = -16; if (loops != 0U) { ret = 0; } else { } if ((tp->mi_mode & 16U) != 0U) { { _tw32_flush(tp, 1108U, tp->mi_mode, 0U); __const_udelay(343600UL); } } else { } { tg3_ape_unlock(tp, (int )tp->phy_ape_lock); } return (ret); } } static int tg3_writephy(struct tg3 *tp , int reg , u32 val ) { int tmp ; { { tmp = __tg3_writephy(tp, (unsigned int )tp->phy_addr, reg, val); } return (tmp); } } static int tg3_phy_cl45_write(struct tg3 *tp , u32 devad , u32 addr , u32 val ) { int err ; { { err = tg3_writephy(tp, 13, devad); } if (err != 0) { goto done; } else { } { err = tg3_writephy(tp, 14, addr); } if (err != 0) { goto done; } else { } { err = tg3_writephy(tp, 13, devad | 16384U); } if (err != 0) { goto done; } else { } { err = tg3_writephy(tp, 14, val); } done: ; return (err); } } static int tg3_phy_cl45_read(struct tg3 *tp , u32 devad , u32 addr , u32 *val ) { int err ; { { err = tg3_writephy(tp, 13, devad); } if (err != 0) { goto done; } else { } { err = tg3_writephy(tp, 14, addr); } if (err != 0) { goto done; } else { } { err = tg3_writephy(tp, 13, devad | 16384U); } if (err != 0) { goto done; } else { } { err = tg3_readphy(tp, 14, val); } done: ; return (err); } } static int tg3_phydsp_read(struct tg3 *tp , u32 reg , u32 *val ) { int err ; { { err = tg3_writephy(tp, 23, reg); } if (err == 0) { { err = tg3_readphy(tp, 21, val); } } else { } return (err); } } static int tg3_phydsp_write(struct tg3 *tp , u32 reg , u32 val ) { int err ; { { err = tg3_writephy(tp, 23, reg); } if (err == 0) { { err = tg3_writephy(tp, 21, val); } } else { } return (err); } } static int tg3_phy_auxctl_read(struct tg3 *tp , int reg , u32 *val ) { int err ; { { err = tg3_writephy(tp, 24, (u32 )((reg << 12) | 7)); } if (err == 0) { { err = tg3_readphy(tp, 24, val); } } else { } return (err); } } static int tg3_phy_auxctl_write(struct tg3 *tp , int reg , u32 set ) { int tmp ; { if (reg == 7) { set = set | 32768U; } else { } { tmp = tg3_writephy(tp, 24, set | (u32 )reg); } return (tmp); } } static int tg3_phy_toggle_auxctl_smdsp(struct tg3 *tp , bool enable ) { u32 val ; int err ; { { err = tg3_phy_auxctl_read(tp, 0, & val); } if (err != 0) { return (err); } else { } if ((int )enable) { val = val | 2048U; } else { val = val & 4294965247U; } { err = tg3_phy_auxctl_write(tp, 0, val | 1024U); } return (err); } } static int tg3_phy_shdw_write(struct tg3 *tp , int reg , u32 val ) { int tmp ; { { tmp = tg3_writephy(tp, 28, ((u32 )reg | val) | 32768U); } return (tmp); } } static int tg3_bmcr_reset(struct tg3 *tp ) { u32 phy_control ; int limit ; int err ; int tmp ; { { phy_control = 32768U; err = tg3_writephy(tp, 0, phy_control); } if (err != 0) { return (-16); } else { } limit = 5000; goto ldv_56984; ldv_56983: { err = tg3_readphy(tp, 0, & phy_control); } if (err != 0) { return (-16); } else { } if ((phy_control & 32768U) == 0U) { { __const_udelay(171800UL); } goto ldv_56982; } else { } { __const_udelay(42950UL); } ldv_56984: tmp = limit; limit = limit - 1; if (tmp != 0) { goto ldv_56983; } else { } ldv_56982: ; if (limit < 0) { return (-16); } else { } return (0); } } static int tg3_mdio_read(struct mii_bus *bp , int mii_id , int reg ) { struct tg3 *tp ; u32 val ; int tmp ; { { tp = (struct tg3 *)bp->priv; ldv_spin_lock_bh_139(& tp->lock); tmp = __tg3_readphy(tp, (unsigned int )mii_id, reg, & val); } if (tmp != 0) { val = 4294967291U; } else { } { ldv_spin_unlock_bh_140(& tp->lock); } return ((int )val); } } static int tg3_mdio_write(struct mii_bus *bp , int mii_id , int reg , u16 val ) { struct tg3 *tp ; u32 ret ; int tmp ; { { tp = (struct tg3 *)bp->priv; ret = 0U; ldv_spin_lock_bh_139(& tp->lock); tmp = __tg3_writephy(tp, (unsigned int )mii_id, reg, (u32 )val); } if (tmp != 0) { ret = 4294967291U; } else { } { ldv_spin_unlock_bh_140(& tp->lock); } return ((int )ret); } } static void tg3_mdio_config_5785(struct tg3 *tp ) { u32 val ; struct phy_device *phydev ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; { phydev = (tp->mdio_bus)->phy_map[(int )tp->phy_addr]; { if (((phydev->drv)->phy_id & (phydev->drv)->phy_id_mask) == 21216608U) { goto case_21216608; } else { } if (((phydev->drv)->phy_id & (phydev->drv)->phy_id_mask) == 21216624U) { goto case_21216624; } else { } if (((phydev->drv)->phy_id & (phydev->drv)->phy_id_mask) == 21216368U) { goto case_21216368; } else { } if (((phydev->drv)->phy_id & (phydev->drv)->phy_id_mask) == 1886480U) { goto case_1886480; } else { } if (((phydev->drv)->phy_id & (phydev->drv)->phy_id_mask) == 33280U) { goto case_33280; } else { } goto switch_default; case_21216608: /* CIL Label */ ; case_21216624: /* CIL Label */ val = 823182592U; goto ldv_57007; case_21216368: /* CIL Label */ val = 872376000U; goto ldv_57007; case_1886480: /* CIL Label */ val = 857966592U; goto ldv_57007; case_33280: /* CIL Label */ val = 958165440U; goto ldv_57007; switch_default: /* CIL Label */ ; return; switch_break: /* CIL Label */ ; } ldv_57007: ; if ((unsigned int )phydev->interface != 7U) { { (*(tp->write32))(tp, 1444U, val); val = (*(tp->read32))(tp, 1440U); val = val & 4261470222U; val = val | 16781312U; (*(tp->write32))(tp, 1440U, val); } return; } else { } { tmp = _tg3_flag(55, (unsigned long *)(& tp->tg3_flags)); } if (tmp == 0) { val = val | 857502145U; } else { } { (*(tp->write32))(tp, 1444U, val); val = (*(tp->read32))(tp, 1440U); val = val & 4160806927U; tmp___2 = _tg3_flag(55, (unsigned long *)(& tp->tg3_flags)); } if (tmp___2 == 0) { { tmp___0 = _tg3_flag(56, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0) { val = val | 33554432U; } else { } { tmp___1 = _tg3_flag(57, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 != 0) { val = val | 67108864U; } else { } } else { } { val = val | 553652225U; (*(tp->write32))(tp, 1440U, val); val = (*(tp->read32))(tp, 1448U); val = val & 4294963448U; tmp___5 = _tg3_flag(55, (unsigned long *)(& tp->tg3_flags)); } if (tmp___5 == 0) { { tmp___3 = _tg3_flag(56, (unsigned long *)(& tp->tg3_flags)); } if (tmp___3 != 0) { val = val | 3840U; } else { } { tmp___4 = _tg3_flag(57, (unsigned long *)(& tp->tg3_flags)); } if (tmp___4 != 0) { val = val | 7U; } else { } } else { } { (*(tp->write32))(tp, 1448U, val); } return; } } static void tg3_mdio_start(struct tg3 *tp ) { int tmp ; { { tp->mi_mode = tp->mi_mode & 4294967279U; _tw32_flush(tp, 1108U, tp->mi_mode, 0U); __const_udelay(343600UL); tmp = _tg3_flag(53, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0 && tp->pci_chip_rev_id >> 12 == 22405U) { { tg3_mdio_config_5785(tp); } } else { } return; } } static int tg3_mdio_init(struct tg3 *tp ) { int i ; u32 reg ; struct phy_device *phydev ; u32 is_serdes ; u32 tmp ; u32 tmp___0 ; int addr ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; { { tmp___3 = _tg3_flag(78, (unsigned long *)(& tp->tg3_flags)); } if (tmp___3 != 0) { tp->phy_addr = (unsigned int )((u8 )tp->pci_fn) + 1U; if (tp->pci_chip_rev_id != 91320320U) { { tmp = (*(tp->read32))(tp, 1460U); is_serdes = tmp & 256U; } } else { { tmp___0 = (*(tp->read32))(tp, 13924U); is_serdes = tmp___0 & 32U; } } if (is_serdes != 0U) { tp->phy_addr = (unsigned int )tp->phy_addr + 7U; } else { } } else { { tmp___1 = _tg3_flag(79, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 != 0) { { tmp___2 = _tg3_flag(81, (unsigned long *)(& tp->tg3_flags)); } if (tmp___2 != 0) { { addr = ssb_gige_get_phyaddr(tp->pdev); } if (addr < 0) { return (addr); } else { } tp->phy_addr = (u8 )addr; } else { tp->phy_addr = 1U; } } else { tp->phy_addr = 1U; } } { tg3_mdio_start(tp); tmp___4 = _tg3_flag(52, (unsigned long *)(& tp->tg3_flags)); } if (tmp___4 == 0) { return (0); } else { { tmp___5 = _tg3_flag(53, (unsigned long *)(& tp->tg3_flags)); } if (tmp___5 != 0) { return (0); } else { } } { tp->mdio_bus = mdiobus_alloc(); } if ((unsigned long )tp->mdio_bus == (unsigned long )((struct mii_bus *)0)) { return (-12); } else { } { (tp->mdio_bus)->name = "tg3 mdio bus"; snprintf((char *)(& (tp->mdio_bus)->id), 17UL, "%x", (unsigned int )((int )((tp->pdev)->bus)->number << 8) | (tp->pdev)->devfn); (tp->mdio_bus)->priv = (void *)tp; (tp->mdio_bus)->parent = & (tp->pdev)->dev; (tp->mdio_bus)->read = & tg3_mdio_read; (tp->mdio_bus)->write = & tg3_mdio_write; (tp->mdio_bus)->phy_mask = (u32 )(~ (1 << (int )tp->phy_addr)); (tp->mdio_bus)->irq = (int *)(& tp->mdio_irq); i = 0; } goto ldv_57024; ldv_57023: *((tp->mdio_bus)->irq + (unsigned long )i) = -1; i = i + 1; ldv_57024: ; if (i <= 31) { goto ldv_57023; } else { } { tmp___6 = tg3_readphy(tp, 0, & reg); } if (tmp___6 != 0 || (reg & 2048U) != 0U) { { tg3_bmcr_reset(tp); } } else { } { i = mdiobus_register(tp->mdio_bus); } if (i != 0) { { dev_warn((struct device const *)(& (tp->pdev)->dev), "mdiobus_reg failed (0x%x)\n", i); mdiobus_free(tp->mdio_bus); } return (i); } else { } phydev = (tp->mdio_bus)->phy_map[(int )tp->phy_addr]; if ((unsigned long )phydev == (unsigned long )((struct phy_device *)0) || (unsigned long )phydev->drv == (unsigned long )((struct phy_driver *)0)) { { dev_warn((struct device const *)(& (tp->pdev)->dev), "No PHY devices\n"); mdiobus_unregister(tp->mdio_bus); mdiobus_free(tp->mdio_bus); } return (-19); } else { } { if (((phydev->drv)->phy_id & (phydev->drv)->phy_id_mask) == 56778128U) { goto case_56778128; } else { } if (((phydev->drv)->phy_id & (phydev->drv)->phy_id_mask) == 21216608U) { goto case_21216608; } else { } if (((phydev->drv)->phy_id & (phydev->drv)->phy_id_mask) == 21216624U) { goto case_21216624; } else { } if (((phydev->drv)->phy_id & (phydev->drv)->phy_id_mask) == 1886480U) { goto case_1886480; } else { } if (((phydev->drv)->phy_id & (phydev->drv)->phy_id_mask) == 33280U) { goto case_33280; } else { } if (((phydev->drv)->phy_id & (phydev->drv)->phy_id_mask) == 21216368U) { goto case_21216368; } else { } goto switch_break; case_56778128: /* CIL Label */ phydev->interface = 2; phydev->dev_flags = phydev->dev_flags | 512U; goto ldv_57027; case_21216608: /* CIL Label */ ; case_21216624: /* CIL Label */ { phydev->dev_flags = phydev->dev_flags | 50688U; tmp___7 = _tg3_flag(55, (unsigned long *)(& tp->tg3_flags)); } if (tmp___7 != 0) { phydev->dev_flags = phydev->dev_flags | 2048U; } else { } { tmp___8 = _tg3_flag(56, (unsigned long *)(& tp->tg3_flags)); } if (tmp___8 != 0) { phydev->dev_flags = phydev->dev_flags | 4096U; } else { } { tmp___9 = _tg3_flag(57, (unsigned long *)(& tp->tg3_flags)); } if (tmp___9 != 0) { phydev->dev_flags = phydev->dev_flags | 8192U; } else { } case_1886480: /* CIL Label */ phydev->interface = 7; goto ldv_57027; case_33280: /* CIL Label */ ; case_21216368: /* CIL Label */ phydev->interface = 1; phydev->dev_flags = phydev->dev_flags | 512U; tp->phy_flags = tp->phy_flags | 64U; goto ldv_57027; switch_break: /* CIL Label */ ; } ldv_57027: { _tg3_flag_set(53, (unsigned long *)(& tp->tg3_flags)); } if (tp->pci_chip_rev_id >> 12 == 22405U) { { tg3_mdio_config_5785(tp); } } else { } return (0); } } static void tg3_mdio_fini(struct tg3 *tp ) { int tmp ; { { tmp = _tg3_flag(53, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { { _tg3_flag_clear(53, (unsigned long *)(& tp->tg3_flags)); mdiobus_unregister(tp->mdio_bus); mdiobus_free(tp->mdio_bus); } } else { } return; } } __inline static void tg3_generate_fw_event(struct tg3 *tp ) { u32 val ; { { val = (*(tp->read32))(tp, 26640U); val = val | 16384U; _tw32_flush(tp, 26640U, val, 0U); tp->__annonCompField112.last_event_jiffies = jiffies; } return; } } static void tg3_wait_for_event_ack(struct tg3 *tp ) { int i ; unsigned int delay_cnt ; long time_remain ; unsigned long tmp ; u32 tmp___0 ; int tmp___1 ; { { tmp = usecs_to_jiffies(2500U); time_remain = (long )((tp->__annonCompField112.last_event_jiffies + tmp) + 1UL) - (long )jiffies; } if (time_remain < 0L) { return; } else { } { delay_cnt = jiffies_to_usecs((unsigned long const )time_remain); } if (delay_cnt > 2500U) { delay_cnt = 2500U; } else { } delay_cnt = (delay_cnt >> 3) + 1U; i = 0; goto ldv_57048; ldv_57047: { tmp___0 = (*(tp->read32))(tp, 26640U); } if ((tmp___0 & 16384U) == 0U) { goto ldv_57046; } else { } { tmp___1 = pci_channel_offline(tp->pdev); } if (tmp___1 != 0) { goto ldv_57046; } else { } { __const_udelay(34360UL); i = i + 1; } ldv_57048: ; if ((unsigned int )i < delay_cnt) { goto ldv_57047; } else { } ldv_57046: ; return; } } static void tg3_phy_gather_ump_data(struct tg3 *tp , u32 *data ) { u32 reg ; u32 val ; int tmp ; int tmp___0 ; u32 *tmp___1 ; int tmp___2 ; int tmp___3 ; u32 *tmp___4 ; int tmp___5 ; int tmp___6 ; u32 *tmp___7 ; int tmp___8 ; u32 *tmp___9 ; { { val = 0U; tmp = tg3_readphy(tp, 0, & reg); } if (tmp == 0) { val = reg << 16; } else { } { tmp___0 = tg3_readphy(tp, 1, & reg); } if (tmp___0 == 0) { val = val | (reg & 65535U); } else { } { tmp___1 = data; data = data + 1; *tmp___1 = val; val = 0U; tmp___2 = tg3_readphy(tp, 4, & reg); } if (tmp___2 == 0) { val = reg << 16; } else { } { tmp___3 = tg3_readphy(tp, 5, & reg); } if (tmp___3 == 0) { val = val | (reg & 65535U); } else { } tmp___4 = data; data = data + 1; *tmp___4 = val; val = 0U; if ((tp->phy_flags & 32U) == 0U) { { tmp___5 = tg3_readphy(tp, 9, & reg); } if (tmp___5 == 0) { val = reg << 16; } else { } { tmp___6 = tg3_readphy(tp, 10, & reg); } if (tmp___6 == 0) { val = val | (reg & 65535U); } else { } } else { } { tmp___7 = data; data = data + 1; *tmp___7 = val; tmp___8 = tg3_readphy(tp, 25, & reg); } if (tmp___8 == 0) { val = reg << 16; } else { val = 0U; } tmp___9 = data; data = data + 1; *tmp___9 = val; return; } } static void tg3_ump_link_report(struct tg3 *tp ) { u32 data[4U] ; int tmp ; int tmp___0 ; { { tmp = _tg3_flag(74, (unsigned long *)(& tp->tg3_flags)); } if (tmp == 0) { return; } else { { tmp___0 = _tg3_flag(4, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 == 0) { return; } else { } } { tg3_phy_gather_ump_data(tp, (u32 *)(& data)); tg3_wait_for_event_ack(tp); tg3_write_mem(tp, 2936U, 12U); tg3_write_mem(tp, 2940U, 14U); tg3_write_mem(tp, 2944U, data[0]); tg3_write_mem(tp, 2948U, data[1]); tg3_write_mem(tp, 2952U, data[2]); tg3_write_mem(tp, 2956U, data[3]); tg3_generate_fw_event(tp); } return; } } static void tg3_stop_fw(struct tg3 *tp ) { int tmp ; int tmp___0 ; { { tmp = _tg3_flag(4, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { { tmp___0 = _tg3_flag(49, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 == 0) { { tg3_wait_for_event_ack(tp); tg3_write_mem(tp, 2936U, 2U); tg3_generate_fw_event(tp); tg3_wait_for_event_ack(tp); } } else { } } else { } return; } } static void tg3_write_sig_pre_reset(struct tg3 *tp , int kind ) { int tmp ; { { tg3_write_mem(tp, 2896U, 1264940628U); tmp = _tg3_flag(35, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { { if (kind == 1) { goto case_1; } else { } if (kind == 0) { goto case_0; } else { } if (kind == 2) { goto case_2; } else { } goto switch_default; case_1: /* CIL Label */ { tg3_write_mem(tp, 3076U, 1U); } goto ldv_57067; case_0: /* CIL Label */ { tg3_write_mem(tp, 3076U, 2U); } goto ldv_57067; case_2: /* CIL Label */ { tg3_write_mem(tp, 3076U, 4U); } goto ldv_57067; switch_default: /* CIL Label */ ; goto ldv_57067; switch_break: /* CIL Label */ ; } ldv_57067: ; } else { } return; } } static void tg3_write_sig_post_reset(struct tg3 *tp , int kind ) { int tmp ; { { tmp = _tg3_flag(35, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { { if (kind == 1) { goto case_1; } else { } if (kind == 0) { goto case_0; } else { } goto switch_default; case_1: /* CIL Label */ { tg3_write_mem(tp, 3076U, 2147483649U); } goto ldv_57076; case_0: /* CIL Label */ { tg3_write_mem(tp, 3076U, 2147483650U); } goto ldv_57076; switch_default: /* CIL Label */ ; goto ldv_57076; switch_break: /* CIL Label */ ; } ldv_57076: ; } else { } return; } } static void tg3_write_sig_legacy(struct tg3 *tp , int kind ) { int tmp ; { { tmp = _tg3_flag(4, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { { if (kind == 1) { goto case_1; } else { } if (kind == 0) { goto case_0; } else { } if (kind == 2) { goto case_2; } else { } goto switch_default; case_1: /* CIL Label */ { tg3_write_mem(tp, 3076U, 1U); } goto ldv_57084; case_0: /* CIL Label */ { tg3_write_mem(tp, 3076U, 2U); } goto ldv_57084; case_2: /* CIL Label */ { tg3_write_mem(tp, 3076U, 4U); } goto ldv_57084; switch_default: /* CIL Label */ ; goto ldv_57084; switch_break: /* CIL Label */ ; } ldv_57084: ; } else { } return; } } static int tg3_poll_fw(struct tg3 *tp ) { int i ; u32 val ; int tmp ; int tmp___0 ; u32 tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; unsigned long __ms ; unsigned long tmp___6 ; { { tmp = _tg3_flag(47, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { return (0); } else { } { tmp___0 = _tg3_flag(79, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0) { return (0); } else { } if (tp->pci_chip_rev_id >> 12 == 12U) { i = 0; goto ldv_57094; ldv_57093: { tmp___1 = (*(tp->read32))(tp, 20736U); } if ((tmp___1 & 67108864U) != 0U) { return (0); } else { } { tmp___2 = pci_channel_offline(tp->pdev); } if (tmp___2 != 0) { return (-19); } else { } { __const_udelay(429500UL); i = i + 1; } ldv_57094: ; if (i <= 199) { goto ldv_57093; } else { } return (-19); } else { } i = 0; goto ldv_57098; ldv_57097: { tg3_read_mem(tp, 2896U, & val); } if (val == 3030026667U) { goto ldv_57096; } else { } { tmp___4 = pci_channel_offline(tp->pdev); } if (tmp___4 != 0) { { tmp___3 = _tg3_flag(47, (unsigned long *)(& tp->tg3_flags)); } if (tmp___3 == 0) { { _tg3_flag_set(47, (unsigned long *)(& tp->tg3_flags)); netdev_info((struct net_device const *)tp->dev, "No firmware running\n"); } } else { } goto ldv_57096; } else { } { __const_udelay(42950UL); i = i + 1; } ldv_57098: ; if (i <= 99999) { goto ldv_57097; } else { } ldv_57096: ; if (i > 99999) { { tmp___5 = _tg3_flag(47, (unsigned long *)(& tp->tg3_flags)); } if (tmp___5 == 0) { { _tg3_flag_set(47, (unsigned long *)(& tp->tg3_flags)); netdev_info((struct net_device const *)tp->dev, "No firmware running\n"); } } else { } } else { } if (tp->pci_chip_rev_id == 1467502592U) { __ms = 10UL; goto ldv_57101; ldv_57100: { __const_udelay(4295000UL); } ldv_57101: tmp___6 = __ms; __ms = __ms - 1UL; if (tmp___6 != 0UL) { goto ldv_57100; } else { } } else { } return (0); } } static void tg3_link_report(struct tg3 *tp ) { bool tmp ; int tmp___0 ; { { tmp = netif_carrier_ok((struct net_device const *)tp->dev); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { if ((tp->msg_enable & 4U) != 0U) { { netdev_info((struct net_device const *)tp->dev, "Link is down\n"); } } else { } { tg3_ump_link_report(tp); } } else if ((tp->msg_enable & 4U) != 0U) { { netdev_info((struct net_device const *)tp->dev, "Link is up at %d Mbps, %s duplex\n", (unsigned int )tp->link_config.active_speed != 1000U ? ((unsigned int )tp->link_config.active_speed == 100U ? 100 : 10) : 1000, (unsigned int )tp->link_config.active_duplex == 1U ? (char *)"full" : (char *)"half"); netdev_info((struct net_device const *)tp->dev, "Flow control is %s for TX and %s for RX\n", (int )tp->link_config.active_flowctrl & 1 ? (char *)"on" : (char *)"off", ((int )tp->link_config.active_flowctrl & 2) != 0 ? (char *)"on" : (char *)"off"); } if ((tp->phy_flags & 262144U) != 0U) { { netdev_info((struct net_device const *)tp->dev, "EEE is %s\n", tp->setlpicnt != 0U ? (char *)"enabled" : (char *)"disabled"); } } else { } { tg3_ump_link_report(tp); } } else { } { tp->link_up = netif_carrier_ok((struct net_device const *)tp->dev); } return; } } static u32 tg3_decode_flowctrl_1000T(u32 adv ) { u32 flowctrl ; { flowctrl = 0U; if ((adv & 1024U) != 0U) { flowctrl = flowctrl | 2U; if ((adv & 2048U) == 0U) { flowctrl = flowctrl | 1U; } else { } } else if ((adv & 2048U) != 0U) { flowctrl = flowctrl | 1U; } else { } return (flowctrl); } } static u16 tg3_advert_flowctrl_1000X(u8 flow_ctrl ) { u16 miireg ; { if (((unsigned int )flow_ctrl & 3U) == 3U) { miireg = 128U; } else if ((int )flow_ctrl & 1) { miireg = 256U; } else if (((int )flow_ctrl & 2) != 0) { miireg = 384U; } else { miireg = 0U; } return (miireg); } } static u32 tg3_decode_flowctrl_1000X(u32 adv ) { u32 flowctrl ; { flowctrl = 0U; if ((adv & 128U) != 0U) { flowctrl = flowctrl | 2U; if ((adv & 256U) == 0U) { flowctrl = flowctrl | 1U; } else { } } else if ((adv & 256U) != 0U) { flowctrl = flowctrl | 1U; } else { } return (flowctrl); } } static u8 tg3_resolve_flowctrl_1000X(u16 lcladv , u16 rmtadv ) { u8 cap ; { cap = 0U; if ((((int )lcladv & (int )rmtadv) & 128) != 0) { cap = 3U; } else if ((((int )lcladv & (int )rmtadv) & 256) != 0) { if (((int )lcladv & 128) != 0) { cap = 2U; } else { } if (((int )rmtadv & 128) != 0) { cap = 1U; } else { } } else { } return (cap); } } static void tg3_setup_flow_control(struct tg3 *tp , u32 lcladv , u32 rmtadv ) { u8 autoneg ; u8 flowctrl ; u32 old_rx_mode ; u32 old_tx_mode ; int tmp ; int tmp___0 ; { { flowctrl = 0U; old_rx_mode = tp->rx_mode; old_tx_mode = tp->tx_mode; tmp = _tg3_flag(52, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { autoneg = (u8 )((tp->mdio_bus)->phy_map[(int )tp->phy_addr])->autoneg; } else { autoneg = tp->link_config.autoneg; } if ((unsigned int )autoneg == 1U) { { tmp___0 = _tg3_flag(26, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0) { if ((tp->phy_flags & 48U) != 0U) { { flowctrl = tg3_resolve_flowctrl_1000X((int )((u16 )lcladv), (int )((u16 )rmtadv)); } } else { { flowctrl = mii_resolve_flowctrl_fdx((int )((u16 )lcladv), (int )((u16 )rmtadv)); } } } else { flowctrl = tp->link_config.flowctrl; } } else { flowctrl = tp->link_config.flowctrl; } tp->link_config.active_flowctrl = flowctrl; if (((int )flowctrl & 2) != 0) { tp->rx_mode = tp->rx_mode | 4U; } else { tp->rx_mode = tp->rx_mode & 4294967291U; } if (old_rx_mode != tp->rx_mode) { { _tw32_flush(tp, 1128U, tp->rx_mode, 0U); } } else { } if ((int )flowctrl & 1) { tp->tx_mode = tp->tx_mode | 16U; } else { tp->tx_mode = tp->tx_mode & 4294967279U; } if (old_tx_mode != tp->tx_mode) { { _tw32_flush(tp, 1116U, tp->tx_mode, 0U); } } else { } return; } } static void tg3_adjust_link(struct net_device *dev ) { u8 oldflowctrl ; u8 linkmesg ; u32 mac_mode ; u32 lcl_adv ; u32 rmt_adv ; struct tg3 *tp ; void *tmp ; struct phy_device *phydev ; u16 tmp___0 ; { { linkmesg = 0U; tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; phydev = (tp->mdio_bus)->phy_map[(int )tp->phy_addr]; ldv_spin_lock_bh_139(& tp->lock); mac_mode = tp->mac_mode & 4294967281U; oldflowctrl = tp->link_config.active_flowctrl; } if (phydev->link != 0) { lcl_adv = 0U; rmt_adv = 0U; if (phydev->speed == 100 || phydev->speed == 10) { mac_mode = mac_mode | 4U; } else if (phydev->speed == 1000 || tp->pci_chip_rev_id >> 12 != 22405U) { mac_mode = mac_mode | 8U; } else { mac_mode = mac_mode | 4U; } if (phydev->duplex == 0) { mac_mode = mac_mode | 2U; } else { { tmp___0 = mii_advertise_flowctrl((int )tp->link_config.flowctrl); lcl_adv = (u32 )tmp___0; } if (phydev->pause != 0) { rmt_adv = 1024U; } else { } if (phydev->asym_pause != 0) { rmt_adv = rmt_adv | 2048U; } else { } } { tg3_setup_flow_control(tp, lcl_adv, rmt_adv); } } else { mac_mode = mac_mode | 8U; } if (mac_mode != tp->mac_mode) { { tp->mac_mode = mac_mode; _tw32_flush(tp, 1024U, tp->mac_mode, 0U); __const_udelay(171800UL); } } else { } if (tp->pci_chip_rev_id >> 12 == 22405U) { if (phydev->speed == 10) { { (*(tp->write32))(tp, 1104U, 3U); } } else { { (*(tp->write32))(tp, 1104U, 1U); } } } else { } if (phydev->speed == 1000 && phydev->duplex == 0) { { (*(tp->write32))(tp, 1124U, 9983U); } } else { { (*(tp->write32))(tp, 1124U, 9760U); } } if (((phydev->link != tp->old_link || phydev->speed != (int )tp->link_config.active_speed) || phydev->duplex != (int )tp->link_config.active_duplex) || (int )oldflowctrl != (int )tp->link_config.active_flowctrl) { linkmesg = 1U; } else { } { tp->old_link = phydev->link; tp->link_config.active_speed = (u16 )phydev->speed; tp->link_config.active_duplex = (u8 )phydev->duplex; ldv_spin_unlock_bh_140(& tp->lock); } if ((unsigned int )linkmesg != 0U) { { tg3_link_report(tp); } } else { } return; } } static int tg3_phy_init(struct tg3 *tp ) { struct phy_device *phydev ; char const *tmp ; long tmp___0 ; bool tmp___1 ; { if ((tp->phy_flags & 2U) != 0U) { return (0); } else { } { tg3_bmcr_reset(tp); phydev = (tp->mdio_bus)->phy_map[(int )tp->phy_addr]; tmp = dev_name((struct device const *)(& phydev->dev)); phydev = phy_connect(tp->dev, tmp, & tg3_adjust_link, phydev->interface); tmp___1 = IS_ERR((void const *)phydev); } if ((int )tmp___1) { { dev_err((struct device const *)(& (tp->pdev)->dev), "Could not attach to PHY\n"); tmp___0 = PTR_ERR((void const *)phydev); } return ((int )tmp___0); } else { } { if ((unsigned int )phydev->interface == 2U) { goto case_2; } else { } if ((unsigned int )phydev->interface == 7U) { goto case_7; } else { } if ((unsigned int )phydev->interface == 1U) { goto case_1; } else { } goto switch_default; case_2: /* CIL Label */ ; case_7: /* CIL Label */ ; if ((tp->phy_flags & 128U) == 0U) { phydev->supported = phydev->supported & 25343U; goto ldv_57148; } else { } case_1: /* CIL Label */ phydev->supported = phydev->supported & 25295U; goto ldv_57148; switch_default: /* CIL Label */ { phy_disconnect((tp->mdio_bus)->phy_map[(int )tp->phy_addr]); } return (-22); switch_break: /* CIL Label */ ; } ldv_57148: tp->phy_flags = tp->phy_flags | 2U; phydev->advertising = phydev->supported; return (0); } } static void tg3_phy_start(struct tg3 *tp ) { struct phy_device *phydev ; { if ((tp->phy_flags & 2U) == 0U) { return; } else { } phydev = (tp->mdio_bus)->phy_map[(int )tp->phy_addr]; if ((int )tp->phy_flags & 1) { tp->phy_flags = tp->phy_flags & 4294967294U; phydev->speed = (int )tp->link_config.speed; phydev->duplex = (int )tp->link_config.duplex; phydev->autoneg = (int )tp->link_config.autoneg; phydev->advertising = tp->link_config.advertising; } else { } { phy_start(phydev); phy_start_aneg(phydev); } return; } } static void tg3_phy_stop(struct tg3 *tp ) { { if ((tp->phy_flags & 2U) == 0U) { return; } else { } { phy_stop((tp->mdio_bus)->phy_map[(int )tp->phy_addr]); } return; } } static void tg3_phy_fini(struct tg3 *tp ) { { if ((tp->phy_flags & 2U) != 0U) { { phy_disconnect((tp->mdio_bus)->phy_map[(int )tp->phy_addr]); tp->phy_flags = tp->phy_flags & 4294967293U; } } else { } return; } } static int tg3_phy_set_extloopbk(struct tg3 *tp ) { int err ; u32 val ; { if ((tp->phy_flags & 64U) != 0U) { return (0); } else { } if ((tp->phy_id & 4294967280U) == 1610645584U) { { err = tg3_phy_auxctl_write(tp, 0, 52256U); } goto done; } else { } { err = tg3_phy_auxctl_read(tp, 0, & val); } if (err != 0) { return (err); } else { } { val = val | 32768U; err = tg3_phy_auxctl_write(tp, 0, val); } done: ; return (err); } } static void tg3_phy_fet_toggle_apd(struct tg3 *tp , bool enable ) { u32 phytest ; u32 phy ; int tmp ; int tmp___0 ; { { tmp___0 = tg3_readphy(tp, 31, & phytest); } if (tmp___0 == 0) { { tg3_writephy(tp, 31, phytest | 128U); tmp = tg3_readphy(tp, 27, & phy); } if (tmp == 0) { if ((int )enable) { phy = phy | 32U; } else { phy = phy & 4294967263U; } { tg3_writephy(tp, 27, phy); } } else { } { tg3_writephy(tp, 31, phytest); } } else { } return; } } static void tg3_phy_toggle_apd(struct tg3 *tp , bool enable ) { u32 reg ; int tmp ; int tmp___0 ; { { tmp = _tg3_flag(71, (unsigned long *)(& tp->tg3_flags)); } if (tmp == 0) { return; } else { { tmp___0 = _tg3_flag(78, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0 && (tp->phy_flags & 32U) != 0U) { return; } else { } } if ((tp->phy_flags & 64U) != 0U) { { tg3_phy_fet_toggle_apd(tp, (int )enable); } return; } else { } reg = 29U; if (tp->pci_chip_rev_id >> 12 != 22404U || ! enable) { reg = reg | 2U; } else { } { tg3_phy_shdw_write(tp, 5120, reg); reg = 1U; } if ((int )enable) { reg = reg | 32U; } else { } { tg3_phy_shdw_write(tp, 10240, reg); } return; } } static void tg3_phy_toggle_automdix(struct tg3 *tp , bool enable ) { u32 phy ; int tmp ; u32 ephy ; u32 reg ; int tmp___0 ; int tmp___1 ; int ret ; { { tmp = _tg3_flag(71, (unsigned long *)(& tp->tg3_flags)); } if (tmp == 0 || (tp->phy_flags & 48U) != 0U) { return; } else { } if ((tp->phy_flags & 64U) != 0U) { { tmp___1 = tg3_readphy(tp, 31, & ephy); } if (tmp___1 == 0) { { reg = 16U; tg3_writephy(tp, 31, ephy | 128U); tmp___0 = tg3_readphy(tp, (int )reg, & phy); } if (tmp___0 == 0) { if ((int )enable) { phy = phy | 16384U; } else { phy = phy & 4294950911U; } { tg3_writephy(tp, (int )reg, phy); } } else { } { tg3_writephy(tp, 31, ephy); } } else { } } else { { ret = tg3_phy_auxctl_read(tp, 7, & phy); } if (ret == 0) { if ((int )enable) { phy = phy | 512U; } else { phy = phy & 4294966783U; } { tg3_phy_auxctl_write(tp, 7, phy); } } else { } } return; } } static void tg3_phy_set_wirespeed(struct tg3 *tp ) { int ret ; u32 val ; { if ((tp->phy_flags & 1024U) != 0U) { return; } else { } { ret = tg3_phy_auxctl_read(tp, 7, & val); } if (ret == 0) { { tg3_phy_auxctl_write(tp, 7, val | 16U); } } else { } return; } } static void tg3_phy_apply_otp(struct tg3 *tp ) { u32 otp ; u32 phy ; int tmp ; { if (tp->phy_otp == 0U) { return; } else { } { otp = tp->phy_otp; tmp = tg3_phy_toggle_auxctl_smdsp(tp, 1); } if (tmp != 0) { return; } else { } { phy = (otp & 224U) >> 1; phy = phy | 7U; tg3_phydsp_write(tp, 1U, phy); phy = ((otp & 768U) >> 1) | ((otp & 1024U) >> 1); tg3_phydsp_write(tp, 31U, phy); phy = (otp & 2048U) >> 11; phy = phy | 2U; tg3_phydsp_write(tp, 24607U, phy); phy = otp >> 24; tg3_phydsp_write(tp, 3957U, phy); phy = (otp & 61440U) >> 8; tg3_phydsp_write(tp, 3990U, phy); phy = ((otp & 14680064U) >> 11) | ((otp & 1835008U) >> 16); tg3_phydsp_write(tp, 3991U, phy); tg3_phy_toggle_auxctl_smdsp(tp, 0); } return; } } static void tg3_eee_pull_config(struct tg3 *tp , struct ethtool_eee *eee ) { u32 val ; struct ethtool_eee *dest ; int tmp ; int tmp___0 ; int tmp___1 ; u32 tmp___2 ; { dest = & tp->eee; if ((tp->phy_flags & 262144U) == 0U) { return; } else { } if ((unsigned long )eee != (unsigned long )((struct ethtool_eee *)0)) { dest = eee; } else { } { tmp = tg3_phy_cl45_read(tp, 7U, 32830U, & val); } if (tmp != 0) { return; } else { } if (val == 4U || val == 2U) { dest->eee_active = 1U; } else { dest->eee_active = 0U; } { tmp___0 = tg3_phy_cl45_read(tp, 7U, 61U, & val); } if (tmp___0 != 0) { return; } else { } { dest->lp_advertised = mmd_eee_adv_to_ethtool_adv_t((int )((u16 )val)); tmp___1 = tg3_phy_cl45_read(tp, 7U, 60U, & val); } if (tmp___1 != 0) { return; } else { } { dest->eee_enabled = val != 0U; dest->advertised = mmd_eee_adv_to_ethtool_adv_t((int )((u16 )val)); val = (*(tp->read32))(tp, 14000U); dest->tx_lpi_enabled = (val & 256U) != 0U; tmp___2 = (*(tp->read32))(tp, 14004U); dest->tx_lpi_timer = tmp___2 & 65535U; } return; } } static void tg3_phy_eee_adjust(struct tg3 *tp , bool current_link_up ) { u32 val ; u32 eeectl ; int tmp ; { if ((tp->phy_flags & 262144U) == 0U) { return; } else { } tp->setlpicnt = 0U; if ((((unsigned int )tp->link_config.autoneg == 1U && (int )current_link_up) && (unsigned int )tp->link_config.active_duplex == 1U) && ((unsigned int )tp->link_config.active_speed == 100U || (unsigned int )tp->link_config.active_speed == 1000U)) { if ((unsigned int )tp->link_config.active_speed == 1000U) { eeectl = 413U; } else { eeectl = 900U; } { (*(tp->write32))(tp, 14032U, eeectl); tg3_eee_pull_config(tp, (struct ethtool_eee *)0); } if (tp->eee.eee_active != 0U) { tp->setlpicnt = 2U; } else { } } else { } if (tp->setlpicnt == 0U) { if ((int )current_link_up) { { tmp = tg3_phy_toggle_auxctl_smdsp(tp, 1); } if (tmp == 0) { { tg3_phydsp_write(tp, 26U, 0U); tg3_phy_toggle_auxctl_smdsp(tp, 0); } } else { } } else { } { val = (*(tp->read32))(tp, 14000U); (*(tp->write32))(tp, 14000U, val & 4294967167U); } } else { } return; } } static void tg3_phy_eee_enable(struct tg3 *tp ) { u32 val ; int tmp ; int tmp___0 ; { if ((unsigned int )tp->link_config.active_speed == 1000U) { if (tp->pci_chip_rev_id >> 12 == 22295U || tp->pci_chip_rev_id >> 12 == 22297U) { goto _L; } else { { tmp = _tg3_flag(77, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { _L: /* CIL Label */ { tmp___0 = tg3_phy_toggle_auxctl_smdsp(tp, 1); } if (tmp___0 == 0) { { val = 3U; tg3_phydsp_write(tp, 26U, val); tg3_phy_toggle_auxctl_smdsp(tp, 0); } } else { } } else { } } } else { } { val = (*(tp->read32))(tp, 14000U); (*(tp->write32))(tp, 14000U, val | 128U); } return; } } static int tg3_wait_macro_done(struct tg3 *tp ) { int limit ; u32 tmp32 ; int tmp ; int tmp___0 ; { limit = 100; goto ldv_57219; ldv_57218: { tmp = tg3_readphy(tp, 22, & tmp32); } if (tmp == 0) { if ((tmp32 & 4096U) == 0U) { goto ldv_57217; } else { } } else { } ldv_57219: tmp___0 = limit; limit = limit - 1; if (tmp___0 != 0) { goto ldv_57218; } else { } ldv_57217: ; if (limit < 0) { return (-16); } else { } return (0); } } static int tg3_phy_write_and_check_testpat(struct tg3 *tp , int *resetp ) { u32 test_pat[4U][6U] ; int chan ; int i ; int tmp ; int tmp___0 ; int tmp___1 ; u32 low ; u32 high ; int tmp___2 ; int tmp___3 ; int tmp___4 ; { test_pat[0][0] = 21845U; test_pat[0][1] = 5U; test_pat[0][2] = 10922U; test_pat[0][3] = 10U; test_pat[0][4] = 13398U; test_pat[0][5] = 3U; test_pat[1][0] = 10922U; test_pat[1][1] = 10U; test_pat[1][2] = 13107U; test_pat[1][3] = 3U; test_pat[1][4] = 30874U; test_pat[1][5] = 5U; test_pat[2][0] = 23130U; test_pat[2][1] = 5U; test_pat[2][2] = 10858U; test_pat[2][3] = 10U; test_pat[2][4] = 7117U; test_pat[2][5] = 3U; test_pat[3][0] = 10842U; test_pat[3][1] = 10U; test_pat[3][2] = 13251U; test_pat[3][3] = 3U; test_pat[3][4] = 12017U; test_pat[3][5] = 5U; chan = 0; goto ldv_57236; ldv_57235: { tg3_writephy(tp, 23, (u32 )(chan * 8192 | 512)); tg3_writephy(tp, 22, 2U); i = 0; } goto ldv_57228; ldv_57227: { tg3_writephy(tp, 21, test_pat[chan][i]); i = i + 1; } ldv_57228: ; if (i <= 5) { goto ldv_57227; } else { } { tg3_writephy(tp, 22, 514U); tmp = tg3_wait_macro_done(tp); } if (tmp != 0) { *resetp = 1; return (-16); } else { } { tg3_writephy(tp, 23, (u32 )(chan * 8192 | 512)); tg3_writephy(tp, 22, 130U); tmp___0 = tg3_wait_macro_done(tp); } if (tmp___0 != 0) { *resetp = 1; return (-16); } else { } { tg3_writephy(tp, 22, 2050U); tmp___1 = tg3_wait_macro_done(tp); } if (tmp___1 != 0) { *resetp = 1; return (-16); } else { } i = 0; goto ldv_57233; ldv_57232: { tmp___2 = tg3_readphy(tp, 21, & low); } if (tmp___2 != 0) { *resetp = 1; return (-16); } else { { tmp___3 = tg3_readphy(tp, 21, & high); } if (tmp___3 != 0) { *resetp = 1; return (-16); } else { { tmp___4 = tg3_wait_macro_done(tp); } if (tmp___4 != 0) { *resetp = 1; return (-16); } else { } } } low = low & 32767U; high = high & 15U; if (low != test_pat[chan][i] || high != test_pat[chan][i + 1]) { { tg3_writephy(tp, 23, 11U); tg3_writephy(tp, 21, 16385U); tg3_writephy(tp, 21, 16389U); } return (-16); } else { } i = i + 2; ldv_57233: ; if (i <= 5) { goto ldv_57232; } else { } chan = chan + 1; ldv_57236: ; if (chan <= 3) { goto ldv_57235; } else { } return (0); } } static int tg3_phy_reset_chanpat(struct tg3 *tp ) { int chan ; int i ; int tmp ; { chan = 0; goto ldv_57247; ldv_57246: { tg3_writephy(tp, 23, (u32 )(chan * 8192 | 512)); tg3_writephy(tp, 22, 2U); i = 0; } goto ldv_57244; ldv_57243: { tg3_writephy(tp, 21, 0U); i = i + 1; } ldv_57244: ; if (i <= 5) { goto ldv_57243; } else { } { tg3_writephy(tp, 22, 514U); tmp = tg3_wait_macro_done(tp); } if (tmp != 0) { return (-16); } else { } chan = chan + 1; ldv_57247: ; if (chan <= 3) { goto ldv_57246; } else { } return (0); } } static int tg3_phy_reset_5703_4_5(struct tg3 *tp ) { u32 reg32 ; u32 phy9_orig ; int retries ; int do_phy_reset ; int err ; int tmp ; int tmp___0 ; { retries = 10; do_phy_reset = 1; ldv_57259: ; if (do_phy_reset != 0) { { err = tg3_bmcr_reset(tp); } if (err != 0) { return (err); } else { } do_phy_reset = 0; } else { } { tmp = tg3_readphy(tp, 16, & reg32); } if (tmp != 0) { goto ldv_57257; } else { } { reg32 = reg32 | 12288U; tg3_writephy(tp, 16, reg32); tg3_writephy(tp, 0, 320U); tmp___0 = tg3_readphy(tp, 9, & phy9_orig); } if (tmp___0 != 0) { goto ldv_57257; } else { } { tg3_writephy(tp, 9, 6144U); err = tg3_phy_toggle_auxctl_smdsp(tp, 1); } if (err != 0) { return (err); } else { } { tg3_phydsp_write(tp, 32773U, 2048U); err = tg3_phy_write_and_check_testpat(tp, & do_phy_reset); } if (err == 0) { goto ldv_57258; } else { } ldv_57257: retries = retries - 1; if (retries != 0) { goto ldv_57259; } else { } ldv_57258: { err = tg3_phy_reset_chanpat(tp); } if (err != 0) { return (err); } else { } { tg3_phydsp_write(tp, 32773U, 0U); tg3_writephy(tp, 23, 33280U); tg3_writephy(tp, 22, 0U); tg3_phy_toggle_auxctl_smdsp(tp, 0); tg3_writephy(tp, 9, phy9_orig); err = tg3_readphy(tp, 16, & reg32); } if (err != 0) { return (err); } else { } { reg32 = reg32 & 4294955007U; tg3_writephy(tp, 16, reg32); } return (0); } } static void tg3_carrier_off(struct tg3 *tp ) { { { netif_carrier_off(tp->dev); tp->link_up = 0; } return; } } static void tg3_warn_mgmt_link_flap(struct tg3 *tp ) { int tmp ; { { tmp = _tg3_flag(4, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { { netdev_warn((struct net_device const *)tp->dev, "Management side-band traffic will be interrupted during phy settings change\n"); } } else { } return; } } static int tg3_phy_reset(struct tg3 *tp ) { u32 val ; u32 cpmuctrl ; int err ; int tmp ; bool tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; { if (tp->pci_chip_rev_id >> 12 == 12U) { { val = (*(tp->read32))(tp, 26628U); _tw32_flush(tp, 26628U, val & 4292870143U, 0U); __const_udelay(171800UL); } } else { } { err = tg3_readphy(tp, 1, & val); tmp = tg3_readphy(tp, 1, & val); err = err | tmp; } if (err != 0) { return (-16); } else { } { tmp___0 = netif_running((struct net_device const *)tp->dev); } if ((int )tmp___0 && (int )tp->link_up) { { netif_carrier_off(tp->dev); tg3_link_report(tp); } } else { } if ((tp->pci_chip_rev_id >> 12) - 1U <= 2U) { { err = tg3_phy_reset_5703_4_5(tp); } if (err != 0) { return (err); } else { } goto out; } else { } cpmuctrl = 0U; if (tp->pci_chip_rev_id >> 12 == 22404U && tp->pci_chip_rev_id >> 8 != 358464U) { { cpmuctrl = (*(tp->read32))(tp, 13824U); } if ((cpmuctrl & 65536U) != 0U) { { (*(tp->write32))(tp, 13824U, cpmuctrl & 4294901759U); } } else { } } else { } { err = tg3_bmcr_reset(tp); } if (err != 0) { return (err); } else { } if ((cpmuctrl & 65536U) != 0U) { { val = 513U; tg3_phydsp_write(tp, 3848U, val); (*(tp->write32))(tp, 13824U, cpmuctrl); } } else { } if (tp->pci_chip_rev_id >> 8 == 358464U || tp->pci_chip_rev_id >> 8 == 357904U) { { val = (*(tp->read32))(tp, 13836U); } if ((val & 2031616U) == 1114112U) { { val = val & 4292935679U; __const_udelay(171800UL); _tw32_flush(tp, 13836U, val, 0U); } } else { } } else { } { tmp___1 = _tg3_flag(78, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 != 0 && (tp->phy_flags & 32U) != 0U) { return (0); } else { } { tg3_phy_apply_otp(tp); } if ((tp->phy_flags & 256U) != 0U) { { tg3_phy_toggle_apd(tp, 1); } } else { { tg3_phy_toggle_apd(tp, 0); } } out: ; if ((tp->phy_flags & 8192U) != 0U) { { tmp___2 = tg3_phy_toggle_auxctl_smdsp(tp, 1); } if (tmp___2 == 0) { { tg3_phydsp_write(tp, 8223U, 10922U); tg3_phydsp_write(tp, 10U, 803U); tg3_phy_toggle_auxctl_smdsp(tp, 0); } } else { } } else { } if ((tp->phy_flags & 16384U) != 0U) { { tg3_writephy(tp, 28, 36200U); tg3_writephy(tp, 28, 36200U); } } else { } if ((tp->phy_flags & 32768U) != 0U) { { tmp___3 = tg3_phy_toggle_auxctl_smdsp(tp, 1); } if (tmp___3 == 0) { { tg3_phydsp_write(tp, 10U, 12555U); tg3_phydsp_write(tp, 8223U, 38150U); tg3_phydsp_write(tp, 16415U, 5346U); tg3_phy_toggle_auxctl_smdsp(tp, 0); } } else { } } else if ((tp->phy_flags & 2048U) != 0U) { { tmp___4 = tg3_phy_toggle_auxctl_smdsp(tp, 1); } if (tmp___4 == 0) { { tg3_writephy(tp, 23, 10U); } if ((tp->phy_flags & 4096U) != 0U) { { tg3_writephy(tp, 21, 4363U); tg3_writephy(tp, 30, 20U); } } else { { tg3_writephy(tp, 21, 267U); } } { tg3_phy_toggle_auxctl_smdsp(tp, 0); } } else { } } else { } if ((tp->phy_id & 4294967280U) == 1610645584U) { { tg3_phy_auxctl_write(tp, 0, 19488U); } } else { { tmp___5 = _tg3_flag(30, (unsigned long *)(& tp->tg3_flags)); } if (tmp___5 != 0) { { err = tg3_phy_auxctl_read(tp, 0, & val); } if (err == 0) { { tg3_phy_auxctl_write(tp, 0, val | 16384U); } } else { } } else { } } { tmp___7 = _tg3_flag(30, (unsigned long *)(& tp->tg3_flags)); } if (tmp___7 != 0) { { tmp___6 = tg3_readphy(tp, 16, & val); } if (tmp___6 == 0) { { tg3_writephy(tp, 16, val | 1U); } } else { } } else { } if (tp->pci_chip_rev_id >> 12 == 12U) { { tg3_writephy(tp, 23, 18U); } } else { } if (tp->pci_chip_rev_id == 91627520U) { { tg3_phydsp_write(tp, 4091U, 16384U); } } else { } { tg3_phy_toggle_automdix(tp, 1); tg3_phy_set_wirespeed(tp); } return (0); } } __inline static u32 tg3_set_function_status(struct tg3 *tp , u32 newstat ) { u32 status ; u32 shift ; { if (tp->pci_chip_rev_id >> 12 == 22295U || tp->pci_chip_rev_id >> 12 == 22297U) { { status = tg3_ape_read32(tp, 8U); } } else { { status = (*(tp->read32))(tp, 13388U); } } shift = (u32 )((tp->pci_fn + 1) * 4); status = status & (u32 )(~ (3 << (int )shift)); status = status | (newstat << (int )shift); if (tp->pci_chip_rev_id >> 12 == 22295U || tp->pci_chip_rev_id >> 12 == 22297U) { { tg3_ape_write32(tp, 8U, status); } } else { { (*(tp->write32))(tp, 13388U, status); } } return (status >> 4); } } __inline static int tg3_pwrsrc_switch_to_vmain(struct tg3 *tp ) { int tmp ; int tmp___0 ; { { tmp = _tg3_flag(37, (unsigned long *)(& tp->tg3_flags)); } if (tmp == 0) { return (0); } else { } if ((tp->pci_chip_rev_id >> 12 == 22295U || tp->pci_chip_rev_id >> 12 == 22297U) || tp->pci_chip_rev_id >> 12 == 22304U) { { tmp___0 = tg3_ape_lock(tp, 7); } if (tmp___0 != 0) { return (-5); } else { } { tg3_set_function_status(tp, 1U); _tw32_flush(tp, 26632U, tp->grc_local_ctrl, 100U); tg3_ape_unlock(tp, 7); } } else { { _tw32_flush(tp, 26632U, tp->grc_local_ctrl, 100U); } } return (0); } } static void tg3_pwrsrc_die_with_vmain(struct tg3 *tp ) { u32 grc_local_ctrl ; int tmp ; { { tmp = _tg3_flag(37, (unsigned long *)(& tp->tg3_flags)); } if ((tmp == 0 || tp->pci_chip_rev_id >> 12 == 7U) || tp->pci_chip_rev_id >> 12 == 0U) { return; } else { } { grc_local_ctrl = tp->grc_local_ctrl | 4096U; _tw32_flush(tp, 26632U, grc_local_ctrl | 32768U, 100U); _tw32_flush(tp, 26632U, grc_local_ctrl, 100U); _tw32_flush(tp, 26632U, grc_local_ctrl | 32768U, 100U); } return; } } static void tg3_pwrsrc_switch_to_vaux(struct tg3 *tp ) { int tmp ; u32 grc_local_ctrl ; u32 no_gpio2 ; u32 grc_local_ctrl___0 ; { { tmp = _tg3_flag(37, (unsigned long *)(& tp->tg3_flags)); } if (tmp == 0) { return; } else { } if (tp->pci_chip_rev_id >> 12 == 7U || tp->pci_chip_rev_id >> 12 == 0U) { { _tw32_flush(tp, 26632U, tp->grc_local_ctrl | 63488U, 100U); } } else if ((unsigned int )(tp->pdev)->device == 5761U || (unsigned int )(tp->pdev)->device == 5768U) { { grc_local_ctrl = tp->grc_local_ctrl | 63488U; _tw32_flush(tp, 26632U, grc_local_ctrl, 100U); grc_local_ctrl = grc_local_ctrl | 65536U; _tw32_flush(tp, 26632U, grc_local_ctrl, 100U); grc_local_ctrl = grc_local_ctrl & 4294950911U; _tw32_flush(tp, 26632U, grc_local_ctrl, 100U); } } else { grc_local_ctrl___0 = 0U; if (tp->pci_chip_rev_id >> 12 == 9U) { { grc_local_ctrl___0 = grc_local_ctrl___0 | 64U; _tw32_flush(tp, 26632U, tp->grc_local_ctrl | grc_local_ctrl___0, 100U); } } else { } no_gpio2 = tp->nic_sram_data_cfg & 1048576U; grc_local_ctrl___0 = grc_local_ctrl___0 | 112640U; if (no_gpio2 != 0U) { grc_local_ctrl___0 = grc_local_ctrl___0 & 4294893567U; } else { } { _tw32_flush(tp, 26632U, tp->grc_local_ctrl | grc_local_ctrl___0, 100U); grc_local_ctrl___0 = grc_local_ctrl___0 | 16384U; _tw32_flush(tp, 26632U, tp->grc_local_ctrl | grc_local_ctrl___0, 100U); } if (no_gpio2 == 0U) { { grc_local_ctrl___0 = grc_local_ctrl___0 & 4294901759U; _tw32_flush(tp, 26632U, tp->grc_local_ctrl | grc_local_ctrl___0, 100U); } } else { } } return; } } static void tg3_frob_aux_power_5717(struct tg3 *tp , bool wol_enable ) { u32 msg ; int tmp ; int tmp___0 ; int tmp___1 ; { { msg = 0U; tmp = tg3_ape_lock(tp, 7); } if (tmp != 0) { return; } else { } { tmp___0 = _tg3_flag(4, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0) { msg = 2U; } else { { tmp___1 = _tg3_flag(49, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 != 0) { msg = 2U; } else if ((int )wol_enable) { msg = 2U; } else { } } { msg = tg3_set_function_status(tp, msg); } if ((msg & 4369U) != 0U) { goto done; } else { } if ((msg & 8738U) != 0U) { { tg3_pwrsrc_switch_to_vaux(tp); } } else { { tg3_pwrsrc_die_with_vmain(tp); } } done: { tg3_ape_unlock(tp, 7); } return; } } static void tg3_frob_aux_power(struct tg3 *tp , bool include_wol ) { bool need_vaux ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; struct net_device *dev_peer ; void *tmp___3 ; struct tg3 *tp_peer ; void *tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; { { need_vaux = 0; tmp = _tg3_flag(37, (unsigned long *)(& tp->tg3_flags)); } if (tmp == 0) { return; } else { { tmp___0 = _tg3_flag(77, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0) { return; } else { } } if ((tp->pci_chip_rev_id >> 12 == 22295U || tp->pci_chip_rev_id >> 12 == 22297U) || tp->pci_chip_rev_id >> 12 == 22304U) { if ((int )include_wol) { { tmp___1 = _tg3_flag(11, (unsigned long *)(& tp->tg3_flags)); tmp___2 = tmp___1 != 0; } } else { tmp___2 = 0; } { tg3_frob_aux_power_5717(tp, tmp___2); } return; } else { } if ((unsigned long )tp->pdev_peer != (unsigned long )((struct pci_dev *)0) && (unsigned long )tp->pdev_peer != (unsigned long )tp->pdev) { { tmp___3 = pci_get_drvdata(tp->pdev_peer); dev_peer = (struct net_device *)tmp___3; } if ((unsigned long )dev_peer != (unsigned long )((struct net_device *)0)) { { tmp___4 = netdev_priv((struct net_device const *)dev_peer); tp_peer = (struct tg3 *)tmp___4; tmp___5 = _tg3_flag(32, (unsigned long *)(& tp_peer->tg3_flags)); } if (tmp___5 != 0) { return; } else { } if ((int )include_wol) { { tmp___6 = _tg3_flag(11, (unsigned long *)(& tp_peer->tg3_flags)); } if (tmp___6 != 0) { need_vaux = 1; } else { goto _L; } } else { _L: /* CIL Label */ { tmp___7 = _tg3_flag(4, (unsigned long *)(& tp_peer->tg3_flags)); } if (tmp___7 != 0) { need_vaux = 1; } else { } } } else { } } else { } if ((int )include_wol) { { tmp___8 = _tg3_flag(11, (unsigned long *)(& tp->tg3_flags)); } if (tmp___8 != 0) { need_vaux = 1; } else { goto _L___0; } } else { _L___0: /* CIL Label */ { tmp___9 = _tg3_flag(4, (unsigned long *)(& tp->tg3_flags)); } if (tmp___9 != 0) { need_vaux = 1; } else { } } if ((int )need_vaux) { { tg3_pwrsrc_switch_to_vaux(tp); } } else { { tg3_pwrsrc_die_with_vmain(tp); } } return; } } static int tg3_5700_link_polarity(struct tg3 *tp , u32 speed ) { { if (tp->led_ctrl == 4096U) { return (1); } else if ((tp->phy_id & 4294967280U) == 1610645616U) { if (speed != 10U) { return (1); } else { } } else if (speed == 10U) { return (1); } else { } return (0); } } static bool tg3_phy_power_bug(struct tg3 *tp ) { { { if (tp->pci_chip_rev_id >> 12 == 7U) { goto case_7; } else { } if (tp->pci_chip_rev_id >> 12 == 2U) { goto case_2; } else { } if (tp->pci_chip_rev_id >> 12 == 8U) { goto case_8; } else { } if (tp->pci_chip_rev_id >> 12 == 22295U) { goto case_22295; } else { } if (tp->pci_chip_rev_id >> 12 == 22297U) { goto case_22297; } else { } if (tp->pci_chip_rev_id >> 12 == 22304U) { goto case_22304; } else { } goto switch_break; case_7: /* CIL Label */ ; case_2: /* CIL Label */ ; return (1); case_8: /* CIL Label */ ; if ((tp->phy_flags & 32U) != 0U) { return (1); } else { } return (0); case_22295: /* CIL Label */ ; if (tp->pci_fn == 0) { return (1); } else { } return (0); case_22297: /* CIL Label */ ; case_22304: /* CIL Label */ ; if ((tp->phy_flags & 16U) != 0U && tp->pci_fn == 0) { return (1); } else { } return (0); switch_break: /* CIL Label */ ; } return (0); } } static bool tg3_phy_led_bug(struct tg3 *tp ) { { { if (tp->pci_chip_rev_id >> 12 == 22297U) { goto case_22297; } else { } if (tp->pci_chip_rev_id >> 12 == 22304U) { goto case_22304; } else { } goto switch_break; case_22297: /* CIL Label */ ; case_22304: /* CIL Label */ ; if ((tp->phy_flags & 32U) != 0U && tp->pci_fn == 0) { return (1); } else { } return (0); switch_break: /* CIL Label */ ; } return (0); } } static void tg3_power_down_phy(struct tg3 *tp , bool do_low_power ) { u32 val ; u32 sg_dig_ctrl ; u32 tmp ; u32 serdes_cfg ; u32 tmp___0 ; u32 phytest ; u32 phy ; int tmp___1 ; int tmp___2 ; bool tmp___3 ; int tmp___4 ; bool tmp___5 ; { if ((tp->phy_flags & 1048576U) != 0U) { return; } else { } if ((tp->phy_flags & 16U) != 0U) { if (tp->pci_chip_rev_id >> 12 == 2U) { { tmp = (*(tp->read32))(tp, 1456U); sg_dig_ctrl = tmp; tmp___0 = (*(tp->read32))(tp, 1424U); serdes_cfg = tmp___0; sg_dig_ctrl = sg_dig_ctrl | 3221225472U; (*(tp->write32))(tp, 1456U, sg_dig_ctrl); (*(tp->write32))(tp, 1424U, serdes_cfg | 32768U); } } else { } return; } else { } if (tp->pci_chip_rev_id >> 12 == 12U) { { tg3_bmcr_reset(tp); val = (*(tp->read32))(tp, 26628U); _tw32_flush(tp, 26628U, val | 2097152U, 0U); __const_udelay(171800UL); } return; } else if ((tp->phy_flags & 64U) != 0U) { { tmp___2 = tg3_readphy(tp, 31, & phytest); } if (tmp___2 == 0) { { tg3_writephy(tp, 4, 0U); tg3_writephy(tp, 0, 4608U); tg3_writephy(tp, 31, phytest | 128U); tmp___1 = tg3_readphy(tp, 26, & phy); } if (tmp___1 == 0) { { phy = phy | 8U; tg3_writephy(tp, 26, phy); } } else { } { tg3_writephy(tp, 31, phytest); } } else { } return; } else if ((int )do_low_power) { { tmp___3 = tg3_phy_led_bug(tp); } if (tmp___3) { tmp___4 = 0; } else { tmp___4 = 1; } if (tmp___4) { { tg3_writephy(tp, 16, 8U); } } else { } { val = 432U; tg3_phy_auxctl_write(tp, 2, val); } } else { } { tmp___5 = tg3_phy_power_bug(tp); } if ((int )tmp___5) { return; } else { } if (tp->pci_chip_rev_id >> 8 == 358464U || tp->pci_chip_rev_id >> 8 == 357904U) { { val = (*(tp->read32))(tp, 13836U); val = val & 4292935679U; val = val | 1114112U; _tw32_flush(tp, 13836U, val, 0U); } } else { } { tg3_writephy(tp, 0, 2048U); } return; } } static int tg3_nvram_lock(struct tg3 *tp ) { int i ; u32 tmp ; int tmp___0 ; { { tmp___0 = _tg3_flag(13, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0) { if (tp->nvram_lock_cnt == 0) { { (*(tp->write32))(tp, 28704U, 2U); i = 0; } goto ldv_57338; ldv_57337: { tmp = (*(tp->read32))(tp, 28704U); } if ((tmp & 512U) != 0U) { goto ldv_57336; } else { } { __const_udelay(85900UL); i = i + 1; } ldv_57338: ; if (i <= 7999) { goto ldv_57337; } else { } ldv_57336: ; if (i == 8000) { { (*(tp->write32))(tp, 28704U, 32U); } return (-19); } else { } } else { } tp->nvram_lock_cnt = tp->nvram_lock_cnt + 1; } else { } return (0); } } static void tg3_nvram_unlock(struct tg3 *tp ) { int tmp ; { { tmp = _tg3_flag(13, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { if (tp->nvram_lock_cnt > 0) { tp->nvram_lock_cnt = tp->nvram_lock_cnt - 1; } else { } if (tp->nvram_lock_cnt == 0) { { _tw32_flush(tp, 28704U, 32U, 0U); } } else { } } else { } return; } } static void tg3_enable_nvram_access(struct tg3 *tp ) { u32 nvaccess ; u32 tmp ; int tmp___0 ; int tmp___1 ; { { tmp___0 = _tg3_flag(73, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0) { { tmp___1 = _tg3_flag(50, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 == 0) { { tmp = (*(tp->read32))(tp, 28708U); nvaccess = tmp; (*(tp->write32))(tp, 28708U, nvaccess | 1U); } } else { } } else { } return; } } static void tg3_disable_nvram_access(struct tg3 *tp ) { u32 nvaccess ; u32 tmp ; int tmp___0 ; int tmp___1 ; { { tmp___0 = _tg3_flag(73, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0) { { tmp___1 = _tg3_flag(50, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 == 0) { { tmp = (*(tp->read32))(tp, 28708U); nvaccess = tmp; (*(tp->write32))(tp, 28708U, nvaccess & 4294967294U); } } else { } } else { } return; } } static int tg3_nvram_read_using_eeprom(struct tg3 *tp , u32 offset , u32 *val ) { u32 tmp ; int i ; u32 tmp___0 ; __u32 tmp___1 ; { if (offset > 65535U || (offset & 3U) != 0U) { return (-22); } else { } { tmp___0 = (*(tp->read32))(tp, 26680U); tmp = tmp___0 & 1677656064U; (*(tp->write32))(tp, 26680U, (tmp | (offset & 65535U)) | 2181038080U); i = 0; } goto ldv_57359; ldv_57358: { tmp = (*(tp->read32))(tp, 26680U); } if ((tmp & 1073741824U) != 0U) { goto ldv_57357; } else { } { msleep(1U); i = i + 1; } ldv_57359: ; if (i <= 999) { goto ldv_57358; } else { } ldv_57357: ; if ((tmp & 1073741824U) == 0U) { return (-16); } else { } { tmp = (*(tp->read32))(tp, 26684U); tmp___1 = __fswab32(tmp); *val = tmp___1; } return (0); } } static int tg3_nvram_exec_cmd(struct tg3 *tp , u32 nvram_cmd ) { int i ; u32 tmp ; { { (*(tp->write32))(tp, 28672U, nvram_cmd); i = 0; } goto ldv_57367; ldv_57366: { usleep_range(10UL, 40UL); tmp = (*(tp->read32))(tp, 28672U); } if ((tmp & 8U) != 0U) { { __const_udelay(42950UL); } goto ldv_57365; } else { } i = i + 1; ldv_57367: ; if (i <= 4999) { goto ldv_57366; } else { } ldv_57365: ; if (i == 5000) { return (-16); } else { } return (0); } } static u32 tg3_nvram_phys_addr(struct tg3 *tp , u32 addr ) { int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = _tg3_flag(13, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { { tmp___0 = _tg3_flag(14, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0) { { tmp___1 = _tg3_flag(38, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 != 0) { { tmp___2 = _tg3_flag(48, (unsigned long *)(& tp->tg3_flags)); } if (tmp___2 == 0) { if (tp->nvram_jedecnum == 31U) { addr = (addr / tp->nvram_pagesize << 9) + addr % tp->nvram_pagesize; } else { } } else { } } else { } } else { } } else { } return (addr); } } static u32 tg3_nvram_logical_addr(struct tg3 *tp , u32 addr ) { int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = _tg3_flag(13, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { { tmp___0 = _tg3_flag(14, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0) { { tmp___1 = _tg3_flag(38, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 != 0) { { tmp___2 = _tg3_flag(48, (unsigned long *)(& tp->tg3_flags)); } if (tmp___2 == 0) { if (tp->nvram_jedecnum == 31U) { addr = (addr >> 9) * tp->nvram_pagesize + (addr & 511U); } else { } } else { } } else { } } else { } } else { } return (addr); } } static int tg3_nvram_read(struct tg3 *tp , u32 offset , u32 *val ) { int ret ; int tmp ; int tmp___0 ; { { tmp___0 = _tg3_flag(13, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 == 0) { { tmp = tg3_nvram_read_using_eeprom(tp, offset, val); } return (tmp); } else { } { offset = tg3_nvram_phys_addr(tp, offset); } if (offset > 16777215U) { return (-22); } else { } { ret = tg3_nvram_lock(tp); } if (ret != 0) { return (ret); } else { } { tg3_enable_nvram_access(tp); (*(tp->write32))(tp, 28684U, offset); ret = tg3_nvram_exec_cmd(tp, 408U); } if (ret == 0) { { *val = (*(tp->read32))(tp, 28688U); } } else { } { tg3_disable_nvram_access(tp); tg3_nvram_unlock(tp); } return (ret); } } static int tg3_nvram_read_be32(struct tg3 *tp , u32 offset , __be32 *val ) { u32 v ; int res ; int tmp ; __u32 tmp___0 ; { { tmp = tg3_nvram_read(tp, offset, & v); res = tmp; } if (res == 0) { { tmp___0 = __fswab32(v); *val = tmp___0; } } else { } return (res); } } static int tg3_nvram_write_block_using_eeprom(struct tg3 *tp , u32 offset , u32 len , u8 *buf ) { int i ; int j ; int rc ; u32 val ; u32 addr ; __be32 data ; __u32 tmp___4 ; __u32 tmp___5 ; { rc = 0; i = 0; goto ldv_57406; ldv_57405: { addr = offset + (u32 )i; __memcpy((void *)(& data), (void const *)buf + (unsigned long )i, 4UL); tmp___4 = __fswab32(data); tmp___5 = __fswab32(tmp___4); (*(tp->write32))(tp, 26684U, tmp___5); val = (*(tp->read32))(tp, 26680U); (*(tp->write32))(tp, 26680U, val | 1073741824U); val = val & 1677656064U; (*(tp->write32))(tp, 26680U, (val | (addr & 65535U)) | 33554432U); j = 0; } goto ldv_57403; ldv_57402: { val = (*(tp->read32))(tp, 26680U); } if ((val & 1073741824U) != 0U) { goto ldv_57401; } else { } { msleep(1U); j = j + 1; } ldv_57403: ; if (j <= 999) { goto ldv_57402; } else { } ldv_57401: ; if ((val & 1073741824U) == 0U) { rc = -16; goto ldv_57404; } else { } i = i + 4; ldv_57406: ; if ((u32 )i < len) { goto ldv_57405; } else { } ldv_57404: ; return (rc); } } static int tg3_nvram_write_block_unbuffered(struct tg3 *tp , u32 offset , u32 len , u8 *buf ) { int ret ; u32 pagesize ; u32 pagemask ; u32 nvram_cmd ; u8 *tmp ; void *tmp___0 ; int j ; u32 phy_addr ; u32 page_off ; u32 size ; int tmp___1 ; int tmp___2 ; int tmp___3 ; __be32 data ; __u32 tmp___4 ; { { ret = 0; pagesize = tp->nvram_pagesize; pagemask = pagesize - 1U; tmp___0 = kmalloc((size_t )pagesize, 208U); tmp = (u8 *)tmp___0; } if ((unsigned long )tmp == (unsigned long )((u8 *)0U)) { return (-12); } else { } goto ldv_57431; ldv_57430: phy_addr = offset & ~ pagemask; j = 0; goto ldv_57424; ldv_57423: { ret = tg3_nvram_read_be32(tp, phy_addr + (u32 )j, (__be32 *)tmp + (unsigned long )j); } if (ret != 0) { goto ldv_57422; } else { } j = j + 4; ldv_57424: ; if ((u32 )j < pagesize) { goto ldv_57423; } else { } ldv_57422: ; if (ret != 0) { goto ldv_57425; } else { } page_off = offset & pagemask; size = pagesize; if (len < size) { size = len; } else { } { len = len - size; __memcpy((void *)tmp + (unsigned long )page_off, (void const *)buf, (size_t )size); offset = offset + (pagesize - page_off); tg3_enable_nvram_access(tp); nvram_cmd = 65560U; tmp___1 = tg3_nvram_exec_cmd(tp, nvram_cmd); } if (tmp___1 != 0) { goto ldv_57425; } else { } { (*(tp->write32))(tp, 28684U, phy_addr); nvram_cmd = 504U; tmp___2 = tg3_nvram_exec_cmd(tp, nvram_cmd); } if (tmp___2 != 0) { goto ldv_57425; } else { } { nvram_cmd = 65560U; tmp___3 = tg3_nvram_exec_cmd(tp, nvram_cmd); } if (tmp___3 != 0) { goto ldv_57425; } else { } j = 0; goto ldv_57429; ldv_57428: { data = *((__be32 *)tmp + (unsigned long )j); tmp___4 = __fswab32(data); (*(tp->write32))(tp, 28680U, tmp___4); (*(tp->write32))(tp, 28684U, phy_addr + (u32 )j); nvram_cmd = 56U; } if (j == 0) { nvram_cmd = nvram_cmd | 128U; } else if ((u32 )j == pagesize - 4U) { nvram_cmd = nvram_cmd | 256U; } else { } { ret = tg3_nvram_exec_cmd(tp, nvram_cmd); } if (ret != 0) { goto ldv_57427; } else { } j = j + 4; ldv_57429: ; if ((u32 )j < pagesize) { goto ldv_57428; } else { } ldv_57427: ; if (ret != 0) { goto ldv_57425; } else { } ldv_57431: ; if (len != 0U) { goto ldv_57430; } else { } ldv_57425: { nvram_cmd = 131096U; tg3_nvram_exec_cmd(tp, nvram_cmd); kfree((void const *)tmp); } return (ret); } } static int tg3_nvram_write_block_buffered(struct tg3 *tp , u32 offset , u32 len , u8 *buf ) { int i ; int ret ; u32 page_off ; u32 phy_addr ; u32 nvram_cmd ; __be32 data ; __u32 tmp ; int tmp___0 ; int tmp___1 ; u32 cmd ; int tmp___2 ; int tmp___3 ; { ret = 0; i = 0; goto ldv_57447; ldv_57446: { __memcpy((void *)(& data), (void const *)buf + (unsigned long )i, 4UL); tmp = __fswab32(data); (*(tp->write32))(tp, 28680U, tmp); page_off = offset % tp->nvram_pagesize; phy_addr = tg3_nvram_phys_addr(tp, offset); nvram_cmd = 56U; } if (page_off == 0U || i == 0) { nvram_cmd = nvram_cmd | 128U; } else { } if (page_off == tp->nvram_pagesize - 4U) { nvram_cmd = nvram_cmd | 256U; } else { } if ((u32 )i == len - 4U) { nvram_cmd = nvram_cmd | 256U; } else { } if ((nvram_cmd & 128U) != 0U) { { (*(tp->write32))(tp, 28684U, phy_addr); } } else { { tmp___0 = _tg3_flag(38, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 == 0) { { (*(tp->write32))(tp, 28684U, phy_addr); } } else { { tmp___1 = _tg3_flag(76, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 == 0) { { (*(tp->write32))(tp, 28684U, phy_addr); } } else { } } } if (tp->pci_chip_rev_id >> 12 != 6U) { { tmp___2 = _tg3_flag(75, (unsigned long *)(& tp->tg3_flags)); } if (tmp___2 == 0) { if (tp->nvram_jedecnum == 32U) { if ((nvram_cmd & 128U) != 0U) { { cmd = 65560U; ret = tg3_nvram_exec_cmd(tp, cmd); } if (ret != 0) { goto ldv_57445; } else { } } else { } } else { } } else { } } else { } { tmp___3 = _tg3_flag(38, (unsigned long *)(& tp->tg3_flags)); } if (tmp___3 == 0) { nvram_cmd = nvram_cmd | 384U; } else { } { ret = tg3_nvram_exec_cmd(tp, nvram_cmd); } if (ret != 0) { goto ldv_57445; } else { } i = i + 4; offset = offset + 4U; ldv_57447: ; if ((u32 )i < len) { goto ldv_57446; } else { } ldv_57445: ; return (ret); } } static int tg3_nvram_write_block(struct tg3 *tp , u32 offset , u32 len , u8 *buf ) { int ret ; int tmp ; u32 grc_mode ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; { { tmp = _tg3_flag(12, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { { _tw32_flush(tp, 26632U, tp->grc_local_ctrl & 4294934527U, 0U); __const_udelay(171800UL); } } else { } { tmp___4 = _tg3_flag(13, (unsigned long *)(& tp->tg3_flags)); } if (tmp___4 == 0) { { ret = tg3_nvram_write_block_using_eeprom(tp, offset, len, buf); } } else { { ret = tg3_nvram_lock(tp); } if (ret != 0) { return (ret); } else { } { tg3_enable_nvram_access(tp); tmp___0 = _tg3_flag(73, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0) { { tmp___1 = _tg3_flag(50, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 == 0) { { (*(tp->write32))(tp, 28712U, 1030U); } } else { } } else { } { grc_mode = (*(tp->read32))(tp, 26624U); (*(tp->write32))(tp, 26624U, grc_mode | 2097152U); tmp___2 = _tg3_flag(14, (unsigned long *)(& tp->tg3_flags)); } if (tmp___2 != 0) { { ret = tg3_nvram_write_block_buffered(tp, offset, len, buf); } } else { { tmp___3 = _tg3_flag(38, (unsigned long *)(& tp->tg3_flags)); } if (tmp___3 == 0) { { ret = tg3_nvram_write_block_buffered(tp, offset, len, buf); } } else { { ret = tg3_nvram_write_block_unbuffered(tp, offset, len, buf); } } } { grc_mode = (*(tp->read32))(tp, 26624U); (*(tp->write32))(tp, 26624U, grc_mode & 4292870143U); tg3_disable_nvram_access(tp); tg3_nvram_unlock(tp); } } { tmp___5 = _tg3_flag(12, (unsigned long *)(& tp->tg3_flags)); } if (tmp___5 != 0) { { _tw32_flush(tp, 26632U, tp->grc_local_ctrl, 0U); __const_udelay(171800UL); } } else { } return (ret); } } static int tg3_pause_cpu(struct tg3 *tp , u32 cpu_base ) { int i ; int iters ; u32 tmp ; int tmp___0 ; { iters = 10000; i = 0; goto ldv_57464; ldv_57463: { (*(tp->write32))(tp, cpu_base + 4U, 4294967295U); (*(tp->write32))(tp, cpu_base, 1024U); tmp = (*(tp->read32))(tp, cpu_base); } if ((tmp & 1024U) != 0U) { goto ldv_57462; } else { } { tmp___0 = pci_channel_offline(tp->pdev); } if (tmp___0 != 0) { return (-16); } else { } i = i + 1; ldv_57464: ; if (i <= 9999) { goto ldv_57463; } else { } ldv_57462: ; return (i == 10000 ? -16 : 0); } } static int tg3_rxcpu_pause(struct tg3 *tp ) { int rc ; int tmp ; { { tmp = tg3_pause_cpu(tp, 20480U); rc = tmp; (*(tp->write32))(tp, 20484U, 4294967295U); _tw32_flush(tp, 20480U, 1024U, 0U); __const_udelay(42950UL); } return (rc); } } static int tg3_txcpu_pause(struct tg3 *tp ) { int tmp ; { { tmp = tg3_pause_cpu(tp, 21504U); } return (tmp); } } static void tg3_resume_cpu(struct tg3 *tp , u32 cpu_base ) { { { (*(tp->write32))(tp, cpu_base + 4U, 4294967295U); _tw32_flush(tp, cpu_base, 0U, 0U); } return; } } static void tg3_rxcpu_resume(struct tg3 *tp ) { { { tg3_resume_cpu(tp, 20480U); } return; } } static int tg3_halt_cpu(struct tg3 *tp , u32 cpu_base ) { int rc ; long tmp ; int tmp___0 ; long tmp___1 ; u32 val ; u32 tmp___2 ; int tmp___3 ; int tmp___4 ; { { tmp = ldv__builtin_expect(cpu_base == 21504U, 0L); } if (tmp != 0L) { { tmp___0 = _tg3_flag(71, (unsigned long *)(& tp->tg3_flags)); tmp___1 = ldv__builtin_expect(tmp___0 != 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/ethernet/broadcom/tg3.c"), "i" (3638), "i" (12UL)); __builtin_unreachable(); } } else { } } else { } if (tp->pci_chip_rev_id >> 12 == 12U) { { tmp___2 = (*(tp->read32))(tp, 26768U); val = tmp___2; (*(tp->write32))(tp, 26768U, val | 4194304U); } return (0); } else { } if (cpu_base == 20480U) { { rc = tg3_rxcpu_pause(tp); } } else { { tmp___3 = _tg3_flag(79, (unsigned long *)(& tp->tg3_flags)); } if (tmp___3 != 0) { return (0); } else { } { rc = tg3_txcpu_pause(tp); } } if (rc != 0) { { netdev_err((struct net_device const *)tp->dev, "%s timed out, %s CPU\n", "tg3_halt_cpu", cpu_base == 20480U ? (char *)"RX" : (char *)"TX"); } return (-19); } else { } { tmp___4 = _tg3_flag(13, (unsigned long *)(& tp->tg3_flags)); } if (tmp___4 != 0) { { (*(tp->write32))(tp, 28704U, 16U); } } else { } return (0); } } static int tg3_fw_data_len(struct tg3 *tp , struct tg3_firmware_hdr const *fw_hdr ) { int fw_len ; __u32 tmp ; { if (tp->fw_len == 4294967295U) { { tmp = __fswab32(fw_hdr->len); fw_len = (int )tmp; } } else { fw_len = (int )(tp->fw)->size; } return ((int )(((unsigned long )fw_len - 12UL) / 4UL)); } } static int tg3_load_firmware_cpu(struct tg3 *tp , u32 cpu_base , u32 cpu_scratch_base , int cpu_scratch_size , struct tg3_firmware_hdr const *fw_hdr ) { int err ; int i ; void (*write_op)(struct tg3 * , u32 , u32 ) ; int total_len ; int tmp ; int tmp___0 ; int lock_err ; int tmp___1 ; u32 tmp___2 ; u32 *fw_data ; __u32 tmp___3 ; __u32 tmp___4 ; int tmp___5 ; __u32 tmp___6 ; __u32 tmp___7 ; { total_len = (int )(tp->fw)->size; if (cpu_base == 21504U) { { tmp = _tg3_flag(71, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { { netdev_err((struct net_device const *)tp->dev, "%s: Trying to load TX cpu firmware which is 5705\n", "tg3_load_firmware_cpu"); } return (-22); } else { } } else { } { tmp___0 = _tg3_flag(71, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0 && tp->pci_chip_rev_id >> 12 != 358246U) { write_op = & tg3_write_mem; } else { write_op = & tg3_write_indirect_reg32; } if (tp->pci_chip_rev_id >> 12 != 358246U) { { tmp___1 = tg3_nvram_lock(tp); lock_err = tmp___1; err = tg3_halt_cpu(tp, cpu_base); } if (lock_err == 0) { { tg3_nvram_unlock(tp); } } else { } if (err != 0) { goto out; } else { } i = 0; goto ldv_57509; ldv_57508: { (*write_op)(tp, cpu_scratch_base + (u32 )i, 0U); i = (int )((unsigned int )i + 4U); } ldv_57509: ; if (i < cpu_scratch_size) { goto ldv_57508; } else { } { (*(tp->write32))(tp, cpu_base + 4U, 4294967295U); tmp___2 = (*(tp->read32))(tp, cpu_base); (*(tp->write32))(tp, cpu_base, tmp___2 | 1024U); } } else { total_len = (int )((unsigned int )total_len - 12U); fw_hdr = fw_hdr + 1; } ldv_57515: fw_data = (u32 *)fw_hdr + 1U; i = 0; goto ldv_57513; ldv_57512: { tmp___3 = __fswab32(*(fw_data + (unsigned long )i)); tmp___4 = __fswab32(fw_hdr->base_addr); (*write_op)(tp, (cpu_scratch_base + (tmp___4 & 65535U)) + (u32 )((unsigned long )i) * 4U, tmp___3); i = i + 1; } ldv_57513: { tmp___5 = tg3_fw_data_len(tp, fw_hdr); } if (i < tmp___5) { goto ldv_57512; } else { } { tmp___6 = __fswab32(fw_hdr->len); total_len = (int )((unsigned int )total_len - tmp___6); tmp___7 = __fswab32(fw_hdr->len); fw_hdr = fw_hdr + (unsigned long )tmp___7; } if (total_len > 0) { goto ldv_57515; } else { } err = 0; out: ; return (err); } } static int tg3_pause_cpu_and_set_pc(struct tg3 *tp , u32 cpu_base , u32 pc ) { int i ; int iters ; u32 tmp ; { { iters = 5; (*(tp->write32))(tp, cpu_base + 4U, 4294967295U); _tw32_flush(tp, cpu_base + 28U, pc, 0U); i = 0; } goto ldv_57526; ldv_57525: { tmp = (*(tp->read32))(tp, cpu_base + 28U); } if (tmp == pc) { goto ldv_57524; } else { } { (*(tp->write32))(tp, cpu_base + 4U, 4294967295U); (*(tp->write32))(tp, cpu_base, 1024U); _tw32_flush(tp, cpu_base + 28U, pc, 0U); __const_udelay(4295000UL); i = i + 1; } ldv_57526: ; if (i <= 4) { goto ldv_57525; } else { } ldv_57524: ; return (i == 5 ? -16 : 0); } } static int tg3_load_5701_a0_firmware_fix(struct tg3 *tp ) { struct tg3_firmware_hdr const *fw_hdr ; int err ; __u32 tmp ; __u32 tmp___0 ; u32 tmp___1 ; { { fw_hdr = (struct tg3_firmware_hdr const *)(tp->fw)->data; err = tg3_load_firmware_cpu(tp, 20480U, 196608U, 16384, fw_hdr); } if (err != 0) { return (err); } else { } { err = tg3_load_firmware_cpu(tp, 21504U, 212992U, 16384, fw_hdr); } if (err != 0) { return (err); } else { } { tmp = __fswab32(fw_hdr->base_addr); err = tg3_pause_cpu_and_set_pc(tp, 20480U, tmp); } if (err != 0) { { tmp___0 = __fswab32(fw_hdr->base_addr); tmp___1 = (*(tp->read32))(tp, 20508U); netdev_err((struct net_device const *)tp->dev, "%s fails to set RX CPU PC, is %08x should be %08x\n", "tg3_load_5701_a0_firmware_fix", tmp___1, tmp___0); } return (-19); } else { } { tg3_rxcpu_resume(tp); } return (0); } } static int tg3_validate_rxcpu_state(struct tg3 *tp ) { int iters ; int i ; u32 val ; u32 tmp ; { iters = 1000; i = 0; goto ldv_57541; ldv_57540: { tmp = (*(tp->read32))(tp, 20532U); } if (tmp == 81U) { goto ldv_57539; } else { } { __const_udelay(42950UL); i = i + 1; } ldv_57541: ; if (i <= 999) { goto ldv_57540; } else { } ldv_57539: ; if (i == 1000) { { netdev_err((struct net_device const *)tp->dev, "Boot code not ready for service patches\n"); } return (-16); } else { } { val = tg3_read_indirect_reg32(tp, 261324U); } if ((val & 255U) != 0U) { { netdev_warn((struct net_device const *)tp->dev, "Other patches exist. Not downloading EEE patch\n"); } return (-17); } else { } return (0); } } static void tg3_load_57766_firmware(struct tg3 *tp ) { struct tg3_firmware_hdr *fw_hdr ; int tmp ; int tmp___0 ; __u32 tmp___1 ; int tmp___2 ; { { tmp = _tg3_flag(59, (unsigned long *)(& tp->tg3_flags)); } if (tmp == 0) { return; } else { } { tmp___0 = tg3_validate_rxcpu_state(tp); } if (tmp___0 != 0) { return; } else { } if ((unsigned long )tp->fw == (unsigned long )((struct firmware const *)0)) { return; } else { } { fw_hdr = (struct tg3_firmware_hdr *)(tp->fw)->data; tmp___1 = __fswab32(fw_hdr->base_addr); } if (tmp___1 != 196608U) { return; } else { } { tmp___2 = tg3_rxcpu_pause(tp); } if (tmp___2 != 0) { return; } else { } { tg3_load_firmware_cpu(tp, 0U, 196608U, 0, (struct tg3_firmware_hdr const *)fw_hdr); tg3_rxcpu_resume(tp); } return; } } static int tg3_load_tso_firmware(struct tg3 *tp ) { struct tg3_firmware_hdr const *fw_hdr ; unsigned long cpu_base ; unsigned long cpu_scratch_base ; unsigned long cpu_scratch_size ; int err ; int tmp ; __u32 tmp___0 ; __u32 tmp___1 ; u32 tmp___2 ; { { tmp = _tg3_flag(39, (unsigned long *)(& tp->tg3_flags)); } if (tmp == 0) { return (0); } else { } fw_hdr = (struct tg3_firmware_hdr const *)(tp->fw)->data; cpu_scratch_size = (unsigned long )tp->fw_len; if (tp->pci_chip_rev_id >> 12 == 3U) { cpu_base = 20480UL; cpu_scratch_base = 65536UL; } else { cpu_base = 21504UL; cpu_scratch_base = 212992UL; cpu_scratch_size = 16384UL; } { err = tg3_load_firmware_cpu(tp, (u32 )cpu_base, (u32 )cpu_scratch_base, (int )cpu_scratch_size, fw_hdr); } if (err != 0) { return (err); } else { } { tmp___0 = __fswab32(fw_hdr->base_addr); err = tg3_pause_cpu_and_set_pc(tp, (u32 )cpu_base, tmp___0); } if (err != 0) { { tmp___1 = __fswab32(fw_hdr->base_addr); tmp___2 = (*(tp->read32))(tp, (u32 )cpu_base + 28U); netdev_err((struct net_device const *)tp->dev, "%s fails to set CPU PC, is %08x should be %08x\n", "tg3_load_tso_firmware", tmp___2, tmp___1); } return (-19); } else { } { tg3_resume_cpu(tp, (u32 )cpu_base); } return (0); } } static void __tg3_set_one_mac_addr(struct tg3 *tp , u8 *mac_addr , int index ) { u32 addr_high ; u32 addr_low ; { addr_high = (u32 )(((int )*mac_addr << 8) | (int )*(mac_addr + 1UL)); addr_low = (u32 )(((((int )*(mac_addr + 2UL) << 24) | ((int )*(mac_addr + 3UL) << 16)) | ((int )*(mac_addr + 4UL) << 8)) | (int )*(mac_addr + 5UL)); if (index <= 3) { { (*(tp->write32))(tp, (u32 )((index + 130) * 8), addr_high); (*(tp->write32))(tp, (u32 )(index * 8 + 1044), addr_low); } } else { { index = index + -4; (*(tp->write32))(tp, (u32 )((index + 166) * 8), addr_high); (*(tp->write32))(tp, (u32 )(index * 8 + 1332), addr_low); } } return; } } static void __tg3_set_mac_addr(struct tg3 *tp , bool skip_mac_1 ) { u32 addr_high ; int i ; { i = 0; goto ldv_57570; ldv_57569: ; if (i == 1 && (int )skip_mac_1) { goto ldv_57568; } else { } { __tg3_set_one_mac_addr(tp, (tp->dev)->dev_addr, i); } ldv_57568: i = i + 1; ldv_57570: ; if (i <= 3) { goto ldv_57569; } else { } if ((tp->pci_chip_rev_id >> 12) - 1U <= 1U) { i = 4; goto ldv_57573; ldv_57572: { __tg3_set_one_mac_addr(tp, (tp->dev)->dev_addr, i); i = i + 1; } ldv_57573: ; if (i <= 15) { goto ldv_57572; } else { } } else { } { addr_high = (u32 )((((((int )*((tp->dev)->dev_addr) + (int )*((tp->dev)->dev_addr + 1UL)) + (int )*((tp->dev)->dev_addr + 2UL)) + (int )*((tp->dev)->dev_addr + 3UL)) + (int )*((tp->dev)->dev_addr + 4UL)) + (int )*((tp->dev)->dev_addr + 5UL)) & 1023U; (*(tp->write32))(tp, 1080U, addr_high); } return; } } static void tg3_enable_register_access(struct tg3 *tp ) { { { pci_write_config_dword((struct pci_dev const *)tp->pdev, 104, tp->misc_host_ctrl); } return; } } static int tg3_power_up(struct tg3 *tp ) { int err ; { { tg3_enable_register_access(tp); err = pci_set_power_state(tp->pdev, 0); } if (err == 0) { { tg3_pwrsrc_switch_to_vmain(tp); } } else { { netdev_err((struct net_device const *)tp->dev, "Transition to D0 failed\n"); } } return (err); } } static int tg3_setup_phy(struct tg3 *tp , bool force_reset ) ; static int tg3_power_down_prepare(struct tg3 *tp ) { u32 misc_host_ctrl ; bool device_should_wake ; bool do_low_power ; int tmp ; bool tmp___0 ; int tmp___1 ; int tmp___2 ; struct phy_device *phydev ; u32 phyid ; u32 advertising ; int tmp___3 ; int tmp___4 ; int tmp___5 ; u32 val ; int i ; u32 val___0 ; int tmp___6 ; int tmp___7 ; u32 mac_mode ; u32 speed ; int tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; int tmp___12 ; int tmp___13 ; int tmp___14 ; int tmp___15 ; u32 base_val ; u32 newbits1 ; u32 newbits2 ; int tmp___16 ; u32 newbits3 ; int tmp___17 ; int tmp___18 ; int tmp___19 ; int tmp___20 ; int tmp___21 ; int tmp___22 ; int tmp___23 ; u32 val___1 ; u32 tmp___24 ; int err ; int tmp___25 ; int tmp___26 ; { { tg3_enable_register_access(tp); tmp = _tg3_flag(58, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { { pcie_capability_set_word(tp->pdev, 16, 256); } } else { } { misc_host_ctrl = (*(tp->read32))(tp, 104U); (*(tp->write32))(tp, 104U, misc_host_ctrl | 2U); tmp___0 = device_may_wakeup(& (tp->pdev)->dev); } if ((int )tmp___0) { { tmp___1 = _tg3_flag(11, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 != 0) { tmp___2 = 1; } else { tmp___2 = 0; } } else { tmp___2 = 0; } { device_should_wake = (bool )tmp___2; tmp___5 = _tg3_flag(52, (unsigned long *)(& tp->tg3_flags)); } if (tmp___5 != 0) { do_low_power = 0; if (*((unsigned int *)tp + 1135UL) == 2U) { { phydev = (tp->mdio_bus)->phy_map[(int )tp->phy_addr]; tp->phy_flags = tp->phy_flags | 1U; tp->link_config.speed = (u16 )phydev->speed; tp->link_config.duplex = (u8 )phydev->duplex; tp->link_config.autoneg = (u8 )phydev->autoneg; tp->link_config.advertising = phydev->advertising; advertising = 8385U; tmp___4 = _tg3_flag(4, (unsigned long *)(& tp->tg3_flags)); } if (tmp___4 != 0 || (int )device_should_wake) { { tmp___3 = _tg3_flag(10, (unsigned long *)(& tp->tg3_flags)); } if (tmp___3 != 0) { advertising = advertising | 14U; } else { advertising = advertising | 2U; } } else { } { phydev->advertising = advertising; phy_start_aneg(phydev); phyid = (phydev->drv)->phy_id & (phydev->drv)->phy_id_mask; } if (phyid != 21216368U) { phyid = phyid & 4294966272U; if ((phyid == 2121728U || phyid == 21216256U) || phyid == 56777728U) { do_low_power = 1; } else { } } else { } } else { } } else { do_low_power = 1; if ((tp->phy_flags & 1U) == 0U) { tp->phy_flags = tp->phy_flags | 1U; } else { } if ((tp->phy_flags & 48U) == 0U) { { tg3_setup_phy(tp, 0); } } else { } } if (tp->pci_chip_rev_id >> 12 == 12U) { { val = (*(tp->read32))(tp, 26768U); (*(tp->write32))(tp, 26768U, val | 536870912U); } } else { { tmp___6 = _tg3_flag(4, (unsigned long *)(& tp->tg3_flags)); } if (tmp___6 == 0) { i = 0; goto ldv_57599; ldv_57598: { tg3_read_mem(tp, 3072U, & val___0); } if (val___0 == 3030026667U) { goto ldv_57597; } else { } { msleep(1U); i = i + 1; } ldv_57599: ; if (i <= 199) { goto ldv_57598; } else { } ldv_57597: ; } else { } } { tmp___7 = _tg3_flag(24, (unsigned long *)(& tp->tg3_flags)); } if (tmp___7 != 0) { { tg3_write_mem(tp, 3376U, 1196163079U); } } else { } if ((int )device_should_wake) { if ((tp->phy_flags & 16U) == 0U) { if ((int )do_low_power && (tp->phy_flags & 64U) == 0U) { { tg3_phy_auxctl_write(tp, 2, 88U); __const_udelay(171800UL); } } else { } if ((tp->phy_flags & 32U) != 0U) { mac_mode = 8U; } else if ((tp->phy_flags & 1048576U) != 0U) { if ((unsigned int )tp->link_config.active_speed == 1000U) { mac_mode = 8U; } else { mac_mode = 4U; } } else { mac_mode = 4U; } mac_mode = mac_mode | (tp->mac_mode & 1024U); if (tp->pci_chip_rev_id >> 12 == 7U) { { tmp___8 = _tg3_flag(10, (unsigned long *)(& tp->tg3_flags)); speed = tmp___8 != 0 ? 100U : 10U; tmp___9 = tg3_5700_link_polarity(tp, speed); } if (tmp___9 != 0) { mac_mode = mac_mode | 1024U; } else { mac_mode = mac_mode & 4294966271U; } } else { } } else { mac_mode = 12U; } { tmp___10 = _tg3_flag(73, (unsigned long *)(& tp->tg3_flags)); } if (tmp___10 == 0) { { (*(tp->write32))(tp, 1036U, tp->led_ctrl); } } else { } { mac_mode = mac_mode | 262144U; tmp___11 = _tg3_flag(71, (unsigned long *)(& tp->tg3_flags)); } if (tmp___11 != 0) { { tmp___12 = _tg3_flag(74, (unsigned long *)(& tp->tg3_flags)); } if (tmp___12 == 0) { { tmp___13 = _tg3_flag(4, (unsigned long *)(& tp->tg3_flags)); } if (tmp___13 != 0) { mac_mode = mac_mode | 16777216U; } else { { tmp___14 = _tg3_flag(49, (unsigned long *)(& tp->tg3_flags)); } if (tmp___14 != 0) { mac_mode = mac_mode | 16777216U; } else { } } } else { } } else { } { tmp___15 = _tg3_flag(49, (unsigned long *)(& tp->tg3_flags)); } if (tmp___15 != 0) { mac_mode = mac_mode | 404750336U; } else { } { _tw32_flush(tp, 1024U, mac_mode, 0U); __const_udelay(429500UL); _tw32_flush(tp, 1128U, 2U, 0U); __const_udelay(42950UL); } } else { } { tmp___22 = _tg3_flag(10, (unsigned long *)(& tp->tg3_flags)); } if (tmp___22 == 0 && (tp->pci_chip_rev_id >> 12 == 7U || tp->pci_chip_rev_id >> 12 == 0U)) { { base_val = tp->pci_clock_ctrl; base_val = base_val | 3072U; _tw32_flush(tp, 116U, base_val | 36864U, 40U); } } else { { tmp___20 = _tg3_flag(74, (unsigned long *)(& tp->tg3_flags)); } if (tmp___20 != 0) { } else { { tmp___21 = _tg3_flag(27, (unsigned long *)(& tp->tg3_flags)); } if (tmp___21 != 0) { } else if (tp->pci_chip_rev_id >> 12 == 12U) { } else { { tmp___18 = _tg3_flag(73, (unsigned long *)(& tp->tg3_flags)); } if (tmp___18 == 0) { goto _L; } else { { tmp___19 = _tg3_flag(4, (unsigned long *)(& tp->tg3_flags)); } if (tmp___19 == 0) { _L: /* CIL Label */ if (tp->pci_chip_rev_id >> 12 == 7U || tp->pci_chip_rev_id >> 12 == 0U) { newbits1 = 7168U; newbits2 = newbits1 | 262144U; } else { { tmp___16 = _tg3_flag(71, (unsigned long *)(& tp->tg3_flags)); } if (tmp___16 != 0) { newbits1 = 1048576U; newbits2 = newbits1 | 4096U; } else { newbits1 = 4096U; newbits2 = newbits1 | 262144U; } } { _tw32_flush(tp, 116U, tp->pci_clock_ctrl | newbits1, 40U); _tw32_flush(tp, 116U, tp->pci_clock_ctrl | newbits2, 40U); tmp___17 = _tg3_flag(71, (unsigned long *)(& tp->tg3_flags)); } if (tmp___17 == 0) { if (tp->pci_chip_rev_id >> 12 == 7U || tp->pci_chip_rev_id >> 12 == 0U) { newbits3 = 265216U; } else { newbits3 = 262144U; } { _tw32_flush(tp, 116U, tp->pci_clock_ctrl | newbits3, 40U); } } else { } } else { } } } } } if (! device_should_wake) { { tmp___23 = _tg3_flag(4, (unsigned long *)(& tp->tg3_flags)); } if (tmp___23 == 0) { { tg3_power_down_phy(tp, (int )do_low_power); } } else { } } else { } { tg3_frob_aux_power(tp, 1); tmp___26 = _tg3_flag(79, (unsigned long *)(& tp->tg3_flags)); } if (tmp___26 == 0 && (tp->pci_chip_rev_id >> 8) - 64U <= 1U) { { tmp___24 = (*(tp->read32))(tp, 32000U); val___1 = tmp___24; val___1 = val___1 & 4294901736U; (*(tp->write32))(tp, 32000U, val___1); tmp___25 = _tg3_flag(4, (unsigned long *)(& tp->tg3_flags)); } if (tmp___25 == 0) { { err = tg3_nvram_lock(tp); tg3_halt_cpu(tp, 20480U); } if (err == 0) { { tg3_nvram_unlock(tp); } } else { } } else { } } else { } { tg3_write_sig_post_reset(tp, 0); tg3_ape_driver_state_change(tp, 0); } return (0); } } static void tg3_power_down(struct tg3 *tp ) { int tmp ; { { tmp = _tg3_flag(11, (unsigned long *)(& tp->tg3_flags)); pci_wake_from_d3(tp->pdev, tmp != 0); pci_set_power_state(tp->pdev, 3); } return; } } static void tg3_aux_stat_to_speed_duplex(struct tg3 *tp , u32 val , u16 *speed , u8 *duplex ) { { { if ((val & 1792U) == 256U) { goto case_256; } else { } if ((val & 1792U) == 512U) { goto case_512; } else { } if ((val & 1792U) == 768U) { goto case_768; } else { } if ((val & 1792U) == 1280U) { goto case_1280; } else { } if ((val & 1792U) == 1536U) { goto case_1536; } else { } if ((val & 1792U) == 1792U) { goto case_1792; } else { } goto switch_default; case_256: /* CIL Label */ *speed = 10U; *duplex = 0U; goto ldv_57618; case_512: /* CIL Label */ *speed = 10U; *duplex = 1U; goto ldv_57618; case_768: /* CIL Label */ *speed = 100U; *duplex = 0U; goto ldv_57618; case_1280: /* CIL Label */ *speed = 100U; *duplex = 1U; goto ldv_57618; case_1536: /* CIL Label */ *speed = 1000U; *duplex = 0U; goto ldv_57618; case_1792: /* CIL Label */ *speed = 1000U; *duplex = 1U; goto ldv_57618; switch_default: /* CIL Label */ ; if ((tp->phy_flags & 64U) != 0U) { *speed = (val & 8U) != 0U ? 100U : 10U; *duplex = (unsigned int )((u8 )val) & 1U; goto ldv_57618; } else { } *speed = 65535U; *duplex = 255U; goto ldv_57618; switch_break: /* CIL Label */ ; } ldv_57618: ; return; } } static int tg3_phy_autoneg_cfg(struct tg3 *tp , u32 advertise , u32 flowctrl ) { int err ; u32 val ; u32 new_adv ; u32 tmp ; u16 tmp___0 ; u32 tmp___1 ; u32 err2 ; int tmp___2 ; int tmp___3 ; { { err = 0; new_adv = 1U; tmp = ethtool_adv_to_mii_adv_t(advertise); new_adv = new_adv | (tmp & 480U); tmp___0 = mii_advertise_flowctrl((int )flowctrl); new_adv = new_adv | (u32 )tmp___0; err = tg3_writephy(tp, 4, new_adv); } if (err != 0) { goto done; } else { } if ((tp->phy_flags & 128U) == 0U) { { new_adv = ethtool_adv_to_mii_ctrl1000_t(advertise); } if (tp->pci_chip_rev_id == 0U || tp->pci_chip_rev_id == 256U) { new_adv = new_adv | 6144U; } else { } { err = tg3_writephy(tp, 9, new_adv); } if (err != 0) { goto done; } else { } } else { } if ((tp->phy_flags & 262144U) == 0U) { goto done; } else { } { tmp___1 = (*(tp->read32))(tp, 14000U); (*(tp->write32))(tp, 14000U, tmp___1 & 4294967167U); err = tg3_phy_toggle_auxctl_smdsp(tp, 1); } if (err == 0) { val = 0U; if ((advertise & 8U) != 0U) { val = val | 2U; } else { } if ((advertise & 32U) != 0U) { val = val | 4U; } else { } if (tp->eee.eee_enabled == 0U) { val = 0U; tp->eee.advertised = 0U; } else { tp->eee.advertised = advertise & 40U; } { err = tg3_phy_cl45_write(tp, 7U, 60U, val); } if (err != 0) { val = 0U; } else { } { if (tp->pci_chip_rev_id >> 12 == 22295U) { goto case_22295; } else { } if (tp->pci_chip_rev_id >> 12 == 358277U) { goto case_358277; } else { } if (tp->pci_chip_rev_id >> 12 == 358246U) { goto case_358246; } else { } if (tp->pci_chip_rev_id >> 12 == 22297U) { goto case_22297; } else { } if (tp->pci_chip_rev_id >> 12 == 22304U) { goto case_22304; } else { } if (tp->pci_chip_rev_id >> 12 == 22370U) { goto case_22370; } else { } goto switch_break; case_22295: /* CIL Label */ ; case_358277: /* CIL Label */ ; case_358246: /* CIL Label */ ; case_22297: /* CIL Label */ ; if (val != 0U) { val = 7U; } else { } { tg3_phydsp_write(tp, 26U, val); } case_22304: /* CIL Label */ ; case_22370: /* CIL Label */ { tmp___2 = tg3_phydsp_read(tp, 16418U, & val); } if (tmp___2 == 0) { { tg3_phydsp_write(tp, 16418U, val | 511U); } } else { } switch_break: /* CIL Label */ ; } { tmp___3 = tg3_phy_toggle_auxctl_smdsp(tp, 0); err2 = (u32 )tmp___3; } if (err == 0) { err = (int )err2; } else { } } else { } done: ; return (err); } } static void tg3_phy_copper_begin(struct tg3 *tp ) { u32 adv ; u32 fc ; int tmp ; int i ; u32 bmcr ; u32 orig_bmcr ; u32 tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { if ((unsigned int )tp->link_config.autoneg == 1U || (int )tp->phy_flags & 1) { if (*((unsigned int *)tp + 1135UL) == 1U) { { adv = 3U; tmp = _tg3_flag(10, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { adv = adv | 12U; } else { } if ((tp->phy_flags & 524288U) != 0U) { if ((tp->phy_flags & 4194304U) == 0U) { adv = adv | 16U; } else { } adv = adv | 32U; } else { } fc = 3U; } else { adv = tp->link_config.advertising; if ((tp->phy_flags & 128U) != 0U) { adv = adv & 4294967247U; } else { } fc = (u32 )tp->link_config.flowctrl; } { tg3_phy_autoneg_cfg(tp, adv, fc); } if (*((unsigned int *)tp + 1135UL) == 1048577U) { return; } else { } { tg3_writephy(tp, 0, 4608U); } } else { tp->link_config.active_speed = tp->link_config.speed; tp->link_config.active_duplex = tp->link_config.duplex; if (tp->pci_chip_rev_id >> 12 == 9U) { { tg3_writephy(tp, 4, 480U); } } else { } bmcr = 0U; { if ((int )tp->link_config.speed == 10) { goto case_10; } else { } if ((int )tp->link_config.speed == 100) { goto case_100; } else { } if ((int )tp->link_config.speed == 1000) { goto case_1000; } else { } goto switch_default; switch_default: /* CIL Label */ ; case_10: /* CIL Label */ ; goto ldv_57651; case_100: /* CIL Label */ bmcr = bmcr | 8192U; goto ldv_57651; case_1000: /* CIL Label */ bmcr = bmcr | 64U; goto ldv_57651; switch_break: /* CIL Label */ ; } ldv_57651: ; if ((unsigned int )tp->link_config.duplex == 1U) { bmcr = bmcr | 256U; } else { } { tmp___3 = tg3_readphy(tp, 0, & orig_bmcr); } if (tmp___3 == 0 && bmcr != orig_bmcr) { { tg3_writephy(tp, 0, 16384U); i = 0; } goto ldv_57658; ldv_57657: { __const_udelay(42950UL); tmp___1 = tg3_readphy(tp, 1, & tmp___0); } if (tmp___1 != 0) { goto ldv_57655; } else { { tmp___2 = tg3_readphy(tp, 1, & tmp___0); } if (tmp___2 != 0) { goto ldv_57655; } else { } } if ((tmp___0 & 4U) == 0U) { { __const_udelay(171800UL); } goto ldv_57656; } else { } ldv_57655: i = i + 1; ldv_57658: ; if (i <= 1499) { goto ldv_57657; } else { } ldv_57656: { tg3_writephy(tp, 0, bmcr); __const_udelay(171800UL); } } else { } } return; } } static int tg3_phy_pull_config(struct tg3 *tp ) { int err ; u32 val ; u32 adv ; u32 tmp ; u32 adv___0 ; { { err = tg3_readphy(tp, 0, & val); } if (err != 0) { goto done; } else { } if ((val & 4096U) == 0U) { { tp->link_config.autoneg = 0U; tp->link_config.advertising = 0U; _tg3_flag_clear(26, (unsigned long *)(& tp->tg3_flags)); err = -5; } { if ((val & 8256U) == 0U) { goto case_0; } else { } if ((val & 8256U) == 8192U) { goto case_8192; } else { } if ((val & 8256U) == 64U) { goto case_64; } else { } goto switch_default; case_0: /* CIL Label */ ; if ((tp->phy_flags & 48U) != 0U) { goto done; } else { } tp->link_config.speed = 10U; goto ldv_57666; case_8192: /* CIL Label */ ; if ((tp->phy_flags & 48U) != 0U) { goto done; } else { } tp->link_config.speed = 100U; goto ldv_57666; case_64: /* CIL Label */ ; if ((tp->phy_flags & 128U) == 0U) { tp->link_config.speed = 1000U; goto ldv_57666; } else { } switch_default: /* CIL Label */ ; goto done; switch_break: /* CIL Label */ ; } ldv_57666: ; if ((val & 256U) != 0U) { tp->link_config.duplex = 1U; } else { tp->link_config.duplex = 0U; } tp->link_config.flowctrl = 3U; err = 0; goto done; } else { } { tp->link_config.autoneg = 1U; tp->link_config.advertising = 64U; _tg3_flag_set(26, (unsigned long *)(& tp->tg3_flags)); } if ((tp->phy_flags & 48U) == 0U) { { err = tg3_readphy(tp, 4, & val); } if (err != 0) { goto done; } else { } { adv = mii_adv_to_ethtool_adv_t(val & 480U); tp->link_config.advertising = (tp->link_config.advertising | adv) | 128U; tmp = tg3_decode_flowctrl_1000T(val); tp->link_config.flowctrl = (u8 )tmp; } } else { tp->link_config.advertising = tp->link_config.advertising | 1024U; } if ((tp->phy_flags & 128U) == 0U) { if ((tp->phy_flags & 48U) == 0U) { { err = tg3_readphy(tp, 9, & val); } if (err != 0) { goto done; } else { } { adv___0 = mii_ctrl1000_to_ethtool_adv_t(val); } } else { { err = tg3_readphy(tp, 4, & val); } if (err != 0) { goto done; } else { } { adv___0 = tg3_decode_flowctrl_1000X(val); tp->link_config.flowctrl = (u8 )adv___0; val = val & 96U; adv___0 = mii_adv_to_ethtool_adv_x(val); } } tp->link_config.advertising = tp->link_config.advertising | adv___0; } else { } done: ; return (err); } } static int tg3_init_5401phy_dsp(struct tg3 *tp ) { int err ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { { err = tg3_phy_auxctl_write(tp, 0, 19488U); tmp = tg3_phydsp_write(tp, 18U, 6148U); err = err | tmp; tmp___0 = tg3_phydsp_write(tp, 19U, 4612U); err = err | tmp___0; tmp___1 = tg3_phydsp_write(tp, 32774U, 306U); err = err | tmp___1; tmp___2 = tg3_phydsp_write(tp, 32774U, 562U); err = err | tmp___2; tmp___3 = tg3_phydsp_write(tp, 8223U, 2592U); err = err | tmp___3; __const_udelay(171800UL); } return (err); } } static bool tg3_phy_eee_config_ok(struct tg3 *tp ) { struct ethtool_eee eee ; { if ((tp->phy_flags & 262144U) == 0U) { return (1); } else { } { tg3_eee_pull_config(tp, & eee); } if (tp->eee.eee_enabled != 0U) { if ((tp->eee.advertised != eee.advertised || tp->eee.tx_lpi_timer != eee.tx_lpi_timer) || tp->eee.tx_lpi_enabled != eee.tx_lpi_enabled) { return (0); } else { } } else if (eee.advertised != 0U) { return (0); } else { } return (1); } } static bool tg3_phy_copper_an_config_ok(struct tg3 *tp , u32 *lcladv ) { u32 advmsk ; u32 tgtadv ; u32 advertising ; u32 tmp ; u16 tmp___0 ; int tmp___1 ; u32 tg3_ctrl ; int tmp___2 ; { { advertising = tp->link_config.advertising; tmp = ethtool_adv_to_mii_adv_t(advertising); tgtadv = tmp & 480U; advmsk = 480U; } if ((unsigned int )tp->link_config.active_duplex == 1U) { { tmp___0 = mii_advertise_flowctrl((int )tp->link_config.flowctrl); tgtadv = tgtadv | (u32 )tmp___0; advmsk = advmsk | 3072U; } } else { } { tmp___1 = tg3_readphy(tp, 4, lcladv); } if (tmp___1 != 0) { return (0); } else { } if ((*lcladv & advmsk) != tgtadv) { return (0); } else { } if ((tp->phy_flags & 128U) == 0U) { { tgtadv = ethtool_adv_to_mii_ctrl1000_t(advertising); tmp___2 = tg3_readphy(tp, 9, & tg3_ctrl); } if (tmp___2 != 0) { return (0); } else { } if (tgtadv != 0U && (tp->pci_chip_rev_id == 0U || tp->pci_chip_rev_id == 256U)) { tgtadv = tgtadv | 6144U; tg3_ctrl = tg3_ctrl & 6912U; } else { tg3_ctrl = tg3_ctrl & 768U; } if (tg3_ctrl != tgtadv) { return (0); } else { } } else { } return (1); } } static bool tg3_phy_copper_fetch_rmtadv(struct tg3 *tp , u32 *rmtadv ) { u32 lpeth ; u32 val ; int tmp ; int tmp___0 ; u32 tmp___1 ; { lpeth = 0U; if ((tp->phy_flags & 128U) == 0U) { { tmp = tg3_readphy(tp, 10, & val); } if (tmp != 0) { return (0); } else { } { lpeth = mii_stat1000_to_ethtool_lpa_t(val); } } else { } { tmp___0 = tg3_readphy(tp, 5, rmtadv); } if (tmp___0 != 0) { return (0); } else { } { tmp___1 = mii_lpa_to_ethtool_lpa_t(*rmtadv); lpeth = lpeth | tmp___1; tp->link_config.rmt_adv = lpeth; } return (1); } } static bool tg3_test_and_report_link_chg(struct tg3 *tp , bool curr_link_up ) { { if ((int )curr_link_up != (int )tp->link_up) { if ((int )curr_link_up) { { netif_carrier_on(tp->dev); } } else { { netif_carrier_off(tp->dev); } if ((tp->phy_flags & 32U) != 0U) { tp->phy_flags = tp->phy_flags & 4294836223U; } else { } } { tg3_link_report(tp); } return (1); } else { } return (0); } } static void tg3_clear_mac_status(struct tg3 *tp ) { { { (*(tp->write32))(tp, 1032U, 0U); _tw32_flush(tp, 1028U, 4198424U, 0U); __const_udelay(171800UL); } return; } } static void tg3_setup_eee(struct tg3 *tp ) { u32 val ; int tmp ; { val = 16777220U; if (tp->pci_chip_rev_id == 1467502592U) { val = val | 2U; } else { } { _tw32_flush(tp, 14012U, val, 0U); _tw32_flush(tp, 14032U, 504U, 0U); val = tp->eee.tx_lpi_enabled != 0U ? 1049352U : 1049096U; } if (tp->pci_chip_rev_id >> 12 != 22295U) { val = val | 64U; } else { } { tmp = _tg3_flag(49, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { val = val | 4U; } else { } { _tw32_flush(tp, 14000U, tp->eee.eee_enabled != 0U ? val : 0U, 0U); _tw32_flush(tp, 14004U, (tp->eee.tx_lpi_timer & 65535U) | 134152192U, 0U); _tw32_flush(tp, 14008U, 134154239U, 0U); } return; } } static int tg3_setup_copper_phy(struct tg3 *tp , bool force_reset ) { bool current_link_up ; u32 bmsr ; u32 val ; u32 lcl_adv ; u32 rmt_adv ; u16 current_speed ; u8 current_duplex ; int i ; int err ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; u32 aux_stat ; u32 bmcr ; int tmp___4 ; int tmp___5 ; bool eee_config_ok ; bool tmp___6 ; bool tmp___7 ; bool tmp___8 ; u32 reg ; u32 bit ; int tmp___9 ; int tmp___10 ; int tmp___11 ; u32 led_ctrl ; u32 tmp___12 ; int tmp___13 ; int tmp___14 ; int tmp___15 ; int tmp___16 ; int tmp___17 ; int tmp___18 ; { { tg3_clear_mac_status(tp); } if ((tp->mi_mode & 16U) != 0U) { { _tw32_flush(tp, 1108U, tp->mi_mode & 4294967279U, 0U); __const_udelay(343600UL); } } else { } { tg3_phy_auxctl_write(tp, 2, 0U); } if ((tp->pci_chip_rev_id >> 12) - 1U <= 2U && (int )tp->link_up) { { tg3_readphy(tp, 1, & bmsr); tmp = tg3_readphy(tp, 1, & bmsr); } if (tmp == 0 && (bmsr & 4U) == 0U) { force_reset = 1; } else { } } else { } if ((int )force_reset) { { tg3_phy_reset(tp); } } else { } if ((tp->phy_id & 4294967280U) == 1610645584U) { { tg3_readphy(tp, 1, & bmsr); tmp___0 = tg3_readphy(tp, 1, & bmsr); } if (tmp___0 != 0) { bmsr = 0U; } else { { tmp___1 = _tg3_flag(32, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 == 0) { bmsr = 0U; } else { } } if ((bmsr & 4U) == 0U) { { err = tg3_init_5401phy_dsp(tp); } if (err != 0) { return (err); } else { } { tg3_readphy(tp, 1, & bmsr); i = 0; } goto ldv_57720; ldv_57719: { __const_udelay(42950UL); tmp___2 = tg3_readphy(tp, 1, & bmsr); } if (tmp___2 == 0 && (bmsr & 4U) != 0U) { { __const_udelay(171800UL); } goto ldv_57718; } else { } i = i + 1; ldv_57720: ; if (i <= 999) { goto ldv_57719; } else { } ldv_57718: ; if (((tp->phy_id & 15U) == 1U && (bmsr & 4U) == 0U) && (unsigned int )tp->link_config.active_speed == 1000U) { { err = tg3_phy_reset(tp); } if (err == 0) { { err = tg3_init_5401phy_dsp(tp); } } else { } if (err != 0) { return (err); } else { } } else { } } else { } } else if (tp->pci_chip_rev_id == 0U || tp->pci_chip_rev_id == 256U) { { tg3_writephy(tp, 21, 2677U); tg3_writephy(tp, 28, 35944U); tg3_writephy(tp, 28, 36200U); tg3_writephy(tp, 28, 35944U); } } else { } { tg3_readphy(tp, 26, & val); tg3_readphy(tp, 26, & val); } if ((tp->phy_flags & 4U) != 0U) { { tg3_writephy(tp, 27, 4294967293U); } } else if ((tp->phy_flags & 64U) == 0U) { { tg3_writephy(tp, 27, 4294967295U); } } else { } if (tp->pci_chip_rev_id >> 12 == 7U || tp->pci_chip_rev_id >> 12 == 0U) { if (tp->led_ctrl == 2048U) { { tg3_writephy(tp, 16, 2U); } } else { { tg3_writephy(tp, 16, 0U); } } } else { } current_link_up = 0; current_speed = 65535U; current_duplex = 255U; tp->phy_flags = tp->phy_flags & 4292870143U; tp->link_config.rmt_adv = 0U; if ((tp->phy_flags & 512U) != 0U) { { err = tg3_phy_auxctl_read(tp, 4, & val); } if (err == 0 && (val & 1024U) == 0U) { { tg3_phy_auxctl_write(tp, 4, val | 1024U); } goto relink; } else { } } else { } bmsr = 0U; i = 0; goto ldv_57724; ldv_57723: { tg3_readphy(tp, 1, & bmsr); tmp___3 = tg3_readphy(tp, 1, & bmsr); } if (tmp___3 == 0 && (bmsr & 4U) != 0U) { goto ldv_57722; } else { } { __const_udelay(171800UL); i = i + 1; } ldv_57724: ; if (i <= 99) { goto ldv_57723; } else { } ldv_57722: ; if ((bmsr & 4U) != 0U) { { tg3_readphy(tp, 25, & aux_stat); i = 0; } goto ldv_57729; ldv_57728: { __const_udelay(42950UL); tmp___4 = tg3_readphy(tp, 25, & aux_stat); } if (tmp___4 == 0 && aux_stat != 0U) { goto ldv_57727; } else { } i = i + 1; ldv_57729: ; if (i <= 1999) { goto ldv_57728; } else { } ldv_57727: { tg3_aux_stat_to_speed_duplex(tp, aux_stat, & current_speed, & current_duplex); bmcr = 0U; i = 0; } goto ldv_57733; ldv_57732: { tg3_readphy(tp, 0, & bmcr); tmp___5 = tg3_readphy(tp, 0, & bmcr); } if (tmp___5 != 0) { goto ldv_57730; } else { } if (bmcr != 0U && bmcr != 32767U) { goto ldv_57731; } else { } { __const_udelay(42950UL); } ldv_57730: i = i + 1; ldv_57733: ; if (i <= 199) { goto ldv_57732; } else { } ldv_57731: lcl_adv = 0U; rmt_adv = 0U; tp->link_config.active_speed = current_speed; tp->link_config.active_duplex = current_duplex; if ((unsigned int )tp->link_config.autoneg == 1U) { { tmp___6 = tg3_phy_eee_config_ok(tp); eee_config_ok = tmp___6; } if ((bmcr & 4096U) != 0U && (int )eee_config_ok) { { tmp___7 = tg3_phy_copper_an_config_ok(tp, & lcl_adv); } if ((int )tmp___7) { { tmp___8 = tg3_phy_copper_fetch_rmtadv(tp, & rmt_adv); } if ((int )tmp___8) { current_link_up = 1; } else { } } else { } } else { } if ((! eee_config_ok && (tp->phy_flags & 1048576U) != 0U) && ! force_reset) { { tg3_setup_eee(tp); tg3_phy_reset(tp); } } else { } } else if (((bmcr & 4096U) == 0U && (int )tp->link_config.speed == (int )current_speed) && (int )tp->link_config.duplex == (int )current_duplex) { current_link_up = 1; } else { } if ((int )current_link_up && (unsigned int )tp->link_config.active_duplex == 1U) { if ((tp->phy_flags & 64U) != 0U) { reg = 28U; bit = 8192U; } else { reg = 17U; bit = 8192U; } { tmp___9 = tg3_readphy(tp, (int )reg, & val); } if (tmp___9 == 0 && (val & bit) != 0U) { tp->phy_flags = tp->phy_flags | 2097152U; } else { } { tg3_setup_flow_control(tp, lcl_adv, rmt_adv); } } else { } } else { } relink: ; if (! current_link_up || (int )tp->phy_flags & 1) { { tg3_phy_copper_begin(tp); tmp___10 = _tg3_flag(81, (unsigned long *)(& tp->tg3_flags)); } if (tmp___10 != 0) { current_link_up = 1; current_speed = 1000U; current_duplex = 1U; tp->link_config.active_speed = current_speed; tp->link_config.active_duplex = current_duplex; } else { } { tg3_readphy(tp, 1, & bmsr); tmp___11 = tg3_readphy(tp, 1, & bmsr); } if ((tmp___11 == 0 && (bmsr & 4U) != 0U) || (tp->mac_mode & 16U) != 0U) { current_link_up = 1; } else { } } else { } tp->mac_mode = tp->mac_mode & 4294967283U; if ((int )current_link_up) { if ((unsigned int )tp->link_config.active_speed == 100U || (unsigned int )tp->link_config.active_speed == 10U) { tp->mac_mode = tp->mac_mode | 4U; } else { tp->mac_mode = tp->mac_mode | 8U; } } else if ((tp->phy_flags & 64U) != 0U) { tp->mac_mode = tp->mac_mode | 4U; } else { tp->mac_mode = tp->mac_mode | 8U; } { tmp___13 = _tg3_flag(83, (unsigned long *)(& tp->tg3_flags)); } if (tmp___13 != 0) { { tmp___12 = (*(tp->read32))(tp, 1036U); led_ctrl = tmp___12; led_ctrl = led_ctrl & 4294967289U; } if ((unsigned int )tp->link_config.active_speed == 10U) { led_ctrl = led_ctrl | 1U; } else if ((unsigned int )tp->link_config.active_speed == 100U) { led_ctrl = led_ctrl | 5U; } else if ((unsigned int )tp->link_config.active_speed == 1000U) { led_ctrl = led_ctrl | 3U; } else { } { (*(tp->write32))(tp, 1036U, led_ctrl); __const_udelay(171800UL); } } else { } tp->mac_mode = tp->mac_mode & 4294967293U; if ((unsigned int )tp->link_config.active_duplex == 0U) { tp->mac_mode = tp->mac_mode | 2U; } else { } if (tp->pci_chip_rev_id >> 12 == 7U) { if ((int )current_link_up) { { tmp___14 = tg3_5700_link_polarity(tp, (u32 )tp->link_config.active_speed); } if (tmp___14 != 0) { tp->mac_mode = tp->mac_mode | 1024U; } else { tp->mac_mode = tp->mac_mode & 4294966271U; } } else { tp->mac_mode = tp->mac_mode & 4294966271U; } } else { } if ((tp->phy_id & 4294967280U) == 1610645616U && tp->pci_chip_rev_id == 28932U) { { tp->mi_mode = tp->mi_mode | 16U; _tw32_flush(tp, 1108U, tp->mi_mode, 0U); __const_udelay(343600UL); } } else { } { _tw32_flush(tp, 1024U, tp->mac_mode, 0U); __const_udelay(171800UL); tg3_phy_eee_adjust(tp, (int )current_link_up); tmp___15 = _tg3_flag(2, (unsigned long *)(& tp->tg3_flags)); } if (tmp___15 != 0) { { _tw32_flush(tp, 1032U, 0U, 0U); } } else { { _tw32_flush(tp, 1032U, 4096U, 0U); } } { __const_udelay(171800UL); } if ((tp->pci_chip_rev_id >> 12 == 7U && (int )current_link_up) && (unsigned int )tp->link_config.active_speed == 1000U) { { tmp___16 = _tg3_flag(19, (unsigned long *)(& tp->tg3_flags)); } if (tmp___16 != 0) { { __const_udelay(515400UL); _tw32_flush(tp, 1028U, 24U, 0U); __const_udelay(171800UL); tg3_write_mem(tp, 2896U, 1214346827U); } } else { { tmp___17 = _tg3_flag(20, (unsigned long *)(& tp->tg3_flags)); } if (tmp___17 != 0) { { __const_udelay(515400UL); _tw32_flush(tp, 1028U, 24U, 0U); __const_udelay(171800UL); tg3_write_mem(tp, 2896U, 1214346827U); } } else { } } } else { } { tmp___18 = _tg3_flag(58, (unsigned long *)(& tp->tg3_flags)); } if (tmp___18 != 0) { if ((unsigned int )tp->link_config.active_speed == 100U || (unsigned int )tp->link_config.active_speed == 10U) { { pcie_capability_clear_word(tp->pdev, 16, 256); } } else { { pcie_capability_set_word(tp->pdev, 16, 256); } } } else { } { tg3_test_and_report_link_chg(tp, (int )current_link_up); } return (0); } } static int tg3_fiber_aneg_smachine(struct tg3 *tp , struct tg3_fiber_aneginfo *ap ) { u16 flowctrl ; unsigned long delta ; u32 rx_cfg_reg ; int ret ; u32 tmp ; { if (ap->state == 0) { ap->rxconfig = 0U; ap->link_time = 0UL; ap->cur_time = 0UL; ap->ability_match_cfg = 0U; ap->ability_match_count = 0; ap->ability_match = 0; ap->idle_match = 0; ap->ack_match = 0; } else { } { ap->cur_time = ap->cur_time + 1UL; tmp = (*(tp->read32))(tp, 1028U); } if ((tmp & 4U) != 0U) { { rx_cfg_reg = (*(tp->read32))(tp, 1096U); } if (rx_cfg_reg != ap->ability_match_cfg) { ap->ability_match_cfg = rx_cfg_reg; ap->ability_match = 0; ap->ability_match_count = 0; } else { ap->ability_match_count = ap->ability_match_count + 1; if (ap->ability_match_count > 1) { ap->ability_match = 1; ap->ability_match_cfg = rx_cfg_reg; } else { } } if ((rx_cfg_reg & 64U) != 0U) { ap->ack_match = 1; } else { ap->ack_match = 0; } ap->idle_match = 0; } else { ap->idle_match = 1; ap->ability_match_cfg = 0U; ap->ability_match_count = 0; ap->ability_match = 0; ap->ack_match = 0; rx_cfg_reg = 0U; } ap->rxconfig = rx_cfg_reg; ret = 0; { if (ap->state == 0) { goto case_0; } else { } if (ap->state == 1) { goto case_1; } else { } if (ap->state == 2) { goto case_2; } else { } if (ap->state == 3) { goto case_3; } else { } if (ap->state == 4) { goto case_4; } else { } if (ap->state == 5) { goto case_5; } else { } if (ap->state == 6) { goto case_6; } else { } if (ap->state == 7) { goto case_7; } else { } if (ap->state == 8) { goto case_8; } else { } if (ap->state == 9) { goto case_9; } else { } if (ap->state == 10) { goto case_10; } else { } if (ap->state == 11) { goto case_11; } else { } if (ap->state == 12) { goto case_12; } else { } if (ap->state == 13) { goto case_13; } else { } if (ap->state == 14) { goto case_14; } else { } if (ap->state == 15) { goto case_15; } else { } goto switch_default; case_0: /* CIL Label */ ; if ((ap->flags & 3U) != 0U) { ap->state = 1; } else { } case_1: /* CIL Label */ ap->flags = ap->flags & 4294967283U; if ((int )ap->flags & 1) { ap->link_time = 0UL; ap->cur_time = 0UL; ap->ability_match_cfg = 0U; ap->ability_match_count = 0; ap->ability_match = 0; ap->idle_match = 0; ap->ack_match = 0; ap->state = 2; } else { ap->state = 4; } goto ldv_57760; case_2: /* CIL Label */ { ap->link_time = ap->cur_time; ap->flags = ap->flags & 4294967279U; ap->txconfig = 0U; (*(tp->write32))(tp, 1092U, 0U); tp->mac_mode = tp->mac_mode | 131072U; _tw32_flush(tp, 1024U, tp->mac_mode, 0U); __const_udelay(171800UL); ret = 2; ap->state = 3; } case_3: /* CIL Label */ delta = ap->cur_time - ap->link_time; if (delta > 10000UL) { ap->state = 5; } else { ret = 2; } goto ldv_57760; case_4: /* CIL Label */ ret = 1; goto ldv_57760; case_5: /* CIL Label */ { ap->flags = ap->flags & 4294967263U; ap->txconfig = 8192U; flowctrl = tg3_advert_flowctrl_1000X((int )tp->link_config.flowctrl); } if (((int )flowctrl & 128) != 0) { ap->txconfig = ap->txconfig | 32768U; } else { } if (((int )flowctrl & 256) != 0) { ap->txconfig = ap->txconfig | 1U; } else { } { (*(tp->write32))(tp, 1092U, ap->txconfig); tp->mac_mode = tp->mac_mode | 131072U; _tw32_flush(tp, 1024U, tp->mac_mode, 0U); __const_udelay(171800UL); ap->state = 6; } goto ldv_57760; case_6: /* CIL Label */ ; if ((int )((signed char )ap->ability_match) != 0 && ap->rxconfig != 0U) { ap->state = 7; } else { } goto ldv_57760; case_7: /* CIL Label */ { ap->txconfig = ap->txconfig | 64U; (*(tp->write32))(tp, 1092U, ap->txconfig); tp->mac_mode = tp->mac_mode | 131072U; _tw32_flush(tp, 1024U, tp->mac_mode, 0U); __const_udelay(171800UL); ap->state = 8; } case_8: /* CIL Label */ ; if ((int )((signed char )ap->ack_match) != 0) { if (((ap->rxconfig ^ ap->ability_match_cfg) & 4294967231U) == 0U) { ap->state = 9; } else { ap->state = 1; } } else if ((int )((signed char )ap->ability_match) != 0 && ap->rxconfig == 0U) { ap->state = 1; } else { } goto ldv_57760; case_9: /* CIL Label */ ; if ((ap->rxconfig & 7942U) != 0U) { ret = -1; goto ldv_57760; } else { } ap->flags = ap->flags & 4294934591U; if ((ap->rxconfig & 8192U) != 0U) { ap->flags = ap->flags | 64U; } else { } if ((ap->rxconfig & 16384U) != 0U) { ap->flags = ap->flags | 128U; } else { } if ((ap->rxconfig & 32768U) != 0U) { ap->flags = ap->flags | 256U; } else { } if ((int )ap->rxconfig & 1) { ap->flags = ap->flags | 512U; } else { } if ((ap->rxconfig & 16U) != 0U) { ap->flags = ap->flags | 1024U; } else { } if ((ap->rxconfig & 32U) != 0U) { ap->flags = ap->flags | 2048U; } else { } if ((ap->rxconfig & 128U) != 0U) { ap->flags = ap->flags | 4096U; } else { } ap->link_time = ap->cur_time; ap->flags = ap->flags ^ 32U; if ((ap->rxconfig & 8U) != 0U) { ap->flags = ap->flags | 8192U; } else { } if ((ap->rxconfig & 128U) != 0U) { ap->flags = ap->flags | 16384U; } else { } ap->flags = ap->flags | 8U; ap->state = 10; ret = 2; goto ldv_57760; case_10: /* CIL Label */ ; if ((int )((signed char )ap->ability_match) != 0 && ap->rxconfig == 0U) { ap->state = 1; goto ldv_57760; } else { } delta = ap->cur_time - ap->link_time; if (delta > 10000UL) { if ((ap->flags & 4096U) == 0U) { ap->state = 11; } else if ((ap->txconfig & 128U) == 0U && (ap->flags & 16384U) == 0U) { ap->state = 11; } else { ret = -1; } } else { } goto ldv_57760; case_11: /* CIL Label */ { ap->link_time = ap->cur_time; tp->mac_mode = tp->mac_mode & 4294836223U; _tw32_flush(tp, 1024U, tp->mac_mode, 0U); __const_udelay(171800UL); ap->state = 12; ret = 2; } goto ldv_57760; case_12: /* CIL Label */ ; if ((int )((signed char )ap->ability_match) != 0 && ap->rxconfig == 0U) { ap->state = 1; goto ldv_57760; } else { } delta = ap->cur_time - ap->link_time; if (delta > 10000UL) { ap->state = 13; } else { } goto ldv_57760; case_13: /* CIL Label */ ap->flags = ap->flags | 2147483652U; ret = 1; goto ldv_57760; case_14: /* CIL Label */ ; goto ldv_57760; case_15: /* CIL Label */ ; goto ldv_57760; switch_default: /* CIL Label */ ret = -1; goto ldv_57760; switch_break: /* CIL Label */ ; } ldv_57760: ; return (ret); } } static int fiber_autoneg(struct tg3 *tp , u32 *txflags , u32 *rxflags ) { int res ; struct tg3_fiber_aneginfo aninfo ; int status ; unsigned int tick ; u32 tmp ; { { res = 0; status = -1; _tw32_flush(tp, 1092U, 0U, 0U); tmp = tp->mac_mode & 4294967283U; _tw32_flush(tp, 1024U, tmp | 8U, 0U); __const_udelay(171800UL); _tw32_flush(tp, 1024U, tp->mac_mode | 131072U, 0U); __const_udelay(171800UL); __memset((void *)(& aninfo), 0, 48UL); aninfo.flags = aninfo.flags | 1U; aninfo.state = 0; aninfo.cur_time = 0UL; tick = 0U; } goto ldv_57788; ldv_57787: { status = tg3_fiber_aneg_smachine(tp, & aninfo); } if (status == 1 || status == -1) { goto ldv_57786; } else { } { __const_udelay(4295UL); } ldv_57788: tick = tick + 1U; if (tick <= 194999U) { goto ldv_57787; } else { } ldv_57786: { tp->mac_mode = tp->mac_mode & 4294836223U; _tw32_flush(tp, 1024U, tp->mac_mode, 0U); __const_udelay(171800UL); *txflags = aninfo.txconfig; *rxflags = aninfo.flags; } if (status == 1 && (aninfo.flags & 2147483716U) != 0U) { res = 1; } else { } return (res); } } static void tg3_init_bcm8002(struct tg3 *tp ) { u32 mac_status ; u32 tmp ; int i ; int tmp___0 ; { { tmp = (*(tp->read32))(tp, 1028U); mac_status = tmp; tmp___0 = _tg3_flag(32, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0 && (mac_status & 1U) == 0U) { return; } else { } { tg3_writephy(tp, 22, 32775U); tg3_writephy(tp, 0, 32768U); i = 0; } goto ldv_57795; ldv_57794: { __const_udelay(42950UL); i = i + 1; } ldv_57795: ; if (i <= 499) { goto ldv_57794; } else { } { tg3_writephy(tp, 16, 33809U); tg3_writephy(tp, 17, 2576U); tg3_writephy(tp, 24, 160U); tg3_writephy(tp, 22, 16895U); tg3_writephy(tp, 19, 1024U); __const_udelay(171800UL); tg3_writephy(tp, 19, 0U); tg3_writephy(tp, 17, 2640U); __const_udelay(171800UL); tg3_writephy(tp, 17, 2576U); i = 0; } goto ldv_57798; ldv_57797: { __const_udelay(42950UL); i = i + 1; } ldv_57798: ; if (i <= 14999) { goto ldv_57797; } else { } { tg3_writephy(tp, 16, 32785U); } return; } } static bool tg3_setup_fiber_hw_autoneg(struct tg3 *tp , u32 mac_status ) { u16 flowctrl ; bool current_link_up ; u32 sg_dig_ctrl ; u32 sg_dig_status ; u32 serdes_cfg ; u32 expected_sg_dig_ctrl ; int workaround ; int port_a ; u32 tmp ; u32 tmp___0 ; u32 val ; u32 local_adv ; u32 remote_adv ; u32 val___0 ; { serdes_cfg = 0U; expected_sg_dig_ctrl = 0U; workaround = 0; port_a = 1; current_link_up = 0; if (tp->pci_chip_rev_id - 8192U > 1U) { { workaround = 1; tmp = (*(tp->read32))(tp, 184U); } if ((tmp & 4U) != 0U) { port_a = 0; } else { } { tmp___0 = (*(tp->read32))(tp, 1424U); serdes_cfg = tmp___0 & 15757311U; } } else { } { sg_dig_ctrl = (*(tp->read32))(tp, 1456U); } if ((unsigned int )tp->link_config.autoneg != 1U) { if ((int )sg_dig_ctrl < 0) { if (workaround != 0) { val = serdes_cfg; if (port_a != 0) { val = val | 201392128U; } else { val = val | 67174400U; } { _tw32_flush(tp, 1424U, val, 0U); } } else { } { _tw32_flush(tp, 1456U, 20481024U, 0U); } } else { } if ((int )mac_status & 1) { { tg3_setup_flow_control(tp, 0U, 0U); current_link_up = 1; } } else { } goto out; } else { } { expected_sg_dig_ctrl = 2167964672U; flowctrl = tg3_advert_flowctrl_1000X((int )tp->link_config.flowctrl); } if (((int )flowctrl & 128) != 0) { expected_sg_dig_ctrl = expected_sg_dig_ctrl | 2048U; } else { } if (((int )flowctrl & 256) != 0) { expected_sg_dig_ctrl = expected_sg_dig_ctrl | 4096U; } else { } if (sg_dig_ctrl != expected_sg_dig_ctrl) { if (((tp->phy_flags & 131072U) != 0U && tp->serdes_counter != 0U) && (mac_status & 5U) == 1U) { tp->serdes_counter = tp->serdes_counter - 1U; current_link_up = 1; goto out; } else { } restart_autoneg: ; if (workaround != 0) { { _tw32_flush(tp, 1424U, serdes_cfg | 201396224U, 0U); } } else { } { _tw32_flush(tp, 1456U, expected_sg_dig_ctrl | 1073741824U, 0U); __const_udelay(21475UL); _tw32_flush(tp, 1456U, expected_sg_dig_ctrl, 0U); tp->serdes_counter = 2U; tp->phy_flags = tp->phy_flags & 4294836223U; } } else if ((mac_status & 3U) != 0U) { { sg_dig_status = (*(tp->read32))(tp, 1460U); mac_status = (*(tp->read32))(tp, 1028U); } if ((sg_dig_status & 2U) != 0U && (int )mac_status & 1) { local_adv = 0U; remote_adv = 0U; if ((sg_dig_ctrl & 2048U) != 0U) { local_adv = local_adv | 128U; } else { } if ((sg_dig_ctrl & 4096U) != 0U) { local_adv = local_adv | 256U; } else { } if ((sg_dig_status & 524288U) != 0U) { remote_adv = remote_adv | 128U; } else { } if ((sg_dig_status & 1048576U) != 0U) { remote_adv = remote_adv | 256U; } else { } { tp->link_config.rmt_adv = mii_adv_to_ethtool_adv_x(remote_adv); tg3_setup_flow_control(tp, local_adv, remote_adv); current_link_up = 1; tp->serdes_counter = 0U; tp->phy_flags = tp->phy_flags & 4294836223U; } } else if ((sg_dig_status & 2U) == 0U) { if (tp->serdes_counter != 0U) { tp->serdes_counter = tp->serdes_counter - 1U; } else { if (workaround != 0) { val___0 = serdes_cfg; if (port_a != 0) { val___0 = val___0 | 201392128U; } else { val___0 = val___0 | 67174400U; } { _tw32_flush(tp, 1424U, val___0, 0U); } } else { } { _tw32_flush(tp, 1456U, 20481024U, 0U); __const_udelay(171800UL); mac_status = (*(tp->read32))(tp, 1028U); } if ((mac_status & 5U) == 1U) { { tg3_setup_flow_control(tp, 0U, 0U); current_link_up = 1; tp->phy_flags = tp->phy_flags | 131072U; tp->serdes_counter = 1U; } } else { goto restart_autoneg; } } } else { } } else { tp->serdes_counter = 2U; tp->phy_flags = tp->phy_flags & 4294836223U; } out: ; return (current_link_up); } } static bool tg3_setup_fiber_by_hand(struct tg3 *tp , u32 mac_status ) { bool current_link_up ; u32 txflags ; u32 rxflags ; int i ; u32 local_adv ; u32 remote_adv ; int tmp ; u32 tmp___0 ; { current_link_up = 0; if ((mac_status & 1U) == 0U) { goto out; } else { } if ((unsigned int )tp->link_config.autoneg == 1U) { { tmp = fiber_autoneg(tp, & txflags, & rxflags); } if (tmp != 0) { local_adv = 0U; remote_adv = 0U; if ((txflags & 32768U) != 0U) { local_adv = local_adv | 128U; } else { } if ((int )txflags & 1) { local_adv = local_adv | 256U; } else { } if ((rxflags & 256U) != 0U) { remote_adv = remote_adv | 128U; } else { } if ((rxflags & 512U) != 0U) { remote_adv = remote_adv | 256U; } else { } { tp->link_config.rmt_adv = mii_adv_to_ethtool_adv_x(remote_adv); tg3_setup_flow_control(tp, local_adv, remote_adv); current_link_up = 1; } } else { } i = 0; goto ldv_57831; ldv_57830: { __const_udelay(85900UL); _tw32_flush(tp, 1028U, 24U, 0U); __const_udelay(171800UL); tmp___0 = (*(tp->read32))(tp, 1028U); } if ((tmp___0 & 24U) == 0U) { goto ldv_57829; } else { } i = i + 1; ldv_57831: ; if (i <= 29) { goto ldv_57830; } else { } ldv_57829: { mac_status = (*(tp->read32))(tp, 1028U); } if (! current_link_up && (mac_status & 5U) == 1U) { current_link_up = 1; } else { } } else { { tg3_setup_flow_control(tp, 0U, 0U); current_link_up = 1; _tw32_flush(tp, 1024U, tp->mac_mode | 131072U, 0U); __const_udelay(171800UL); _tw32_flush(tp, 1024U, tp->mac_mode, 0U); __const_udelay(171800UL); } } out: ; return (current_link_up); } } static int tg3_setup_fiber_phy(struct tg3 *tp , bool force_reset ) { u32 orig_pause_cfg ; u16 orig_active_speed ; u8 orig_active_duplex ; u32 mac_status ; bool current_link_up ; int i ; int tmp ; int tmp___0 ; int tmp___1 ; u32 tmp___2 ; u32 now_pause_cfg ; bool tmp___3 ; int tmp___4 ; { { orig_pause_cfg = (u32 )tp->link_config.active_flowctrl; orig_active_speed = tp->link_config.active_speed; orig_active_duplex = tp->link_config.active_duplex; tmp = _tg3_flag(36, (unsigned long *)(& tp->tg3_flags)); } if (tmp == 0 && (int )tp->link_up) { { tmp___0 = _tg3_flag(32, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0) { { mac_status = (*(tp->read32))(tp, 1028U); mac_status = mac_status & 15U; } if (mac_status == 3U) { { _tw32_flush(tp, 1028U, 24U, 0U); } return (0); } else { } } else { } } else { } { _tw32_flush(tp, 1092U, 0U, 0U); tp->mac_mode = tp->mac_mode & 4294967281U; tp->mac_mode = tp->mac_mode | 12U; _tw32_flush(tp, 1024U, tp->mac_mode, 0U); __const_udelay(171800UL); } if (tp->phy_id == 1610678592U) { { tg3_init_bcm8002(tp); } } else { } { _tw32_flush(tp, 1032U, 4096U, 0U); __const_udelay(171800UL); current_link_up = 0; tp->link_config.rmt_adv = 0U; mac_status = (*(tp->read32))(tp, 1028U); tmp___1 = _tg3_flag(36, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 != 0) { { current_link_up = tg3_setup_fiber_hw_autoneg(tp, mac_status); } } else { { current_link_up = tg3_setup_fiber_by_hand(tp, mac_status); } } (tp->napi[0].hw_status)->status = ((tp->napi[0].hw_status)->status & 4294967292U) | 1U; i = 0; goto ldv_57844; ldv_57843: { _tw32_flush(tp, 1028U, 24U, 0U); __const_udelay(21475UL); tmp___2 = (*(tp->read32))(tp, 1028U); } if ((tmp___2 & 4120U) == 0U) { goto ldv_57842; } else { } i = i + 1; ldv_57844: ; if (i <= 99) { goto ldv_57843; } else { } ldv_57842: { mac_status = (*(tp->read32))(tp, 1028U); } if ((mac_status & 1U) == 0U) { current_link_up = 0; if ((unsigned int )tp->link_config.autoneg == 1U && tp->serdes_counter == 0U) { { _tw32_flush(tp, 1024U, tp->mac_mode | 131072U, 0U); __const_udelay(4295UL); _tw32_flush(tp, 1024U, tp->mac_mode, 0U); } } else { } } else { } if ((int )current_link_up) { { tp->link_config.active_speed = 1000U; tp->link_config.active_duplex = 1U; (*(tp->write32))(tp, 1036U, tp->led_ctrl | 3U); } } else { { tp->link_config.active_speed = 65535U; tp->link_config.active_duplex = 255U; (*(tp->write32))(tp, 1036U, tp->led_ctrl | 17U); } } { tmp___3 = tg3_test_and_report_link_chg(tp, (int )current_link_up); } if (tmp___3) { tmp___4 = 0; } else { tmp___4 = 1; } if (tmp___4) { now_pause_cfg = (u32 )tp->link_config.active_flowctrl; if ((orig_pause_cfg != now_pause_cfg || (int )orig_active_speed != (int )tp->link_config.active_speed) || (int )orig_active_duplex != (int )tp->link_config.active_duplex) { { tg3_link_report(tp); } } else { } } else { } return (0); } } static int tg3_setup_fiber_mii_phy(struct tg3 *tp , bool force_reset ) { int err ; u32 bmsr ; u32 bmcr ; u16 current_speed ; u8 current_duplex ; bool current_link_up ; u32 local_adv ; u32 remote_adv ; u32 sgsr ; int tmp ; int tmp___0 ; int tmp___1 ; u32 tmp___2 ; int tmp___3 ; u32 adv ; u32 newadv ; int tmp___4 ; u16 tmp___5 ; u32 tmp___6 ; u32 new_bmcr ; u32 adv___0 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; u32 tmp___10 ; u32 common ; int tmp___11 ; int tmp___12 ; int tmp___13 ; { err = 0; current_speed = 65535U; current_duplex = 255U; current_link_up = 0; if (tp->pci_chip_rev_id >> 12 == 22297U || tp->pci_chip_rev_id >> 12 == 22304U) { { tmp = tg3_readphy(tp, 20, & sgsr); } if (tmp == 0) { if ((int )sgsr & 1) { if ((int )force_reset) { { tg3_phy_reset(tp); } } else { } tp->mac_mode = tp->mac_mode & 4294967283U; if ((sgsr & 2U) == 0U) { tp->mac_mode = tp->mac_mode | 8U; } else { current_link_up = 1; if ((sgsr & 16U) != 0U) { current_speed = 1000U; tp->mac_mode = tp->mac_mode | 8U; } else if ((sgsr & 8U) != 0U) { current_speed = 100U; tp->mac_mode = tp->mac_mode | 4U; } else { current_speed = 10U; tp->mac_mode = tp->mac_mode | 4U; } if ((sgsr & 4U) != 0U) { current_duplex = 1U; } else { current_duplex = 0U; } } { _tw32_flush(tp, 1024U, tp->mac_mode, 0U); __const_udelay(171800UL); tg3_clear_mac_status(tp); } goto fiber_setup_done; } else { } } else { } } else { } { tp->mac_mode = tp->mac_mode | 8U; _tw32_flush(tp, 1024U, tp->mac_mode, 0U); __const_udelay(171800UL); tg3_clear_mac_status(tp); } if ((int )force_reset) { { tg3_phy_reset(tp); } } else { } { tp->link_config.rmt_adv = 0U; tmp___0 = tg3_readphy(tp, 1, & bmsr); err = err | tmp___0; tmp___1 = tg3_readphy(tp, 1, & bmsr); err = err | tmp___1; } if (tp->pci_chip_rev_id >> 12 == 9U) { { tmp___2 = (*(tp->read32))(tp, 1120U); } if ((tmp___2 & 8U) != 0U) { bmsr = bmsr | 4U; } else { bmsr = bmsr & 4294967291U; } } else { } { tmp___3 = tg3_readphy(tp, 0, & bmcr); err = err | tmp___3; } if (((unsigned int )tp->link_config.autoneg == 1U && ! force_reset) && (tp->phy_flags & 131072U) != 0U) { } else if ((unsigned int )tp->link_config.autoneg == 1U) { { tmp___4 = tg3_readphy(tp, 4, & adv); err = err | tmp___4; newadv = adv & 4294966784U; tmp___5 = tg3_advert_flowctrl_1000X((int )tp->link_config.flowctrl); newadv = newadv | (u32 )tmp___5; tmp___6 = ethtool_adv_to_mii_adv_x(tp->link_config.advertising); newadv = newadv | tmp___6; } if (newadv != adv || (bmcr & 4096U) == 0U) { { tg3_writephy(tp, 4, newadv); bmcr = bmcr | 4608U; tg3_writephy(tp, 0, bmcr); _tw32_flush(tp, 1032U, 4096U, 0U); tp->serdes_counter = 1U; tp->phy_flags = tp->phy_flags & 4294836223U; } return (err); } else { } } else { bmcr = bmcr & 4294967231U; new_bmcr = bmcr & 4294962943U; if ((unsigned int )tp->link_config.duplex == 1U) { new_bmcr = new_bmcr | 256U; } else { } if (new_bmcr != bmcr) { new_bmcr = new_bmcr | 64U; if ((int )tp->link_up) { { tmp___7 = tg3_readphy(tp, 4, & adv___0); err = err | tmp___7; adv___0 = adv___0 & 4294967168U; tg3_writephy(tp, 4, adv___0); tg3_writephy(tp, 0, bmcr | 4608U); __const_udelay(42950UL); tg3_carrier_off(tp); } } else { } { tg3_writephy(tp, 0, new_bmcr); bmcr = new_bmcr; tmp___8 = tg3_readphy(tp, 1, & bmsr); err = err | tmp___8; tmp___9 = tg3_readphy(tp, 1, & bmsr); err = err | tmp___9; } if (tp->pci_chip_rev_id >> 12 == 9U) { { tmp___10 = (*(tp->read32))(tp, 1120U); } if ((tmp___10 & 8U) != 0U) { bmsr = bmsr | 4U; } else { bmsr = bmsr & 4294967291U; } } else { } tp->phy_flags = tp->phy_flags & 4294836223U; } else { } } if ((bmsr & 4U) != 0U) { current_speed = 1000U; current_link_up = 1; if ((bmcr & 256U) != 0U) { current_duplex = 1U; } else { current_duplex = 0U; } local_adv = 0U; remote_adv = 0U; if ((bmcr & 4096U) != 0U) { { tmp___11 = tg3_readphy(tp, 4, & local_adv); err = err | tmp___11; tmp___12 = tg3_readphy(tp, 5, & remote_adv); err = err | tmp___12; common = local_adv & remote_adv; } if ((common & 96U) != 0U) { if ((common & 32U) != 0U) { current_duplex = 1U; } else { current_duplex = 0U; } { tp->link_config.rmt_adv = mii_adv_to_ethtool_adv_x(remote_adv); } } else { { tmp___13 = _tg3_flag(74, (unsigned long *)(& tp->tg3_flags)); } if (tmp___13 == 0) { } else { current_link_up = 0; } } } else { } } else { } fiber_setup_done: ; if ((int )current_link_up && (unsigned int )current_duplex == 1U) { { tg3_setup_flow_control(tp, local_adv, remote_adv); } } else { } tp->mac_mode = tp->mac_mode & 4294967293U; if ((unsigned int )tp->link_config.active_duplex == 0U) { tp->mac_mode = tp->mac_mode | 2U; } else { } { _tw32_flush(tp, 1024U, tp->mac_mode, 0U); __const_udelay(171800UL); _tw32_flush(tp, 1032U, 4096U, 0U); tp->link_config.active_speed = current_speed; tp->link_config.active_duplex = current_duplex; tg3_test_and_report_link_chg(tp, (int )current_link_up); } return (err); } } static void tg3_serdes_parallel_detect(struct tg3 *tp ) { u32 bmcr ; u32 phy1 ; u32 phy2 ; u32 phy2___0 ; u32 bmcr___0 ; { if (tp->serdes_counter != 0U) { tp->serdes_counter = tp->serdes_counter - 1U; return; } else { } if (! tp->link_up && (unsigned int )tp->link_config.autoneg == 1U) { { tg3_readphy(tp, 0, & bmcr); } if ((bmcr & 4096U) != 0U) { { tg3_writephy(tp, 28, 31744U); tg3_readphy(tp, 28, & phy1); tg3_writephy(tp, 23, 3841U); tg3_readphy(tp, 21, & phy2); tg3_readphy(tp, 21, & phy2); } if ((phy1 & 16U) != 0U && (phy2 & 32U) == 0U) { { bmcr = bmcr & 4294963199U; bmcr = bmcr | 320U; tg3_writephy(tp, 0, bmcr); tp->phy_flags = tp->phy_flags | 131072U; } } else { } } else { } } else if (((int )tp->link_up && (unsigned int )tp->link_config.autoneg == 1U) && (tp->phy_flags & 131072U) != 0U) { { tg3_writephy(tp, 23, 3841U); tg3_readphy(tp, 21, & phy2___0); } if ((phy2___0 & 32U) != 0U) { { tg3_readphy(tp, 0, & bmcr___0); tg3_writephy(tp, 0, bmcr___0 | 4096U); tp->phy_flags = tp->phy_flags & 4294836223U; } } else { } } else { } return; } } static int tg3_setup_phy(struct tg3 *tp , bool force_reset ) { u32 val ; int err ; u32 scale ; u32 tmp ; u32 tmp___0 ; u32 tmp___1 ; int tmp___2 ; int tmp___3 ; { if ((tp->phy_flags & 16U) != 0U) { { err = tg3_setup_fiber_phy(tp, (int )force_reset); } } else if ((tp->phy_flags & 32U) != 0U) { { err = tg3_setup_fiber_mii_phy(tp, (int )force_reset); } } else { { err = tg3_setup_copper_phy(tp, (int )force_reset); } } if (tp->pci_chip_rev_id >> 8 == 358464U) { { tmp = (*(tp->read32))(tp, 13872U); val = tmp & 2031616U; } if (val == 0U) { scale = 65U; } else if (val == 1245184U) { scale = 6U; } else { scale = 12U; } { tmp___0 = (*(tp->read32))(tp, 26628U); val = tmp___0 & 4294967041U; val = val | (scale << 1); (*(tp->write32))(tp, 26628U, val); } } else { } val = 9728U; if (tp->pci_chip_rev_id >> 12 == 22304U || tp->pci_chip_rev_id >> 12 == 22370U) { { tmp___1 = (*(tp->read32))(tp, 1124U); val = val | (tmp___1 & 4294901760U); } } else { } if (*((unsigned long *)tp + 535UL) == 4294967296000UL) { { (*(tp->write32))(tp, 1124U, val | 255U); } } else { { (*(tp->write32))(tp, 1124U, val | 32U); } } { tmp___2 = _tg3_flag(71, (unsigned long *)(& tp->tg3_flags)); } if (tmp___2 == 0) { if ((int )tp->link_up) { { (*(tp->write32))(tp, 15400U, tp->coal.stats_block_coalesce_usecs); } } else { { (*(tp->write32))(tp, 15400U, 0U); } } } else { } { tmp___3 = _tg3_flag(5, (unsigned long *)(& tp->tg3_flags)); } if (tmp___3 != 0) { { val = (*(tp->read32))(tp, 32040U); } if (! tp->link_up) { val = (val & 4294902015U) | tp->pwrmgmt_thresh; } else { val = val | 65280U; } { (*(tp->write32))(tp, 32040U, val); } } else { } return (err); } } static u64 tg3_refclk_read(struct tg3 *tp ) { u64 stamp ; u32 tmp ; u32 tmp___0 ; { { tmp = (*(tp->read32))(tp, 26880U); stamp = (u64 )tmp; tmp___0 = (*(tp->read32))(tp, 26884U); } return (stamp | ((unsigned long long )tmp___0 << 32)); } } static void tg3_refclk_write(struct tg3 *tp , u64 newval ) { u32 clock_ctl ; u32 tmp ; { { tmp = (*(tp->read32))(tp, 26888U); clock_ctl = tmp; (*(tp->write32))(tp, 26888U, clock_ctl | 2U); (*(tp->write32))(tp, 26880U, (u32 )newval); (*(tp->write32))(tp, 26884U, (u32 )(newval >> 32)); _tw32_flush(tp, 26888U, clock_ctl | 4U, 0U); } return; } } __inline static void tg3_full_lock(struct tg3 *tp , int irq_sync ) ; __inline static void tg3_full_unlock(struct tg3 *tp ) ; static int tg3_get_ts_info(struct net_device *dev , struct ethtool_ts_info *info ) { struct tg3 *tp ; void *tmp ; int tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; info->so_timestamping = 26U; tmp___0 = _tg3_flag(70, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0) { info->so_timestamping = info->so_timestamping | 69U; } else { } if ((unsigned long )tp->ptp_clock != (unsigned long )((struct ptp_clock *)0)) { { info->phc_index = ptp_clock_index(tp->ptp_clock); } } else { info->phc_index = -1; } info->tx_types = 3U; info->rx_filters = 585U; return (0); } } static int tg3_ptp_adjfreq(struct ptp_clock_info *ptp , s32 ppb ) { struct tg3 *tp ; struct ptp_clock_info const *__mptr ; bool neg_adj ; u32 correction ; u64 tmp ; { __mptr = (struct ptp_clock_info const *)ptp; tp = (struct tg3 *)__mptr + 0xffffffffffffff20UL; neg_adj = 0; correction = 0U; if (ppb < 0) { neg_adj = 1; ppb = - ppb; } else { } { tmp = div_u64((unsigned long long )ppb * 16777216ULL, 1000000000U); correction = (u32 )tmp & 16777215U; tg3_full_lock(tp, 0); } if (correction != 0U) { { (*(tp->write32))(tp, 26920U, ((int )neg_adj ? 3221225472U : 2147483648U) | correction); } } else { { (*(tp->write32))(tp, 26920U, 0U); } } { tg3_full_unlock(tp); } return (0); } } static int tg3_ptp_adjtime(struct ptp_clock_info *ptp , s64 delta ) { struct tg3 *tp ; struct ptp_clock_info const *__mptr ; { { __mptr = (struct ptp_clock_info const *)ptp; tp = (struct tg3 *)__mptr + 0xffffffffffffff20UL; tg3_full_lock(tp, 0); tp->ptp_adjust = tp->ptp_adjust + delta; tg3_full_unlock(tp); } return (0); } } static int tg3_ptp_gettime(struct ptp_clock_info *ptp , struct timespec *ts ) { u64 ns ; u32 remainder ; struct tg3 *tp ; struct ptp_clock_info const *__mptr ; u64 tmp ; { { __mptr = (struct ptp_clock_info const *)ptp; tp = (struct tg3 *)__mptr + 0xffffffffffffff20UL; tg3_full_lock(tp, 0); ns = tg3_refclk_read(tp); ns = ns + (unsigned long long )tp->ptp_adjust; tg3_full_unlock(tp); tmp = div_u64_rem(ns, 1000000000U, & remainder); ts->tv_sec = (__kernel_time_t )tmp; ts->tv_nsec = (long )remainder; } return (0); } } static int tg3_ptp_settime(struct ptp_clock_info *ptp , struct timespec const *ts ) { u64 ns ; struct tg3 *tp ; struct ptp_clock_info const *__mptr ; s64 tmp ; { { __mptr = (struct ptp_clock_info const *)ptp; tp = (struct tg3 *)__mptr + 0xffffffffffffff20UL; tmp = timespec_to_ns(ts); ns = (u64 )tmp; tg3_full_lock(tp, 0); tg3_refclk_write(tp, ns); tp->ptp_adjust = 0LL; tg3_full_unlock(tp); } return (0); } } static int tg3_ptp_enable(struct ptp_clock_info *ptp , struct ptp_clock_request *rq , int on ) { struct tg3 *tp ; struct ptp_clock_info const *__mptr ; u32 clock_ctl ; int rval ; u64 nsec ; { __mptr = (struct ptp_clock_info const *)ptp; tp = (struct tg3 *)__mptr + 0xffffffffffffff20UL; rval = 0; { if ((unsigned int )rq->type == 1U) { goto case_1; } else { } goto switch_default; case_1: /* CIL Label */ ; if (rq->__annonCompField110.perout.index != 0U) { return (-22); } else { } { tg3_full_lock(tp, 0); clock_ctl = (*(tp->read32))(tp, 26888U); clock_ctl = clock_ctl & 4294770687U; } if (on != 0) { nsec = (unsigned long long )rq->__annonCompField110.perout.start.sec * 1000000000ULL + (unsigned long long )rq->__annonCompField110.perout.start.nsec; if (rq->__annonCompField110.perout.period.sec != 0LL || rq->__annonCompField110.perout.period.nsec != 0U) { { netdev_warn((struct net_device const *)tp->dev, "Device supports only a one-shot timesync output, period must be 0\n"); rval = -22; } goto err_out; } else { } if ((long )nsec < 0L) { { netdev_warn((struct net_device const *)tp->dev, "Start value (nsec) is over limit. Maximum size of start is only 63 bits\n"); rval = -22; } goto err_out; } else { } { (*(tp->write32))(tp, 26904U, (u32 )nsec); (*(tp->write32))(tp, 26908U, (u32 )(nsec >> 32) | 2147483648U); (*(tp->write32))(tp, 26888U, clock_ctl | 131072U); } } else { { (*(tp->write32))(tp, 26908U, 0U); (*(tp->write32))(tp, 26888U, clock_ctl); } } err_out: { tg3_full_unlock(tp); } return (rval); switch_default: /* CIL Label */ ; goto ldv_57946; switch_break: /* CIL Label */ ; } ldv_57946: ; return (-95); } } static struct ptp_clock_info const tg3_ptp_caps = {& __this_module, {'t', 'g', '3', ' ', 'c', 'l', 'o', 'c', 'k', '\000'}, 250000000, 0, 0, 1, 0, 0, 0, & tg3_ptp_adjfreq, & tg3_ptp_adjtime, & tg3_ptp_gettime, & tg3_ptp_settime, & tg3_ptp_enable, 0}; static void tg3_hwclock_to_timestamp(struct tg3 *tp , u64 hwclock , struct skb_shared_hwtstamps *timestamp ) { { { __memset((void *)timestamp, 0, 8UL); timestamp->hwtstamp = ns_to_ktime((hwclock & 9223372036854775807ULL) + (unsigned long long )tp->ptp_adjust); } return; } } static void tg3_ptp_init(struct tg3 *tp ) { int tmp ; ktime_t tmp___0 ; { { tmp = _tg3_flag(70, (unsigned long *)(& tp->tg3_flags)); } if (tmp == 0) { return; } else { } { tmp___0 = ktime_get_real(); tg3_refclk_write(tp, (u64 )tmp___0.tv64); tp->ptp_adjust = 0LL; tp->ptp_info = tg3_ptp_caps; } return; } } static void tg3_ptp_resume(struct tg3 *tp ) { int tmp ; ktime_t tmp___0 ; { { tmp = _tg3_flag(70, (unsigned long *)(& tp->tg3_flags)); } if (tmp == 0) { return; } else { } { tmp___0 = ktime_get_real(); tg3_refclk_write(tp, (u64 )(tmp___0.tv64 + tp->ptp_adjust)); tp->ptp_adjust = 0LL; } return; } } static void tg3_ptp_fini(struct tg3 *tp ) { int tmp ; { { tmp = _tg3_flag(70, (unsigned long *)(& tp->tg3_flags)); } if (tmp == 0 || (unsigned long )tp->ptp_clock == (unsigned long )((struct ptp_clock *)0)) { return; } else { } { ptp_clock_unregister(tp->ptp_clock); tp->ptp_clock = (struct ptp_clock *)0; tp->ptp_adjust = 0LL; } return; } } __inline static int tg3_irq_sync(struct tg3 *tp ) { { return ((int )tp->irq_sync); } } __inline static void tg3_rd32_loop(struct tg3 *tp , u32 *dst , u32 off , u32 len ) { int i ; u32 *tmp ; { dst = dst + (unsigned long )off; i = 0; goto ldv_57973; ldv_57972: { tmp = dst; dst = dst + 1; *tmp = (*(tp->read32))(tp, off + (u32 )i); i = (int )((unsigned int )i + 4U); } ldv_57973: ; if ((u32 )i < len) { goto ldv_57972; } else { } return; } } static void tg3_dump_legacy_regs(struct tg3 *tp , u32 *regs ) { int tmp ; int tmp___0 ; int tmp___1 ; { { tg3_rd32_loop(tp, regs, 0U, 176U); tg3_rd32_loop(tp, regs, 512U, 512U); tg3_rd32_loop(tp, regs, 1024U, 1264U); tg3_rd32_loop(tp, regs, 3072U, 224U); tg3_rd32_loop(tp, regs, 4096U, 4U); tg3_rd32_loop(tp, regs, 5120U, 128U); tg3_rd32_loop(tp, regs, 6144U, 72U); tg3_rd32_loop(tp, regs, 7168U, 4U); tg3_rd32_loop(tp, regs, 8192U, 32U); tg3_rd32_loop(tp, regs, 8448U, 348U); tg3_rd32_loop(tp, regs, 9216U, 12U); tg3_rd32_loop(tp, regs, 9280U, 60U); tg3_rd32_loop(tp, regs, 9344U, 68U); tg3_rd32_loop(tp, regs, 10240U, 4U); tg3_rd32_loop(tp, regs, 11264U, 32U); tg3_rd32_loop(tp, regs, 12288U, 20U); tg3_rd32_loop(tp, regs, 13312U, 8U); tg3_rd32_loop(tp, regs, 14336U, 8U); tg3_rd32_loop(tp, regs, 15360U, 256U); tmp = _tg3_flag(16, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { { tg3_rd32_loop(tp, regs, 15744U, 384U); } } else { } { tg3_rd32_loop(tp, regs, 16384U, 16U); tg3_rd32_loop(tp, regs, 17408U, 88U); tg3_rd32_loop(tp, regs, 18432U, 8U); tg3_rd32_loop(tp, regs, 19456U, 8U); tg3_rd32_loop(tp, regs, 20480U, 4U); tg3_rd32_loop(tp, regs, 20484U, 4U); tg3_rd32_loop(tp, regs, 20508U, 4U); tg3_rd32_loop(tp, regs, 20532U, 4U); tmp___0 = _tg3_flag(71, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 == 0) { { tg3_rd32_loop(tp, regs, 21504U, 4U); tg3_rd32_loop(tp, regs, 21508U, 4U); tg3_rd32_loop(tp, regs, 21532U, 4U); } } else { } { tg3_rd32_loop(tp, regs, 22528U, 272U); tg3_rd32_loop(tp, regs, 23552U, 288U); tg3_rd32_loop(tp, regs, 24576U, 12U); tg3_rd32_loop(tp, regs, 25600U, 4U); tg3_rd32_loop(tp, regs, 26624U, 76U); tmp___1 = _tg3_flag(13, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 != 0) { { tg3_rd32_loop(tp, regs, 28672U, 36U); } } else { } return; } } static void tg3_dump_state(struct tg3 *tp ) { int i ; u32 *regs ; void *tmp ; int tmp___0 ; struct tg3_napi *tnapi ; { { tmp = kzalloc(32768UL, 32U); regs = (u32 *)tmp; } if ((unsigned long )regs == (unsigned long )((u32 *)0U)) { return; } else { } { tmp___0 = _tg3_flag(34, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0) { i = 0; goto ldv_57985; ldv_57984: { *(regs + (unsigned long )i / 4UL) = (*(tp->read32))(tp, (u32 )i); i = (int )((unsigned int )i + 4U); } ldv_57985: ; if (i <= 31743) { goto ldv_57984; } else { } } else { { tg3_dump_legacy_regs(tp, regs); } } i = 0; goto ldv_57989; ldv_57988: ; if (((*(regs + (unsigned long )i) == 0U && *(regs + ((unsigned long )i + 1UL)) == 0U) && *(regs + ((unsigned long )i + 2UL)) == 0U) && *(regs + ((unsigned long )i + 3UL)) == 0U) { goto ldv_57987; } else { } { netdev_err((struct net_device const *)tp->dev, "0x%08x: 0x%08x, 0x%08x, 0x%08x, 0x%08x\n", i * 4, *(regs + (unsigned long )i), *(regs + ((unsigned long )i + 1UL)), *(regs + ((unsigned long )i + 2UL)), *(regs + ((unsigned long )i + 3UL))); } ldv_57987: i = i + 4; ldv_57989: ; if ((unsigned int )i <= 8191U) { goto ldv_57988; } else { } { kfree((void const *)regs); i = 0; } goto ldv_57993; ldv_57992: { tnapi = (struct tg3_napi *)(& tp->napi) + (unsigned long )i; netdev_err((struct net_device const *)tp->dev, "%d: Host status block [%08x:%08x:(%04x:%04x:%04x):(%04x:%04x)]\n", i, (tnapi->hw_status)->status, (tnapi->hw_status)->status_tag, (int )(tnapi->hw_status)->rx_jumbo_consumer, (int )(tnapi->hw_status)->rx_consumer, (int )(tnapi->hw_status)->rx_mini_consumer, (int )(tnapi->hw_status)->idx[0].rx_producer, (int )(tnapi->hw_status)->idx[0].tx_consumer); netdev_err((struct net_device const *)tp->dev, "%d: NAPI info [%08x:%08x:(%04x:%04x:%04x):%04x:(%04x:%04x:%04x:%04x)]\n", i, tnapi->last_tag, tnapi->last_irq_tag, tnapi->tx_prod, tnapi->tx_cons, tnapi->tx_pending, tnapi->rx_rcb_ptr, tnapi->prodring.rx_std_prod_idx, tnapi->prodring.rx_std_cons_idx, tnapi->prodring.rx_jmb_prod_idx, tnapi->prodring.rx_jmb_cons_idx); i = i + 1; } ldv_57993: ; if ((unsigned int )i < tp->irq_cnt) { goto ldv_57992; } else { } return; } } static void tg3_tx_recover(struct tg3 *tp ) { int tmp ; long tmp___0 ; long tmp___1 ; { { tmp = _tg3_flag(8, (unsigned long *)(& tp->tg3_flags)); tmp___0 = ldv__builtin_expect(tmp != 0, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/ethernet/broadcom/tg3.c"), "i" (6497), "i" (12UL)); __builtin_unreachable(); } } else { { tmp___1 = ldv__builtin_expect((unsigned long )tp->write32_tx_mbox == (unsigned long )(& tg3_write_indirect_mbox), 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/ethernet/broadcom/tg3.c"), "i" (6497), "i" (12UL)); __builtin_unreachable(); } } else { } } { netdev_warn((struct net_device const *)tp->dev, "The system may be re-ordering memory-mapped I/O cycles to the network device, attempting to recover. Please report the problem to the driver maintainer and include system chipset information.\n"); _tg3_flag_set(23, (unsigned long *)(& tp->tg3_flags)); } return; } } __inline static u32 tg3_tx_avail(struct tg3_napi *tnapi ) { { __asm__ volatile ("": : : "memory"); return (tnapi->tx_pending - ((tnapi->tx_prod - tnapi->tx_cons) & 511U)); } } static void tg3_tx(struct tg3_napi *tnapi ) { struct tg3 *tp ; u32 hw_idx ; u32 sw_idx ; struct netdev_queue *txq ; int index ; unsigned int pkts_compl ; unsigned int bytes_compl ; int tmp ; struct tg3_tx_ring_info *ri ; struct sk_buff *skb ; int i ; int tx_bug ; long tmp___0 ; struct skb_shared_hwtstamps timestamp ; u64 hwclock ; u32 tmp___1 ; u32 tmp___2 ; unsigned int tmp___3 ; long tmp___4 ; unsigned char *tmp___5 ; unsigned int tmp___6 ; unsigned char *tmp___7 ; long tmp___8 ; int pscr_ret__ ; void const *__vpp_verify ; int pfo_ret__ ; int pfo_ret_____0 ; int pfo_ret_____1 ; int pfo_ret_____2 ; bool tmp___9 ; u32 tmp___10 ; bool tmp___11 ; long tmp___12 ; u32 tmp___13 ; long tmp___14 ; { { tp = tnapi->tp; hw_idx = (u32 )(tnapi->hw_status)->idx[0].tx_consumer; sw_idx = tnapi->tx_cons; index = (int )(((long )tnapi - (long )(& tp->napi)) / 576L); pkts_compl = 0U; bytes_compl = 0U; tmp = _tg3_flag(61, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { index = index - 1; } else { } { txq = netdev_get_tx_queue((struct net_device const *)tp->dev, (unsigned int )index); } goto ldv_58027; ldv_58026: { ri = tnapi->tx_buffers + (unsigned long )sw_idx; skb = ri->skb; tx_bug = 0; tmp___0 = ldv__builtin_expect((unsigned long )skb == (unsigned long )((struct sk_buff *)0), 0L); } if (tmp___0 != 0L) { { tg3_tx_recover(tp); } return; } else { } if (((tnapi->tx_ring + (unsigned long )sw_idx)->len_flags & 32U) != 0U) { { tmp___1 = (*(tp->read32))(tp, 1472U); hwclock = (u64 )tmp___1; tmp___2 = (*(tp->read32))(tp, 1476U); hwclock = hwclock | ((unsigned long long )tmp___2 << 32); tg3_hwclock_to_timestamp(tp, hwclock, & timestamp); skb_tstamp_tx(skb, & timestamp); } } else { } { tmp___3 = skb_headlen((struct sk_buff const *)skb); pci_unmap_single(tp->pdev, ri->mapping, (size_t )tmp___3, 1); ri->skb = (struct sk_buff *)0; } goto ldv_58018; ldv_58017: ri->fragmented = 0; sw_idx = (sw_idx + 1U) & 511U; ri = tnapi->tx_buffers + (unsigned long )sw_idx; ldv_58018: ; if ((int )ri->fragmented) { goto ldv_58017; } else { } sw_idx = (sw_idx + 1U) & 511U; i = 0; goto ldv_58024; ldv_58023: { ri = tnapi->tx_buffers + (unsigned long )sw_idx; tmp___4 = ldv__builtin_expect((long )((unsigned long )ri->skb != (unsigned long )((struct sk_buff *)0) || sw_idx == hw_idx), 0L); } if (tmp___4 != 0L) { tx_bug = 1; } else { } { tmp___5 = skb_end_pointer((struct sk_buff const *)skb); tmp___6 = skb_frag_size((skb_frag_t const *)(& ((struct skb_shared_info *)tmp___5)->frags) + (unsigned long )i); pci_unmap_page(tp->pdev, ri->mapping, (size_t )tmp___6, 1); } goto ldv_58021; ldv_58020: ri->fragmented = 0; sw_idx = (sw_idx + 1U) & 511U; ri = tnapi->tx_buffers + (unsigned long )sw_idx; ldv_58021: ; if ((int )ri->fragmented) { goto ldv_58020; } else { } sw_idx = (sw_idx + 1U) & 511U; i = i + 1; ldv_58024: { tmp___7 = skb_end_pointer((struct sk_buff const *)skb); } if (i < (int )((struct skb_shared_info *)tmp___7)->nr_frags) { goto ldv_58023; } else { } { pkts_compl = pkts_compl + 1U; bytes_compl = bytes_compl + skb->len; dev_kfree_skb_any(skb); tmp___8 = ldv__builtin_expect(tx_bug != 0, 0L); } if (tmp___8 != 0L) { { tg3_tx_recover(tp); } return; } else { } ldv_58027: ; if (sw_idx != hw_idx) { goto ldv_58026; } else { } { netdev_tx_completed_queue(txq, pkts_compl, bytes_compl); tnapi->tx_cons = sw_idx; __asm__ volatile ("mfence": : : "memory"); tmp___11 = netif_tx_queue_stopped((struct netdev_queue const *)txq); tmp___12 = ldv__builtin_expect((long )tmp___11, 0L); } if (tmp___12 != 0L) { { tmp___13 = tg3_tx_avail(tnapi); tmp___14 = ldv__builtin_expect(tmp___13 > tnapi->tx_pending / 4U, 0L); } if (tmp___14 != 0L) { __vpp_verify = (void const *)0; { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2___0; } else { } if (4UL == 4UL) { goto case_4___1; } else { } if (4UL == 8UL) { goto case_8___2; } else { } goto switch_default___3; case_1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___0; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1___0: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret__): "m" (cpu_number)); goto ldv_58034; case_2: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_58034; case_4: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_58034; case_8: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_58034; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break___0: /* CIL Label */ ; } ldv_58034: pscr_ret__ = pfo_ret__; goto ldv_58040; case_2___0: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___1; } else { } if (4UL == 2UL) { goto case_2___1; } else { } if (4UL == 4UL) { goto case_4___0; } else { } if (4UL == 8UL) { goto case_8___0; } else { } goto switch_default___0; case_1___1: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____0): "m" (cpu_number)); goto ldv_58044; case_2___1: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_58044; case_4___0: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_58044; case_8___0: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_58044; switch_default___0: /* CIL Label */ { __bad_percpu_size(); } switch_break___1: /* CIL Label */ ; } ldv_58044: pscr_ret__ = pfo_ret_____0; goto ldv_58040; case_4___1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___2; } else { } if (4UL == 2UL) { goto case_2___2; } else { } if (4UL == 4UL) { goto case_4___2; } else { } if (4UL == 8UL) { goto case_8___1; } else { } goto switch_default___1; case_1___2: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____1): "m" (cpu_number)); goto ldv_58053; case_2___2: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_58053; case_4___2: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_58053; case_8___1: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_58053; switch_default___1: /* CIL Label */ { __bad_percpu_size(); } switch_break___2: /* CIL Label */ ; } ldv_58053: pscr_ret__ = pfo_ret_____1; goto ldv_58040; case_8___2: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___3; } else { } if (4UL == 2UL) { goto case_2___3; } else { } if (4UL == 4UL) { goto case_4___3; } else { } if (4UL == 8UL) { goto case_8___3; } else { } goto switch_default___2; case_1___3: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____2): "m" (cpu_number)); goto ldv_58062; case_2___3: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_58062; case_4___3: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_58062; case_8___3: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_58062; switch_default___2: /* CIL Label */ { __bad_percpu_size(); } switch_break___3: /* CIL Label */ ; } ldv_58062: pscr_ret__ = pfo_ret_____2; goto ldv_58040; switch_default___3: /* CIL Label */ { __bad_size_call_parameter(); } goto ldv_58040; switch_break: /* CIL Label */ ; } ldv_58040: { __netif_tx_lock(txq, pscr_ret__); tmp___9 = netif_tx_queue_stopped((struct netdev_queue const *)txq); } if ((int )tmp___9) { { tmp___10 = tg3_tx_avail(tnapi); } if (tmp___10 > tnapi->tx_pending / 4U) { { netif_tx_wake_queue(txq); } } else { } } else { } { __netif_tx_unlock(txq); } } else { } } else { } return; } } static void tg3_frag_free(bool is_frag , void *data ) { struct page *tmp ; { if ((int )is_frag) { { tmp = virt_to_head_page((void const *)data); put_page(tmp); } } else { { kfree((void const *)data); } } return; } } static void tg3_rx_data_free(struct tg3 *tp , struct ring_info *ri , u32 map_sz ) { unsigned int skb_size ; int _max1 ; int _max2 ; { _max1 = 32; _max2 = 64; skb_size = (((map_sz + (u32 )(_max1 > _max2 ? _max1 : _max2)) + 63U) & 4294967232U) + 320U; if ((unsigned long )ri->data == (unsigned long )((u8 *)0U)) { return; } else { } { pci_unmap_single(tp->pdev, ri->mapping, (size_t )map_sz, 2); tg3_frag_free(skb_size <= 4096U, (void *)ri->data); ri->data = (u8 *)0U; } return; } } static int tg3_alloc_rx_data(struct tg3 *tp , struct tg3_rx_prodring_set *tpr , u32 opaque_key , u32 dest_idx_unmasked , unsigned int *frag_size ) { struct tg3_rx_buffer_desc *desc ; struct ring_info *map ; u8 *data ; dma_addr_t mapping ; int skb_size ; int data_size ; int dest_idx ; int _max1 ; int _max2 ; void *tmp ; void *tmp___0 ; int _max1___0 ; int _max2___0 ; int tmp___1 ; long tmp___2 ; { { if (opaque_key == 65536U) { goto case_65536; } else { } if (opaque_key == 131072U) { goto case_131072; } else { } goto switch_default; case_65536: /* CIL Label */ dest_idx = (int )(dest_idx_unmasked & tp->rx_std_ring_mask); desc = tpr->rx_std + (unsigned long )dest_idx; map = tpr->rx_std_buffers + (unsigned long )dest_idx; data_size = (int )tp->rx_pkt_map_sz; goto ldv_58104; case_131072: /* CIL Label */ dest_idx = (int )(dest_idx_unmasked & tp->rx_jmb_ring_mask); desc = & (tpr->rx_jmb + (unsigned long )dest_idx)->std; map = tpr->rx_jmb_buffers + (unsigned long )dest_idx; data_size = 9110; goto ldv_58104; switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } ldv_58104: _max1 = 32; _max2 = 64; skb_size = (int )(((unsigned int )((data_size + (_max1 > _max2 ? _max1 : _max2)) + 63) & 4294967232U) + 320U); if ((unsigned int )skb_size <= 4096U) { { tmp = netdev_alloc_frag((unsigned int )skb_size); data = (u8 *)tmp; *frag_size = (unsigned int )skb_size; } } else { { tmp___0 = kmalloc((size_t )skb_size, 32U); data = (u8 *)tmp___0; *frag_size = 0U; } } if ((unsigned long )data == (unsigned long )((u8 *)0U)) { return (-12); } else { } { _max1___0 = 32; _max2___0 = 64; mapping = pci_map_single(tp->pdev, (void *)data + (unsigned long )(_max1___0 > _max2___0 ? _max1___0 : _max2___0), (size_t )data_size, 2); tmp___1 = pci_dma_mapping_error(tp->pdev, mapping); tmp___2 = ldv__builtin_expect(tmp___1 != 0, 0L); } if (tmp___2 != 0L) { { tg3_frag_free((unsigned int )skb_size <= 4096U, (void *)data); } return (-5); } else { } map->data = data; map->mapping = mapping; desc->addr_hi = (u32 )(mapping >> 32); desc->addr_lo = (u32 )mapping; return (data_size); } } static void tg3_recycle_rx(struct tg3_napi *tnapi , struct tg3_rx_prodring_set *dpr , u32 opaque_key , int src_idx , u32 dest_idx_unmasked ) { struct tg3 *tp ; struct tg3_rx_buffer_desc *src_desc ; struct tg3_rx_buffer_desc *dest_desc ; struct ring_info *src_map ; struct ring_info *dest_map ; struct tg3_rx_prodring_set *spr ; int dest_idx ; { tp = tnapi->tp; spr = & tp->napi[0].prodring; { if (opaque_key == 65536U) { goto case_65536; } else { } if (opaque_key == 131072U) { goto case_131072; } else { } goto switch_default; case_65536: /* CIL Label */ dest_idx = (int )(dest_idx_unmasked & tp->rx_std_ring_mask); dest_desc = dpr->rx_std + (unsigned long )dest_idx; dest_map = dpr->rx_std_buffers + (unsigned long )dest_idx; src_desc = spr->rx_std + (unsigned long )src_idx; src_map = spr->rx_std_buffers + (unsigned long )src_idx; goto ldv_58134; case_131072: /* CIL Label */ dest_idx = (int )(dest_idx_unmasked & tp->rx_jmb_ring_mask); dest_desc = & (dpr->rx_jmb + (unsigned long )dest_idx)->std; dest_map = dpr->rx_jmb_buffers + (unsigned long )dest_idx; src_desc = & (spr->rx_jmb + (unsigned long )src_idx)->std; src_map = spr->rx_jmb_buffers + (unsigned long )src_idx; goto ldv_58134; switch_default: /* CIL Label */ ; return; switch_break: /* CIL Label */ ; } ldv_58134: dest_map->data = src_map->data; dest_map->mapping = src_map->mapping; dest_desc->addr_hi = src_desc->addr_hi; dest_desc->addr_lo = src_desc->addr_lo; __asm__ volatile ("": : : "memory"); src_map->data = (u8 *)0U; return; } } static int tg3_rx(struct tg3_napi *tnapi , int budget ) { struct tg3 *tp ; u32 work_mask ; u32 rx_std_posted ; u32 std_prod_idx ; u32 jmb_prod_idx ; u32 sw_idx ; u16 hw_idx ; int received ; struct tg3_rx_prodring_set *tpr ; struct ring_info *ri ; struct tg3_rx_buffer_desc *desc ; unsigned int len ; struct sk_buff *skb ; dma_addr_t dma_addr ; u32 opaque_key ; u32 desc_idx ; u32 *post_ptr ; u8 *data ; u64 tstamp ; int _max1 ; int _max2 ; u32 tmp ; u32 tmp___0 ; int skb_size ; unsigned int frag_size ; int _max1___0 ; int _max2___0 ; int _max1___1 ; int _max2___1 ; struct skb_shared_hwtstamps *tmp___1 ; long tmp___2 ; int tmp___3 ; { tp = tnapi->tp; rx_std_posted = 0U; sw_idx = tnapi->rx_rcb_ptr; tpr = & tnapi->prodring; hw_idx = *(tnapi->rx_rcb_prod_idx); __asm__ volatile ("lfence": : : "memory"); work_mask = 0U; received = 0; std_prod_idx = tpr->rx_std_prod_idx; jmb_prod_idx = tpr->rx_jmb_prod_idx; goto ldv_58176; ldv_58175: desc = tnapi->rx_rcb + (unsigned long )sw_idx; tstamp = 0ULL; desc_idx = desc->opaque & 65535U; opaque_key = desc->opaque & 458752U; if (opaque_key == 65536U) { ri = tp->napi[0].prodring.rx_std_buffers + (unsigned long )desc_idx; dma_addr = ri->mapping; data = ri->data; post_ptr = & std_prod_idx; rx_std_posted = rx_std_posted + 1U; } else if (opaque_key == 131072U) { ri = tp->napi[0].prodring.rx_jmb_buffers + (unsigned long )desc_idx; dma_addr = ri->mapping; data = ri->data; post_ptr = & jmb_prod_idx; } else { goto next_pkt_nopost; } work_mask = work_mask | opaque_key; if ((desc->err_vlan & 32440320U) != 0U) { drop_it: { tg3_recycle_rx(tnapi, tpr, opaque_key, (int )desc_idx, *post_ptr); } drop_it_no_recycle: tp->rx_dropped = tp->rx_dropped + 1UL; goto next_pkt; } else { } { _max1 = 32; _max2 = 64; __builtin_prefetch((void const *)data + (unsigned long )(_max1 > _max2 ? _max1 : _max2)); len = (desc->idx_len & 65535U) - 4U; } if ((desc->type_flags & 528U) == 16U || (desc->type_flags & 528U) == 512U) { { tmp = (*(tp->read32))(tp, 1712U); tstamp = (u64 )tmp; tmp___0 = (*(tp->read32))(tp, 1716U); tstamp = tstamp | ((unsigned long long )tmp___0 << 32); } } else { } if (len > 256U) { { skb_size = tg3_alloc_rx_data(tp, tpr, opaque_key, *post_ptr, & frag_size); } if (skb_size < 0) { goto drop_it; } else { } { pci_unmap_single(tp->pdev, dma_addr, (size_t )skb_size, 2); __asm__ volatile ("": : : "memory"); ri->data = (u8 *)0U; skb = build_skb((void *)data, frag_size); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { { tg3_frag_free(frag_size != 0U, (void *)data); } goto drop_it_no_recycle; } else { } { _max1___0 = 32; _max2___0 = 64; skb_reserve(skb, _max1___0 > _max2___0 ? _max1___0 : _max2___0); } } else { { tg3_recycle_rx(tnapi, tpr, opaque_key, (int )desc_idx, *post_ptr); skb = netdev_alloc_skb(tp->dev, len + 2U); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { goto drop_it_no_recycle; } else { } { skb_reserve(skb, 2); pci_dma_sync_single_for_cpu(tp->pdev, dma_addr, (size_t )len, 2); _max1___1 = 32; _max2___1 = 64; __memcpy((void *)skb->data, (void const *)data + (unsigned long )(_max1___1 > _max2___1 ? _max1___1 : _max2___1), (size_t )len); pci_dma_sync_single_for_device(tp->pdev, dma_addr, (size_t )len, 2); } } { skb_put(skb, len); } if (tstamp != 0ULL) { { tmp___1 = skb_hwtstamps(skb); tg3_hwclock_to_timestamp(tp, tstamp, tmp___1); } } else { } if ((((tp->dev)->features & 17179869184ULL) != 0ULL && (desc->type_flags & 8192U) != 0U) && (desc->ip_tcp_csum & 65535U) == 65535U) { skb->ip_summed = 1U; } else { { skb_checksum_none_assert((struct sk_buff const *)skb); } } { skb->protocol = eth_type_trans(skb, tp->dev); } if ((len > (tp->dev)->mtu + 14U && (unsigned int )skb->protocol != 129U) && (unsigned int )skb->protocol != 43144U) { { dev_kfree_skb_any(skb); } goto drop_it_no_recycle; } else { } if ((desc->type_flags & 64U) != 0U && (tp->rx_mode & 1024U) == 0U) { { __vlan_hwaccel_put_tag(skb, 129, (int )((u16 )desc->err_vlan)); } } else { } { napi_gro_receive(& tnapi->napi, skb); received = received + 1; budget = budget - 1; } next_pkt: { *post_ptr = *post_ptr + 1U; tmp___2 = ldv__builtin_expect(rx_std_posted >= tp->rx_std_max_post, 0L); } if (tmp___2 != 0L) { { tpr->rx_std_prod_idx = std_prod_idx & tp->rx_std_ring_mask; (*(tp->write32_rx_mbox))(tp, 620U, tpr->rx_std_prod_idx); work_mask = work_mask & 4294901759U; rx_std_posted = 0U; } } else { } next_pkt_nopost: sw_idx = sw_idx + 1U; sw_idx = sw_idx & tp->rx_ret_ring_mask; if (sw_idx == (u32 )hw_idx) { hw_idx = *(tnapi->rx_rcb_prod_idx); __asm__ volatile ("lfence": : : "memory"); } else { } ldv_58176: ; if (sw_idx != (u32 )hw_idx && budget > 0) { goto ldv_58175; } else { } { tnapi->rx_rcb_ptr = sw_idx; (*(tp->write32_rx_mbox))(tp, tnapi->consmbox, sw_idx); tmp___3 = _tg3_flag(60, (unsigned long *)(& tp->tg3_flags)); } if (tmp___3 == 0) { __asm__ volatile ("sfence": : : "memory"); if ((work_mask & 65536U) != 0U) { { tpr->rx_std_prod_idx = std_prod_idx & tp->rx_std_ring_mask; (*(tp->write32_rx_mbox))(tp, 620U, tpr->rx_std_prod_idx); } } else { } if ((work_mask & 131072U) != 0U) { { tpr->rx_jmb_prod_idx = jmb_prod_idx & tp->rx_jmb_ring_mask; (*(tp->write32_rx_mbox))(tp, 628U, tpr->rx_jmb_prod_idx); } } else { } __asm__ volatile ("": : : "memory"); } else if (work_mask != 0U) { __asm__ volatile ("": : : "memory"); tpr->rx_std_prod_idx = std_prod_idx & tp->rx_std_ring_mask; tpr->rx_jmb_prod_idx = jmb_prod_idx & tp->rx_jmb_ring_mask; if ((unsigned long )tnapi != (unsigned long )((struct tg3_napi *)(& tp->napi) + 1UL)) { { tp->rx_refill = 1; napi_schedule(& tp->napi[1].napi); } } else { } } else { } return (received); } } static void tg3_poll_link(struct tg3 *tp ) { struct tg3_hw_status *sblk ; int tmp ; int tmp___0 ; int tmp___1 ; { { tmp___0 = _tg3_flag(2, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 == 0) { { tmp___1 = _tg3_flag(6, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 == 0) { sblk = tp->napi[0].hw_status; if ((sblk->status & 2U) != 0U) { { sblk->status = (sblk->status & 4294967292U) | 1U; ldv_spin_lock_145(& tp->lock); tmp = _tg3_flag(52, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { { _tw32_flush(tp, 1028U, 4198424U, 0U); __const_udelay(171800UL); } } else { { tg3_setup_phy(tp, 0); } } { ldv_spin_unlock_146(& tp->lock); } } else { } } else { } } else { } return; } } static int tg3_rx_prodring_xfer(struct tg3 *tp , struct tg3_rx_prodring_set *dpr , struct tg3_rx_prodring_set *spr ) { u32 si ; u32 di ; u32 cpycnt ; u32 src_prod_idx ; int i ; int err ; u32 _min1 ; u32 _min2 ; struct tg3_rx_buffer_desc *sbd ; struct tg3_rx_buffer_desc *dbd ; u32 _min1___0 ; u32 _min2___0 ; struct tg3_rx_buffer_desc *sbd___0 ; struct tg3_rx_buffer_desc *dbd___0 ; { err = 0; ldv_58205: src_prod_idx = spr->rx_std_prod_idx; __asm__ volatile ("": : : "memory"); if (spr->rx_std_cons_idx == src_prod_idx) { goto ldv_58193; } else { } if (spr->rx_std_cons_idx < src_prod_idx) { cpycnt = src_prod_idx - spr->rx_std_cons_idx; } else { cpycnt = (tp->rx_std_ring_mask - spr->rx_std_cons_idx) + 1U; } _min1 = cpycnt; _min2 = (tp->rx_std_ring_mask - dpr->rx_std_prod_idx) + 1U; cpycnt = _min1 < _min2 ? _min1 : _min2; si = spr->rx_std_cons_idx; di = dpr->rx_std_prod_idx; i = (int )di; goto ldv_58199; ldv_58198: ; if ((unsigned long )(dpr->rx_std_buffers + (unsigned long )i)->data != (unsigned long )((u8 *)0U)) { cpycnt = (u32 )i - di; err = -28; goto ldv_58197; } else { } i = i + 1; ldv_58199: ; if ((u32 )i < di + cpycnt) { goto ldv_58198; } else { } ldv_58197: ; if (cpycnt == 0U) { goto ldv_58193; } else { } { __asm__ volatile ("": : : "memory"); __memcpy((void *)dpr->rx_std_buffers + (unsigned long )di, (void const *)spr->rx_std_buffers + (unsigned long )si, (unsigned long )cpycnt * 16UL); i = 0; } goto ldv_58203; ldv_58202: sbd = spr->rx_std + (unsigned long )si; dbd = dpr->rx_std + (unsigned long )di; dbd->addr_hi = sbd->addr_hi; dbd->addr_lo = sbd->addr_lo; i = i + 1; di = di + 1U; si = si + 1U; ldv_58203: ; if ((u32 )i < cpycnt) { goto ldv_58202; } else { } spr->rx_std_cons_idx = (spr->rx_std_cons_idx + cpycnt) & tp->rx_std_ring_mask; dpr->rx_std_prod_idx = (dpr->rx_std_prod_idx + cpycnt) & tp->rx_std_ring_mask; goto ldv_58205; ldv_58193: ; ldv_58218: src_prod_idx = spr->rx_jmb_prod_idx; __asm__ volatile ("": : : "memory"); if (spr->rx_jmb_cons_idx == src_prod_idx) { goto ldv_58206; } else { } if (spr->rx_jmb_cons_idx < src_prod_idx) { cpycnt = src_prod_idx - spr->rx_jmb_cons_idx; } else { cpycnt = (tp->rx_jmb_ring_mask - spr->rx_jmb_cons_idx) + 1U; } _min1___0 = cpycnt; _min2___0 = (tp->rx_jmb_ring_mask - dpr->rx_jmb_prod_idx) + 1U; cpycnt = _min1___0 < _min2___0 ? _min1___0 : _min2___0; si = spr->rx_jmb_cons_idx; di = dpr->rx_jmb_prod_idx; i = (int )di; goto ldv_58212; ldv_58211: ; if ((unsigned long )(dpr->rx_jmb_buffers + (unsigned long )i)->data != (unsigned long )((u8 *)0U)) { cpycnt = (u32 )i - di; err = -28; goto ldv_58210; } else { } i = i + 1; ldv_58212: ; if ((u32 )i < di + cpycnt) { goto ldv_58211; } else { } ldv_58210: ; if (cpycnt == 0U) { goto ldv_58206; } else { } { __asm__ volatile ("": : : "memory"); __memcpy((void *)dpr->rx_jmb_buffers + (unsigned long )di, (void const *)spr->rx_jmb_buffers + (unsigned long )si, (unsigned long )cpycnt * 16UL); i = 0; } goto ldv_58216; ldv_58215: sbd___0 = & (spr->rx_jmb + (unsigned long )si)->std; dbd___0 = & (dpr->rx_jmb + (unsigned long )di)->std; dbd___0->addr_hi = sbd___0->addr_hi; dbd___0->addr_lo = sbd___0->addr_lo; i = i + 1; di = di + 1U; si = si + 1U; ldv_58216: ; if ((u32 )i < cpycnt) { goto ldv_58215; } else { } spr->rx_jmb_cons_idx = (spr->rx_jmb_cons_idx + cpycnt) & tp->rx_jmb_ring_mask; dpr->rx_jmb_prod_idx = (dpr->rx_jmb_prod_idx + cpycnt) & tp->rx_jmb_ring_mask; goto ldv_58218; ldv_58206: ; return (err); } } static int tg3_poll_work(struct tg3_napi *tnapi , int work_done , int budget ) { struct tg3 *tp ; int tmp ; long tmp___0 ; int tmp___1 ; struct tg3_rx_prodring_set *dpr ; int i ; int err ; u32 std_prod_idx ; u32 jmb_prod_idx ; int tmp___2 ; int tmp___3 ; { tp = tnapi->tp; if ((u32 )(tnapi->hw_status)->idx[0].tx_consumer != tnapi->tx_cons) { { tg3_tx(tnapi); tmp = _tg3_flag(23, (unsigned long *)(& tp->tg3_flags)); tmp___0 = ldv__builtin_expect(tmp != 0, 0L); } if (tmp___0 != 0L) { return (work_done); } else { } } else { } if ((unsigned long )tnapi->rx_rcb_prod_idx == (unsigned long )((u16 *)0U)) { return (work_done); } else { } if ((u32 )*(tnapi->rx_rcb_prod_idx) != tnapi->rx_rcb_ptr) { { tmp___1 = tg3_rx(tnapi, budget - work_done); work_done = work_done + tmp___1; } } else { } { tmp___3 = _tg3_flag(60, (unsigned long *)(& tp->tg3_flags)); } if (tmp___3 != 0 && (unsigned long )tnapi == (unsigned long )((struct tg3_napi *)(& tp->napi) + 1UL)) { dpr = & tp->napi[0].prodring; err = 0; std_prod_idx = dpr->rx_std_prod_idx; jmb_prod_idx = dpr->rx_jmb_prod_idx; tp->rx_refill = 0; i = 1; goto ldv_58231; ldv_58230: { tmp___2 = tg3_rx_prodring_xfer(tp, dpr, & tp->napi[i].prodring); err = err | tmp___2; i = i + 1; } ldv_58231: ; if ((u32 )i <= tp->rxq_cnt) { goto ldv_58230; } else { } __asm__ volatile ("sfence": : : "memory"); if (std_prod_idx != dpr->rx_std_prod_idx) { { (*(tp->write32_rx_mbox))(tp, 620U, dpr->rx_std_prod_idx); } } else { } if (jmb_prod_idx != dpr->rx_jmb_prod_idx) { { (*(tp->write32_rx_mbox))(tp, 628U, dpr->rx_jmb_prod_idx); } } else { } __asm__ volatile ("": : : "memory"); if (err != 0) { { _tw32_flush(tp, 15360U, tp->coal_now, 0U); } } else { } } else { } return (work_done); } } __inline static void tg3_reset_task_schedule(struct tg3 *tp ) { int tmp ; { { tmp = test_and_set_bit(69L, (unsigned long volatile *)(& tp->tg3_flags)); } if (tmp == 0) { { schedule_work(& tp->reset_task); } } else { } return; } } __inline static void tg3_reset_task_cancel(struct tg3 *tp ) { { { cancel_work_sync(& tp->reset_task); _tg3_flag_clear(69, (unsigned long *)(& tp->tg3_flags)); _tg3_flag_clear(23, (unsigned long *)(& tp->tg3_flags)); } return; } } static int tg3_poll_msix(struct napi_struct *napi , int budget ) { struct tg3_napi *tnapi ; struct napi_struct const *__mptr ; struct tg3 *tp ; int work_done ; struct tg3_hw_status *sblk ; int tmp ; long tmp___0 ; long tmp___1 ; long tmp___2 ; long tmp___3 ; long tmp___4 ; long tmp___5 ; { __mptr = (struct napi_struct const *)napi; tnapi = (struct tg3_napi *)__mptr; tp = tnapi->tp; work_done = 0; sblk = tnapi->hw_status; ldv_58252: { work_done = tg3_poll_work(tnapi, work_done, budget); tmp = _tg3_flag(23, (unsigned long *)(& tp->tg3_flags)); tmp___0 = ldv__builtin_expect(tmp != 0, 0L); } if (tmp___0 != 0L) { goto tx_recovery; } else { } { tmp___1 = ldv__builtin_expect(work_done >= budget, 0L); } if (tmp___1 != 0L) { goto ldv_58250; } else { } { tnapi->last_tag = sblk->status_tag; tnapi->last_irq_tag = tnapi->last_tag; __asm__ volatile ("lfence": : : "memory"); tmp___4 = ldv__builtin_expect((u32 )sblk->idx[0].tx_consumer == tnapi->tx_cons, 1L); } if (tmp___4 != 0L) { { tmp___5 = ldv__builtin_expect((u32 )*(tnapi->rx_rcb_prod_idx) == tnapi->rx_rcb_ptr, 1L); } if (tmp___5 != 0L) { if ((unsigned long )tnapi == (unsigned long )((struct tg3_napi *)(& tp->napi) + 1UL) && (int )tp->rx_refill) { goto ldv_58251; } else { } { napi_complete(napi); (*(tp->write32_mbox))(tp, tnapi->int_mbox, tnapi->last_tag << 24); tmp___2 = ldv__builtin_expect((unsigned long )tnapi == (unsigned long )((struct tg3_napi *)(& tp->napi) + 1UL), 0L); } if (tmp___2 != 0L) { { tmp___3 = ldv__builtin_expect((long )tp->rx_refill, 0L); } if (tmp___3 != 0L) { { (*(tp->write32))(tp, 15360U, (tp->coalesce_mode | tnapi->coal_now) | 2U); } } else { } } else { } __asm__ volatile ("": : : "memory"); goto ldv_58250; } else { } } else { } ldv_58251: ; goto ldv_58252; ldv_58250: ; return (work_done); tx_recovery: { napi_complete(napi); tg3_reset_task_schedule(tp); } return (work_done); } } static void tg3_process_error(struct tg3 *tp ) { u32 val ; bool real_error ; int tmp ; u32 tmp___0 ; u32 tmp___1 ; u32 tmp___2 ; { { real_error = 0; tmp = _tg3_flag(3, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { return; } else { } { val = (*(tp->read32))(tp, 15432U); } if ((val & 4294967231U) != 0U) { { netdev_err((struct net_device const *)tp->dev, "FLOW Attention error. Resetting chip.\n"); real_error = 1; } } else { } { tmp___0 = (*(tp->read32))(tp, 24580U); } if ((tmp___0 & 4294967294U) != 0U) { { netdev_err((struct net_device const *)tp->dev, "MSI Status error. Resetting chip.\n"); real_error = 1; } } else { } { tmp___1 = (*(tp->read32))(tp, 18436U); } if (tmp___1 != 0U) { { netdev_err((struct net_device const *)tp->dev, "DMA Status error. Resetting chip.\n"); real_error = 1; } } else { { tmp___2 = (*(tp->read32))(tp, 19460U); } if (tmp___2 != 0U) { { netdev_err((struct net_device const *)tp->dev, "DMA Status error. Resetting chip.\n"); real_error = 1; } } else { } } if (! real_error) { return; } else { } { tg3_dump_state(tp); _tg3_flag_set(3, (unsigned long *)(& tp->tg3_flags)); tg3_reset_task_schedule(tp); } return; } } static int tg3_poll(struct napi_struct *napi , int budget ) { struct tg3_napi *tnapi ; struct napi_struct const *__mptr ; struct tg3 *tp ; int work_done ; struct tg3_hw_status *sblk ; int tmp ; long tmp___0 ; long tmp___1 ; int tmp___2 ; unsigned int tmp___3 ; long tmp___4 ; { __mptr = (struct napi_struct const *)napi; tnapi = (struct tg3_napi *)__mptr; tp = tnapi->tp; work_done = 0; sblk = tnapi->hw_status; ldv_58270: ; if ((sblk->status & 4U) != 0U) { { tg3_process_error(tp); } } else { } { tg3_poll_link(tp); work_done = tg3_poll_work(tnapi, work_done, budget); tmp = _tg3_flag(23, (unsigned long *)(& tp->tg3_flags)); tmp___0 = ldv__builtin_expect(tmp != 0, 0L); } if (tmp___0 != 0L) { goto tx_recovery; } else { } { tmp___1 = ldv__builtin_expect(work_done >= budget, 0L); } if (tmp___1 != 0L) { goto ldv_58269; } else { } { tmp___2 = _tg3_flag(0, (unsigned long *)(& tp->tg3_flags)); } if (tmp___2 != 0) { tnapi->last_tag = sblk->status_tag; tnapi->last_irq_tag = tnapi->last_tag; __asm__ volatile ("lfence": : : "memory"); } else { sblk->status = sblk->status & 4294967294U; } { tmp___3 = tg3_has_work(tnapi); tmp___4 = ldv__builtin_expect(tmp___3 == 0U, 1L); } if (tmp___4 != 0L) { { napi_complete(napi); tg3_int_reenable(tnapi); } goto ldv_58269; } else { } goto ldv_58270; ldv_58269: ; return (work_done); tx_recovery: { napi_complete(napi); tg3_reset_task_schedule(tp); } return (work_done); } } static void tg3_napi_disable(struct tg3 *tp ) { int i ; { i = (int )(tp->irq_cnt - 1U); goto ldv_58276; ldv_58275: { napi_disable(& tp->napi[i].napi); i = i - 1; } ldv_58276: ; if (i >= 0) { goto ldv_58275; } else { } return; } } static void tg3_napi_enable(struct tg3 *tp ) { int i ; { i = 0; goto ldv_58283; ldv_58282: { napi_enable(& tp->napi[i].napi); i = i + 1; } ldv_58283: ; if ((unsigned int )i < tp->irq_cnt) { goto ldv_58282; } else { } return; } } static void tg3_napi_init(struct tg3 *tp ) { int i ; { { netif_napi_add(tp->dev, & tp->napi[0].napi, & tg3_poll, 64); i = 1; } goto ldv_58290; ldv_58289: { netif_napi_add(tp->dev, & tp->napi[i].napi, & tg3_poll_msix, 64); i = i + 1; } ldv_58290: ; if ((unsigned int )i < tp->irq_cnt) { goto ldv_58289; } else { } return; } } static void tg3_napi_fini(struct tg3 *tp ) { int i ; { i = 0; goto ldv_58297; ldv_58296: { netif_napi_del(& tp->napi[i].napi); i = i + 1; } ldv_58297: ; if ((unsigned int )i < tp->irq_cnt) { goto ldv_58296; } else { } return; } } __inline static void tg3_netif_stop(struct tg3 *tp ) { { { (tp->dev)->trans_start = jiffies; tg3_napi_disable(tp); netif_carrier_off(tp->dev); netif_tx_disable(tp->dev); } return; } } __inline static void tg3_netif_start(struct tg3 *tp ) { { { tg3_ptp_resume(tp); netif_tx_wake_all_queues(tp->dev); } if ((int )tp->link_up) { { netif_carrier_on(tp->dev); } } else { } { tg3_napi_enable(tp); (tp->napi[0].hw_status)->status = (tp->napi[0].hw_status)->status | 1U; tg3_enable_ints(tp); } return; } } static void tg3_irq_quiesce(struct tg3 *tp ) { int i ; long tmp ; { { tmp = ldv__builtin_expect(tp->irq_sync != 0U, 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/ethernet/broadcom/tg3.c"), "i" (7421), "i" (12UL)); __builtin_unreachable(); } } else { } { tp->irq_sync = 1U; __asm__ volatile ("mfence": : : "memory"); ldv_spin_unlock_bh_140(& tp->lock); i = 0; } goto ldv_58310; ldv_58309: { synchronize_irq(tp->napi[i].irq_vec); i = i + 1; } ldv_58310: ; if ((unsigned int )i < tp->irq_cnt) { goto ldv_58309; } else { } { ldv_spin_lock_bh_139(& tp->lock); } return; } } __inline static void tg3_full_lock(struct tg3 *tp , int irq_sync ) { { { ldv_spin_lock_bh_139(& tp->lock); } if (irq_sync != 0) { { tg3_irq_quiesce(tp); } } else { } return; } } __inline static void tg3_full_unlock(struct tg3 *tp ) { { { ldv_spin_unlock_bh_140(& tp->lock); } return; } } static irqreturn_t tg3_msi_1shot(int irq , void *dev_id ) { struct tg3_napi *tnapi ; struct tg3 *tp ; int tmp ; long tmp___0 ; { { tnapi = (struct tg3_napi *)dev_id; tp = tnapi->tp; __builtin_prefetch((void const *)tnapi->hw_status); } if ((unsigned long )tnapi->rx_rcb != (unsigned long )((struct tg3_rx_buffer_desc *)0)) { { __builtin_prefetch((void const *)tnapi->rx_rcb + (unsigned long )tnapi->rx_rcb_ptr); } } else { } { tmp = tg3_irq_sync(tp); tmp___0 = ldv__builtin_expect(tmp == 0, 1L); } if (tmp___0 != 0L) { { napi_schedule(& tnapi->napi); } } else { } return (1); } } static irqreturn_t tg3_msi(int irq , void *dev_id ) { struct tg3_napi *tnapi ; struct tg3 *tp ; int tmp ; long tmp___0 ; { { tnapi = (struct tg3_napi *)dev_id; tp = tnapi->tp; __builtin_prefetch((void const *)tnapi->hw_status); } if ((unsigned long )tnapi->rx_rcb != (unsigned long )((struct tg3_rx_buffer_desc *)0)) { { __builtin_prefetch((void const *)tnapi->rx_rcb + (unsigned long )tnapi->rx_rcb_ptr); } } else { } { (*(tp->write32_mbox))(tp, tnapi->int_mbox, 1U); tmp = tg3_irq_sync(tp); tmp___0 = ldv__builtin_expect(tmp == 0, 1L); } if (tmp___0 != 0L) { { napi_schedule(& tnapi->napi); } } else { } return (1); } } static irqreturn_t tg3_interrupt(int irq , void *dev_id ) { struct tg3_napi *tnapi ; struct tg3 *tp ; struct tg3_hw_status *sblk ; unsigned int handled ; int tmp ; u32 tmp___0 ; long tmp___1 ; int tmp___2 ; unsigned int tmp___3 ; long tmp___4 ; { { tnapi = (struct tg3_napi *)dev_id; tp = tnapi->tp; sblk = tnapi->hw_status; handled = 1U; tmp___1 = ldv__builtin_expect((sblk->status & 1U) == 0U, 0L); } if (tmp___1 != 0L) { { tmp = _tg3_flag(31, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { handled = 0U; goto out; } else { { tmp___0 = (*(tp->read32))(tp, 112U); } if ((tmp___0 & 2U) != 0U) { handled = 0U; goto out; } else { } } } else { } { tw32_mailbox_flush(tp, 516U, 1U); tmp___2 = tg3_irq_sync(tp); } if (tmp___2 != 0) { goto out; } else { } { sblk->status = sblk->status & 4294967294U; tmp___3 = tg3_has_work(tnapi); tmp___4 = ldv__builtin_expect(tmp___3 != 0U, 1L); } if (tmp___4 != 0L) { { __builtin_prefetch((void const *)tnapi->rx_rcb + (unsigned long )tnapi->rx_rcb_ptr); napi_schedule(& tnapi->napi); } } else { { tw32_mailbox_flush(tp, 516U, 0U); } } out: ; return (handled != 0U); } } static irqreturn_t tg3_interrupt_tagged(int irq , void *dev_id ) { struct tg3_napi *tnapi ; struct tg3 *tp ; struct tg3_hw_status *sblk ; unsigned int handled ; int tmp ; u32 tmp___0 ; long tmp___1 ; int tmp___2 ; { { tnapi = (struct tg3_napi *)dev_id; tp = tnapi->tp; sblk = tnapi->hw_status; handled = 1U; tmp___1 = ldv__builtin_expect(sblk->status_tag == tnapi->last_irq_tag, 0L); } if (tmp___1 != 0L) { { tmp = _tg3_flag(31, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { handled = 0U; goto out; } else { { tmp___0 = (*(tp->read32))(tp, 112U); } if ((tmp___0 & 2U) != 0U) { handled = 0U; goto out; } else { } } } else { } { tw32_mailbox_flush(tp, 516U, 1U); tnapi->last_irq_tag = sblk->status_tag; tmp___2 = tg3_irq_sync(tp); } if (tmp___2 != 0) { goto out; } else { } { __builtin_prefetch((void const *)tnapi->rx_rcb + (unsigned long )tnapi->rx_rcb_ptr); napi_schedule(& tnapi->napi); } out: ; return (handled != 0U); } } static irqreturn_t tg3_test_isr(int irq , void *dev_id ) { struct tg3_napi *tnapi ; struct tg3 *tp ; struct tg3_hw_status *sblk ; u32 tmp ; { tnapi = (struct tg3_napi *)dev_id; tp = tnapi->tp; sblk = tnapi->hw_status; if ((int )sblk->status & 1) { { tg3_disable_ints(tp); } return (1); } else { { tmp = (*(tp->read32))(tp, 112U); } if ((tmp & 2U) == 0U) { { tg3_disable_ints(tp); } return (1); } else { } } return (0); } } static void tg3_poll_controller(struct net_device *dev ) { int i ; struct tg3 *tp ; void *tmp ; int tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; tmp___0 = tg3_irq_sync(tp); } if (tmp___0 != 0) { return; } else { } i = 0; goto ldv_58362; ldv_58361: { tg3_interrupt((int )tp->napi[i].irq_vec, (void *)(& tp->napi) + (unsigned long )i); i = i + 1; } ldv_58362: ; if ((unsigned int )i < tp->irq_cnt) { goto ldv_58361; } else { } return; } } static void tg3_tx_timeout(struct net_device *dev ) { struct tg3 *tp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; } if ((tp->msg_enable & 128U) != 0U) { { netdev_err((struct net_device const *)dev, "transmit timed out, resetting\n"); tg3_dump_state(tp); } } else { } { tg3_reset_task_schedule(tp); } return; } } __inline static int tg3_4g_overflow_test(dma_addr_t mapping , int len ) { u32 base ; { base = (unsigned int )mapping; return ((base + (u32 )len) + 8U < base); } } __inline static int tg3_4g_tso_overflow_test(struct tg3 *tp , dma_addr_t mapping , u32 len , u32 mss ) { u32 base ; { if (tp->pci_chip_rev_id >> 12 == 22370U && mss != 0U) { base = (unsigned int )mapping; return ((base + len) + (mss & 16383U) < base); } else { } return (0); } } __inline static int tg3_40bit_overflow_test(struct tg3 *tp , dma_addr_t mapping , int len ) { { return (0); } } __inline static void tg3_tx_set_bd(struct tg3_tx_buffer_desc *txbd , dma_addr_t mapping , u32 len , u32 flags , u32 mss , u32 vlan ) { { txbd->addr_hi = (u32 )(mapping >> 32); txbd->addr_lo = (u32 )mapping; txbd->len_flags = (len << 16) | (flags & 65535U); txbd->vlan_tag = (mss << 16) | vlan; return; } } static bool tg3_tx_frag_set(struct tg3_napi *tnapi , u32 *entry , u32 *budget , dma_addr_t map , u32 len , u32 flags , u32 mss , u32 vlan ) { struct tg3 *tp ; bool hwbug ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; u32 prvidx ; u32 tmp_flag ; u32 frag_len ; { { tp = tnapi->tp; hwbug = 0; tmp = _tg3_flag(62, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0 && len <= 8U) { hwbug = 1; } else { } { tmp___0 = tg3_4g_overflow_test(map, (int )len); } if (tmp___0 != 0) { hwbug = 1; } else { } { tmp___1 = tg3_4g_tso_overflow_test(tp, map, len, mss); } if (tmp___1 != 0) { hwbug = 1; } else { } { tmp___2 = tg3_40bit_overflow_test(tp, map, (int )len); } if (tmp___2 != 0) { hwbug = 1; } else { } if (tp->dma_limit != 0U) { prvidx = *entry; tmp_flag = flags & 4294967291U; goto ldv_58409; ldv_58408: frag_len = tp->dma_limit; len = len - tp->dma_limit; if (len <= 8U) { len = len + tp->dma_limit / 2U; frag_len = tp->dma_limit / 2U; } else { } { (tnapi->tx_buffers + (unsigned long )*entry)->fragmented = 1; tg3_tx_set_bd(tnapi->tx_ring + (unsigned long )*entry, map, frag_len, tmp_flag, mss, vlan); *budget = *budget - 1U; prvidx = *entry; *entry = (*entry + 1U) & 511U; map = map + (dma_addr_t )frag_len; } ldv_58409: ; if (len > tp->dma_limit && *budget != 0U) { goto ldv_58408; } else { } if (len != 0U) { if (*budget != 0U) { { tg3_tx_set_bd(tnapi->tx_ring + (unsigned long )*entry, map, len, flags, mss, vlan); *budget = *budget - 1U; *entry = (*entry + 1U) & 511U; } } else { hwbug = 1; (tnapi->tx_buffers + (unsigned long )prvidx)->fragmented = 0; } } else { } } else { { tg3_tx_set_bd(tnapi->tx_ring + (unsigned long )*entry, map, len, flags, mss, vlan); *entry = (*entry + 1U) & 511U; } } return (hwbug); } } static void tg3_tx_skb_unmap(struct tg3_napi *tnapi , u32 entry , int last ) { int i ; struct sk_buff *skb ; struct tg3_tx_ring_info *txb ; unsigned int tmp ; skb_frag_t const *frag ; unsigned char *tmp___0 ; unsigned int tmp___1 ; { { txb = tnapi->tx_buffers + (unsigned long )entry; skb = txb->skb; txb->skb = (struct sk_buff *)0; tmp = skb_headlen((struct sk_buff const *)skb); pci_unmap_single((tnapi->tp)->pdev, txb->mapping, (size_t )tmp, 1); } goto ldv_58420; ldv_58419: txb->fragmented = 0; entry = (entry + 1U) & 511U; txb = tnapi->tx_buffers + (unsigned long )entry; ldv_58420: ; if ((int )txb->fragmented) { goto ldv_58419; } else { } i = 0; goto ldv_58427; ldv_58426: { tmp___0 = skb_end_pointer((struct sk_buff const *)skb); frag = (skb_frag_t const *)(& ((struct skb_shared_info *)tmp___0)->frags) + (unsigned long )i; entry = (entry + 1U) & 511U; txb = tnapi->tx_buffers + (unsigned long )entry; tmp___1 = skb_frag_size(frag); pci_unmap_page((tnapi->tp)->pdev, txb->mapping, (size_t )tmp___1, 1); } goto ldv_58424; ldv_58423: txb->fragmented = 0; entry = (entry + 1U) & 511U; txb = tnapi->tx_buffers + (unsigned long )entry; ldv_58424: ; if ((int )txb->fragmented) { goto ldv_58423; } else { } i = i + 1; ldv_58427: ; if (i <= last) { goto ldv_58426; } else { } return; } } static int tigon3_dma_hwbug_workaround(struct tg3_napi *tnapi , struct sk_buff **pskb , u32 *entry , u32 *budget , u32 base_flags , u32 mss , u32 vlan ) { struct tg3 *tp ; struct sk_buff *new_skb ; struct sk_buff *skb ; dma_addr_t new_addr ; int ret ; int more_headroom ; int tmp ; unsigned int tmp___0 ; u32 save_entry ; bool tmp___1 ; int tmp___2 ; { tp = tnapi->tp; skb = *pskb; new_addr = 0ULL; ret = 0; if (tp->pci_chip_rev_id >> 12 != 0U) { { new_skb = ldv_skb_copy_151((struct sk_buff const *)skb, 32U); } } else { { more_headroom = (int )(4U - ((unsigned int )((long )skb->data) & 3U)); tmp = skb_tailroom((struct sk_buff const *)skb); tmp___0 = skb_headroom((struct sk_buff const *)skb); new_skb = ldv_skb_copy_expand_152((struct sk_buff const *)skb, (int )(tmp___0 + (unsigned int )more_headroom), tmp, 32U); } } if ((unsigned long )new_skb == (unsigned long )((struct sk_buff *)0)) { ret = -1; } else { { new_addr = pci_map_single(tp->pdev, (void *)new_skb->data, (size_t )new_skb->len, 1); tmp___2 = pci_dma_mapping_error(tp->pdev, new_addr); } if (tmp___2 != 0) { { dev_kfree_skb_any(new_skb); ret = -1; } } else { { save_entry = *entry; base_flags = base_flags | 4U; (tnapi->tx_buffers + (unsigned long )*entry)->skb = new_skb; (tnapi->tx_buffers + (unsigned long )*entry)->mapping = new_addr; tmp___1 = tg3_tx_frag_set(tnapi, entry, budget, new_addr, new_skb->len, base_flags, mss, vlan); } if ((int )tmp___1) { { tg3_tx_skb_unmap(tnapi, save_entry, -1); dev_kfree_skb_any(new_skb); ret = -1; } } else { } } } { dev_kfree_skb_any(skb); *pskb = new_skb; } return (ret); } } static netdev_tx_t tg3_start_xmit(struct sk_buff *skb , struct net_device *dev ) ; static int tg3_tso_bug(struct tg3 *tp , struct tg3_napi *tnapi , struct netdev_queue *txq , struct sk_buff *skb ) { struct sk_buff *segs ; struct sk_buff *nskb ; u32 frag_cnt_est ; unsigned char *tmp ; u32 tmp___0 ; u32 tmp___1 ; long tmp___2 ; bool tmp___3 ; { { tmp = skb_end_pointer((struct sk_buff const *)skb); frag_cnt_est = (u32 )((int )((struct skb_shared_info *)tmp)->gso_segs * 3); tmp___1 = tg3_tx_avail(tnapi); tmp___2 = ldv__builtin_expect(tmp___1 <= frag_cnt_est, 0L); } if (tmp___2 != 0L) { { netif_tx_stop_queue(txq); __asm__ volatile ("mfence": : : "memory"); tmp___0 = tg3_tx_avail(tnapi); } if (tmp___0 <= frag_cnt_est) { return (16); } else { } { netif_tx_wake_queue(txq); } } else { } { segs = skb_gso_segment(skb, (tp->dev)->features & 0xffffffffffeeffffULL); tmp___3 = IS_ERR((void const *)segs); } if ((int )tmp___3 || (unsigned long )segs == (unsigned long )((struct sk_buff *)0)) { goto tg3_tso_bug_end; } else { } ldv_58458: { nskb = segs; segs = segs->__annonCompField75.__annonCompField74.next; nskb->__annonCompField75.__annonCompField74.next = (struct sk_buff *)0; tg3_start_xmit(nskb, tp->dev); } if ((unsigned long )segs != (unsigned long )((struct sk_buff *)0)) { goto ldv_58458; } else { } tg3_tso_bug_end: { dev_kfree_skb_any(skb); } return (0); } } static netdev_tx_t tg3_start_xmit(struct sk_buff *skb , struct net_device *dev ) { struct tg3 *tp ; void *tmp ; u32 len ; u32 entry ; u32 base_flags ; u32 mss ; u32 vlan ; u32 budget ; int i ; int would_hit_hwbug ; dma_addr_t mapping ; struct tg3_napi *tnapi ; struct netdev_queue *txq ; unsigned int last ; struct iphdr *iph ; struct tcphdr *tcph ; __sum16 tcp_csum ; __sum16 ip_csum ; __be16 ip_tot_len ; u16 tmp___0 ; u16 tmp___1 ; int tmp___2 ; bool tmp___3 ; int tmp___4 ; unsigned char *tmp___5 ; long tmp___6 ; unsigned char *tmp___7 ; u32 tcp_opt_len ; u32 hdr_len ; int tmp___8 ; int tmp___9 ; unsigned int tmp___10 ; int tmp___11 ; int tmp___12 ; long tmp___13 ; int tmp___14 ; __u16 tmp___15 ; bool tmp___16 ; int tmp___17 ; __sum16 tmp___18 ; int tmp___19 ; int tmp___20 ; int tmp___21 ; int tsflags ; int tsflags___0 ; int tmp___22 ; int tmp___23 ; int tmp___24 ; int tmp___25 ; int tmp___26 ; unsigned char *tmp___27 ; unsigned char *tmp___28 ; unsigned char *tmp___29 ; long tmp___30 ; int tmp___31 ; int tmp___32 ; int tmp___33 ; u32 tmp_mss ; int tmp___34 ; int tmp___35 ; int tmp___36 ; unsigned char *tmp___37 ; skb_frag_t *frag ; unsigned char *tmp___38 ; int tmp___39 ; bool tmp___40 ; unsigned char *tmp___41 ; unsigned char *tmp___42 ; bool tmp___43 ; int tmp___44 ; int tmp___45 ; u32 tmp___46 ; u32 tmp___47 ; long tmp___48 ; bool tmp___49 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; vlan = 0U; i = -1; iph = (struct iphdr *)0; tcph = (struct tcphdr *)0; tcp_csum = 0U; ip_csum = 0U; ip_tot_len = 0U; tmp___0 = skb_get_queue_mapping((struct sk_buff const *)skb); txq = netdev_get_tx_queue((struct net_device const *)dev, (unsigned int )tmp___0); tmp___1 = skb_get_queue_mapping((struct sk_buff const *)skb); tnapi = (struct tg3_napi *)(& tp->napi) + (unsigned long )tmp___1; tmp___2 = _tg3_flag(61, (unsigned long *)(& tp->tg3_flags)); } if (tmp___2 != 0) { tnapi = tnapi + 1; } else { } { budget = tg3_tx_avail(tnapi); tmp___5 = skb_end_pointer((struct sk_buff const *)skb); tmp___6 = ldv__builtin_expect(budget <= (u32 )((int )((struct skb_shared_info *)tmp___5)->nr_frags + 1), 0L); } if (tmp___6 != 0L) { { tmp___3 = netif_tx_queue_stopped((struct netdev_queue const *)txq); } if (tmp___3) { tmp___4 = 0; } else { tmp___4 = 1; } if (tmp___4) { { netif_tx_stop_queue(txq); netdev_err((struct net_device const *)dev, "BUG! Tx Ring full when queue awake!\n"); } } else { } return (16); } else { } { entry = tnapi->tx_prod; base_flags = 0U; tmp___7 = skb_end_pointer((struct sk_buff const *)skb); mss = (u32 )((struct skb_shared_info *)tmp___7)->gso_size; } if (mss != 0U) { { tmp___8 = skb_cow_head(skb, 0U); } if (tmp___8 != 0) { goto drop; } else { } { iph = ip_hdr((struct sk_buff const *)skb); tcp_opt_len = tcp_optlen((struct sk_buff const *)skb); tmp___9 = skb_transport_offset((struct sk_buff const *)skb); tmp___10 = tcp_hdrlen((struct sk_buff const *)skb); hdr_len = ((unsigned int )tmp___9 + tmp___10) - 14U; } if ((unsigned int )skb->protocol == 129U || (unsigned int )skb->protocol == 43144U) { { tmp___11 = tg3_tso_bug(tp, tnapi, txq, skb); } return ((netdev_tx_t )tmp___11); } else { } { tmp___16 = skb_is_gso_v6((struct sk_buff const *)skb); } if (tmp___16) { tmp___17 = 0; } else { tmp___17 = 1; } if (tmp___17) { { tmp___13 = ldv__builtin_expect(hdr_len + 14U > 80U, 0L); } if (tmp___13 != 0L) { { tmp___14 = _tg3_flag(44, (unsigned long *)(& tp->tg3_flags)); } if (tmp___14 != 0) { { tmp___12 = tg3_tso_bug(tp, tnapi, txq, skb); } return ((netdev_tx_t )tmp___12); } else { } } else { } { ip_csum = iph->check; ip_tot_len = iph->tot_len; iph->check = 0U; tmp___15 = __fswab16((int )((__u16 )mss) + (int )((__u16 )hdr_len)); iph->tot_len = tmp___15; } } else { } { base_flags = base_flags | 768U; tcph = tcp_hdr((struct sk_buff const *)skb); tcp_csum = tcph->check; tmp___19 = _tg3_flag(40, (unsigned long *)(& tp->tg3_flags)); } if (tmp___19 != 0) { tcph->check = 0U; base_flags = base_flags & 4294967294U; } else { { tmp___20 = _tg3_flag(41, (unsigned long *)(& tp->tg3_flags)); } if (tmp___20 != 0) { tcph->check = 0U; base_flags = base_flags & 4294967294U; } else { { tmp___21 = _tg3_flag(42, (unsigned long *)(& tp->tg3_flags)); } if (tmp___21 != 0) { tcph->check = 0U; base_flags = base_flags & 4294967294U; } else { { tmp___18 = csum_tcpudp_magic(iph->saddr, iph->daddr, 0, 6, 0U); tcph->check = ~ ((int )tmp___18); } } } } { tmp___24 = _tg3_flag(42, (unsigned long *)(& tp->tg3_flags)); } if (tmp___24 != 0) { mss = mss | ((hdr_len & 12U) << 12); if ((hdr_len & 16U) != 0U) { base_flags = base_flags | 16U; } else { } base_flags = base_flags | ((hdr_len & 992U) << 5); } else { { tmp___23 = _tg3_flag(41, (unsigned long *)(& tp->tg3_flags)); } if (tmp___23 != 0) { mss = mss | (hdr_len << 9); } else { { tmp___22 = _tg3_flag(40, (unsigned long *)(& tp->tg3_flags)); } if (tmp___22 != 0 || tp->pci_chip_rev_id >> 12 == 3U) { if (tcp_opt_len != 0U || (int )iph->ihl > 5) { tsflags = (int )(((u32 )iph->ihl + (tcp_opt_len >> 2)) + 4294967291U); mss = mss | (u32 )(tsflags << 11); } else { } } else if (tcp_opt_len != 0U || (int )iph->ihl > 5) { tsflags___0 = (int )(((u32 )iph->ihl + (tcp_opt_len >> 2)) + 4294967291U); base_flags = base_flags | (u32 )(tsflags___0 << 12); } else { } } } } else if ((unsigned int )*((unsigned char *)skb + 145UL) == 6U) { if ((unsigned int )skb->protocol == 129U || (unsigned int )skb->protocol == 43144U) { { tmp___25 = skb_checksum_help(skb); } if (tmp___25 != 0) { goto drop; } else { } } else { base_flags = base_flags | 1U; } } else { } { tmp___26 = _tg3_flag(63, (unsigned long *)(& tp->tg3_flags)); } if ((tmp___26 != 0 && mss == 0U) && skb->len > 1518U) { base_flags = base_flags | 8U; } else { } if (((int )skb->vlan_tci & 4096) != 0) { base_flags = base_flags | 64U; vlan = (u32 )skb->vlan_tci & 4294963199U; } else { } { tmp___29 = skb_end_pointer((struct sk_buff const *)skb); tmp___30 = ldv__builtin_expect((long )((struct skb_shared_info *)tmp___29)->tx_flags & 1L, 0L); } if (tmp___30 != 0L) { { tmp___31 = _tg3_flag(66, (unsigned long *)(& tp->tg3_flags)); } if (tmp___31 != 0) { { tmp___27 = skb_end_pointer((struct sk_buff const *)skb); tmp___28 = skb_end_pointer((struct sk_buff const *)skb); ((struct skb_shared_info *)tmp___27)->tx_flags = (__u8 )((unsigned int )((struct skb_shared_info *)tmp___28)->tx_flags | 4U); base_flags = base_flags | 32U; } } else { } } else { } { len = skb_headlen((struct sk_buff const *)skb); mapping = pci_map_single(tp->pdev, (void *)skb->data, (size_t )len, 1); tmp___32 = pci_dma_mapping_error(tp->pdev, mapping); } if (tmp___32 != 0) { goto drop; } else { } { (tnapi->tx_buffers + (unsigned long )entry)->skb = skb; (tnapi->tx_buffers + (unsigned long )entry)->mapping = mapping; would_hit_hwbug = 0; tmp___33 = _tg3_flag(51, (unsigned long *)(& tp->tg3_flags)); } if (tmp___33 != 0) { would_hit_hwbug = 1; } else { } { tmp___42 = skb_end_pointer((struct sk_buff const *)skb); tmp___43 = tg3_tx_frag_set(tnapi, & entry, & budget, mapping, len, base_flags | ((unsigned int )((struct skb_shared_info *)tmp___42)->nr_frags == 0U ? 4U : 0U), mss, vlan); } if ((int )tmp___43) { would_hit_hwbug = 1; } else { { tmp___41 = skb_end_pointer((struct sk_buff const *)skb); } if ((unsigned int )((struct skb_shared_info *)tmp___41)->nr_frags != 0U) { { tmp_mss = mss; tmp___34 = _tg3_flag(40, (unsigned long *)(& tp->tg3_flags)); } if (tmp___34 == 0) { { tmp___35 = _tg3_flag(41, (unsigned long *)(& tp->tg3_flags)); } if (tmp___35 == 0) { { tmp___36 = _tg3_flag(42, (unsigned long *)(& tp->tg3_flags)); } if (tmp___36 == 0) { tmp_mss = 0U; } else { } } else { } } else { } { tmp___37 = skb_end_pointer((struct sk_buff const *)skb); last = (unsigned int )((int )((struct skb_shared_info *)tmp___37)->nr_frags + -1); i = 0; } goto ldv_58492; ldv_58491: { tmp___38 = skb_end_pointer((struct sk_buff const *)skb); frag = (skb_frag_t *)(& ((struct skb_shared_info *)tmp___38)->frags) + (unsigned long )i; len = skb_frag_size((skb_frag_t const *)frag); mapping = skb_frag_dma_map(& (tp->pdev)->dev, (skb_frag_t const *)frag, 0UL, (size_t )len, 1); (tnapi->tx_buffers + (unsigned long )entry)->skb = (struct sk_buff *)0; (tnapi->tx_buffers + (unsigned long )entry)->mapping = mapping; tmp___39 = dma_mapping_error(& (tp->pdev)->dev, mapping); } if (tmp___39 != 0) { goto dma_error; } else { } if (budget == 0U) { would_hit_hwbug = 1; goto ldv_58490; } else { { tmp___40 = tg3_tx_frag_set(tnapi, & entry, & budget, mapping, len, base_flags | ((unsigned int )i == last ? 4U : 0U), tmp_mss, vlan); } if ((int )tmp___40) { would_hit_hwbug = 1; goto ldv_58490; } else { } } i = i + 1; ldv_58492: ; if ((unsigned int )i <= last) { goto ldv_58491; } else { } ldv_58490: ; } else { } } if (would_hit_hwbug != 0) { { tg3_tx_skb_unmap(tnapi, tnapi->tx_prod, i); } if (mss != 0U) { if ((unsigned int )ip_tot_len != 0U) { iph->check = ip_csum; iph->tot_len = ip_tot_len; } else { } { tcph->check = tcp_csum; tmp___44 = tg3_tso_bug(tp, tnapi, txq, skb); } return ((netdev_tx_t )tmp___44); } else { } { entry = tnapi->tx_prod; budget = tg3_tx_avail(tnapi); tmp___45 = tigon3_dma_hwbug_workaround(tnapi, & skb, & entry, & budget, base_flags, mss, vlan); } if (tmp___45 != 0) { goto drop_nofree; } else { } } else { } { skb_tx_timestamp(skb); netdev_tx_sent_queue(txq, skb->len); __asm__ volatile ("sfence": : : "memory"); tnapi->tx_prod = entry; tmp___47 = tg3_tx_avail(tnapi); tmp___48 = ldv__builtin_expect(tmp___47 <= 18U, 0L); } if (tmp___48 != 0L) { { netif_tx_stop_queue(txq); __asm__ volatile ("mfence": : : "memory"); tmp___46 = tg3_tx_avail(tnapi); } if (tmp___46 > tnapi->tx_pending / 4U) { { netif_tx_wake_queue(txq); } } else { } } else { } if ((unsigned int )*((unsigned char *)skb + 142UL) == 0U) { { (*(tp->write32_tx_mbox))(tp, tnapi->prodmbox, entry); __asm__ volatile ("": : : "memory"); } } else { { tmp___49 = netif_xmit_stopped((struct netdev_queue const *)txq); } if ((int )tmp___49) { { (*(tp->write32_tx_mbox))(tp, tnapi->prodmbox, entry); __asm__ volatile ("": : : "memory"); } } else { } } return (0); dma_error: { i = i - 1; tg3_tx_skb_unmap(tnapi, tnapi->tx_prod, i); (tnapi->tx_buffers + (unsigned long )tnapi->tx_prod)->skb = (struct sk_buff *)0; } drop: { dev_kfree_skb_any(skb); } drop_nofree: tp->tx_dropped = tp->tx_dropped + 1UL; return (0); } } static void tg3_mac_loopback(struct tg3 *tp , bool enable ) { int tmp ; int tmp___0 ; { if ((int )enable) { { tp->mac_mode = tp->mac_mode & 4294967281U; tp->mac_mode = tp->mac_mode | 16U; tmp = _tg3_flag(71, (unsigned long *)(& tp->tg3_flags)); } if (tmp == 0) { tp->mac_mode = tp->mac_mode | 1024U; } else { } if ((tp->phy_flags & 128U) != 0U) { tp->mac_mode = tp->mac_mode | 4U; } else { tp->mac_mode = tp->mac_mode | 8U; } } else { { tp->mac_mode = tp->mac_mode & 4294967279U; tmp___0 = _tg3_flag(71, (unsigned long *)(& tp->tg3_flags)); } if ((tmp___0 != 0 || (tp->phy_flags & 16U) != 0U) || tp->pci_chip_rev_id >> 12 == 7U) { tp->mac_mode = tp->mac_mode & 4294966271U; } else { } } { (*(tp->write32))(tp, 1024U, tp->mac_mode); __const_udelay(171800UL); } return; } } static int tg3_phy_lpbk_set(struct tg3 *tp , u32 speed , bool extlpbk ) { u32 val ; u32 bmcr ; u32 mac_mode ; u32 ptest ; int tmp ; int tmp___0 ; u32 masked_phy_id ; { { ptest = 0U; tg3_phy_toggle_apd(tp, 0); tg3_phy_toggle_automdix(tp, 0); } if ((int )extlpbk) { { tmp = tg3_phy_set_extloopbk(tp); } if (tmp != 0) { return (-5); } else { } } else { } bmcr = 256U; { if (speed == 10U) { goto case_10; } else { } if (speed == 100U) { goto case_100; } else { } if (speed == 1000U) { goto case_1000; } else { } goto switch_default; case_10: /* CIL Label */ ; goto ldv_58508; case_100: /* CIL Label */ bmcr = bmcr | 8192U; goto ldv_58508; case_1000: /* CIL Label */ ; switch_default: /* CIL Label */ ; if ((tp->phy_flags & 64U) != 0U) { speed = 100U; bmcr = bmcr | 8192U; } else { speed = 1000U; bmcr = bmcr | 64U; } switch_break: /* CIL Label */ ; } ldv_58508: ; if ((int )extlpbk) { if ((tp->phy_flags & 64U) == 0U) { { tg3_readphy(tp, 9, & val); val = val | 6144U; tg3_writephy(tp, 9, val); } } else { { ptest = 18U; tg3_writephy(tp, 23, ptest); } } } else { bmcr = bmcr | 16384U; } { tg3_writephy(tp, 0, bmcr); } if ((tp->phy_flags & 64U) != 0U) { { tg3_readphy(tp, 0, & bmcr); } } else { } { __const_udelay(171800UL); } if ((tp->phy_flags & 64U) != 0U && tp->pci_chip_rev_id >> 12 == 22405U) { { tg3_writephy(tp, 23, ptest | 6144U); tg3_readphy(tp, 23, & val); } } else { } if ((tp->phy_flags & 32U) != 0U) { { tmp___0 = _tg3_flag(74, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0) { { _tw32_flush(tp, 1128U, 1U, 0U); __const_udelay(42950UL); _tw32_flush(tp, 1128U, tp->rx_mode, 0U); } } else { } } else { } mac_mode = tp->mac_mode & 4294967281U; if (speed == 1000U) { mac_mode = mac_mode | 8U; } else { mac_mode = mac_mode | 4U; } if (tp->pci_chip_rev_id >> 12 == 7U) { masked_phy_id = tp->phy_id & 4294967280U; if (masked_phy_id == 1610645584U) { mac_mode = mac_mode & 4294966271U; } else if (masked_phy_id == 1610645616U) { mac_mode = mac_mode | 1024U; } else { } { tg3_writephy(tp, 16, 2U); } } else { } { (*(tp->write32))(tp, 1024U, mac_mode); __const_udelay(171800UL); } return (0); } } static void tg3_set_loopback(struct net_device *dev , netdev_features_t features ) { struct tg3 *tp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; } if ((features & 68719476736ULL) != 0ULL) { if ((tp->mac_mode & 16U) != 0U) { return; } else { } { ldv_spin_lock_bh_139(& tp->lock); tg3_mac_loopback(tp, 1); netif_carrier_on(tp->dev); ldv_spin_unlock_bh_140(& tp->lock); netdev_info((struct net_device const *)dev, "Internal MAC loopback mode enabled.\n"); } } else { if ((tp->mac_mode & 16U) == 0U) { return; } else { } { ldv_spin_lock_bh_139(& tp->lock); tg3_mac_loopback(tp, 0); tg3_setup_phy(tp, 1); ldv_spin_unlock_bh_140(& tp->lock); netdev_info((struct net_device const *)dev, "Internal MAC loopback mode disabled.\n"); } } return; } } static netdev_features_t tg3_fix_features(struct net_device *dev , netdev_features_t features ) { struct tg3 *tp ; void *tmp ; int tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; } if (dev->mtu > 1500U) { { tmp___0 = _tg3_flag(74, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0) { features = features & 0xffffffffffe6ffffULL; } else { } } else { } return (features); } } static int tg3_set_features(struct net_device *dev , netdev_features_t features ) { netdev_features_t changed ; bool tmp ; { changed = dev->features ^ features; if ((changed & 68719476736ULL) != 0ULL) { { tmp = netif_running((struct net_device const *)dev); } if ((int )tmp) { { tg3_set_loopback(dev, features); } } else { } } else { } return (0); } } static void tg3_rx_prodring_free(struct tg3 *tp , struct tg3_rx_prodring_set *tpr ) { int i ; int tmp ; int tmp___0 ; int tmp___1 ; { if ((unsigned long )tpr != (unsigned long )(& tp->napi[0].prodring)) { i = (int )tpr->rx_std_cons_idx; goto ldv_58534; ldv_58533: { tg3_rx_data_free(tp, tpr->rx_std_buffers + (unsigned long )i, tp->rx_pkt_map_sz); i = (int )((u32 )(i + 1) & tp->rx_std_ring_mask); } ldv_58534: ; if ((u32 )i != tpr->rx_std_prod_idx) { goto ldv_58533; } else { } { tmp = _tg3_flag(30, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { i = (int )tpr->rx_jmb_cons_idx; goto ldv_58537; ldv_58536: { tg3_rx_data_free(tp, tpr->rx_jmb_buffers + (unsigned long )i, 9110U); i = (int )((u32 )(i + 1) & tp->rx_jmb_ring_mask); } ldv_58537: ; if ((u32 )i != tpr->rx_jmb_prod_idx) { goto ldv_58536; } else { } } else { } return; } else { } i = 0; goto ldv_58540; ldv_58539: { tg3_rx_data_free(tp, tpr->rx_std_buffers + (unsigned long )i, tp->rx_pkt_map_sz); i = i + 1; } ldv_58540: ; if ((u32 )i <= tp->rx_std_ring_mask) { goto ldv_58539; } else { } { tmp___0 = _tg3_flag(30, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0) { { tmp___1 = _tg3_flag(74, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 == 0) { i = 0; goto ldv_58543; ldv_58542: { tg3_rx_data_free(tp, tpr->rx_jmb_buffers + (unsigned long )i, 9110U); i = i + 1; } ldv_58543: ; if ((u32 )i <= tp->rx_jmb_ring_mask) { goto ldv_58542; } else { } } else { } } else { } return; } } static int tg3_rx_prodring_alloc(struct tg3 *tp , struct tg3_rx_prodring_set *tpr ) { u32 i ; u32 rx_pkt_dma_sz ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; struct tg3_rx_buffer_desc *rxd ; unsigned int frag_size ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; struct tg3_rx_buffer_desc *rxd___0 ; unsigned int frag_size___0 ; int tmp___8 ; { tpr->rx_std_cons_idx = 0U; tpr->rx_std_prod_idx = 0U; tpr->rx_jmb_cons_idx = 0U; tpr->rx_jmb_prod_idx = 0U; if ((unsigned long )tpr != (unsigned long )(& tp->napi[0].prodring)) { { tmp = _tg3_flag(54, (unsigned long *)(& tp->tg3_flags)); __memset((void *)tpr->rx_std_buffers, 0, tmp != 0 ? 32768UL : 8192UL); } if ((unsigned long )tpr->rx_jmb_buffers != (unsigned long )((struct ring_info *)0)) { { tmp___0 = _tg3_flag(54, (unsigned long *)(& tp->tg3_flags)); __memset((void *)tpr->rx_jmb_buffers, 0, tmp___0 != 0 ? 16384UL : 4096UL); } } else { } goto done; } else { } { tmp___1 = _tg3_flag(54, (unsigned long *)(& tp->tg3_flags)); __memset((void *)tpr->rx_std, 0, tmp___1 != 0 ? 65536UL : 16384UL); rx_pkt_dma_sz = 1536U; tmp___2 = _tg3_flag(74, (unsigned long *)(& tp->tg3_flags)); } if (tmp___2 != 0 && (tp->dev)->mtu > 1500U) { rx_pkt_dma_sz = 9046U; } else { } tp->rx_pkt_map_sz = rx_pkt_dma_sz + 64U; i = 0U; goto ldv_58554; ldv_58553: rxd = tpr->rx_std + (unsigned long )i; rxd->idx_len = rx_pkt_dma_sz; rxd->type_flags = 4U; rxd->opaque = i | 65536U; i = i + 1U; ldv_58554: ; if (i <= tp->rx_std_ring_mask) { goto ldv_58553; } else { } i = 0U; goto ldv_58560; ldv_58559: { tmp___3 = tg3_alloc_rx_data(tp, tpr, 65536U, i, & frag_size); } if (tmp___3 < 0) { { netdev_warn((struct net_device const *)tp->dev, "Using a smaller RX standard ring. Only %d out of %d buffers were allocated successfully\n", i, tp->rx_pending); } if (i == 0U) { goto initfail; } else { } tp->rx_pending = i; goto ldv_58558; } else { } i = i + 1U; ldv_58560: ; if (i < tp->rx_pending) { goto ldv_58559; } else { } ldv_58558: { tmp___4 = _tg3_flag(30, (unsigned long *)(& tp->tg3_flags)); } if (tmp___4 == 0) { goto done; } else { { tmp___5 = _tg3_flag(74, (unsigned long *)(& tp->tg3_flags)); } if (tmp___5 != 0) { goto done; } else { } } { tmp___6 = _tg3_flag(54, (unsigned long *)(& tp->tg3_flags)); __memset((void *)tpr->rx_jmb, 0, tmp___6 != 0 ? 65536UL : 16384UL); tmp___7 = _tg3_flag(25, (unsigned long *)(& tp->tg3_flags)); } if (tmp___7 == 0) { goto done; } else { } i = 0U; goto ldv_58563; ldv_58562: rxd___0 = & (tpr->rx_jmb + (unsigned long )i)->std; rxd___0->idx_len = 9046U; rxd___0->type_flags = 36U; rxd___0->opaque = i | 131072U; i = i + 1U; ldv_58563: ; if (i <= tp->rx_jmb_ring_mask) { goto ldv_58562; } else { } i = 0U; goto ldv_58568; ldv_58567: { tmp___8 = tg3_alloc_rx_data(tp, tpr, 131072U, i, & frag_size___0); } if (tmp___8 < 0) { { netdev_warn((struct net_device const *)tp->dev, "Using a smaller RX jumbo ring. Only %d out of %d buffers were allocated successfully\n", i, tp->rx_jumbo_pending); } if (i == 0U) { goto initfail; } else { } tp->rx_jumbo_pending = i; goto ldv_58566; } else { } i = i + 1U; ldv_58568: ; if (i < tp->rx_jumbo_pending) { goto ldv_58567; } else { } ldv_58566: ; done: ; return (0); initfail: { tg3_rx_prodring_free(tp, tpr); } return (-12); } } static void tg3_rx_prodring_fini(struct tg3 *tp , struct tg3_rx_prodring_set *tpr ) { int tmp ; int tmp___0 ; { { kfree((void const *)tpr->rx_std_buffers); tpr->rx_std_buffers = (struct ring_info *)0; kfree((void const *)tpr->rx_jmb_buffers); tpr->rx_jmb_buffers = (struct ring_info *)0; } if ((unsigned long )tpr->rx_std != (unsigned long )((struct tg3_rx_buffer_desc *)0)) { { tmp = _tg3_flag(54, (unsigned long *)(& tp->tg3_flags)); dma_free_attrs(& (tp->pdev)->dev, tmp != 0 ? 65536UL : 16384UL, (void *)tpr->rx_std, tpr->rx_std_mapping, (struct dma_attrs *)0); tpr->rx_std = (struct tg3_rx_buffer_desc *)0; } } else { } if ((unsigned long )tpr->rx_jmb != (unsigned long )((struct tg3_ext_rx_buffer_desc *)0)) { { tmp___0 = _tg3_flag(54, (unsigned long *)(& tp->tg3_flags)); dma_free_attrs(& (tp->pdev)->dev, tmp___0 != 0 ? 65536UL : 16384UL, (void *)tpr->rx_jmb, tpr->rx_jmb_mapping, (struct dma_attrs *)0); tpr->rx_jmb = (struct tg3_ext_rx_buffer_desc *)0; } } else { } return; } } static int tg3_rx_prodring_init(struct tg3 *tp , struct tg3_rx_prodring_set *tpr ) { int tmp ; void *tmp___0 ; int tmp___1 ; void *tmp___2 ; int tmp___3 ; void *tmp___4 ; int tmp___5 ; void *tmp___6 ; int tmp___7 ; int tmp___8 ; { { tmp = _tg3_flag(54, (unsigned long *)(& tp->tg3_flags)); tmp___0 = kzalloc(tmp != 0 ? 32768UL : 8192UL, 208U); tpr->rx_std_buffers = (struct ring_info *)tmp___0; } if ((unsigned long )tpr->rx_std_buffers == (unsigned long )((struct ring_info *)0)) { return (-12); } else { } { tmp___1 = _tg3_flag(54, (unsigned long *)(& tp->tg3_flags)); tmp___2 = dma_alloc_attrs(& (tp->pdev)->dev, tmp___1 != 0 ? 65536UL : 16384UL, & tpr->rx_std_mapping, 208U, (struct dma_attrs *)0); tpr->rx_std = (struct tg3_rx_buffer_desc *)tmp___2; } if ((unsigned long )tpr->rx_std == (unsigned long )((struct tg3_rx_buffer_desc *)0)) { goto err_out; } else { } { tmp___7 = _tg3_flag(30, (unsigned long *)(& tp->tg3_flags)); } if (tmp___7 != 0) { { tmp___8 = _tg3_flag(74, (unsigned long *)(& tp->tg3_flags)); } if (tmp___8 == 0) { { tmp___3 = _tg3_flag(54, (unsigned long *)(& tp->tg3_flags)); tmp___4 = kzalloc(tmp___3 != 0 ? 16384UL : 4096UL, 208U); tpr->rx_jmb_buffers = (struct ring_info *)tmp___4; } if ((unsigned long )tpr->rx_jmb_buffers == (unsigned long )((struct ring_info *)0)) { goto err_out; } else { } { tmp___5 = _tg3_flag(54, (unsigned long *)(& tp->tg3_flags)); tmp___6 = dma_alloc_attrs(& (tp->pdev)->dev, tmp___5 != 0 ? 65536UL : 16384UL, & tpr->rx_jmb_mapping, 208U, (struct dma_attrs *)0); tpr->rx_jmb = (struct tg3_ext_rx_buffer_desc *)tmp___6; } if ((unsigned long )tpr->rx_jmb == (unsigned long )((struct tg3_ext_rx_buffer_desc *)0)) { goto err_out; } else { } } else { } } else { } return (0); err_out: { tg3_rx_prodring_fini(tp, tpr); } return (-12); } } static void tg3_free_rings(struct tg3 *tp ) { int i ; int j ; struct tg3_napi *tnapi ; struct sk_buff *skb ; unsigned char *tmp ; struct netdev_queue *tmp___0 ; { j = 0; goto ldv_58591; ldv_58590: { tnapi = (struct tg3_napi *)(& tp->napi) + (unsigned long )j; tg3_rx_prodring_free(tp, & tnapi->prodring); } if ((unsigned long )tnapi->tx_buffers == (unsigned long )((struct tg3_tx_ring_info *)0)) { goto ldv_58584; } else { } i = 0; goto ldv_58588; ldv_58587: skb = (tnapi->tx_buffers + (unsigned long )i)->skb; if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { goto ldv_58586; } else { } { tmp = skb_end_pointer((struct sk_buff const *)skb); tg3_tx_skb_unmap(tnapi, (u32 )i, (int )((struct skb_shared_info *)tmp)->nr_frags + -1); dev_kfree_skb_any(skb); } ldv_58586: i = i + 1; ldv_58588: ; if (i <= 511) { goto ldv_58587; } else { } { tmp___0 = netdev_get_tx_queue((struct net_device const *)tp->dev, (unsigned int )j); netdev_tx_reset_queue(tmp___0); } ldv_58584: j = j + 1; ldv_58591: ; if ((unsigned int )j < tp->irq_cnt) { goto ldv_58590; } else { } return; } } static int tg3_init_rings(struct tg3 *tp ) { int i ; struct tg3_napi *tnapi ; int tmp ; { { tg3_free_rings(tp); i = 0; } goto ldv_58599; ldv_58598: { tnapi = (struct tg3_napi *)(& tp->napi) + (unsigned long )i; tnapi->last_tag = 0U; tnapi->last_irq_tag = 0U; (tnapi->hw_status)->status = 0U; (tnapi->hw_status)->status_tag = 0U; __memset((void *)tnapi->hw_status, 0, 80UL); tnapi->tx_prod = 0U; tnapi->tx_cons = 0U; } if ((unsigned long )tnapi->tx_ring != (unsigned long )((struct tg3_tx_buffer_desc *)0)) { { __memset((void *)tnapi->tx_ring, 0, 8192UL); } } else { } tnapi->rx_rcb_ptr = 0U; if ((unsigned long )tnapi->rx_rcb != (unsigned long )((struct tg3_rx_buffer_desc *)0)) { { __memset((void *)tnapi->rx_rcb, 0, (unsigned long )(tp->rx_ret_ring_mask + 1U) * 32UL); } } else { } if ((unsigned long )tnapi->prodring.rx_std != (unsigned long )((struct tg3_rx_buffer_desc *)0)) { { tmp = tg3_rx_prodring_alloc(tp, & tnapi->prodring); } if (tmp != 0) { { tg3_free_rings(tp); } return (-12); } else { } } else { } i = i + 1; ldv_58599: ; if ((unsigned int )i < tp->irq_cnt) { goto ldv_58598; } else { } return (0); } } static void tg3_mem_tx_release(struct tg3 *tp ) { int i ; struct tg3_napi *tnapi ; { i = 0; goto ldv_58607; ldv_58606: tnapi = (struct tg3_napi *)(& tp->napi) + (unsigned long )i; if ((unsigned long )tnapi->tx_ring != (unsigned long )((struct tg3_tx_buffer_desc *)0)) { { dma_free_attrs(& (tp->pdev)->dev, 8192UL, (void *)tnapi->tx_ring, tnapi->tx_desc_mapping, (struct dma_attrs *)0); tnapi->tx_ring = (struct tg3_tx_buffer_desc *)0; } } else { } { kfree((void const *)tnapi->tx_buffers); tnapi->tx_buffers = (struct tg3_tx_ring_info *)0; i = i + 1; } ldv_58607: ; if ((unsigned int )i < tp->irq_max) { goto ldv_58606; } else { } return; } } static int tg3_mem_tx_acquire(struct tg3 *tp ) { int i ; struct tg3_napi *tnapi ; int tmp ; void *tmp___0 ; void *tmp___1 ; { { tnapi = (struct tg3_napi *)(& tp->napi); tmp = _tg3_flag(61, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { tnapi = tnapi + 1; } else { } i = 0; goto ldv_58616; ldv_58615: { tmp___0 = kzalloc(12288UL, 208U); tnapi->tx_buffers = (struct tg3_tx_ring_info *)tmp___0; } if ((unsigned long )tnapi->tx_buffers == (unsigned long )((struct tg3_tx_ring_info *)0)) { goto err_out; } else { } { tmp___1 = dma_alloc_attrs(& (tp->pdev)->dev, 8192UL, & tnapi->tx_desc_mapping, 208U, (struct dma_attrs *)0); tnapi->tx_ring = (struct tg3_tx_buffer_desc *)tmp___1; } if ((unsigned long )tnapi->tx_ring == (unsigned long )((struct tg3_tx_buffer_desc *)0)) { goto err_out; } else { } i = i + 1; tnapi = tnapi + 1; ldv_58616: ; if ((u32 )i < tp->txq_cnt) { goto ldv_58615; } else { } return (0); err_out: { tg3_mem_tx_release(tp); } return (-12); } } static void tg3_mem_rx_release(struct tg3 *tp ) { int i ; struct tg3_napi *tnapi ; { i = 0; goto ldv_58625; ldv_58624: { tnapi = (struct tg3_napi *)(& tp->napi) + (unsigned long )i; tg3_rx_prodring_fini(tp, & tnapi->prodring); } if ((unsigned long )tnapi->rx_rcb == (unsigned long )((struct tg3_rx_buffer_desc *)0)) { goto ldv_58623; } else { } { dma_free_attrs(& (tp->pdev)->dev, (unsigned long )(tp->rx_ret_ring_mask + 1U) * 32UL, (void *)tnapi->rx_rcb, tnapi->rx_rcb_mapping, (struct dma_attrs *)0); tnapi->rx_rcb = (struct tg3_rx_buffer_desc *)0; } ldv_58623: i = i + 1; ldv_58625: ; if ((unsigned int )i < tp->irq_max) { goto ldv_58624; } else { } return; } } static int tg3_mem_rx_acquire(struct tg3 *tp ) { unsigned int i ; unsigned int limit ; int tmp ; struct tg3_napi *tnapi ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; { { limit = tp->rxq_cnt; tmp = _tg3_flag(60, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { limit = limit + 1U; } else { } i = 0U; goto ldv_58636; ldv_58635: { tnapi = (struct tg3_napi *)(& tp->napi) + (unsigned long )i; tmp___0 = tg3_rx_prodring_init(tp, & tnapi->prodring); } if (tmp___0 != 0) { goto err_out; } else { } if (i == 0U) { { tmp___1 = _tg3_flag(60, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 != 0) { goto ldv_58634; } else { } } else { } { tmp___2 = dma_zalloc_coherent(& (tp->pdev)->dev, (unsigned long )(tp->rx_ret_ring_mask + 1U) * 32UL, & tnapi->rx_rcb_mapping, 208U); tnapi->rx_rcb = (struct tg3_rx_buffer_desc *)tmp___2; } if ((unsigned long )tnapi->rx_rcb == (unsigned long )((struct tg3_rx_buffer_desc *)0)) { goto err_out; } else { } ldv_58634: i = i + 1U; ldv_58636: ; if (i < limit) { goto ldv_58635; } else { } return (0); err_out: { tg3_mem_rx_release(tp); } return (-12); } } static void tg3_free_consistent(struct tg3 *tp ) { int i ; struct tg3_napi *tnapi ; { i = 0; goto ldv_58644; ldv_58643: tnapi = (struct tg3_napi *)(& tp->napi) + (unsigned long )i; if ((unsigned long )tnapi->hw_status != (unsigned long )((struct tg3_hw_status *)0)) { { dma_free_attrs(& (tp->pdev)->dev, 80UL, (void *)tnapi->hw_status, tnapi->status_mapping, (struct dma_attrs *)0); tnapi->hw_status = (struct tg3_hw_status *)0; } } else { } i = i + 1; ldv_58644: ; if ((unsigned int )i < tp->irq_cnt) { goto ldv_58643; } else { } { tg3_mem_rx_release(tp); tg3_mem_tx_release(tp); } if ((unsigned long )tp->hw_stats != (unsigned long )((struct tg3_hw_stats *)0)) { { dma_free_attrs(& (tp->pdev)->dev, 2048UL, (void *)tp->hw_stats, tp->stats_mapping, (struct dma_attrs *)0); tp->hw_stats = (struct tg3_hw_stats *)0; } } else { } return; } } static int tg3_alloc_consistent(struct tg3 *tp ) { int i ; void *tmp ; struct tg3_napi *tnapi ; struct tg3_hw_status *sblk ; void *tmp___0 ; u16 *prodptr ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { { tmp = dma_zalloc_coherent(& (tp->pdev)->dev, 2048UL, & tp->stats_mapping, 208U); tp->hw_stats = (struct tg3_hw_stats *)tmp; } if ((unsigned long )tp->hw_stats == (unsigned long )((struct tg3_hw_stats *)0)) { goto err_out; } else { } i = 0; goto ldv_58660; ldv_58659: { tnapi = (struct tg3_napi *)(& tp->napi) + (unsigned long )i; tmp___0 = dma_zalloc_coherent(& (tp->pdev)->dev, 80UL, & tnapi->status_mapping, 208U); tnapi->hw_status = (struct tg3_hw_status *)tmp___0; } if ((unsigned long )tnapi->hw_status == (unsigned long )((struct tg3_hw_status *)0)) { goto err_out; } else { } { sblk = tnapi->hw_status; tmp___1 = _tg3_flag(60, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 != 0) { prodptr = (u16 *)0U; { if (i == 1) { goto case_1; } else { } if (i == 2) { goto case_2; } else { } if (i == 3) { goto case_3; } else { } if (i == 4) { goto case_4; } else { } goto switch_break; case_1: /* CIL Label */ prodptr = & sblk->idx[0].rx_producer; goto ldv_58655; case_2: /* CIL Label */ prodptr = & sblk->rx_jumbo_consumer; goto ldv_58655; case_3: /* CIL Label */ prodptr = & sblk->reserved; goto ldv_58655; case_4: /* CIL Label */ prodptr = & sblk->rx_mini_consumer; goto ldv_58655; switch_break: /* CIL Label */ ; } ldv_58655: tnapi->rx_rcb_prod_idx = prodptr; } else { tnapi->rx_rcb_prod_idx = & sblk->idx[0].rx_producer; } i = i + 1; ldv_58660: ; if ((unsigned int )i < tp->irq_cnt) { goto ldv_58659; } else { } { tmp___2 = tg3_mem_tx_acquire(tp); } if (tmp___2 != 0) { goto err_out; } else { { tmp___3 = tg3_mem_rx_acquire(tp); } if (tmp___3 != 0) { goto err_out; } else { } } return (0); err_out: { tg3_free_consistent(tp); } return (-12); } } static int tg3_stop_block(struct tg3 *tp , unsigned long ofs , u32 enable_bit , bool silent ) { unsigned int i ; u32 val ; int tmp ; int tmp___0 ; { { tmp = _tg3_flag(71, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { { if (ofs == 13312UL) { goto case_13312; } else { } if (ofs == 25600UL) { goto case_25600; } else { } if (ofs == 14336UL) { goto case_14336; } else { } if (ofs == 17408UL) { goto case_17408; } else { } if (ofs == 16384UL) { goto case_16384; } else { } goto switch_default; case_13312: /* CIL Label */ ; case_25600: /* CIL Label */ ; case_14336: /* CIL Label */ ; case_17408: /* CIL Label */ ; case_16384: /* CIL Label */ ; return (0); switch_default: /* CIL Label */ ; goto ldv_58676; switch_break: /* CIL Label */ ; } ldv_58676: ; } else { } { val = (*(tp->read32))(tp, (u32 )ofs); val = val & ~ enable_bit; _tw32_flush(tp, (u32 )ofs, val, 0U); i = 0U; } goto ldv_58679; ldv_58678: { tmp___0 = pci_channel_offline(tp->pdev); } if (tmp___0 != 0) { { dev_err((struct device const *)(& (tp->pdev)->dev), "tg3_stop_block device offline, ofs=%lx enable_bit=%x\n", ofs, enable_bit); } return (-19); } else { } { __const_udelay(429500UL); val = (*(tp->read32))(tp, (u32 )ofs); } if ((val & enable_bit) == 0U) { goto ldv_58677; } else { } i = i + 1U; ldv_58679: ; if (i <= 999U) { goto ldv_58678; } else { } ldv_58677: ; if (i == 1000U && ! silent) { { dev_err((struct device const *)(& (tp->pdev)->dev), "tg3_stop_block timed out, ofs=%lx enable_bit=%x\n", ofs, enable_bit); } return (-19); } else { } return (0); } } static int tg3_abort_hw(struct tg3 *tp , bool silent ) { int i ; int err ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; u32 tmp___12 ; u32 tmp___13 ; int tmp___14 ; int tmp___15 ; int tmp___16 ; int tmp___17 ; int tmp___18 ; struct tg3_napi *tnapi ; { { tg3_disable_ints(tp); tmp = pci_channel_offline(tp->pdev); } if (tmp != 0) { tp->rx_mode = tp->rx_mode & 4294967293U; tp->mac_mode = tp->mac_mode & 4292870143U; err = -19; goto err_no_dev; } else { } { tp->rx_mode = tp->rx_mode & 4294967293U; _tw32_flush(tp, 1128U, tp->rx_mode, 0U); __const_udelay(42950UL); err = tg3_stop_block(tp, 11264UL, 2U, (int )silent); tmp___0 = tg3_stop_block(tp, 8192UL, 2U, (int )silent); err = err | tmp___0; tmp___1 = tg3_stop_block(tp, 13312UL, 2U, (int )silent); err = err | tmp___1; tmp___2 = tg3_stop_block(tp, 9216UL, 2U, (int )silent); err = err | tmp___2; tmp___3 = tg3_stop_block(tp, 10240UL, 2U, (int )silent); err = err | tmp___3; tmp___4 = tg3_stop_block(tp, 12288UL, 2U, (int )silent); err = err | tmp___4; tmp___5 = tg3_stop_block(tp, 5120UL, 2U, (int )silent); err = err | tmp___5; tmp___6 = tg3_stop_block(tp, 6144UL, 2U, (int )silent); err = err | tmp___6; tmp___7 = tg3_stop_block(tp, 3072UL, 2U, (int )silent); err = err | tmp___7; tmp___8 = tg3_stop_block(tp, 18432UL, 2U, (int )silent); err = err | tmp___8; tmp___9 = tg3_stop_block(tp, 4096UL, 2U, (int )silent); err = err | tmp___9; tmp___10 = tg3_stop_block(tp, 25600UL, 2U, (int )silent); err = err | tmp___10; tmp___11 = tg3_stop_block(tp, 7168UL, 2U, (int )silent); err = err | tmp___11; tp->mac_mode = tp->mac_mode & 4292870143U; _tw32_flush(tp, 1024U, tp->mac_mode, 0U); __const_udelay(171800UL); tp->tx_mode = tp->tx_mode & 4294967293U; _tw32_flush(tp, 1116U, tp->tx_mode, 0U); i = 0; } goto ldv_58689; ldv_58688: { __const_udelay(429500UL); tmp___12 = (*(tp->read32))(tp, 1116U); } if ((tmp___12 & 2U) == 0U) { goto ldv_58687; } else { } i = i + 1; ldv_58689: ; if (i <= 999) { goto ldv_58688; } else { } ldv_58687: ; if (i > 999) { { tmp___13 = (*(tp->read32))(tp, 1116U); dev_err((struct device const *)(& (tp->pdev)->dev), "%s timed out, TX_MODE_ENABLE will not clear MAC_TX_MODE=%08x\n", "tg3_abort_hw", tmp___13); err = err | -19; } } else { } { tmp___14 = tg3_stop_block(tp, 15360UL, 2U, (int )silent); err = err | tmp___14; tmp___15 = tg3_stop_block(tp, 19456UL, 2U, (int )silent); err = err | tmp___15; tmp___16 = tg3_stop_block(tp, 14336UL, 2U, (int )silent); err = err | tmp___16; (*(tp->write32))(tp, 23552U, 4294967295U); (*(tp->write32))(tp, 23552U, 0U); tmp___17 = tg3_stop_block(tp, 17408UL, 2U, (int )silent); err = err | tmp___17; tmp___18 = tg3_stop_block(tp, 16384UL, 2U, (int )silent); err = err | tmp___18; } err_no_dev: i = 0; goto ldv_58693; ldv_58692: tnapi = (struct tg3_napi *)(& tp->napi) + (unsigned long )i; if ((unsigned long )tnapi->hw_status != (unsigned long )((struct tg3_hw_status *)0)) { { __memset((void *)tnapi->hw_status, 0, 80UL); } } else { } i = i + 1; ldv_58693: ; if ((unsigned int )i < tp->irq_cnt) { goto ldv_58692; } else { } return (err); } } static void tg3_save_pci_state(struct tg3 *tp ) { { { pci_read_config_word((struct pci_dev const *)tp->pdev, 4, & tp->pci_cmd); } return; } } static void tg3_restore_pci_state(struct tg3 *tp ) { u32 val ; int tmp ; int tmp___0 ; int tmp___1 ; u16 pcix_cmd ; int tmp___2 ; u16 ctrl ; int tmp___3 ; int tmp___4 ; { { pci_write_config_dword((struct pci_dev const *)tp->pdev, 104, tp->misc_host_ctrl); val = 96U; } if (tp->pci_chip_rev_id == 8192U) { { tmp = _tg3_flag(19, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { val = val | 8192U; } else { } } else { } { tmp___0 = _tg3_flag(49, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0) { val = val | 458752U; } else { } { pci_write_config_dword((struct pci_dev const *)tp->pdev, 112, val); pci_write_config_word((struct pci_dev const *)tp->pdev, 4, (int )tp->pci_cmd); tmp___1 = _tg3_flag(34, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 == 0) { { pci_write_config_byte((struct pci_dev const *)tp->pdev, 12, (int )tp->pci_cacheline_sz); pci_write_config_byte((struct pci_dev const *)tp->pdev, 13, (int )tp->pci_lat_timer); } } else { } { tmp___2 = _tg3_flag(19, (unsigned long *)(& tp->tg3_flags)); } if (tmp___2 != 0) { { pci_read_config_word((struct pci_dev const *)tp->pdev, tp->pcix_cap + 2, & pcix_cmd); pcix_cmd = (unsigned int )pcix_cmd & 65533U; pci_write_config_word((struct pci_dev const *)tp->pdev, tp->pcix_cap + 2, (int )pcix_cmd); } } else { } { tmp___4 = _tg3_flag(74, (unsigned long *)(& tp->tg3_flags)); } if (tmp___4 != 0) { { tmp___3 = _tg3_flag(17, (unsigned long *)(& tp->tg3_flags)); } if (tmp___3 != 0) { { pci_read_config_word((struct pci_dev const *)tp->pdev, tp->msi_cap + 2, & ctrl); pci_write_config_word((struct pci_dev const *)tp->pdev, tp->msi_cap + 2, (int )((unsigned int )ctrl | 1U)); val = (*(tp->read32))(tp, 24576U); (*(tp->write32))(tp, 24576U, val | 2U); } } else { } } else { } return; } } static void tg3_override_clk(struct tg3 *tp ) { u32 val ; { { if (tp->pci_chip_rev_id >> 12 == 22295U) { goto case_22295; } else { } if (tp->pci_chip_rev_id >> 12 == 22297U) { goto case_22297; } else { } if (tp->pci_chip_rev_id >> 12 == 22304U) { goto case_22304; } else { } goto switch_default; case_22295: /* CIL Label */ { val = (*(tp->read32))(tp, 13864U); (*(tp->write32))(tp, 13864U, val | 8192U); } goto ldv_58709; case_22297: /* CIL Label */ ; case_22304: /* CIL Label */ { (*(tp->write32))(tp, 13860U, 2147483648U); } goto ldv_58709; switch_default: /* CIL Label */ ; return; switch_break: /* CIL Label */ ; } ldv_58709: ; return; } } static void tg3_restore_clk(struct tg3 *tp ) { u32 val ; { { if (tp->pci_chip_rev_id >> 12 == 22295U) { goto case_22295; } else { } if (tp->pci_chip_rev_id >> 12 == 22297U) { goto case_22297; } else { } if (tp->pci_chip_rev_id >> 12 == 22304U) { goto case_22304; } else { } goto switch_default; case_22295: /* CIL Label */ { val = (*(tp->read32))(tp, 13864U); (*(tp->write32))(tp, 13864U, val & 4294959103U); } goto ldv_58718; case_22297: /* CIL Label */ ; case_22304: /* CIL Label */ { val = (*(tp->read32))(tp, 13860U); (*(tp->write32))(tp, 13860U, val & 2147483647U); } goto ldv_58718; switch_default: /* CIL Label */ ; return; switch_break: /* CIL Label */ ; } ldv_58718: ; return; } } static int tg3_chip_reset(struct tg3 *tp ) { u32 val ; void (*write_op)(struct tg3 * , u32 , u32 ) ; int i ; int err ; bool tmp ; int tmp___0 ; int tmp___1 ; struct tg3_napi *tnapi ; u32 tmp___2 ; int tmp___3 ; u32 tmp___4 ; int tmp___5 ; u32 tmp___6 ; u32 tmp___7 ; int tmp___8 ; int tmp___9 ; u16 val16 ; int j ; u32 cfg_val ; int tmp___10 ; int tmp___11 ; bool tmp___12 ; int tmp___13 ; int tmp___14 ; int tmp___15 ; int tmp___16 ; u32 nic_cfg ; int tmp___17 ; { { tmp = pci_device_is_present(tp->pdev); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (-19); } else { } { tg3_nvram_lock(tp); tg3_ape_lock(tp, 1); tp->nvram_lock_cnt = 0; tg3_save_pci_state(tp); } if (tp->pci_chip_rev_id >> 12 == 6U) { { (*(tp->write32))(tp, 26772U, 0U); } } else { { tmp___1 = _tg3_flag(75, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 != 0) { { (*(tp->write32))(tp, 26772U, 0U); } } else { } } write_op = tp->write32; if ((unsigned long )write_op == (unsigned long )(& tg3_write_flush_reg32)) { tp->write32 = & tg3_write32; } else { } { _tg3_flag_set(31, (unsigned long *)(& tp->tg3_flags)); i = 0; } goto ldv_58734; ldv_58733: tnapi = (struct tg3_napi *)(& tp->napi) + (unsigned long )i; if ((unsigned long )tnapi->hw_status != (unsigned long )((struct tg3_hw_status *)0)) { (tnapi->hw_status)->status = 0U; (tnapi->hw_status)->status_tag = 0U; } else { } tnapi->last_tag = 0U; tnapi->last_irq_tag = 0U; i = i + 1; ldv_58734: ; if ((unsigned int )i < tp->irq_cnt) { goto ldv_58733; } else { } { __asm__ volatile ("mfence": : : "memory"); tg3_full_unlock(tp); i = 0; } goto ldv_58737; ldv_58736: { synchronize_irq(tp->napi[i].irq_vec); i = i + 1; } ldv_58737: ; if ((unsigned int )i < tp->irq_cnt) { goto ldv_58736; } else { } { tg3_full_lock(tp, 0); } if (tp->pci_chip_rev_id >> 12 == 358272U) { { tmp___2 = (*(tp->read32))(tp, 32084U); val = tmp___2 & 4294967287U; (*(tp->write32))(tp, 32084U, val | 128U); } } else { } { val = 1U; tmp___5 = _tg3_flag(34, (unsigned long *)(& tp->tg3_flags)); } if (tmp___5 != 0) { if (tp->pci_chip_rev_id >> 12 != 22405U) { { tmp___3 = _tg3_flag(76, (unsigned long *)(& tp->tg3_flags)); } if (tmp___3 == 0) { { tmp___4 = (*(tp->read32))(tp, 32300U); } if (tmp___4 == 96U) { { (*(tp->write32))(tp, 32300U, 32U); } } else { } } else { } } else { } if (tp->pci_chip_rev_id != 16384U) { { (*(tp->write32))(tp, 26628U, 536870912U); val = val | 536870912U; } } else { } } else { } if (tp->pci_chip_rev_id >> 12 == 12U) { { tmp___6 = (*(tp->read32))(tp, 20736U); (*(tp->write32))(tp, 20736U, tmp___6 | 134217728U); tmp___7 = (*(tp->read32))(tp, 26768U); (*(tp->write32))(tp, 26768U, tmp___7 & 4290772991U); } } else { } { tg3_override_clk(tp); tmp___8 = _tg3_flag(71, (unsigned long *)(& tp->tg3_flags)); } if (tmp___8 != 0) { { tmp___9 = _tg3_flag(27, (unsigned long *)(& tp->tg3_flags)); } if (tmp___9 == 0) { val = val | 67108864U; } else { } } else { } { (*(tp->write32))(tp, 26628U, val); tp->write32 = write_op; __const_udelay(515400UL); pci_read_config_dword((struct pci_dev const *)tp->pdev, 4, & val); __const_udelay(515400UL); tmp___11 = _tg3_flag(34, (unsigned long *)(& tp->tg3_flags)); } if (tmp___11 != 0) { { tmp___12 = pci_is_pcie(tp->pdev); } if ((int )tmp___12) { if (tp->pci_chip_rev_id == 16384U) { j = 0; goto ldv_58743; ldv_58742: { __const_udelay(429500UL); j = j + 1; } ldv_58743: ; if (j <= 4999) { goto ldv_58742; } else { } { pci_read_config_dword((struct pci_dev const *)tp->pdev, 196, & cfg_val); pci_write_config_dword((struct pci_dev const *)tp->pdev, 196, cfg_val | 32768U); } } else { } { val16 = 2064U; tmp___10 = _tg3_flag(27, (unsigned long *)(& tp->tg3_flags)); } if (tmp___10 == 0) { val16 = (u16 )((unsigned int )val16 | 224U); } else { } { pcie_capability_clear_word(tp->pdev, 8, (int )val16); pcie_capability_write_word(tp->pdev, 10, 15); } } else { } } else { } { tg3_restore_pci_state(tp); _tg3_flag_clear(31, (unsigned long *)(& tp->tg3_flags)); _tg3_flag_clear(3, (unsigned long *)(& tp->tg3_flags)); val = 0U; tmp___13 = _tg3_flag(74, (unsigned long *)(& tp->tg3_flags)); } if (tmp___13 != 0) { { val = (*(tp->read32))(tp, 16384U); } } else { } { (*(tp->write32))(tp, 16384U, val | 2U); } if (tp->pci_chip_rev_id == 16387U) { { tg3_stop_fw(tp); (*(tp->write32))(tp, 20480U, 1024U); } } else { } { tmp___14 = _tg3_flag(79, (unsigned long *)(& tp->tg3_flags)); } if (tmp___14 != 0) { { tg3_stop_fw(tp); tg3_halt_cpu(tp, 20480U); } } else { } { err = tg3_poll_fw(tp); } if (err != 0) { return (err); } else { } { (*(tp->write32))(tp, 26624U, tp->grc_mode); } if (tp->pci_chip_rev_id == 12288U) { { val = (*(tp->read32))(tp, 196U); (*(tp->write32))(tp, 196U, val | 32768U); } } else { } if ((tp->nic_sram_data_cfg & 4096U) != 0U && tp->pci_chip_rev_id >> 12 == 3U) { tp->pci_clock_ctrl = tp->pci_clock_ctrl | 4194304U; if (tp->pci_chip_rev_id == 12288U) { tp->pci_clock_ctrl = tp->pci_clock_ctrl | 2097152U; } else { } { (*(tp->write32))(tp, 116U, tp->pci_clock_ctrl); } } else { } if ((tp->phy_flags & 16U) != 0U) { tp->mac_mode = 12U; val = tp->mac_mode; } else if ((tp->phy_flags & 32U) != 0U) { tp->mac_mode = 8U; val = tp->mac_mode; } else { val = 0U; } { _tw32_flush(tp, 1024U, val, 0U); __const_udelay(171800UL); tg3_ape_unlock(tp, 1); tg3_mdio_start(tp); tmp___15 = _tg3_flag(34, (unsigned long *)(& tp->tg3_flags)); } if ((tmp___15 != 0 && tp->pci_chip_rev_id != 16384U) && tp->pci_chip_rev_id >> 12 != 22405U) { { tmp___16 = _tg3_flag(76, (unsigned long *)(& tp->tg3_flags)); } if (tmp___16 == 0) { { val = (*(tp->read32))(tp, 31744U); (*(tp->write32))(tp, 31744U, val | 33554432U); } } else { } } else { } { tg3_restore_clk(tp); _tg3_flag_clear(4, (unsigned long *)(& tp->tg3_flags)); tp->phy_flags = tp->phy_flags & 4293394431U; _tg3_flag_clear(35, (unsigned long *)(& tp->tg3_flags)); tg3_read_mem(tp, 2900U, & val); } if (val == 1264940628U) { { tg3_read_mem(tp, 2904U, & nic_cfg); } if ((nic_cfg & 128U) != 0U) { { _tg3_flag_set(4, (unsigned long *)(& tp->tg3_flags)); tp->__annonCompField112.last_event_jiffies = jiffies; tmp___17 = _tg3_flag(73, (unsigned long *)(& tp->tg3_flags)); } if (tmp___17 != 0) { { _tg3_flag_set(35, (unsigned long *)(& tp->tg3_flags)); } } else { } { tg3_read_mem(tp, 3388U, & nic_cfg); } if ((nic_cfg & 8388608U) != 0U) { tp->phy_flags = tp->phy_flags | 524288U; } else { } if ((nic_cfg & 4194304U) != 0U) { tp->phy_flags = tp->phy_flags | 1048576U; } else { } } else { } } else { } return (0); } } static void tg3_get_nstats(struct tg3 *tp , struct rtnl_link_stats64 *stats ) ; static void tg3_get_estats(struct tg3 *tp , struct tg3_ethtool_stats *estats ) ; static void __tg3_set_rx_mode(struct net_device *dev ) ; static int tg3_halt(struct tg3 *tp , int kind , bool silent ) { int err ; { { tg3_stop_fw(tp); tg3_write_sig_pre_reset(tp, kind); tg3_abort_hw(tp, (int )silent); err = tg3_chip_reset(tp); __tg3_set_mac_addr(tp, 0); tg3_write_sig_legacy(tp, kind); tg3_write_sig_post_reset(tp, kind); } if ((unsigned long )tp->hw_stats != (unsigned long )((struct tg3_hw_stats *)0)) { { tg3_get_nstats(tp, & tp->net_stats_prev); tg3_get_estats(tp, & tp->estats_prev); __memset((void *)tp->hw_stats, 0, 2048UL); } } else { } return (err); } } static int tg3_set_mac_addr(struct net_device *dev , void *p ) { struct tg3 *tp ; void *tmp ; struct sockaddr *addr ; int err ; bool skip_mac_1 ; bool tmp___0 ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; u32 addr0_high ; u32 addr0_low ; u32 addr1_high ; u32 addr1_low ; int tmp___4 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; addr = (struct sockaddr *)p; err = 0; skip_mac_1 = 0; tmp___0 = is_valid_ether_addr((u8 const *)(& addr->sa_data)); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (-99); } else { } { __memcpy((void *)dev->dev_addr, (void const *)(& addr->sa_data), (size_t )dev->addr_len); tmp___2 = netif_running((struct net_device const *)dev); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { return (0); } else { } { tmp___4 = _tg3_flag(4, (unsigned long *)(& tp->tg3_flags)); } if (tmp___4 != 0) { { addr0_high = (*(tp->read32))(tp, 1040U); addr0_low = (*(tp->read32))(tp, 1044U); addr1_high = (*(tp->read32))(tp, 1048U); addr1_low = (*(tp->read32))(tp, 1052U); } if ((addr0_high != addr1_high || addr0_low != addr1_low) && (addr1_high | addr1_low) != 0U) { skip_mac_1 = 1; } else { } } else { } { ldv_spin_lock_bh_139(& tp->lock); __tg3_set_mac_addr(tp, (int )skip_mac_1); __tg3_set_rx_mode(dev); ldv_spin_unlock_bh_140(& tp->lock); } return (err); } } static void tg3_set_bdinfo(struct tg3 *tp , u32 bdinfo_addr , dma_addr_t mapping , u32 maxlen_flags , u32 nic_addr ) { int tmp ; { { tg3_write_mem(tp, bdinfo_addr, (u32 )(mapping >> 32)); tg3_write_mem(tp, bdinfo_addr + 4U, (u32 )mapping); tg3_write_mem(tp, bdinfo_addr + 8U, maxlen_flags); tmp = _tg3_flag(71, (unsigned long *)(& tp->tg3_flags)); } if (tmp == 0) { { tg3_write_mem(tp, bdinfo_addr + 12U, nic_addr); } } else { } return; } } static void tg3_coal_tx_init(struct tg3 *tp , struct ethtool_coalesce *ec ) { int i ; u32 reg ; int tmp ; { { i = 0; tmp = _tg3_flag(61, (unsigned long *)(& tp->tg3_flags)); } if (tmp == 0) { { (*(tp->write32))(tp, 15372U, ec->tx_coalesce_usecs); (*(tp->write32))(tp, 15380U, ec->tx_max_coalesced_frames); (*(tp->write32))(tp, 15396U, ec->tx_max_coalesced_frames_irq); } } else { { (*(tp->write32))(tp, 15372U, 0U); (*(tp->write32))(tp, 15380U, 0U); (*(tp->write32))(tp, 15396U, 0U); } goto ldv_58786; ldv_58785: { reg = (u32 )(i * 24 + 15748); (*(tp->write32))(tp, reg, ec->tx_coalesce_usecs); reg = (u32 )(i * 24 + 15756); (*(tp->write32))(tp, reg, ec->tx_max_coalesced_frames); reg = (u32 )(i * 24 + 15764); (*(tp->write32))(tp, reg, ec->tx_max_coalesced_frames_irq); i = i + 1; } ldv_58786: ; if ((u32 )i < tp->txq_cnt) { goto ldv_58785; } else { } } goto ldv_58789; ldv_58788: { (*(tp->write32))(tp, (u32 )(i * 24 + 15748), 0U); (*(tp->write32))(tp, (u32 )(i * 24 + 15756), 0U); (*(tp->write32))(tp, (u32 )(i * 24 + 15764), 0U); i = i + 1; } ldv_58789: ; if ((unsigned int )i < tp->irq_max - 1U) { goto ldv_58788; } else { } return; } } static void tg3_coal_rx_init(struct tg3 *tp , struct ethtool_coalesce *ec ) { int i ; u32 limit ; int tmp ; u32 reg ; { { i = 0; limit = tp->rxq_cnt; tmp = _tg3_flag(60, (unsigned long *)(& tp->tg3_flags)); } if (tmp == 0) { { (*(tp->write32))(tp, 15368U, ec->rx_coalesce_usecs); (*(tp->write32))(tp, 15376U, ec->rx_max_coalesced_frames); (*(tp->write32))(tp, 15392U, ec->rx_max_coalesced_frames_irq); limit = limit - 1U; } } else { { (*(tp->write32))(tp, 15368U, 0U); (*(tp->write32))(tp, 15376U, 0U); (*(tp->write32))(tp, 15392U, 0U); } } goto ldv_58799; ldv_58798: { reg = (u32 )(i * 24 + 15744); (*(tp->write32))(tp, reg, ec->rx_coalesce_usecs); reg = (u32 )(i * 24 + 15752); (*(tp->write32))(tp, reg, ec->rx_max_coalesced_frames); reg = (u32 )(i * 24 + 15760); (*(tp->write32))(tp, reg, ec->rx_max_coalesced_frames_irq); i = i + 1; } ldv_58799: ; if ((u32 )i < limit) { goto ldv_58798; } else { } goto ldv_58802; ldv_58801: { (*(tp->write32))(tp, (u32 )(i * 24 + 15744), 0U); (*(tp->write32))(tp, (u32 )(i * 24 + 15752), 0U); (*(tp->write32))(tp, (u32 )(i * 24 + 15760), 0U); i = i + 1; } ldv_58802: ; if ((unsigned int )i < tp->irq_max - 1U) { goto ldv_58801; } else { } return; } } static void __tg3_set_coalesce(struct tg3 *tp , struct ethtool_coalesce *ec ) { u32 val ; int tmp ; { { tg3_coal_tx_init(tp, ec); tg3_coal_rx_init(tp, ec); tmp = _tg3_flag(71, (unsigned long *)(& tp->tg3_flags)); } if (tmp == 0) { { val = ec->stats_block_coalesce_usecs; (*(tp->write32))(tp, 15384U, ec->rx_coalesce_usecs_irq); (*(tp->write32))(tp, 15388U, ec->tx_coalesce_usecs_irq); } if (! tp->link_up) { val = 0U; } else { } { (*(tp->write32))(tp, 15400U, val); } } else { } return; } } static void tg3_tx_rcbs_disable(struct tg3 *tp ) { u32 txrcb ; u32 limit ; int tmp ; int tmp___0 ; int tmp___1 ; { { tmp___1 = _tg3_flag(71, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 == 0) { limit = 512U; } else { { tmp___0 = _tg3_flag(78, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0) { limit = 320U; } else { { tmp = _tg3_flag(77, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0 || tp->pci_chip_rev_id >> 12 == 22370U) { limit = 288U; } else { limit = 272U; } } } txrcb = 272U; goto ldv_58815; ldv_58814: { tg3_write_mem(tp, txrcb + 8U, 2U); txrcb = txrcb + 16U; } ldv_58815: ; if (txrcb < limit) { goto ldv_58814; } else { } return; } } static void tg3_tx_rcbs_init(struct tg3 *tp ) { int i ; u32 txrcb ; int tmp ; struct tg3_napi *tnapi ; { { i = 0; txrcb = 256U; tmp = _tg3_flag(61, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { i = i + 1; } else { } goto ldv_58825; ldv_58824: tnapi = (struct tg3_napi *)(& tp->napi) + (unsigned long )i; if ((unsigned long )tnapi->tx_ring == (unsigned long )((struct tg3_tx_buffer_desc *)0)) { goto ldv_58823; } else { } { tg3_set_bdinfo(tp, txrcb, tnapi->tx_desc_mapping, 33554432U, 16384U); } ldv_58823: i = i + 1; txrcb = txrcb + 16U; ldv_58825: ; if ((unsigned int )i < tp->irq_max) { goto ldv_58824; } else { } return; } } static void tg3_rx_ret_rcbs_disable(struct tg3 *tp ) { u32 rxrcb ; u32 limit ; int tmp ; int tmp___0 ; int tmp___1 ; { { tmp___1 = _tg3_flag(78, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 != 0) { limit = 784U; } else { { tmp___0 = _tg3_flag(71, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 == 0) { limit = 768U; } else if (tp->pci_chip_rev_id >> 12 == 10U || tp->pci_chip_rev_id >> 12 == 22370U) { limit = 576U; } else { { tmp = _tg3_flag(77, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { limit = 576U; } else { limit = 528U; } } } rxrcb = 528U; goto ldv_58833; ldv_58832: { tg3_write_mem(tp, rxrcb + 8U, 2U); rxrcb = rxrcb + 16U; } ldv_58833: ; if (rxrcb < limit) { goto ldv_58832; } else { } return; } } static void tg3_rx_ret_rcbs_init(struct tg3 *tp ) { int i ; u32 rxrcb ; int tmp ; struct tg3_napi *tnapi ; { { i = 0; rxrcb = 512U; tmp = _tg3_flag(60, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { i = i + 1; } else { } goto ldv_58843; ldv_58842: tnapi = (struct tg3_napi *)(& tp->napi) + (unsigned long )i; if ((unsigned long )tnapi->rx_rcb == (unsigned long )((struct tg3_rx_buffer_desc *)0)) { goto ldv_58841; } else { } { tg3_set_bdinfo(tp, rxrcb, tnapi->rx_rcb_mapping, (tp->rx_ret_ring_mask + 1U) << 16, 0U); } ldv_58841: i = i + 1; rxrcb = rxrcb + 16U; ldv_58843: ; if ((unsigned int )i < tp->irq_max) { goto ldv_58842; } else { } return; } } static void tg3_rings_reset(struct tg3 *tp ) { int i ; u32 stblk ; struct tg3_napi *tnapi ; int tmp ; int tmp___0 ; int tmp___1 ; u32 mbox ; int tmp___2 ; u64 mapping ; { { tnapi = (struct tg3_napi *)(& tp->napi); tg3_tx_rcbs_disable(tp); tg3_rx_ret_rcbs_disable(tp); tw32_mailbox_flush(tp, tp->napi[0].int_mbox, 1U); tp->napi[0].chk_msi_cnt = 0U; tp->napi[0].last_rx_cons = 0U; tp->napi[0].last_tx_cons = 0U; tmp___1 = _tg3_flag(16, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 != 0) { i = 1; goto ldv_58852; ldv_58851: { tp->napi[i].tx_prod = 0U; tp->napi[i].tx_cons = 0U; tmp = _tg3_flag(61, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { { (*(tp->write32_mbox))(tp, tp->napi[i].prodmbox, 0U); } } else { } { (*(tp->write32_rx_mbox))(tp, tp->napi[i].consmbox, 0U); tw32_mailbox_flush(tp, tp->napi[i].int_mbox, 1U); tp->napi[i].chk_msi_cnt = 0U; tp->napi[i].last_rx_cons = 0U; tp->napi[i].last_tx_cons = 0U; i = i + 1; } ldv_58852: ; if ((unsigned int )i < tp->irq_max) { goto ldv_58851; } else { } { tmp___0 = _tg3_flag(61, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 == 0) { { (*(tp->write32_mbox))(tp, tp->napi[0].prodmbox, 0U); } } else { } } else { { tp->napi[0].tx_prod = 0U; tp->napi[0].tx_cons = 0U; (*(tp->write32_mbox))(tp, tp->napi[0].prodmbox, 0U); (*(tp->write32_rx_mbox))(tp, tp->napi[0].consmbox, 0U); } } { tmp___2 = _tg3_flag(71, (unsigned long *)(& tp->tg3_flags)); } if (tmp___2 == 0) { mbox = 900U; i = 0; goto ldv_58856; ldv_58855: { (*(tp->write32_tx_mbox))(tp, mbox + (u32 )(i * 8), 0U); i = i + 1; } ldv_58856: ; if (i <= 15) { goto ldv_58855; } else { } } else { } { __memset((void *)tnapi->hw_status, 0, 80UL); (*(tp->write32))(tp, 15416U, (u32 )(tnapi->status_mapping >> 32)); (*(tp->write32))(tp, 15420U, (u32 )tnapi->status_mapping); stblk = 15616U; i = 1; tnapi = tnapi + 1; } goto ldv_58860; ldv_58859: { mapping = tnapi->status_mapping; (*(tp->write32))(tp, stblk, (u32 )(mapping >> 32)); (*(tp->write32))(tp, stblk + 4U, (u32 )mapping); stblk = stblk + 8U; __memset((void *)tnapi->hw_status, 0, 80UL); i = i + 1; tnapi = tnapi + 1; } ldv_58860: ; if ((unsigned int )i < tp->irq_cnt) { goto ldv_58859; } else { } { tg3_tx_rcbs_init(tp); tg3_rx_ret_rcbs_init(tp); } return; } } static void tg3_setup_rxbd_thresholds(struct tg3 *tp ) { u32 val ; u32 bdcache_maxcnt ; u32 host_rep_thresh ; u32 nic_rep_thresh ; int tmp ; int tmp___0 ; int tmp___1 ; u32 _min1 ; u32 _min2 ; u32 __max1 ; u32 __max2 ; u32 _min1___0 ; u32 _min2___0 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; u32 __max1___0 ; u32 __max2___0 ; u32 _min1___1 ; u32 _min2___1 ; int tmp___5 ; { { tmp = _tg3_flag(73, (unsigned long *)(& tp->tg3_flags)); } if (tmp == 0) { bdcache_maxcnt = 128U; } else { { tmp___0 = _tg3_flag(74, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0) { bdcache_maxcnt = 128U; } else if (tp->pci_chip_rev_id >> 12 == 4U) { bdcache_maxcnt = 128U; } else if (tp->pci_chip_rev_id >> 12 == 6U) { bdcache_maxcnt = 128U; } else { { tmp___1 = _tg3_flag(76, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 != 0) { bdcache_maxcnt = 128U; } else if ((tp->pci_chip_rev_id >> 12) - 10U <= 1U) { bdcache_maxcnt = 64U; } else { bdcache_maxcnt = 32U; } } } { _min1 = bdcache_maxcnt / 2U; _min2 = tp->rx_std_max_post; nic_rep_thresh = _min1 < _min2 ? _min1 : _min2; __max1 = tp->rx_pending / 8U; __max2 = 1U; host_rep_thresh = __max1 > __max2 ? __max1 : __max2; _min1___0 = nic_rep_thresh; _min2___0 = host_rep_thresh; val = _min1___0 < _min2___0 ? _min1___0 : _min2___0; (*(tp->write32))(tp, 11288U, val); tmp___2 = _tg3_flag(76, (unsigned long *)(& tp->tg3_flags)); } if (tmp___2 != 0) { { (*(tp->write32))(tp, 11520U, bdcache_maxcnt); } } else { } { tmp___3 = _tg3_flag(30, (unsigned long *)(& tp->tg3_flags)); } if (tmp___3 == 0) { return; } else { { tmp___4 = _tg3_flag(74, (unsigned long *)(& tp->tg3_flags)); } if (tmp___4 != 0) { return; } else { } } { bdcache_maxcnt = 64U; __max1___0 = tp->rx_jumbo_pending / 8U; __max2___0 = 1U; host_rep_thresh = __max1___0 > __max2___0 ? __max1___0 : __max2___0; _min1___1 = bdcache_maxcnt / 2U; _min2___1 = host_rep_thresh; val = _min1___1 < _min2___1 ? _min1___1 : _min2___1; (*(tp->write32))(tp, 11292U, val); tmp___5 = _tg3_flag(76, (unsigned long *)(& tp->tg3_flags)); } if (tmp___5 != 0) { { (*(tp->write32))(tp, 11524U, bdcache_maxcnt); } } else { } return; } } __inline static u32 calc_crc(unsigned char *buf , int len ) { u32 reg ; u32 tmp ; int j ; int k ; { reg = 4294967295U; j = 0; goto ldv_58896; ldv_58895: reg = reg ^ (u32 )*(buf + (unsigned long )j); k = 0; goto ldv_58893; ldv_58892: tmp = reg & 1U; reg = reg >> 1; if (tmp != 0U) { reg = reg ^ 3988292384U; } else { } k = k + 1; ldv_58893: ; if (k <= 7) { goto ldv_58892; } else { } j = j + 1; ldv_58896: ; if (j < len) { goto ldv_58895; } else { } return (~ reg); } } static void tg3_set_multi(struct tg3 *tp , unsigned int accept_all ) { { { (*(tp->write32))(tp, 1136U, accept_all != 0U ? 4294967295U : 0U); (*(tp->write32))(tp, 1140U, accept_all != 0U ? 4294967295U : 0U); (*(tp->write32))(tp, 1144U, accept_all != 0U ? 4294967295U : 0U); (*(tp->write32))(tp, 1148U, accept_all != 0U ? 4294967295U : 0U); } return; } } static void __tg3_set_rx_mode(struct net_device *dev ) { struct tg3 *tp ; void *tmp ; u32 rx_mode ; struct netdev_hw_addr *ha ; u32 mc_filter[4U] ; unsigned int tmp___0 ; u32 regidx ; u32 bit ; u32 crc ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; int i ; struct netdev_hw_addr *ha___0 ; struct list_head const *__mptr___1 ; int tmp___1 ; struct list_head const *__mptr___2 ; int tmp___2 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; rx_mode = tp->rx_mode & 4294966015U; } if ((dev->flags & 256U) != 0U) { rx_mode = rx_mode | 256U; } else if ((dev->flags & 512U) != 0U) { { tg3_set_multi(tp, 1U); } } else if (dev->mc.count == 0) { { tg3_set_multi(tp, 0U); } } else { mc_filter[0] = 0U; tmp___0 = 1U; { while (1) { while_continue: /* CIL Label */ ; if (tmp___0 >= 4U) { goto while_break; } else { } mc_filter[tmp___0] = 0U; tmp___0 = tmp___0 + 1U; } while_break: /* CIL Label */ ; } __mptr = (struct list_head const *)dev->mc.list.next; ha = (struct netdev_hw_addr *)__mptr; goto ldv_58917; ldv_58916: { crc = calc_crc((unsigned char *)(& ha->addr), 6); bit = ~ crc & 127U; regidx = (bit & 96U) >> 5; bit = bit & 31U; mc_filter[regidx] = mc_filter[regidx] | (u32 )(1 << (int )bit); __mptr___0 = (struct list_head const *)ha->list.next; ha = (struct netdev_hw_addr *)__mptr___0; } ldv_58917: ; if ((unsigned long )(& ha->list) != (unsigned long )(& dev->mc.list)) { goto ldv_58916; } else { } { (*(tp->write32))(tp, 1136U, mc_filter[0]); (*(tp->write32))(tp, 1140U, mc_filter[1]); (*(tp->write32))(tp, 1144U, mc_filter[2]); (*(tp->write32))(tp, 1148U, mc_filter[3]); } } { tmp___2 = _tg3_flag(4, (unsigned long *)(& tp->tg3_flags)); } if (dev->uc.count > (tmp___2 != 0 ? 2 : 3)) { rx_mode = rx_mode | 256U; } else if ((dev->flags & 256U) == 0U) { i = 0; __mptr___1 = (struct list_head const *)dev->uc.list.next; ha___0 = (struct netdev_hw_addr *)__mptr___1; goto ldv_58926; ldv_58925: { tmp___1 = _tg3_flag(4, (unsigned long *)(& tp->tg3_flags)); __tg3_set_one_mac_addr(tp, (u8 *)(& ha___0->addr), i + (tmp___1 != 0 ? 2 : 1)); i = i + 1; __mptr___2 = (struct list_head const *)ha___0->list.next; ha___0 = (struct netdev_hw_addr *)__mptr___2; } ldv_58926: ; if ((unsigned long )(& ha___0->list) != (unsigned long )(& dev->uc.list)) { goto ldv_58925; } else { } } else { } if (rx_mode != tp->rx_mode) { { tp->rx_mode = rx_mode; _tw32_flush(tp, 1128U, rx_mode, 0U); __const_udelay(42950UL); } } else { } return; } } static void tg3_rss_init_dflt_indir_tbl(struct tg3 *tp , u32 qcnt ) { int i ; u32 tmp ; { i = 0; goto ldv_58934; ldv_58933: { tmp = ethtool_rxfh_indir_default((u32 )i, qcnt); tp->rss_ind_tbl[i] = (u8 )tmp; i = i + 1; } ldv_58934: ; if (i <= 127) { goto ldv_58933; } else { } return; } } static void tg3_rss_check_indir_tbl(struct tg3 *tp ) { int i ; int tmp ; { { tmp = _tg3_flag(16, (unsigned long *)(& tp->tg3_flags)); } if (tmp == 0) { return; } else { } if (tp->rxq_cnt == 1U) { { __memset((void *)(& tp->rss_ind_tbl), 0, 128UL); } return; } else { } i = 0; goto ldv_58942; ldv_58941: ; if ((u32 )tp->rss_ind_tbl[i] >= tp->rxq_cnt) { goto ldv_58940; } else { } i = i + 1; ldv_58942: ; if (i <= 127) { goto ldv_58941; } else { } ldv_58940: ; if (i != 128) { { tg3_rss_init_dflt_indir_tbl(tp, tp->rxq_cnt); } } else { } return; } } static void tg3_rss_write_indir_tbl(struct tg3 *tp ) { int i ; u32 reg ; u32 val ; { i = 0; reg = 1584U; goto ldv_58953; ldv_58952: val = (u32 )tp->rss_ind_tbl[i]; i = i + 1; goto ldv_58950; ldv_58949: val = val << 4; val = val | (u32 )tp->rss_ind_tbl[i]; i = i + 1; ldv_58950: ; if (((unsigned int )i & 7U) != 0U) { goto ldv_58949; } else { } { (*(tp->write32))(tp, reg, val); reg = reg + 4U; } ldv_58953: ; if (i <= 127) { goto ldv_58952; } else { } return; } } __inline static u32 tg3_lso_rd_dma_workaround_bit(struct tg3 *tp ) { { if (tp->pci_chip_rev_id >> 12 == 22297U) { return (33554432U); } else { return (2097152U); } } } static int tg3_reset_hw(struct tg3 *tp , bool reset_phy ) { u32 val ; u32 rdmac_mode ; int i ; int err ; int limit ; struct tg3_rx_prodring_set *tpr ; int tmp ; u32 tmp___0 ; u32 tmp___1 ; u32 tmp___2 ; u32 grc_mode ; u32 tmp___3 ; int tmp___4 ; u32 grc_mode___0 ; u32 tmp___5 ; u32 grc_mode___1 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; u32 tmp___11 ; int tmp___12 ; int tmp___13 ; int tmp___14 ; int fw_len ; int tmp___15 ; int tmp___16 ; u32 tmp___17 ; u32 tmp___18 ; int tmp___19 ; int tmp___20 ; int tmp___21 ; int tmp___22 ; int tmp___23 ; int tmp___24 ; int tmp___25 ; int tmp___26 ; int tmp___27 ; int tmp___28 ; int tmp___29 ; u32 tmp___30 ; u32 tmp___31 ; int tmp___32 ; int tmp___33 ; int tmp___34 ; int tmp___35 ; int tmp___36 ; int tmp___37 ; int tmp___38 ; u32 tmp___39 ; u32 tgtreg ; int tmp___40 ; u32 tgtreg___0 ; int tmp___41 ; int tmp___42 ; u32 tmp___43 ; int tmp___44 ; int tmp___45 ; int tmp___46 ; int tmp___47 ; u32 gpio_mask ; u32 tmp___48 ; int tmp___49 ; int tmp___50 ; int tmp___51 ; int tmp___52 ; int tmp___53 ; u32 tmp___54 ; int tmp___55 ; int tmp___56 ; int tmp___57 ; u16 pcix_cmd ; int tmp___58 ; u32 tmp___59 ; int tmp___60 ; u32 tmp___61 ; int tmp___62 ; int tmp___63 ; int tmp___64 ; int tmp___65 ; int tmp___66 ; int tmp___67 ; int tmp___68 ; int tmp___69 ; u32 tmp___70 ; u32 rss_key[10U] ; int tmp___71 ; int tmp___72 ; int tmp___73 ; int tmp___74 ; u32 tmp___75 ; u32 tmp___76 ; int tmp___77 ; int tmp___78 ; int tmp___79 ; int tmp___80 ; int tmp___81 ; int tmp___82 ; { { tpr = & tp->napi[0].prodring; tg3_disable_ints(tp); tg3_stop_fw(tp); tg3_write_sig_pre_reset(tp, 1); tmp = _tg3_flag(32, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { { tg3_abort_hw(tp, 1); } } else { } if (*((unsigned int *)tp + 1135UL) == 1048576U) { { tg3_phy_pull_config(tp); tg3_eee_pull_config(tp, (struct ethtool_eee *)0); tp->phy_flags = tp->phy_flags | 8U; } } else { } if ((tp->phy_flags & 262144U) != 0U) { { tg3_setup_eee(tp); } } else { } if ((int )reset_phy) { { tg3_phy_reset(tp); } } else { } { err = tg3_chip_reset(tp); } if (err != 0) { return (err); } else { } { tg3_write_sig_legacy(tp, 1); } if (tp->pci_chip_rev_id >> 8 == 358464U) { { val = (*(tp->read32))(tp, 13824U); val = val & 4294965759U; (*(tp->write32))(tp, 13824U, val); val = (*(tp->read32))(tp, 13828U); val = val & 4292935679U; val = val | 1245184U; (*(tp->write32))(tp, 13828U, val); val = (*(tp->read32))(tp, 13840U); val = val & 4292935679U; val = val | 1245184U; (*(tp->write32))(tp, 13840U, val); val = (*(tp->read32))(tp, 13852U); val = val & 4292935679U; val = val | 1245184U; (*(tp->write32))(tp, 13852U, val); } } else { } if (tp->pci_chip_rev_id >> 12 == 358272U) { { tmp___0 = (*(tp->read32))(tp, 32040U); val = tmp___0 & 4294902015U; val = val | 16842496U; (*(tp->write32))(tp, 32040U, val); tmp___1 = (*(tp->read32))(tp, 32368U); val = tmp___1 & 4294967264U; (*(tp->write32))(tp, 32368U, val | 12U); (*(tp->write32))(tp, 272U, 4294967295U); tmp___2 = (*(tp->read32))(tp, 32084U); val = tmp___2 & 4294967287U; (*(tp->write32))(tp, 32084U, val | 128U); } } else { } { tmp___4 = _tg3_flag(64, (unsigned long *)(& tp->tg3_flags)); } if (tmp___4 != 0) { { tmp___3 = (*(tp->read32))(tp, 26624U); grc_mode = tmp___3; val = grc_mode & 1606418431U; (*(tp->write32))(tp, 26624U, val | 4194304U); val = (*(tp->read32))(tp, 31748U); (*(tp->write32))(tp, 31748U, val | 4096U); (*(tp->write32))(tp, 26624U, grc_mode); } } else { } { tmp___6 = _tg3_flag(77, (unsigned long *)(& tp->tg3_flags)); } if (tmp___6 != 0) { if (tp->pci_chip_rev_id == 1467502592U) { { tmp___5 = (*(tp->read32))(tp, 26624U); grc_mode___0 = tmp___5; val = grc_mode___0 & 1606418431U; (*(tp->write32))(tp, 26624U, val | 4194304U); val = (*(tp->read32))(tp, 31764U); (*(tp->write32))(tp, 31764U, val | 2147483648U); (*(tp->write32))(tp, 26624U, grc_mode___0); } } else { } if (tp->pci_chip_rev_id >> 8 != 5731920U) { { val = (*(tp->read32))(tp, 13928U); val = val | 262144U; (*(tp->write32))(tp, 13928U, val); grc_mode___1 = (*(tp->read32))(tp, 26624U); val = grc_mode___1 & 1606418431U; (*(tp->write32))(tp, 26624U, val | 536870912U); val = (*(tp->read32))(tp, 31756U); val = val & 4294967040U; (*(tp->write32))(tp, 31756U, val | 44U); (*(tp->write32))(tp, 26624U, grc_mode___1); } } else { } { val = (*(tp->read32))(tp, 13828U); val = val & 4292935679U; val = val | 1245184U; (*(tp->write32))(tp, 13828U, val); } } else { } { tmp___8 = _tg3_flag(27, (unsigned long *)(& tp->tg3_flags)); } if (tmp___8 == 0) { { tmp___7 = _tg3_flag(34, (unsigned long *)(& tp->tg3_flags)); } if (tmp___7 == 0) { tp->pci_clock_ctrl = tp->pci_clock_ctrl | 2147483648U; } else { } { _tw32_flush(tp, 116U, tp->pci_clock_ctrl, 0U); } } else { } if (tp->pci_chip_rev_id == 8192U) { { tmp___9 = _tg3_flag(19, (unsigned long *)(& tp->tg3_flags)); } if (tmp___9 != 0) { { val = (*(tp->read32))(tp, 112U); val = val | 8192U; (*(tp->write32))(tp, 112U, val); } } else { } } else { } { tmp___10 = _tg3_flag(49, (unsigned long *)(& tp->tg3_flags)); } if (tmp___10 != 0) { { val = (*(tp->read32))(tp, 112U); val = val | 458752U; (*(tp->write32))(tp, 112U, val); } } else { } if (tp->pci_chip_rev_id >> 8 == 33U) { { val = (*(tp->read32))(tp, 100U); val = val | 872415232U; (*(tp->write32))(tp, 100U, val); } } else { } { err = tg3_init_rings(tp); } if (err != 0) { return (err); } else { } { tmp___13 = _tg3_flag(76, (unsigned long *)(& tp->tg3_flags)); } if (tmp___13 != 0) { { tmp___11 = (*(tp->read32))(tp, 108U); val = tmp___11 & 4294967294U; } if (tp->pci_chip_rev_id == 1467502592U) { val = val & 4294966399U; } else { } { tmp___12 = _tg3_flag(77, (unsigned long *)(& tp->tg3_flags)); } if ((tmp___12 == 0 && tp->pci_chip_rev_id >> 12 != 22295U) && tp->pci_chip_rev_id >> 12 != 22370U) { val = val | 128U; } else { } { (*(tp->write32))(tp, 108U, val | tp->dma_rwctrl); } } else if (tp->pci_chip_rev_id >> 12 != 22404U && tp->pci_chip_rev_id >> 12 != 22369U) { { (*(tp->write32))(tp, 108U, tp->dma_rwctrl); } } else { } tp->grc_mode = tp->grc_mode & 3748528127U; tp->grc_mode = tp->grc_mode | 131072U; tp->grc_mode = tp->grc_mode | 1048576U; val = 67174400U; if (tp->rxptpctl != 0U) { { (*(tp->write32))(tp, 1736U, tp->rxptpctl | 67108864U); } } else { } { tmp___14 = _tg3_flag(70, (unsigned long *)(& tp->tg3_flags)); } if (tmp___14 != 0) { val = val | 524288U; } else { } { (*(tp->write32))(tp, 26624U, tp->grc_mode | val); val = (*(tp->read32))(tp, 26628U); val = val & 4294967040U; val = val | 130U; (*(tp->write32))(tp, 26628U, val); tmp___16 = _tg3_flag(73, (unsigned long *)(& tp->tg3_flags)); } if (tmp___16 != 0) { } else if (tp->pci_chip_rev_id >> 12 != 3U) { { (*(tp->write32))(tp, 17416U, 32768U); } if (tp->pci_chip_rev_id >> 12 == 2U) { { (*(tp->write32))(tp, 17420U, 65536U); } } else { { (*(tp->write32))(tp, 17420U, 98304U); } } { (*(tp->write32))(tp, 17452U, 8192U); (*(tp->write32))(tp, 17456U, 8192U); } } else { { tmp___15 = _tg3_flag(43, (unsigned long *)(& tp->tg3_flags)); } if (tmp___15 != 0) { { fw_len = (int )tp->fw_len; fw_len = (fw_len + 127) & -128; (*(tp->write32))(tp, 17416U, (u32 )(fw_len + 65536)); (*(tp->write32))(tp, 17420U, (u32 )(54784 - fw_len)); } } else { } } if ((tp->dev)->mtu <= 1500U) { { (*(tp->write32))(tp, 17424U, tp->bufmgr_config.mbuf_read_dma_low_water); (*(tp->write32))(tp, 17428U, tp->bufmgr_config.mbuf_mac_rx_low_water); (*(tp->write32))(tp, 17432U, tp->bufmgr_config.mbuf_high_water); } } else { { (*(tp->write32))(tp, 17424U, tp->bufmgr_config.mbuf_read_dma_low_water_jumbo); (*(tp->write32))(tp, 17428U, tp->bufmgr_config.mbuf_mac_rx_low_water_jumbo); (*(tp->write32))(tp, 17432U, tp->bufmgr_config.mbuf_high_water_jumbo); } } { (*(tp->write32))(tp, 17460U, tp->bufmgr_config.dma_low_water); (*(tp->write32))(tp, 17464U, tp->bufmgr_config.dma_high_water); val = 6U; } if (tp->pci_chip_rev_id >> 12 == 22297U) { val = val | 2147483648U; } else { } if (((tp->pci_chip_rev_id >> 12 == 22295U || tp->pci_chip_rev_id >> 12 == 22370U) || tp->pci_chip_rev_id == 91328512U) || tp->pci_chip_rev_id == 91357184U) { val = val | 16U; } else { } { (*(tp->write32))(tp, 17408U, val); i = 0; } goto ldv_58974; ldv_58973: { tmp___17 = (*(tp->read32))(tp, 17408U); } if ((tmp___17 & 2U) != 0U) { goto ldv_58972; } else { } { __const_udelay(42950UL); i = i + 1; } ldv_58974: ; if (i <= 1999) { goto ldv_58973; } else { } ldv_58972: ; if (i > 1999) { { netdev_err((struct net_device const *)tp->dev, "%s cannot enable BUFMGR\n", "tg3_reset_hw"); } return (-19); } else { } if (tp->pci_chip_rev_id == 49153U) { { tmp___18 = (*(tp->read32))(tp, 3104U); (*(tp->write32))(tp, 3104U, (tmp___18 & 4294967292U) | 2U); } } else { } { tg3_setup_rxbd_thresholds(tp); (*(tp->write32))(tp, 9296U, (u32 )(tpr->rx_std_mapping >> 32)); (*(tp->write32))(tp, 9300U, (u32 )tpr->rx_std_mapping); tmp___19 = _tg3_flag(78, (unsigned long *)(& tp->tg3_flags)); } if (tmp___19 == 0) { { (*(tp->write32))(tp, 9308U, 24576U); } } else { } { tmp___20 = _tg3_flag(71, (unsigned long *)(& tp->tg3_flags)); } if (tmp___20 == 0) { { (*(tp->write32))(tp, 9320U, 2U); } } else { } if (tp->pci_chip_rev_id == 91328512U) { goto _L; } else { { tmp___27 = _tg3_flag(30, (unsigned long *)(& tp->tg3_flags)); } if (tmp___27 != 0) { { tmp___28 = _tg3_flag(74, (unsigned long *)(& tp->tg3_flags)); } if (tmp___28 == 0) { _L: /* CIL Label */ { tmp___24 = _tg3_flag(25, (unsigned long *)(& tp->tg3_flags)); } if (tmp___24 != 0) { { (*(tp->write32))(tp, 9280U, (u32 )(tpr->rx_jmb_mapping >> 32)); (*(tp->write32))(tp, 9284U, (u32 )tpr->rx_jmb_mapping); tmp___21 = _tg3_flag(54, (unsigned long *)(& tp->tg3_flags)); val = tmp___21 != 0 ? 67108864U : 16777216U; (*(tp->write32))(tp, 9288U, val | 1U); tmp___22 = _tg3_flag(63, (unsigned long *)(& tp->tg3_flags)); } if (tmp___22 == 0) { { (*(tp->write32))(tp, 9292U, 28672U); } } else { { tmp___23 = _tg3_flag(77, (unsigned long *)(& tp->tg3_flags)); } if (tmp___23 != 0) { { (*(tp->write32))(tp, 9292U, 28672U); } } else if (tp->pci_chip_rev_id >> 12 == 22370U) { { (*(tp->write32))(tp, 9292U, 28672U); } } else { } } } else { { (*(tp->write32))(tp, 9288U, 2U); } } { tmp___26 = _tg3_flag(76, (unsigned long *)(& tp->tg3_flags)); } if (tmp___26 != 0) { { tmp___25 = _tg3_flag(54, (unsigned long *)(& tp->tg3_flags)); val = tmp___25 != 0 ? 2048U : 512U; val = val << 16; val = val | 6144U; } } else { val = 100663296U; } } else { val = 33554432U; } } else { val = 33554432U; } } { (*(tp->write32))(tp, 9304U, val); tpr->rx_std_prod_idx = tp->rx_pending; (*(tp->write32_rx_mbox))(tp, 620U, tpr->rx_std_prod_idx); tmp___29 = _tg3_flag(25, (unsigned long *)(& tp->tg3_flags)); tpr->rx_jmb_prod_idx = tmp___29 != 0 ? tp->rx_jumbo_pending : 0U; (*(tp->write32_rx_mbox))(tp, 628U, tpr->rx_jmb_prod_idx); tg3_rings_reset(tp); __tg3_set_mac_addr(tp, 0); (*(tp->write32))(tp, 1084U, (tp->dev)->mtu + 22U); val = 9760U; } if (tp->pci_chip_rev_id >> 12 == 22304U || tp->pci_chip_rev_id >> 12 == 22370U) { { tmp___30 = (*(tp->read32))(tp, 1124U); val = val | (tmp___30 & 4294901760U); } } else { } { (*(tp->write32))(tp, 1124U, val); (*(tp->write32))(tp, 1280U, 8U); (*(tp->write32))(tp, 8208U, 385U); rdmac_mode = 1022U; } if (tp->pci_chip_rev_id >> 12 == 22295U) { rdmac_mode = rdmac_mode | 16777216U; } else { } if ((tp->pci_chip_rev_id >> 12) - 22404U <= 1U || tp->pci_chip_rev_id >> 12 == 358272U) { rdmac_mode = rdmac_mode | 14336U; } else { } if (tp->pci_chip_rev_id >> 12 == 3U && tp->pci_chip_rev_id != 12288U) { { tmp___33 = _tg3_flag(43, (unsigned long *)(& tp->tg3_flags)); } if (tmp___33 != 0 && tp->pci_chip_rev_id >> 12 == 3U) { rdmac_mode = rdmac_mode | 131072U; } else { { tmp___31 = (*(tp->read32))(tp, 112U); } if ((tmp___31 & 8U) == 0U) { { tmp___32 = _tg3_flag(72, (unsigned long *)(& tp->tg3_flags)); } if (tmp___32 == 0) { rdmac_mode = rdmac_mode | 196608U; } else { } } else { } } } else { } { tmp___34 = _tg3_flag(34, (unsigned long *)(& tp->tg3_flags)); } if (tmp___34 != 0) { rdmac_mode = rdmac_mode | 196608U; } else { } if (tp->pci_chip_rev_id >> 12 == 358246U) { tp->dma_limit = 0U; if ((tp->dev)->mtu <= 1500U) { rdmac_mode = rdmac_mode | 8388608U; tp->dma_limit = 2048U; } else { } } else { } { tmp___35 = _tg3_flag(40, (unsigned long *)(& tp->tg3_flags)); } if (tmp___35 != 0) { rdmac_mode = rdmac_mode | 134217728U; } else { { tmp___36 = _tg3_flag(41, (unsigned long *)(& tp->tg3_flags)); } if (tmp___36 != 0) { rdmac_mode = rdmac_mode | 134217728U; } else { { tmp___37 = _tg3_flag(42, (unsigned long *)(& tp->tg3_flags)); } if (tmp___37 != 0) { rdmac_mode = rdmac_mode | 134217728U; } else { } } } { tmp___38 = _tg3_flag(76, (unsigned long *)(& tp->tg3_flags)); } if ((tmp___38 != 0 || tp->pci_chip_rev_id >> 12 == 22405U) || tp->pci_chip_rev_id >> 12 == 358272U) { rdmac_mode = rdmac_mode | 268435456U; } else { } if (tp->pci_chip_rev_id >> 12 == 22304U || tp->pci_chip_rev_id >> 12 == 22370U) { { tmp___39 = (*(tp->read32))(tp, 18432U); rdmac_mode = rdmac_mode | (tmp___39 & 536870912U); } } else { } if (((tp->pci_chip_rev_id >> 12 == 22369U || tp->pci_chip_rev_id >> 12 == 22404U) || tp->pci_chip_rev_id >> 12 == 22405U) || tp->pci_chip_rev_id >> 12 == 358272U) { goto _L___0; } else { { tmp___40 = _tg3_flag(76, (unsigned long *)(& tp->tg3_flags)); } if (tmp___40 != 0) { _L___0: /* CIL Label */ if (tp->pci_chip_rev_id >> 12 == 22370U) { tgtreg = 18576U; } else { tgtreg = 18688U; } { val = (*(tp->read32))(tp, tgtreg); } if (tp->pci_chip_rev_id == 91328512U || tp->pci_chip_rev_id >> 12 == 22370U) { val = val & 1048591U; val = val | 671878144U; } else { } { (*(tp->write32))(tp, tgtreg, val | 4U); } } else { } } if ((tp->pci_chip_rev_id >> 12 == 22297U || tp->pci_chip_rev_id >> 12 == 22304U) || tp->pci_chip_rev_id >> 12 == 22370U) { if (tp->pci_chip_rev_id >> 12 == 22370U) { tgtreg___0 = 18592U; } else { tgtreg___0 = 18704U; } { val = (*(tp->read32))(tp, tgtreg___0); (*(tp->write32))(tp, tgtreg___0, val | 983040U); } } else { } { tmp___42 = _tg3_flag(73, (unsigned long *)(& tp->tg3_flags)); } if (tmp___42 != 0) { { val = (*(tp->read32))(tp, 8216U); val = val & 4294705151U; (*(tp->write32))(tp, 8216U, val); } } else if ((rdmac_mode & 131072U) != 0U) { { tmp___41 = _tg3_flag(43, (unsigned long *)(& tp->tg3_flags)); } if (tmp___41 != 0) { { val = (*(tp->read32))(tp, 8216U); val = val & 4290772991U; (*(tp->write32))(tp, 8216U, val); } } else { { (*(tp->write32))(tp, 8216U, 16777215U); } } } else { { (*(tp->write32))(tp, 8216U, 16777215U); } } { (*(tp->write32))(tp, 8212U, 1U); (*(tp->write32))(tp, 3084U, 16777215U); (*(tp->write32))(tp, 3080U, 3U); (*(tp->write32))(tp, 15360U, 0U); i = 0; } goto ldv_58980; ldv_58979: { tmp___43 = (*(tp->read32))(tp, 15360U); } if ((tmp___43 & 2U) == 0U) { goto ldv_58978; } else { } { __const_udelay(42950UL); i = i + 1; } ldv_58980: ; if (i <= 1999) { goto ldv_58979; } else { } ldv_58978: { __tg3_set_coalesce(tp, & tp->coal); tmp___44 = _tg3_flag(71, (unsigned long *)(& tp->tg3_flags)); } if (tmp___44 == 0) { { (*(tp->write32))(tp, 15408U, (u32 )(tp->stats_mapping >> 32)); (*(tp->write32))(tp, 15412U, (u32 )tp->stats_mapping); (*(tp->write32))(tp, 15424U, 768U); (*(tp->write32))(tp, 15428U, 2816U); i = 768; } goto ldv_58982; ldv_58981: { tg3_write_mem(tp, (u32 )i, 0U); __const_udelay(171800UL); i = (int )((unsigned int )i + 4U); } ldv_58982: ; if (i <= 2895) { goto ldv_58981; } else { } } else { } { (*(tp->write32))(tp, 15360U, tp->coalesce_mode | 2U); (*(tp->write32))(tp, 12288U, 6U); (*(tp->write32))(tp, 8192U, 2U); tmp___45 = _tg3_flag(71, (unsigned long *)(& tp->tg3_flags)); } if (tmp___45 == 0) { { (*(tp->write32))(tp, 13312U, 6U); } } else { } if ((tp->phy_flags & 32U) != 0U) { { tp->phy_flags = tp->phy_flags & 4294836223U; _tw32_flush(tp, 1128U, 1U, 0U); __const_udelay(42950UL); } } else { } { tp->mac_mode = tp->mac_mode | 14698496U; tmp___46 = _tg3_flag(49, (unsigned long *)(& tp->tg3_flags)); } if (tmp___46 != 0) { tp->mac_mode = tp->mac_mode | 402653184U; } else { } { tmp___47 = _tg3_flag(71, (unsigned long *)(& tp->tg3_flags)); } if ((tmp___47 == 0 && (tp->phy_flags & 16U) == 0U) && tp->pci_chip_rev_id >> 12 != 7U) { tp->mac_mode = tp->mac_mode | 1024U; } else { } { _tw32_flush(tp, 1024U, tp->mac_mode | 36864U, 0U); __const_udelay(171800UL); tmp___50 = _tg3_flag(37, (unsigned long *)(& tp->tg3_flags)); } if (tmp___50 == 0) { gpio_mask = 129024U; if (tp->pci_chip_rev_id >> 12 == 6U) { gpio_mask = gpio_mask | 192U; } else { } if (tp->pci_chip_rev_id >> 12 == 10U) { gpio_mask = gpio_mask | 16U; } else { } { tp->grc_local_ctrl = tp->grc_local_ctrl & ~ gpio_mask; tmp___48 = (*(tp->read32))(tp, 26632U); tp->grc_local_ctrl = tp->grc_local_ctrl | (tmp___48 & gpio_mask); tmp___49 = _tg3_flag(12, (unsigned long *)(& tp->tg3_flags)); } if (tmp___49 != 0) { tp->grc_local_ctrl = tp->grc_local_ctrl | 36864U; } else { } } else { } { _tw32_flush(tp, 26632U, tp->grc_local_ctrl, 0U); __const_udelay(429500UL); tmp___52 = _tg3_flag(18, (unsigned long *)(& tp->tg3_flags)); } if (tmp___52 != 0) { { val = (*(tp->read32))(tp, 24576U); val = val | 2U; } if (tp->irq_cnt > 1U) { val = val | 128U; } else { } { tmp___51 = _tg3_flag(46, (unsigned long *)(& tp->tg3_flags)); } if (tmp___51 == 0) { val = val | 32U; } else { } { (*(tp->write32))(tp, 24576U, val); } } else { } { tmp___53 = _tg3_flag(71, (unsigned long *)(& tp->tg3_flags)); } if (tmp___53 == 0) { { _tw32_flush(tp, 25600U, 2U, 0U); __const_udelay(171800UL); } } else { } val = 1022U; if (tp->pci_chip_rev_id >> 12 == 3U && tp->pci_chip_rev_id != 12288U) { { tmp___56 = _tg3_flag(43, (unsigned long *)(& tp->tg3_flags)); } if (tmp___56 != 0 && tp->pci_chip_rev_id - 12289U <= 1U) { } else { { tmp___54 = (*(tp->read32))(tp, 112U); } if ((tmp___54 & 8U) == 0U) { { tmp___55 = _tg3_flag(72, (unsigned long *)(& tp->tg3_flags)); } if (tmp___55 == 0) { val = val | 1024U; } else { } } else { } } } else { } { tmp___57 = _tg3_flag(75, (unsigned long *)(& tp->tg3_flags)); } if (tmp___57 != 0) { val = val | 536870912U; } else { } if (tp->pci_chip_rev_id >> 12 == 22405U) { val = val | 3221225472U; } else { } { _tw32_flush(tp, 19456U, val, 0U); __const_udelay(171800UL); tmp___58 = _tg3_flag(19, (unsigned long *)(& tp->tg3_flags)); } if (tmp___58 != 0) { { pci_read_config_word((struct pci_dev const *)tp->pdev, tp->pcix_cap + 2, & pcix_cmd); } if (tp->pci_chip_rev_id >> 12 == 1U) { pcix_cmd = (unsigned int )pcix_cmd & 65523U; pcix_cmd = (u16 )((unsigned int )pcix_cmd | 8U); } else if (tp->pci_chip_rev_id >> 12 == 2U) { pcix_cmd = (unsigned int )pcix_cmd & 65411U; pcix_cmd = (u16 )((unsigned int )pcix_cmd | 8U); } else { } { pci_write_config_word((struct pci_dev const *)tp->pdev, tp->pcix_cap + 2, (int )pcix_cmd); } } else { } { _tw32_flush(tp, 18432U, rdmac_mode, 0U); __const_udelay(171800UL); } if (tp->pci_chip_rev_id >> 12 == 22297U || tp->pci_chip_rev_id >> 12 == 22304U) { i = 0; goto ldv_58988; ldv_58987: { tmp___59 = (*(tp->read32))(tp, (u32 )((i << 2) + 19424)); tmp___60 = _tg3_flag(30, (unsigned long *)(& tp->tg3_flags)); } if (tmp___59 > (tmp___60 != 0 ? 9000U : 1500U)) { goto ldv_58986; } else { } i = i + 1; ldv_58988: ; if (i <= 3) { goto ldv_58987; } else { } ldv_58986: ; if (i <= 3) { { val = (*(tp->read32))(tp, 18704U); tmp___61 = tg3_lso_rd_dma_workaround_bit(tp); val = val | tmp___61; (*(tp->write32))(tp, 18704U, val); _tg3_flag_set(68, (unsigned long *)(& tp->tg3_flags)); } } else { } } else { } { (*(tp->write32))(tp, 10240U, 6U); tmp___62 = _tg3_flag(71, (unsigned long *)(& tp->tg3_flags)); } if (tmp___62 == 0) { { (*(tp->write32))(tp, 14336U, 2U); } } else { } if (tp->pci_chip_rev_id >> 12 == 22369U) { { (*(tp->write32))(tp, 4096U, 18U); } } else { { (*(tp->write32))(tp, 4096U, 2U); } } { (*(tp->write32))(tp, 7168U, 6U); (*(tp->write32))(tp, 11264U, 6U); val = 18U; tmp___63 = _tg3_flag(54, (unsigned long *)(& tp->tg3_flags)); } if (tmp___63 != 0) { val = val | 65536U; } else { } { (*(tp->write32))(tp, 9216U, val); (*(tp->write32))(tp, 3072U, 2U); tmp___64 = _tg3_flag(40, (unsigned long *)(& tp->tg3_flags)); } if (tmp___64 != 0) { { (*(tp->write32))(tp, 3072U, 10U); } } else { { tmp___65 = _tg3_flag(41, (unsigned long *)(& tp->tg3_flags)); } if (tmp___65 != 0) { { (*(tp->write32))(tp, 3072U, 10U); } } else { { tmp___66 = _tg3_flag(42, (unsigned long *)(& tp->tg3_flags)); } if (tmp___66 != 0) { { (*(tp->write32))(tp, 3072U, 10U); } } else { } } } { val = 6U; tmp___67 = _tg3_flag(61, (unsigned long *)(& tp->tg3_flags)); } if (tmp___67 != 0) { val = val | 32U; } else { } { (*(tp->write32))(tp, 6144U, val); (*(tp->write32))(tp, 5120U, 6U); } if (tp->pci_chip_rev_id == 0U) { { err = tg3_load_5701_a0_firmware_fix(tp); } if (err != 0) { return (err); } else { } } else { } if (tp->pci_chip_rev_id >> 12 == 358246U) { { tg3_load_57766_firmware(tp); } } else { } { tmp___68 = _tg3_flag(43, (unsigned long *)(& tp->tg3_flags)); } if (tmp___68 != 0) { { err = tg3_load_tso_firmware(tp); } if (err != 0) { return (err); } else { } } else { } { tp->tx_mode = 2U; tmp___69 = _tg3_flag(75, (unsigned long *)(& tp->tg3_flags)); } if (tmp___69 != 0 || tp->pci_chip_rev_id >> 12 == 12U) { tp->tx_mode = tp->tx_mode | 256U; } else { } if (tp->pci_chip_rev_id >> 12 == 22304U || tp->pci_chip_rev_id >> 12 == 22370U) { { val = 12582912U; tp->tx_mode = tp->tx_mode & ~ val; tmp___70 = (*(tp->read32))(tp, 1116U); tp->tx_mode = tp->tx_mode | (tmp___70 & val); } } else { } { _tw32_flush(tp, 1116U, tp->tx_mode, 0U); __const_udelay(429500UL); tmp___71 = _tg3_flag(60, (unsigned long *)(& tp->tg3_flags)); } if (tmp___71 != 0) { { tg3_rss_write_indir_tbl(tp); netdev_rss_key_fill((void *)(& rss_key), 40UL); i = 0; } goto ldv_58991; ldv_58990: { (*(tp->write32))(tp, (u32 )((i + 412) * 4), rss_key[i]); i = i + 1; } ldv_58991: ; if (i <= 9) { goto ldv_58990; } else { } } else { } { tp->rx_mode = 2U; tmp___72 = _tg3_flag(75, (unsigned long *)(& tp->tg3_flags)); } if (tmp___72 != 0) { tp->rx_mode = tp->rx_mode | 16777216U; } else { } if (tp->pci_chip_rev_id >> 12 == 22370U) { tp->rx_mode = tp->rx_mode | 33554432U; } else { } { tmp___73 = _tg3_flag(60, (unsigned long *)(& tp->tg3_flags)); } if (tmp___73 != 0) { tp->rx_mode = tp->rx_mode | 16711680U; } else { } { _tw32_flush(tp, 1128U, tp->rx_mode, 0U); __const_udelay(42950UL); (*(tp->write32))(tp, 1036U, tp->led_ctrl); (*(tp->write32))(tp, 1104U, 1U); } if ((tp->phy_flags & 16U) != 0U) { { _tw32_flush(tp, 1128U, 1U, 0U); __const_udelay(42950UL); } } else { } { _tw32_flush(tp, 1128U, tp->rx_mode, 0U); __const_udelay(42950UL); } if ((tp->phy_flags & 16U) != 0U) { if (tp->pci_chip_rev_id >> 12 == 2U && (tp->phy_flags & 65536U) == 0U) { { val = (*(tp->read32))(tp, 1424U); val = val & 4294963200U; val = val | 2176U; (*(tp->write32))(tp, 1424U, val); } } else { } if (tp->pci_chip_rev_id == 4097U) { { (*(tp->write32))(tp, 1424U, 6381568U); } } else { } } else { } { tmp___74 = _tg3_flag(77, (unsigned long *)(& tp->tg3_flags)); } if (tmp___74 != 0) { val = 1U; } else { val = 2U; } { _tw32_flush(tp, 1284U, val, 0U); } if (tp->pci_chip_rev_id >> 12 == 2U && (tp->phy_flags & 16U) != 0U) { { _tg3_flag_set(36, (unsigned long *)(& tp->tg3_flags)); } } else { } if ((tp->phy_flags & 32U) != 0U && tp->pci_chip_rev_id >> 12 == 9U) { { tmp___75 = (*(tp->read32))(tp, 1456U); (*(tp->write32))(tp, 1456U, tmp___75 | 1024U); tp->grc_local_ctrl = tp->grc_local_ctrl & 4294967263U; tp->grc_local_ctrl = tp->grc_local_ctrl | 16U; (*(tp->write32))(tp, 26632U, tp->grc_local_ctrl); } } else { } { tmp___78 = _tg3_flag(52, (unsigned long *)(& tp->tg3_flags)); } if (tmp___78 == 0) { if ((int )tp->phy_flags & 1) { tp->phy_flags = tp->phy_flags & 4294967294U; } else { } { err = tg3_setup_phy(tp, 0); } if (err != 0) { return (err); } else { } if (*((unsigned int *)tp + 1135UL) == 0U) { { tmp___77 = tg3_readphy(tp, 30, & tmp___76); } if (tmp___77 == 0) { { tg3_writephy(tp, 30, tmp___76 | 32768U); tg3_readphy(tp, 20, & tmp___76); } } else { } } else { } } else { } { __tg3_set_rx_mode(tp->dev); (*(tp->write32))(tp, 1152U, 1107296256U); (*(tp->write32))(tp, 1156U, 2147483647U); (*(tp->write32))(tp, 1160U, 100663300U); (*(tp->write32))(tp, 1164U, 2147483647U); tmp___79 = _tg3_flag(71, (unsigned long *)(& tp->tg3_flags)); } if (tmp___79 != 0) { { tmp___80 = _tg3_flag(74, (unsigned long *)(& tp->tg3_flags)); } if (tmp___80 == 0) { limit = 8; } else { limit = 16; } } else { limit = 16; } { tmp___81 = _tg3_flag(4, (unsigned long *)(& tp->tg3_flags)); } if (tmp___81 != 0) { limit = limit + -4; } else { } { if (limit == 16) { goto case_16; } else { } if (limit == 15) { goto case_15; } else { } if (limit == 14) { goto case_14; } else { } if (limit == 13) { goto case_13; } else { } if (limit == 12) { goto case_12; } else { } if (limit == 11) { goto case_11; } else { } if (limit == 10) { goto case_10; } else { } if (limit == 9) { goto case_9; } else { } if (limit == 8) { goto case_8; } else { } if (limit == 7) { goto case_7; } else { } if (limit == 6) { goto case_6; } else { } if (limit == 5) { goto case_5; } else { } if (limit == 4) { goto case_4; } else { } if (limit == 3) { goto case_3; } else { } if (limit == 2) { goto case_2; } else { } if (limit == 1) { goto case_1; } else { } goto switch_default; case_16: /* CIL Label */ { (*(tp->write32))(tp, 1272U, 0U); (*(tp->write32))(tp, 1276U, 0U); } case_15: /* CIL Label */ { (*(tp->write32))(tp, 1264U, 0U); (*(tp->write32))(tp, 1268U, 0U); } case_14: /* CIL Label */ { (*(tp->write32))(tp, 1256U, 0U); (*(tp->write32))(tp, 1260U, 0U); } case_13: /* CIL Label */ { (*(tp->write32))(tp, 1248U, 0U); (*(tp->write32))(tp, 1252U, 0U); } case_12: /* CIL Label */ { (*(tp->write32))(tp, 1240U, 0U); (*(tp->write32))(tp, 1244U, 0U); } case_11: /* CIL Label */ { (*(tp->write32))(tp, 1232U, 0U); (*(tp->write32))(tp, 1236U, 0U); } case_10: /* CIL Label */ { (*(tp->write32))(tp, 1224U, 0U); (*(tp->write32))(tp, 1228U, 0U); } case_9: /* CIL Label */ { (*(tp->write32))(tp, 1216U, 0U); (*(tp->write32))(tp, 1220U, 0U); } case_8: /* CIL Label */ { (*(tp->write32))(tp, 1208U, 0U); (*(tp->write32))(tp, 1212U, 0U); } case_7: /* CIL Label */ { (*(tp->write32))(tp, 1200U, 0U); (*(tp->write32))(tp, 1204U, 0U); } case_6: /* CIL Label */ { (*(tp->write32))(tp, 1192U, 0U); (*(tp->write32))(tp, 1196U, 0U); } case_5: /* CIL Label */ { (*(tp->write32))(tp, 1184U, 0U); (*(tp->write32))(tp, 1188U, 0U); } case_4: /* CIL Label */ ; case_3: /* CIL Label */ ; case_2: /* CIL Label */ ; case_1: /* CIL Label */ ; switch_default: /* CIL Label */ ; goto ldv_59012; switch_break: /* CIL Label */ ; } ldv_59012: { tmp___82 = _tg3_flag(49, (unsigned long *)(& tp->tg3_flags)); } if (tmp___82 != 0) { { tg3_ape_write32(tp, 16916U, 0U); } } else { } { tg3_write_sig_post_reset(tp, 1); } return (0); } } static int tg3_init_hw(struct tg3 *tp , bool reset_phy ) { int tmp ; { { tg3_enable_register_access(tp); tg3_poll_fw(tp); tg3_switch_clocks(tp); (*(tp->write32))(tp, 124U, 0U); tmp = tg3_reset_hw(tp, (int )reset_phy); } return (tmp); } } static void tg3_sd_scan_scratchpad(struct tg3 *tp , struct tg3_ocir *ocir ) { int i ; u32 off ; u32 len ; { i = 0; goto ldv_59025; ldv_59024: { off = (u32 )((unsigned long )i) * 64U; len = 64U; tg3_ape_scratchpad_read(tp, (u32 *)ocir, off, len); off = off + len; } if (ocir->signature != 1381188431U || ((int )ocir->version_flags & 1) == 0) { { __memset((void *)ocir, 0, 64UL); } } else { } i = i + 1; ocir = ocir + 1; ldv_59025: ; if (i <= 2) { goto ldv_59024; } else { } return; } } static ssize_t tg3_show_temp(struct device *dev , struct device_attribute *devattr , char *buf ) { struct sensor_device_attribute *attr ; struct device_attribute const *__mptr ; struct tg3 *tp ; void *tmp ; u32 temperature ; int tmp___0 ; { { __mptr = (struct device_attribute const *)devattr; attr = (struct sensor_device_attribute *)__mptr; tmp = dev_get_drvdata((struct device const *)dev); tp = (struct tg3 *)tmp; ldv_spin_lock_bh_139(& tp->lock); tg3_ape_scratchpad_read(tp, & temperature, (u32 )attr->index, 4U); ldv_spin_unlock_bh_140(& tp->lock); tmp___0 = sprintf(buf, "%u\n", temperature); } return ((ssize_t )tmp___0); } } static struct sensor_device_attribute sensor_dev_attr_temp1_input = {{{"temp1_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & tg3_show_temp, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 212}; static struct sensor_device_attribute sensor_dev_attr_temp1_crit = {{{"temp1_crit", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & tg3_show_temp, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 200}; static struct sensor_device_attribute sensor_dev_attr_temp1_max = {{{"temp1_max", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & tg3_show_temp, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, 204}; static struct attribute *tg3_attrs[4U] = { & sensor_dev_attr_temp1_input.dev_attr.attr, & sensor_dev_attr_temp1_crit.dev_attr.attr, & sensor_dev_attr_temp1_max.dev_attr.attr, (struct attribute *)0}; static struct attribute_group const tg3_group = {0, 0, (struct attribute **)(& tg3_attrs), 0}; static struct attribute_group const *tg3_groups[2U] = { & tg3_group, (struct attribute_group const *)0}; static void tg3_hwmon_close(struct tg3 *tp ) { { if ((unsigned long )tp->hwmon_dev != (unsigned long )((struct device *)0)) { { hwmon_device_unregister(tp->hwmon_dev); tp->hwmon_dev = (struct device *)0; } } else { } return; } } static void tg3_hwmon_open(struct tg3 *tp ) { int i ; u32 size ; struct pci_dev *pdev ; struct tg3_ocir ocirs[3U] ; bool tmp ; { { size = 0U; pdev = tp->pdev; tg3_sd_scan_scratchpad(tp, (struct tg3_ocir *)(& ocirs)); i = 0; } goto ldv_59085; ldv_59084: ; if ((unsigned int )ocirs[i].src_data_length == 0U) { goto ldv_59083; } else { } size = size + (u32 )ocirs[i].src_hdr_length; size = size + (u32 )ocirs[i].src_data_length; ldv_59083: i = i + 1; ldv_59085: ; if (i <= 2) { goto ldv_59084; } else { } if (size == 0U) { return; } else { } { tp->hwmon_dev = hwmon_device_register_with_groups(& pdev->dev, "tg3", (void *)tp, (struct attribute_group const **)(& tg3_groups)); tmp = IS_ERR((void const *)tp->hwmon_dev); } if ((int )tmp) { { tp->hwmon_dev = (struct device *)0; dev_err((struct device const *)(& pdev->dev), "Cannot register hwmon device, aborting\n"); } } else { } return; } } static void tg3_periodic_fetch_stats(struct tg3 *tp ) { struct tg3_hw_stats *sp ; u32 __val ; u32 tmp ; u32 __val___0 ; u32 tmp___0 ; u32 __val___1 ; u32 tmp___1 ; u32 __val___2 ; u32 tmp___2 ; u32 __val___3 ; u32 tmp___3 ; u32 __val___4 ; u32 tmp___4 ; u32 __val___5 ; u32 tmp___5 ; u32 __val___6 ; u32 tmp___6 ; u32 __val___7 ; u32 tmp___7 ; u32 __val___8 ; u32 tmp___8 ; u32 __val___9 ; u32 tmp___9 ; u32 __val___10 ; u32 tmp___10 ; u32 __val___11 ; u32 tmp___11 ; u32 val ; u32 tmp___12 ; int tmp___13 ; long tmp___14 ; long tmp___15 ; u32 __val___12 ; u32 tmp___16 ; u32 __val___13 ; u32 tmp___17 ; u32 __val___14 ; u32 tmp___18 ; u32 __val___15 ; u32 tmp___19 ; u32 __val___16 ; u32 tmp___20 ; u32 __val___17 ; u32 tmp___21 ; u32 __val___18 ; u32 tmp___22 ; u32 __val___19 ; u32 tmp___23 ; u32 __val___20 ; u32 tmp___24 ; u32 __val___21 ; u32 tmp___25 ; u32 __val___22 ; u32 tmp___26 ; u32 __val___23 ; u32 tmp___27 ; u32 __val___24 ; u32 tmp___28 ; u32 __val___25 ; u32 tmp___29 ; u32 __val___26 ; u32 tmp___30 ; u32 __val___27 ; u32 tmp___31 ; u32 val___0 ; u32 tmp___32 ; u32 __val___28 ; u32 tmp___33 ; { sp = tp->hw_stats; if (! tp->link_up) { return; } else { } { tmp = (*(tp->read32))(tp, 2048U); __val = tmp; sp->tx_octets.low = sp->tx_octets.low + __val; } if (sp->tx_octets.low < __val) { sp->tx_octets.high = sp->tx_octets.high + 1U; } else { } { tmp___0 = (*(tp->read32))(tp, 2056U); __val___0 = tmp___0; sp->tx_collisions.low = sp->tx_collisions.low + __val___0; } if (sp->tx_collisions.low < __val___0) { sp->tx_collisions.high = sp->tx_collisions.high + 1U; } else { } { tmp___1 = (*(tp->read32))(tp, 2060U); __val___1 = tmp___1; sp->tx_xon_sent.low = sp->tx_xon_sent.low + __val___1; } if (sp->tx_xon_sent.low < __val___1) { sp->tx_xon_sent.high = sp->tx_xon_sent.high + 1U; } else { } { tmp___2 = (*(tp->read32))(tp, 2064U); __val___2 = tmp___2; sp->tx_xoff_sent.low = sp->tx_xoff_sent.low + __val___2; } if (sp->tx_xoff_sent.low < __val___2) { sp->tx_xoff_sent.high = sp->tx_xoff_sent.high + 1U; } else { } { tmp___3 = (*(tp->read32))(tp, 2072U); __val___3 = tmp___3; sp->tx_mac_errors.low = sp->tx_mac_errors.low + __val___3; } if (sp->tx_mac_errors.low < __val___3) { sp->tx_mac_errors.high = sp->tx_mac_errors.high + 1U; } else { } { tmp___4 = (*(tp->read32))(tp, 2076U); __val___4 = tmp___4; sp->tx_single_collisions.low = sp->tx_single_collisions.low + __val___4; } if (sp->tx_single_collisions.low < __val___4) { sp->tx_single_collisions.high = sp->tx_single_collisions.high + 1U; } else { } { tmp___5 = (*(tp->read32))(tp, 2080U); __val___5 = tmp___5; sp->tx_mult_collisions.low = sp->tx_mult_collisions.low + __val___5; } if (sp->tx_mult_collisions.low < __val___5) { sp->tx_mult_collisions.high = sp->tx_mult_collisions.high + 1U; } else { } { tmp___6 = (*(tp->read32))(tp, 2084U); __val___6 = tmp___6; sp->tx_deferred.low = sp->tx_deferred.low + __val___6; } if (sp->tx_deferred.low < __val___6) { sp->tx_deferred.high = sp->tx_deferred.high + 1U; } else { } { tmp___7 = (*(tp->read32))(tp, 2092U); __val___7 = tmp___7; sp->tx_excessive_collisions.low = sp->tx_excessive_collisions.low + __val___7; } if (sp->tx_excessive_collisions.low < __val___7) { sp->tx_excessive_collisions.high = sp->tx_excessive_collisions.high + 1U; } else { } { tmp___8 = (*(tp->read32))(tp, 2096U); __val___8 = tmp___8; sp->tx_late_collisions.low = sp->tx_late_collisions.low + __val___8; } if (sp->tx_late_collisions.low < __val___8) { sp->tx_late_collisions.high = sp->tx_late_collisions.high + 1U; } else { } { tmp___9 = (*(tp->read32))(tp, 2156U); __val___9 = tmp___9; sp->tx_ucast_packets.low = sp->tx_ucast_packets.low + __val___9; } if (sp->tx_ucast_packets.low < __val___9) { sp->tx_ucast_packets.high = sp->tx_ucast_packets.high + 1U; } else { } { tmp___10 = (*(tp->read32))(tp, 2160U); __val___10 = tmp___10; sp->tx_mcast_packets.low = sp->tx_mcast_packets.low + __val___10; } if (sp->tx_mcast_packets.low < __val___10) { sp->tx_mcast_packets.high = sp->tx_mcast_packets.high + 1U; } else { } { tmp___11 = (*(tp->read32))(tp, 2164U); __val___11 = tmp___11; sp->tx_bcast_packets.low = sp->tx_bcast_packets.low + __val___11; } if (sp->tx_bcast_packets.low < __val___11) { sp->tx_bcast_packets.high = sp->tx_bcast_packets.high + 1U; } else { } { tmp___13 = _tg3_flag(68, (unsigned long *)(& tp->tg3_flags)); tmp___14 = ldv__builtin_expect(tmp___13 != 0, 0L); } if (tmp___14 != 0L) { { tmp___15 = ldv__builtin_expect((sp->tx_ucast_packets.low + sp->tx_mcast_packets.low) + sp->tx_bcast_packets.low > 4U, 0L); } if (tmp___15 != 0L) { { val = (*(tp->read32))(tp, 18704U); tmp___12 = tg3_lso_rd_dma_workaround_bit(tp); val = val & ~ tmp___12; (*(tp->write32))(tp, 18704U, val); _tg3_flag_clear(68, (unsigned long *)(& tp->tg3_flags)); } } else { } } else { } { tmp___16 = (*(tp->read32))(tp, 2176U); __val___12 = tmp___16; sp->rx_octets.low = sp->rx_octets.low + __val___12; } if (sp->rx_octets.low < __val___12) { sp->rx_octets.high = sp->rx_octets.high + 1U; } else { } { tmp___17 = (*(tp->read32))(tp, 2184U); __val___13 = tmp___17; sp->rx_fragments.low = sp->rx_fragments.low + __val___13; } if (sp->rx_fragments.low < __val___13) { sp->rx_fragments.high = sp->rx_fragments.high + 1U; } else { } { tmp___18 = (*(tp->read32))(tp, 2188U); __val___14 = tmp___18; sp->rx_ucast_packets.low = sp->rx_ucast_packets.low + __val___14; } if (sp->rx_ucast_packets.low < __val___14) { sp->rx_ucast_packets.high = sp->rx_ucast_packets.high + 1U; } else { } { tmp___19 = (*(tp->read32))(tp, 2192U); __val___15 = tmp___19; sp->rx_mcast_packets.low = sp->rx_mcast_packets.low + __val___15; } if (sp->rx_mcast_packets.low < __val___15) { sp->rx_mcast_packets.high = sp->rx_mcast_packets.high + 1U; } else { } { tmp___20 = (*(tp->read32))(tp, 2196U); __val___16 = tmp___20; sp->rx_bcast_packets.low = sp->rx_bcast_packets.low + __val___16; } if (sp->rx_bcast_packets.low < __val___16) { sp->rx_bcast_packets.high = sp->rx_bcast_packets.high + 1U; } else { } { tmp___21 = (*(tp->read32))(tp, 2200U); __val___17 = tmp___21; sp->rx_fcs_errors.low = sp->rx_fcs_errors.low + __val___17; } if (sp->rx_fcs_errors.low < __val___17) { sp->rx_fcs_errors.high = sp->rx_fcs_errors.high + 1U; } else { } { tmp___22 = (*(tp->read32))(tp, 2204U); __val___18 = tmp___22; sp->rx_align_errors.low = sp->rx_align_errors.low + __val___18; } if (sp->rx_align_errors.low < __val___18) { sp->rx_align_errors.high = sp->rx_align_errors.high + 1U; } else { } { tmp___23 = (*(tp->read32))(tp, 2208U); __val___19 = tmp___23; sp->rx_xon_pause_rcvd.low = sp->rx_xon_pause_rcvd.low + __val___19; } if (sp->rx_xon_pause_rcvd.low < __val___19) { sp->rx_xon_pause_rcvd.high = sp->rx_xon_pause_rcvd.high + 1U; } else { } { tmp___24 = (*(tp->read32))(tp, 2212U); __val___20 = tmp___24; sp->rx_xoff_pause_rcvd.low = sp->rx_xoff_pause_rcvd.low + __val___20; } if (sp->rx_xoff_pause_rcvd.low < __val___20) { sp->rx_xoff_pause_rcvd.high = sp->rx_xoff_pause_rcvd.high + 1U; } else { } { tmp___25 = (*(tp->read32))(tp, 2216U); __val___21 = tmp___25; sp->rx_mac_ctrl_rcvd.low = sp->rx_mac_ctrl_rcvd.low + __val___21; } if (sp->rx_mac_ctrl_rcvd.low < __val___21) { sp->rx_mac_ctrl_rcvd.high = sp->rx_mac_ctrl_rcvd.high + 1U; } else { } { tmp___26 = (*(tp->read32))(tp, 2220U); __val___22 = tmp___26; sp->rx_xoff_entered.low = sp->rx_xoff_entered.low + __val___22; } if (sp->rx_xoff_entered.low < __val___22) { sp->rx_xoff_entered.high = sp->rx_xoff_entered.high + 1U; } else { } { tmp___27 = (*(tp->read32))(tp, 2224U); __val___23 = tmp___27; sp->rx_frame_too_long_errors.low = sp->rx_frame_too_long_errors.low + __val___23; } if (sp->rx_frame_too_long_errors.low < __val___23) { sp->rx_frame_too_long_errors.high = sp->rx_frame_too_long_errors.high + 1U; } else { } { tmp___28 = (*(tp->read32))(tp, 2228U); __val___24 = tmp___28; sp->rx_jabbers.low = sp->rx_jabbers.low + __val___24; } if (sp->rx_jabbers.low < __val___24) { sp->rx_jabbers.high = sp->rx_jabbers.high + 1U; } else { } { tmp___29 = (*(tp->read32))(tp, 2232U); __val___25 = tmp___29; sp->rx_undersize_packets.low = sp->rx_undersize_packets.low + __val___25; } if (sp->rx_undersize_packets.low < __val___25) { sp->rx_undersize_packets.high = sp->rx_undersize_packets.high + 1U; } else { } { tmp___30 = (*(tp->read32))(tp, 8780U); __val___26 = tmp___30; sp->rxbds_empty.low = sp->rxbds_empty.low + __val___26; } if (sp->rxbds_empty.low < __val___26) { sp->rxbds_empty.high = sp->rxbds_empty.high + 1U; } else { } if (((tp->pci_chip_rev_id >> 12 != 22295U && tp->pci_chip_rev_id >> 12 != 22370U) && tp->pci_chip_rev_id != 91328512U) && tp->pci_chip_rev_id != 91357184U) { { tmp___31 = (*(tp->read32))(tp, 8784U); __val___27 = tmp___31; sp->rx_discards.low = sp->rx_discards.low + __val___27; } if (sp->rx_discards.low < __val___27) { sp->rx_discards.high = sp->rx_discards.high + 1U; } else { } } else { { tmp___32 = (*(tp->read32))(tp, 15432U); val___0 = tmp___32; val___0 = (val___0 & 64U) != 0U; } if (val___0 != 0U) { { (*(tp->write32))(tp, 15432U, 64U); sp->rx_discards.low = sp->rx_discards.low + val___0; } if (sp->rx_discards.low < val___0) { sp->rx_discards.high = sp->rx_discards.high + 1U; } else { } } else { } sp->mbuf_lwm_thresh_hit = sp->rx_discards; } { tmp___33 = (*(tp->read32))(tp, 8788U); __val___28 = tmp___33; sp->rx_errors.low = sp->rx_errors.low + __val___28; } if (sp->rx_errors.low < __val___28) { sp->rx_errors.high = sp->rx_errors.high + 1U; } else { } return; } } static void tg3_chk_missed_msi(struct tg3 *tp ) { u32 i ; struct tg3_napi *tnapi ; unsigned int tmp ; { i = 0U; goto ldv_59129; ldv_59128: { tnapi = (struct tg3_napi *)(& tp->napi) + (unsigned long )i; tmp = tg3_has_work(tnapi); } if (tmp != 0U) { if (tnapi->last_rx_cons == tnapi->rx_rcb_ptr && tnapi->last_tx_cons == tnapi->tx_cons) { if (tnapi->chk_msi_cnt == 0U) { tnapi->chk_msi_cnt = tnapi->chk_msi_cnt + 1U; return; } else { } { tg3_msi(0, (void *)tnapi); } } else { } } else { } tnapi->chk_msi_cnt = 0U; tnapi->last_rx_cons = tnapi->rx_rcb_ptr; tnapi->last_tx_cons = tnapi->tx_cons; i = i + 1U; ldv_59129: ; if (i < tp->irq_cnt) { goto ldv_59128; } else { } return; } } static void tg3_timer(unsigned long __opaque ) { struct tg3 *tp ; int tmp ; int tmp___0 ; int tmp___1 ; u32 tmp___2 ; int tmp___3 ; int tmp___4 ; u32 mac_stat ; int phy_event ; u32 mac_stat___0 ; u32 tmp___5 ; int need_setup ; u32 cpmu ; u32 tmp___6 ; bool link_up ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; int tmp___12 ; { { tp = (struct tg3 *)__opaque; ldv_spin_lock_145(& tp->lock); } if (tp->irq_sync != 0U) { { ldv_spin_unlock_146(& tp->lock); } goto restart_timer; } else { { tmp = _tg3_flag(69, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { { ldv_spin_unlock_146(& tp->lock); } goto restart_timer; } else { } } if (tp->pci_chip_rev_id >> 12 == 22295U) { { tg3_chk_missed_msi(tp); } } else { { tmp___0 = _tg3_flag(77, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0) { { tg3_chk_missed_msi(tp); } } else { } } { tmp___1 = _tg3_flag(80, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 != 0) { { (*(tp->read32))(tp, 15360U); } } else { } { tmp___3 = _tg3_flag(0, (unsigned long *)(& tp->tg3_flags)); } if (tmp___3 == 0) { if ((int )(tp->napi[0].hw_status)->status & 1) { { (*(tp->write32))(tp, 26632U, tp->grc_local_ctrl | 4U); } } else { { (*(tp->write32))(tp, 15360U, tp->coalesce_mode | 10U); } } { tmp___2 = (*(tp->read32))(tp, 19456U); } if ((tmp___2 & 2U) == 0U) { { ldv_spin_unlock_146(& tp->lock); tg3_reset_task_schedule(tp); } goto restart_timer; } else { } } else { } tp->timer_counter = (u16 )((int )tp->timer_counter - 1); if ((unsigned int )tp->timer_counter == 0U) { { tmp___4 = _tg3_flag(71, (unsigned long *)(& tp->tg3_flags)); } if (tmp___4 != 0) { { tg3_periodic_fetch_stats(tp); } } else { } if (tp->setlpicnt != 0U) { tp->setlpicnt = tp->setlpicnt - 1U; if (tp->setlpicnt == 0U) { { tg3_phy_eee_enable(tp); } } else { } } else { } { tmp___10 = _tg3_flag(2, (unsigned long *)(& tp->tg3_flags)); } if (tmp___10 != 0) { { mac_stat = (*(tp->read32))(tp, 1028U); phy_event = 0; } if ((tp->phy_flags & 4U) != 0U) { if ((mac_stat & 8388608U) != 0U) { phy_event = 1; } else { } } else if ((mac_stat & 4096U) != 0U) { phy_event = 1; } else { } if (phy_event != 0) { { tg3_setup_phy(tp, 0); } } else { } } else { { tmp___9 = _tg3_flag(6, (unsigned long *)(& tp->tg3_flags)); } if (tmp___9 != 0) { { tmp___5 = (*(tp->read32))(tp, 1028U); mac_stat___0 = tmp___5; need_setup = 0; } if ((int )tp->link_up && (mac_stat___0 & 4096U) != 0U) { need_setup = 1; } else { } if (! tp->link_up && (mac_stat___0 & 3U) != 0U) { need_setup = 1; } else { } if (need_setup != 0) { if (tp->serdes_counter == 0U) { { _tw32_flush(tp, 1024U, tp->mac_mode & 4294967283U, 0U); __const_udelay(171800UL); _tw32_flush(tp, 1024U, tp->mac_mode, 0U); __const_udelay(171800UL); } } else { } { tg3_setup_phy(tp, 0); } } else { } } else if ((tp->phy_flags & 32U) != 0U) { { tmp___8 = _tg3_flag(74, (unsigned long *)(& tp->tg3_flags)); } if (tmp___8 != 0) { { tg3_serdes_parallel_detect(tp); } } else { goto _L; } } else { _L: /* CIL Label */ { tmp___7 = _tg3_flag(7, (unsigned long *)(& tp->tg3_flags)); } if (tmp___7 != 0) { { tmp___6 = (*(tp->read32))(tp, 13868U); cpmu = tmp___6; link_up = (cpmu & 1572864U) != 1572864U; } if ((int )link_up != (int )tp->link_up) { { tg3_setup_phy(tp, 0); } } else { } } else { } } } tp->timer_counter = tp->timer_multiplier; } else { } tp->asf_counter = (u16 )((int )tp->asf_counter - 1); if ((unsigned int )tp->asf_counter == 0U) { { tmp___11 = _tg3_flag(4, (unsigned long *)(& tp->tg3_flags)); } if (tmp___11 != 0) { { tmp___12 = _tg3_flag(49, (unsigned long *)(& tp->tg3_flags)); } if (tmp___12 == 0) { { tg3_wait_for_event_ack(tp); tg3_write_mem(tp, 2936U, 14U); tg3_write_mem(tp, 2940U, 4U); tg3_write_mem(tp, 2944U, 5U); tg3_generate_fw_event(tp); } } else { } } else { } tp->asf_counter = tp->asf_multiplier; } else { } { ldv_spin_unlock_146(& tp->lock); } restart_timer: { tp->timer.expires = (unsigned long )jiffies + (unsigned long )tp->timer_offset; add_timer(& tp->timer); } return; } } static void tg3_timer_init(struct tg3 *tp ) { int tmp ; int tmp___0 ; long tmp___1 ; struct lock_class_key __key ; { { tmp = _tg3_flag(0, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0 && tp->pci_chip_rev_id >> 12 != 22295U) { { tmp___0 = _tg3_flag(77, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 == 0) { tp->timer_offset = 250U; } else { tp->timer_offset = 25U; } } else { tp->timer_offset = 25U; } { tmp___1 = ldv__builtin_expect(tp->timer_offset > 250U, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/ethernet/broadcom/tg3.c"), "i" (11064), "i" (12UL)); __builtin_unreachable(); } } else { } { tp->timer_multiplier = (u16 )(250U / tp->timer_offset); tp->asf_multiplier = (unsigned int )((u16 )(250U / tp->timer_offset)) * 2U; init_timer_key(& tp->timer, 0U, "(&tp->timer)", & __key); tp->timer.data = (unsigned long )tp; tp->timer.function = & tg3_timer; } return; } } static void tg3_timer_start(struct tg3 *tp ) { { { tp->asf_counter = tp->asf_multiplier; tp->timer_counter = tp->timer_multiplier; tp->timer.expires = (unsigned long )jiffies + (unsigned long )tp->timer_offset; add_timer(& tp->timer); } return; } } static void tg3_timer_stop(struct tg3 *tp ) { { { ldv_del_timer_sync_165(& tp->timer); } return; } } static int tg3_restart_hw(struct tg3 *tp , bool reset_phy ) { int err ; { { err = tg3_init_hw(tp, (int )reset_phy); } if (err != 0) { { netdev_err((struct net_device const *)tp->dev, "Failed to re-initialize device, aborting\n"); tg3_halt(tp, 0, 1); tg3_full_unlock(tp); tg3_timer_stop(tp); tp->irq_sync = 0U; tg3_napi_enable(tp); dev_close(tp->dev); tg3_full_lock(tp, 0); } } else { } return (err); } } static void tg3_reset_task(struct work_struct *work ) { struct tg3 *tp ; struct work_struct const *__mptr ; int err ; bool tmp ; int tmp___0 ; int tmp___1 ; { { __mptr = (struct work_struct const *)work; tp = (struct tg3 *)__mptr + 0xffffffffffffed58UL; ldv_rtnl_lock_166(); tg3_full_lock(tp, 0); tmp = netif_running((struct net_device const *)tp->dev); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { _tg3_flag_clear(69, (unsigned long *)(& tp->tg3_flags)); tg3_full_unlock(tp); ldv_rtnl_unlock_167(); } return; } else { } { tg3_full_unlock(tp); tg3_phy_stop(tp); tg3_netif_stop(tp); tg3_full_lock(tp, 1); tmp___1 = _tg3_flag(23, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 != 0) { { tp->write32_tx_mbox = & tg3_write32_tx_mbox; tp->write32_rx_mbox = & tg3_write_flush_reg32; _tg3_flag_set(8, (unsigned long *)(& tp->tg3_flags)); _tg3_flag_clear(23, (unsigned long *)(& tp->tg3_flags)); } } else { } { tg3_halt(tp, 0, 0); err = tg3_init_hw(tp, 1); } if (err != 0) { goto out; } else { } { tg3_netif_start(tp); } out: { tg3_full_unlock(tp); } if (err == 0) { { tg3_phy_start(tp); } } else { } { _tg3_flag_clear(69, (unsigned long *)(& tp->tg3_flags)); ldv_rtnl_unlock_168(); } return; } } static int tg3_request_irq(struct tg3 *tp , int irq_num ) { irqreturn_t (*fn)(int , void * ) ; unsigned long flags ; char *name ; struct tg3_napi *tnapi ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { tnapi = (struct tg3_napi *)(& tp->napi) + (unsigned long )irq_num; if (tp->irq_cnt == 1U) { name = (char *)(& (tp->dev)->name); } else { name = (char *)(& tnapi->irq_lbl); if ((unsigned long )tnapi->tx_buffers != (unsigned long )((struct tg3_tx_ring_info *)0) && (unsigned long )tnapi->rx_rcb != (unsigned long )((struct tg3_rx_buffer_desc *)0)) { { snprintf(name, 16UL, "%s-txrx-%d", (char *)(& (tp->dev)->name), irq_num); } } else if ((unsigned long )tnapi->tx_buffers != (unsigned long )((struct tg3_tx_ring_info *)0)) { { snprintf(name, 16UL, "%s-tx-%d", (char *)(& (tp->dev)->name), irq_num); } } else if ((unsigned long )tnapi->rx_rcb != (unsigned long )((struct tg3_rx_buffer_desc *)0)) { { snprintf(name, 16UL, "%s-rx-%d", (char *)(& (tp->dev)->name), irq_num); } } else { { snprintf(name, 16UL, "%s-%d", (char *)(& (tp->dev)->name), irq_num); } } *(name + 15UL) = 0; } { tmp___1 = _tg3_flag(17, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 != 0) { goto _L; } else { { tmp___2 = _tg3_flag(18, (unsigned long *)(& tp->tg3_flags)); } if (tmp___2 != 0) { _L: /* CIL Label */ { fn = & tg3_msi; tmp = _tg3_flag(46, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { fn = & tg3_msi_1shot; } else { } flags = 0UL; } else { { fn = & tg3_interrupt; tmp___0 = _tg3_flag(0, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0) { fn = & tg3_interrupt_tagged; } else { } flags = 128UL; } } { tmp___3 = ldv_request_irq_169(tnapi->irq_vec, fn, flags, (char const *)name, (void *)tnapi); } return (tmp___3); } } static int tg3_test_interrupt(struct tg3 *tp ) { struct tg3_napi *tnapi ; struct net_device *dev ; int err ; int i ; int intr_ok ; u32 val ; bool tmp ; int tmp___0 ; u32 tmp___1 ; int tmp___2 ; u32 int_mbox ; u32 misc_host_ctrl ; int tmp___3 ; u32 tmp___4 ; int tmp___5 ; int tmp___6 ; { { tnapi = (struct tg3_napi *)(& tp->napi); dev = tp->dev; intr_ok = 0; tmp = netif_running((struct net_device const *)dev); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (-19); } else { } { tg3_disable_ints(tp); ldv_free_irq_170(tnapi->irq_vec, (void *)tnapi); tmp___2 = _tg3_flag(76, (unsigned long *)(& tp->tg3_flags)); } if (tmp___2 != 0) { { tmp___1 = (*(tp->read32))(tp, 24576U); val = tmp___1 | 32U; (*(tp->write32))(tp, 24576U, val); } } else { } { err = ldv_request_irq_171(tnapi->irq_vec, & tg3_test_isr, 128UL, (char const *)(& dev->name), (void *)tnapi); } if (err != 0) { return (err); } else { } { (tnapi->hw_status)->status = (tnapi->hw_status)->status & 4294967294U; tg3_enable_ints(tp); _tw32_flush(tp, 15360U, (tp->coalesce_mode | tnapi->coal_now) | 2U, 0U); i = 0; } goto ldv_59186; ldv_59185: { int_mbox = (*(tp->read32_mbox))(tp, tnapi->int_mbox); misc_host_ctrl = (*(tp->read32))(tp, 104U); } if (int_mbox != 0U || (misc_host_ctrl & 2U) != 0U) { intr_ok = 1; goto ldv_59184; } else { } { tmp___3 = _tg3_flag(76, (unsigned long *)(& tp->tg3_flags)); } if (tmp___3 != 0 && (tnapi->hw_status)->status_tag != tnapi->last_tag) { { tw32_mailbox_flush(tp, tnapi->int_mbox, tnapi->last_tag << 24); } } else { } { msleep(10U); i = i + 1; } ldv_59186: ; if (i <= 4) { goto ldv_59185; } else { } ldv_59184: { tg3_disable_ints(tp); ldv_free_irq_172(tnapi->irq_vec, (void *)tnapi); err = tg3_request_irq(tp, 0); } if (err != 0) { return (err); } else { } if (intr_ok != 0) { { tmp___5 = _tg3_flag(76, (unsigned long *)(& tp->tg3_flags)); } if (tmp___5 != 0) { { tmp___6 = _tg3_flag(46, (unsigned long *)(& tp->tg3_flags)); } if (tmp___6 != 0) { { tmp___4 = (*(tp->read32))(tp, 24576U); val = tmp___4 & 4294967263U; (*(tp->write32))(tp, 24576U, val); } } else { } } else { } return (0); } else { } return (-5); } } static int tg3_test_msi(struct tg3 *tp ) { int err ; u16 pci_cmd ; int tmp ; { { tmp = _tg3_flag(17, (unsigned long *)(& tp->tg3_flags)); } if (tmp == 0) { return (0); } else { } { pci_read_config_word((struct pci_dev const *)tp->pdev, 4, & pci_cmd); pci_write_config_word((struct pci_dev const *)tp->pdev, 4, (int )pci_cmd & 65279); err = tg3_test_interrupt(tp); pci_write_config_word((struct pci_dev const *)tp->pdev, 4, (int )pci_cmd); } if (err == 0) { return (0); } else { } if (err != -5) { return (err); } else { } { netdev_warn((struct net_device const *)tp->dev, "No interrupt was generated using MSI. Switching to INTx mode. Please report this failure to the PCI maintainer and include system chipset information\n"); ldv_free_irq_173(tp->napi[0].irq_vec, (void *)(& tp->napi)); pci_disable_msi(tp->pdev); _tg3_flag_clear(17, (unsigned long *)(& tp->tg3_flags)); tp->napi[0].irq_vec = (tp->pdev)->irq; err = tg3_request_irq(tp, 0); } if (err != 0) { return (err); } else { } { tg3_full_lock(tp, 1); tg3_halt(tp, 0, 1); err = tg3_init_hw(tp, 1); tg3_full_unlock(tp); } if (err != 0) { { ldv_free_irq_174(tp->napi[0].irq_vec, (void *)(& tp->napi)); } } else { } return (err); } } static int tg3_request_firmware(struct tg3 *tp ) { struct tg3_firmware_hdr const *fw_hdr ; int tmp ; __u32 tmp___0 ; { { tmp = request_firmware(& tp->fw, tp->fw_needed, & (tp->pdev)->dev); } if (tmp != 0) { { netdev_err((struct net_device const *)tp->dev, "Failed to load firmware \"%s\"\n", tp->fw_needed); } return (-2); } else { } { fw_hdr = (struct tg3_firmware_hdr const *)(tp->fw)->data; tmp___0 = __fswab32(fw_hdr->len); tp->fw_len = tmp___0; } if ((unsigned long )tp->fw_len < (unsigned long )(tp->fw)->size - 12UL) { { netdev_err((struct net_device const *)tp->dev, "bogus length %d in \"%s\"\n", tp->fw_len, tp->fw_needed); release_firmware(tp->fw); tp->fw = (struct firmware const *)0; } return (-22); } else { } tp->fw_needed = (char const *)0; return (0); } } static u32 tg3_irq_count(struct tg3 *tp ) { u32 irq_cnt ; u32 _max1 ; u32 _max2 ; unsigned int __min1 ; unsigned int __min2 ; { _max1 = tp->rxq_cnt; _max2 = tp->txq_cnt; irq_cnt = _max1 > _max2 ? _max1 : _max2; if (irq_cnt > 1U) { __min1 = irq_cnt + 1U; __min2 = tp->irq_max; irq_cnt = __min1 < __min2 ? __min1 : __min2; } else { } return (irq_cnt); } } static bool tg3_enable_msix(struct tg3 *tp ) { int i ; int rc ; struct msix_entry msix_ent[5U] ; int tmp ; int _max1 ; int _max2 ; u32 _min1 ; u32 _min2 ; int tmp___0 ; { tp->txq_cnt = tp->txq_req; tp->rxq_cnt = tp->rxq_req; if (tp->rxq_cnt == 0U) { { tmp = netif_get_num_default_rss_queues(); tp->rxq_cnt = (u32 )tmp; } } else { } if (tp->rxq_cnt > tp->rxq_max) { tp->rxq_cnt = tp->rxq_max; } else { } if (tp->txq_req == 0U) { tp->txq_cnt = 1U; } else { } { tp->irq_cnt = tg3_irq_count(tp); i = 0; } goto ldv_59213; ldv_59212: msix_ent[i].entry = (u16 )i; msix_ent[i].vector = 0U; i = i + 1; ldv_59213: ; if ((unsigned int )i < tp->irq_max) { goto ldv_59212; } else { } { rc = pci_enable_msix_range(tp->pdev, (struct msix_entry *)(& msix_ent), 1, (int )tp->irq_cnt); } if (rc < 0) { return (0); } else if ((unsigned int )rc < tp->irq_cnt) { { netdev_notice((struct net_device const *)tp->dev, "Requested %d MSI-X vectors, received %d\n", tp->irq_cnt, rc); tp->irq_cnt = (unsigned int )rc; _max1 = rc + -1; _max2 = 1; tp->rxq_cnt = (u32 )(_max1 > _max2 ? _max1 : _max2); } if (tp->txq_cnt != 0U) { _min1 = tp->rxq_cnt; _min2 = tp->txq_max; tp->txq_cnt = _min1 < _min2 ? _min1 : _min2; } else { } } else { } i = 0; goto ldv_59222; ldv_59221: tp->napi[i].irq_vec = msix_ent[i].vector; i = i + 1; ldv_59222: ; if ((unsigned int )i < tp->irq_max) { goto ldv_59221; } else { } { tmp___0 = netif_set_real_num_rx_queues(tp->dev, tp->rxq_cnt); } if (tmp___0 != 0) { { pci_disable_msix(tp->pdev); } return (0); } else { } if (tp->irq_cnt == 1U) { return (1); } else { } { _tg3_flag_set(60, (unsigned long *)(& tp->tg3_flags)); } if (tp->txq_cnt > 1U) { { _tg3_flag_set(61, (unsigned long *)(& tp->tg3_flags)); } } else { } { netif_set_real_num_tx_queues(tp->dev, tp->txq_cnt); } return (1); } } static void tg3_ints_init(struct tg3 *tp ) { int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; bool tmp___5 ; u32 msi_mode ; u32 tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; { { tmp = _tg3_flag(15, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { goto _L; } else { { tmp___0 = _tg3_flag(16, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0) { _L: /* CIL Label */ { tmp___1 = _tg3_flag(0, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 == 0) { { netdev_warn((struct net_device const *)tp->dev, "MSI without TAGGED_STATUS? Not using MSI\n"); } goto defcfg; } else { } } else { } } { tmp___4 = _tg3_flag(16, (unsigned long *)(& tp->tg3_flags)); } if (tmp___4 != 0) { { tmp___5 = tg3_enable_msix(tp); } if ((int )tmp___5) { { _tg3_flag_set(18, (unsigned long *)(& tp->tg3_flags)); } } else { goto _L___0; } } else { _L___0: /* CIL Label */ { tmp___2 = _tg3_flag(15, (unsigned long *)(& tp->tg3_flags)); } if (tmp___2 != 0) { { tmp___3 = pci_enable_msi_exact(tp->pdev, 1); } if (tmp___3 == 0) { { _tg3_flag_set(17, (unsigned long *)(& tp->tg3_flags)); } } else { } } else { } } { tmp___9 = _tg3_flag(17, (unsigned long *)(& tp->tg3_flags)); } if (tmp___9 != 0) { goto _L___1; } else { { tmp___10 = _tg3_flag(18, (unsigned long *)(& tp->tg3_flags)); } if (tmp___10 != 0) { _L___1: /* CIL Label */ { tmp___6 = (*(tp->read32))(tp, 24576U); msi_mode = tmp___6; tmp___7 = _tg3_flag(18, (unsigned long *)(& tp->tg3_flags)); } if (tmp___7 != 0 && tp->irq_cnt > 1U) { msi_mode = msi_mode | 128U; } else { } { tmp___8 = _tg3_flag(46, (unsigned long *)(& tp->tg3_flags)); } if (tmp___8 == 0) { msi_mode = msi_mode | 32U; } else { } { (*(tp->write32))(tp, 24576U, msi_mode | 2U); } } else { } } defcfg: { tmp___11 = _tg3_flag(18, (unsigned long *)(& tp->tg3_flags)); } if (tmp___11 == 0) { tp->irq_cnt = 1U; tp->napi[0].irq_vec = (tp->pdev)->irq; } else { } if (tp->irq_cnt == 1U) { { tp->txq_cnt = 1U; tp->rxq_cnt = 1U; netif_set_real_num_tx_queues(tp->dev, 1U); netif_set_real_num_rx_queues(tp->dev, 1U); } } else { } return; } } static void tg3_ints_fini(struct tg3 *tp ) { int tmp ; int tmp___0 ; { { tmp___0 = _tg3_flag(18, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0) { { pci_disable_msix(tp->pdev); } } else { { tmp = _tg3_flag(17, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { { pci_disable_msi(tp->pdev); } } else { } } { _tg3_flag_clear(17, (unsigned long *)(& tp->tg3_flags)); _tg3_flag_clear(18, (unsigned long *)(& tp->tg3_flags)); _tg3_flag_clear(60, (unsigned long *)(& tp->tg3_flags)); _tg3_flag_clear(61, (unsigned long *)(& tp->tg3_flags)); } return; } } static int tg3_start(struct tg3 *tp , bool reset_phy , bool test_irq , bool init ) { struct net_device *dev ; int i ; int err ; struct tg3_napi *tnapi ; u32 val ; u32 tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; struct tg3_napi *tnapi___0 ; { { dev = tp->dev; tg3_ints_init(tp); tg3_rss_check_indir_tbl(tp); err = tg3_alloc_consistent(tp); } if (err != 0) { goto out_ints_fini; } else { } { tg3_napi_init(tp); tg3_napi_enable(tp); i = 0; } goto ldv_59248; ldv_59247: { tnapi = (struct tg3_napi *)(& tp->napi) + (unsigned long )i; err = tg3_request_irq(tp, i); } if (err != 0) { i = i - 1; goto ldv_59244; ldv_59243: { tnapi = (struct tg3_napi *)(& tp->napi) + (unsigned long )i; ldv_free_irq_175(tnapi->irq_vec, (void *)tnapi); i = i - 1; } ldv_59244: ; if (i >= 0) { goto ldv_59243; } else { } goto out_napi_fini; } else { } i = i + 1; ldv_59248: ; if ((unsigned int )i < tp->irq_cnt) { goto ldv_59247; } else { } { tg3_full_lock(tp, 0); } if ((int )init) { { tg3_ape_driver_state_change(tp, 1); } } else { } { err = tg3_init_hw(tp, (int )reset_phy); } if (err != 0) { { tg3_halt(tp, 0, 1); tg3_free_rings(tp); } } else { } { tg3_full_unlock(tp); } if (err != 0) { goto out_free_irq; } else { } if ((int )test_irq) { { tmp___2 = _tg3_flag(17, (unsigned long *)(& tp->tg3_flags)); } if (tmp___2 != 0) { { err = tg3_test_msi(tp); } if (err != 0) { { tg3_full_lock(tp, 0); tg3_halt(tp, 0, 1); tg3_free_rings(tp); tg3_full_unlock(tp); } goto out_napi_fini; } else { } { tmp___0 = _tg3_flag(76, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 == 0) { { tmp___1 = _tg3_flag(17, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 != 0) { { tmp = (*(tp->read32))(tp, 31748U); val = tmp; (*(tp->write32))(tp, 31748U, val | 536870912U); } } else { } } else { } } else { } } else { } { tg3_phy_start(tp); tg3_hwmon_open(tp); tg3_full_lock(tp, 0); tg3_timer_start(tp); _tg3_flag_set(32, (unsigned long *)(& tp->tg3_flags)); tg3_enable_ints(tp); tg3_ptp_resume(tp); tg3_full_unlock(tp); netif_tx_start_all_queues(dev); } if ((dev->features & 68719476736ULL) != 0ULL) { { tg3_set_loopback(dev, dev->features); } } else { } return (0); out_free_irq: i = (int )(tp->irq_cnt - 1U); goto ldv_59254; ldv_59253: { tnapi___0 = (struct tg3_napi *)(& tp->napi) + (unsigned long )i; ldv_free_irq_176(tnapi___0->irq_vec, (void *)tnapi___0); i = i - 1; } ldv_59254: ; if (i >= 0) { goto ldv_59253; } else { } out_napi_fini: { tg3_napi_disable(tp); tg3_napi_fini(tp); tg3_free_consistent(tp); } out_ints_fini: { tg3_ints_fini(tp); } return (err); } } static void tg3_stop(struct tg3 *tp ) { int i ; struct tg3_napi *tnapi ; { { tg3_reset_task_cancel(tp); tg3_netif_stop(tp); tg3_timer_stop(tp); tg3_hwmon_close(tp); tg3_phy_stop(tp); tg3_full_lock(tp, 1); tg3_disable_ints(tp); tg3_halt(tp, 0, 1); tg3_free_rings(tp); _tg3_flag_clear(32, (unsigned long *)(& tp->tg3_flags)); tg3_full_unlock(tp); i = (int )(tp->irq_cnt - 1U); } goto ldv_59262; ldv_59261: { tnapi = (struct tg3_napi *)(& tp->napi) + (unsigned long )i; ldv_free_irq_177(tnapi->irq_vec, (void *)tnapi); i = i - 1; } ldv_59262: ; if (i >= 0) { goto ldv_59261; } else { } { tg3_ints_fini(tp); tg3_napi_fini(tp); tg3_free_consistent(tp); } return; } } static int tg3_open(struct net_device *dev ) { struct tg3 *tp ; void *tmp ; int err ; int tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; } if ((int )tp->pcierr_recovery) { { netdev_err((struct net_device const *)dev, "Failed to open device. PCI error recovery in progress\n"); } return (-11); } else { } if ((unsigned long )tp->fw_needed != (unsigned long )((char const *)0)) { { err = tg3_request_firmware(tp); } if (tp->pci_chip_rev_id >> 12 == 358246U) { if (err != 0) { { netdev_warn((struct net_device const *)tp->dev, "EEE capability disabled\n"); tp->phy_flags = tp->phy_flags & 4294705151U; } } else if ((tp->phy_flags & 262144U) == 0U) { { netdev_warn((struct net_device const *)tp->dev, "EEE capability restored\n"); tp->phy_flags = tp->phy_flags | 262144U; } } else { } } else if (tp->pci_chip_rev_id == 0U) { if (err != 0) { return (err); } else { } } else if (err != 0) { { netdev_warn((struct net_device const *)tp->dev, "TSO capability disabled\n"); _tg3_flag_clear(43, (unsigned long *)(& tp->tg3_flags)); } } else { { tmp___0 = _tg3_flag(43, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 == 0) { { netdev_notice((struct net_device const *)tp->dev, "TSO capability restored\n"); _tg3_flag_set(43, (unsigned long *)(& tp->tg3_flags)); } } else { } } } else { } { tg3_carrier_off(tp); err = tg3_power_up(tp); } if (err != 0) { return (err); } else { } { tg3_full_lock(tp, 0); tg3_disable_ints(tp); _tg3_flag_clear(32, (unsigned long *)(& tp->tg3_flags)); tg3_full_unlock(tp); err = tg3_start(tp, (tp->phy_flags & 1048576U) == 0U, 1, 1); } if (err != 0) { { tg3_frob_aux_power(tp, 0); pci_set_power_state(tp->pdev, 3); } } else { } return (err); } } static int tg3_close(struct net_device *dev ) { struct tg3 *tp ; void *tmp ; bool tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; } if ((int )tp->pcierr_recovery) { { netdev_err((struct net_device const *)dev, "Failed to close device. PCI error recovery in progress\n"); } return (-11); } else { } { tg3_stop(tp); __memset((void *)(& tp->net_stats_prev), 0, 184UL); __memset((void *)(& tp->estats_prev), 0, 576UL); tmp___0 = pci_device_is_present(tp->pdev); } if ((int )tmp___0) { { tg3_power_down_prepare(tp); tg3_carrier_off(tp); } } else { } return (0); } } __inline static u64 get_stat64(tg3_stat64_t *val ) { { return (((unsigned long long )val->high << 32) | (unsigned long long )val->low); } } static u64 tg3_calc_crc_errors(struct tg3 *tp ) { struct tg3_hw_stats *hw_stats ; u32 val ; int tmp ; u64 tmp___0 ; { hw_stats = tp->hw_stats; if ((tp->phy_flags & 16U) == 0U && (tp->pci_chip_rev_id >> 12 == 7U || tp->pci_chip_rev_id >> 12 == 0U)) { { tmp = tg3_readphy(tp, 30, & val); } if (tmp == 0) { { tg3_writephy(tp, 30, val | 32768U); tg3_readphy(tp, 20, & val); } } else { val = 0U; } tp->__annonCompField112.phy_crc_errors = tp->__annonCompField112.phy_crc_errors + (unsigned long )val; return ((u64 )tp->__annonCompField112.phy_crc_errors); } else { } { tmp___0 = get_stat64(& hw_stats->rx_fcs_errors); } return (tmp___0); } } static void tg3_get_estats(struct tg3 *tp , struct tg3_ethtool_stats *estats ) { struct tg3_ethtool_stats *old_estats ; struct tg3_hw_stats *hw_stats ; u64 tmp ; u64 tmp___0 ; u64 tmp___1 ; u64 tmp___2 ; u64 tmp___3 ; u64 tmp___4 ; u64 tmp___5 ; u64 tmp___6 ; u64 tmp___7 ; u64 tmp___8 ; u64 tmp___9 ; u64 tmp___10 ; u64 tmp___11 ; u64 tmp___12 ; u64 tmp___13 ; u64 tmp___14 ; u64 tmp___15 ; u64 tmp___16 ; u64 tmp___17 ; u64 tmp___18 ; u64 tmp___19 ; u64 tmp___20 ; u64 tmp___21 ; u64 tmp___22 ; u64 tmp___23 ; u64 tmp___24 ; u64 tmp___25 ; u64 tmp___26 ; u64 tmp___27 ; u64 tmp___28 ; u64 tmp___29 ; u64 tmp___30 ; u64 tmp___31 ; u64 tmp___32 ; u64 tmp___33 ; u64 tmp___34 ; u64 tmp___35 ; u64 tmp___36 ; u64 tmp___37 ; u64 tmp___38 ; u64 tmp___39 ; u64 tmp___40 ; u64 tmp___41 ; u64 tmp___42 ; u64 tmp___43 ; u64 tmp___44 ; u64 tmp___45 ; u64 tmp___46 ; u64 tmp___47 ; u64 tmp___48 ; u64 tmp___49 ; u64 tmp___50 ; u64 tmp___51 ; u64 tmp___52 ; u64 tmp___53 ; u64 tmp___54 ; u64 tmp___55 ; u64 tmp___56 ; u64 tmp___57 ; u64 tmp___58 ; u64 tmp___59 ; u64 tmp___60 ; u64 tmp___61 ; u64 tmp___62 ; u64 tmp___63 ; u64 tmp___64 ; u64 tmp___65 ; u64 tmp___66 ; u64 tmp___67 ; u64 tmp___68 ; u64 tmp___69 ; u64 tmp___70 ; { { old_estats = & tp->estats_prev; hw_stats = tp->hw_stats; tmp = get_stat64(& hw_stats->rx_octets); estats->rx_octets = old_estats->rx_octets + tmp; tmp___0 = get_stat64(& hw_stats->rx_fragments); estats->rx_fragments = old_estats->rx_fragments + tmp___0; tmp___1 = get_stat64(& hw_stats->rx_ucast_packets); estats->rx_ucast_packets = old_estats->rx_ucast_packets + tmp___1; tmp___2 = get_stat64(& hw_stats->rx_mcast_packets); estats->rx_mcast_packets = old_estats->rx_mcast_packets + tmp___2; tmp___3 = get_stat64(& hw_stats->rx_bcast_packets); estats->rx_bcast_packets = old_estats->rx_bcast_packets + tmp___3; tmp___4 = get_stat64(& hw_stats->rx_fcs_errors); estats->rx_fcs_errors = old_estats->rx_fcs_errors + tmp___4; tmp___5 = get_stat64(& hw_stats->rx_align_errors); estats->rx_align_errors = old_estats->rx_align_errors + tmp___5; tmp___6 = get_stat64(& hw_stats->rx_xon_pause_rcvd); estats->rx_xon_pause_rcvd = old_estats->rx_xon_pause_rcvd + tmp___6; tmp___7 = get_stat64(& hw_stats->rx_xoff_pause_rcvd); estats->rx_xoff_pause_rcvd = old_estats->rx_xoff_pause_rcvd + tmp___7; tmp___8 = get_stat64(& hw_stats->rx_mac_ctrl_rcvd); estats->rx_mac_ctrl_rcvd = old_estats->rx_mac_ctrl_rcvd + tmp___8; tmp___9 = get_stat64(& hw_stats->rx_xoff_entered); estats->rx_xoff_entered = old_estats->rx_xoff_entered + tmp___9; tmp___10 = get_stat64(& hw_stats->rx_frame_too_long_errors); estats->rx_frame_too_long_errors = old_estats->rx_frame_too_long_errors + tmp___10; tmp___11 = get_stat64(& hw_stats->rx_jabbers); estats->rx_jabbers = old_estats->rx_jabbers + tmp___11; tmp___12 = get_stat64(& hw_stats->rx_undersize_packets); estats->rx_undersize_packets = old_estats->rx_undersize_packets + tmp___12; tmp___13 = get_stat64(& hw_stats->rx_in_length_errors); estats->rx_in_length_errors = old_estats->rx_in_length_errors + tmp___13; tmp___14 = get_stat64(& hw_stats->rx_out_length_errors); estats->rx_out_length_errors = old_estats->rx_out_length_errors + tmp___14; tmp___15 = get_stat64(& hw_stats->rx_64_or_less_octet_packets); estats->rx_64_or_less_octet_packets = old_estats->rx_64_or_less_octet_packets + tmp___15; tmp___16 = get_stat64(& hw_stats->rx_65_to_127_octet_packets); estats->rx_65_to_127_octet_packets = old_estats->rx_65_to_127_octet_packets + tmp___16; tmp___17 = get_stat64(& hw_stats->rx_128_to_255_octet_packets); estats->rx_128_to_255_octet_packets = old_estats->rx_128_to_255_octet_packets + tmp___17; tmp___18 = get_stat64(& hw_stats->rx_256_to_511_octet_packets); estats->rx_256_to_511_octet_packets = old_estats->rx_256_to_511_octet_packets + tmp___18; tmp___19 = get_stat64(& hw_stats->rx_512_to_1023_octet_packets); estats->rx_512_to_1023_octet_packets = old_estats->rx_512_to_1023_octet_packets + tmp___19; tmp___20 = get_stat64(& hw_stats->rx_1024_to_1522_octet_packets); estats->rx_1024_to_1522_octet_packets = old_estats->rx_1024_to_1522_octet_packets + tmp___20; tmp___21 = get_stat64(& hw_stats->rx_1523_to_2047_octet_packets); estats->rx_1523_to_2047_octet_packets = old_estats->rx_1523_to_2047_octet_packets + tmp___21; tmp___22 = get_stat64(& hw_stats->rx_2048_to_4095_octet_packets); estats->rx_2048_to_4095_octet_packets = old_estats->rx_2048_to_4095_octet_packets + tmp___22; tmp___23 = get_stat64(& hw_stats->rx_4096_to_8191_octet_packets); estats->rx_4096_to_8191_octet_packets = old_estats->rx_4096_to_8191_octet_packets + tmp___23; tmp___24 = get_stat64(& hw_stats->rx_8192_to_9022_octet_packets); estats->rx_8192_to_9022_octet_packets = old_estats->rx_8192_to_9022_octet_packets + tmp___24; tmp___25 = get_stat64(& hw_stats->tx_octets); estats->tx_octets = old_estats->tx_octets + tmp___25; tmp___26 = get_stat64(& hw_stats->tx_collisions); estats->tx_collisions = old_estats->tx_collisions + tmp___26; tmp___27 = get_stat64(& hw_stats->tx_xon_sent); estats->tx_xon_sent = old_estats->tx_xon_sent + tmp___27; tmp___28 = get_stat64(& hw_stats->tx_xoff_sent); estats->tx_xoff_sent = old_estats->tx_xoff_sent + tmp___28; tmp___29 = get_stat64(& hw_stats->tx_flow_control); estats->tx_flow_control = old_estats->tx_flow_control + tmp___29; tmp___30 = get_stat64(& hw_stats->tx_mac_errors); estats->tx_mac_errors = old_estats->tx_mac_errors + tmp___30; tmp___31 = get_stat64(& hw_stats->tx_single_collisions); estats->tx_single_collisions = old_estats->tx_single_collisions + tmp___31; tmp___32 = get_stat64(& hw_stats->tx_mult_collisions); estats->tx_mult_collisions = old_estats->tx_mult_collisions + tmp___32; tmp___33 = get_stat64(& hw_stats->tx_deferred); estats->tx_deferred = old_estats->tx_deferred + tmp___33; tmp___34 = get_stat64(& hw_stats->tx_excessive_collisions); estats->tx_excessive_collisions = old_estats->tx_excessive_collisions + tmp___34; tmp___35 = get_stat64(& hw_stats->tx_late_collisions); estats->tx_late_collisions = old_estats->tx_late_collisions + tmp___35; tmp___36 = get_stat64(& hw_stats->tx_collide_2times); estats->tx_collide_2times = old_estats->tx_collide_2times + tmp___36; tmp___37 = get_stat64(& hw_stats->tx_collide_3times); estats->tx_collide_3times = old_estats->tx_collide_3times + tmp___37; tmp___38 = get_stat64(& hw_stats->tx_collide_4times); estats->tx_collide_4times = old_estats->tx_collide_4times + tmp___38; tmp___39 = get_stat64(& hw_stats->tx_collide_5times); estats->tx_collide_5times = old_estats->tx_collide_5times + tmp___39; tmp___40 = get_stat64(& hw_stats->tx_collide_6times); estats->tx_collide_6times = old_estats->tx_collide_6times + tmp___40; tmp___41 = get_stat64(& hw_stats->tx_collide_7times); estats->tx_collide_7times = old_estats->tx_collide_7times + tmp___41; tmp___42 = get_stat64(& hw_stats->tx_collide_8times); estats->tx_collide_8times = old_estats->tx_collide_8times + tmp___42; tmp___43 = get_stat64(& hw_stats->tx_collide_9times); estats->tx_collide_9times = old_estats->tx_collide_9times + tmp___43; tmp___44 = get_stat64(& hw_stats->tx_collide_10times); estats->tx_collide_10times = old_estats->tx_collide_10times + tmp___44; tmp___45 = get_stat64(& hw_stats->tx_collide_11times); estats->tx_collide_11times = old_estats->tx_collide_11times + tmp___45; tmp___46 = get_stat64(& hw_stats->tx_collide_12times); estats->tx_collide_12times = old_estats->tx_collide_12times + tmp___46; tmp___47 = get_stat64(& hw_stats->tx_collide_13times); estats->tx_collide_13times = old_estats->tx_collide_13times + tmp___47; tmp___48 = get_stat64(& hw_stats->tx_collide_14times); estats->tx_collide_14times = old_estats->tx_collide_14times + tmp___48; tmp___49 = get_stat64(& hw_stats->tx_collide_15times); estats->tx_collide_15times = old_estats->tx_collide_15times + tmp___49; tmp___50 = get_stat64(& hw_stats->tx_ucast_packets); estats->tx_ucast_packets = old_estats->tx_ucast_packets + tmp___50; tmp___51 = get_stat64(& hw_stats->tx_mcast_packets); estats->tx_mcast_packets = old_estats->tx_mcast_packets + tmp___51; tmp___52 = get_stat64(& hw_stats->tx_bcast_packets); estats->tx_bcast_packets = old_estats->tx_bcast_packets + tmp___52; tmp___53 = get_stat64(& hw_stats->tx_carrier_sense_errors); estats->tx_carrier_sense_errors = old_estats->tx_carrier_sense_errors + tmp___53; tmp___54 = get_stat64(& hw_stats->tx_discards); estats->tx_discards = old_estats->tx_discards + tmp___54; tmp___55 = get_stat64(& hw_stats->tx_errors); estats->tx_errors = old_estats->tx_errors + tmp___55; tmp___56 = get_stat64(& hw_stats->dma_writeq_full); estats->dma_writeq_full = old_estats->dma_writeq_full + tmp___56; tmp___57 = get_stat64(& hw_stats->dma_write_prioq_full); estats->dma_write_prioq_full = old_estats->dma_write_prioq_full + tmp___57; tmp___58 = get_stat64(& hw_stats->rxbds_empty); estats->rxbds_empty = old_estats->rxbds_empty + tmp___58; tmp___59 = get_stat64(& hw_stats->rx_discards); estats->rx_discards = old_estats->rx_discards + tmp___59; tmp___60 = get_stat64(& hw_stats->rx_errors); estats->rx_errors = old_estats->rx_errors + tmp___60; tmp___61 = get_stat64(& hw_stats->rx_threshold_hit); estats->rx_threshold_hit = old_estats->rx_threshold_hit + tmp___61; tmp___62 = get_stat64(& hw_stats->dma_readq_full); estats->dma_readq_full = old_estats->dma_readq_full + tmp___62; tmp___63 = get_stat64(& hw_stats->dma_read_prioq_full); estats->dma_read_prioq_full = old_estats->dma_read_prioq_full + tmp___63; tmp___64 = get_stat64(& hw_stats->tx_comp_queue_full); estats->tx_comp_queue_full = old_estats->tx_comp_queue_full + tmp___64; tmp___65 = get_stat64(& hw_stats->ring_set_send_prod_index); estats->ring_set_send_prod_index = old_estats->ring_set_send_prod_index + tmp___65; tmp___66 = get_stat64(& hw_stats->ring_status_update); estats->ring_status_update = old_estats->ring_status_update + tmp___66; tmp___67 = get_stat64(& hw_stats->nic_irqs); estats->nic_irqs = old_estats->nic_irqs + tmp___67; tmp___68 = get_stat64(& hw_stats->nic_avoided_irqs); estats->nic_avoided_irqs = old_estats->nic_avoided_irqs + tmp___68; tmp___69 = get_stat64(& hw_stats->nic_tx_threshold_hit); estats->nic_tx_threshold_hit = old_estats->nic_tx_threshold_hit + tmp___69; tmp___70 = get_stat64(& hw_stats->mbuf_lwm_thresh_hit); estats->mbuf_lwm_thresh_hit = old_estats->mbuf_lwm_thresh_hit + tmp___70; } return; } } static void tg3_get_nstats(struct tg3 *tp , struct rtnl_link_stats64 *stats ) { struct rtnl_link_stats64 *old_stats ; struct tg3_hw_stats *hw_stats ; u64 tmp ; u64 tmp___0 ; u64 tmp___1 ; u64 tmp___2 ; u64 tmp___3 ; u64 tmp___4 ; u64 tmp___5 ; u64 tmp___6 ; u64 tmp___7 ; u64 tmp___8 ; u64 tmp___9 ; u64 tmp___10 ; u64 tmp___11 ; u64 tmp___12 ; u64 tmp___13 ; u64 tmp___14 ; u64 tmp___15 ; u64 tmp___16 ; u64 tmp___17 ; u64 tmp___18 ; u64 tmp___19 ; u64 tmp___20 ; { { old_stats = & tp->net_stats_prev; hw_stats = tp->hw_stats; tmp = get_stat64(& hw_stats->rx_ucast_packets); tmp___0 = get_stat64(& hw_stats->rx_mcast_packets); tmp___1 = get_stat64(& hw_stats->rx_bcast_packets); stats->rx_packets = ((old_stats->rx_packets + tmp) + tmp___0) + tmp___1; tmp___2 = get_stat64(& hw_stats->tx_ucast_packets); tmp___3 = get_stat64(& hw_stats->tx_mcast_packets); tmp___4 = get_stat64(& hw_stats->tx_bcast_packets); stats->tx_packets = ((old_stats->tx_packets + tmp___2) + tmp___3) + tmp___4; tmp___5 = get_stat64(& hw_stats->rx_octets); stats->rx_bytes = old_stats->rx_bytes + tmp___5; tmp___6 = get_stat64(& hw_stats->tx_octets); stats->tx_bytes = old_stats->tx_bytes + tmp___6; tmp___7 = get_stat64(& hw_stats->rx_errors); stats->rx_errors = old_stats->rx_errors + tmp___7; tmp___8 = get_stat64(& hw_stats->tx_errors); tmp___9 = get_stat64(& hw_stats->tx_mac_errors); tmp___10 = get_stat64(& hw_stats->tx_carrier_sense_errors); tmp___11 = get_stat64(& hw_stats->tx_discards); stats->tx_errors = (((old_stats->tx_errors + tmp___8) + tmp___9) + tmp___10) + tmp___11; tmp___12 = get_stat64(& hw_stats->rx_mcast_packets); stats->multicast = old_stats->multicast + tmp___12; tmp___13 = get_stat64(& hw_stats->tx_collisions); stats->collisions = old_stats->collisions + tmp___13; tmp___14 = get_stat64(& hw_stats->rx_frame_too_long_errors); tmp___15 = get_stat64(& hw_stats->rx_undersize_packets); stats->rx_length_errors = (old_stats->rx_length_errors + tmp___14) + tmp___15; tmp___16 = get_stat64(& hw_stats->rx_align_errors); stats->rx_frame_errors = old_stats->rx_frame_errors + tmp___16; tmp___17 = get_stat64(& hw_stats->tx_discards); stats->tx_aborted_errors = old_stats->tx_aborted_errors + tmp___17; tmp___18 = get_stat64(& hw_stats->tx_carrier_sense_errors); stats->tx_carrier_errors = old_stats->tx_carrier_errors + tmp___18; tmp___19 = tg3_calc_crc_errors(tp); stats->rx_crc_errors = old_stats->rx_crc_errors + tmp___19; tmp___20 = get_stat64(& hw_stats->rx_discards); stats->rx_missed_errors = old_stats->rx_missed_errors + tmp___20; stats->rx_dropped = (__u64 )tp->rx_dropped; stats->tx_dropped = (__u64 )tp->tx_dropped; } return; } } static int tg3_get_regs_len(struct net_device *dev ) { { return (32768); } } static void tg3_get_regs(struct net_device *dev , struct ethtool_regs *regs , void *_p ) { struct tg3 *tp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; regs->version = 0U; __memset(_p, 0, 32768UL); } if ((int )tp->phy_flags & 1) { return; } else { } { tg3_full_lock(tp, 0); tg3_dump_legacy_regs(tp, (u32 *)_p); tg3_full_unlock(tp); } return; } } static int tg3_get_eeprom_len(struct net_device *dev ) { struct tg3 *tp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; } return ((int )tp->nvram_size); } } static int tg3_get_eeprom(struct net_device *dev , struct ethtool_eeprom *eeprom , u8 *data ) { struct tg3 *tp ; void *tmp ; int ret ; int cpmu_restore ; u8 *pd ; u32 i ; u32 offset ; u32 len ; u32 b_offset ; u32 b_count ; u32 cpmu_val ; __be32 val ; int tmp___0 ; int tmp___1 ; struct task_struct *tmp___2 ; int tmp___3 ; bool tmp___4 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; cpmu_restore = 0; cpmu_val = 0U; tmp___0 = _tg3_flag(59, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0) { return (-22); } else { } { offset = eeprom->offset; len = eeprom->len; eeprom->len = 0U; eeprom->magic = 1721324970U; tmp___1 = _tg3_flag(27, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 != 0) { { cpmu_val = (*(tp->read32))(tp, 13824U); } if ((cpmu_val & 1536U) != 0U) { { (*(tp->write32))(tp, 13824U, cpmu_val & 4294965759U); cpmu_restore = 1; } } else { } } else { } { tg3_override_clk(tp); } if ((offset & 3U) != 0U) { b_offset = offset & 3U; b_count = 4U - b_offset; if (b_count > len) { b_count = len; } else { } { ret = tg3_nvram_read_be32(tp, offset - b_offset, & val); } if (ret != 0) { goto eeprom_done; } else { } { __memcpy((void *)data, (void const *)(& val) + (unsigned long )b_offset, (size_t )b_count); len = len - b_count; offset = offset + b_count; eeprom->len = eeprom->len + b_count; } } else { } pd = data + (unsigned long )eeprom->len; i = 0U; goto ldv_59325; ldv_59324: { ret = tg3_nvram_read_be32(tp, offset + i, & val); } if (ret != 0) { if (i != 0U) { i = i - 4U; } else { } eeprom->len = eeprom->len + i; goto eeprom_done; } else { } { __memcpy((void *)pd + (unsigned long )i, (void const *)(& val), 4UL); tmp___4 = need_resched(); } if ((int )tmp___4) { { tmp___2 = get_current(); tmp___3 = signal_pending(tmp___2); } if (tmp___3 != 0) { eeprom->len = eeprom->len + i; ret = -4; goto eeprom_done; } else { } { ___might_sleep("drivers/net/ethernet/broadcom/tg3.c", 11990, 0); _cond_resched(); } } else { } i = i + 4U; ldv_59325: ; if (i < (len & 4294967292U)) { goto ldv_59324; } else { } eeprom->len = eeprom->len + i; if ((len & 3U) != 0U) { { pd = data + (unsigned long )eeprom->len; b_count = len & 3U; b_offset = (offset + len) - b_count; ret = tg3_nvram_read_be32(tp, b_offset, & val); } if (ret != 0) { goto eeprom_done; } else { } { __memcpy((void *)pd, (void const *)(& val), (size_t )b_count); eeprom->len = eeprom->len + b_count; } } else { } ret = 0; eeprom_done: { tg3_restore_clk(tp); } if (cpmu_restore != 0) { { (*(tp->write32))(tp, 13824U, cpmu_val); } } else { } return (ret); } } static int tg3_set_eeprom(struct net_device *dev , struct ethtool_eeprom *eeprom , u8 *data ) { struct tg3 *tp ; void *tmp ; int ret ; u32 offset ; u32 len ; u32 b_offset ; u32 odd_len ; u8 *buf ; __be32 start ; __be32 end ; int tmp___0 ; void *tmp___1 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; tmp___0 = _tg3_flag(59, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0 || eeprom->magic != 1721324970U) { return (-22); } else { } offset = eeprom->offset; len = eeprom->len; b_offset = offset & 3U; if (b_offset != 0U) { { ret = tg3_nvram_read_be32(tp, offset - b_offset, & start); } if (ret != 0) { return (ret); } else { } len = len + b_offset; offset = offset & 4294967292U; if (len <= 3U) { len = 4U; } else { } } else { } odd_len = 0U; if ((len & 3U) != 0U) { { odd_len = 1U; len = (len + 3U) & 4294967292U; ret = tg3_nvram_read_be32(tp, (offset + len) - 4U, & end); } if (ret != 0) { return (ret); } else { } } else { } buf = data; if ((b_offset | odd_len) != 0U) { { tmp___1 = kmalloc((size_t )len, 208U); buf = (u8 *)tmp___1; } if ((unsigned long )buf == (unsigned long )((u8 *)0U)) { return (-12); } else { } if (b_offset != 0U) { { __memcpy((void *)buf, (void const *)(& start), 4UL); } } else { } if (odd_len != 0U) { { __memcpy((void *)(buf + ((unsigned long )len + 0xfffffffffffffffcUL)), (void const *)(& end), 4UL); } } else { } { __memcpy((void *)buf + (unsigned long )b_offset, (void const *)data, (size_t )eeprom->len); } } else { } { ret = tg3_nvram_write_block(tp, offset, len, buf); } if ((unsigned long )buf != (unsigned long )data) { { kfree((void const *)buf); } } else { } return (ret); } } static int tg3_get_settings(struct net_device *dev , struct ethtool_cmd *cmd ) { struct tg3 *tp ; void *tmp ; struct phy_device *phydev ; int tmp___0 ; int tmp___1 ; int tmp___2 ; bool tmp___3 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; tmp___1 = _tg3_flag(52, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 != 0) { if ((tp->phy_flags & 2U) == 0U) { return (-11); } else { } { phydev = (tp->mdio_bus)->phy_map[(int )tp->phy_addr]; tmp___0 = phy_ethtool_gset(phydev, cmd); } return (tmp___0); } else { } cmd->supported = 64U; if ((tp->phy_flags & 128U) == 0U) { cmd->supported = cmd->supported | 48U; } else { } if ((tp->phy_flags & 48U) == 0U) { cmd->supported = cmd->supported | 143U; cmd->port = 0U; } else { cmd->supported = cmd->supported | 1024U; cmd->port = 3U; } { cmd->advertising = tp->link_config.advertising; tmp___2 = _tg3_flag(26, (unsigned long *)(& tp->tg3_flags)); } if (tmp___2 != 0) { if (((int )tp->link_config.flowctrl & 2) != 0) { if ((int )tp->link_config.flowctrl & 1) { cmd->advertising = cmd->advertising | 8192U; } else { cmd->advertising = cmd->advertising | 24576U; } } else if ((int )tp->link_config.flowctrl & 1) { cmd->advertising = cmd->advertising | 16384U; } else { } } else { } { tmp___3 = netif_running((struct net_device const *)dev); } if ((int )tmp___3 && (int )tp->link_up) { { ethtool_cmd_speed_set(cmd, (__u32 )tp->link_config.active_speed); cmd->duplex = tp->link_config.active_duplex; cmd->lp_advertising = tp->link_config.rmt_adv; } if ((tp->phy_flags & 48U) == 0U) { if ((tp->phy_flags & 2097152U) != 0U) { cmd->eth_tp_mdix = 2U; } else { cmd->eth_tp_mdix = 1U; } } else { } } else { { ethtool_cmd_speed_set(cmd, 4294967295U); cmd->duplex = 255U; cmd->eth_tp_mdix = 0U; } } cmd->phy_address = tp->phy_addr; cmd->transceiver = 0U; cmd->autoneg = tp->link_config.autoneg; cmd->maxtxpkt = 0U; cmd->maxrxpkt = 0U; return (0); } } static int tg3_set_settings(struct net_device *dev , struct ethtool_cmd *cmd ) { struct tg3 *tp ; void *tmp ; u32 speed ; __u32 tmp___0 ; struct phy_device *phydev ; int tmp___1 ; int tmp___2 ; u32 mask ; bool tmp___3 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; tmp___0 = ethtool_cmd_speed((struct ethtool_cmd const *)cmd); speed = tmp___0; tmp___2 = _tg3_flag(52, (unsigned long *)(& tp->tg3_flags)); } if (tmp___2 != 0) { if ((tp->phy_flags & 2U) == 0U) { return (-11); } else { } { phydev = (tp->mdio_bus)->phy_map[(int )tp->phy_addr]; tmp___1 = phy_ethtool_sset(phydev, cmd); } return (tmp___1); } else { } if ((unsigned int )cmd->autoneg > 1U) { return (-22); } else { } if (((unsigned int )cmd->autoneg == 0U && (unsigned int )cmd->duplex != 1U) && (unsigned int )cmd->duplex != 0U) { return (-22); } else { } if ((unsigned int )cmd->autoneg == 1U) { mask = 24640U; if ((tp->phy_flags & 128U) == 0U) { mask = mask | 48U; } else { } if ((tp->phy_flags & 48U) == 0U) { mask = mask | 143U; } else { mask = mask | 1024U; } if ((cmd->advertising & ~ mask) != 0U) { return (-22); } else { } mask = mask & 63U; cmd->advertising = cmd->advertising & mask; } else if ((tp->phy_flags & 48U) != 0U) { if (speed != 1000U) { return (-22); } else { } if ((unsigned int )cmd->duplex != 1U) { return (-22); } else { } } else if (speed != 100U && speed != 10U) { return (-22); } else { } { tg3_full_lock(tp, 0); tp->link_config.autoneg = cmd->autoneg; } if ((unsigned int )cmd->autoneg == 1U) { tp->link_config.advertising = cmd->advertising | 64U; tp->link_config.speed = 65535U; tp->link_config.duplex = 255U; } else { tp->link_config.advertising = 0U; tp->link_config.speed = (u16 )speed; tp->link_config.duplex = cmd->duplex; } { tp->phy_flags = tp->phy_flags | 8U; tg3_warn_mgmt_link_flap(tp); tmp___3 = netif_running((struct net_device const *)dev); } if ((int )tmp___3) { { tg3_setup_phy(tp, 1); } } else { } { tg3_full_unlock(tp); } return (0); } } static void tg3_get_drvinfo(struct net_device *dev , struct ethtool_drvinfo *info ) { struct tg3 *tp ; void *tmp ; char const *tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; strlcpy((char *)(& info->driver), "tg3", 32UL); strlcpy((char *)(& info->version), "3.137", 32UL); strlcpy((char *)(& info->fw_version), (char const *)(& tp->fw_ver), 32UL); tmp___0 = pci_name((struct pci_dev const *)tp->pdev); strlcpy((char *)(& info->bus_info), tmp___0, 32UL); } return; } } static void tg3_get_wol(struct net_device *dev , struct ethtool_wolinfo *wol ) { struct tg3 *tp ; void *tmp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; bool tmp___3 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; tmp___0 = _tg3_flag(24, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0) { { tmp___1 = device_can_wakeup(& (tp->pdev)->dev); } if ((int )tmp___1) { wol->supported = 32U; } else { wol->supported = 0U; } } else { wol->supported = 0U; } { wol->wolopts = 0U; tmp___2 = _tg3_flag(11, (unsigned long *)(& tp->tg3_flags)); } if (tmp___2 != 0) { { tmp___3 = device_can_wakeup(& (tp->pdev)->dev); } if ((int )tmp___3) { wol->wolopts = 32U; } else { } } else { } { __memset((void *)(& wol->sopass), 0, 6UL); } return; } } static int tg3_set_wol(struct net_device *dev , struct ethtool_wolinfo *wol ) { struct tg3 *tp ; void *tmp ; struct device *dp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; bool tmp___3 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; dp = & (tp->pdev)->dev; } if ((wol->wolopts & 4294967263U) != 0U) { return (-22); } else { } if ((wol->wolopts & 32U) != 0U) { { tmp___0 = _tg3_flag(24, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 == 0) { return (-22); } else { { tmp___1 = device_can_wakeup(dp); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { return (-22); } else { } } } else { } { device_set_wakeup_enable(dp, (wol->wolopts & 32U) != 0U); tmp___3 = device_may_wakeup(dp); } if ((int )tmp___3) { { _tg3_flag_set(11, (unsigned long *)(& tp->tg3_flags)); } } else { { _tg3_flag_clear(11, (unsigned long *)(& tp->tg3_flags)); } } return (0); } } static u32 tg3_get_msglevel(struct net_device *dev ) { struct tg3 *tp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; } return (tp->msg_enable); } } static void tg3_set_msglevel(struct net_device *dev , u32 value ) { struct tg3 *tp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; tp->msg_enable = value; } return; } } static int tg3_nway_reset(struct net_device *dev ) { struct tg3 *tp ; void *tmp ; int r ; bool tmp___0 ; int tmp___1 ; u32 bmcr ; int tmp___2 ; int tmp___3 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; tmp___0 = netif_running((struct net_device const *)dev); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (-11); } else { } if ((tp->phy_flags & 16U) != 0U) { return (-22); } else { } { tg3_warn_mgmt_link_flap(tp); tmp___3 = _tg3_flag(52, (unsigned long *)(& tp->tg3_flags)); } if (tmp___3 != 0) { if ((tp->phy_flags & 2U) == 0U) { return (-11); } else { } { r = phy_start_aneg((tp->mdio_bus)->phy_map[(int )tp->phy_addr]); } } else { { ldv_spin_lock_bh_139(& tp->lock); r = -22; tg3_readphy(tp, 0, & bmcr); tmp___2 = tg3_readphy(tp, 0, & bmcr); } if (tmp___2 == 0 && ((bmcr & 4096U) != 0U || (tp->phy_flags & 131072U) != 0U)) { { tg3_writephy(tp, 0, bmcr | 4608U); r = 0; } } else { } { ldv_spin_unlock_bh_140(& tp->lock); } } return (r); } } static void tg3_get_ringparam(struct net_device *dev , struct ethtool_ringparam *ering ) { struct tg3 *tp ; void *tmp ; int tmp___0 ; int tmp___1 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; ering->rx_max_pending = tp->rx_std_ring_mask; tmp___0 = _tg3_flag(25, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0) { ering->rx_jumbo_max_pending = tp->rx_jmb_ring_mask; } else { ering->rx_jumbo_max_pending = 0U; } { ering->tx_max_pending = 511U; ering->rx_pending = tp->rx_pending; tmp___1 = _tg3_flag(25, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 != 0) { ering->rx_jumbo_pending = tp->rx_jumbo_pending; } else { ering->rx_jumbo_pending = 0U; } ering->tx_pending = tp->napi[0].tx_pending; return; } } static int tg3_set_ringparam(struct net_device *dev , struct ethtool_ringparam *ering ) { struct tg3 *tp ; void *tmp ; int i ; int irq_sync ; int err ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; bool tmp___4 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; irq_sync = 0; err = 0; } if (((ering->rx_pending > tp->rx_std_ring_mask || ering->rx_jumbo_pending > tp->rx_jmb_ring_mask) || ering->tx_pending > 511U) || ering->tx_pending <= 17U) { return (-22); } else { { tmp___0 = _tg3_flag(44, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0 && ering->tx_pending <= 51U) { return (-22); } else { } } { tmp___1 = netif_running((struct net_device const *)dev); } if ((int )tmp___1) { { tg3_phy_stop(tp); tg3_netif_stop(tp); irq_sync = 1; } } else { } { tg3_full_lock(tp, irq_sync); tp->rx_pending = ering->rx_pending; tmp___2 = _tg3_flag(33, (unsigned long *)(& tp->tg3_flags)); } if (tmp___2 != 0 && tp->rx_pending > 63U) { tp->rx_pending = 63U; } else { } { tmp___3 = _tg3_flag(25, (unsigned long *)(& tp->tg3_flags)); } if (tmp___3 != 0) { tp->rx_jumbo_pending = ering->rx_jumbo_pending; } else { } i = 0; goto ldv_59400; ldv_59399: tp->napi[i].tx_pending = ering->tx_pending; i = i + 1; ldv_59400: ; if ((unsigned int )i < tp->irq_max) { goto ldv_59399; } else { } { tmp___4 = netif_running((struct net_device const *)dev); } if ((int )tmp___4) { { tg3_halt(tp, 0, 1); err = tg3_restart_hw(tp, 0); } if (err == 0) { { tg3_netif_start(tp); } } else { } } else { } { tg3_full_unlock(tp); } if (irq_sync != 0 && err == 0) { { tg3_phy_start(tp); } } else { } return (err); } } static void tg3_get_pauseparam(struct net_device *dev , struct ethtool_pauseparam *epause ) { struct tg3 *tp ; void *tmp ; int tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; tmp___0 = _tg3_flag(26, (unsigned long *)(& tp->tg3_flags)); epause->autoneg = tmp___0 != 0; } if (((int )tp->link_config.flowctrl & 2) != 0) { epause->rx_pause = 1U; } else { epause->rx_pause = 0U; } if ((int )tp->link_config.flowctrl & 1) { epause->tx_pause = 1U; } else { epause->tx_pause = 0U; } return; } } static int tg3_set_pauseparam(struct net_device *dev , struct ethtool_pauseparam *epause ) { struct tg3 *tp ; void *tmp ; int err ; u32 newadv ; struct phy_device *phydev ; u32 oldadv ; int tmp___0 ; int irq_sync ; bool tmp___1 ; bool tmp___2 ; int tmp___3 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; err = 0; } if ((unsigned int )tp->link_config.autoneg == 1U) { { tg3_warn_mgmt_link_flap(tp); } } else { } { tmp___3 = _tg3_flag(52, (unsigned long *)(& tp->tg3_flags)); } if (tmp___3 != 0) { phydev = (tp->mdio_bus)->phy_map[(int )tp->phy_addr]; if ((phydev->supported & 8192U) == 0U || ((phydev->supported & 16384U) == 0U && epause->rx_pause != epause->tx_pause)) { return (-22); } else { } tp->link_config.flowctrl = 0U; if (epause->rx_pause != 0U) { tp->link_config.flowctrl = (u8 )((unsigned int )tp->link_config.flowctrl | 2U); if (epause->tx_pause != 0U) { tp->link_config.flowctrl = (u8 )((unsigned int )tp->link_config.flowctrl | 1U); newadv = 8192U; } else { newadv = 24576U; } } else if (epause->tx_pause != 0U) { tp->link_config.flowctrl = (u8 )((unsigned int )tp->link_config.flowctrl | 1U); newadv = 16384U; } else { newadv = 0U; } if (epause->autoneg != 0U) { { _tg3_flag_set(26, (unsigned long *)(& tp->tg3_flags)); } } else { { _tg3_flag_clear(26, (unsigned long *)(& tp->tg3_flags)); } } if ((tp->phy_flags & 2U) != 0U) { oldadv = phydev->advertising & 24576U; if (oldadv != newadv) { phydev->advertising = phydev->advertising & 4294942719U; phydev->advertising = phydev->advertising | newadv; if (phydev->autoneg != 0) { { tmp___0 = phy_start_aneg(phydev); } return (tmp___0); } else { } } else { } if (epause->autoneg == 0U) { { tg3_setup_flow_control(tp, 0U, 0U); } } else { } } else { tp->link_config.advertising = tp->link_config.advertising & 4294942719U; tp->link_config.advertising = tp->link_config.advertising | newadv; } } else { { irq_sync = 0; tmp___1 = netif_running((struct net_device const *)dev); } if ((int )tmp___1) { { tg3_netif_stop(tp); irq_sync = 1; } } else { } { tg3_full_lock(tp, irq_sync); } if (epause->autoneg != 0U) { { _tg3_flag_set(26, (unsigned long *)(& tp->tg3_flags)); } } else { { _tg3_flag_clear(26, (unsigned long *)(& tp->tg3_flags)); } } if (epause->rx_pause != 0U) { tp->link_config.flowctrl = (u8 )((unsigned int )tp->link_config.flowctrl | 2U); } else { tp->link_config.flowctrl = (unsigned int )tp->link_config.flowctrl & 253U; } if (epause->tx_pause != 0U) { tp->link_config.flowctrl = (u8 )((unsigned int )tp->link_config.flowctrl | 1U); } else { tp->link_config.flowctrl = (unsigned int )tp->link_config.flowctrl & 254U; } { tmp___2 = netif_running((struct net_device const *)dev); } if ((int )tmp___2) { { tg3_halt(tp, 0, 1); err = tg3_restart_hw(tp, 0); } if (err == 0) { { tg3_netif_start(tp); } } else { } } else { } { tg3_full_unlock(tp); } } tp->phy_flags = tp->phy_flags | 8U; return (err); } } static int tg3_get_sset_count(struct net_device *dev , int sset ) { { { if (sset == 0) { goto case_0; } else { } if (sset == 1) { goto case_1; } else { } goto switch_default; case_0: /* CIL Label */ ; return (8); case_1: /* CIL Label */ ; return (72); switch_default: /* CIL Label */ ; return (-95); switch_break: /* CIL Label */ ; } } } static int tg3_get_rxnfc(struct net_device *dev , struct ethtool_rxnfc *info , u32 *rules ) { struct tg3 *tp ; void *tmp ; int tmp___0 ; unsigned int tmp___1 ; bool tmp___2 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; tmp___0 = _tg3_flag(16, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 == 0) { return (-95); } else { } { if (info->cmd == 45U) { goto case_45; } else { } goto switch_default; case_45: /* CIL Label */ { tmp___2 = netif_running((struct net_device const *)tp->dev); } if ((int )tmp___2) { info->data = (__u64 )tp->rxq_cnt; } else { { tmp___1 = cpumask_weight(cpu_online_mask); info->data = (__u64 )tmp___1; } if (info->data > 4ULL) { info->data = 4ULL; } else { } } info->data = info->data - 1ULL; return (0); switch_default: /* CIL Label */ ; return (-95); switch_break: /* CIL Label */ ; } } } static u32 tg3_get_rxfh_indir_size(struct net_device *dev ) { u32 size ; struct tg3 *tp ; void *tmp ; int tmp___0 ; { { size = 0U; tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; tmp___0 = _tg3_flag(16, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0) { size = 128U; } else { } return (size); } } static int tg3_get_rxfh(struct net_device *dev , u32 *indir , u8 *key , u8 *hfunc ) { struct tg3 *tp ; void *tmp ; int i ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; } if ((unsigned long )hfunc != (unsigned long )((u8 *)0U)) { *hfunc = 1U; } else { } if ((unsigned long )indir == (unsigned long )((u32 *)0U)) { return (0); } else { } i = 0; goto ldv_59450; ldv_59449: *(indir + (unsigned long )i) = (u32 )tp->rss_ind_tbl[i]; i = i + 1; ldv_59450: ; if (i <= 127) { goto ldv_59449; } else { } return (0); } } static int tg3_set_rxfh(struct net_device *dev , u32 const *indir , u8 const *key , u8 const hfunc ) { struct tg3 *tp ; void *tmp ; size_t i ; bool tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; } if ((unsigned long )key != (unsigned long )((u8 const *)0U) || (unsigned int )hfunc > 1U) { return (-95); } else { } if ((unsigned long )indir == (unsigned long )((u32 const *)0U)) { return (0); } else { } i = 0UL; goto ldv_59461; ldv_59460: tp->rss_ind_tbl[i] = (u8 )*(indir + i); i = i + 1UL; ldv_59461: ; if (i <= 127UL) { goto ldv_59460; } else { } { tmp___0 = netif_running((struct net_device const *)dev); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (0); } else { { tmp___2 = _tg3_flag(60, (unsigned long *)(& tp->tg3_flags)); } if (tmp___2 == 0) { return (0); } else { } } { tg3_full_lock(tp, 0); tg3_rss_write_indir_tbl(tp); tg3_full_unlock(tp); } return (0); } } static void tg3_get_channels(struct net_device *dev , struct ethtool_channels *channel ) { struct tg3 *tp ; void *tmp ; u32 deflt_qs ; int tmp___0 ; u32 _min1 ; u32 _min2 ; u32 _min1___0 ; u32 _min2___0 ; bool tmp___1 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; tmp___0 = netif_get_num_default_rss_queues(); deflt_qs = (u32 )tmp___0; channel->max_rx = tp->rxq_max; channel->max_tx = tp->txq_max; tmp___1 = netif_running((struct net_device const *)dev); } if ((int )tmp___1) { channel->rx_count = tp->rxq_cnt; channel->tx_count = tp->txq_cnt; } else { if (tp->rxq_req != 0U) { channel->rx_count = tp->rxq_req; } else { _min1 = deflt_qs; _min2 = tp->rxq_max; channel->rx_count = _min1 < _min2 ? _min1 : _min2; } if (tp->txq_req != 0U) { channel->tx_count = tp->txq_req; } else { _min1___0 = deflt_qs; _min2___0 = tp->txq_max; channel->tx_count = _min1___0 < _min2___0 ? _min1___0 : _min2___0; } } return; } } static int tg3_set_channels(struct net_device *dev , struct ethtool_channels *channel ) { struct tg3 *tp ; void *tmp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; tmp___0 = _tg3_flag(16, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 == 0) { return (-95); } else { } if (channel->rx_count > tp->rxq_max || channel->tx_count > tp->txq_max) { return (-22); } else { } { tp->rxq_req = channel->rx_count; tp->txq_req = channel->tx_count; tmp___1 = netif_running((struct net_device const *)dev); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { return (0); } else { } { tg3_stop(tp); tg3_carrier_off(tp); tg3_start(tp, 1, 0, 0); } return (0); } } static void tg3_get_strings(struct net_device *dev , u32 stringset , u8 *buf ) { int __ret_warn_on ; long tmp ; { { if (stringset == 1U) { goto case_1; } else { } if (stringset == 0U) { goto case_0; } else { } goto switch_default; case_1: /* CIL Label */ { __memcpy((void *)buf, (void const *)(& ethtool_stats_keys), 2304UL); } goto ldv_59486; case_0: /* CIL Label */ { __memcpy((void *)buf, (void const *)(& ethtool_test_keys), 256UL); } goto ldv_59486; switch_default: /* CIL Label */ { __ret_warn_on = 1; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/ethernet/broadcom/tg3.c", 12678); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } goto ldv_59486; switch_break: /* CIL Label */ ; } ldv_59486: ; return; } } static int tg3_set_phys_id(struct net_device *dev , enum ethtool_phys_id_state state ) { struct tg3 *tp ; void *tmp ; bool tmp___0 ; int tmp___1 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; tmp___0 = netif_running((struct net_device const *)tp->dev); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (-11); } else { } { if ((unsigned int )state == 1U) { goto case_1; } else { } if ((unsigned int )state == 2U) { goto case_2; } else { } if ((unsigned int )state == 3U) { goto case_3; } else { } if ((unsigned int )state == 0U) { goto case_0; } else { } goto switch_break; case_1: /* CIL Label */ ; return (1); case_2: /* CIL Label */ { (*(tp->write32))(tp, 1036U, 127U); } goto ldv_59498; case_3: /* CIL Label */ { (*(tp->write32))(tp, 1036U, 17U); } goto ldv_59498; case_0: /* CIL Label */ { (*(tp->write32))(tp, 1036U, tp->led_ctrl); } goto ldv_59498; switch_break: /* CIL Label */ ; } ldv_59498: ; return (0); } } static void tg3_get_ethtool_stats(struct net_device *dev , struct ethtool_stats *estats , u64 *tmp_stats ) { struct tg3 *tp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; } if ((unsigned long )tp->hw_stats != (unsigned long )((struct tg3_hw_stats *)0)) { { tg3_get_estats(tp, (struct tg3_ethtool_stats *)tmp_stats); } } else { { __memset((void *)tmp_stats, 0, 576UL); } } return; } } static __be32 *tg3_vpd_readblock(struct tg3 *tp , u32 *vpdlen ) { int i ; __be32 *buf ; u32 offset ; u32 len ; u32 magic ; u32 val ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; void *tmp___3 ; int tmp___4 ; u8 *ptr ; ssize_t cnt ; unsigned int pos ; { { offset = 0U; len = 0U; tmp = _tg3_flag(59, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { return ((__be32 *)0U); } else { { tmp___0 = tg3_nvram_read(tp, 0U, & magic); } if (tmp___0 != 0) { return ((__be32 *)0U); } else { } } if (magic == 1721324970U) { offset = 24U; goto ldv_59519; ldv_59518: { tmp___1 = tg3_nvram_read(tp, offset, & val); } if (tmp___1 != 0) { return ((__be32 *)0U); } else { } if (val >> 24 == 20U) { goto ldv_59517; } else { } offset = offset + 12U; ldv_59519: ; if (offset <= 119U) { goto ldv_59518; } else { } ldv_59517: ; if (offset != 120U) { { len = (val & 4194303U) * 4U; tmp___2 = tg3_nvram_read(tp, offset + 4U, & offset); } if (tmp___2 != 0) { return ((__be32 *)0U); } else { } { offset = tg3_nvram_logical_addr(tp, offset); } } else { } } else { } if (offset == 0U || len == 0U) { offset = 256U; len = 256U; } else { } { tmp___3 = kmalloc((size_t )len, 208U); buf = (__be32 *)tmp___3; } if ((unsigned long )buf == (unsigned long )((__be32 *)0U)) { return ((__be32 *)0U); } else { } if (magic == 1721324970U) { i = 0; goto ldv_59522; ldv_59521: { tmp___4 = tg3_nvram_read_be32(tp, offset + (u32 )i, buf + (unsigned long )(i / 4)); } if (tmp___4 != 0) { goto error; } else { } i = i + 4; ldv_59522: ; if ((u32 )i < len) { goto ldv_59521; } else { } } else { pos = 0U; ptr = (u8 *)buf; i = 0; goto ldv_59528; ldv_59527: { cnt = pci_read_vpd(tp->pdev, (loff_t )pos, (size_t )(len - pos), (void *)ptr); } if (cnt == -110L || cnt == -4L) { cnt = 0L; } else if (cnt < 0L) { goto error; } else { } i = i + 1; pos = pos + (unsigned int )cnt; ptr = ptr + (unsigned long )cnt; ldv_59528: ; if (pos < len && i <= 2) { goto ldv_59527; } else { } if (pos != len) { goto error; } else { } } *vpdlen = len; return (buf); error: { kfree((void const *)buf); } return ((__be32 *)0U); } } static int tg3_test_nvram(struct tg3 *tp ) { u32 csum ; u32 magic ; u32 len ; __be32 *buf ; int i ; int j ; int k ; int err ; int size ; int tmp ; int tmp___0 ; void *tmp___1 ; __u32 tmp___2 ; u8 *buf8 ; u8 csum8 ; u8 data[28U] ; u8 parity[28U] ; u8 *buf8___0 ; int l ; u8 msk ; int tmp___3 ; int l___0 ; u8 msk___0 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; u8 hw8 ; unsigned int tmp___7 ; u16 tmp___8 ; u8 csum8___0 ; { { err = 0; tmp = _tg3_flag(59, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { return (0); } else { } { tmp___0 = tg3_nvram_read(tp, 0U, & magic); } if (tmp___0 != 0) { return (-5); } else { } if (magic == 1721324970U) { size = 256; } else if ((magic & 4278190080U) == 2768240640U) { if ((magic & 14680064U) == 2097152U) { { if ((magic & 2031616U) == 0U) { goto case_0; } else { } if ((magic & 2031616U) == 131072U) { goto case_131072; } else { } if ((magic & 2031616U) == 196608U) { goto case_196608; } else { } if ((magic & 2031616U) == 262144U) { goto case_262144; } else { } if ((magic & 2031616U) == 327680U) { goto case_327680; } else { } if ((magic & 2031616U) == 393216U) { goto case_393216; } else { } goto switch_default; case_0: /* CIL Label */ size = 20; goto ldv_59543; case_131072: /* CIL Label */ size = 24; goto ldv_59543; case_196608: /* CIL Label */ size = 28; goto ldv_59543; case_262144: /* CIL Label */ size = 32; goto ldv_59543; case_327680: /* CIL Label */ size = 36; goto ldv_59543; case_393216: /* CIL Label */ size = 80; goto ldv_59543; switch_default: /* CIL Label */ ; return (-5); switch_break: /* CIL Label */ ; } ldv_59543: ; } else { return (0); } } else if ((magic & 65535U) == 43981U) { size = 32; } else { return (-5); } { tmp___1 = kmalloc((size_t )size, 208U); buf = (__be32 *)tmp___1; } if ((unsigned long )buf == (unsigned long )((__be32 *)0U)) { return (-12); } else { } err = -5; i = 0; j = 0; goto ldv_59552; ldv_59551: { err = tg3_nvram_read_be32(tp, (u32 )i, buf + (unsigned long )j); } if (err != 0) { goto ldv_59550; } else { } i = i + 4; j = j + 1; ldv_59552: ; if (i < size) { goto ldv_59551; } else { } ldv_59550: ; if (i < size) { goto out; } else { } { tmp___2 = __fswab32(*buf); magic = tmp___2; } if ((magic & 4278190080U) == 2768240640U) { buf8 = (u8 *)buf; csum8 = 0U; if ((magic & 2031616U) == 131072U) { i = 0; goto ldv_59557; ldv_59556: csum8 = (int )csum8 + (int )*(buf8 + (unsigned long )i); i = i + 1; ldv_59557: ; if (i <= 15) { goto ldv_59556; } else { } i = 20; goto ldv_59560; ldv_59559: csum8 = (int )csum8 + (int )*(buf8 + (unsigned long )i); i = i + 1; ldv_59560: ; if (i < size) { goto ldv_59559; } else { } } else { i = 0; goto ldv_59563; ldv_59562: csum8 = (int )csum8 + (int )*(buf8 + (unsigned long )i); i = i + 1; ldv_59563: ; if (i < size) { goto ldv_59562; } else { } } if ((unsigned int )csum8 == 0U) { err = 0; goto out; } else { } err = -5; goto out; } else { } if ((magic & 65535U) == 43981U) { buf8___0 = (u8 *)buf; i = 0; j = 0; k = 0; goto ldv_59582; ldv_59581: ; if (i == 0 || i == 8) { l = 0; msk = 128U; goto ldv_59571; ldv_59570: tmp___3 = k; k = k + 1; parity[tmp___3] = (u8 )((int )*(buf8___0 + (unsigned long )i) & (int )msk); l = l + 1; msk = (u8 )((int )msk >> 1); ldv_59571: ; if (l <= 6) { goto ldv_59570; } else { } i = i + 1; } else if (i == 16) { l___0 = 0; msk___0 = 32U; goto ldv_59576; ldv_59575: tmp___4 = k; k = k + 1; parity[tmp___4] = (u8 )((int )*(buf8___0 + (unsigned long )i) & (int )msk___0); l___0 = l___0 + 1; msk___0 = (u8 )((int )msk___0 >> 1); ldv_59576: ; if (l___0 <= 5) { goto ldv_59575; } else { } i = i + 1; l___0 = 0; msk___0 = 128U; goto ldv_59579; ldv_59578: tmp___5 = k; k = k + 1; parity[tmp___5] = (u8 )((int )*(buf8___0 + (unsigned long )i) & (int )msk___0); l___0 = l___0 + 1; msk___0 = (u8 )((int )msk___0 >> 1); ldv_59579: ; if (l___0 <= 7) { goto ldv_59578; } else { } i = i + 1; } else { } tmp___6 = j; j = j + 1; data[tmp___6] = *(buf8___0 + (unsigned long )i); i = i + 1; ldv_59582: ; if (i <= 31) { goto ldv_59581; } else { } err = -5; i = 0; goto ldv_59586; ldv_59585: { tmp___7 = __arch_hweight8((unsigned int )data[i]); hw8 = (u8 )tmp___7; } if ((int )hw8 & 1 && (unsigned int )parity[i] != 0U) { goto out; } else if (((int )hw8 & 1) == 0 && (unsigned int )parity[i] == 0U) { goto out; } else { } i = i + 1; ldv_59586: ; if (i <= 27) { goto ldv_59585; } else { } err = 0; goto out; } else { } { err = -5; csum = calc_crc((unsigned char *)buf, 16); } if (csum != *(buf + 4UL)) { goto out; } else { } { csum = calc_crc((unsigned char *)buf + 29U, 136); } if (csum != *(buf + 63UL)) { goto out; } else { } { kfree((void const *)buf); buf = tg3_vpd_readblock(tp, & len); } if ((unsigned long )buf == (unsigned long )((__be32 *)0U)) { return (-12); } else { } { i = pci_vpd_find_tag((u8 const *)buf, 0U, len, 144); } if (i > 0) { { tmp___8 = pci_vpd_lrdt_size((u8 const *)buf + (unsigned long )i); j = (int )tmp___8; } if (j < 0) { goto out; } else { } if ((u32 )((i + 3) + j) > len) { goto out; } else { } { i = i + 3; j = pci_vpd_find_info_keyword((u8 const *)buf, (unsigned int )i, (unsigned int )j, "RV"); } if (j > 0) { csum8___0 = 0U; j = j + 3; i = 0; goto ldv_59590; ldv_59589: csum8___0 = (int )csum8___0 + (int )*((u8 *)buf + (unsigned long )i); i = i + 1; ldv_59590: ; if (i <= j) { goto ldv_59589; } else { } if ((unsigned int )csum8___0 != 0U) { goto out; } else { } } else { } } else { } err = 0; out: { kfree((void const *)buf); } return (err); } } static int tg3_test_link(struct tg3 *tp ) { int i ; int max ; bool tmp ; int tmp___0 ; unsigned long tmp___1 ; { { tmp = netif_running((struct net_device const *)tp->dev); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (-19); } else { } if ((tp->phy_flags & 48U) != 0U) { max = 2; } else { max = 6; } i = 0; goto ldv_59599; ldv_59598: ; if ((int )tp->link_up) { return (0); } else { } { tmp___1 = msleep_interruptible(1000U); } if (tmp___1 != 0UL) { goto ldv_59597; } else { } i = i + 1; ldv_59599: ; if (i < max) { goto ldv_59598; } else { } ldv_59597: ; return (-5); } } static int tg3_test_registers(struct tg3 *tp ) { int i ; int is_5705 ; int is_5750 ; u32 offset ; u32 read_mask ; u32 write_mask ; u32 val ; u32 save_val ; u32 read_val ; struct __anonstruct_reg_tbl_328 reg_tbl[61U] ; int tmp ; int tmp___0 ; int tmp___1 ; { { reg_tbl[0].offset = 1024U; reg_tbl[0].flags = 2U; reg_tbl[0].read_mask = 0U; reg_tbl[0].write_mask = 15691660U; reg_tbl[1].offset = 1024U; reg_tbl[1].flags = 1U; reg_tbl[1].read_mask = 0U; reg_tbl[1].write_mask = 32467852U; reg_tbl[2].offset = 1028U; reg_tbl[2].flags = 2U; reg_tbl[2].read_mask = 58720519U; reg_tbl[2].write_mask = 0U; reg_tbl[3].offset = 1028U; reg_tbl[3].flags = 1U; reg_tbl[3].read_mask = 58720512U; reg_tbl[3].write_mask = 0U; reg_tbl[4].offset = 1040U; reg_tbl[4].flags = 0U; reg_tbl[4].read_mask = 0U; reg_tbl[4].write_mask = 65535U; reg_tbl[5].offset = 1044U; reg_tbl[5].flags = 0U; reg_tbl[5].read_mask = 0U; reg_tbl[5].write_mask = 4294967295U; reg_tbl[6].offset = 1084U; reg_tbl[6].flags = 0U; reg_tbl[6].read_mask = 0U; reg_tbl[6].write_mask = 65535U; reg_tbl[7].offset = 1116U; reg_tbl[7].flags = 0U; reg_tbl[7].read_mask = 0U; reg_tbl[7].write_mask = 112U; reg_tbl[8].offset = 1124U; reg_tbl[8].flags = 0U; reg_tbl[8].read_mask = 0U; reg_tbl[8].write_mask = 16383U; reg_tbl[9].offset = 1128U; reg_tbl[9].flags = 2U; reg_tbl[9].read_mask = 0U; reg_tbl[9].write_mask = 2044U; reg_tbl[10].offset = 1128U; reg_tbl[10].flags = 1U; reg_tbl[10].read_mask = 0U; reg_tbl[10].write_mask = 2012U; reg_tbl[11].offset = 1136U; reg_tbl[11].flags = 0U; reg_tbl[11].read_mask = 0U; reg_tbl[11].write_mask = 4294967295U; reg_tbl[12].offset = 1140U; reg_tbl[12].flags = 0U; reg_tbl[12].read_mask = 0U; reg_tbl[12].write_mask = 4294967295U; reg_tbl[13].offset = 1144U; reg_tbl[13].flags = 0U; reg_tbl[13].read_mask = 0U; reg_tbl[13].write_mask = 4294967295U; reg_tbl[14].offset = 1148U; reg_tbl[14].flags = 0U; reg_tbl[14].read_mask = 0U; reg_tbl[14].write_mask = 4294967295U; reg_tbl[15].offset = 9280U; reg_tbl[15].flags = 2U; reg_tbl[15].read_mask = 0U; reg_tbl[15].write_mask = 4294967295U; reg_tbl[16].offset = 9284U; reg_tbl[16].flags = 2U; reg_tbl[16].read_mask = 0U; reg_tbl[16].write_mask = 4294967295U; reg_tbl[17].offset = 9288U; reg_tbl[17].flags = 2U; reg_tbl[17].read_mask = 0U; reg_tbl[17].write_mask = 3U; reg_tbl[18].offset = 9292U; reg_tbl[18].flags = 2U; reg_tbl[18].read_mask = 0U; reg_tbl[18].write_mask = 4294967295U; reg_tbl[19].offset = 9296U; reg_tbl[19].flags = 0U; reg_tbl[19].read_mask = 0U; reg_tbl[19].write_mask = 4294967295U; reg_tbl[20].offset = 9300U; reg_tbl[20].flags = 0U; reg_tbl[20].read_mask = 0U; reg_tbl[20].write_mask = 4294967295U; reg_tbl[21].offset = 9304U; reg_tbl[21].flags = 0U; reg_tbl[21].read_mask = 0U; reg_tbl[21].write_mask = 4294901762U; reg_tbl[22].offset = 9308U; reg_tbl[22].flags = 0U; reg_tbl[22].read_mask = 0U; reg_tbl[22].write_mask = 4294967295U; reg_tbl[23].offset = 11288U; reg_tbl[23].flags = 2U; reg_tbl[23].read_mask = 0U; reg_tbl[23].write_mask = 4294967295U; reg_tbl[24].offset = 11288U; reg_tbl[24].flags = 1U; reg_tbl[24].read_mask = 0U; reg_tbl[24].write_mask = 1023U; reg_tbl[25].offset = 11292U; reg_tbl[25].flags = 2U; reg_tbl[25].read_mask = 0U; reg_tbl[25].write_mask = 4294967295U; reg_tbl[26].offset = 15360U; reg_tbl[26].flags = 2U; reg_tbl[26].read_mask = 0U; reg_tbl[26].write_mask = 4U; reg_tbl[27].offset = 15360U; reg_tbl[27].flags = 1U; reg_tbl[27].read_mask = 0U; reg_tbl[27].write_mask = 246U; reg_tbl[28].offset = 15368U; reg_tbl[28].flags = 2U; reg_tbl[28].read_mask = 0U; reg_tbl[28].write_mask = 4294967295U; reg_tbl[29].offset = 15368U; reg_tbl[29].flags = 1U; reg_tbl[29].read_mask = 0U; reg_tbl[29].write_mask = 1023U; reg_tbl[30].offset = 15372U; reg_tbl[30].flags = 2U; reg_tbl[30].read_mask = 0U; reg_tbl[30].write_mask = 4294967295U; reg_tbl[31].offset = 15372U; reg_tbl[31].flags = 1U; reg_tbl[31].read_mask = 0U; reg_tbl[31].write_mask = 1023U; reg_tbl[32].offset = 15376U; reg_tbl[32].flags = 2U; reg_tbl[32].read_mask = 0U; reg_tbl[32].write_mask = 4294967295U; reg_tbl[33].offset = 15376U; reg_tbl[33].flags = 5U; reg_tbl[33].read_mask = 0U; reg_tbl[33].write_mask = 255U; reg_tbl[34].offset = 15380U; reg_tbl[34].flags = 2U; reg_tbl[34].read_mask = 0U; reg_tbl[34].write_mask = 4294967295U; reg_tbl[35].offset = 15380U; reg_tbl[35].flags = 5U; reg_tbl[35].read_mask = 0U; reg_tbl[35].write_mask = 255U; reg_tbl[36].offset = 15384U; reg_tbl[36].flags = 2U; reg_tbl[36].read_mask = 0U; reg_tbl[36].write_mask = 4294967295U; reg_tbl[37].offset = 15388U; reg_tbl[37].flags = 2U; reg_tbl[37].read_mask = 0U; reg_tbl[37].write_mask = 4294967295U; reg_tbl[38].offset = 15392U; reg_tbl[38].flags = 2U; reg_tbl[38].read_mask = 0U; reg_tbl[38].write_mask = 4294967295U; reg_tbl[39].offset = 15392U; reg_tbl[39].flags = 5U; reg_tbl[39].read_mask = 0U; reg_tbl[39].write_mask = 255U; reg_tbl[40].offset = 15396U; reg_tbl[40].flags = 2U; reg_tbl[40].read_mask = 0U; reg_tbl[40].write_mask = 4294967295U; reg_tbl[41].offset = 15396U; reg_tbl[41].flags = 5U; reg_tbl[41].read_mask = 0U; reg_tbl[41].write_mask = 255U; reg_tbl[42].offset = 15400U; reg_tbl[42].flags = 2U; reg_tbl[42].read_mask = 0U; reg_tbl[42].write_mask = 4294967295U; reg_tbl[43].offset = 15408U; reg_tbl[43].flags = 2U; reg_tbl[43].read_mask = 0U; reg_tbl[43].write_mask = 4294967295U; reg_tbl[44].offset = 15412U; reg_tbl[44].flags = 2U; reg_tbl[44].read_mask = 0U; reg_tbl[44].write_mask = 4294967295U; reg_tbl[45].offset = 15416U; reg_tbl[45].flags = 0U; reg_tbl[45].read_mask = 0U; reg_tbl[45].write_mask = 4294967295U; reg_tbl[46].offset = 15420U; reg_tbl[46].flags = 0U; reg_tbl[46].read_mask = 0U; reg_tbl[46].write_mask = 4294967295U; reg_tbl[47].offset = 15424U; reg_tbl[47].flags = 0U; reg_tbl[47].read_mask = 4294967295U; reg_tbl[47].write_mask = 0U; reg_tbl[48].offset = 15428U; reg_tbl[48].flags = 0U; reg_tbl[48].read_mask = 4294967295U; reg_tbl[48].write_mask = 0U; reg_tbl[49].offset = 17416U; reg_tbl[49].flags = 8U; reg_tbl[49].read_mask = 0U; reg_tbl[49].write_mask = 8388480U; reg_tbl[50].offset = 17420U; reg_tbl[50].flags = 8U; reg_tbl[50].read_mask = 0U; reg_tbl[50].write_mask = 8388607U; reg_tbl[51].offset = 17424U; reg_tbl[51].flags = 0U; reg_tbl[51].read_mask = 0U; reg_tbl[51].write_mask = 63U; reg_tbl[52].offset = 17428U; reg_tbl[52].flags = 0U; reg_tbl[52].read_mask = 0U; reg_tbl[52].write_mask = 511U; reg_tbl[53].offset = 17432U; reg_tbl[53].flags = 0U; reg_tbl[53].read_mask = 0U; reg_tbl[53].write_mask = 511U; reg_tbl[54].offset = 17452U; reg_tbl[54].flags = 2U; reg_tbl[54].read_mask = 4294967295U; reg_tbl[54].write_mask = 0U; reg_tbl[55].offset = 17456U; reg_tbl[55].flags = 2U; reg_tbl[55].read_mask = 4294967295U; reg_tbl[55].write_mask = 0U; reg_tbl[56].offset = 22636U; reg_tbl[56].flags = 0U; reg_tbl[56].read_mask = 0U; reg_tbl[56].write_mask = 511U; reg_tbl[57].offset = 22644U; reg_tbl[57].flags = 2U; reg_tbl[57].read_mask = 0U; reg_tbl[57].write_mask = 511U; reg_tbl[58].offset = 22660U; reg_tbl[58].flags = 0U; reg_tbl[58].read_mask = 0U; reg_tbl[58].write_mask = 2047U; reg_tbl[59].offset = 22788U; reg_tbl[59].flags = 0U; reg_tbl[59].read_mask = 0U; reg_tbl[59].write_mask = 511U; reg_tbl[60].offset = 65535U; reg_tbl[60].flags = 0U; reg_tbl[60].read_mask = 0U; reg_tbl[60].write_mask = 0U; is_5750 = 0; is_5705 = is_5750; tmp___0 = _tg3_flag(71, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0) { { is_5705 = 1; tmp = _tg3_flag(73, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { is_5750 = 1; } else { } } else { } i = 0; goto ldv_59621; ldv_59620: ; if (is_5705 != 0 && ((int )reg_tbl[i].flags & 2) != 0) { goto ldv_59618; } else { } if (is_5705 == 0 && (int )reg_tbl[i].flags & 1) { goto ldv_59618; } else { } { tmp___1 = _tg3_flag(72, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 != 0 && ((int )reg_tbl[i].flags & 4) != 0) { goto ldv_59618; } else { } if (is_5750 != 0 && ((int )reg_tbl[i].flags & 8) != 0) { goto ldv_59618; } else { } { offset = (unsigned int )reg_tbl[i].offset; read_mask = reg_tbl[i].read_mask; write_mask = reg_tbl[i].write_mask; save_val = (*(tp->read32))(tp, offset); read_val = save_val & read_mask; (*(tp->write32))(tp, offset, 0U); val = (*(tp->read32))(tp, offset); } if ((val & read_mask) != read_val || (val & write_mask) != 0U) { goto out; } else { } { (*(tp->write32))(tp, offset, read_mask | write_mask); val = (*(tp->read32))(tp, offset); } if ((val & read_mask) != read_val) { goto out; } else { } if ((val & write_mask) != write_mask) { goto out; } else { } { (*(tp->write32))(tp, offset, save_val); } ldv_59618: i = i + 1; ldv_59621: ; if ((unsigned int )reg_tbl[i].offset != 65535U) { goto ldv_59620; } else { } return (0); out: ; if ((tp->msg_enable & 8192U) != 0U) { { netdev_err((struct net_device const *)tp->dev, "Register test failed at offset %x\n", offset); } } else { } { (*(tp->write32))(tp, offset, save_val); } return (-5); } } static int tg3_do_mem_test(struct tg3 *tp , u32 offset , u32 len ) { u32 test_pattern[3U] ; int i ; u32 j ; u32 val ; { test_pattern[0] = 0U; test_pattern[1] = 4294967295U; test_pattern[2] = 2857739610U; i = 0; goto ldv_59638; ldv_59637: j = 0U; goto ldv_59635; ldv_59634: { tg3_write_mem(tp, offset + j, test_pattern[i]); tg3_read_mem(tp, offset + j, & val); } if (val != test_pattern[i]) { return (-5); } else { } j = j + 4U; ldv_59635: ; if (j < len) { goto ldv_59634; } else { } i = i + 1; ldv_59638: ; if ((unsigned int )i <= 2U) { goto ldv_59637; } else { } return (0); } } static int tg3_test_memory(struct tg3 *tp ) { struct mem_entry mem_tbl_570x[3U] ; struct mem_entry mem_tbl_5705[7U] ; struct mem_entry mem_tbl_5755[6U] ; struct mem_entry mem_tbl_5906[6U] ; struct mem_entry mem_tbl_5717[4U] ; struct mem_entry mem_tbl_57765[5U] ; struct mem_entry *mem_tbl ; int err ; int i ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { mem_tbl_570x[0].offset = 0U; mem_tbl_570x[0].len = 2896U; mem_tbl_570x[1].offset = 8192U; mem_tbl_570x[1].len = 114688U; mem_tbl_570x[2].offset = 4294967295U; mem_tbl_570x[2].len = 0U; mem_tbl_5705[0].offset = 256U; mem_tbl_5705[0].len = 12U; mem_tbl_5705[1].offset = 512U; mem_tbl_5705[1].len = 8U; mem_tbl_5705[2].offset = 16384U; mem_tbl_5705[2].len = 2048U; mem_tbl_5705[3].offset = 24576U; mem_tbl_5705[3].len = 4096U; mem_tbl_5705[4].offset = 32768U; mem_tbl_5705[4].len = 8192U; mem_tbl_5705[5].offset = 65536U; mem_tbl_5705[5].len = 57344U; mem_tbl_5705[6].offset = 4294967295U; mem_tbl_5705[6].len = 0U; mem_tbl_5755[0].offset = 512U; mem_tbl_5755[0].len = 8U; mem_tbl_5755[1].offset = 16384U; mem_tbl_5755[1].len = 2048U; mem_tbl_5755[2].offset = 24576U; mem_tbl_5755[2].len = 2048U; mem_tbl_5755[3].offset = 32768U; mem_tbl_5755[3].len = 8192U; mem_tbl_5755[4].offset = 65536U; mem_tbl_5755[4].len = 49152U; mem_tbl_5755[5].offset = 4294967295U; mem_tbl_5755[5].len = 0U; mem_tbl_5906[0].offset = 512U; mem_tbl_5906[0].len = 8U; mem_tbl_5906[1].offset = 16384U; mem_tbl_5906[1].len = 1024U; mem_tbl_5906[2].offset = 24576U; mem_tbl_5906[2].len = 1024U; mem_tbl_5906[3].offset = 32768U; mem_tbl_5906[3].len = 4096U; mem_tbl_5906[4].offset = 65536U; mem_tbl_5906[4].len = 4096U; mem_tbl_5906[5].offset = 4294967295U; mem_tbl_5906[5].len = 0U; mem_tbl_5717[0].offset = 512U; mem_tbl_5717[0].len = 8U; mem_tbl_5717[1].offset = 65536U; mem_tbl_5717[1].len = 40960U; mem_tbl_5717[2].offset = 131072U; mem_tbl_5717[2].len = 80896U; mem_tbl_5717[3].offset = 4294967295U; mem_tbl_5717[3].len = 0U; mem_tbl_57765[0].offset = 512U; mem_tbl_57765[0].len = 8U; mem_tbl_57765[1].offset = 16384U; mem_tbl_57765[1].len = 2048U; mem_tbl_57765[2].offset = 24576U; mem_tbl_57765[2].len = 38912U; mem_tbl_57765[3].offset = 65536U; mem_tbl_57765[3].len = 40960U; mem_tbl_57765[4].offset = 4294967295U; mem_tbl_57765[4].len = 0U; err = 0; tmp___2 = _tg3_flag(78, (unsigned long *)(& tp->tg3_flags)); } if (tmp___2 != 0) { mem_tbl = (struct mem_entry *)(& mem_tbl_5717); } else { { tmp___1 = _tg3_flag(77, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 != 0 || tp->pci_chip_rev_id >> 12 == 22370U) { mem_tbl = (struct mem_entry *)(& mem_tbl_57765); } else { { tmp___0 = _tg3_flag(75, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0) { mem_tbl = (struct mem_entry *)(& mem_tbl_5755); } else if (tp->pci_chip_rev_id >> 12 == 12U) { mem_tbl = (struct mem_entry *)(& mem_tbl_5906); } else { { tmp = _tg3_flag(71, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { mem_tbl = (struct mem_entry *)(& mem_tbl_5705); } else { mem_tbl = (struct mem_entry *)(& mem_tbl_570x); } } } } i = 0; goto ldv_59657; ldv_59656: { err = tg3_do_mem_test(tp, (mem_tbl + (unsigned long )i)->offset, (mem_tbl + (unsigned long )i)->len); } if (err != 0) { goto ldv_59655; } else { } i = i + 1; ldv_59657: ; if ((mem_tbl + (unsigned long )i)->offset != 4294967295U) { goto ldv_59656; } else { } ldv_59655: ; return (err); } } static u8 const tg3_tso_header[54U] = { 8U, 0U, 69U, 0U, 0U, 0U, 0U, 0U, 64U, 0U, 64U, 6U, 0U, 0U, 10U, 0U, 0U, 1U, 10U, 0U, 0U, 2U, 13U, 0U, 224U, 0U, 0U, 0U, 1U, 0U, 0U, 0U, 2U, 0U, 128U, 16U, 16U, 0U, 20U, 9U, 0U, 0U, 1U, 1U, 8U, 10U, 17U, 17U, 17U, 17U, 17U, 17U, 17U, 17U}; static int tg3_run_loopback(struct tg3 *tp , u32 pktsz , bool tso_loopback ) { u32 rx_start_idx ; u32 rx_idx ; u32 tx_idx ; u32 opaque_key ; u32 base_flags ; u32 mss ; u32 desc_idx ; u32 coal_now ; u32 data_off ; u32 val ; u32 budget ; struct sk_buff *skb ; u8 *tx_data ; u8 *rx_data ; dma_addr_t map ; int num_pkts ; int tx_len ; int rx_len ; int i ; int err ; struct tg3_rx_buffer_desc *desc ; struct tg3_napi *tnapi ; struct tg3_napi *rnapi ; struct tg3_rx_prodring_set *tpr ; int tmp ; int tmp___0 ; unsigned char *tmp___1 ; struct iphdr *iph ; u32 hdr_len ; __u16 tmp___2 ; struct tcphdr *th ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; bool tmp___11 ; u32 tmp___12 ; int _max1 ; int _max2 ; { base_flags = 0U; mss = 0U; tpr = & tp->napi[0].prodring; tnapi = (struct tg3_napi *)(& tp->napi); rnapi = (struct tg3_napi *)(& tp->napi); if (tp->irq_cnt > 1U) { { tmp = _tg3_flag(60, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { rnapi = (struct tg3_napi *)(& tp->napi) + 1UL; } else { } { tmp___0 = _tg3_flag(61, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0) { tnapi = (struct tg3_napi *)(& tp->napi) + 1UL; } else { } } else { } { coal_now = tnapi->coal_now | rnapi->coal_now; err = -5; tx_len = (int )pktsz; skb = netdev_alloc_skb(tp->dev, (unsigned int )tx_len); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { return (-12); } else { } { tmp___1 = skb_put(skb, (unsigned int )tx_len); tx_data = tmp___1; __memcpy((void *)tx_data, (void const *)(tp->dev)->dev_addr, 6UL); __memset((void *)tx_data + 6U, 0, 8UL); (*(tp->write32))(tp, 1084U, (u32 )(tx_len + 4)); } if ((int )tso_loopback) { { iph = (struct iphdr *)tx_data + 14U; hdr_len = 52U; __memcpy((void *)tx_data + 12U, (void const *)(& tg3_tso_header), 54UL); mss = 500U; val = (u32 )tx_len - 66U; num_pkts = (int )((val + 499U) / 500U); tmp___2 = __fswab16((int )((unsigned short )mss) + (int )((unsigned short )hdr_len)); iph->tot_len = tmp___2; base_flags = 768U; tmp___3 = _tg3_flag(40, (unsigned long *)(& tp->tg3_flags)); } if (tmp___3 != 0) { val = 34U; th = (struct tcphdr *)tx_data + (unsigned long )val; th->check = 0U; } else { { tmp___4 = _tg3_flag(41, (unsigned long *)(& tp->tg3_flags)); } if (tmp___4 != 0) { val = 34U; th = (struct tcphdr *)tx_data + (unsigned long )val; th->check = 0U; } else { { tmp___5 = _tg3_flag(42, (unsigned long *)(& tp->tg3_flags)); } if (tmp___5 != 0) { val = 34U; th = (struct tcphdr *)tx_data + (unsigned long )val; th->check = 0U; } else { base_flags = base_flags | 1U; } } } { tmp___8 = _tg3_flag(42, (unsigned long *)(& tp->tg3_flags)); } if (tmp___8 != 0) { mss = mss | ((hdr_len & 12U) << 12); if ((hdr_len & 16U) != 0U) { base_flags = base_flags | 16U; } else { } base_flags = base_flags | ((hdr_len & 992U) << 5); } else { { tmp___7 = _tg3_flag(41, (unsigned long *)(& tp->tg3_flags)); } if (tmp___7 != 0) { mss = mss | (hdr_len << 9); } else { { tmp___6 = _tg3_flag(40, (unsigned long *)(& tp->tg3_flags)); } if (tmp___6 != 0 || tp->pci_chip_rev_id >> 12 == 3U) { mss = mss | 6144U; } else { base_flags = base_flags | 12288U; } } } data_off = 66U; } else { { num_pkts = 1; data_off = 14U; tmp___9 = _tg3_flag(63, (unsigned long *)(& tp->tg3_flags)); } if (tmp___9 != 0 && tx_len > 1518) { base_flags = base_flags | 8U; } else { } } i = (int )data_off; goto ldv_59692; ldv_59691: *(tx_data + (unsigned long )i) = (unsigned char )i; i = i + 1; ldv_59692: ; if (i < tx_len) { goto ldv_59691; } else { } { map = pci_map_single(tp->pdev, (void *)skb->data, (size_t )tx_len, 1); tmp___10 = pci_dma_mapping_error(tp->pdev, map); } if (tmp___10 != 0) { { consume_skb(skb); } return (-5); } else { } { val = tnapi->tx_prod; (tnapi->tx_buffers + (unsigned long )val)->skb = skb; (tnapi->tx_buffers + (unsigned long )val)->mapping = map; _tw32_flush(tp, 15360U, (tp->coalesce_mode | rnapi->coal_now) | 2U, 0U); __const_udelay(42950UL); rx_start_idx = (u32 )(rnapi->hw_status)->idx[0].rx_producer; budget = tg3_tx_avail(tnapi); tmp___11 = tg3_tx_frag_set(tnapi, & val, & budget, map, (u32 )tx_len, base_flags | 4U, mss, 0U); } if ((int )tmp___11) { { (tnapi->tx_buffers + (unsigned long )val)->skb = (struct sk_buff *)0; consume_skb(skb); } return (-5); } else { } { tnapi->tx_prod = tnapi->tx_prod + 1U; __asm__ volatile ("sfence": : : "memory"); (*(tp->write32_tx_mbox))(tp, tnapi->prodmbox, tnapi->tx_prod); (*(tp->read32_mbox))(tp, tnapi->prodmbox); __const_udelay(42950UL); i = 0; } goto ldv_59696; ldv_59695: { _tw32_flush(tp, 15360U, (tp->coalesce_mode | coal_now) | 2U, 0U); __const_udelay(42950UL); tx_idx = (u32 )(tnapi->hw_status)->idx[0].tx_consumer; rx_idx = (u32 )(rnapi->hw_status)->idx[0].rx_producer; } if (tx_idx == tnapi->tx_prod && rx_idx == rx_start_idx + (u32 )num_pkts) { goto ldv_59694; } else { } i = i + 1; ldv_59696: ; if (i <= 34) { goto ldv_59695; } else { } ldv_59694: { tg3_tx_skb_unmap(tnapi, tnapi->tx_prod - 1U, -1); consume_skb(skb); } if (tx_idx != tnapi->tx_prod) { goto out; } else { } if (rx_idx != rx_start_idx + (u32 )num_pkts) { goto out; } else { } val = data_off; goto ldv_59705; ldv_59704: tmp___12 = rx_start_idx; rx_start_idx = rx_start_idx + 1U; desc = rnapi->rx_rcb + (unsigned long )tmp___12; desc_idx = desc->opaque & 65535U; opaque_key = desc->opaque & 458752U; if ((desc->err_vlan & 32440320U) != 0U && desc->err_vlan != 1048576U) { goto out; } else { } rx_len = (int )((desc->idx_len & 65535U) - 4U); if (! tso_loopback) { if (rx_len != tx_len) { goto out; } else { } if (pktsz <= 1532U) { if (opaque_key != 65536U) { goto out; } else { } } else if (opaque_key != 131072U) { goto out; } else { } } else if ((desc->type_flags & 8192U) != 0U && (desc->ip_tcp_csum & 65535U) != 65535U) { goto out; } else { } if (opaque_key == 65536U) { rx_data = (tpr->rx_std_buffers + (unsigned long )desc_idx)->data; map = (tpr->rx_std_buffers + (unsigned long )desc_idx)->mapping; } else if (opaque_key == 131072U) { rx_data = (tpr->rx_jmb_buffers + (unsigned long )desc_idx)->data; map = (tpr->rx_jmb_buffers + (unsigned long )desc_idx)->mapping; } else { goto out; } { pci_dma_sync_single_for_cpu(tp->pdev, map, (size_t )rx_len, 2); _max1 = 32; _max2 = 64; rx_data = rx_data + (unsigned long )(_max1 > _max2 ? _max1 : _max2); i = (int )data_off; } goto ldv_59702; ldv_59701: ; if ((int )*(rx_data + (unsigned long )i) != (int )((unsigned char )val)) { goto out; } else { } i = i + 1; val = val + 1U; ldv_59702: ; if (i < rx_len) { goto ldv_59701; } else { } ldv_59705: ; if (rx_idx != rx_start_idx) { goto ldv_59704; } else { } err = 0; out: ; return (err); } } static int tg3_test_loopback(struct tg3 *tp , u64 *data , bool do_extlpbk ) { int err ; u32 eee_cap ; u32 jmb_pkt_sz ; bool tmp ; int tmp___0 ; int i ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int i___0 ; u32 tmp___6 ; unsigned long __ms ; unsigned long tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; int tmp___12 ; unsigned long __ms___0 ; unsigned long tmp___13 ; int tmp___14 ; int tmp___15 ; int tmp___16 ; int tmp___17 ; int tmp___18 ; int tmp___19 ; { err = -5; jmb_pkt_sz = 9000U; if (tp->dma_limit != 0U) { jmb_pkt_sz = tp->dma_limit - 14U; } else { } { eee_cap = tp->phy_flags & 262144U; tp->phy_flags = tp->phy_flags & 4294705151U; tmp = netif_running((struct net_device const *)tp->dev); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { *(data + 4UL) = 7ULL; *(data + 5UL) = 7ULL; if ((int )do_extlpbk) { *(data + 6UL) = 7ULL; } else { } goto done; } else { } { err = tg3_reset_hw(tp, 1); } if (err != 0) { *(data + 4UL) = 7ULL; *(data + 5UL) = 7ULL; if ((int )do_extlpbk) { *(data + 6UL) = 7ULL; } else { } goto done; } else { } { tmp___1 = _tg3_flag(60, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 != 0) { i = 1584; goto ldv_59718; ldv_59717: { (*(tp->write32))(tp, (u32 )i, 0U); i = i + 4; } ldv_59718: ; if (i <= 1711) { goto ldv_59717; } else { } } else { } if (tp->pci_chip_rev_id >> 12 != 8U) { { tmp___5 = _tg3_flag(27, (unsigned long *)(& tp->tg3_flags)); } if (tmp___5 == 0) { { tg3_mac_loopback(tp, 1); tmp___2 = tg3_run_loopback(tp, 1514U, 0); } if (tmp___2 != 0) { *(data + 4UL) = *(data + 4UL) | 1ULL; } else { } { tmp___3 = _tg3_flag(25, (unsigned long *)(& tp->tg3_flags)); } if (tmp___3 != 0) { { tmp___4 = tg3_run_loopback(tp, jmb_pkt_sz + 14U, 0); } if (tmp___4 != 0) { *(data + 4UL) = *(data + 4UL) | 2ULL; } else { } } else { } { tg3_mac_loopback(tp, 0); } } else { } } else { } if ((tp->phy_flags & 16U) == 0U) { { tmp___19 = _tg3_flag(52, (unsigned long *)(& tp->tg3_flags)); } if (tmp___19 == 0) { { tg3_phy_lpbk_set(tp, 0U, 0); i___0 = 0; } goto ldv_59727; ldv_59726: { tmp___6 = (*(tp->read32))(tp, 1120U); } if ((tmp___6 & 8U) != 0U) { goto ldv_59721; } else { } if (1) { { __const_udelay(4295000UL); } } else { __ms = 1UL; goto ldv_59724; ldv_59723: { __const_udelay(4295000UL); } ldv_59724: tmp___7 = __ms; __ms = __ms - 1UL; if (tmp___7 != 0UL) { goto ldv_59723; } else { } } i___0 = i___0 + 1; ldv_59727: ; if (i___0 <= 99) { goto ldv_59726; } else { } ldv_59721: { tmp___8 = tg3_run_loopback(tp, 1514U, 0); } if (tmp___8 != 0) { *(data + 5UL) = *(data + 5UL) | 1ULL; } else { } { tmp___9 = _tg3_flag(43, (unsigned long *)(& tp->tg3_flags)); } if (tmp___9 != 0) { { tmp___10 = tg3_run_loopback(tp, 1514U, 1); } if (tmp___10 != 0) { *(data + 5UL) = *(data + 5UL) | 4ULL; } else { } } else { } { tmp___11 = _tg3_flag(25, (unsigned long *)(& tp->tg3_flags)); } if (tmp___11 != 0) { { tmp___12 = tg3_run_loopback(tp, jmb_pkt_sz + 14U, 0); } if (tmp___12 != 0) { *(data + 5UL) = *(data + 5UL) | 2ULL; } else { } } else { } if ((int )do_extlpbk) { { tg3_phy_lpbk_set(tp, 0U, 1); __ms___0 = 40UL; } goto ldv_59730; ldv_59729: { __const_udelay(4295000UL); } ldv_59730: tmp___13 = __ms___0; __ms___0 = __ms___0 - 1UL; if (tmp___13 != 0UL) { goto ldv_59729; } else { } { tmp___14 = tg3_run_loopback(tp, 1514U, 0); } if (tmp___14 != 0) { *(data + 6UL) = *(data + 6UL) | 1ULL; } else { } { tmp___15 = _tg3_flag(43, (unsigned long *)(& tp->tg3_flags)); } if (tmp___15 != 0) { { tmp___16 = tg3_run_loopback(tp, 1514U, 1); } if (tmp___16 != 0) { *(data + 6UL) = *(data + 6UL) | 4ULL; } else { } } else { } { tmp___17 = _tg3_flag(25, (unsigned long *)(& tp->tg3_flags)); } if (tmp___17 != 0) { { tmp___18 = tg3_run_loopback(tp, jmb_pkt_sz + 14U, 0); } if (tmp___18 != 0) { *(data + 6UL) = *(data + 6UL) | 2ULL; } else { } } else { } } else { } if ((tp->phy_flags & 256U) != 0U) { { tg3_phy_toggle_apd(tp, 1); } } else { } } else { } } else { } err = ((*(data + 4UL) | *(data + 5UL)) | *(data + 6UL)) != 0ULL ? -5 : 0; done: tp->phy_flags = tp->phy_flags | eee_cap; return (err); } } static void tg3_self_test(struct net_device *dev , struct ethtool_test *etest , u64 *data ) { struct tg3 *tp ; void *tmp ; bool doextlpbk ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int err ; int err2 ; int irq_sync ; bool tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; bool tmp___9 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; doextlpbk = (etest->flags & 4U) != 0U; } if ((int )tp->phy_flags & 1) { { tmp___0 = tg3_power_up(tp); } if (tmp___0 != 0) { { etest->flags = etest->flags | 2U; __memset((void *)data, 1, 64UL); } return; } else { } { tg3_ape_driver_state_change(tp, 1); } } else { } { __memset((void *)data, 0, 64UL); tmp___1 = tg3_test_nvram(tp); } if (tmp___1 != 0) { etest->flags = etest->flags | 2U; *data = 1ULL; } else { } if (! doextlpbk) { { tmp___2 = tg3_test_link(tp); } if (tmp___2 != 0) { etest->flags = etest->flags | 2U; *(data + 1UL) = 1ULL; } else { } } else { } if ((int )etest->flags & 1) { { err2 = 0; irq_sync = 0; tmp___3 = netif_running((struct net_device const *)dev); } if ((int )tmp___3) { { tg3_phy_stop(tp); tg3_netif_stop(tp); irq_sync = 1; } } else { } { tg3_full_lock(tp, irq_sync); tg3_halt(tp, 2, 1); err = tg3_nvram_lock(tp); tg3_halt_cpu(tp, 20480U); tmp___4 = _tg3_flag(71, (unsigned long *)(& tp->tg3_flags)); } if (tmp___4 == 0) { { tg3_halt_cpu(tp, 21504U); } } else { } if (err == 0) { { tg3_nvram_unlock(tp); } } else { } if ((tp->phy_flags & 32U) != 0U) { { tg3_phy_reset(tp); } } else { } { tmp___5 = tg3_test_registers(tp); } if (tmp___5 != 0) { etest->flags = etest->flags | 2U; *(data + 2UL) = 1ULL; } else { } { tmp___6 = tg3_test_memory(tp); } if (tmp___6 != 0) { etest->flags = etest->flags | 2U; *(data + 3UL) = 1ULL; } else { } if ((int )doextlpbk) { etest->flags = etest->flags | 8U; } else { } { tmp___7 = tg3_test_loopback(tp, data, (int )doextlpbk); } if (tmp___7 != 0) { etest->flags = etest->flags | 2U; } else { } { tg3_full_unlock(tp); tmp___8 = tg3_test_interrupt(tp); } if (tmp___8 != 0) { etest->flags = etest->flags | 2U; *(data + 7UL) = 1ULL; } else { } { tg3_full_lock(tp, 0); tg3_halt(tp, 0, 1); tmp___9 = netif_running((struct net_device const *)dev); } if ((int )tmp___9) { { _tg3_flag_set(32, (unsigned long *)(& tp->tg3_flags)); err2 = tg3_restart_hw(tp, 1); } if (err2 == 0) { { tg3_netif_start(tp); } } else { } } else { } { tg3_full_unlock(tp); } if (irq_sync != 0 && err2 == 0) { { tg3_phy_start(tp); } } else { } } else { } if ((int )tp->phy_flags & 1) { { tg3_power_down_prepare(tp); } } else { } return; } } static int tg3_hwtstamp_set(struct net_device *dev , struct ifreq *ifr ) { struct tg3 *tp ; void *tmp ; struct hwtstamp_config stmpconf ; int tmp___0 ; unsigned long tmp___1 ; bool tmp___2 ; unsigned long tmp___3 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; tmp___0 = _tg3_flag(70, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 == 0) { return (-95); } else { } { tmp___1 = copy_from_user((void *)(& stmpconf), (void const *)ifr->ifr_ifru.ifru_data, 12UL); } if (tmp___1 != 0UL) { return (-14); } else { } if (stmpconf.flags != 0) { return (-22); } else { } if ((unsigned int )stmpconf.tx_type > 1U) { return (-34); } else { } { if (stmpconf.rx_filter == 0) { goto case_0; } else { } if (stmpconf.rx_filter == 3) { goto case_3; } else { } if (stmpconf.rx_filter == 4) { goto case_4; } else { } if (stmpconf.rx_filter == 5) { goto case_5; } else { } if (stmpconf.rx_filter == 12) { goto case_12; } else { } if (stmpconf.rx_filter == 9) { goto case_9; } else { } if (stmpconf.rx_filter == 6) { goto case_6; } else { } if (stmpconf.rx_filter == 13) { goto case_13; } else { } if (stmpconf.rx_filter == 10) { goto case_10; } else { } if (stmpconf.rx_filter == 7) { goto case_7; } else { } if (stmpconf.rx_filter == 14) { goto case_14; } else { } if (stmpconf.rx_filter == 11) { goto case_11; } else { } if (stmpconf.rx_filter == 8) { goto case_8; } else { } goto switch_default; case_0: /* CIL Label */ tp->rxptpctl = 0U; goto ldv_59753; case_3: /* CIL Label */ tp->rxptpctl = 33554435U; goto ldv_59753; case_4: /* CIL Label */ tp->rxptpctl = 33554433U; goto ldv_59753; case_5: /* CIL Label */ tp->rxptpctl = 33554434U; goto ldv_59753; case_12: /* CIL Label */ tp->rxptpctl = 25165839U; goto ldv_59753; case_9: /* CIL Label */ tp->rxptpctl = 8388623U; goto ldv_59753; case_6: /* CIL Label */ tp->rxptpctl = 16777231U; goto ldv_59753; case_13: /* CIL Label */ tp->rxptpctl = 25165825U; goto ldv_59753; case_10: /* CIL Label */ tp->rxptpctl = 8388609U; goto ldv_59753; case_7: /* CIL Label */ tp->rxptpctl = 16777217U; goto ldv_59753; case_14: /* CIL Label */ tp->rxptpctl = 25165826U; goto ldv_59753; case_11: /* CIL Label */ tp->rxptpctl = 8388610U; goto ldv_59753; case_8: /* CIL Label */ tp->rxptpctl = 16777218U; goto ldv_59753; switch_default: /* CIL Label */ ; return (-34); switch_break: /* CIL Label */ ; } ldv_59753: { tmp___2 = netif_running((struct net_device const *)dev); } if ((int )tmp___2 && tp->rxptpctl != 0U) { { (*(tp->write32))(tp, 1736U, tp->rxptpctl | 67108864U); } } else { } if (stmpconf.tx_type == 1) { { _tg3_flag_set(66, (unsigned long *)(& tp->tg3_flags)); } } else { { _tg3_flag_clear(66, (unsigned long *)(& tp->tg3_flags)); } } { tmp___3 = copy_to_user(ifr->ifr_ifru.ifru_data, (void const *)(& stmpconf), 12UL); } return (tmp___3 != 0UL ? -14 : 0); } } static int tg3_hwtstamp_get(struct net_device *dev , struct ifreq *ifr ) { struct tg3 *tp ; void *tmp ; struct hwtstamp_config stmpconf ; int tmp___0 ; int tmp___1 ; bool __warned ; int __ret_warn_once ; int __ret_warn_on ; long tmp___2 ; long tmp___3 ; long tmp___4 ; unsigned long tmp___5 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; tmp___0 = _tg3_flag(70, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 == 0) { return (-95); } else { } { stmpconf.flags = 0; tmp___1 = _tg3_flag(66, (unsigned long *)(& tp->tg3_flags)); stmpconf.tx_type = tmp___1 != 0; } { if (tp->rxptpctl == 0U) { goto case_0; } else { } if (tp->rxptpctl == 33554435U) { goto case_33554435; } else { } if (tp->rxptpctl == 33554433U) { goto case_33554433; } else { } if (tp->rxptpctl == 33554434U) { goto case_33554434; } else { } if (tp->rxptpctl == 25165839U) { goto case_25165839; } else { } if (tp->rxptpctl == 8388623U) { goto case_8388623; } else { } if (tp->rxptpctl == 16777231U) { goto case_16777231; } else { } if (tp->rxptpctl == 25165825U) { goto case_25165825; } else { } if (tp->rxptpctl == 8388609U) { goto case_8388609; } else { } if (tp->rxptpctl == 16777217U) { goto case_16777217; } else { } if (tp->rxptpctl == 25165826U) { goto case_25165826; } else { } if (tp->rxptpctl == 8388610U) { goto case_8388610; } else { } if (tp->rxptpctl == 16777218U) { goto case_16777218; } else { } goto switch_default; case_0: /* CIL Label */ stmpconf.rx_filter = 0; goto ldv_59774; case_33554435: /* CIL Label */ stmpconf.rx_filter = 3; goto ldv_59774; case_33554433: /* CIL Label */ stmpconf.rx_filter = 4; goto ldv_59774; case_33554434: /* CIL Label */ stmpconf.rx_filter = 5; goto ldv_59774; case_25165839: /* CIL Label */ stmpconf.rx_filter = 12; goto ldv_59774; case_8388623: /* CIL Label */ stmpconf.rx_filter = 9; goto ldv_59774; case_16777231: /* CIL Label */ stmpconf.rx_filter = 6; goto ldv_59774; case_25165825: /* CIL Label */ stmpconf.rx_filter = 13; goto ldv_59774; case_8388609: /* CIL Label */ stmpconf.rx_filter = 10; goto ldv_59774; case_16777217: /* CIL Label */ stmpconf.rx_filter = 7; goto ldv_59774; case_25165826: /* CIL Label */ stmpconf.rx_filter = 14; goto ldv_59774; case_8388610: /* CIL Label */ stmpconf.rx_filter = 11; goto ldv_59774; case_16777218: /* CIL Label */ stmpconf.rx_filter = 8; goto ldv_59774; switch_default: /* CIL Label */ { __ret_warn_once = 1; tmp___4 = ldv__builtin_expect(__ret_warn_once != 0, 0L); } if (tmp___4 != 0L) { { __ret_warn_on = ! __warned; tmp___2 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___2 != 0L) { { warn_slowpath_null("drivers/net/ethernet/broadcom/tg3.c", 13913); } } else { } { tmp___3 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___3 != 0L) { __warned = 1; } else { } } else { } { ldv__builtin_expect(__ret_warn_once != 0, 0L); } return (-34); switch_break: /* CIL Label */ ; } ldv_59774: { tmp___5 = copy_to_user(ifr->ifr_ifru.ifru_data, (void const *)(& stmpconf), 12UL); } return (tmp___5 != 0UL ? -14 : 0); } } static int tg3_ioctl(struct net_device *dev , struct ifreq *ifr , int cmd ) { struct mii_ioctl_data *data ; struct mii_ioctl_data *tmp ; struct tg3 *tp ; void *tmp___0 ; int err ; struct phy_device *phydev ; int tmp___1 ; int tmp___2 ; u32 mii_regval ; bool tmp___3 ; int tmp___4 ; bool tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; { { tmp = if_mii(ifr); data = tmp; tmp___0 = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp___0; tmp___2 = _tg3_flag(52, (unsigned long *)(& tp->tg3_flags)); } if (tmp___2 != 0) { if ((tp->phy_flags & 2U) == 0U) { return (-11); } else { } { phydev = (tp->mdio_bus)->phy_map[(int )tp->phy_addr]; tmp___1 = phy_mii_ioctl(phydev, ifr, cmd); } return (tmp___1); } else { } { if (cmd == 35143) { goto case_35143; } else { } if (cmd == 35144) { goto case_35144; } else { } if (cmd == 35145) { goto case_35145; } else { } if (cmd == 35248) { goto case_35248; } else { } if (cmd == 35249) { goto case_35249; } else { } goto switch_default; case_35143: /* CIL Label */ data->phy_id = (__u16 )tp->phy_addr; case_35144: /* CIL Label */ ; if ((tp->phy_flags & 16U) != 0U) { goto ldv_59805; } else { } { tmp___3 = netif_running((struct net_device const *)dev); } if (tmp___3) { tmp___4 = 0; } else { tmp___4 = 1; } if (tmp___4) { return (-11); } else { } { ldv_spin_lock_bh_139(& tp->lock); err = __tg3_readphy(tp, (unsigned int )data->phy_id & 31U, (int )data->reg_num & 31, & mii_regval); ldv_spin_unlock_bh_140(& tp->lock); data->val_out = (__u16 )mii_regval; } return (err); case_35145: /* CIL Label */ ; if ((tp->phy_flags & 16U) != 0U) { goto ldv_59805; } else { } { tmp___5 = netif_running((struct net_device const *)dev); } if (tmp___5) { tmp___6 = 0; } else { tmp___6 = 1; } if (tmp___6) { return (-11); } else { } { ldv_spin_lock_bh_139(& tp->lock); err = __tg3_writephy(tp, (unsigned int )data->phy_id & 31U, (int )data->reg_num & 31, (u32 )data->val_in); ldv_spin_unlock_bh_140(& tp->lock); } return (err); case_35248: /* CIL Label */ { tmp___7 = tg3_hwtstamp_set(dev, ifr); } return (tmp___7); case_35249: /* CIL Label */ { tmp___8 = tg3_hwtstamp_get(dev, ifr); } return (tmp___8); switch_default: /* CIL Label */ ; goto ldv_59805; switch_break: /* CIL Label */ ; } ldv_59805: ; return (-95); } } static int tg3_get_coalesce(struct net_device *dev , struct ethtool_coalesce *ec ) { struct tg3 *tp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; __memcpy((void *)ec, (void const *)(& tp->coal), 92UL); } return (0); } } static int tg3_set_coalesce(struct net_device *dev , struct ethtool_coalesce *ec ) { struct tg3 *tp ; void *tmp ; u32 max_rxcoal_tick_int ; u32 max_txcoal_tick_int ; u32 max_stat_coal_ticks ; u32 min_stat_coal_ticks ; int tmp___0 ; bool tmp___1 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; max_rxcoal_tick_int = 0U; max_txcoal_tick_int = 0U; max_stat_coal_ticks = 0U; min_stat_coal_ticks = 0U; tmp___0 = _tg3_flag(71, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 == 0) { max_rxcoal_tick_int = 1023U; max_txcoal_tick_int = 1023U; max_stat_coal_ticks = 3600012288U; min_stat_coal_ticks = 100U; } else { } if (((((((((ec->rx_coalesce_usecs > 1023U || ec->tx_coalesce_usecs > 1023U) || ec->rx_max_coalesced_frames > 255U) || ec->tx_max_coalesced_frames > 255U) || ec->rx_coalesce_usecs_irq > max_rxcoal_tick_int) || ec->tx_coalesce_usecs_irq > max_txcoal_tick_int) || ec->rx_max_coalesced_frames_irq > 255U) || ec->tx_max_coalesced_frames_irq > 255U) || ec->stats_block_coalesce_usecs > max_stat_coal_ticks) || ec->stats_block_coalesce_usecs < min_stat_coal_ticks) { return (-22); } else { } if (ec->rx_coalesce_usecs == 0U && ec->rx_max_coalesced_frames == 0U) { return (-22); } else { } if (ec->tx_coalesce_usecs == 0U && ec->tx_max_coalesced_frames == 0U) { return (-22); } else { } { tp->coal.rx_coalesce_usecs = ec->rx_coalesce_usecs; tp->coal.tx_coalesce_usecs = ec->tx_coalesce_usecs; tp->coal.rx_max_coalesced_frames = ec->rx_max_coalesced_frames; tp->coal.tx_max_coalesced_frames = ec->tx_max_coalesced_frames; tp->coal.rx_coalesce_usecs_irq = ec->rx_coalesce_usecs_irq; tp->coal.tx_coalesce_usecs_irq = ec->tx_coalesce_usecs_irq; tp->coal.rx_max_coalesced_frames_irq = ec->rx_max_coalesced_frames_irq; tp->coal.tx_max_coalesced_frames_irq = ec->tx_max_coalesced_frames_irq; tp->coal.stats_block_coalesce_usecs = ec->stats_block_coalesce_usecs; tmp___1 = netif_running((struct net_device const *)dev); } if ((int )tmp___1) { { tg3_full_lock(tp, 0); __tg3_set_coalesce(tp, & tp->coal); tg3_full_unlock(tp); } } else { } return (0); } } static int tg3_set_eee(struct net_device *dev , struct ethtool_eee *edata ) { struct tg3 *tp ; void *tmp ; bool tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; } if ((tp->phy_flags & 262144U) == 0U) { { netdev_warn((struct net_device const *)tp->dev, "Board does not support EEE!\n"); } return (-95); } else { } if (edata->advertised != tp->eee.advertised) { { netdev_warn((struct net_device const *)tp->dev, "Direct manipulation of EEE advertisement is not supported\n"); } return (-22); } else { } if (edata->tx_lpi_timer > 65535U) { { netdev_warn((struct net_device const *)tp->dev, "Maximal Tx Lpi timer supported is %#x(u)\n", 65535); } return (-22); } else { } { tp->eee = *edata; tp->phy_flags = tp->phy_flags | 8U; tg3_warn_mgmt_link_flap(tp); tmp___0 = netif_running((struct net_device const *)tp->dev); } if ((int )tmp___0) { { tg3_full_lock(tp, 0); tg3_setup_eee(tp); tg3_phy_reset(tp); tg3_full_unlock(tp); } } else { } return (0); } } static int tg3_get_eee(struct net_device *dev , struct ethtool_eee *edata ) { struct tg3 *tp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; } if ((tp->phy_flags & 262144U) == 0U) { { netdev_warn((struct net_device const *)tp->dev, "Board does not support EEE!\n"); } return (-95); } else { } *edata = tp->eee; return (0); } } static struct ethtool_ops const tg3_ethtool_ops = {& tg3_get_settings, & tg3_set_settings, & tg3_get_drvinfo, & tg3_get_regs_len, & tg3_get_regs, & tg3_get_wol, & tg3_set_wol, & tg3_get_msglevel, & tg3_set_msglevel, & tg3_nway_reset, & ethtool_op_get_link, & tg3_get_eeprom_len, & tg3_get_eeprom, & tg3_set_eeprom, & tg3_get_coalesce, & tg3_set_coalesce, & tg3_get_ringparam, & tg3_set_ringparam, & tg3_get_pauseparam, & tg3_set_pauseparam, & tg3_self_test, & tg3_get_strings, & tg3_set_phys_id, & tg3_get_ethtool_stats, 0, 0, 0, 0, & tg3_get_sset_count, & tg3_get_rxnfc, 0, 0, 0, 0, & tg3_get_rxfh_indir_size, & tg3_get_rxfh, & tg3_set_rxfh, & tg3_get_channels, & tg3_set_channels, 0, 0, 0, & tg3_get_ts_info, 0, 0, & tg3_get_eee, & tg3_set_eee, 0, 0}; static struct rtnl_link_stats64 *tg3_get_stats64(struct net_device *dev , struct rtnl_link_stats64 *stats ) { struct tg3 *tp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; ldv_spin_lock_bh_139(& tp->lock); } if ((unsigned long )tp->hw_stats == (unsigned long )((struct tg3_hw_stats *)0)) { { *stats = tp->net_stats_prev; ldv_spin_unlock_bh_140(& tp->lock); } return (stats); } else { } { tg3_get_nstats(tp, stats); ldv_spin_unlock_bh_140(& tp->lock); } return (stats); } } static void tg3_set_rx_mode(struct net_device *dev ) { struct tg3 *tp ; void *tmp ; bool tmp___0 ; int tmp___1 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; tmp___0 = netif_running((struct net_device const *)dev); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return; } else { } { tg3_full_lock(tp, 0); __tg3_set_rx_mode(dev); tg3_full_unlock(tp); } return; } } __inline static void tg3_set_mtu(struct net_device *dev , struct tg3 *tp , int new_mtu ) { int tmp ; int tmp___0 ; { dev->mtu = (unsigned int )new_mtu; if (new_mtu > 1500) { { tmp = _tg3_flag(74, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { { netdev_update_features(dev); _tg3_flag_clear(43, (unsigned long *)(& tp->tg3_flags)); } } else { { _tg3_flag_set(25, (unsigned long *)(& tp->tg3_flags)); } } } else { { tmp___0 = _tg3_flag(74, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0) { { _tg3_flag_set(43, (unsigned long *)(& tp->tg3_flags)); netdev_update_features(dev); } } else { } { _tg3_flag_clear(25, (unsigned long *)(& tp->tg3_flags)); } } return; } } static int tg3_change_mtu(struct net_device *dev , int new_mtu ) { struct tg3 *tp ; void *tmp ; int err ; bool reset_phy ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; reset_phy = 0; } if (new_mtu <= 59) { return (-22); } else { { tmp___0 = _tg3_flag(30, (unsigned long *)(& tp->tg3_flags)); } if (new_mtu > (tmp___0 != 0 ? 9000 : 1500)) { return (-22); } else { } } { tmp___1 = netif_running((struct net_device const *)dev); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { { tg3_set_mtu(dev, tp, new_mtu); } return (0); } else { } { tg3_phy_stop(tp); tg3_netif_stop(tp); tg3_set_mtu(dev, tp, new_mtu); tg3_full_lock(tp, 1); tg3_halt(tp, 0, 1); } if (tp->pci_chip_rev_id >> 12 == 358246U) { reset_phy = 1; } else { } { err = tg3_restart_hw(tp, (int )reset_phy); } if (err == 0) { { tg3_netif_start(tp); } } else { } { tg3_full_unlock(tp); } if (err == 0) { { tg3_phy_start(tp); } } else { } return (err); } } static struct net_device_ops const tg3_netdev_ops = {0, 0, & tg3_open, & tg3_close, & tg3_start_xmit, 0, 0, & tg3_set_rx_mode, & tg3_set_mac_addr, & eth_validate_addr, & tg3_ioctl, 0, & tg3_change_mtu, 0, & tg3_tx_timeout, & tg3_get_stats64, 0, 0, 0, & tg3_poll_controller, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & tg3_fix_features, & tg3_set_features, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static void tg3_get_eeprom_size(struct tg3 *tp ) { u32 cursize ; u32 val ; u32 magic ; int tmp ; int tmp___0 ; { { tp->nvram_size = 65536U; tmp = tg3_nvram_read(tp, 0U, & magic); } if (tmp != 0) { return; } else { } if ((magic != 1721324970U && (magic & 4278190080U) != 2768240640U) && (magic & 65535U) != 43981U) { return; } else { } cursize = 16U; goto ldv_59865; ldv_59864: { tmp___0 = tg3_nvram_read(tp, cursize, & val); } if (tmp___0 != 0) { return; } else { } if (val == magic) { goto ldv_59863; } else { } cursize = cursize << 1; ldv_59865: ; if (cursize < tp->nvram_size) { goto ldv_59864; } else { } ldv_59863: tp->nvram_size = cursize; return; } } static void tg3_get_nvram_size(struct tg3 *tp ) { u32 val ; int tmp ; int tmp___0 ; __u16 tmp___1 ; int tmp___2 ; { { tmp = _tg3_flag(59, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { return; } else { { tmp___0 = tg3_nvram_read(tp, 0U, & val); } if (tmp___0 != 0) { return; } else { } } if (val != 1721324970U) { { tg3_get_eeprom_size(tp); } return; } else { } { tmp___2 = tg3_nvram_read(tp, 240U, & val); } if (tmp___2 == 0) { if (val != 0U) { { tmp___1 = __fswab16((int )((unsigned short )val)); tp->nvram_size = (u32 )((int )tmp___1 * 1024); } return; } else { } } else { } tp->nvram_size = 524288U; return; } } static void tg3_get_nvram_info(struct tg3 *tp ) { u32 nvcfg1 ; int tmp ; { { nvcfg1 = (*(tp->read32))(tp, 28692U); } if ((int )nvcfg1 & 1) { { _tg3_flag_set(38, (unsigned long *)(& tp->tg3_flags)); } } else { { nvcfg1 = nvcfg1 & 2147483647U; (*(tp->write32))(tp, 28692U, nvcfg1); } } if (tp->pci_chip_rev_id >> 12 == 4U) { goto _L; } else { { tmp = _tg3_flag(74, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { _L: /* CIL Label */ { if ((nvcfg1 & 50331651U) == 33554435U) { goto case_33554435; } else { } if ((nvcfg1 & 50331651U) == 3U) { goto case_3; } else { } if ((nvcfg1 & 50331651U) == 33554432U) { goto case_33554432; } else { } if ((nvcfg1 & 50331651U) == 50331649U) { goto case_50331649; } else { } if ((nvcfg1 & 50331651U) == 16777219U) { goto case_16777219; } else { } if ((nvcfg1 & 50331651U) == 1U) { goto case_1; } else { } if ((nvcfg1 & 50331651U) == 33554433U) { goto case_33554433; } else { } goto switch_break; case_33554435: /* CIL Label */ { tp->nvram_jedecnum = 31U; tp->nvram_pagesize = 264U; _tg3_flag_set(14, (unsigned long *)(& tp->tg3_flags)); } goto ldv_59875; case_3: /* CIL Label */ tp->nvram_jedecnum = 31U; tp->nvram_pagesize = 256U; goto ldv_59875; case_33554432: /* CIL Label */ { tp->nvram_jedecnum = 31U; tp->nvram_pagesize = 524288U; _tg3_flag_set(14, (unsigned long *)(& tp->tg3_flags)); } goto ldv_59875; case_50331649: /* CIL Label */ { tp->nvram_jedecnum = 32U; tp->nvram_pagesize = 256U; _tg3_flag_set(14, (unsigned long *)(& tp->tg3_flags)); } goto ldv_59875; case_16777219: /* CIL Label */ tp->nvram_jedecnum = 79U; tp->nvram_pagesize = 256U; goto ldv_59875; case_1: /* CIL Label */ ; case_33554433: /* CIL Label */ tp->nvram_jedecnum = 191U; tp->nvram_pagesize = 4098U; goto ldv_59875; switch_break: /* CIL Label */ ; } ldv_59875: ; } else { { tp->nvram_jedecnum = 31U; tp->nvram_pagesize = 264U; _tg3_flag_set(14, (unsigned long *)(& tp->tg3_flags)); } } } return; } } static void tg3_nvram_get_pagesize(struct tg3 *tp , u32 nvmcfg1 ) { { { if ((nvmcfg1 & 1879048192U) == 0U) { goto case_0; } else { } if ((nvmcfg1 & 1879048192U) == 268435456U) { goto case_268435456; } else { } if ((nvmcfg1 & 1879048192U) == 536870912U) { goto case_536870912; } else { } if ((nvmcfg1 & 1879048192U) == 805306368U) { goto case_805306368; } else { } if ((nvmcfg1 & 1879048192U) == 1073741824U) { goto case_1073741824; } else { } if ((nvmcfg1 & 1879048192U) == 1342177280U) { goto case_1342177280; } else { } if ((nvmcfg1 & 1879048192U) == 1610612736U) { goto case_1610612736; } else { } goto switch_break; case_0: /* CIL Label */ tp->nvram_pagesize = 256U; goto ldv_59887; case_268435456: /* CIL Label */ tp->nvram_pagesize = 512U; goto ldv_59887; case_536870912: /* CIL Label */ tp->nvram_pagesize = 1024U; goto ldv_59887; case_805306368: /* CIL Label */ tp->nvram_pagesize = 2048U; goto ldv_59887; case_1073741824: /* CIL Label */ tp->nvram_pagesize = 4096U; goto ldv_59887; case_1342177280: /* CIL Label */ tp->nvram_pagesize = 264U; goto ldv_59887; case_1610612736: /* CIL Label */ tp->nvram_pagesize = 528U; goto ldv_59887; switch_break: /* CIL Label */ ; } ldv_59887: ; return; } } static void tg3_get_5752_nvram_info(struct tg3 *tp ) { u32 nvcfg1 ; int tmp ; { { nvcfg1 = (*(tp->read32))(tp, 28692U); } if ((nvcfg1 & 134217728U) != 0U) { { _tg3_flag_set(50, (unsigned long *)(& tp->tg3_flags)); } } else { } { if ((nvcfg1 & 62914563U) == 0U) { goto case_0; } else { } if ((nvcfg1 & 62914563U) == 33554432U) { goto case_33554432; } else { } if ((nvcfg1 & 62914563U) == 33554435U) { goto case_33554435; } else { } if ((nvcfg1 & 62914563U) == 37748736U) { goto case_37748736; } else { } if ((nvcfg1 & 62914563U) == 37748738U) { goto case_37748738; } else { } if ((nvcfg1 & 62914563U) == 37748737U) { goto case_37748737; } else { } goto switch_break; case_0: /* CIL Label */ ; case_33554432: /* CIL Label */ { tp->nvram_jedecnum = 31U; _tg3_flag_set(14, (unsigned long *)(& tp->tg3_flags)); } goto ldv_59900; case_33554435: /* CIL Label */ { tp->nvram_jedecnum = 31U; _tg3_flag_set(14, (unsigned long *)(& tp->tg3_flags)); _tg3_flag_set(38, (unsigned long *)(& tp->tg3_flags)); } goto ldv_59900; case_37748736: /* CIL Label */ ; case_37748738: /* CIL Label */ ; case_37748737: /* CIL Label */ { tp->nvram_jedecnum = 32U; _tg3_flag_set(14, (unsigned long *)(& tp->tg3_flags)); _tg3_flag_set(38, (unsigned long *)(& tp->tg3_flags)); } goto ldv_59900; switch_break: /* CIL Label */ ; } ldv_59900: { tmp = _tg3_flag(38, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { { tg3_nvram_get_pagesize(tp, nvcfg1); } } else { { tp->nvram_pagesize = 524288U; nvcfg1 = nvcfg1 & 2147483647U; (*(tp->write32))(tp, 28692U, nvcfg1); } } return; } } static void tg3_get_5755_nvram_info(struct tg3 *tp ) { u32 nvcfg1 ; u32 protect ; { { protect = 0U; nvcfg1 = (*(tp->read32))(tp, 28692U); } if ((nvcfg1 & 134217728U) != 0U) { { _tg3_flag_set(50, (unsigned long *)(& tp->tg3_flags)); protect = 1U; } } else { } nvcfg1 = nvcfg1 & 62914563U; { if (nvcfg1 == 54525953U) { goto case_54525953; } else { } if (nvcfg1 == 54525954U) { goto case_54525954; } else { } if (nvcfg1 == 54525952U) { goto case_54525952; } else { } if (nvcfg1 == 33554435U) { goto case_33554435; } else { } if (nvcfg1 == 37748736U) { goto case_37748736; } else { } if (nvcfg1 == 37748738U) { goto case_37748738; } else { } if (nvcfg1 == 37748737U) { goto case_37748737; } else { } goto switch_break; case_54525953: /* CIL Label */ ; case_54525954: /* CIL Label */ ; case_54525952: /* CIL Label */ ; case_33554435: /* CIL Label */ { tp->nvram_jedecnum = 31U; _tg3_flag_set(14, (unsigned long *)(& tp->tg3_flags)); _tg3_flag_set(38, (unsigned long *)(& tp->tg3_flags)); tp->nvram_pagesize = 264U; } if (nvcfg1 == 54525953U || nvcfg1 == 33554435U) { tp->nvram_size = protect != 0U ? 254464U : 524288U; } else if (nvcfg1 == 54525954U) { tp->nvram_size = protect != 0U ? 127488U : 262144U; } else { tp->nvram_size = protect != 0U ? 127488U : 131072U; } goto ldv_59914; case_37748736: /* CIL Label */ ; case_37748738: /* CIL Label */ ; case_37748737: /* CIL Label */ { tp->nvram_jedecnum = 32U; _tg3_flag_set(14, (unsigned long *)(& tp->tg3_flags)); _tg3_flag_set(38, (unsigned long *)(& tp->tg3_flags)); tp->nvram_pagesize = 256U; } if (nvcfg1 == 37748736U) { tp->nvram_size = protect != 0U ? 65536U : 131072U; } else if (nvcfg1 == 37748738U) { tp->nvram_size = protect != 0U ? 65536U : 262144U; } else { tp->nvram_size = protect != 0U ? 131072U : 524288U; } goto ldv_59914; switch_break: /* CIL Label */ ; } ldv_59914: ; return; } } static void tg3_get_5787_nvram_info(struct tg3 *tp ) { u32 nvcfg1 ; { { nvcfg1 = (*(tp->read32))(tp, 28692U); } { if ((nvcfg1 & 62914563U) == 50331651U) { goto case_50331651; } else { } if ((nvcfg1 & 62914563U) == 50331650U) { goto case_50331650; } else { } if ((nvcfg1 & 62914563U) == 50331648U) { goto case_50331648; } else { } if ((nvcfg1 & 62914563U) == 33554432U) { goto case_33554432; } else { } if ((nvcfg1 & 62914563U) == 33554435U) { goto case_33554435; } else { } if ((nvcfg1 & 62914563U) == 54525953U) { goto case_54525953; } else { } if ((nvcfg1 & 62914563U) == 54525954U) { goto case_54525954; } else { } if ((nvcfg1 & 62914563U) == 54525952U) { goto case_54525952; } else { } if ((nvcfg1 & 62914563U) == 37748736U) { goto case_37748736; } else { } if ((nvcfg1 & 62914563U) == 37748738U) { goto case_37748738; } else { } if ((nvcfg1 & 62914563U) == 37748737U) { goto case_37748737; } else { } goto switch_break; case_50331651: /* CIL Label */ ; case_50331650: /* CIL Label */ ; case_50331648: /* CIL Label */ ; case_33554432: /* CIL Label */ { tp->nvram_jedecnum = 31U; _tg3_flag_set(14, (unsigned long *)(& tp->tg3_flags)); tp->nvram_pagesize = 524288U; nvcfg1 = nvcfg1 & 2147483647U; (*(tp->write32))(tp, 28692U, nvcfg1); } goto ldv_59926; case_33554435: /* CIL Label */ ; case_54525953: /* CIL Label */ ; case_54525954: /* CIL Label */ ; case_54525952: /* CIL Label */ { tp->nvram_jedecnum = 31U; _tg3_flag_set(14, (unsigned long *)(& tp->tg3_flags)); _tg3_flag_set(38, (unsigned long *)(& tp->tg3_flags)); tp->nvram_pagesize = 264U; } goto ldv_59926; case_37748736: /* CIL Label */ ; case_37748738: /* CIL Label */ ; case_37748737: /* CIL Label */ { tp->nvram_jedecnum = 32U; _tg3_flag_set(14, (unsigned long *)(& tp->tg3_flags)); _tg3_flag_set(38, (unsigned long *)(& tp->tg3_flags)); tp->nvram_pagesize = 256U; } goto ldv_59926; switch_break: /* CIL Label */ ; } ldv_59926: ; return; } } static void tg3_get_5761_nvram_info(struct tg3 *tp ) { u32 nvcfg1 ; u32 protect ; { { protect = 0U; nvcfg1 = (*(tp->read32))(tp, 28692U); } if ((nvcfg1 & 134217728U) != 0U) { { _tg3_flag_set(50, (unsigned long *)(& tp->tg3_flags)); protect = 1U; } } else { } nvcfg1 = nvcfg1 & 62914563U; { if (nvcfg1 == 3U) { goto case_3; } else { } if (nvcfg1 == 0U) { goto case_0; } else { } if (nvcfg1 == 2U) { goto case_2; } else { } if (nvcfg1 == 1U) { goto case_1; } else { } if (nvcfg1 == 8388611U) { goto case_8388611; } else { } if (nvcfg1 == 8388608U) { goto case_8388608; } else { } if (nvcfg1 == 8388610U) { goto case_8388610; } else { } if (nvcfg1 == 8388609U) { goto case_8388609; } else { } if (nvcfg1 == 33554433U) { goto case_33554433; } else { } if (nvcfg1 == 33554432U) { goto case_33554432; } else { } if (nvcfg1 == 33554434U) { goto case_33554434; } else { } if (nvcfg1 == 33554435U) { goto case_33554435; } else { } if (nvcfg1 == 41943041U) { goto case_41943041; } else { } if (nvcfg1 == 41943040U) { goto case_41943040; } else { } if (nvcfg1 == 41943042U) { goto case_41943042; } else { } if (nvcfg1 == 41943043U) { goto case_41943043; } else { } goto switch_break; case_3: /* CIL Label */ ; case_0: /* CIL Label */ ; case_2: /* CIL Label */ ; case_1: /* CIL Label */ ; case_8388611: /* CIL Label */ ; case_8388608: /* CIL Label */ ; case_8388610: /* CIL Label */ ; case_8388609: /* CIL Label */ { tp->nvram_jedecnum = 31U; _tg3_flag_set(14, (unsigned long *)(& tp->tg3_flags)); _tg3_flag_set(38, (unsigned long *)(& tp->tg3_flags)); _tg3_flag_set(48, (unsigned long *)(& tp->tg3_flags)); tp->nvram_pagesize = 256U; } goto ldv_59947; case_33554433: /* CIL Label */ ; case_33554432: /* CIL Label */ ; case_33554434: /* CIL Label */ ; case_33554435: /* CIL Label */ ; case_41943041: /* CIL Label */ ; case_41943040: /* CIL Label */ ; case_41943042: /* CIL Label */ ; case_41943043: /* CIL Label */ { tp->nvram_jedecnum = 32U; _tg3_flag_set(14, (unsigned long *)(& tp->tg3_flags)); _tg3_flag_set(38, (unsigned long *)(& tp->tg3_flags)); tp->nvram_pagesize = 256U; } goto ldv_59947; switch_break: /* CIL Label */ ; } ldv_59947: ; if (protect != 0U) { { tp->nvram_size = (*(tp->read32))(tp, 28720U); } } else { { if (nvcfg1 == 1U) { goto case_1___0; } else { } if (nvcfg1 == 8388609U) { goto case_8388609___0; } else { } if (nvcfg1 == 33554435U) { goto case_33554435___0; } else { } if (nvcfg1 == 41943043U) { goto case_41943043___0; } else { } if (nvcfg1 == 2U) { goto case_2___0; } else { } if (nvcfg1 == 8388610U) { goto case_8388610___0; } else { } if (nvcfg1 == 33554434U) { goto case_33554434___0; } else { } if (nvcfg1 == 41943042U) { goto case_41943042___0; } else { } if (nvcfg1 == 0U) { goto case_0___0; } else { } if (nvcfg1 == 8388608U) { goto case_8388608___0; } else { } if (nvcfg1 == 33554432U) { goto case_33554432___0; } else { } if (nvcfg1 == 41943040U) { goto case_41943040___0; } else { } if (nvcfg1 == 3U) { goto case_3___0; } else { } if (nvcfg1 == 8388611U) { goto case_8388611___0; } else { } if (nvcfg1 == 33554433U) { goto case_33554433___0; } else { } if (nvcfg1 == 41943041U) { goto case_41943041___0; } else { } goto switch_break___0; case_1___0: /* CIL Label */ ; case_8388609___0: /* CIL Label */ ; case_33554435___0: /* CIL Label */ ; case_41943043___0: /* CIL Label */ tp->nvram_size = 2097152U; goto ldv_59960; case_2___0: /* CIL Label */ ; case_8388610___0: /* CIL Label */ ; case_33554434___0: /* CIL Label */ ; case_41943042___0: /* CIL Label */ tp->nvram_size = 1048576U; goto ldv_59960; case_0___0: /* CIL Label */ ; case_8388608___0: /* CIL Label */ ; case_33554432___0: /* CIL Label */ ; case_41943040___0: /* CIL Label */ tp->nvram_size = 524288U; goto ldv_59960; case_3___0: /* CIL Label */ ; case_8388611___0: /* CIL Label */ ; case_33554433___0: /* CIL Label */ ; case_41943041___0: /* CIL Label */ tp->nvram_size = 262144U; goto ldv_59960; switch_break___0: /* CIL Label */ ; } ldv_59960: ; } return; } } static void tg3_get_5906_nvram_info(struct tg3 *tp ) { { { tp->nvram_jedecnum = 31U; _tg3_flag_set(14, (unsigned long *)(& tp->tg3_flags)); tp->nvram_pagesize = 524288U; } return; } } static void tg3_get_57780_nvram_info(struct tg3 *tp ) { u32 nvcfg1 ; { { nvcfg1 = (*(tp->read32))(tp, 28692U); } { if ((nvcfg1 & 62914563U) == 50331650U) { goto case_50331650; } else { } if ((nvcfg1 & 62914563U) == 33554432U) { goto case_33554432; } else { } if ((nvcfg1 & 62914563U) == 33554435U) { goto case_33554435; } else { } if ((nvcfg1 & 62914563U) == 4194304U) { goto case_4194304; } else { } if ((nvcfg1 & 62914563U) == 54525952U) { goto case_54525952; } else { } if ((nvcfg1 & 62914563U) == 4194306U) { goto case_4194306; } else { } if ((nvcfg1 & 62914563U) == 54525954U) { goto case_54525954; } else { } if ((nvcfg1 & 62914563U) == 4194305U) { goto case_4194305; } else { } if ((nvcfg1 & 62914563U) == 54525953U) { goto case_54525953; } else { } if ((nvcfg1 & 62914563U) == 37748736U) { goto case_37748736; } else { } if ((nvcfg1 & 62914563U) == 37748738U) { goto case_37748738; } else { } if ((nvcfg1 & 62914563U) == 37748737U) { goto case_37748737; } else { } goto switch_default; case_50331650: /* CIL Label */ ; case_33554432: /* CIL Label */ { tp->nvram_jedecnum = 31U; _tg3_flag_set(14, (unsigned long *)(& tp->tg3_flags)); tp->nvram_pagesize = 524288U; nvcfg1 = nvcfg1 & 2147483647U; (*(tp->write32))(tp, 28692U, nvcfg1); } return; case_33554435: /* CIL Label */ ; case_4194304: /* CIL Label */ ; case_54525952: /* CIL Label */ ; case_4194306: /* CIL Label */ ; case_54525954: /* CIL Label */ ; case_4194305: /* CIL Label */ ; case_54525953: /* CIL Label */ { tp->nvram_jedecnum = 31U; _tg3_flag_set(14, (unsigned long *)(& tp->tg3_flags)); _tg3_flag_set(38, (unsigned long *)(& tp->tg3_flags)); } { if ((nvcfg1 & 62914563U) == 33554435U) { goto case_33554435___0; } else { } if ((nvcfg1 & 62914563U) == 4194304U) { goto case_4194304___0; } else { } if ((nvcfg1 & 62914563U) == 54525952U) { goto case_54525952___0; } else { } if ((nvcfg1 & 62914563U) == 4194306U) { goto case_4194306___0; } else { } if ((nvcfg1 & 62914563U) == 54525954U) { goto case_54525954___0; } else { } if ((nvcfg1 & 62914563U) == 4194305U) { goto case_4194305___0; } else { } if ((nvcfg1 & 62914563U) == 54525953U) { goto case_54525953___0; } else { } goto switch_break___0; case_33554435___0: /* CIL Label */ ; case_4194304___0: /* CIL Label */ ; case_54525952___0: /* CIL Label */ tp->nvram_size = 131072U; goto ldv_59992; case_4194306___0: /* CIL Label */ ; case_54525954___0: /* CIL Label */ tp->nvram_size = 262144U; goto ldv_59992; case_4194305___0: /* CIL Label */ ; case_54525953___0: /* CIL Label */ tp->nvram_size = 524288U; goto ldv_59992; switch_break___0: /* CIL Label */ ; } ldv_59992: ; goto ldv_59997; case_37748736: /* CIL Label */ ; case_37748738: /* CIL Label */ ; case_37748737: /* CIL Label */ { tp->nvram_jedecnum = 32U; _tg3_flag_set(14, (unsigned long *)(& tp->tg3_flags)); _tg3_flag_set(38, (unsigned long *)(& tp->tg3_flags)); } { if ((nvcfg1 & 62914563U) == 37748736U) { goto case_37748736___0; } else { } if ((nvcfg1 & 62914563U) == 37748738U) { goto case_37748738___0; } else { } if ((nvcfg1 & 62914563U) == 37748737U) { goto case_37748737___0; } else { } goto switch_break___1; case_37748736___0: /* CIL Label */ tp->nvram_size = 131072U; goto ldv_60002; case_37748738___0: /* CIL Label */ tp->nvram_size = 262144U; goto ldv_60002; case_37748737___0: /* CIL Label */ tp->nvram_size = 524288U; goto ldv_60002; switch_break___1: /* CIL Label */ ; } ldv_60002: ; goto ldv_59997; switch_default: /* CIL Label */ { _tg3_flag_set(59, (unsigned long *)(& tp->tg3_flags)); } return; switch_break: /* CIL Label */ ; } ldv_59997: { tg3_nvram_get_pagesize(tp, nvcfg1); } if (tp->nvram_pagesize != 264U && tp->nvram_pagesize != 528U) { { _tg3_flag_set(48, (unsigned long *)(& tp->tg3_flags)); } } else { } return; } } static void tg3_get_5717_nvram_info(struct tg3 *tp ) { u32 nvcfg1 ; { { nvcfg1 = (*(tp->read32))(tp, 28692U); } { if ((nvcfg1 & 62914563U) == 33554433U) { goto case_33554433; } else { } if ((nvcfg1 & 62914563U) == 33554435U) { goto case_33554435; } else { } if ((nvcfg1 & 62914563U) == 16777217U) { goto case_16777217; } else { } if ((nvcfg1 & 62914563U) == 20971520U) { goto case_20971520; } else { } if ((nvcfg1 & 62914563U) == 20971521U) { goto case_20971521; } else { } if ((nvcfg1 & 62914563U) == 16777219U) { goto case_16777219; } else { } if ((nvcfg1 & 62914563U) == 20971522U) { goto case_20971522; } else { } if ((nvcfg1 & 62914563U) == 20971523U) { goto case_20971523; } else { } if ((nvcfg1 & 62914563U) == 54525952U) { goto case_54525952; } else { } if ((nvcfg1 & 62914563U) == 33554432U) { goto case_33554432; } else { } if ((nvcfg1 & 62914563U) == 37748736U) { goto case_37748736; } else { } if ((nvcfg1 & 62914563U) == 1U) { goto case_1; } else { } if ((nvcfg1 & 62914563U) == 37748737U) { goto case_37748737; } else { } if ((nvcfg1 & 62914563U) == 33554434U) { goto case_33554434; } else { } if ((nvcfg1 & 62914563U) == 37748738U) { goto case_37748738; } else { } if ((nvcfg1 & 62914563U) == 3U) { goto case_3; } else { } if ((nvcfg1 & 62914563U) == 37748739U) { goto case_37748739; } else { } if ((nvcfg1 & 62914563U) == 54525954U) { goto case_54525954; } else { } if ((nvcfg1 & 62914563U) == 54525953U) { goto case_54525953; } else { } goto switch_default___1; case_33554433: /* CIL Label */ ; case_33554435: /* CIL Label */ { tp->nvram_jedecnum = 31U; _tg3_flag_set(14, (unsigned long *)(& tp->tg3_flags)); tp->nvram_pagesize = 524288U; nvcfg1 = nvcfg1 & 2147483647U; (*(tp->write32))(tp, 28692U, nvcfg1); } return; case_16777217: /* CIL Label */ ; case_20971520: /* CIL Label */ ; case_20971521: /* CIL Label */ ; case_16777219: /* CIL Label */ ; case_20971522: /* CIL Label */ ; case_20971523: /* CIL Label */ ; case_54525952: /* CIL Label */ { tp->nvram_jedecnum = 31U; _tg3_flag_set(14, (unsigned long *)(& tp->tg3_flags)); _tg3_flag_set(38, (unsigned long *)(& tp->tg3_flags)); } { if ((nvcfg1 & 62914563U) == 16777219U) { goto case_16777219___0; } else { } if ((nvcfg1 & 62914563U) == 20971522U) { goto case_20971522___0; } else { } if ((nvcfg1 & 62914563U) == 20971523U) { goto case_20971523___0; } else { } goto switch_default; case_16777219___0: /* CIL Label */ ; goto ldv_60020; case_20971522___0: /* CIL Label */ ; case_20971523___0: /* CIL Label */ tp->nvram_size = 262144U; goto ldv_60020; switch_default: /* CIL Label */ tp->nvram_size = 131072U; goto ldv_60020; switch_break___0: /* CIL Label */ ; } ldv_60020: ; goto ldv_60024; case_33554432: /* CIL Label */ ; case_37748736: /* CIL Label */ ; case_1: /* CIL Label */ ; case_37748737: /* CIL Label */ ; case_33554434: /* CIL Label */ ; case_37748738: /* CIL Label */ ; case_3: /* CIL Label */ ; case_37748739: /* CIL Label */ ; case_54525954: /* CIL Label */ ; case_54525953: /* CIL Label */ { tp->nvram_jedecnum = 32U; _tg3_flag_set(14, (unsigned long *)(& tp->tg3_flags)); _tg3_flag_set(38, (unsigned long *)(& tp->tg3_flags)); } { if ((nvcfg1 & 62914563U) == 33554434U) { goto case_33554434___0; } else { } if ((nvcfg1 & 62914563U) == 3U) { goto case_3___0; } else { } if ((nvcfg1 & 62914563U) == 37748738U) { goto case_37748738___0; } else { } if ((nvcfg1 & 62914563U) == 37748739U) { goto case_37748739___0; } else { } goto switch_default___0; case_33554434___0: /* CIL Label */ ; case_3___0: /* CIL Label */ ; goto ldv_60037; case_37748738___0: /* CIL Label */ ; case_37748739___0: /* CIL Label */ tp->nvram_size = 262144U; goto ldv_60037; switch_default___0: /* CIL Label */ tp->nvram_size = 131072U; goto ldv_60037; switch_break___1: /* CIL Label */ ; } ldv_60037: ; goto ldv_60024; switch_default___1: /* CIL Label */ { _tg3_flag_set(59, (unsigned long *)(& tp->tg3_flags)); } return; switch_break: /* CIL Label */ ; } ldv_60024: { tg3_nvram_get_pagesize(tp, nvcfg1); } if (tp->nvram_pagesize != 264U && tp->nvram_pagesize != 528U) { { _tg3_flag_set(48, (unsigned long *)(& tp->tg3_flags)); } } else { } return; } } static void tg3_get_5720_nvram_info(struct tg3 *tp ) { u32 nvcfg1 ; u32 nvmpinstrp ; u32 val ; int tmp ; { { nvcfg1 = (*(tp->read32))(tp, 28692U); nvmpinstrp = nvcfg1 & 62914563U; } if (tp->pci_chip_rev_id >> 12 == 22370U) { if ((nvcfg1 & 65011715U) == 0U) { { _tg3_flag_set(59, (unsigned long *)(& tp->tg3_flags)); } return; } else { } { if (nvmpinstrp == 33554433U) { goto case_33554433; } else { } if (nvmpinstrp == 33554435U) { goto case_33554435; } else { } if (nvmpinstrp == 50331650U) { goto case_50331650; } else { } goto switch_break; case_33554433: /* CIL Label */ nvmpinstrp = 1U; goto ldv_60048; case_33554435: /* CIL Label */ nvmpinstrp = 3U; goto ldv_60048; case_50331650: /* CIL Label */ nvmpinstrp = 62914561U; goto ldv_60048; switch_break: /* CIL Label */ ; } ldv_60048: ; } else { } { if (nvmpinstrp == 1U) { goto case_1; } else { } if (nvmpinstrp == 3U) { goto case_3; } else { } if (nvmpinstrp == 16777216U) { goto case_16777216; } else { } if (nvmpinstrp == 25165824U) { goto case_25165824; } else { } if (nvmpinstrp == 29360128U) { goto case_29360128; } else { } if (nvmpinstrp == 16777218U) { goto case_16777218; } else { } if (nvmpinstrp == 25165826U) { goto case_25165826; } else { } if (nvmpinstrp == 29360130U) { goto case_29360130; } else { } if (nvmpinstrp == 16777217U) { goto case_16777217; } else { } if (nvmpinstrp == 25165825U) { goto case_25165825; } else { } if (nvmpinstrp == 29360129U) { goto case_29360129; } else { } if (nvmpinstrp == 16777219U) { goto case_16777219; } else { } if (nvmpinstrp == 29360131U) { goto case_29360131; } else { } if (nvmpinstrp == 62914560U) { goto case_62914560; } else { } if (nvmpinstrp == 33554432U) { goto case_33554432; } else { } if (nvmpinstrp == 50331648U) { goto case_50331648; } else { } if (nvmpinstrp == 41943040U) { goto case_41943040; } else { } if (nvmpinstrp == 46137344U) { goto case_46137344; } else { } if (nvmpinstrp == 33554434U) { goto case_33554434; } else { } if (nvmpinstrp == 50331650U) { goto case_50331650___0; } else { } if (nvmpinstrp == 41943042U) { goto case_41943042; } else { } if (nvmpinstrp == 46137346U) { goto case_46137346; } else { } if (nvmpinstrp == 33554433U) { goto case_33554433___0; } else { } if (nvmpinstrp == 50331649U) { goto case_50331649; } else { } if (nvmpinstrp == 41943041U) { goto case_41943041; } else { } if (nvmpinstrp == 46137345U) { goto case_46137345; } else { } if (nvmpinstrp == 33554435U) { goto case_33554435___0; } else { } if (nvmpinstrp == 50331651U) { goto case_50331651; } else { } if (nvmpinstrp == 41943043U) { goto case_41943043; } else { } if (nvmpinstrp == 46137347U) { goto case_46137347; } else { } if (nvmpinstrp == 62914562U) { goto case_62914562; } else { } if (nvmpinstrp == 62914561U) { goto case_62914561; } else { } goto switch_default___1; case_1: /* CIL Label */ ; case_3: /* CIL Label */ { tp->nvram_jedecnum = 31U; _tg3_flag_set(14, (unsigned long *)(& tp->tg3_flags)); nvcfg1 = nvcfg1 & 2147483647U; (*(tp->write32))(tp, 28692U, nvcfg1); } if (nvmpinstrp == 1U) { tp->nvram_pagesize = 524288U; } else { tp->nvram_pagesize = 2048U; } return; case_16777216: /* CIL Label */ ; case_25165824: /* CIL Label */ ; case_29360128: /* CIL Label */ ; case_16777218: /* CIL Label */ ; case_25165826: /* CIL Label */ ; case_29360130: /* CIL Label */ ; case_16777217: /* CIL Label */ ; case_25165825: /* CIL Label */ ; case_29360129: /* CIL Label */ ; case_16777219: /* CIL Label */ ; case_29360131: /* CIL Label */ ; case_62914560: /* CIL Label */ { tp->nvram_jedecnum = 31U; _tg3_flag_set(14, (unsigned long *)(& tp->tg3_flags)); _tg3_flag_set(38, (unsigned long *)(& tp->tg3_flags)); } { if (nvmpinstrp == 16777218U) { goto case_16777218___0; } else { } if (nvmpinstrp == 25165826U) { goto case_25165826___0; } else { } if (nvmpinstrp == 29360130U) { goto case_29360130___0; } else { } if (nvmpinstrp == 16777217U) { goto case_16777217___0; } else { } if (nvmpinstrp == 25165825U) { goto case_25165825___0; } else { } if (nvmpinstrp == 29360129U) { goto case_29360129___0; } else { } if (nvmpinstrp == 16777219U) { goto case_16777219___0; } else { } if (nvmpinstrp == 29360131U) { goto case_29360131___0; } else { } goto switch_default; case_16777218___0: /* CIL Label */ ; case_25165826___0: /* CIL Label */ ; case_29360130___0: /* CIL Label */ tp->nvram_size = 262144U; goto ldv_60068; case_16777217___0: /* CIL Label */ ; case_25165825___0: /* CIL Label */ ; case_29360129___0: /* CIL Label */ tp->nvram_size = 524288U; goto ldv_60068; case_16777219___0: /* CIL Label */ ; case_29360131___0: /* CIL Label */ tp->nvram_size = 1048576U; goto ldv_60068; switch_default: /* CIL Label */ ; if (tp->pci_chip_rev_id >> 12 != 22370U) { tp->nvram_size = 131072U; } else { } goto ldv_60068; switch_break___1: /* CIL Label */ ; } ldv_60068: ; goto ldv_60075; case_33554432: /* CIL Label */ ; case_50331648: /* CIL Label */ ; case_41943040: /* CIL Label */ ; case_46137344: /* CIL Label */ ; case_33554434: /* CIL Label */ ; case_50331650___0: /* CIL Label */ ; case_41943042: /* CIL Label */ ; case_46137346: /* CIL Label */ ; case_33554433___0: /* CIL Label */ ; case_50331649: /* CIL Label */ ; case_41943041: /* CIL Label */ ; case_46137345: /* CIL Label */ ; case_33554435___0: /* CIL Label */ ; case_50331651: /* CIL Label */ ; case_41943043: /* CIL Label */ ; case_46137347: /* CIL Label */ ; case_62914562: /* CIL Label */ ; case_62914561: /* CIL Label */ { tp->nvram_jedecnum = 32U; _tg3_flag_set(14, (unsigned long *)(& tp->tg3_flags)); _tg3_flag_set(38, (unsigned long *)(& tp->tg3_flags)); } { if (nvmpinstrp == 33554434U) { goto case_33554434___0; } else { } if (nvmpinstrp == 50331650U) { goto case_50331650___1; } else { } if (nvmpinstrp == 41943042U) { goto case_41943042___0; } else { } if (nvmpinstrp == 46137346U) { goto case_46137346___0; } else { } if (nvmpinstrp == 33554433U) { goto case_33554433___1; } else { } if (nvmpinstrp == 50331649U) { goto case_50331649___0; } else { } if (nvmpinstrp == 41943041U) { goto case_41943041___0; } else { } if (nvmpinstrp == 46137345U) { goto case_46137345___0; } else { } if (nvmpinstrp == 33554435U) { goto case_33554435___1; } else { } if (nvmpinstrp == 50331651U) { goto case_50331651___0; } else { } if (nvmpinstrp == 41943043U) { goto case_41943043___0; } else { } if (nvmpinstrp == 46137347U) { goto case_46137347___0; } else { } goto switch_default___0; case_33554434___0: /* CIL Label */ ; case_50331650___1: /* CIL Label */ ; case_41943042___0: /* CIL Label */ ; case_46137346___0: /* CIL Label */ tp->nvram_size = 262144U; goto ldv_60098; case_33554433___1: /* CIL Label */ ; case_50331649___0: /* CIL Label */ ; case_41943041___0: /* CIL Label */ ; case_46137345___0: /* CIL Label */ tp->nvram_size = 524288U; goto ldv_60098; case_33554435___1: /* CIL Label */ ; case_50331651___0: /* CIL Label */ ; case_41943043___0: /* CIL Label */ ; case_46137347___0: /* CIL Label */ tp->nvram_size = 1048576U; goto ldv_60098; switch_default___0: /* CIL Label */ ; if (tp->pci_chip_rev_id >> 12 != 22370U) { tp->nvram_size = 131072U; } else { } goto ldv_60098; switch_break___2: /* CIL Label */ ; } ldv_60098: ; goto ldv_60075; switch_default___1: /* CIL Label */ { _tg3_flag_set(59, (unsigned long *)(& tp->tg3_flags)); } return; switch_break___0: /* CIL Label */ ; } ldv_60075: { tg3_nvram_get_pagesize(tp, nvcfg1); } if (tp->nvram_pagesize != 264U && tp->nvram_pagesize != 528U) { { _tg3_flag_set(48, (unsigned long *)(& tp->tg3_flags)); } } else { } if (tp->pci_chip_rev_id >> 12 == 22370U) { { tmp = tg3_nvram_read(tp, 0U, & val); } if (tmp != 0) { return; } else { } if (val != 1721324970U && (val & 4278190080U) != 2768240640U) { { _tg3_flag_set(59, (unsigned long *)(& tp->tg3_flags)); } } else { } } else { } return; } } static void tg3_nvram_init(struct tg3 *tp ) { int tmp ; u32 tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = _tg3_flag(79, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { { _tg3_flag_clear(13, (unsigned long *)(& tp->tg3_flags)); _tg3_flag_clear(14, (unsigned long *)(& tp->tg3_flags)); _tg3_flag_set(59, (unsigned long *)(& tp->tg3_flags)); } return; } else { } { _tw32_flush(tp, 26680U, 543162368U, 0U); msleep(1U); tmp___0 = (*(tp->read32))(tp, 26632U); _tw32_flush(tp, 26632U, tmp___0 | 16777216U, 0U); __const_udelay(429500UL); } if (tp->pci_chip_rev_id >> 12 != 7U && tp->pci_chip_rev_id >> 12 != 0U) { { _tg3_flag_set(13, (unsigned long *)(& tp->tg3_flags)); tmp___1 = tg3_nvram_lock(tp); } if (tmp___1 != 0) { { netdev_warn((struct net_device const *)tp->dev, "Cannot get nvram lock, %s failed\n", "tg3_nvram_init"); } return; } else { } { tg3_enable_nvram_access(tp); tp->nvram_size = 0U; } if (tp->pci_chip_rev_id >> 12 == 6U) { { tg3_get_5752_nvram_info(tp); } } else if (tp->pci_chip_rev_id >> 12 == 10U) { { tg3_get_5755_nvram_info(tp); } } else if ((tp->pci_chip_rev_id >> 12 == 11U || tp->pci_chip_rev_id >> 12 == 22404U) || tp->pci_chip_rev_id >> 12 == 22405U) { { tg3_get_5787_nvram_info(tp); } } else if (tp->pci_chip_rev_id >> 12 == 22369U) { { tg3_get_5761_nvram_info(tp); } } else if (tp->pci_chip_rev_id >> 12 == 12U) { { tg3_get_5906_nvram_info(tp); } } else if (tp->pci_chip_rev_id >> 12 == 358272U) { { tg3_get_57780_nvram_info(tp); } } else { { tmp___2 = _tg3_flag(77, (unsigned long *)(& tp->tg3_flags)); } if (tmp___2 != 0) { { tg3_get_57780_nvram_info(tp); } } else if (tp->pci_chip_rev_id >> 12 == 22295U || tp->pci_chip_rev_id >> 12 == 22297U) { { tg3_get_5717_nvram_info(tp); } } else if (tp->pci_chip_rev_id >> 12 == 22304U || tp->pci_chip_rev_id >> 12 == 22370U) { { tg3_get_5720_nvram_info(tp); } } else { { tg3_get_nvram_info(tp); } } } if (tp->nvram_size == 0U) { { tg3_get_nvram_size(tp); } } else { } { tg3_disable_nvram_access(tp); tg3_nvram_unlock(tp); } } else { { _tg3_flag_clear(13, (unsigned long *)(& tp->tg3_flags)); _tg3_flag_clear(14, (unsigned long *)(& tp->tg3_flags)); tg3_get_eeprom_size(tp); } } return; } } static struct subsys_tbl_ent subsys_id_to_phy_id[26U] = { {5348U, 5700U, 1610645584U}, {5348U, 1U, 1610645776U}, {5348U, 2U, 1610678592U}, {5348U, 3U, 0U}, {5348U, 5U, 1610645776U}, {5348U, 6U, 1610645776U}, {5348U, 7U, 0U}, {5348U, 8U, 1610645776U}, {5348U, 32776U, 1610645776U}, {5348U, 9U, 1610645856U}, {5348U, 32777U, 1610645856U}, {4279U, 4096U, 1610645584U}, {4279U, 4102U, 1610645776U}, {4279U, 4100U, 0U}, {4279U, 4103U, 1610645776U}, {4279U, 4104U, 1610645776U}, {4136U, 209U, 1610645584U}, {4136U, 262U, 1610645584U}, {4136U, 265U, 1610645616U}, {4136U, 266U, 1610645616U}, {3601U, 124U, 1610645776U}, {3601U, 154U, 1610645776U}, {3601U, 125U, 0U}, {3601U, 133U, 1610645776U}, {3601U, 153U, 1610645776U}, {4116U, 641U, 0U}}; static struct subsys_tbl_ent *tg3_lookup_by_subsys(struct tg3 *tp ) { int i ; { i = 0; goto ldv_60126; ldv_60125: ; if ((int )subsys_id_to_phy_id[i].subsys_vendor == (int )(tp->pdev)->subsystem_vendor && (int )subsys_id_to_phy_id[i].subsys_devid == (int )(tp->pdev)->subsystem_device) { return ((struct subsys_tbl_ent *)(& subsys_id_to_phy_id) + (unsigned long )i); } else { } i = i + 1; ldv_60126: ; if ((unsigned int )i <= 25U) { goto ldv_60125; } else { } return ((struct subsys_tbl_ent *)0); } } static void tg3_get_eeprom_hw_cfg(struct tg3 *tp ) { u32 val ; u32 tmp ; u32 nic_cfg ; u32 led_cfg ; u32 cfg2 ; u32 cfg4 ; u32 cfg5 ; u32 nic_phy_id ; u32 ver ; u32 eeprom_phy_id ; int eeprom_phy_serdes ; u32 id1 ; u32 id2 ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; u32 cfg3 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; { { tp->phy_id = 4294967295U; tp->led_ctrl = 2048U; _tg3_flag_set(12, (unsigned long *)(& tp->tg3_flags)); _tg3_flag_set(24, (unsigned long *)(& tp->tg3_flags)); } if (tp->pci_chip_rev_id >> 12 == 12U) { { tmp = (*(tp->read32))(tp, 31748U); } if ((tmp & 32U) == 0U) { { _tg3_flag_clear(12, (unsigned long *)(& tp->tg3_flags)); _tg3_flag_set(37, (unsigned long *)(& tp->tg3_flags)); } } else { } { val = (*(tp->read32))(tp, 20740U); } if ((val & 4096U) != 0U) { { _tg3_flag_set(5, (unsigned long *)(& tp->tg3_flags)); } } else { } if ((val & 5U) == 5U) { { _tg3_flag_set(11, (unsigned long *)(& tp->tg3_flags)); device_set_wakeup_enable(& (tp->pdev)->dev, 1); } } else { } goto done; } else { } { tg3_read_mem(tp, 2900U, & val); } if (val == 1264940628U) { { cfg2 = 0U; cfg4 = 0U; cfg5 = 0U; eeprom_phy_serdes = 0; tg3_read_mem(tp, 2904U, & nic_cfg); tp->nic_sram_data_cfg = nic_cfg; tg3_read_mem(tp, 2908U, & ver); ver = ver >> 16; } if ((((tp->pci_chip_rev_id >> 12 != 7U && tp->pci_chip_rev_id >> 12 != 0U) && tp->pci_chip_rev_id >> 12 != 1U) && ver != 0U) && ver <= 255U) { { tg3_read_mem(tp, 3384U, & cfg2); } } else { } if (tp->pci_chip_rev_id >> 12 == 22405U) { { tg3_read_mem(tp, 3424U, & cfg4); } } else { } if ((tp->pci_chip_rev_id >> 12 == 22295U || tp->pci_chip_rev_id >> 12 == 22297U) || tp->pci_chip_rev_id >> 12 == 22304U) { { tg3_read_mem(tp, 3596U, & cfg5); } } else { } if ((nic_cfg & 48U) == 32U) { eeprom_phy_serdes = 1; } else { } { tg3_read_mem(tp, 2932U, & nic_phy_id); } if (nic_phy_id != 0U) { id1 = nic_phy_id & 4294901760U; id2 = nic_phy_id & 65535U; eeprom_phy_id = (id1 >> 16) << 10; eeprom_phy_id = eeprom_phy_id | ((id2 & 64512U) << 16); eeprom_phy_id = eeprom_phy_id | (id2 & 1023U); } else { eeprom_phy_id = 0U; } tp->phy_id = eeprom_phy_id; if (eeprom_phy_serdes != 0) { { tmp___0 = _tg3_flag(71, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 == 0) { tp->phy_flags = tp->phy_flags | 16U; } else { tp->phy_flags = tp->phy_flags | 32U; } } else { } { tmp___1 = _tg3_flag(73, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 != 0) { led_cfg = cfg2 & 98316U; } else { led_cfg = nic_cfg & 12U; } { if (led_cfg == 4U) { goto case_4; } else { } if (led_cfg == 8U) { goto case_8; } else { } if (led_cfg == 0U) { goto case_0; } else { } if (led_cfg == 32768U) { goto case_32768; } else { } if (led_cfg == 65536U) { goto case_65536; } else { } if (led_cfg == 98304U) { goto case_98304; } else { } goto switch_default; switch_default: /* CIL Label */ ; case_4: /* CIL Label */ tp->led_ctrl = 2048U; goto ldv_60146; case_8: /* CIL Label */ tp->led_ctrl = 4096U; goto ldv_60146; case_0: /* CIL Label */ tp->led_ctrl = 0U; if (tp->pci_chip_rev_id >> 12 == 7U || tp->pci_chip_rev_id >> 12 == 0U) { tp->led_ctrl = 2048U; } else { } goto ldv_60146; case_32768: /* CIL Label */ tp->led_ctrl = 16384U; if (tp->pci_chip_rev_id - 16384U > 1U) { tp->led_ctrl = tp->led_ctrl | 6144U; } else { } { tmp___2 = _tg3_flag(78, (unsigned long *)(& tp->tg3_flags)); } if (tmp___2 != 0 || tp->pci_chip_rev_id >> 12 == 22370U) { tp->led_ctrl = tp->led_ctrl | 4294443008U; } else { } goto ldv_60146; case_65536: /* CIL Label */ tp->led_ctrl = 8192U; goto ldv_60146; case_98304: /* CIL Label */ tp->led_ctrl = 32768U; if (tp->pci_chip_rev_id != 16384U) { tp->led_ctrl = tp->led_ctrl | 6144U; } else { } goto ldv_60146; switch_break: /* CIL Label */ ; } ldv_60146: ; if ((tp->pci_chip_rev_id >> 12 == 7U || tp->pci_chip_rev_id >> 12 == 0U) && (unsigned int )(tp->pdev)->subsystem_vendor == 4136U) { tp->led_ctrl = 4096U; } else { } if (tp->pci_chip_rev_id >> 8 == 358464U) { tp->led_ctrl = 2048U; } else { } if ((nic_cfg & 256U) != 0U) { { _tg3_flag_set(12, (unsigned long *)(& tp->tg3_flags)); } if ((unsigned int )(tp->pdev)->subsystem_vendor == 5663U && ((unsigned int )(tp->pdev)->subsystem_device == 8282U || (unsigned int )(tp->pdev)->subsystem_device == 8291U)) { { _tg3_flag_clear(12, (unsigned long *)(& tp->tg3_flags)); } } else { } } else { { _tg3_flag_clear(12, (unsigned long *)(& tp->tg3_flags)); _tg3_flag_set(37, (unsigned long *)(& tp->tg3_flags)); } } if ((nic_cfg & 128U) != 0U) { { _tg3_flag_set(4, (unsigned long *)(& tp->tg3_flags)); tmp___3 = _tg3_flag(73, (unsigned long *)(& tp->tg3_flags)); } if (tmp___3 != 0) { { _tg3_flag_set(35, (unsigned long *)(& tp->tg3_flags)); } } else { } } else { } if ((nic_cfg & 2097152U) != 0U) { { tmp___4 = _tg3_flag(73, (unsigned long *)(& tp->tg3_flags)); } if (tmp___4 != 0) { { _tg3_flag_set(49, (unsigned long *)(& tp->tg3_flags)); } } else { } } else { } if ((tp->phy_flags & 48U) != 0U && (nic_cfg & 16384U) == 0U) { { _tg3_flag_clear(24, (unsigned long *)(& tp->tg3_flags)); } } else { } { tmp___5 = _tg3_flag(24, (unsigned long *)(& tp->tg3_flags)); } if (tmp___5 != 0 && (nic_cfg & 64U) != 0U) { { _tg3_flag_set(11, (unsigned long *)(& tp->tg3_flags)); device_set_wakeup_enable(& (tp->pdev)->dev, 1); } } else { } if ((cfg2 & 131072U) != 0U) { tp->phy_flags = tp->phy_flags | 512U; } else { } if ((cfg2 & 262144U) != 0U) { tp->phy_flags = tp->phy_flags | 65536U; } else { } { tmp___6 = _tg3_flag(76, (unsigned long *)(& tp->tg3_flags)); } if ((tmp___6 != 0 || (tp->pci_chip_rev_id >> 12 == 22404U && tp->pci_chip_rev_id >> 8 != 358464U)) && (cfg2 & 16384U) != 0U) { tp->phy_flags = tp->phy_flags | 256U; } else { } { tmp___8 = _tg3_flag(34, (unsigned long *)(& tp->tg3_flags)); } if (tmp___8 != 0) { { tg3_read_mem(tp, 3388U, & cfg3); } if (tp->pci_chip_rev_id >> 12 != 22405U) { { tmp___7 = _tg3_flag(76, (unsigned long *)(& tp->tg3_flags)); } if (tmp___7 == 0) { if ((cfg3 & 2U) != 0U) { { _tg3_flag_set(5, (unsigned long *)(& tp->tg3_flags)); } } else { } } else { } } else { } if ((cfg3 & 4194304U) != 0U) { tp->phy_flags = tp->phy_flags | 1048576U; } else { } if ((cfg3 & 8388608U) != 0U) { tp->phy_flags = tp->phy_flags | 524288U; } else { } } else { } if ((cfg4 & 4U) != 0U) { { _tg3_flag_set(55, (unsigned long *)(& tp->tg3_flags)); } } else { } if ((cfg4 & 8U) != 0U) { { _tg3_flag_set(56, (unsigned long *)(& tp->tg3_flags)); } } else { } if ((cfg4 & 16U) != 0U) { { _tg3_flag_set(57, (unsigned long *)(& tp->tg3_flags)); } } else { } if ((cfg5 & 2U) != 0U) { tp->phy_flags = tp->phy_flags | 4194304U; } else { } } else { } done: { tmp___10 = _tg3_flag(24, (unsigned long *)(& tp->tg3_flags)); } if (tmp___10 != 0) { { tmp___9 = _tg3_flag(11, (unsigned long *)(& tp->tg3_flags)); device_set_wakeup_enable(& (tp->pdev)->dev, tmp___9 != 0); } } else { { device_set_wakeup_capable(& (tp->pdev)->dev, 0); } } return; } } static int tg3_ape_otp_read(struct tg3 *tp , u32 offset , u32 *val ) { int i ; int err ; u32 val2 ; u32 off ; { { off = offset * 8U; err = tg3_nvram_lock(tp); } if (err != 0) { return (err); } else { } { tg3_ape_write32(tp, 240U, off | 2147483648U); tg3_ape_write32(tp, 232U, 2097153U); tg3_ape_read32(tp, 232U); __const_udelay(42950UL); i = 0; } goto ldv_60164; ldv_60163: { val2 = tg3_ape_read32(tp, 236U); } if ((int )val2 & 1) { { *val = tg3_ape_read32(tp, 248U); } goto ldv_60162; } else { } { __const_udelay(42950UL); i = i + 1; } ldv_60164: ; if (i <= 99) { goto ldv_60163; } else { } ldv_60162: { tg3_ape_write32(tp, 232U, 0U); tg3_nvram_unlock(tp); } if ((int )val2 & 1) { return (0); } else { } return (-16); } } static int tg3_issue_otp_command(struct tg3 *tp , u32 cmd ) { int i ; u32 val ; { { (*(tp->write32))(tp, 29956U, cmd | 1U); (*(tp->write32))(tp, 29956U, cmd); i = 0; } goto ldv_60173; ldv_60172: { val = (*(tp->read32))(tp, 29960U); } if ((int )val & 1) { goto ldv_60171; } else { } { __const_udelay(42950UL); i = i + 1; } ldv_60173: ; if (i <= 99) { goto ldv_60172; } else { } ldv_60171: ; return ((int )val & 1 ? 0 : -16); } } static u32 tg3_read_otp_phycfg(struct tg3 *tp ) { u32 bhalf_otp ; u32 thalf_otp ; int tmp ; int tmp___0 ; int tmp___1 ; { { (*(tp->write32))(tp, 29952U, 1U); tmp = tg3_issue_otp_command(tp, 8U); } if (tmp != 0) { return (0U); } else { } { (*(tp->write32))(tp, 29964U, 160U); tmp___0 = tg3_issue_otp_command(tp, 0U); } if (tmp___0 != 0) { return (0U); } else { } { thalf_otp = (*(tp->read32))(tp, 29972U); (*(tp->write32))(tp, 29964U, 128U); tmp___1 = tg3_issue_otp_command(tp, 0U); } if (tmp___1 != 0) { return (0U); } else { } { bhalf_otp = (*(tp->read32))(tp, 29972U); } return ((thalf_otp << 16) | (bhalf_otp >> 16)); } } static void tg3_phy_init_link_config(struct tg3 *tp ) { u32 adv ; { adv = 64U; if ((tp->phy_flags & 128U) == 0U) { if ((tp->phy_flags & 4194304U) == 0U) { adv = adv | 16U; } else { } adv = adv | 32U; } else { } if ((tp->phy_flags & 48U) == 0U) { adv = adv | 143U; } else { adv = adv | 1024U; } tp->link_config.advertising = adv; tp->link_config.speed = 65535U; tp->link_config.duplex = 255U; tp->link_config.autoneg = 1U; tp->link_config.active_speed = 65535U; tp->link_config.active_duplex = 255U; tp->old_link = -1; return; } } static int tg3_phy_probe(struct tg3 *tp ) { u32 hw_phy_id_1 ; u32 hw_phy_id_2 ; u32 hw_phy_id ; u32 hw_phy_id_masked ; int err ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; struct subsys_tbl_ent *p ; int tmp___7 ; u32 bmsr ; u32 dummy ; int tmp___8 ; bool tmp___9 ; int tmp___10 ; int tmp___11 ; int tmp___12 ; { { _tg3_flag_set(26, (unsigned long *)(& tp->tg3_flags)); tp->link_config.flowctrl = 3U; tmp = _tg3_flag(49, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { { if (tp->pci_fn == 0) { goto case_0; } else { } if (tp->pci_fn == 1) { goto case_1; } else { } if (tp->pci_fn == 2) { goto case_2; } else { } if (tp->pci_fn == 3) { goto case_3; } else { } goto switch_break; case_0: /* CIL Label */ tp->phy_ape_lock = 0U; goto ldv_60192; case_1: /* CIL Label */ tp->phy_ape_lock = 2U; goto ldv_60192; case_2: /* CIL Label */ tp->phy_ape_lock = 3U; goto ldv_60192; case_3: /* CIL Label */ tp->phy_ape_lock = 5U; goto ldv_60192; switch_break: /* CIL Label */ ; } ldv_60192: ; } else { } { tmp___0 = _tg3_flag(4, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 == 0 && *((unsigned int *)tp + 1135UL) == 0U) { tp->phy_flags = tp->phy_flags & 4293394431U; } else { } { tmp___2 = _tg3_flag(52, (unsigned long *)(& tp->tg3_flags)); } if (tmp___2 != 0) { { tmp___1 = tg3_phy_init(tp); } return (tmp___1); } else { } { err = 0; tmp___5 = _tg3_flag(4, (unsigned long *)(& tp->tg3_flags)); } if (tmp___5 != 0) { hw_phy_id_masked = 4294967295U; hw_phy_id = hw_phy_id_masked; } else { { tmp___6 = _tg3_flag(49, (unsigned long *)(& tp->tg3_flags)); } if (tmp___6 != 0) { hw_phy_id_masked = 4294967295U; hw_phy_id = hw_phy_id_masked; } else { { tmp___3 = tg3_readphy(tp, 2, & hw_phy_id_1); err = err | tmp___3; tmp___4 = tg3_readphy(tp, 3, & hw_phy_id_2); err = err | tmp___4; hw_phy_id = (hw_phy_id_1 & 65535U) << 10; hw_phy_id = hw_phy_id | ((hw_phy_id_2 & 64512U) << 16); hw_phy_id = hw_phy_id | (hw_phy_id_2 & 1023U); hw_phy_id_masked = hw_phy_id & 4294967280U; } } } if (err == 0 && ((((((((((((hw_phy_id_masked == 1610645568U || hw_phy_id_masked == 1610645584U) || (hw_phy_id_masked == 1610645616U || hw_phy_id_masked == 1610645776U)) || (hw_phy_id_masked == 1610645856U || hw_phy_id_masked == 1610645904U)) || (hw_phy_id_masked == 1610645920U || hw_phy_id_masked == 1610645888U)) || (hw_phy_id_masked == 1610645760U || hw_phy_id_masked == 1610646336U)) || (hw_phy_id_masked == 1610646352U || hw_phy_id_masked == 3154447584U)) || (hw_phy_id_masked == 3154447552U || hw_phy_id_masked == 3154448080U)) || (hw_phy_id_masked == 3691031616U || hw_phy_id_masked == 3154448336U)) || (hw_phy_id_masked == 1544391168U || hw_phy_id_masked == 3154448368U)) || (hw_phy_id_masked == 1544391232U || hw_phy_id_masked == 1544391200U)) || (hw_phy_id_masked == 1544391520U || hw_phy_id_masked == 2239772544U)) || hw_phy_id_masked == 1610678592U)) { tp->phy_id = hw_phy_id; if (hw_phy_id_masked == 1610678592U) { tp->phy_flags = tp->phy_flags | 16U; } else { tp->phy_flags = tp->phy_flags & 4294967279U; } } else if (tp->phy_id != 4294967295U) { } else { { p = tg3_lookup_by_subsys(tp); } if ((unsigned long )p != (unsigned long )((struct subsys_tbl_ent *)0)) { tp->phy_id = p->phy_id; } else { { tmp___7 = _tg3_flag(79, (unsigned long *)(& tp->tg3_flags)); } if (tmp___7 == 0) { return (-19); } else { } } if (tp->phy_id == 0U || tp->phy_id == 1610678592U) { tp->phy_flags = tp->phy_flags | 16U; } else { } } if ((tp->phy_flags & 48U) == 0U && (((((tp->pci_chip_rev_id >> 12 == 22297U || tp->pci_chip_rev_id >> 12 == 22304U) || tp->pci_chip_rev_id >> 12 == 358246U) || tp->pci_chip_rev_id >> 12 == 22370U) || (tp->pci_chip_rev_id >> 12 == 22295U && tp->pci_chip_rev_id != 91320320U)) || (tp->pci_chip_rev_id >> 12 == 358277U && tp->pci_chip_rev_id != 1467502592U))) { tp->phy_flags = tp->phy_flags | 262144U; tp->eee.supported = 40U; tp->eee.advertised = 40U; tp->eee.eee_enabled = 1U; tp->eee.tx_lpi_enabled = 1U; tp->eee.tx_lpi_timer = 2047U; } else { } { tg3_phy_init_link_config(tp); } if (*((unsigned int *)tp + 1135UL) == 0U) { { tmp___11 = _tg3_flag(49, (unsigned long *)(& tp->tg3_flags)); } if (tmp___11 == 0) { { tmp___12 = _tg3_flag(4, (unsigned long *)(& tp->tg3_flags)); } if (tmp___12 == 0) { { tg3_readphy(tp, 1, & bmsr); tmp___8 = tg3_readphy(tp, 1, & bmsr); } if (tmp___8 == 0 && (bmsr & 4U) != 0U) { goto skip_phy_reset; } else { } { err = tg3_phy_reset(tp); } if (err != 0) { return (err); } else { } { tg3_phy_set_wirespeed(tp); tmp___9 = tg3_phy_copper_an_config_ok(tp, & dummy); } if (tmp___9) { tmp___10 = 0; } else { tmp___10 = 1; } if (tmp___10) { { tg3_phy_autoneg_cfg(tp, tp->link_config.advertising, (u32 )tp->link_config.flowctrl); tg3_writephy(tp, 0, 4608U); } } else { } } else { } } else { } } else { } skip_phy_reset: ; if ((tp->phy_id & 4294967280U) == 1610645584U) { { err = tg3_init_5401phy_dsp(tp); } if (err != 0) { return (err); } else { } { err = tg3_init_5401phy_dsp(tp); } } else { } return (err); } } static void tg3_read_vpd(struct tg3 *tp ) { u8 *vpd_data ; unsigned int block_end ; unsigned int rosize ; unsigned int len ; u32 vpdlen ; int j ; int i ; __be32 *tmp ; u16 tmp___0 ; u8 tmp___1 ; int tmp___2 ; u8 tmp___3 ; u8 tmp___4 ; { { i = 0; tmp = tg3_vpd_readblock(tp, & vpdlen); vpd_data = (u8 *)tmp; } if ((unsigned long )vpd_data == (unsigned long )((u8 *)0U)) { goto out_no_vpd; } else { } { i = pci_vpd_find_tag((u8 const *)vpd_data, 0U, vpdlen, 144); } if (i < 0) { goto out_not_found; } else { } { tmp___0 = pci_vpd_lrdt_size((u8 const *)vpd_data + (unsigned long )i); rosize = (unsigned int )tmp___0; block_end = ((unsigned int )i + rosize) + 3U; i = i + 3; } if (block_end > vpdlen) { goto out_not_found; } else { } { j = pci_vpd_find_info_keyword((u8 const *)vpd_data, (unsigned int )i, rosize, "MN"); } if (j > 0) { { tmp___1 = pci_vpd_info_field_size((u8 const *)vpd_data + (unsigned long )j); len = (unsigned int )tmp___1; j = j + 3; } if ((unsigned int )j + len > block_end || len != 4U) { goto partno; } else { { tmp___2 = memcmp((void const *)vpd_data + (unsigned long )j, (void const *)"1028", 4UL); } if (tmp___2 != 0) { goto partno; } else { } } { j = pci_vpd_find_info_keyword((u8 const *)vpd_data, (unsigned int )i, rosize, "V0"); } if (j < 0) { goto partno; } else { } { tmp___3 = pci_vpd_info_field_size((u8 const *)vpd_data + (unsigned long )j); len = (unsigned int )tmp___3; j = j + 3; } if ((unsigned int )j + len > block_end) { goto partno; } else { } if (len > 31U) { len = 31U; } else { } { __memset((void *)(& tp->fw_ver), 0, 32UL); snprintf((char *)(& tp->fw_ver), 32UL, "%.*s bc ", len, vpd_data + (unsigned long )j); } } else { } partno: { i = pci_vpd_find_info_keyword((u8 const *)vpd_data, (unsigned int )i, rosize, "PN"); } if (i < 0) { goto out_not_found; } else { } { tmp___4 = pci_vpd_info_field_size((u8 const *)vpd_data + (unsigned long )i); len = (unsigned int )tmp___4; i = i + 3; } if (len > 24U || len + (unsigned int )i > vpdlen) { goto out_not_found; } else { } { __memcpy((void *)(& tp->board_part_number), (void const *)vpd_data + (unsigned long )i, (size_t )len); } out_not_found: { kfree((void const *)vpd_data); } if ((int )((signed char )tp->board_part_number[0]) != 0) { return; } else { } out_no_vpd: ; if (tp->pci_chip_rev_id >> 12 == 22295U) { if ((unsigned int )(tp->pdev)->device == 5717U || (unsigned int )(tp->pdev)->device == 5733U) { { strcpy((char *)(& tp->board_part_number), "BCM5717"); } } else if ((unsigned int )(tp->pdev)->device == 5718U) { { strcpy((char *)(& tp->board_part_number), "BCM5718"); } } else { goto nomatch; } } else if (tp->pci_chip_rev_id >> 12 == 358272U) { if ((unsigned int )(tp->pdev)->device == 5778U) { { strcpy((char *)(& tp->board_part_number), "BCM57780"); } } else if ((unsigned int )(tp->pdev)->device == 5776U) { { strcpy((char *)(& tp->board_part_number), "BCM57760"); } } else if ((unsigned int )(tp->pdev)->device == 5780U) { { strcpy((char *)(& tp->board_part_number), "BCM57790"); } } else if ((unsigned int )(tp->pdev)->device == 5777U) { { strcpy((char *)(& tp->board_part_number), "BCM57788"); } } else { goto nomatch; } } else if (tp->pci_chip_rev_id >> 12 == 358277U) { if ((unsigned int )(tp->pdev)->device == 5808U) { { strcpy((char *)(& tp->board_part_number), "BCM57761"); } } else if ((unsigned int )(tp->pdev)->device == 5812U) { { strcpy((char *)(& tp->board_part_number), "BCM57765"); } } else if ((unsigned int )(tp->pdev)->device == 5809U) { { strcpy((char *)(& tp->board_part_number), "BCM57781"); } } else if ((unsigned int )(tp->pdev)->device == 5813U) { { strcpy((char *)(& tp->board_part_number), "BCM57785"); } } else if ((unsigned int )(tp->pdev)->device == 5810U) { { strcpy((char *)(& tp->board_part_number), "BCM57791"); } } else if ((unsigned int )(tp->pdev)->device == 5814U) { { strcpy((char *)(& tp->board_part_number), "BCM57795"); } } else { goto nomatch; } } else if (tp->pci_chip_rev_id >> 12 == 358246U) { if ((unsigned int )(tp->pdev)->device == 5762U) { { strcpy((char *)(& tp->board_part_number), "BCM57762"); } } else if ((unsigned int )(tp->pdev)->device == 5766U) { { strcpy((char *)(& tp->board_part_number), "BCM57766"); } } else if ((unsigned int )(tp->pdev)->device == 5815U) { { strcpy((char *)(& tp->board_part_number), "BCM57782"); } } else if ((unsigned int )(tp->pdev)->device == 5811U) { { strcpy((char *)(& tp->board_part_number), "BCM57786"); } } else { goto nomatch; } } else if (tp->pci_chip_rev_id >> 12 == 12U) { { strcpy((char *)(& tp->board_part_number), "BCM95906"); } } else { nomatch: { strcpy((char *)(& tp->board_part_number), "none"); } } return; } } static int tg3_fw_img_is_valid(struct tg3 *tp , u32 offset ) { u32 val ; int tmp ; int tmp___0 ; { { tmp = tg3_nvram_read(tp, offset, & val); } if (tmp != 0 || (val & 4227858432U) != 201326592U) { return (0); } else { { tmp___0 = tg3_nvram_read(tp, offset + 4U, & val); } if (tmp___0 != 0) { return (0); } else if (val != 0U) { return (0); } else { } } return (1); } } static void tg3_read_bc_ver(struct tg3 *tp ) { u32 val ; u32 offset ; u32 start ; u32 ver_offset ; int i ; int dst_off ; bool newver ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; size_t tmp___3 ; int tmp___4 ; __be32 v ; int tmp___5 ; u32 major ; u32 minor ; int tmp___6 ; { { newver = 0; tmp = tg3_nvram_read(tp, 12U, & offset); } if (tmp != 0) { return; } else { { tmp___0 = tg3_nvram_read(tp, 4U, & start); } if (tmp___0 != 0) { return; } else { } } { offset = tg3_nvram_logical_addr(tp, offset); tmp___1 = tg3_nvram_read(tp, offset, & val); } if (tmp___1 != 0) { return; } else { } if ((val & 4227858432U) == 201326592U) { { tmp___2 = tg3_nvram_read(tp, offset + 4U, & val); } if (tmp___2 != 0) { return; } else { } if (val == 0U) { newver = 1; } else { } } else { } { tmp___3 = strlen((char const *)(& tp->fw_ver)); dst_off = (int )tmp___3; } if ((int )newver) { if (32 - dst_off <= 15) { return; } else { { tmp___4 = tg3_nvram_read(tp, offset + 8U, & ver_offset); } if (tmp___4 != 0) { return; } else { } } offset = (offset + ver_offset) - start; i = 0; goto ldv_60231; ldv_60230: { tmp___5 = tg3_nvram_read_be32(tp, offset + (u32 )i, & v); } if (tmp___5 != 0) { return; } else { } { __memcpy((void *)(& tp->fw_ver) + ((unsigned long )dst_off + (unsigned long )i), (void const *)(& v), 4UL); i = i + 4; } ldv_60231: ; if (i <= 15) { goto ldv_60230; } else { } } else { { tmp___6 = tg3_nvram_read(tp, 148U, & ver_offset); } if (tmp___6 != 0) { return; } else { } { major = (ver_offset & 65280U) >> 8; minor = ver_offset & 255U; snprintf((char *)(& tp->fw_ver) + (unsigned long )dst_off, (size_t )(32 - dst_off), "v%d.%02d", major, minor); } } return; } } static void tg3_read_hwsb_ver(struct tg3 *tp ) { u32 val ; u32 major ; u32 minor ; int tmp ; { { tmp = tg3_nvram_read(tp, 4U, & val); } if (tmp != 0) { return; } else { } { major = val >> 27; minor = (val & 130023424U) >> 22; snprintf((char *)(& tp->fw_ver), 32UL, "sb v%d.%02d", major, minor); } return; } } static void tg3_read_sb_ver(struct tg3 *tp , u32 val ) { u32 offset ; u32 major ; u32 minor ; u32 build ; size_t tmp ; int tmp___0 ; size_t tmp___1 ; size_t tmp___2 ; { { tmp = strlen((char const *)(& tp->fw_ver)); strncat((char *)(& tp->fw_ver), "sb", 31UL - tmp); } if ((val & 14680064U) != 2097152U) { return; } else { } { if ((val & 2031616U) == 0U) { goto case_0; } else { } if ((val & 2031616U) == 131072U) { goto case_131072; } else { } if ((val & 2031616U) == 196608U) { goto case_196608; } else { } if ((val & 2031616U) == 262144U) { goto case_262144; } else { } if ((val & 2031616U) == 327680U) { goto case_327680; } else { } if ((val & 2031616U) == 393216U) { goto case_393216; } else { } goto switch_default; case_0: /* CIL Label */ offset = 16U; goto ldv_60250; case_131072: /* CIL Label */ offset = 20U; goto ldv_60250; case_196608: /* CIL Label */ offset = 24U; goto ldv_60250; case_262144: /* CIL Label */ offset = 28U; goto ldv_60250; case_327680: /* CIL Label */ offset = 32U; goto ldv_60250; case_393216: /* CIL Label */ offset = 76U; goto ldv_60250; switch_default: /* CIL Label */ ; return; switch_break: /* CIL Label */ ; } ldv_60250: { tmp___0 = tg3_nvram_read(tp, offset, & val); } if (tmp___0 != 0) { return; } else { } build = (val & 63488U) >> 11; major = (val & 1792U) >> 8; minor = val & 255U; if (minor > 99U || build > 26U) { return; } else { } { tmp___1 = strlen((char const *)(& tp->fw_ver)); offset = (u32 )tmp___1; snprintf((char *)(& tp->fw_ver) + (unsigned long )offset, (size_t )(32U - offset), " v%d.%02d", major, minor); } if (build != 0U) { { tmp___2 = strlen((char const *)(& tp->fw_ver)); offset = (u32 )tmp___2; } if (offset <= 30U) { tp->fw_ver[offset] = (char )((unsigned int )((unsigned char )build) + 96U); } else { } } else { } return; } } static void tg3_read_mgmtfw_ver(struct tg3 *tp ) { u32 val ; u32 offset ; u32 start ; int i ; int vlen ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; size_t tmp___5 ; int tmp___6 ; int tmp___7 ; __be32 v ; int tmp___8 ; { offset = 24U; goto ldv_60267; ldv_60266: { tmp = tg3_nvram_read(tp, offset, & val); } if (tmp != 0) { return; } else { } if (val >> 24 == 1U) { goto ldv_60265; } else { } offset = offset + 12U; ldv_60267: ; if (offset <= 119U) { goto ldv_60266; } else { } ldv_60265: ; if (offset == 120U) { return; } else { } { tmp___1 = _tg3_flag(71, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 == 0) { start = 134217728U; } else { { tmp___0 = tg3_nvram_read(tp, offset - 4U, & start); } if (tmp___0 != 0) { return; } else { } } { tmp___2 = tg3_nvram_read(tp, offset + 4U, & offset); } if (tmp___2 != 0) { return; } else { { tmp___3 = tg3_fw_img_is_valid(tp, offset); } if (tmp___3 == 0) { return; } else { { tmp___4 = tg3_nvram_read(tp, offset + 8U, & val); } if (tmp___4 != 0) { return; } else { } } } { offset = offset + (val - start); tmp___5 = strlen((char const *)(& tp->fw_ver)); vlen = (int )tmp___5; tmp___6 = vlen; vlen = vlen + 1; tp->fw_ver[tmp___6] = 44; tmp___7 = vlen; vlen = vlen + 1; tp->fw_ver[tmp___7] = 32; i = 0; } goto ldv_60271; ldv_60270: { tmp___8 = tg3_nvram_read_be32(tp, offset, & v); } if (tmp___8 != 0) { return; } else { } offset = offset + 4U; if ((unsigned int )vlen > 28U) { { __memcpy((void *)(& tp->fw_ver) + (unsigned long )vlen, (void const *)(& v), (size_t )(32 - vlen)); } goto ldv_60269; } else { } { __memcpy((void *)(& tp->fw_ver) + (unsigned long )vlen, (void const *)(& v), 4UL); vlen = (int )((unsigned int )vlen + 4U); i = i + 1; } ldv_60271: ; if (i <= 3) { goto ldv_60270; } else { } ldv_60269: ; return; } } static void tg3_probe_ncsi(struct tg3 *tp ) { u32 apedata ; u32 tmp ; { { apedata = tg3_ape_read32(tp, 16384U); } if (apedata != 1095779617U) { return; } else { } { apedata = tg3_ape_read32(tp, 16396U); } if ((apedata & 256U) == 0U) { return; } else { } { tmp = tg3_ape_read32(tp, 16400U); } if ((tmp & 2U) != 0U) { { _tg3_flag_set(65, (unsigned long *)(& tp->tg3_flags)); } } else { } return; } } static void tg3_read_dash_ver(struct tg3 *tp ) { int vlen ; u32 apedata ; char *fwtype ; int tmp ; size_t tmp___0 ; { { apedata = tg3_ape_read32(tp, 16408U); tmp = _tg3_flag(65, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { fwtype = (char *)"NCSI"; } else if ((unsigned int )(tp->pdev)->device == 5699U) { fwtype = (char *)"SMASH"; } else { fwtype = (char *)"DASH"; } { tmp___0 = strlen((char const *)(& tp->fw_ver)); vlen = (int )tmp___0; snprintf((char *)(& tp->fw_ver) + (unsigned long )vlen, (size_t )(32 - vlen), " %s v%d.%d.%d.%d", fwtype, apedata >> 24, (apedata & 16711680U) >> 16, (apedata & 65280U) >> 8, apedata & 255U); } return; } } static void tg3_read_otp_ver(struct tg3 *tp ) { u32 val ; u32 val2 ; u64 val64 ; u32 ver ; int i ; int vlen ; size_t tmp ; int tmp___0 ; int tmp___1 ; { if (tp->pci_chip_rev_id >> 12 != 22370U) { return; } else { } { tmp___0 = tg3_ape_otp_read(tp, 80U, & val); } if (tmp___0 == 0) { { tmp___1 = tg3_ape_otp_read(tp, 84U, & val2); } if (tmp___1 == 0) { if ((val & 4026531840U) == 2684354560U || (val & 251658240U) == 167772160U) { val64 = ((unsigned long long )val << 32) | (unsigned long long )val2; ver = 0U; i = 0; goto ldv_60293; ldv_60292: ; if ((val64 & 255ULL) == 0ULL) { goto ldv_60291; } else { } ver = (u32 )val64 & 255U; val64 = val64 >> 8; i = i + 1; ldv_60293: ; if (i <= 6) { goto ldv_60292; } else { } ldv_60291: { tmp = strlen((char const *)(& tp->fw_ver)); vlen = (int )tmp; snprintf((char *)(& tp->fw_ver) + (unsigned long )vlen, (size_t )(32 - vlen), " .%02d", ver); } } else { } } else { } } else { } return; } } static void tg3_read_fw_ver(struct tg3 *tp ) { u32 val ; bool vpd_vers ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { vpd_vers = 0; if ((int )((signed char )tp->fw_ver[0]) != 0) { vpd_vers = 1; } else { } { tmp = _tg3_flag(59, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { { strcat((char *)(& tp->fw_ver), "sb"); tg3_read_otp_ver(tp); } return; } else { } { tmp___0 = tg3_nvram_read(tp, 0U, & val); } if (tmp___0 != 0) { return; } else { } if (val == 1721324970U) { { tg3_read_bc_ver(tp); } } else if ((val & 4278190080U) == 2768240640U) { { tg3_read_sb_ver(tp, val); } } else if ((val & 65535U) == 43981U) { { tg3_read_hwsb_ver(tp); } } else { } { tmp___2 = _tg3_flag(4, (unsigned long *)(& tp->tg3_flags)); } if (tmp___2 != 0) { { tmp___1 = _tg3_flag(49, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 != 0) { { tg3_probe_ncsi(tp); } if (! vpd_vers) { { tg3_read_dash_ver(tp); } } else { } } else if (! vpd_vers) { { tg3_read_mgmtfw_ver(tp); } } else { } } else { } tp->fw_ver[31] = 0; return; } } __inline static u32 tg3_rx_ret_ring_size(struct tg3 *tp ) { int tmp ; int tmp___0 ; int tmp___1 ; { { tmp___1 = _tg3_flag(54, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 != 0) { return (4096U); } else { { tmp = _tg3_flag(30, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { { tmp___0 = _tg3_flag(74, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 == 0) { return (1024U); } else { return (512U); } } else { return (512U); } } } } static struct pci_device_id const tg3_write_reorder_chipsets[4U] = { {4130U, 28684U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4130U, 29776U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4358U, 12680U, 4294967295U, 4294967295U, 0U, 0U, 0UL}}; static struct pci_dev *tg3_find_peer(struct tg3 *tp ) { struct pci_dev *peer ; unsigned int func ; unsigned int devnr ; { devnr = (tp->pdev)->devfn & 4294967288U; func = 0U; goto ldv_60311; ldv_60310: { peer = pci_get_slot((tp->pdev)->bus, devnr | func); } if ((unsigned long )peer != (unsigned long )((struct pci_dev *)0) && (unsigned long )peer != (unsigned long )tp->pdev) { goto ldv_60309; } else { } { pci_dev_put(peer); func = func + 1U; } ldv_60311: ; if (func <= 7U) { goto ldv_60310; } else { } ldv_60309: ; if ((unsigned long )peer == (unsigned long )((struct pci_dev *)0)) { peer = tp->pdev; return (peer); } else { } { pci_dev_put(peer); } return (peer); } } static void tg3_detect_asic_rev(struct tg3 *tp , u32 misc_ctrl_reg ) { u32 reg ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; { tp->pci_chip_rev_id = misc_ctrl_reg >> 16; if (tp->pci_chip_rev_id >> 12 == 15U) { { _tg3_flag_set(27, (unsigned long *)(& tp->tg3_flags)); } if (((((((((((unsigned int )(tp->pdev)->device == 5717U || (unsigned int )(tp->pdev)->device == 5733U) || (unsigned int )(tp->pdev)->device == 5718U) || (unsigned int )(tp->pdev)->device == 5719U) || (unsigned int )(tp->pdev)->device == 5727U) || (unsigned int )(tp->pdev)->device == 5763U) || (unsigned int )(tp->pdev)->device == 5698U) || (unsigned int )(tp->pdev)->device == 5767U) || (unsigned int )(tp->pdev)->device == 5699U) || (unsigned int )(tp->pdev)->device == 5875U) || (unsigned int )(tp->pdev)->device == 5697U) { reg = 244U; } else if ((((((((((unsigned int )(tp->pdev)->device == 5809U || (unsigned int )(tp->pdev)->device == 5813U) || (unsigned int )(tp->pdev)->device == 5808U) || (unsigned int )(tp->pdev)->device == 5812U) || (unsigned int )(tp->pdev)->device == 5810U) || (unsigned int )(tp->pdev)->device == 5814U) || (unsigned int )(tp->pdev)->device == 5762U) || (unsigned int )(tp->pdev)->device == 5766U) || (unsigned int )(tp->pdev)->device == 5815U) || (unsigned int )(tp->pdev)->device == 5811U) { reg = 252U; } else { reg = 188U; } { pci_read_config_dword((struct pci_dev const *)tp->pdev, (int )reg, & tp->pci_chip_rev_id); } } else { } if (tp->pci_chip_rev_id == 20480U) { tp->pci_chip_rev_id = 24576U; } else { } if (tp->pci_chip_rev_id == 91320832U) { tp->pci_chip_rev_id = 91357184U; } else { } if ((tp->pci_chip_rev_id >> 12 == 22295U || tp->pci_chip_rev_id >> 12 == 22297U) || tp->pci_chip_rev_id >> 12 == 22304U) { { _tg3_flag_set(78, (unsigned long *)(& tp->tg3_flags)); } } else { } if (tp->pci_chip_rev_id >> 12 == 358277U || tp->pci_chip_rev_id >> 12 == 358246U) { { _tg3_flag_set(77, (unsigned long *)(& tp->tg3_flags)); } } else { } { tmp = _tg3_flag(77, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { { _tg3_flag_set(76, (unsigned long *)(& tp->tg3_flags)); } } else { { tmp___0 = _tg3_flag(78, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0) { { _tg3_flag_set(76, (unsigned long *)(& tp->tg3_flags)); } } else if (tp->pci_chip_rev_id >> 12 == 22370U) { { _tg3_flag_set(76, (unsigned long *)(& tp->tg3_flags)); } } else { } } if (((((tp->pci_chip_rev_id >> 12) - 10U <= 1U || tp->pci_chip_rev_id >> 12 == 22404U) || tp->pci_chip_rev_id >> 12 == 22369U) || tp->pci_chip_rev_id >> 12 == 22405U) || tp->pci_chip_rev_id >> 12 == 358272U) { { _tg3_flag_set(75, (unsigned long *)(& tp->tg3_flags)); } } else { { tmp___1 = _tg3_flag(76, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 != 0) { { _tg3_flag_set(75, (unsigned long *)(& tp->tg3_flags)); } } else { } } if ((tp->pci_chip_rev_id >> 12) - 8U <= 1U) { { _tg3_flag_set(74, (unsigned long *)(& tp->tg3_flags)); } } else { } if ((tp->pci_chip_rev_id >> 12 == 4U || tp->pci_chip_rev_id >> 12 == 6U) || tp->pci_chip_rev_id >> 12 == 12U) { { _tg3_flag_set(73, (unsigned long *)(& tp->tg3_flags)); } } else { { tmp___2 = _tg3_flag(75, (unsigned long *)(& tp->tg3_flags)); } if (tmp___2 != 0) { { _tg3_flag_set(73, (unsigned long *)(& tp->tg3_flags)); } } else { { tmp___3 = _tg3_flag(74, (unsigned long *)(& tp->tg3_flags)); } if (tmp___3 != 0) { { _tg3_flag_set(73, (unsigned long *)(& tp->tg3_flags)); } } else { } } } if (tp->pci_chip_rev_id >> 12 == 3U) { { _tg3_flag_set(71, (unsigned long *)(& tp->tg3_flags)); } } else { { tmp___4 = _tg3_flag(73, (unsigned long *)(& tp->tg3_flags)); } if (tmp___4 != 0) { { _tg3_flag_set(71, (unsigned long *)(& tp->tg3_flags)); } } else { } } return; } } static bool tg3_10_100_only_device(struct tg3 *tp , struct pci_device_id const *ent ) { u32 grc_misc_cfg ; u32 tmp ; { { tmp = (*(tp->read32))(tp, 26628U); grc_misc_cfg = tmp & 122880U; } if ((tp->pci_chip_rev_id >> 12 == 1U && (grc_misc_cfg == 32768U || grc_misc_cfg == 16384U)) || (tp->phy_flags & 64U) != 0U) { return (1); } else { } if ((int )ent->driver_data & 1) { if (tp->pci_chip_rev_id >> 12 == 3U) { if (((unsigned long )ent->driver_data & 2UL) != 0UL) { return (1); } else { } } else { return (1); } } else { } return (0); } } static int tg3_get_invariants(struct tg3 *tp , struct pci_device_id const *ent ) { u32 misc_ctrl_reg ; u32 pci_state_reg ; u32 grc_misc_cfg ; u32 val ; u16 pci_cmd ; int err ; struct tg3_dev_id ich_chipsets[5U] ; unsigned int tmp ; struct tg3_dev_id *pci_id ; struct pci_dev *bridge ; struct tg3_dev_id___0 bridge_chipsets[3U] ; unsigned int tmp___0 ; struct tg3_dev_id___0 *pci_id___0 ; struct pci_dev *bridge___0 ; struct pci_dev *bridge___1 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; int tmp___12 ; int tmp___13 ; int tmp___14 ; int tmp___15 ; int tmp___16 ; u16 lnkctl ; int tmp___17 ; int tmp___18 ; bool tmp___19 ; int tmp___20 ; int tmp___21 ; u32 pm_reg ; int tmp___22 ; int tmp___23 ; int tmp___24 ; int tmp___25 ; int tmp___26 ; int tmp___27 ; int tmp___28 ; int tmp___29 ; int tmp___30 ; int tmp___31 ; int tmp___32 ; int tmp___33 ; int tmp___34 ; int tmp___35 ; int tmp___36 ; int tmp___37 ; int tmp___38 ; u32 tmp___39 ; int tmp___40 ; int tmp___41 ; int tmp___42 ; int tmp___43 ; void *sram_base ; unsigned int tmp___44 ; int tmp___45 ; int tmp___46 ; int tmp___47 ; int tmp___48 ; int tmp___49 ; bool tmp___50 ; int tmp___51 ; int tmp___52 ; int _max1 ; int _max2 ; int _max1___0 ; int _max2___0 ; int tmp___53 ; int tmp___54 ; int tmp___55 ; u32 tmp___56 ; u32 tmp___57 ; int tmp___58 ; { { pci_read_config_word((struct pci_dev const *)tp->pdev, 4, & pci_cmd); pci_cmd = (unsigned int )pci_cmd & 65519U; pci_write_config_word((struct pci_dev const *)tp->pdev, 4, (int )pci_cmd); pci_read_config_dword((struct pci_dev const *)tp->pdev, 104, & misc_ctrl_reg); tp->misc_host_ctrl = tp->misc_host_ctrl | (misc_ctrl_reg & 4294901760U); pci_write_config_dword((struct pci_dev const *)tp->pdev, 104, tp->misc_host_ctrl); tg3_detect_asic_rev(tp, misc_ctrl_reg); } if (tp->pci_chip_rev_id - 4097U <= 1U) { ich_chipsets[0].vendor = 32902U; ich_chipsets[0].device = 9240U; ich_chipsets[0].rev = 4294967295U; ich_chipsets[1].vendor = 32902U; ich_chipsets[1].device = 9256U; ich_chipsets[1].rev = 4294967295U; ich_chipsets[2].vendor = 32902U; ich_chipsets[2].device = 9294U; ich_chipsets[2].rev = 10U; ich_chipsets[3].vendor = 32902U; ich_chipsets[3].device = 9288U; ich_chipsets[3].rev = 4294967295U; tmp = 4U; { while (1) { while_continue: /* CIL Label */ ; if (tmp >= 5U) { goto while_break; } else { } ich_chipsets[tmp].vendor = 0U; ich_chipsets[tmp].device = 0U; ich_chipsets[tmp].rev = 0U; tmp = tmp + 1U; } while_break: /* CIL Label */ ; } pci_id = (struct tg3_dev_id *)(& ich_chipsets); bridge = (struct pci_dev *)0; goto ldv_60339; ldv_60341: { bridge = pci_get_device(pci_id->vendor, pci_id->device, bridge); } if ((unsigned long )bridge == (unsigned long )((struct pci_dev *)0)) { pci_id = pci_id + 1; goto ldv_60339; } else { } if (pci_id->rev != 4294967295U) { if ((u32 )bridge->revision > pci_id->rev) { goto ldv_60339; } else { } } else { } if ((unsigned long )bridge->subordinate != (unsigned long )((struct pci_bus *)0) && (int )(bridge->subordinate)->number == (int )((tp->pdev)->bus)->number) { { _tg3_flag_set(45, (unsigned long *)(& tp->tg3_flags)); pci_dev_put(bridge); } goto ldv_60340; } else { } ldv_60339: ; if (pci_id->vendor != 0U) { goto ldv_60341; } else { } ldv_60340: ; } else { } if (tp->pci_chip_rev_id >> 12 == 0U) { bridge_chipsets[0].vendor = 32902U; bridge_chipsets[0].device = 809U; bridge_chipsets[1].vendor = 32902U; bridge_chipsets[1].device = 810U; tmp___0 = 2U; { while (1) { while_continue___0: /* CIL Label */ ; if (tmp___0 >= 3U) { goto while_break___0; } else { } bridge_chipsets[tmp___0].vendor = 0U; bridge_chipsets[tmp___0].device = 0U; tmp___0 = tmp___0 + 1U; } while_break___0: /* CIL Label */ ; } pci_id___0 = (struct tg3_dev_id___0 *)(& bridge_chipsets); bridge___0 = (struct pci_dev *)0; goto ldv_60348; ldv_60350: { bridge___0 = pci_get_device(pci_id___0->vendor, pci_id___0->device, bridge___0); } if ((unsigned long )bridge___0 == (unsigned long )((struct pci_dev *)0)) { pci_id___0 = pci_id___0 + 1; goto ldv_60348; } else { } if (((unsigned long )bridge___0->subordinate != (unsigned long )((struct pci_bus *)0) && (int )(bridge___0->subordinate)->number <= (int )((tp->pdev)->bus)->number) && (bridge___0->subordinate)->busn_res.end >= (resource_size_t )((tp->pdev)->bus)->number) { { _tg3_flag_set(51, (unsigned long *)(& tp->tg3_flags)); pci_dev_put(bridge___0); } goto ldv_60349; } else { } ldv_60348: ; if (pci_id___0->vendor != 0U) { goto ldv_60350; } else { } ldv_60349: ; } else { } { tmp___1 = _tg3_flag(74, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 != 0) { { _tg3_flag_set(28, (unsigned long *)(& tp->tg3_flags)); tp->msi_cap = (int )(tp->pdev)->msi_cap; } } else { bridge___1 = (struct pci_dev *)0; ldv_60353: { bridge___1 = pci_get_device(4454U, 259U, bridge___1); } if ((((unsigned long )bridge___1 != (unsigned long )((struct pci_dev *)0) && (unsigned long )bridge___1->subordinate != (unsigned long )((struct pci_bus *)0)) && (int )(bridge___1->subordinate)->number <= (int )((tp->pdev)->bus)->number) && (bridge___1->subordinate)->busn_res.end >= (resource_size_t )((tp->pdev)->bus)->number) { { _tg3_flag_set(28, (unsigned long *)(& tp->tg3_flags)); pci_dev_put(bridge___1); } goto ldv_60352; } else { } if ((unsigned long )bridge___1 != (unsigned long )((struct pci_dev *)0)) { goto ldv_60353; } else { } ldv_60352: ; } if (tp->pci_chip_rev_id >> 12 == 2U || tp->pci_chip_rev_id >> 12 == 9U) { { tp->pdev_peer = tg3_find_peer(tp); } } else { } if (tp->pci_chip_rev_id == 91328512U) { } else { { tmp___4 = _tg3_flag(76, (unsigned long *)(& tp->tg3_flags)); } if (tmp___4 != 0) { { _tg3_flag_set(42, (unsigned long *)(& tp->tg3_flags)); } } else { { tmp___3 = _tg3_flag(75, (unsigned long *)(& tp->tg3_flags)); } if (tmp___3 != 0 || tp->pci_chip_rev_id >> 12 == 12U) { { _tg3_flag_set(41, (unsigned long *)(& tp->tg3_flags)); } } else { { tmp___2 = _tg3_flag(73, (unsigned long *)(& tp->tg3_flags)); } if (tmp___2 != 0) { { _tg3_flag_set(40, (unsigned long *)(& tp->tg3_flags)); _tg3_flag_set(44, (unsigned long *)(& tp->tg3_flags)); } if (tp->pci_chip_rev_id >> 12 == 4U && tp->pci_chip_rev_id > 16897U) { { _tg3_flag_clear(44, (unsigned long *)(& tp->tg3_flags)); } } else { } } else if ((tp->pci_chip_rev_id >> 12 != 7U && tp->pci_chip_rev_id >> 12 != 0U) && tp->pci_chip_rev_id != 12288U) { { _tg3_flag_set(39, (unsigned long *)(& tp->tg3_flags)); _tg3_flag_set(44, (unsigned long *)(& tp->tg3_flags)); } if (tp->pci_chip_rev_id >> 12 == 3U) { tp->fw_needed = "tigon/tg3_tso5.bin"; } else { tp->fw_needed = "tigon/tg3_tso.bin"; } } else { } } } } { tmp___5 = _tg3_flag(40, (unsigned long *)(& tp->tg3_flags)); } if (tmp___5 != 0) { { _tg3_flag_set(43, (unsigned long *)(& tp->tg3_flags)); } } else { { tmp___6 = _tg3_flag(41, (unsigned long *)(& tp->tg3_flags)); } if (tmp___6 != 0) { { _tg3_flag_set(43, (unsigned long *)(& tp->tg3_flags)); } } else { { tmp___7 = _tg3_flag(42, (unsigned long *)(& tp->tg3_flags)); } if (tmp___7 != 0) { { _tg3_flag_set(43, (unsigned long *)(& tp->tg3_flags)); } } else { { tmp___8 = _tg3_flag(39, (unsigned long *)(& tp->tg3_flags)); } if (tmp___8 != 0) { { _tg3_flag_set(43, (unsigned long *)(& tp->tg3_flags)); } } else { { _tg3_flag_clear(43, (unsigned long *)(& tp->tg3_flags)); _tg3_flag_clear(44, (unsigned long *)(& tp->tg3_flags)); tp->fw_needed = (char const *)0; } } } } } if (tp->pci_chip_rev_id == 0U) { tp->fw_needed = "tigon/tg3.bin"; } else { } if (tp->pci_chip_rev_id >> 12 == 358246U) { tp->fw_needed = "tigon/tg357766.bin"; } else { } { tp->irq_max = 1U; tmp___11 = _tg3_flag(73, (unsigned long *)(& tp->tg3_flags)); } if (tmp___11 != 0) { { _tg3_flag_set(15, (unsigned long *)(& tp->tg3_flags)); } if ((tp->pci_chip_rev_id >> 8) - 64U <= 1U || ((tp->pci_chip_rev_id >> 12 == 9U && tp->pci_chip_rev_id <= 36866U) && (unsigned long )tp->pdev_peer == (unsigned long )tp->pdev)) { { _tg3_flag_clear(15, (unsigned long *)(& tp->tg3_flags)); } } else { } { tmp___9 = _tg3_flag(75, (unsigned long *)(& tp->tg3_flags)); } if (tmp___9 != 0 || tp->pci_chip_rev_id >> 12 == 12U) { { _tg3_flag_set(46, (unsigned long *)(& tp->tg3_flags)); } } else { } { tmp___10 = _tg3_flag(76, (unsigned long *)(& tp->tg3_flags)); } if (tmp___10 != 0) { { _tg3_flag_set(16, (unsigned long *)(& tp->tg3_flags)); tp->irq_max = 5U; } } else { } } else { } tp->txq_max = 1U; tp->rxq_max = 1U; if (tp->irq_max > 1U) { { tp->rxq_max = 4U; tg3_rss_init_dflt_indir_tbl(tp, 4U); } if (tp->pci_chip_rev_id >> 12 == 22297U || tp->pci_chip_rev_id >> 12 == 22304U) { tp->txq_max = tp->irq_max - 1U; } else { } } else { } { tmp___12 = _tg3_flag(75, (unsigned long *)(& tp->tg3_flags)); } if (tmp___12 != 0 || tp->pci_chip_rev_id >> 12 == 12U) { { _tg3_flag_set(62, (unsigned long *)(& tp->tg3_flags)); } } else { } if (tp->pci_chip_rev_id >> 12 == 22297U) { tp->dma_limit = 4096U; } else { } if (((tp->pci_chip_rev_id >> 12 == 22295U || tp->pci_chip_rev_id >> 12 == 22297U) || tp->pci_chip_rev_id >> 12 == 22304U) || tp->pci_chip_rev_id >> 12 == 22370U) { { _tg3_flag_set(54, (unsigned long *)(& tp->tg3_flags)); } } else { } { tmp___13 = _tg3_flag(76, (unsigned long *)(& tp->tg3_flags)); } if (tmp___13 != 0 && tp->pci_chip_rev_id != 91328512U) { { _tg3_flag_set(63, (unsigned long *)(& tp->tg3_flags)); } } else { } { tmp___14 = _tg3_flag(71, (unsigned long *)(& tp->tg3_flags)); } if (tmp___14 == 0) { { _tg3_flag_set(30, (unsigned long *)(& tp->tg3_flags)); } } else { { tmp___15 = _tg3_flag(74, (unsigned long *)(& tp->tg3_flags)); } if (tmp___15 != 0) { { _tg3_flag_set(30, (unsigned long *)(& tp->tg3_flags)); } } else { { tmp___16 = _tg3_flag(63, (unsigned long *)(& tp->tg3_flags)); } if (tmp___16 != 0) { { _tg3_flag_set(30, (unsigned long *)(& tp->tg3_flags)); } } else { } } } { pci_read_config_dword((struct pci_dev const *)tp->pdev, 112, & pci_state_reg); tmp___19 = pci_is_pcie(tp->pdev); } if ((int )tmp___19) { { _tg3_flag_set(34, (unsigned long *)(& tp->tg3_flags)); pcie_capability_read_word(tp->pdev, 16, & lnkctl); } if (((int )lnkctl & 256) != 0) { if (tp->pci_chip_rev_id >> 12 == 12U) { { _tg3_flag_clear(41, (unsigned long *)(& tp->tg3_flags)); _tg3_flag_clear(43, (unsigned long *)(& tp->tg3_flags)); } } else { } if (((tp->pci_chip_rev_id >> 12 == 22404U || tp->pci_chip_rev_id >> 12 == 22369U) || tp->pci_chip_rev_id == 1467482112U) || tp->pci_chip_rev_id == 1467482113U) { { _tg3_flag_set(58, (unsigned long *)(& tp->tg3_flags)); } } else { } } else if (tp->pci_chip_rev_id == 91320320U) { { _tg3_flag_set(64, (unsigned long *)(& tp->tg3_flags)); } } else { } } else if (tp->pci_chip_rev_id >> 12 == 22405U) { { _tg3_flag_set(34, (unsigned long *)(& tp->tg3_flags)); } } else { { tmp___17 = _tg3_flag(71, (unsigned long *)(& tp->tg3_flags)); } if (tmp___17 == 0) { goto _L; } else { { tmp___18 = _tg3_flag(74, (unsigned long *)(& tp->tg3_flags)); } if (tmp___18 != 0) { _L: /* CIL Label */ { tp->pcix_cap = pci_find_capability(tp->pdev, 7); } if (tp->pcix_cap == 0) { { dev_err((struct device const *)(& (tp->pdev)->dev), "Cannot find PCI-X capability, aborting\n"); } return (-5); } else { } if ((pci_state_reg & 4U) == 0U) { { _tg3_flag_set(19, (unsigned long *)(& tp->tg3_flags)); } } else { } } else { } } } { tmp___20 = pci_dev_present((struct pci_device_id const *)(& tg3_write_reorder_chipsets)); } if (tmp___20 != 0) { { tmp___21 = _tg3_flag(34, (unsigned long *)(& tp->tg3_flags)); } if (tmp___21 == 0) { { _tg3_flag_set(8, (unsigned long *)(& tp->tg3_flags)); } } else { } } else { } { pci_read_config_byte((struct pci_dev const *)tp->pdev, 12, & tp->pci_cacheline_sz); pci_read_config_byte((struct pci_dev const *)tp->pdev, 13, & tp->pci_lat_timer); } if (tp->pci_chip_rev_id >> 12 == 1U && (unsigned int )tp->pci_lat_timer <= 63U) { { tp->pci_lat_timer = 64U; pci_write_config_byte((struct pci_dev const *)tp->pdev, 13, (int )tp->pci_lat_timer); } } else { } if (tp->pci_chip_rev_id >> 8 == 113U) { { _tg3_flag_set(1, (unsigned long *)(& tp->tg3_flags)); tmp___22 = _tg3_flag(19, (unsigned long *)(& tp->tg3_flags)); } if (tmp___22 != 0) { { _tg3_flag_set(9, (unsigned long *)(& tp->tg3_flags)); pci_read_config_dword((struct pci_dev const *)tp->pdev, (int )(tp->pdev)->pm_cap + 4, & pm_reg); pm_reg = pm_reg & 4294967292U; pm_reg = pm_reg | 256U; pci_write_config_dword((struct pci_dev const *)tp->pdev, (int )(tp->pdev)->pm_cap + 4, pm_reg); pci_read_config_word((struct pci_dev const *)tp->pdev, 4, & pci_cmd); pci_cmd = (u16 )((unsigned int )pci_cmd | 320U); pci_write_config_word((struct pci_dev const *)tp->pdev, 4, (int )pci_cmd); } } else { } } else { } if ((pci_state_reg & 8U) != 0U) { { _tg3_flag_set(20, (unsigned long *)(& tp->tg3_flags)); } } else { } if ((pci_state_reg & 16U) != 0U) { { _tg3_flag_set(21, (unsigned long *)(& tp->tg3_flags)); } } else { } if (tp->pci_chip_rev_id == 8192U && (pci_state_reg & 8192U) == 0U) { { pci_state_reg = pci_state_reg | 8192U; pci_write_config_dword((struct pci_dev const *)tp->pdev, 112, pci_state_reg); } } else { } { tp->read32 = & tg3_read32; tp->write32 = & tg3_write32; tp->read32_mbox = & tg3_read32; tp->write32_mbox = & tg3_write32; tp->write32_tx_mbox = & tg3_write32; tp->write32_rx_mbox = & tg3_write32; tmp___24 = _tg3_flag(9, (unsigned long *)(& tp->tg3_flags)); } if (tmp___24 != 0) { tp->write32 = & tg3_write_indirect_reg32; } else if (tp->pci_chip_rev_id >> 12 == 0U) { tp->write32 = & tg3_write_flush_reg32; } else { { tmp___23 = _tg3_flag(34, (unsigned long *)(& tp->tg3_flags)); } if (tmp___23 != 0 && tp->pci_chip_rev_id == 16384U) { tp->write32 = & tg3_write_flush_reg32; } else { } } { tmp___26 = _tg3_flag(1, (unsigned long *)(& tp->tg3_flags)); } if (tmp___26 != 0) { goto _L___0; } else { { tmp___27 = _tg3_flag(8, (unsigned long *)(& tp->tg3_flags)); } if (tmp___27 != 0) { _L___0: /* CIL Label */ { tp->write32_tx_mbox = & tg3_write32_tx_mbox; tmp___25 = _tg3_flag(8, (unsigned long *)(& tp->tg3_flags)); } if (tmp___25 != 0) { tp->write32_rx_mbox = & tg3_write_flush_reg32; } else { } } else { } } { tmp___28 = _tg3_flag(45, (unsigned long *)(& tp->tg3_flags)); } if (tmp___28 != 0) { { tp->read32 = & tg3_read_indirect_reg32; tp->write32 = & tg3_write_indirect_reg32; tp->read32_mbox = & tg3_read_indirect_mbox; tp->write32_mbox = & tg3_write_indirect_mbox; tp->write32_tx_mbox = & tg3_write_indirect_mbox; tp->write32_rx_mbox = & tg3_write_indirect_mbox; ldv_iounmap_187((void volatile *)tp->regs); tp->regs = (void *)0; pci_read_config_word((struct pci_dev const *)tp->pdev, 4, & pci_cmd); pci_cmd = (unsigned int )pci_cmd & 65533U; pci_write_config_word((struct pci_dev const *)tp->pdev, 4, (int )pci_cmd); } } else { } if (tp->pci_chip_rev_id >> 12 == 12U) { tp->read32_mbox = & tg3_read32_mbox_5906; tp->write32_mbox = & tg3_write32_mbox_5906; tp->write32_tx_mbox = & tg3_write32_mbox_5906; tp->write32_rx_mbox = & tg3_write32_mbox_5906; } else { } if ((unsigned long )tp->write32 == (unsigned long )(& tg3_write_indirect_reg32)) { { _tg3_flag_set(22, (unsigned long *)(& tp->tg3_flags)); } } else { { tmp___29 = _tg3_flag(19, (unsigned long *)(& tp->tg3_flags)); } if (tmp___29 != 0 && (tp->pci_chip_rev_id >> 12 == 7U || tp->pci_chip_rev_id >> 12 == 0U)) { { _tg3_flag_set(22, (unsigned long *)(& tp->tg3_flags)); } } else { } } { val = (*(tp->read32))(tp, 16384U); (*(tp->write32))(tp, 16384U, val | 2U); tp->pci_fn = (int )(tp->pdev)->devfn & 3; } if (tp->pci_chip_rev_id >> 12 == 2U) { goto _L___1; } else { { tmp___31 = _tg3_flag(74, (unsigned long *)(& tp->tg3_flags)); } if (tmp___31 != 0) { _L___1: /* CIL Label */ { tmp___30 = _tg3_flag(19, (unsigned long *)(& tp->tg3_flags)); } if (tmp___30 != 0) { { pci_read_config_dword((struct pci_dev const *)tp->pdev, tp->pcix_cap + 4, & val); tp->pci_fn = (int )val & 7; } } else { } } else if ((tp->pci_chip_rev_id >> 12 == 22295U || tp->pci_chip_rev_id >> 12 == 22297U) || tp->pci_chip_rev_id >> 12 == 22304U) { { tg3_read_mem(tp, 3584U, & val); } if ((val & 65535U) != 13868U) { { val = (*(tp->read32))(tp, 13868U); } } else { } if (tp->pci_chip_rev_id >> 12 == 22295U) { tp->pci_fn = (val & 536870912U) != 0U; } else { tp->pci_fn = (int )(val >> 30); } } else { } } { tmp___32 = _tg3_flag(80, (unsigned long *)(& tp->tg3_flags)); } if (tmp___32 != 0) { tp->write32_tx_mbox = & tg3_write_flush_reg32; tp->write32_rx_mbox = & tg3_write_flush_reg32; } else { } { tg3_get_eeprom_hw_cfg(tp); tmp___33 = _tg3_flag(39, (unsigned long *)(& tp->tg3_flags)); } if (tmp___33 != 0) { { tmp___34 = _tg3_flag(4, (unsigned long *)(& tp->tg3_flags)); } if (tmp___34 != 0) { { _tg3_flag_clear(43, (unsigned long *)(& tp->tg3_flags)); _tg3_flag_clear(44, (unsigned long *)(& tp->tg3_flags)); tp->fw_needed = (char const *)0; } } else { } } else { } { tmp___35 = _tg3_flag(49, (unsigned long *)(& tp->tg3_flags)); } if (tmp___35 != 0) { { pci_state_reg = pci_state_reg | 458752U; pci_write_config_dword((struct pci_dev const *)tp->pdev, 112, pci_state_reg); tg3_ape_lock_init(tp); } } else { } tp->grc_local_ctrl = 16777224U; if (tp->pci_chip_rev_id >> 12 == 7U) { tp->grc_local_ctrl = tp->grc_local_ctrl | 36864U; } else { { tmp___36 = _tg3_flag(12, (unsigned long *)(& tp->tg3_flags)); } if (tmp___36 != 0) { tp->grc_local_ctrl = tp->grc_local_ctrl | 36864U; } else if (tp->pci_chip_rev_id >> 12 == 6U) { tp->grc_local_ctrl = tp->grc_local_ctrl | 64U; } else { } } if (tp->pci_chip_rev_id >> 12 == 10U || tp->pci_chip_rev_id >> 12 == 358272U) { tp->grc_local_ctrl = tp->grc_local_ctrl | 16U; } else { { tmp___37 = _tg3_flag(77, (unsigned long *)(& tp->tg3_flags)); } if (tmp___37 != 0) { tp->grc_local_ctrl = tp->grc_local_ctrl | 16U; } else { } } if ((unsigned int )(tp->pdev)->device == 5761U || (unsigned int )(tp->pdev)->device == 5768U) { { tp->grc_local_ctrl = tp->grc_local_ctrl | 16U; tmp___38 = _tg3_flag(37, (unsigned long *)(& tp->tg3_flags)); } if (tmp___38 != 0) { tp->grc_local_ctrl = tp->grc_local_ctrl | 18432U; } else { } } else { } if (tp->pci_chip_rev_id >> 12 == 22370U) { { tmp___39 = (*(tp->read32))(tp, 26632U); tp->grc_local_ctrl = tp->grc_local_ctrl | (tmp___39 & 16U); } } else { } { tg3_pwrsrc_switch_to_vmain(tp); } if ((tp->dev)->mtu > 1500U) { { tmp___40 = _tg3_flag(74, (unsigned long *)(& tp->tg3_flags)); } if (tmp___40 == 0) { { _tg3_flag_set(25, (unsigned long *)(& tp->tg3_flags)); } } else { } } else { } if (((tp->pci_chip_rev_id >> 12 == 7U || tp->pci_chip_rev_id == 0U) || tp->pci_chip_rev_id == 256U) || tp->pci_chip_rev_id == 258U) { { _tg3_flag_clear(10, (unsigned long *)(& tp->tg3_flags)); } } else { { _tg3_flag_set(10, (unsigned long *)(& tp->tg3_flags)); } } if (tp->pci_chip_rev_id >> 12 == 12U) { tp->phy_flags = tp->phy_flags | 64U; } else { } if ((tp->pci_chip_rev_id >> 12 == 7U || ((tp->pci_chip_rev_id >> 12 == 3U && tp->pci_chip_rev_id != 12288U) && tp->pci_chip_rev_id != 12289U)) || *((unsigned int *)tp + 1135UL) != 0U) { tp->phy_flags = tp->phy_flags | 1024U; } else { } if (tp->pci_chip_rev_id >> 8 == 16U || tp->pci_chip_rev_id >> 8 == 32U) { tp->phy_flags = tp->phy_flags | 8192U; } else { } if (tp->pci_chip_rev_id == 8192U) { tp->phy_flags = tp->phy_flags | 16384U; } else { } { tmp___41 = _tg3_flag(71, (unsigned long *)(& tp->tg3_flags)); } if (((tmp___41 != 0 && (tp->phy_flags & 64U) == 0U) && tp->pci_chip_rev_id >> 12 != 22405U) && tp->pci_chip_rev_id >> 12 != 358272U) { { tmp___42 = _tg3_flag(76, (unsigned long *)(& tp->tg3_flags)); } if (tmp___42 == 0) { if (((tp->pci_chip_rev_id >> 12) - 10U <= 1U || tp->pci_chip_rev_id >> 12 == 22404U) || tp->pci_chip_rev_id >> 12 == 22369U) { if ((unsigned int )(tp->pdev)->device != 5748U && (unsigned int )(tp->pdev)->device != 5722U) { tp->phy_flags = tp->phy_flags | 2048U; } else { } if ((unsigned int )(tp->pdev)->device == 5747U) { tp->phy_flags = tp->phy_flags | 4096U; } else { } } else { tp->phy_flags = tp->phy_flags | 32768U; } } else { } } else { } if (tp->pci_chip_rev_id >> 12 == 22404U && tp->pci_chip_rev_id >> 8 != 358464U) { { tp->phy_otp = tg3_read_otp_phycfg(tp); } if (tp->phy_otp == 0U) { tp->phy_otp = 678172224U; } else { } } else { } { tmp___43 = _tg3_flag(27, (unsigned long *)(& tp->tg3_flags)); } if (tmp___43 != 0) { tp->mi_mode = 32768U; } else { tp->mi_mode = 786432U; } tp->coalesce_mode = 0U; if ((tp->pci_chip_rev_id >> 8) - 112U > 1U) { tp->coalesce_mode = tp->coalesce_mode | 256U; } else { } if (((tp->pci_chip_rev_id >> 12 == 22295U || tp->pci_chip_rev_id >> 12 == 22370U) || tp->pci_chip_rev_id == 91328512U) || tp->pci_chip_rev_id == 91357184U) { tp->coalesce_mode = tp->coalesce_mode | 4U; tp->grc_mode = tp->grc_mode | 268435456U; } else { } if (tp->pci_chip_rev_id >> 12 == 22405U || tp->pci_chip_rev_id >> 12 == 358272U) { { _tg3_flag_set(52, (unsigned long *)(& tp->tg3_flags)); } } else { } { err = tg3_mdio_init(tp); } if (err != 0) { return (err); } else { } { val = (*(tp->read32))(tp, 26624U); } if (tp->pci_chip_rev_id >> 12 == 22304U || tp->pci_chip_rev_id >> 12 == 22370U) { val = val & 360640U; } else { val = val & 65536U; } { (*(tp->write32))(tp, 26624U, val | tp->grc_mode); tg3_switch_clocks(tp); (*(tp->write32))(tp, 124U, 0U); (*(tp->write32))(tp, 120U, 0U); pci_read_config_dword((struct pci_dev const *)tp->pdev, 112, & pci_state_reg); } if ((pci_state_reg & 4U) == 0U) { { tmp___45 = _tg3_flag(9, (unsigned long *)(& tp->tg3_flags)); } if (tmp___45 == 0) { if (((tp->pci_chip_rev_id == 0U || tp->pci_chip_rev_id == 256U) || tp->pci_chip_rev_id == 258U) || tp->pci_chip_rev_id == 261U) { { sram_base = tp->regs + 33536U; writel(0U, (void volatile *)sram_base); writel(0U, (void volatile *)sram_base + 4U); writel(4294967295U, (void volatile *)sram_base + 4U); tmp___44 = readl((void const volatile *)sram_base); } if (tmp___44 != 0U) { { _tg3_flag_set(9, (unsigned long *)(& tp->tg3_flags)); } } else { } } else { } } else { } } else { } { __const_udelay(214750UL); tg3_nvram_init(tp); } if (tp->pci_chip_rev_id >> 12 == 358246U) { { tmp___46 = _tg3_flag(59, (unsigned long *)(& tp->tg3_flags)); } if (tmp___46 == 0) { tp->fw_needed = (char const *)0; } else { } } else { } { grc_misc_cfg = (*(tp->read32))(tp, 26628U); grc_misc_cfg = grc_misc_cfg & 122880U; } if (tp->pci_chip_rev_id >> 12 == 3U && (grc_misc_cfg == 65536U || grc_misc_cfg == 98304U)) { { _tg3_flag_set(72, (unsigned long *)(& tp->tg3_flags)); } } else { } { tmp___47 = _tg3_flag(72, (unsigned long *)(& tp->tg3_flags)); } if (tmp___47 == 0 && tp->pci_chip_rev_id >> 12 != 7U) { { _tg3_flag_set(0, (unsigned long *)(& tp->tg3_flags)); } } else { } { tmp___48 = _tg3_flag(0, (unsigned long *)(& tp->tg3_flags)); } if (tmp___48 != 0) { { tp->coalesce_mode = tp->coalesce_mode | 1536U; tp->misc_host_ctrl = tp->misc_host_ctrl | 512U; pci_write_config_dword((struct pci_dev const *)tp->pdev, 104, tp->misc_host_ctrl); } } else { } { tmp___49 = _tg3_flag(49, (unsigned long *)(& tp->tg3_flags)); } if (tmp___49 != 0) { tp->mac_mode = 402653184U; } else { tp->mac_mode = 0U; } { tmp___50 = tg3_10_100_only_device(tp, ent); } if ((int )tmp___50) { tp->phy_flags = tp->phy_flags | 128U; } else { } { err = tg3_phy_probe(tp); } if (err != 0) { { dev_err((struct device const *)(& (tp->pdev)->dev), "phy probe failed, err %d\n", err); tg3_mdio_fini(tp); } } else { } { tg3_read_vpd(tp); tg3_read_fw_ver(tp); } if ((tp->phy_flags & 16U) != 0U) { tp->phy_flags = tp->phy_flags & 4294967291U; } else if (tp->pci_chip_rev_id >> 12 == 7U) { tp->phy_flags = tp->phy_flags | 4U; } else { tp->phy_flags = tp->phy_flags & 4294967291U; } if (tp->pci_chip_rev_id >> 12 == 7U) { { _tg3_flag_set(2, (unsigned long *)(& tp->tg3_flags)); } } else { { _tg3_flag_clear(2, (unsigned long *)(& tp->tg3_flags)); } } if (((unsigned int )(tp->pdev)->subsystem_vendor == 4136U && tp->pci_chip_rev_id >> 12 == 0U) && (tp->phy_flags & 16U) == 0U) { { tp->phy_flags = tp->phy_flags | 4U; _tg3_flag_set(2, (unsigned long *)(& tp->tg3_flags)); } } else { } if ((tp->phy_flags & 16U) != 0U) { { _tg3_flag_set(6, (unsigned long *)(& tp->tg3_flags)); } } else { { _tg3_flag_clear(6, (unsigned long *)(& tp->tg3_flags)); } } { tmp___51 = _tg3_flag(49, (unsigned long *)(& tp->tg3_flags)); } if (tmp___51 != 0) { { tmp___52 = _tg3_flag(4, (unsigned long *)(& tp->tg3_flags)); } if (tmp___52 != 0) { { _tg3_flag_set(7, (unsigned long *)(& tp->tg3_flags)); } } else { } } else { } _max1 = 32; _max2 = 64; tp->rx_offset = (u32 )(_max1 > _max2 ? _max1 : _max2); tp->rx_copy_thresh = 256U; if (tp->pci_chip_rev_id >> 12 == 0U) { { tmp___53 = _tg3_flag(19, (unsigned long *)(& tp->tg3_flags)); } if (tmp___53 != 0) { _max1___0 = 32; _max2___0 = 64; tp->rx_offset = (u32 )(_max1___0 > _max2___0 ? _max1___0 : _max2___0); } else { } } else { } { tmp___54 = _tg3_flag(54, (unsigned long *)(& tp->tg3_flags)); tp->rx_std_ring_mask = tmp___54 != 0 ? 2047U : 511U; tmp___55 = _tg3_flag(54, (unsigned long *)(& tp->tg3_flags)); tp->rx_jmb_ring_mask = tmp___55 != 0 ? 1023U : 255U; tmp___56 = tg3_rx_ret_ring_size(tp); tp->rx_ret_ring_mask = tmp___56 - 1U; tp->rx_std_max_post = tp->rx_std_ring_mask + 1U; } if ((tp->pci_chip_rev_id >> 12 == 4U || tp->pci_chip_rev_id >> 12 == 6U) || tp->pci_chip_rev_id >> 12 == 10U) { tp->rx_std_max_post = 8U; } else { } { tmp___58 = _tg3_flag(5, (unsigned long *)(& tp->tg3_flags)); } if (tmp___58 != 0) { { tmp___57 = (*(tp->read32))(tp, 32040U); tp->pwrmgmt_thresh = tmp___57 & 65280U; } } else { } return (err); } } static int tg3_get_device_address(struct tg3 *tp ) { struct net_device *dev ; u32 hi ; u32 lo ; u32 mac_offset ; int addr_ok ; int err ; bool tmp ; int tmp___0 ; u32 tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; bool tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; bool tmp___9 ; int tmp___10 ; { { dev = tp->dev; addr_ok = 0; tmp___0 = _tg3_flag(79, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0) { { err = ssb_gige_get_macaddr(tp->pdev, dev->dev_addr); } if (err == 0) { { tmp = is_valid_ether_addr((u8 const *)dev->dev_addr); } if ((int )tmp) { return (0); } else { } } else { } } else { } mac_offset = 124U; if (tp->pci_chip_rev_id >> 12 == 2U) { goto _L; } else { { tmp___4 = _tg3_flag(74, (unsigned long *)(& tp->tg3_flags)); } if (tmp___4 != 0) { _L: /* CIL Label */ { tmp___1 = (*(tp->read32))(tp, 184U); } if ((tmp___1 & 4U) != 0U) { mac_offset = 204U; } else { } { tmp___2 = tg3_nvram_lock(tp); } if (tmp___2 != 0) { { _tw32_flush(tp, 28672U, 1U, 0U); } } else { { tg3_nvram_unlock(tp); } } } else { { tmp___3 = _tg3_flag(78, (unsigned long *)(& tp->tg3_flags)); } if (tmp___3 != 0) { if (tp->pci_fn & 1) { mac_offset = 204U; } else { } if (tp->pci_fn > 1) { mac_offset = mac_offset + 396U; } else { } } else if (tp->pci_chip_rev_id >> 12 == 12U) { mac_offset = 16U; } else { } } } { tg3_read_mem(tp, 3092U, & hi); } if (hi >> 16 == 18507U) { { *(dev->dev_addr) = (unsigned char )(hi >> 8); *(dev->dev_addr + 1UL) = (unsigned char )hi; tg3_read_mem(tp, 3096U, & lo); *(dev->dev_addr + 2UL) = (unsigned char )(lo >> 24); *(dev->dev_addr + 3UL) = (unsigned char )(lo >> 16); *(dev->dev_addr + 4UL) = (unsigned char )(lo >> 8); *(dev->dev_addr + 5UL) = (unsigned char )lo; tmp___5 = is_valid_ether_addr((u8 const *)dev->dev_addr); addr_ok = (int )tmp___5; } } else { } if (addr_ok == 0) { { tmp___6 = _tg3_flag(59, (unsigned long *)(& tp->tg3_flags)); } if (tmp___6 == 0) { { tmp___7 = tg3_nvram_read_be32(tp, mac_offset, & hi); } if (tmp___7 == 0) { { tmp___8 = tg3_nvram_read_be32(tp, mac_offset + 4U, & lo); } if (tmp___8 == 0) { { __memcpy((void *)dev->dev_addr, (void const *)(& hi) + 2U, 2UL); __memcpy((void *)dev->dev_addr + 2U, (void const *)(& lo), 4UL); } } else { goto _L___1; } } else { goto _L___1; } } else { _L___1: /* CIL Label */ { hi = (*(tp->read32))(tp, 1040U); lo = (*(tp->read32))(tp, 1044U); *(dev->dev_addr + 5UL) = (unsigned char )lo; *(dev->dev_addr + 4UL) = (unsigned char )(lo >> 8); *(dev->dev_addr + 3UL) = (unsigned char )(lo >> 16); *(dev->dev_addr + 2UL) = (unsigned char )(lo >> 24); *(dev->dev_addr + 1UL) = (unsigned char )hi; *(dev->dev_addr) = (unsigned char )(hi >> 8); } } } else { } { tmp___9 = is_valid_ether_addr((u8 const *)dev->dev_addr); } if (tmp___9) { tmp___10 = 0; } else { tmp___10 = 1; } if (tmp___10) { return (-22); } else { } return (0); } } static u32 tg3_calc_dma_bndry(struct tg3 *tp , u32 val ) { int cacheline_size ; u8 byte ; int goal ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { { pci_read_config_byte((struct pci_dev const *)tp->pdev, 12, & byte); } if ((unsigned int )byte == 0U) { cacheline_size = 1024; } else { cacheline_size = (int )byte * 4; } if (tp->pci_chip_rev_id >> 12 != 7U && tp->pci_chip_rev_id >> 12 != 0U) { { tmp = _tg3_flag(34, (unsigned long *)(& tp->tg3_flags)); } if (tmp == 0) { goto out; } else { } } else { } { goal = 0; tmp___0 = _tg3_flag(76, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0) { val = goal == 0; goto out; } else { } if (goal == 0) { goto out; } else { } { tmp___2 = _tg3_flag(19, (unsigned long *)(& tp->tg3_flags)); } if (tmp___2 != 0) { { tmp___3 = _tg3_flag(34, (unsigned long *)(& tp->tg3_flags)); } if (tmp___3 == 0) { { if (cacheline_size == 16) { goto case_16; } else { } if (cacheline_size == 32) { goto case_32; } else { } if (cacheline_size == 64) { goto case_64; } else { } if (cacheline_size == 128) { goto case_128; } else { } if (cacheline_size == 256) { goto case_256; } else { } goto switch_default; case_16: /* CIL Label */ ; case_32: /* CIL Label */ ; case_64: /* CIL Label */ ; case_128: /* CIL Label */ ; if (goal == 1) { val = val | 2304U; } else { val = val | 6912U; } goto ldv_60384; case_256: /* CIL Label */ val = val | 4608U; goto ldv_60384; switch_default: /* CIL Label */ val = val | 6912U; goto ldv_60384; switch_break: /* CIL Label */ ; } ldv_60384: ; } else { goto _L; } } else { _L: /* CIL Label */ { tmp___1 = _tg3_flag(34, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 != 0) { { if (cacheline_size == 16) { goto case_16___0; } else { } if (cacheline_size == 32) { goto case_32___0; } else { } if (cacheline_size == 64) { goto case_64___0; } else { } if (cacheline_size == 128) { goto case_128___0; } else { } goto switch_default___0; case_16___0: /* CIL Label */ ; case_32___0: /* CIL Label */ ; case_64___0: /* CIL Label */ ; if (goal == 1) { val = val & 2415919103U; val = val | 268435456U; goto ldv_60390; } else { } case_128___0: /* CIL Label */ ; switch_default___0: /* CIL Label */ val = val & 2415919103U; val = val | 805306368U; goto ldv_60390; switch_break___0: /* CIL Label */ ; } ldv_60390: ; } else { { if (cacheline_size == 16) { goto case_16___1; } else { } if (cacheline_size == 32) { goto case_32___1; } else { } if (cacheline_size == 64) { goto case_64___1; } else { } if (cacheline_size == 128) { goto case_128___1; } else { } if (cacheline_size == 256) { goto case_256___0; } else { } if (cacheline_size == 512) { goto case_512; } else { } if (cacheline_size == 1024) { goto case_1024; } else { } goto switch_default___1; case_16___1: /* CIL Label */ ; if (goal == 1) { val = val | 2304U; goto ldv_60394; } else { } case_32___1: /* CIL Label */ ; if (goal == 1) { val = val | 4608U; goto ldv_60394; } else { } case_64___1: /* CIL Label */ ; if (goal == 1) { val = val | 6912U; goto ldv_60394; } else { } case_128___1: /* CIL Label */ ; if (goal == 1) { val = val | 9216U; goto ldv_60394; } else { } case_256___0: /* CIL Label */ val = val | 11520U; goto ldv_60394; case_512: /* CIL Label */ val = val | 13824U; goto ldv_60394; case_1024: /* CIL Label */ ; switch_default___1: /* CIL Label */ val = val | 16128U; goto ldv_60394; switch_break___1: /* CIL Label */ ; } ldv_60394: ; } } out: ; return (val); } } static int tg3_do_test_dma(struct tg3 *tp , u32 *buf , dma_addr_t buf_dma , int size , bool to_device ) { struct tg3_internal_buffer_desc test_desc ; u32 sram_dma_descs ; int i ; int ret ; u32 val ; u32 val___0 ; { { sram_dma_descs = 8192U; (*(tp->write32))(tp, 23768U, 0U); (*(tp->write32))(tp, 23816U, 0U); (*(tp->write32))(tp, 18436U, 0U); (*(tp->write32))(tp, 19460U, 0U); (*(tp->write32))(tp, 17408U, 0U); (*(tp->write32))(tp, 23552U, 0U); test_desc.addr_hi = (u32 )(buf_dma >> 32); test_desc.addr_lo = (u32 )buf_dma; test_desc.nic_mbuf = 8448U; test_desc.len = (u16 )size; } if ((int )to_device) { { test_desc.cqid_sqid = 3330U; _tw32_flush(tp, 18432U, 2U, 0U); __const_udelay(171800UL); } } else { { test_desc.cqid_sqid = 4103U; _tw32_flush(tp, 19456U, 2U, 0U); __const_udelay(171800UL); } } test_desc.flags = 5U; i = 0; goto ldv_60415; ldv_60414: { val = *((u32 *)(& test_desc) + (unsigned long )i); pci_write_config_dword((struct pci_dev const *)tp->pdev, 124, sram_dma_descs + (u32 )((unsigned long )i) * 4U); pci_write_config_dword((struct pci_dev const *)tp->pdev, 132, val); i = i + 1; } ldv_60415: ; if ((unsigned int )i <= 7U) { goto ldv_60414; } else { } { pci_write_config_dword((struct pci_dev const *)tp->pdev, 124, 0U); } if ((int )to_device) { { (*(tp->write32))(tp, 23592U, sram_dma_descs); } } else { { (*(tp->write32))(tp, 23672U, sram_dma_descs); } } ret = -19; i = 0; goto ldv_60420; ldv_60419: ; if ((int )to_device) { { val___0 = (*(tp->read32))(tp, 23768U); } } else { { val___0 = (*(tp->read32))(tp, 23816U); } } if ((val___0 & 65535U) == sram_dma_descs) { ret = 0; goto ldv_60418; } else { } { __const_udelay(429500UL); i = i + 1; } ldv_60420: ; if (i <= 39) { goto ldv_60419; } else { } ldv_60418: ; return (ret); } } static struct pci_device_id const tg3_dma_wait_state_chipsets[2U] = { {4203U, 46U, 4294967295U, 4294967295U, 0U, 0U, 0UL}}; static int tg3_test_dma(struct tg3 *tp ) { dma_addr_t buf_dma ; u32 *buf ; u32 saved_dma_rwctrl ; int ret ; void *tmp ; int tmp___0 ; u32 ccval ; u32 tmp___1 ; u32 read_water ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; u32 *p ; u32 i ; int tmp___6 ; { { ret = 0; tmp = dma_alloc_attrs(& (tp->pdev)->dev, 8192UL, & buf_dma, 208U, (struct dma_attrs *)0); buf = (u32 *)tmp; } if ((unsigned long )buf == (unsigned long )((u32 *)0U)) { ret = -12; goto out_nofree; } else { } { tp->dma_rwctrl = 1979711488U; tp->dma_rwctrl = tg3_calc_dma_bndry(tp, tp->dma_rwctrl); tmp___0 = _tg3_flag(76, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0) { goto out; } else { } { tmp___4 = _tg3_flag(34, (unsigned long *)(& tp->tg3_flags)); } if (tmp___4 != 0) { tp->dma_rwctrl = tp->dma_rwctrl | 1572864U; } else { { tmp___3 = _tg3_flag(19, (unsigned long *)(& tp->tg3_flags)); } if (tmp___3 == 0) { if ((tp->pci_chip_rev_id >> 12) - 3U <= 1U) { tp->dma_rwctrl = tp->dma_rwctrl | 4128768U; } else { tp->dma_rwctrl = tp->dma_rwctrl | 4128783U; } } else if ((tp->pci_chip_rev_id >> 12) - 1U <= 1U) { { tmp___1 = (*(tp->read32))(tp, 116U); ccval = tmp___1 & 31U; read_water = 7U; tmp___2 = _tg3_flag(28, (unsigned long *)(& tp->tg3_flags)); } if (tmp___2 != 0 && tp->pci_chip_rev_id >> 12 == 2U) { tp->dma_rwctrl = tp->dma_rwctrl | 32768U; } else if (ccval - 6U <= 1U) { tp->dma_rwctrl = tp->dma_rwctrl | 16384U; } else { } if (tp->pci_chip_rev_id >> 12 == 1U) { read_water = 4U; } else { } tp->dma_rwctrl = (tp->dma_rwctrl | (read_water << 16)) | 9961472U; } else if (tp->pci_chip_rev_id >> 12 == 8U) { tp->dma_rwctrl = tp->dma_rwctrl | 1327104U; } else if (tp->pci_chip_rev_id >> 12 == 9U) { tp->dma_rwctrl = tp->dma_rwctrl | 1343488U; } else { tp->dma_rwctrl = tp->dma_rwctrl | 1769487U; } } { tmp___5 = _tg3_flag(82, (unsigned long *)(& tp->tg3_flags)); } if (tmp___5 != 0) { tp->dma_rwctrl = tp->dma_rwctrl | 16384U; } else { } if ((tp->pci_chip_rev_id >> 12) - 1U <= 1U) { tp->dma_rwctrl = tp->dma_rwctrl & 4294967280U; } else { } if (tp->pci_chip_rev_id >> 12 == 7U || tp->pci_chip_rev_id >> 12 == 0U) { tp->dma_rwctrl = tp->dma_rwctrl | 4194304U; tp->dma_rwctrl = tp->dma_rwctrl | 8388608U; } else { } { (*(tp->write32))(tp, 108U, tp->dma_rwctrl); } if (tp->pci_chip_rev_id >> 12 != 7U && tp->pci_chip_rev_id >> 12 != 0U) { goto out; } else { } { saved_dma_rwctrl = tp->dma_rwctrl; tp->dma_rwctrl = tp->dma_rwctrl & 4294952959U; (*(tp->write32))(tp, 108U, tp->dma_rwctrl); } ldv_60444: p = buf; i = 0U; goto ldv_60436; ldv_60435: *(p + (unsigned long )i) = i; i = i + 1U; ldv_60436: ; if (i <= 2047U) { goto ldv_60435; } else { } { ret = tg3_do_test_dma(tp, buf, buf_dma, 8192, 1); } if (ret != 0) { { dev_err((struct device const *)(& (tp->pdev)->dev), "%s: Buffer write failed. err = %d\n", "tg3_test_dma", ret); } goto ldv_60439; } else { } { ret = tg3_do_test_dma(tp, buf, buf_dma, 8192, 0); } if (ret != 0) { { dev_err((struct device const *)(& (tp->pdev)->dev), "%s: Buffer read failed. err = %d\n", "tg3_test_dma", ret); } goto ldv_60439; } else { } i = 0U; goto ldv_60443; ldv_60442: ; if (*(p + (unsigned long )i) == i) { goto ldv_60440; } else { } if ((tp->dma_rwctrl & 14336U) != 2048U) { { tp->dma_rwctrl = tp->dma_rwctrl & 4294952959U; tp->dma_rwctrl = tp->dma_rwctrl | 2048U; (*(tp->write32))(tp, 108U, tp->dma_rwctrl); } goto ldv_60441; } else { { dev_err((struct device const *)(& (tp->pdev)->dev), "%s: Buffer corrupted on read back! (%d != %d)\n", "tg3_test_dma", *(p + (unsigned long )i), i); ret = -19; } goto out; } ldv_60440: i = i + 1U; ldv_60443: ; if (i <= 2047U) { goto ldv_60442; } else { } ldv_60441: ; if (i == 2048U) { ret = 0; goto ldv_60439; } else { } goto ldv_60444; ldv_60439: ; if ((tp->dma_rwctrl & 14336U) != 2048U) { { tmp___6 = pci_dev_present((struct pci_device_id const *)(& tg3_dma_wait_state_chipsets)); } if (tmp___6 != 0) { tp->dma_rwctrl = tp->dma_rwctrl & 4294952959U; tp->dma_rwctrl = tp->dma_rwctrl | 2048U; } else { tp->dma_rwctrl = saved_dma_rwctrl; } { (*(tp->write32))(tp, 108U, tp->dma_rwctrl); } } else { } out: { dma_free_attrs(& (tp->pdev)->dev, 8192UL, (void *)buf, buf_dma, (struct dma_attrs *)0); } out_nofree: ; return (ret); } } static void tg3_init_bufmgr_config(struct tg3 *tp ) { int tmp ; int tmp___0 ; { { tmp___0 = _tg3_flag(76, (unsigned long *)(& tp->tg3_flags)); } if (tmp___0 != 0) { tp->bufmgr_config.mbuf_read_dma_low_water = 0U; tp->bufmgr_config.mbuf_mac_rx_low_water = 42U; tp->bufmgr_config.mbuf_high_water = 160U; tp->bufmgr_config.mbuf_read_dma_low_water_jumbo = 0U; tp->bufmgr_config.mbuf_mac_rx_low_water_jumbo = 126U; tp->bufmgr_config.mbuf_high_water_jumbo = 234U; } else { { tmp = _tg3_flag(71, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { tp->bufmgr_config.mbuf_read_dma_low_water = 0U; tp->bufmgr_config.mbuf_mac_rx_low_water = 16U; tp->bufmgr_config.mbuf_high_water = 96U; if (tp->pci_chip_rev_id >> 12 == 12U) { tp->bufmgr_config.mbuf_mac_rx_low_water = 4U; tp->bufmgr_config.mbuf_high_water = 16U; } else { } tp->bufmgr_config.mbuf_read_dma_low_water_jumbo = 0U; tp->bufmgr_config.mbuf_mac_rx_low_water_jumbo = 75U; tp->bufmgr_config.mbuf_high_water_jumbo = 150U; } else { tp->bufmgr_config.mbuf_read_dma_low_water = 80U; tp->bufmgr_config.mbuf_mac_rx_low_water = 32U; tp->bufmgr_config.mbuf_high_water = 96U; tp->bufmgr_config.mbuf_read_dma_low_water_jumbo = 304U; tp->bufmgr_config.mbuf_mac_rx_low_water_jumbo = 152U; tp->bufmgr_config.mbuf_high_water_jumbo = 380U; } } tp->bufmgr_config.dma_low_water = 5U; tp->bufmgr_config.dma_high_water = 10U; return; } } static char *tg3_phy_string(struct tg3 *tp ) { { { if ((tp->phy_id & 4294967280U) == 1610645568U) { goto case_1610645568; } else { } if ((tp->phy_id & 4294967280U) == 1610645584U) { goto case_1610645584; } else { } if ((tp->phy_id & 4294967280U) == 1610645616U) { goto case_1610645616; } else { } if ((tp->phy_id & 4294967280U) == 1610645776U) { goto case_1610645776; } else { } if ((tp->phy_id & 4294967280U) == 1610645856U) { goto case_1610645856; } else { } if ((tp->phy_id & 4294967280U) == 1610645904U) { goto case_1610645904; } else { } if ((tp->phy_id & 4294967280U) == 1610645920U) { goto case_1610645920; } else { } if ((tp->phy_id & 4294967280U) == 1610645888U) { goto case_1610645888; } else { } if ((tp->phy_id & 4294967280U) == 1610645760U) { goto case_1610645760; } else { } if ((tp->phy_id & 4294967280U) == 1610646336U) { goto case_1610646336; } else { } if ((tp->phy_id & 4294967280U) == 1610646352U) { goto case_1610646352; } else { } if ((tp->phy_id & 4294967280U) == 3154447552U) { goto case_3154447552; } else { } if ((tp->phy_id & 4294967280U) == 3154447584U) { goto case_3154447584; } else { } if ((tp->phy_id & 4294967280U) == 3154448288U) { goto case_3154448288; } else { } if ((tp->phy_id & 4294967280U) == 3154448080U) { goto case_3154448080; } else { } if ((tp->phy_id & 4294967280U) == 3691031616U) { goto case_3691031616; } else { } if ((tp->phy_id & 4294967280U) == 3154448336U) { goto case_3154448336; } else { } if ((tp->phy_id & 4294967280U) == 1544391168U) { goto case_1544391168; } else { } if ((tp->phy_id & 4294967280U) == 3154448368U) { goto case_3154448368; } else { } if ((tp->phy_id & 4294967280U) == 1544391232U) { goto case_1544391232; } else { } if ((tp->phy_id & 4294967280U) == 1544391200U) { goto case_1544391200; } else { } if ((tp->phy_id & 4294967280U) == 1544391520U) { goto case_1544391520; } else { } if ((tp->phy_id & 4294967280U) == 2239772544U) { goto case_2239772544; } else { } if ((tp->phy_id & 4294967280U) == 1610678592U) { goto case_1610678592; } else { } if ((tp->phy_id & 4294967280U) == 0U) { goto case_0; } else { } goto switch_default; case_1610645568: /* CIL Label */ ; return ((char *)"5400"); case_1610645584: /* CIL Label */ ; return ((char *)"5401"); case_1610645616: /* CIL Label */ ; return ((char *)"5411"); case_1610645776: /* CIL Label */ ; return ((char *)"5701"); case_1610645856: /* CIL Label */ ; return ((char *)"5703"); case_1610645904: /* CIL Label */ ; return ((char *)"5704"); case_1610645920: /* CIL Label */ ; return ((char *)"5705"); case_1610645888: /* CIL Label */ ; return ((char *)"5750"); case_1610645760: /* CIL Label */ ; return ((char *)"5752"); case_1610646336: /* CIL Label */ ; return ((char *)"5714"); case_1610646352: /* CIL Label */ ; return ((char *)"5780"); case_3154447552: /* CIL Label */ ; return ((char *)"5755"); case_3154447584: /* CIL Label */ ; return ((char *)"5787"); case_3154448288: /* CIL Label */ ; return ((char *)"5784"); case_3154448080: /* CIL Label */ ; return ((char *)"5722/5756"); case_3691031616: /* CIL Label */ ; return ((char *)"5906"); case_3154448336: /* CIL Label */ ; return ((char *)"5761"); case_1544391168: /* CIL Label */ ; return ((char *)"5718C"); case_3154448368: /* CIL Label */ ; return ((char *)"5718S"); case_1544391232: /* CIL Label */ ; return ((char *)"57765"); case_1544391200: /* CIL Label */ ; return ((char *)"5719C"); case_1544391520: /* CIL Label */ ; return ((char *)"5720C"); case_2239772544: /* CIL Label */ ; return ((char *)"5762C"); case_1610678592: /* CIL Label */ ; return ((char *)"8002/serdes"); case_0: /* CIL Label */ ; return ((char *)"serdes"); switch_default: /* CIL Label */ ; return ((char *)"unknown"); switch_break: /* CIL Label */ ; } } } static char *tg3_bus_string(struct tg3 *tp , char *str ) { u32 clock_ctrl ; u32 tmp ; u32 tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; { { tmp___3 = _tg3_flag(34, (unsigned long *)(& tp->tg3_flags)); } if (tmp___3 != 0) { { strcpy(str, "PCI Express"); } return (str); } else { { tmp___2 = _tg3_flag(19, (unsigned long *)(& tp->tg3_flags)); } if (tmp___2 != 0) { { tmp = (*(tp->read32))(tp, 116U); clock_ctrl = tmp & 31U; strcpy(str, "PCIX:"); } if (clock_ctrl == 7U) { { strcat(str, "133MHz"); } } else { { tmp___0 = (*(tp->read32))(tp, 26628U); } if ((tmp___0 & 122880U) == 16384U) { { strcat(str, "133MHz"); } } else if (clock_ctrl == 0U) { { strcat(str, "33MHz"); } } else if (clock_ctrl == 2U) { { strcat(str, "50MHz"); } } else if (clock_ctrl == 4U) { { strcat(str, "66MHz"); } } else if (clock_ctrl == 6U) { { strcat(str, "100MHz"); } } else { } } } else { { strcpy(str, "PCI:"); tmp___1 = _tg3_flag(20, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 != 0) { { strcat(str, "66MHz"); } } else { { strcat(str, "33MHz"); } } } } { tmp___4 = _tg3_flag(21, (unsigned long *)(& tp->tg3_flags)); } if (tmp___4 != 0) { { strcat(str, ":32-bit"); } } else { { strcat(str, ":64-bit"); } } return (str); } } static void tg3_init_coal(struct tg3 *tp ) { struct ethtool_coalesce *ec ; int tmp ; { { ec = & tp->coal; __memset((void *)ec, 0, 92UL); ec->cmd = 14U; ec->rx_coalesce_usecs = 50U; ec->tx_coalesce_usecs = 150U; ec->rx_max_coalesced_frames = 5U; ec->tx_max_coalesced_frames = 53U; ec->rx_coalesce_usecs_irq = 25U; ec->tx_coalesce_usecs_irq = 25U; ec->rx_max_coalesced_frames_irq = 5U; ec->tx_max_coalesced_frames_irq = 5U; ec->stats_block_coalesce_usecs = 1000000U; } if ((tp->coalesce_mode & 1536U) != 0U) { ec->rx_coalesce_usecs = 20U; ec->rx_coalesce_usecs_irq = 20U; ec->tx_coalesce_usecs = 72U; ec->tx_coalesce_usecs_irq = 20U; } else { } { tmp = _tg3_flag(71, (unsigned long *)(& tp->tg3_flags)); } if (tmp != 0) { ec->rx_coalesce_usecs_irq = 0U; ec->tx_coalesce_usecs_irq = 0U; ec->stats_block_coalesce_usecs = 0U; } else { } return; } } static int tg3_init_one(struct pci_dev *pdev , struct pci_device_id const *ent ) { struct net_device *dev ; struct tg3 *tp ; int i ; int err ; u32 sndmbx ; u32 rcvmbx ; u32 intmbx ; char str[40U] ; u64 dma_mask ; u64 persist_dma_mask ; netdev_features_t features ; bool __print_once ; void *tmp ; bool tmp___0 ; bool tmp___1 ; bool tmp___2 ; bool tmp___3 ; bool tmp___4 ; struct lock_class_key __key ; struct lock_class_key __key___0 ; struct lock_class_key __key___1 ; atomic_long_t __constr_expr_0 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; int tmp___12 ; int tmp___13 ; int tmp___14 ; int tmp___15 ; u32 tmp___16 ; struct tg3_napi *tnapi ; int tmp___17 ; u32 tmp___18 ; u32 tmp___19 ; bool tmp___20 ; int tmp___21 ; char *tmp___22 ; struct phy_device *phydev ; char const *tmp___23 ; char *ethtype ; char *tmp___24 ; int tmp___25 ; int tmp___26 ; int tmp___27 ; int tmp___28 ; { features = 0ULL; if (! __print_once) { { __print_once = 1; printk("\016%s\n", (char *)(& version)); } } else { } { err = pci_enable_device(pdev); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "Cannot enable PCI device, aborting\n"); } return (err); } else { } { err = pci_request_regions(pdev, "tg3"); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "Cannot obtain PCI resources, aborting\n"); } goto err_out_disable_pdev; } else { } { pci_set_master(pdev); dev = ldv_alloc_etherdev_mqs_188(5056, 5U, 5U); } if ((unsigned long )dev == (unsigned long )((struct net_device *)0)) { err = -12; goto err_out_free_res; } else { } { dev->dev.parent = & pdev->dev; tmp = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp; tp->pdev = pdev; tp->dev = dev; tp->rx_mode = 0U; tp->tx_mode = 0U; tp->irq_sync = 1U; tp->pcierr_recovery = 0; } if (tg3_debug > 0) { tp->msg_enable = (u32 )tg3_debug; } else { tp->msg_enable = 255U; } { tmp___4 = pdev_is_ssb_gige_core(pdev); } if ((int )tmp___4) { { _tg3_flag_set(79, (unsigned long *)(& tp->tg3_flags)); tmp___0 = pdev_is_ssb_gige_core(pdev); } if ((int )tmp___0) { { _tg3_flag_set(80, (unsigned long *)(& tp->tg3_flags)); } } else { } { tmp___1 = pdev_is_ssb_gige_core(pdev); } if ((int )tmp___1) { { _tg3_flag_set(82, (unsigned long *)(& tp->tg3_flags)); } } else { } { tmp___2 = pdev_is_ssb_gige_core(pdev); } if ((int )tmp___2) { { _tg3_flag_set(52, (unsigned long *)(& tp->tg3_flags)); _tg3_flag_set(81, (unsigned long *)(& tp->tg3_flags)); } } else { } { tmp___3 = pdev_is_ssb_gige_core(pdev); } if ((int )tmp___3) { { _tg3_flag_set(83, (unsigned long *)(& tp->tg3_flags)); } } else { } } else { } { tp->misc_host_ctrl = 154U; tp->grc_mode = 52U; spinlock_check(& tp->lock); __raw_spin_lock_init(& tp->lock.__annonCompField18.rlock, "&(&tp->lock)->rlock", & __key); spinlock_check(& tp->indirect_lock); __raw_spin_lock_init(& tp->indirect_lock.__annonCompField18.rlock, "&(&tp->indirect_lock)->rlock", & __key___0); __init_work(& tp->reset_task, 0); __constr_expr_0.counter = 137438953408L; tp->reset_task.data = __constr_expr_0; lockdep_init_map(& tp->reset_task.lockdep_map, "(&tp->reset_task)", & __key___1, 0); INIT_LIST_HEAD(& tp->reset_task.entry); tp->reset_task.func = & tg3_reset_task; tp->regs = pci_ioremap_bar(pdev, 0); } if ((unsigned long )tp->regs == (unsigned long )((void *)0)) { { dev_err((struct device const *)(& pdev->dev), "Cannot map device registers, aborting\n"); err = -12; } goto err_out_free_dev; } else { } if ((((((((((((((unsigned int )(tp->pdev)->device - 5760U <= 1U || (unsigned int )(tp->pdev)->device == 5768U) || (unsigned int )(tp->pdev)->device == 5769U) || (unsigned int )(tp->pdev)->device == 5717U) || (unsigned int )(tp->pdev)->device == 5733U) || (unsigned int )(tp->pdev)->device == 5718U) || (unsigned int )(tp->pdev)->device == 5719U) || (unsigned int )(tp->pdev)->device == 5727U) || (unsigned int )(tp->pdev)->device == 5763U) || (unsigned int )(tp->pdev)->device == 5698U) || (unsigned int )(tp->pdev)->device == 5767U) || (unsigned int )(tp->pdev)->device == 5699U) || (unsigned int )(tp->pdev)->device == 5875U) || (unsigned int )(tp->pdev)->device == 5697U) { { _tg3_flag_set(49, (unsigned long *)(& tp->tg3_flags)); tp->aperegs = pci_ioremap_bar(pdev, 2); } if ((unsigned long )tp->aperegs == (unsigned long )((void *)0)) { { dev_err((struct device const *)(& pdev->dev), "Cannot map APE registers, aborting\n"); err = -12; } goto err_out_iounmap; } else { } } else { } { tp->rx_pending = 200U; tp->rx_jumbo_pending = 100U; dev->ethtool_ops = & tg3_ethtool_ops; dev->watchdog_timeo = 1250; dev->netdev_ops = & tg3_netdev_ops; dev->irq = (int )pdev->irq; err = tg3_get_invariants(tp, ent); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "Problem fetching invariants of chip, aborting\n"); } goto err_out_apeunmap; } else { } { tmp___6 = _tg3_flag(72, (unsigned long *)(& tp->tg3_flags)); } if (tmp___6 != 0) { dma_mask = 4294967295ULL; persist_dma_mask = dma_mask; } else { { tmp___5 = _tg3_flag(28, (unsigned long *)(& tp->tg3_flags)); } if (tmp___5 != 0) { dma_mask = 1099511627775ULL; persist_dma_mask = dma_mask; } else { dma_mask = 0xffffffffffffffffULL; persist_dma_mask = dma_mask; } } if (dma_mask > 4294967295ULL) { { err = pci_set_dma_mask(pdev, dma_mask); } if (err == 0) { { features = features | 32ULL; err = pci_set_consistent_dma_mask(pdev, persist_dma_mask); } if (err < 0) { { dev_err((struct device const *)(& pdev->dev), "Unable to obtain 64 bit DMA for consistent allocations\n"); } goto err_out_apeunmap; } else { } } else { } } else { } if (err != 0 || dma_mask == 4294967295ULL) { { err = pci_set_dma_mask(pdev, 4294967295ULL); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "No usable DMA configuration, aborting\n"); } goto err_out_apeunmap; } else { } } else { } { tg3_init_bufmgr_config(tp); } if (tp->pci_chip_rev_id != 28928U) { { features = features | 17179869187ULL; tmp___7 = _tg3_flag(75, (unsigned long *)(& tp->tg3_flags)); } if (tmp___7 != 0) { features = features | 16ULL; } else { } } else { } { tmp___8 = _tg3_flag(40, (unsigned long *)(& tp->tg3_flags)); } if (tmp___8 != 0) { goto _L; } else { { tmp___9 = _tg3_flag(41, (unsigned long *)(& tp->tg3_flags)); } if (tmp___9 != 0) { goto _L; } else { { tmp___10 = _tg3_flag(42, (unsigned long *)(& tp->tg3_flags)); } if (tmp___10 != 0) { _L: /* CIL Label */ if ((features & 2ULL) != 0ULL) { features = features | 65536ULL; } else { } } else { } } } { tmp___12 = _tg3_flag(41, (unsigned long *)(& tp->tg3_flags)); } if (tmp___12 != 0) { goto _L___0; } else { { tmp___13 = _tg3_flag(42, (unsigned long *)(& tp->tg3_flags)); } if (tmp___13 != 0) { _L___0: /* CIL Label */ if ((features & 16ULL) != 0ULL) { features = features | 1048576ULL; } else { } { tmp___11 = _tg3_flag(42, (unsigned long *)(& tp->tg3_flags)); } if ((((tmp___11 != 0 || tp->pci_chip_rev_id >> 12 == 22369U) || (tp->pci_chip_rev_id >> 12 == 22404U && tp->pci_chip_rev_id >> 8 != 358464U)) || tp->pci_chip_rev_id >> 12 == 22405U) || tp->pci_chip_rev_id >> 12 == 358272U) { features = features | 524288ULL; } else { } } else { } } dev->features = (dev->features | features) | 384ULL; dev->vlan_features = dev->vlan_features | features; if (tp->pci_chip_rev_id >> 12 != 8U) { { tmp___14 = _tg3_flag(27, (unsigned long *)(& tp->tg3_flags)); } if (tmp___14 == 0) { features = features | 68719476736ULL; } else { } } else { } dev->hw_features = dev->hw_features | features; dev->priv_flags = dev->priv_flags | 131072U; if (tp->pci_chip_rev_id == 12289U) { { tmp___15 = _tg3_flag(43, (unsigned long *)(& tp->tg3_flags)); } if (tmp___15 == 0) { { tmp___16 = (*(tp->read32))(tp, 112U); } if ((tmp___16 & 8U) == 0U) { { _tg3_flag_set(33, (unsigned long *)(& tp->tg3_flags)); tp->rx_pending = 63U; } } else { } } else { } } else { } { err = tg3_get_device_address(tp); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "Could not obtain valid ethernet address, aborting\n"); } goto err_out_apeunmap; } else { } intmbx = 516U; rcvmbx = 644U; sndmbx = 772U; i = 0; goto ldv_60515; ldv_60514: tnapi = (struct tg3_napi *)(& tp->napi) + (unsigned long )i; tnapi->tp = tp; tnapi->tx_pending = 511U; tnapi->int_mbox = intmbx; if (i <= 4) { intmbx = intmbx + 8U; } else { intmbx = intmbx + 4U; } tnapi->consmbox = rcvmbx; tnapi->prodmbox = sndmbx; if (i != 0) { tnapi->coal_now = (u32 )(8192 << (i + -1)); } else { tnapi->coal_now = 8U; } { tmp___17 = _tg3_flag(16, (unsigned long *)(& tp->tg3_flags)); } if (tmp___17 == 0) { goto ldv_60512; } else { } if (i == 0) { goto ldv_60513; } else { } rcvmbx = rcvmbx + 8U; if ((sndmbx & 4U) != 0U) { sndmbx = sndmbx - 4U; } else { sndmbx = sndmbx + 12U; } ldv_60513: i = i + 1; ldv_60515: ; if ((unsigned int )i < tp->irq_max) { goto ldv_60514; } else { } ldv_60512: { tmp___18 = (*(tp->read32))(tp, 15360U); } if ((tmp___18 & 2U) != 0U) { { tg3_full_lock(tp, 0); (*(tp->write32))(tp, 16384U, 2U); tg3_halt(tp, 0, 1); tg3_full_unlock(tp); } } else { { tmp___19 = (*(tp->read32))(tp, 19456U); } if ((tmp___19 & 2U) != 0U) { { tg3_full_lock(tp, 0); (*(tp->write32))(tp, 16384U, 2U); tg3_halt(tp, 0, 1); tg3_full_unlock(tp); } } else { } } { err = tg3_test_dma(tp); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "DMA engine test failed, aborting\n"); } goto err_out_apeunmap; } else { } { tg3_init_coal(tp); pci_set_drvdata(pdev, (void *)dev); } if ((tp->pci_chip_rev_id >> 12 == 22297U || tp->pci_chip_rev_id >> 12 == 22304U) || tp->pci_chip_rev_id >> 12 == 22370U) { { _tg3_flag_set(70, (unsigned long *)(& tp->tg3_flags)); } } else { } { tg3_timer_init(tp); tg3_carrier_off(tp); err = ldv_register_netdev_189(dev); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "Cannot register net device, aborting\n"); } goto err_out_apeunmap; } else { } { tmp___21 = _tg3_flag(70, (unsigned long *)(& tp->tg3_flags)); } if (tmp___21 != 0) { { tg3_ptp_init(tp); tp->ptp_clock = ldv_ptp_clock_register_190(& tp->ptp_info, & (tp->pdev)->dev); tmp___20 = IS_ERR((void const *)tp->ptp_clock); } if ((int )tmp___20) { tp->ptp_clock = (struct ptp_clock *)0; } else { } } else { } { tmp___22 = tg3_bus_string(tp, (char *)(& str)); netdev_info((struct net_device const *)dev, "Tigon3 [partno(%s) rev %04x] (%s) MAC address %pM\n", (char *)(& tp->board_part_number), tp->pci_chip_rev_id, tmp___22, dev->dev_addr); } if ((tp->phy_flags & 2U) != 0U) { { phydev = (tp->mdio_bus)->phy_map[(int )tp->phy_addr]; tmp___23 = dev_name((struct device const *)(& phydev->dev)); netdev_info((struct net_device const *)dev, "attached PHY driver [%s] (mii_bus:phy_addr=%s)\n", (phydev->drv)->name, tmp___23); } } else { if ((tp->phy_flags & 128U) != 0U) { ethtype = (char *)"10/100Base-TX"; } else if ((tp->phy_flags & 48U) != 0U) { ethtype = (char *)"1000Base-SX"; } else { ethtype = (char *)"10/100/1000Base-T"; } { tmp___24 = tg3_phy_string(tp); netdev_info((struct net_device const *)dev, "attached PHY is %s (%s Ethernet) (WireSpeed[%d], EEE[%d])\n", tmp___24, ethtype, (tp->phy_flags & 1024U) == 0U, (tp->phy_flags & 262144U) != 0U); } } { tmp___25 = _tg3_flag(43, (unsigned long *)(& tp->tg3_flags)); tmp___26 = _tg3_flag(4, (unsigned long *)(& tp->tg3_flags)); tmp___27 = _tg3_flag(2, (unsigned long *)(& tp->tg3_flags)); netdev_info((struct net_device const *)dev, "RXcsums[%d] LinkChgREG[%d] MIirq[%d] ASF[%d] TSOcap[%d]\n", (dev->features & 17179869184ULL) != 0ULL, tmp___27 != 0, (tp->phy_flags & 4U) != 0U, tmp___26 != 0, tmp___25 != 0); netdev_info((struct net_device const *)dev, "dma_rwctrl[%08x] dma_mask[%d-bit]\n", tp->dma_rwctrl, pdev->dma_mask != 4294967295ULL ? (pdev->dma_mask == 1099511627775ULL ? 40 : 64) : 32); pci_save_state(pdev); } return (0); err_out_apeunmap: ; if ((unsigned long )tp->aperegs != (unsigned long )((void *)0)) { { ldv_iounmap_191((void volatile *)tp->aperegs); tp->aperegs = (void *)0; } } else { } err_out_iounmap: ; if ((unsigned long )tp->regs != (unsigned long )((void *)0)) { { ldv_iounmap_192((void volatile *)tp->regs); tp->regs = (void *)0; } } else { } err_out_free_dev: { ldv_free_netdev_193(dev); } err_out_free_res: { pci_release_regions(pdev); } err_out_disable_pdev: { tmp___28 = pci_is_enabled(pdev); } if (tmp___28 != 0) { { pci_disable_device(pdev); } } else { } return (err); } } static void tg3_remove_one(struct pci_dev *pdev ) { struct net_device *dev ; void *tmp ; struct tg3 *tp ; void *tmp___0 ; int tmp___1 ; { { tmp = pci_get_drvdata(pdev); dev = (struct net_device *)tmp; } if ((unsigned long )dev != (unsigned long )((struct net_device *)0)) { { tmp___0 = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp___0; tg3_ptp_fini(tp); release_firmware(tp->fw); tg3_reset_task_cancel(tp); tmp___1 = _tg3_flag(52, (unsigned long *)(& tp->tg3_flags)); } if (tmp___1 != 0) { { tg3_phy_fini(tp); tg3_mdio_fini(tp); } } else { } { ldv_unregister_netdev_194(dev); } if ((unsigned long )tp->aperegs != (unsigned long )((void *)0)) { { ldv_iounmap_195((void volatile *)tp->aperegs); tp->aperegs = (void *)0; } } else { } if ((unsigned long )tp->regs != (unsigned long )((void *)0)) { { ldv_iounmap_196((void volatile *)tp->regs); tp->regs = (void *)0; } } else { } { ldv_free_netdev_197(dev); pci_release_regions(pdev); pci_disable_device(pdev); } } else { } return; } } static int tg3_suspend(struct device *device ) { struct pci_dev *pdev ; struct device const *__mptr ; struct net_device *dev ; void *tmp ; struct tg3 *tp ; void *tmp___0 ; int err ; bool tmp___1 ; int tmp___2 ; int err2 ; { { __mptr = (struct device const *)device; pdev = (struct pci_dev *)__mptr + 0xffffffffffffff68UL; tmp = pci_get_drvdata(pdev); dev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp___0; err = 0; ldv_rtnl_lock_198(); tmp___1 = netif_running((struct net_device const *)dev); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { goto unlock; } else { } { tg3_reset_task_cancel(tp); tg3_phy_stop(tp); tg3_netif_stop(tp); tg3_timer_stop(tp); tg3_full_lock(tp, 1); tg3_disable_ints(tp); tg3_full_unlock(tp); netif_device_detach(dev); tg3_full_lock(tp, 0); tg3_halt(tp, 0, 1); _tg3_flag_clear(32, (unsigned long *)(& tp->tg3_flags)); tg3_full_unlock(tp); err = tg3_power_down_prepare(tp); } if (err != 0) { { tg3_full_lock(tp, 0); _tg3_flag_set(32, (unsigned long *)(& tp->tg3_flags)); err2 = tg3_restart_hw(tp, 1); } if (err2 != 0) { goto out; } else { } { tg3_timer_start(tp); netif_device_attach(dev); tg3_netif_start(tp); } out: { tg3_full_unlock(tp); } if (err2 == 0) { { tg3_phy_start(tp); } } else { } } else { } unlock: { ldv_rtnl_unlock_199(); } return (err); } } static int tg3_resume(struct device *device ) { struct pci_dev *pdev ; struct device const *__mptr ; struct net_device *dev ; void *tmp ; struct tg3 *tp ; void *tmp___0 ; int err ; bool tmp___1 ; int tmp___2 ; { { __mptr = (struct device const *)device; pdev = (struct pci_dev *)__mptr + 0xffffffffffffff68UL; tmp = pci_get_drvdata(pdev); dev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp___0; err = 0; ldv_rtnl_lock_200(); tmp___1 = netif_running((struct net_device const *)dev); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { goto unlock; } else { } { netif_device_attach(dev); tg3_full_lock(tp, 0); tg3_ape_driver_state_change(tp, 1); _tg3_flag_set(32, (unsigned long *)(& tp->tg3_flags)); err = tg3_restart_hw(tp, (tp->phy_flags & 1048576U) == 0U); } if (err != 0) { goto out; } else { } { tg3_timer_start(tp); tg3_netif_start(tp); } out: { tg3_full_unlock(tp); } if (err == 0) { { tg3_phy_start(tp); } } else { } unlock: { ldv_rtnl_unlock_201(); } return (err); } } static struct dev_pm_ops const tg3_pm_ops = {0, 0, & tg3_suspend, & tg3_resume, & tg3_suspend, & tg3_resume, & tg3_suspend, & tg3_resume, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static void tg3_shutdown(struct pci_dev *pdev ) { struct net_device *dev ; void *tmp ; struct tg3 *tp ; void *tmp___0 ; bool tmp___1 ; { { tmp = pci_get_drvdata(pdev); dev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)dev); tp = (struct tg3 *)tmp___0; ldv_rtnl_lock_202(); netif_device_detach(dev); tmp___1 = netif_running((struct net_device const *)dev); } if ((int )tmp___1) { { dev_close(dev); } } else { } if ((unsigned int )system_state == 3U) { { tg3_power_down(tp); } } else { } { ldv_rtnl_unlock_203(); } return; } } static pci_ers_result_t tg3_io_error_detected(struct pci_dev *pdev , pci_channel_state_t state ) { struct net_device *netdev ; void *tmp ; struct tg3 *tp ; void *tmp___0 ; pci_ers_result_t err ; bool tmp___1 ; int tmp___2 ; { { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); tp = (struct tg3 *)tmp___0; err = 3U; netdev_info((struct net_device const *)netdev, "PCI I/O error detected\n"); ldv_rtnl_lock_204(); tp->pcierr_recovery = 1; } if ((unsigned long )netdev == (unsigned long )((struct net_device *)0)) { goto done; } else { { tmp___1 = netif_running((struct net_device const *)netdev); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { goto done; } else { } } { tg3_phy_stop(tp); tg3_netif_stop(tp); tg3_timer_stop(tp); tg3_reset_task_cancel(tp); netif_device_detach(netdev); tg3_full_lock(tp, 0); tg3_halt(tp, 0, 0); tg3_full_unlock(tp); } done: ; if (state == 3U) { if ((unsigned long )netdev != (unsigned long )((struct net_device *)0)) { { tg3_napi_enable(tp); dev_close(netdev); } } else { } err = 4U; } else { { pci_disable_device(pdev); } } { ldv_rtnl_unlock_205(); } return (err); } } static pci_ers_result_t tg3_io_slot_reset(struct pci_dev *pdev ) { struct net_device *netdev ; void *tmp ; struct tg3 *tp ; void *tmp___0 ; pci_ers_result_t rc ; int err ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; bool tmp___4 ; { { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); tp = (struct tg3 *)tmp___0; rc = 4U; ldv_rtnl_lock_206(); tmp___1 = pci_enable_device(pdev); } if (tmp___1 != 0) { { dev_err((struct device const *)(& pdev->dev), "Cannot re-enable PCI device after reset.\n"); } goto done; } else { } { pci_set_master(pdev); pci_restore_state(pdev); pci_save_state(pdev); } if ((unsigned long )netdev == (unsigned long )((struct net_device *)0)) { rc = 5U; goto done; } else { { tmp___2 = netif_running((struct net_device const *)netdev); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { rc = 5U; goto done; } else { } } { err = tg3_power_up(tp); } if (err != 0) { goto done; } else { } rc = 5U; done: ; if (rc != 5U && (unsigned long )netdev != (unsigned long )((struct net_device *)0)) { { tmp___4 = netif_running((struct net_device const *)netdev); } if ((int )tmp___4) { { tg3_napi_enable(tp); dev_close(netdev); } } else { } } else { } { ldv_rtnl_unlock_207(); } return (rc); } } static void tg3_io_resume(struct pci_dev *pdev ) { struct net_device *netdev ; void *tmp ; struct tg3 *tp ; void *tmp___0 ; int err ; bool tmp___1 ; int tmp___2 ; { { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); tp = (struct tg3 *)tmp___0; ldv_rtnl_lock_208(); tmp___1 = netif_running((struct net_device const *)netdev); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { goto done; } else { } { tg3_full_lock(tp, 0); tg3_ape_driver_state_change(tp, 1); _tg3_flag_set(32, (unsigned long *)(& tp->tg3_flags)); err = tg3_restart_hw(tp, 1); } if (err != 0) { { tg3_full_unlock(tp); netdev_err((struct net_device const *)netdev, "Cannot restart hardware after reset.\n"); } goto done; } else { } { netif_device_attach(netdev); tg3_timer_start(tp); tg3_netif_start(tp); tg3_full_unlock(tp); tg3_phy_start(tp); } done: { tp->pcierr_recovery = 0; ldv_rtnl_unlock_209(); } return; } } static struct pci_error_handlers const tg3_err_handler = {(pci_ers_result_t (*)(struct pci_dev * , enum pci_channel_state ))(& tg3_io_error_detected), 0, 0, & tg3_io_slot_reset, 0, & tg3_io_resume}; static struct pci_driver tg3_driver = {{0, 0}, "tg3", (struct pci_device_id const *)(& tg3_pci_tbl), & tg3_init_one, & tg3_remove_one, 0, 0, 0, 0, & tg3_shutdown, 0, & tg3_err_handler, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, & tg3_pm_ops, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int tg3_driver_init(void) { int tmp ; { { tmp = ldv___pci_register_driver_210(& tg3_driver, & __this_module, "tg3"); } return (tmp); } } static void tg3_driver_exit(void) { { { ldv_pci_unregister_driver_211(& tg3_driver); } return; } } void ldv_EMGentry_exit_tg3_driver_exit_19_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_tg3_driver_init_19_14(int (*arg0)(void) ) ; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) ; struct net_device *ldv_alloc_etherdev_mqs(struct net_device *arg0 , int arg1 , unsigned int arg2 , unsigned int arg3 ) ; int ldv_del_timer_sync(int arg0 , struct timer_list *arg1 ) ; void ldv_dispatch_deregister_15_1(struct net_device *arg0 ) ; void ldv_dispatch_deregister_16_1(struct pci_driver *arg0 ) ; void ldv_dispatch_deregister_dummy_factory_19_19_4(void) ; void ldv_dispatch_deregister_dummy_resourceless_instance_15_19_5(void) ; void ldv_dispatch_deregister_dummy_resourceless_instance_17_19_6(void) ; void ldv_dispatch_deregister_platform_instance_14_19_7(void) ; void ldv_dispatch_instance_deregister_10_1(struct timer_list *arg0 ) ; void ldv_dispatch_instance_register_8_3(struct timer_list *arg0 ) ; void ldv_dispatch_irq_deregister_11_1(int arg0 ) ; void ldv_dispatch_irq_register_14_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_pm_deregister_4_5(void) ; void ldv_dispatch_pm_register_4_6(void) ; void ldv_dispatch_register_13_4(struct net_device *arg0 ) ; void ldv_dispatch_register_17_2(struct pci_driver *arg0 ) ; void ldv_dispatch_register_18_1(struct ptp_clock_info *arg0 ) ; void ldv_dispatch_register_dummy_factory_19_19_8(void) ; void ldv_dispatch_register_dummy_resourceless_instance_17_19_9(void) ; void ldv_dispatch_register_platform_instance_14_19_10(void) ; void ldv_dummy_resourceless_instance_callback_1_10(int (*arg0)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) , struct net_device *arg1 , struct ethtool_eeprom *arg2 , unsigned char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_13(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_14(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_17(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_18(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_19(void (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_20(void (*arg0)(struct net_device * , struct ethtool_regs * , void * ) , struct net_device *arg1 , struct ethtool_regs *arg2 , void *arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_21(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_22(void (*arg0)(struct net_device * , struct ethtool_ringparam * ) , struct net_device *arg1 , struct ethtool_ringparam *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_23(int (*arg0)(struct net_device * , unsigned int * , unsigned char * , unsigned char * ) , struct net_device *arg1 , unsigned int *arg2 , unsigned char *arg3 , unsigned char *arg4 ) ; void ldv_dummy_resourceless_instance_callback_1_26(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_27(int (*arg0)(struct net_device * , struct ethtool_rxnfc * , unsigned int * ) , struct net_device *arg1 , struct ethtool_rxnfc *arg2 , unsigned int *arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_3(void (*arg0)(struct net_device * , struct ethtool_channels * ) , struct net_device *arg1 , struct ethtool_channels *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_30(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_31(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_34(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_37(int (*arg0)(struct net_device * , struct ethtool_ts_info * ) , struct net_device *arg1 , struct ethtool_ts_info *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_38(void (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_39(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_42(int (*arg0)(struct net_device * , struct ifreq * , int ) , struct net_device *arg1 , struct ifreq *arg2 , int arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_45(unsigned long long (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_48(struct rtnl_link_stats64 *(*arg0)(struct net_device * , struct rtnl_link_stats64 * ) , struct net_device *arg1 , struct rtnl_link_stats64 *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_49(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_50(int (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_53(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_54(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_55(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_56(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_57(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_58(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_59(void (*arg0)(struct net_device * , struct ethtool_test * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_test *arg2 , unsigned long long *arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_62(int (*arg0)(struct net_device * , struct ethtool_channels * ) , struct net_device *arg1 , struct ethtool_channels *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_63(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_64(int (*arg0)(struct net_device * , struct ethtool_eee * ) , struct net_device *arg1 , struct ethtool_eee *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_65(int (*arg0)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) , struct net_device *arg1 , struct ethtool_eeprom *arg2 , unsigned char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_68(void (*arg0)(struct net_device * , unsigned int ) , struct net_device *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_7(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_71(int (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_72(int (*arg0)(struct net_device * , enum ethtool_phys_id_state ) , struct net_device *arg1 , enum ethtool_phys_id_state arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_73(int (*arg0)(struct net_device * , struct ethtool_ringparam * ) , struct net_device *arg1 , struct ethtool_ringparam *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_74(int (*arg0)(struct net_device * , unsigned int * , unsigned char * , unsigned char ) , struct net_device *arg1 , unsigned int *arg2 , unsigned char *arg3 , unsigned char arg4 ) ; void ldv_dummy_resourceless_instance_callback_1_77(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_78(int (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_79(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_8(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_9(int (*arg0)(struct net_device * , struct ethtool_eee * ) , struct net_device *arg1 , struct ethtool_eee *arg2 ) ; void ldv_dummy_resourceless_instance_callback_5_12(int (*arg0)(struct ptp_clock_info * , struct ptp_clock_request * , int ) , struct ptp_clock_info *arg1 , struct ptp_clock_request *arg2 , int arg3 ) ; void ldv_dummy_resourceless_instance_callback_5_15(int (*arg0)(struct ptp_clock_info * , struct timespec * ) , struct ptp_clock_info *arg1 , struct timespec *arg2 ) ; void ldv_dummy_resourceless_instance_callback_5_16(int (*arg0)(struct ptp_clock_info * , struct timespec * ) , struct ptp_clock_info *arg1 , struct timespec *arg2 ) ; void ldv_dummy_resourceless_instance_callback_5_3(int (*arg0)(struct ptp_clock_info * , int ) , struct ptp_clock_info *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_5_9(int (*arg0)(struct ptp_clock_info * , long long ) , struct ptp_clock_info *arg1 , long long arg2 ) ; void ldv_dummy_resourceless_instance_callback_6_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_6_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_entry_EMGentry_19(void *arg0 ) ; int main(void) ; void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) ; void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) ; enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_interrupt_instance_0(void *arg0 ) ; void ldv_net_dummy_resourceless_instance_1(void *arg0 ) ; void ldv_pci_instance_callback_2_10(unsigned int (*arg0)(struct pci_dev * , enum pci_channel_state ) , struct pci_dev *arg1 , enum pci_channel_state arg2 ) ; void ldv_pci_instance_callback_2_23(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_callback_2_24(unsigned int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_probe_2_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_2_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_2_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_2_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_2_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_2_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_2_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_2(void *arg0 ) ; void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) ; int ldv_platform_instance_probe_4_14(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) ; void ldv_platform_instance_release_4_3(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) ; void ldv_pm_ops_instance_complete_3_3(void (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_3_15(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_late_3_14(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_noirq_3_12(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_3_9(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_late_3_8(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_noirq_3_6(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_prepare_3_22(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_3_4(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_early_3_7(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_noirq_3_5(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_3_16(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_early_3_17(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_noirq_3_19(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_idle_3_27(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_resume_3_24(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_suspend_3_25(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_3_21(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_late_3_18(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_noirq_3_20(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_3_10(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_early_3_13(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_noirq_3_11(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_platform_instance_4(void *arg0 ) ; void ldv_pm_pm_ops_instance_3(void *arg0 ) ; struct ptp_clock *ldv_ptp_clock_register(struct ptp_clock *arg0 , struct ptp_clock_info *arg1 , struct device *arg2 ) ; int ldv_register_netdev(int arg0 , struct net_device *arg1 ) ; int ldv_register_netdev_open_13_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) ; void ldv_struct_ptp_clock_info_dummy_resourceless_instance_5(void *arg0 ) ; void ldv_struct_sensor_device_attribute_dummy_resourceless_instance_6(void *arg0 ) ; void ldv_timer_dummy_factory_8(void *arg0 ) ; void ldv_timer_instance_callback_7_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) ; void ldv_timer_timer_instance_7(void *arg0 ) ; void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) ; void ldv_unregister_netdev_stop_15_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; struct ldv_thread ldv_thread_0 ; struct ldv_thread ldv_thread_1 ; struct ldv_thread ldv_thread_19 ; struct ldv_thread ldv_thread_2 ; struct ldv_thread ldv_thread_3 ; struct ldv_thread ldv_thread_4 ; struct ldv_thread ldv_thread_5 ; struct ldv_thread ldv_thread_6 ; struct ldv_thread ldv_thread_7 ; struct ldv_thread ldv_thread_8 ; void ldv_EMGentry_exit_tg3_driver_exit_19_2(void (*arg0)(void) ) { { { tg3_driver_exit(); } return; } } int ldv_EMGentry_init_tg3_driver_init_19_14(int (*arg0)(void) ) { int tmp ; { { tmp = tg3_driver_init(); } return (tmp); } } int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) { struct pci_driver *ldv_17_pci_driver_pci_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_17_pci_driver_pci_driver = arg1; ldv_dispatch_register_17_2(ldv_17_pci_driver_pci_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } struct net_device *ldv_alloc_etherdev_mqs(struct net_device *arg0 , int arg1 , unsigned int arg2 , unsigned int arg3 ) { struct net_device *ldv_9_netdev_net_device ; void *tmp ; int tmp___0 ; { { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { tmp = ldv_xmalloc(3264UL); ldv_9_netdev_net_device = (struct net_device *)tmp; } return (ldv_9_netdev_net_device); return (arg0); } else { return ((struct net_device *)0); return (arg0); } return (arg0); } } int ldv_del_timer_sync(int arg0 , struct timer_list *arg1 ) { struct timer_list *ldv_10_timer_list_timer_list ; { { ldv_10_timer_list_timer_list = arg1; ldv_dispatch_instance_deregister_10_1(ldv_10_timer_list_timer_list); } return (arg0); return (arg0); } } void ldv_dispatch_deregister_15_1(struct net_device *arg0 ) { { return; } } void ldv_dispatch_deregister_16_1(struct pci_driver *arg0 ) { { return; } } void ldv_dispatch_deregister_dummy_factory_19_19_4(void) { { return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_15_19_5(void) { { return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_17_19_6(void) { { return; } } void ldv_dispatch_deregister_platform_instance_14_19_7(void) { { return; } } void ldv_dispatch_instance_deregister_10_1(struct timer_list *arg0 ) { { return; } } void ldv_dispatch_instance_register_8_3(struct timer_list *arg0 ) { struct ldv_struct_timer_instance_7 *cf_arg_7 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_7 = (struct ldv_struct_timer_instance_7 *)tmp; cf_arg_7->arg0 = arg0; ldv_timer_timer_instance_7((void *)cf_arg_7); } return; } } void ldv_dispatch_irq_deregister_11_1(int arg0 ) { { return; } } void ldv_dispatch_irq_register_14_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { struct ldv_struct_interrupt_instance_0 *cf_arg_0 ; void *tmp ; { { tmp = ldv_xmalloc(40UL); cf_arg_0 = (struct ldv_struct_interrupt_instance_0 *)tmp; cf_arg_0->arg0 = arg0; cf_arg_0->arg1 = arg1; cf_arg_0->arg2 = arg2; cf_arg_0->arg3 = arg3; ldv_interrupt_interrupt_instance_0((void *)cf_arg_0); } return; } } void ldv_dispatch_pm_deregister_4_5(void) { { return; } } void ldv_dispatch_pm_register_4_6(void) { struct ldv_struct_platform_instance_4 *cf_arg_3 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_3 = (struct ldv_struct_platform_instance_4 *)tmp; ldv_pm_pm_ops_instance_3((void *)cf_arg_3); } return; } } void ldv_dispatch_register_13_4(struct net_device *arg0 ) { struct ldv_struct_dummy_resourceless_instance_1 *cf_arg_1 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_1 = (struct ldv_struct_dummy_resourceless_instance_1 *)tmp; cf_arg_1->arg0 = arg0; ldv_net_dummy_resourceless_instance_1((void *)cf_arg_1); } return; } } void ldv_dispatch_register_17_2(struct pci_driver *arg0 ) { struct ldv_struct_pci_instance_2 *cf_arg_2 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_2 = (struct ldv_struct_pci_instance_2 *)tmp; cf_arg_2->arg0 = arg0; ldv_pci_pci_instance_2((void *)cf_arg_2); } return; } } void ldv_dispatch_register_18_1(struct ptp_clock_info *arg0 ) { struct ldv_struct_dummy_resourceless_instance_5 *cf_arg_5 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_5 = (struct ldv_struct_dummy_resourceless_instance_5 *)tmp; cf_arg_5->arg0 = arg0; ldv_struct_ptp_clock_info_dummy_resourceless_instance_5((void *)cf_arg_5); } return; } } void ldv_dispatch_register_dummy_factory_19_19_8(void) { struct ldv_struct_platform_instance_4 *cf_arg_8 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_8 = (struct ldv_struct_platform_instance_4 *)tmp; ldv_timer_dummy_factory_8((void *)cf_arg_8); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_17_19_9(void) { struct ldv_struct_platform_instance_4 *cf_arg_6 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_6 = (struct ldv_struct_platform_instance_4 *)tmp; ldv_struct_sensor_device_attribute_dummy_resourceless_instance_6((void *)cf_arg_6); } return; } } void ldv_dispatch_register_platform_instance_14_19_10(void) { struct ldv_struct_platform_instance_4 *cf_arg_4 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_4 = (struct ldv_struct_platform_instance_4 *)tmp; ldv_pm_platform_instance_4((void *)cf_arg_4); } return; } } void ldv_dummy_resourceless_instance_callback_1_10(int (*arg0)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) , struct net_device *arg1 , struct ethtool_eeprom *arg2 , unsigned char *arg3 ) { { { tg3_get_eeprom(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_13(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { tg3_get_eeprom_len(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_14(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) { { { tg3_get_ethtool_stats(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_17(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { ethtool_op_get_link(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_18(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { tg3_get_msglevel(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_19(void (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) { { { tg3_get_pauseparam(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_20(void (*arg0)(struct net_device * , struct ethtool_regs * , void * ) , struct net_device *arg1 , struct ethtool_regs *arg2 , void *arg3 ) { { { tg3_get_regs(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_21(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { tg3_get_regs_len(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_22(void (*arg0)(struct net_device * , struct ethtool_ringparam * ) , struct net_device *arg1 , struct ethtool_ringparam *arg2 ) { { { tg3_get_ringparam(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_23(int (*arg0)(struct net_device * , unsigned int * , unsigned char * , unsigned char * ) , struct net_device *arg1 , unsigned int *arg2 , unsigned char *arg3 , unsigned char *arg4 ) { { { tg3_get_rxfh(arg1, arg2, arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_1_26(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { tg3_get_rxfh_indir_size(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_27(int (*arg0)(struct net_device * , struct ethtool_rxnfc * , unsigned int * ) , struct net_device *arg1 , struct ethtool_rxnfc *arg2 , unsigned int *arg3 ) { { { tg3_get_rxnfc(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_3(void (*arg0)(struct net_device * , struct ethtool_channels * ) , struct net_device *arg1 , struct ethtool_channels *arg2 ) { { { tg3_get_channels(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_30(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) { { { tg3_get_settings(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_31(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { tg3_get_sset_count(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_34(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) { { { tg3_get_strings(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_37(int (*arg0)(struct net_device * , struct ethtool_ts_info * ) , struct net_device *arg1 , struct ethtool_ts_info *arg2 ) { { { tg3_get_ts_info(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_38(void (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) { { { tg3_get_wol(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_39(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { tg3_change_mtu(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_42(int (*arg0)(struct net_device * , struct ifreq * , int ) , struct net_device *arg1 , struct ifreq *arg2 , int arg3 ) { { { tg3_ioctl(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_45(unsigned long long (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) { { { tg3_fix_features(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_48(struct rtnl_link_stats64 *(*arg0)(struct net_device * , struct rtnl_link_stats64 * ) , struct net_device *arg1 , struct rtnl_link_stats64 *arg2 ) { { { tg3_get_stats64(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_49(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { tg3_adjust_link(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_50(int (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) { { { tg3_set_features(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_53(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) { { { tg3_set_mac_addr(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_54(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { tg3_set_rx_mode(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_55(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) { { { tg3_start_xmit(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_56(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { tg3_tx_timeout(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_57(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { eth_validate_addr(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_58(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { tg3_nway_reset(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_59(void (*arg0)(struct net_device * , struct ethtool_test * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_test *arg2 , unsigned long long *arg3 ) { { { tg3_self_test(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_62(int (*arg0)(struct net_device * , struct ethtool_channels * ) , struct net_device *arg1 , struct ethtool_channels *arg2 ) { { { tg3_set_channels(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_63(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) { { { tg3_set_coalesce(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_64(int (*arg0)(struct net_device * , struct ethtool_eee * ) , struct net_device *arg1 , struct ethtool_eee *arg2 ) { { { tg3_set_eee(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_65(int (*arg0)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) , struct net_device *arg1 , struct ethtool_eeprom *arg2 , unsigned char *arg3 ) { { { tg3_set_eeprom(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_68(void (*arg0)(struct net_device * , unsigned int ) , struct net_device *arg1 , unsigned int arg2 ) { { { tg3_set_msglevel(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_7(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) { { { tg3_get_coalesce(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_71(int (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) { { { tg3_set_pauseparam(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_72(int (*arg0)(struct net_device * , enum ethtool_phys_id_state ) , struct net_device *arg1 , enum ethtool_phys_id_state arg2 ) { { { tg3_set_phys_id(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_73(int (*arg0)(struct net_device * , struct ethtool_ringparam * ) , struct net_device *arg1 , struct ethtool_ringparam *arg2 ) { { { tg3_set_ringparam(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_74(int (*arg0)(struct net_device * , unsigned int * , unsigned char * , unsigned char ) , struct net_device *arg1 , unsigned int *arg2 , unsigned char *arg3 , unsigned char arg4 ) { { { tg3_set_rxfh(arg1, (u32 const *)arg2, (u8 const *)arg3, (int )arg4); } return; } } void ldv_dummy_resourceless_instance_callback_1_77(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) { { { tg3_set_settings(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_78(int (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) { { { tg3_set_wol(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_79(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { tg3_adjust_link(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_8(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) { { { tg3_get_drvinfo(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_9(int (*arg0)(struct net_device * , struct ethtool_eee * ) , struct net_device *arg1 , struct ethtool_eee *arg2 ) { { { tg3_get_eee(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_5_12(int (*arg0)(struct ptp_clock_info * , struct ptp_clock_request * , int ) , struct ptp_clock_info *arg1 , struct ptp_clock_request *arg2 , int arg3 ) { { { tg3_ptp_enable(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_5_15(int (*arg0)(struct ptp_clock_info * , struct timespec * ) , struct ptp_clock_info *arg1 , struct timespec *arg2 ) { { { tg3_ptp_gettime(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_5_16(int (*arg0)(struct ptp_clock_info * , struct timespec * ) , struct ptp_clock_info *arg1 , struct timespec *arg2 ) { { { tg3_ptp_settime(arg1, (struct timespec const *)arg2); } return; } } void ldv_dummy_resourceless_instance_callback_5_3(int (*arg0)(struct ptp_clock_info * , int ) , struct ptp_clock_info *arg1 , int arg2 ) { { { tg3_ptp_adjfreq(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_5_9(int (*arg0)(struct ptp_clock_info * , long long ) , struct ptp_clock_info *arg1 , long long arg2 ) { { { tg3_ptp_adjtime(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_6_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { tg3_show_temp(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_6_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { (*arg0)(arg1, arg2, arg3, arg4); } return; } } void ldv_entry_EMGentry_19(void *arg0 ) { void (*ldv_19_exit_tg3_driver_exit_default)(void) ; int (*ldv_19_init_tg3_driver_init_default)(void) ; int ldv_19_ret_default ; int tmp ; int tmp___0 ; { { ldv_19_ret_default = ldv_EMGentry_init_tg3_driver_init_19_14(ldv_19_init_tg3_driver_init_default); ldv_19_ret_default = ldv_ldv_post_init_212(ldv_19_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_19_ret_default != 0); ldv_ldv_check_final_state_213(); ldv_stop(); } return; } else { { ldv_assume(ldv_19_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dispatch_register_platform_instance_14_19_10(); ldv_dispatch_register_dummy_resourceless_instance_17_19_9(); ldv_dispatch_register_dummy_factory_19_19_8(); ldv_dispatch_deregister_platform_instance_14_19_7(); ldv_dispatch_deregister_dummy_resourceless_instance_17_19_6(); ldv_dispatch_deregister_dummy_resourceless_instance_15_19_5(); ldv_dispatch_deregister_dummy_factory_19_19_4(); } } else { } { ldv_EMGentry_exit_tg3_driver_exit_19_2(ldv_19_exit_tg3_driver_exit_default); ldv_ldv_check_final_state_214(); ldv_stop(); } return; } return; } } int main(void) { { { ldv_ldv_initialize_215(); ldv_entry_EMGentry_19((void *)0); } return 0; } } void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) { int ldv_11_line_line ; { { ldv_11_line_line = arg1; ldv_dispatch_irq_deregister_11_1(ldv_11_line_line); } return; return; } } void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_12_netdev_net_device ; { { ldv_12_netdev_net_device = arg1; ldv_free((void *)ldv_12_netdev_net_device); } return; return; } } enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = tg3_test_isr(arg1, arg2); } return (tmp); } } void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_interrupt_instance_0(void *arg0 ) { enum irqreturn (*ldv_0_callback_handler)(int , void * ) ; void *ldv_0_data_data ; int ldv_0_line_line ; enum irqreturn ldv_0_ret_val_default ; enum irqreturn (*ldv_0_thread_thread)(int , void * ) ; struct ldv_struct_interrupt_instance_0 *data ; int tmp ; { data = (struct ldv_struct_interrupt_instance_0 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_interrupt_instance_0 *)0)) { { ldv_0_line_line = data->arg0; ldv_0_callback_handler = data->arg1; ldv_0_thread_thread = data->arg2; ldv_0_data_data = data->arg3; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); ldv_0_ret_val_default = ldv_interrupt_instance_handler_0_5(ldv_0_callback_handler, ldv_0_line_line, ldv_0_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume((unsigned int )ldv_0_ret_val_default == 2U); } if ((unsigned long )ldv_0_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_0_3(ldv_0_thread_thread, ldv_0_line_line, ldv_0_data_data); } } else { } } else { { ldv_assume((unsigned int )ldv_0_ret_val_default != 2U); } } return; return; } } void ldv_net_dummy_resourceless_instance_1(void *arg0 ) { void (*ldv_1_callback_get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*ldv_1_callback_get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*ldv_1_callback_get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*ldv_1_callback_get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*ldv_1_callback_get_eeprom)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) ; int (*ldv_1_callback_get_eeprom_len)(struct net_device * ) ; void (*ldv_1_callback_get_ethtool_stats)(struct net_device * , struct ethtool_stats * , unsigned long long * ) ; unsigned int (*ldv_1_callback_get_link)(struct net_device * ) ; unsigned int (*ldv_1_callback_get_msglevel)(struct net_device * ) ; void (*ldv_1_callback_get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*ldv_1_callback_get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; int (*ldv_1_callback_get_regs_len)(struct net_device * ) ; void (*ldv_1_callback_get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*ldv_1_callback_get_rxfh)(struct net_device * , unsigned int * , unsigned char * , unsigned char * ) ; unsigned int (*ldv_1_callback_get_rxfh_indir_size)(struct net_device * ) ; int (*ldv_1_callback_get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , unsigned int * ) ; int (*ldv_1_callback_get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*ldv_1_callback_get_sset_count)(struct net_device * , int ) ; void (*ldv_1_callback_get_strings)(struct net_device * , unsigned int , unsigned char * ) ; int (*ldv_1_callback_get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; void (*ldv_1_callback_get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*ldv_1_callback_ndo_change_mtu)(struct net_device * , int ) ; int (*ldv_1_callback_ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; unsigned long long (*ldv_1_callback_ndo_fix_features)(struct net_device * , unsigned long long ) ; struct rtnl_link_stats64 *(*ldv_1_callback_ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; void (*ldv_1_callback_ndo_poll_controller)(struct net_device * ) ; int (*ldv_1_callback_ndo_set_features)(struct net_device * , unsigned long long ) ; int (*ldv_1_callback_ndo_set_mac_address)(struct net_device * , void * ) ; void (*ldv_1_callback_ndo_set_rx_mode)(struct net_device * ) ; enum netdev_tx (*ldv_1_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; void (*ldv_1_callback_ndo_tx_timeout)(struct net_device * ) ; int (*ldv_1_callback_ndo_validate_addr)(struct net_device * ) ; int (*ldv_1_callback_nway_reset)(struct net_device * ) ; void (*ldv_1_callback_self_test)(struct net_device * , struct ethtool_test * , unsigned long long * ) ; int (*ldv_1_callback_set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*ldv_1_callback_set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*ldv_1_callback_set_eee)(struct net_device * , struct ethtool_eee * ) ; int (*ldv_1_callback_set_eeprom)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) ; void (*ldv_1_callback_set_msglevel)(struct net_device * , unsigned int ) ; int (*ldv_1_callback_set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*ldv_1_callback_set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; int (*ldv_1_callback_set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*ldv_1_callback_set_rxfh)(struct net_device * , unsigned int * , unsigned char * , unsigned char ) ; int (*ldv_1_callback_set_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*ldv_1_callback_set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; void (*ldv_1_callback_setup)(struct net_device * ) ; enum ethtool_phys_id_state ldv_1_container_enum_ethtool_phys_id_state ; struct net_device *ldv_1_container_net_device ; struct ethtool_channels *ldv_1_container_struct_ethtool_channels_ptr ; struct ethtool_cmd *ldv_1_container_struct_ethtool_cmd_ptr ; struct ethtool_coalesce *ldv_1_container_struct_ethtool_coalesce_ptr ; struct ethtool_drvinfo *ldv_1_container_struct_ethtool_drvinfo_ptr ; struct ethtool_eee *ldv_1_container_struct_ethtool_eee_ptr ; struct ethtool_eeprom *ldv_1_container_struct_ethtool_eeprom_ptr ; struct ethtool_pauseparam *ldv_1_container_struct_ethtool_pauseparam_ptr ; struct ethtool_regs *ldv_1_container_struct_ethtool_regs_ptr ; struct ethtool_ringparam *ldv_1_container_struct_ethtool_ringparam_ptr ; struct ethtool_rxnfc *ldv_1_container_struct_ethtool_rxnfc_ptr ; struct ethtool_stats *ldv_1_container_struct_ethtool_stats_ptr ; struct ethtool_test *ldv_1_container_struct_ethtool_test_ptr ; struct ethtool_ts_info *ldv_1_container_struct_ethtool_ts_info_ptr ; struct ethtool_wolinfo *ldv_1_container_struct_ethtool_wolinfo_ptr ; struct ifreq *ldv_1_container_struct_ifreq_ptr ; struct rtnl_link_stats64 *ldv_1_container_struct_rtnl_link_stats64_ptr ; struct sk_buff *ldv_1_container_struct_sk_buff_ptr ; unsigned char *ldv_1_ldv_param_10_2_default ; unsigned long long *ldv_1_ldv_param_14_2_default ; unsigned int *ldv_1_ldv_param_23_1_default ; unsigned char *ldv_1_ldv_param_23_2_default ; unsigned char *ldv_1_ldv_param_23_3_default ; unsigned int *ldv_1_ldv_param_27_2_default ; int ldv_1_ldv_param_31_1_default ; unsigned int ldv_1_ldv_param_34_1_default ; unsigned char *ldv_1_ldv_param_34_2_default ; int ldv_1_ldv_param_39_1_default ; int ldv_1_ldv_param_42_2_default ; unsigned long long ldv_1_ldv_param_45_1_default ; unsigned long long ldv_1_ldv_param_50_1_default ; unsigned long long *ldv_1_ldv_param_59_2_default ; unsigned char *ldv_1_ldv_param_65_2_default ; unsigned int ldv_1_ldv_param_68_1_default ; unsigned int *ldv_1_ldv_param_74_1_default ; unsigned char *ldv_1_ldv_param_74_2_default ; unsigned char ldv_1_ldv_param_74_3_default ; struct ldv_struct_dummy_resourceless_instance_1 *data ; int tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; void *tmp___8 ; void *tmp___9 ; void *tmp___10 ; { data = (struct ldv_struct_dummy_resourceless_instance_1 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_dummy_resourceless_instance_1 *)0)) { { ldv_1_container_net_device = data->arg0; ldv_free((void *)data); } } else { } goto ldv_call_1; return; ldv_call_1: { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } if (tmp == 9) { goto case_9; } else { } if (tmp == 10) { goto case_10; } else { } if (tmp == 11) { goto case_11; } else { } if (tmp == 12) { goto case_12; } else { } if (tmp == 13) { goto case_13; } else { } if (tmp == 14) { goto case_14; } else { } if (tmp == 15) { goto case_15; } else { } if (tmp == 16) { goto case_16; } else { } if (tmp == 17) { goto case_17; } else { } if (tmp == 18) { goto case_18; } else { } if (tmp == 19) { goto case_19; } else { } if (tmp == 20) { goto case_20; } else { } if (tmp == 21) { goto case_21; } else { } if (tmp == 22) { goto case_22; } else { } if (tmp == 23) { goto case_23; } else { } if (tmp == 24) { goto case_24; } else { } if (tmp == 25) { goto case_25; } else { } if (tmp == 26) { goto case_26; } else { } if (tmp == 27) { goto case_27; } else { } if (tmp == 28) { goto case_28; } else { } if (tmp == 29) { goto case_29; } else { } if (tmp == 30) { goto case_30; } else { } if (tmp == 31) { goto case_31; } else { } if (tmp == 32) { goto case_32; } else { } if (tmp == 33) { goto case_33; } else { } if (tmp == 34) { goto case_34; } else { } if (tmp == 35) { goto case_35; } else { } if (tmp == 36) { goto case_36; } else { } if (tmp == 37) { goto case_37; } else { } if (tmp == 38) { goto case_38; } else { } if (tmp == 39) { goto case_39; } else { } if (tmp == 40) { goto case_40; } else { } if (tmp == 41) { goto case_41; } else { } if (tmp == 42) { goto case_42; } else { } if (tmp == 43) { goto case_43; } else { } if (tmp == 44) { goto case_44; } else { } if (tmp == 45) { goto case_45; } else { } if (tmp == 46) { goto case_46; } else { } if (tmp == 47) { goto case_47; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_79(ldv_1_callback_setup, ldv_1_container_net_device); } goto ldv_call_1; case_2: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_78(ldv_1_callback_set_wol, ldv_1_container_net_device, ldv_1_container_struct_ethtool_wolinfo_ptr); } goto ldv_call_1; goto ldv_call_1; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_77(ldv_1_callback_set_settings, ldv_1_container_net_device, ldv_1_container_struct_ethtool_cmd_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_4: /* CIL Label */ { tmp___0 = ldv_xmalloc(4UL); ldv_1_ldv_param_74_1_default = (unsigned int *)tmp___0; tmp___1 = ldv_xmalloc(1UL); ldv_1_ldv_param_74_2_default = (unsigned char *)tmp___1; ldv_dummy_resourceless_instance_callback_1_74(ldv_1_callback_set_rxfh, ldv_1_container_net_device, ldv_1_ldv_param_74_1_default, ldv_1_ldv_param_74_2_default, (int )ldv_1_ldv_param_74_3_default); ldv_free((void *)ldv_1_ldv_param_74_1_default); ldv_free((void *)ldv_1_ldv_param_74_2_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_5: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_73(ldv_1_callback_set_ringparam, ldv_1_container_net_device, ldv_1_container_struct_ethtool_ringparam_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_6: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_72(ldv_1_callback_set_phys_id, ldv_1_container_net_device, ldv_1_container_enum_ethtool_phys_id_state); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_7: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_71(ldv_1_callback_set_pauseparam, ldv_1_container_net_device, ldv_1_container_struct_ethtool_pauseparam_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_8: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_68(ldv_1_callback_set_msglevel, ldv_1_container_net_device, ldv_1_ldv_param_68_1_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_9: /* CIL Label */ { tmp___2 = ldv_xmalloc(1UL); ldv_1_ldv_param_65_2_default = (unsigned char *)tmp___2; ldv_dummy_resourceless_instance_callback_1_65(ldv_1_callback_set_eeprom, ldv_1_container_net_device, ldv_1_container_struct_ethtool_eeprom_ptr, ldv_1_ldv_param_65_2_default); ldv_free((void *)ldv_1_ldv_param_65_2_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_10: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_64(ldv_1_callback_set_eee, ldv_1_container_net_device, ldv_1_container_struct_ethtool_eee_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_11: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_63(ldv_1_callback_set_coalesce, ldv_1_container_net_device, ldv_1_container_struct_ethtool_coalesce_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_12: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_62(ldv_1_callback_set_channels, ldv_1_container_net_device, ldv_1_container_struct_ethtool_channels_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_13: /* CIL Label */ { tmp___3 = ldv_xmalloc(8UL); ldv_1_ldv_param_59_2_default = (unsigned long long *)tmp___3; ldv_dummy_resourceless_instance_callback_1_59(ldv_1_callback_self_test, ldv_1_container_net_device, ldv_1_container_struct_ethtool_test_ptr, ldv_1_ldv_param_59_2_default); ldv_free((void *)ldv_1_ldv_param_59_2_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_14: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_58(ldv_1_callback_nway_reset, ldv_1_container_net_device); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_15: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_57(ldv_1_callback_ndo_validate_addr, ldv_1_container_net_device); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_16: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_56(ldv_1_callback_ndo_tx_timeout, ldv_1_container_net_device); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_17: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_55(ldv_1_callback_ndo_start_xmit, ldv_1_container_struct_sk_buff_ptr, ldv_1_container_net_device); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_18: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_54(ldv_1_callback_ndo_set_rx_mode, ldv_1_container_net_device); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_19: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_53(ldv_1_callback_ndo_set_mac_address, ldv_1_container_net_device, (void *)ldv_1_container_struct_ethtool_channels_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_20: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_50(ldv_1_callback_ndo_set_features, ldv_1_container_net_device, ldv_1_ldv_param_50_1_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_21: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_49(ldv_1_callback_ndo_poll_controller, ldv_1_container_net_device); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_22: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_48(ldv_1_callback_ndo_get_stats64, ldv_1_container_net_device, ldv_1_container_struct_rtnl_link_stats64_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_23: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_45(ldv_1_callback_ndo_fix_features, ldv_1_container_net_device, ldv_1_ldv_param_45_1_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_24: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_42(ldv_1_callback_ndo_do_ioctl, ldv_1_container_net_device, ldv_1_container_struct_ifreq_ptr, ldv_1_ldv_param_42_2_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_25: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_39(ldv_1_callback_ndo_change_mtu, ldv_1_container_net_device, ldv_1_ldv_param_39_1_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_26: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_38(ldv_1_callback_get_wol, ldv_1_container_net_device, ldv_1_container_struct_ethtool_wolinfo_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_27: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_37(ldv_1_callback_get_ts_info, ldv_1_container_net_device, ldv_1_container_struct_ethtool_ts_info_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_28: /* CIL Label */ { tmp___4 = ldv_xmalloc(1UL); ldv_1_ldv_param_34_2_default = (unsigned char *)tmp___4; ldv_dummy_resourceless_instance_callback_1_34(ldv_1_callback_get_strings, ldv_1_container_net_device, ldv_1_ldv_param_34_1_default, ldv_1_ldv_param_34_2_default); ldv_free((void *)ldv_1_ldv_param_34_2_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_29: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_31(ldv_1_callback_get_sset_count, ldv_1_container_net_device, ldv_1_ldv_param_31_1_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_30: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_30(ldv_1_callback_get_settings, ldv_1_container_net_device, ldv_1_container_struct_ethtool_cmd_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_31: /* CIL Label */ { tmp___5 = ldv_xmalloc(4UL); ldv_1_ldv_param_27_2_default = (unsigned int *)tmp___5; ldv_dummy_resourceless_instance_callback_1_27(ldv_1_callback_get_rxnfc, ldv_1_container_net_device, ldv_1_container_struct_ethtool_rxnfc_ptr, ldv_1_ldv_param_27_2_default); ldv_free((void *)ldv_1_ldv_param_27_2_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_32: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_26(ldv_1_callback_get_rxfh_indir_size, ldv_1_container_net_device); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_33: /* CIL Label */ { tmp___6 = ldv_xmalloc(4UL); ldv_1_ldv_param_23_1_default = (unsigned int *)tmp___6; tmp___7 = ldv_xmalloc(1UL); ldv_1_ldv_param_23_2_default = (unsigned char *)tmp___7; tmp___8 = ldv_xmalloc(1UL); ldv_1_ldv_param_23_3_default = (unsigned char *)tmp___8; ldv_dummy_resourceless_instance_callback_1_23(ldv_1_callback_get_rxfh, ldv_1_container_net_device, ldv_1_ldv_param_23_1_default, ldv_1_ldv_param_23_2_default, ldv_1_ldv_param_23_3_default); ldv_free((void *)ldv_1_ldv_param_23_1_default); ldv_free((void *)ldv_1_ldv_param_23_2_default); ldv_free((void *)ldv_1_ldv_param_23_3_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_34: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_22(ldv_1_callback_get_ringparam, ldv_1_container_net_device, ldv_1_container_struct_ethtool_ringparam_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_35: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_21(ldv_1_callback_get_regs_len, ldv_1_container_net_device); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_36: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_20(ldv_1_callback_get_regs, ldv_1_container_net_device, ldv_1_container_struct_ethtool_regs_ptr, (void *)ldv_1_container_struct_ethtool_channels_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_37: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_19(ldv_1_callback_get_pauseparam, ldv_1_container_net_device, ldv_1_container_struct_ethtool_pauseparam_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_38: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_18(ldv_1_callback_get_msglevel, ldv_1_container_net_device); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_39: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_17(ldv_1_callback_get_link, ldv_1_container_net_device); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_40: /* CIL Label */ { tmp___9 = ldv_xmalloc(8UL); ldv_1_ldv_param_14_2_default = (unsigned long long *)tmp___9; ldv_dummy_resourceless_instance_callback_1_14(ldv_1_callback_get_ethtool_stats, ldv_1_container_net_device, ldv_1_container_struct_ethtool_stats_ptr, ldv_1_ldv_param_14_2_default); ldv_free((void *)ldv_1_ldv_param_14_2_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_41: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_13(ldv_1_callback_get_eeprom_len, ldv_1_container_net_device); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_42: /* CIL Label */ { tmp___10 = ldv_xmalloc(1UL); ldv_1_ldv_param_10_2_default = (unsigned char *)tmp___10; ldv_dummy_resourceless_instance_callback_1_10(ldv_1_callback_get_eeprom, ldv_1_container_net_device, ldv_1_container_struct_ethtool_eeprom_ptr, ldv_1_ldv_param_10_2_default); ldv_free((void *)ldv_1_ldv_param_10_2_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_43: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_9(ldv_1_callback_get_eee, ldv_1_container_net_device, ldv_1_container_struct_ethtool_eee_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_44: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_8(ldv_1_callback_get_drvinfo, ldv_1_container_net_device, ldv_1_container_struct_ethtool_drvinfo_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_45: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_7(ldv_1_callback_get_coalesce, ldv_1_container_net_device, ldv_1_container_struct_ethtool_coalesce_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_46: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_3(ldv_1_callback_get_channels, ldv_1_container_net_device, ldv_1_container_struct_ethtool_channels_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_47: /* CIL Label */ ; return; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_pci_instance_callback_2_10(unsigned int (*arg0)(struct pci_dev * , enum pci_channel_state ) , struct pci_dev *arg1 , enum pci_channel_state arg2 ) { { { tg3_io_error_detected(arg1, (pci_channel_state_t )arg2); } return; } } void ldv_pci_instance_callback_2_23(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { tg3_io_resume(arg1); } return; } } void ldv_pci_instance_callback_2_24(unsigned int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { tg3_io_slot_reset(arg1); } return; } } int ldv_pci_instance_probe_2_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = tg3_init_one(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_2_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { tg3_remove_one(arg1); } return; } } void ldv_pci_instance_resume_2_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_resume_early_2_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_2_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { tg3_shutdown(arg1); } return; } } int ldv_pci_instance_suspend_2_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_2_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_2(void *arg0 ) { unsigned int (*ldv_2_callback_error_detected)(struct pci_dev * , enum pci_channel_state ) ; void (*ldv_2_callback_func_1_ptr)(struct pci_dev * ) ; unsigned int (*ldv_2_callback_slot_reset)(struct pci_dev * ) ; struct pci_driver *ldv_2_container_pci_driver ; struct pci_dev *ldv_2_resource_dev ; enum pci_channel_state ldv_2_resource_enum_pci_channel_state ; struct pm_message ldv_2_resource_pm_message ; struct pci_device_id *ldv_2_resource_struct_pci_device_id_ptr ; int ldv_2_ret_default ; struct ldv_struct_pci_instance_2 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { data = (struct ldv_struct_pci_instance_2 *)arg0; ldv_2_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_pci_instance_2 *)0)) { { ldv_2_container_pci_driver = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(2968UL); ldv_2_resource_dev = (struct pci_dev *)tmp; tmp___0 = ldv_xmalloc(32UL); ldv_2_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___0; } goto ldv_main_2; return; ldv_main_2: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_ldv_pre_probe_216(); ldv_2_ret_default = ldv_pci_instance_probe_2_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_2_container_pci_driver->probe, ldv_2_resource_dev, ldv_2_resource_struct_pci_device_id_ptr); ldv_2_ret_default = ldv_ldv_post_probe_217(ldv_2_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { ldv_assume(ldv_2_ret_default == 0); } goto ldv_call_2; } else { { ldv_assume(ldv_2_ret_default != 0); } goto ldv_main_2; } } else { { ldv_free((void *)ldv_2_resource_dev); ldv_free((void *)ldv_2_resource_struct_pci_device_id_ptr); } return; } return; ldv_call_2: { tmp___3 = ldv_undef_int(); } { if (tmp___3 == 1) { goto case_1; } else { } if (tmp___3 == 2) { goto case_2; } else { } if (tmp___3 == 3) { goto case_3; } else { } if (tmp___3 == 4) { goto case_4; } else { } if (tmp___3 == 5) { goto case_5; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_pci_instance_callback_2_24(ldv_2_callback_slot_reset, ldv_2_resource_dev); } goto ldv_call_2; case_2: /* CIL Label */ { ldv_pci_instance_callback_2_23(ldv_2_callback_func_1_ptr, ldv_2_resource_dev); } goto ldv_call_2; goto ldv_call_2; case_3: /* CIL Label */ { ldv_pci_instance_callback_2_10(ldv_2_callback_error_detected, ldv_2_resource_dev, ldv_2_resource_enum_pci_channel_state); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_4: /* CIL Label */ ; if ((unsigned long )ldv_2_container_pci_driver->suspend != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_2_ret_default = ldv_pci_instance_suspend_2_8(ldv_2_container_pci_driver->suspend, ldv_2_resource_dev, ldv_2_resource_pm_message); } } else { } { ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); } if ((unsigned long )ldv_2_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_2_ret_default = ldv_pci_instance_suspend_late_2_7(ldv_2_container_pci_driver->suspend_late, ldv_2_resource_dev, ldv_2_resource_pm_message); } } else { } { ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); } if ((unsigned long )ldv_2_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_2_6(ldv_2_container_pci_driver->resume_early, ldv_2_resource_dev); } } else { } if ((unsigned long )ldv_2_container_pci_driver->resume != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_2_5(ldv_2_container_pci_driver->resume, ldv_2_resource_dev); } } else { } goto ldv_call_2; case_5: /* CIL Label */ { ldv_pci_instance_shutdown_2_3(ldv_2_container_pci_driver->shutdown, ldv_2_resource_dev); ldv_pci_instance_release_2_2(ldv_2_container_pci_driver->remove, ldv_2_resource_dev); } goto ldv_main_2; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) { struct pci_driver *ldv_16_pci_driver_pci_driver ; { { ldv_16_pci_driver_pci_driver = arg1; ldv_dispatch_deregister_16_1(ldv_16_pci_driver_pci_driver); } return; return; } } int ldv_platform_instance_probe_4_14(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) { int tmp ; { { tmp = (*arg0)(arg1); } return (tmp); } } void ldv_platform_instance_release_4_3(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_complete_3_3(void (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_freeze_3_15(int (*arg0)(struct device * ) , struct device *arg1 ) { { { tg3_suspend(arg1); } return; } } void ldv_pm_ops_instance_freeze_late_3_14(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_freeze_noirq_3_12(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_poweroff_3_9(int (*arg0)(struct device * ) , struct device *arg1 ) { { { tg3_suspend(arg1); } return; } } void ldv_pm_ops_instance_poweroff_late_3_8(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_poweroff_noirq_3_6(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_prepare_3_22(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_restore_3_4(int (*arg0)(struct device * ) , struct device *arg1 ) { { { tg3_resume(arg1); } return; } } void ldv_pm_ops_instance_restore_early_3_7(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_restore_noirq_3_5(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_resume_3_16(int (*arg0)(struct device * ) , struct device *arg1 ) { { { tg3_resume(arg1); } return; } } void ldv_pm_ops_instance_resume_early_3_17(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_resume_noirq_3_19(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_idle_3_27(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_resume_3_24(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_suspend_3_25(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_suspend_3_21(int (*arg0)(struct device * ) , struct device *arg1 ) { { { tg3_suspend(arg1); } return; } } void ldv_pm_ops_instance_suspend_late_3_18(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_suspend_noirq_3_20(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_thaw_3_10(int (*arg0)(struct device * ) , struct device *arg1 ) { { { tg3_resume(arg1); } return; } } void ldv_pm_ops_instance_thaw_early_3_13(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_thaw_noirq_3_11(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_platform_instance_4(void *arg0 ) { struct platform_driver *ldv_4_container_platform_driver ; struct platform_device *ldv_4_ldv_param_14_0_default ; struct platform_device *ldv_4_ldv_param_3_0_default ; int ldv_4_probed_default ; void *tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; void *tmp___3 ; { ldv_4_probed_default = 1; goto ldv_main_4; return; ldv_main_4: { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = ldv_xmalloc(1464UL); ldv_4_ldv_param_14_0_default = (struct platform_device *)tmp; ldv_ldv_pre_probe_218(); } if ((unsigned long )ldv_4_container_platform_driver->probe != (unsigned long )((int (*)(struct platform_device * ))0)) { { ldv_4_probed_default = ldv_platform_instance_probe_4_14(ldv_4_container_platform_driver->probe, ldv_4_ldv_param_14_0_default); } } else { } { ldv_4_probed_default = ldv_ldv_post_probe_219(ldv_4_probed_default); ldv_free((void *)ldv_4_ldv_param_14_0_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_4_probed_default == 0); } goto ldv_call_4; } else { { ldv_assume(ldv_4_probed_default != 0); } goto ldv_main_4; } } else { return; } return; ldv_call_4: { tmp___2 = ldv_undef_int(); } { if (tmp___2 == 1) { goto case_1; } else { } if (tmp___2 == 2) { goto case_2; } else { } if (tmp___2 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___3 = ldv_xmalloc(1464UL); ldv_4_ldv_param_3_0_default = (struct platform_device *)tmp___3; } if ((unsigned long )ldv_4_container_platform_driver->remove != (unsigned long )((int (*)(struct platform_device * ))0)) { { ldv_platform_instance_release_4_3(ldv_4_container_platform_driver->remove, ldv_4_ldv_param_3_0_default); } } else { } { ldv_free((void *)ldv_4_ldv_param_3_0_default); ldv_4_probed_default = 1; } goto ldv_main_4; case_2: /* CIL Label */ ; goto ldv_call_4; case_3: /* CIL Label */ { ldv_dispatch_pm_register_4_6(); ldv_dispatch_pm_deregister_4_5(); } goto ldv_call_4; goto ldv_call_4; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_pm_pm_ops_instance_3(void *arg0 ) { struct device *ldv_3_device_device ; struct dev_pm_ops *ldv_3_pm_ops_dev_pm_ops ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { goto ldv_do_3; return; ldv_do_3: { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } goto switch_default___0; case_1: /* CIL Label */ ; if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->runtime_idle != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_idle_3_27(ldv_3_pm_ops_dev_pm_ops->runtime_idle, ldv_3_device_device); } } else { } goto ldv_do_3; case_2: /* CIL Label */ ; if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->runtime_suspend != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_suspend_3_25(ldv_3_pm_ops_dev_pm_ops->runtime_suspend, ldv_3_device_device); } } else { } if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->runtime_resume != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_resume_3_24(ldv_3_pm_ops_dev_pm_ops->runtime_resume, ldv_3_device_device); } } else { } goto ldv_do_3; case_3: /* CIL Label */ ; if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->prepare != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_prepare_3_22(ldv_3_pm_ops_dev_pm_ops->prepare, ldv_3_device_device); } } else { } { tmp___0 = ldv_undef_int(); } { if (tmp___0 == 1) { goto case_1___0; } else { } if (tmp___0 == 2) { goto case_2___0; } else { } if (tmp___0 == 3) { goto case_3___0; } else { } goto switch_default; case_1___0: /* CIL Label */ { ldv_pm_ops_instance_suspend_3_21(ldv_3_pm_ops_dev_pm_ops->suspend, ldv_3_device_device); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->suspend_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_suspend_noirq_3_20(ldv_3_pm_ops_dev_pm_ops->suspend_noirq, ldv_3_device_device); } } else { } if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->resume_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_resume_noirq_3_19(ldv_3_pm_ops_dev_pm_ops->resume_noirq, ldv_3_device_device); } } else { } } else { if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->suspend_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_suspend_late_3_18(ldv_3_pm_ops_dev_pm_ops->suspend_late, ldv_3_device_device); } } else { } if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->resume_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_resume_early_3_17(ldv_3_pm_ops_dev_pm_ops->resume_early, ldv_3_device_device); } } else { } } { ldv_pm_ops_instance_resume_3_16(ldv_3_pm_ops_dev_pm_ops->resume, ldv_3_device_device); } goto ldv_62253; case_2___0: /* CIL Label */ { ldv_pm_ops_instance_freeze_3_15(ldv_3_pm_ops_dev_pm_ops->freeze, ldv_3_device_device); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->freeze_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_freeze_late_3_14(ldv_3_pm_ops_dev_pm_ops->freeze_late, ldv_3_device_device); } } else { } if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->thaw_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_thaw_early_3_13(ldv_3_pm_ops_dev_pm_ops->thaw_early, ldv_3_device_device); } } else { } } else { if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->freeze_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_freeze_noirq_3_12(ldv_3_pm_ops_dev_pm_ops->freeze_noirq, ldv_3_device_device); } } else { } if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->thaw_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_thaw_noirq_3_11(ldv_3_pm_ops_dev_pm_ops->thaw_noirq, ldv_3_device_device); } } else { } } { ldv_pm_ops_instance_thaw_3_10(ldv_3_pm_ops_dev_pm_ops->thaw, ldv_3_device_device); } goto ldv_62253; case_3___0: /* CIL Label */ { ldv_pm_ops_instance_poweroff_3_9(ldv_3_pm_ops_dev_pm_ops->poweroff, ldv_3_device_device); tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->poweroff_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_poweroff_late_3_8(ldv_3_pm_ops_dev_pm_ops->poweroff_late, ldv_3_device_device); } } else { } if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->restore_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_restore_early_3_7(ldv_3_pm_ops_dev_pm_ops->restore_early, ldv_3_device_device); } } else { } } else { if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->poweroff_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_poweroff_noirq_3_6(ldv_3_pm_ops_dev_pm_ops->poweroff_noirq, ldv_3_device_device); } } else { } if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->restore_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_restore_noirq_3_5(ldv_3_pm_ops_dev_pm_ops->restore_noirq, ldv_3_device_device); } } else { } } { ldv_pm_ops_instance_restore_3_4(ldv_3_pm_ops_dev_pm_ops->restore, ldv_3_device_device); } goto ldv_62253; switch_default: /* CIL Label */ { ldv_stop(); } switch_break___0: /* CIL Label */ ; } ldv_62253: ; if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->complete != (unsigned long )((void (*)(struct device * ))0)) { { ldv_pm_ops_instance_complete_3_3(ldv_3_pm_ops_dev_pm_ops->complete, ldv_3_device_device); } } else { } goto ldv_do_3; case_4: /* CIL Label */ ; return; switch_default___0: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } struct ptp_clock *ldv_ptp_clock_register(struct ptp_clock *arg0 , struct ptp_clock_info *arg1 , struct device *arg2 ) { struct ptp_clock_info *ldv_18_struct_ptp_clock_info_struct_ptp_clock_info ; { { ldv_18_struct_ptp_clock_info_struct_ptp_clock_info = arg1; ldv_dispatch_register_18_1(ldv_18_struct_ptp_clock_info_struct_ptp_clock_info); } return (arg0); return (arg0); } } int ldv_register_netdev(int arg0 , struct net_device *arg1 ) { struct net_device *ldv_13_netdev_net_device ; int ldv_13_ret_default ; int tmp ; int tmp___0 ; { { ldv_13_ret_default = 1; ldv_13_ret_default = ldv_pre_register_netdev(); ldv_13_netdev_net_device = arg1; tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_13_ret_default == 0); ldv_13_ret_default = ldv_register_netdev_open_13_6((ldv_13_netdev_net_device->netdev_ops)->ndo_open, ldv_13_netdev_net_device); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_13_ret_default == 0); ldv_dispatch_register_13_4(ldv_13_netdev_net_device); } } else { { ldv_assume(ldv_13_ret_default != 0); } } } else { { ldv_assume(ldv_13_ret_default != 0); } } return (ldv_13_ret_default); return (arg0); return (arg0); } } int ldv_register_netdev_open_13_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { int tmp ; { { tmp = tg3_open(arg1); } return (tmp); } } int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) { enum irqreturn (*ldv_14_callback_handler)(int , void * ) ; void *ldv_14_data_data ; int ldv_14_line_line ; enum irqreturn (*ldv_14_thread_thread)(int , void * ) ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_14_line_line = (int )arg1; ldv_14_callback_handler = arg2; ldv_14_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_14_data_data = arg5; ldv_dispatch_irq_register_14_2(ldv_14_line_line, ldv_14_callback_handler, ldv_14_thread_thread, ldv_14_data_data); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_struct_ptp_clock_info_dummy_resourceless_instance_5(void *arg0 ) { int (*ldv_5_callback_adjfreq)(struct ptp_clock_info * , int ) ; int (*ldv_5_callback_adjtime)(struct ptp_clock_info * , long long ) ; int (*ldv_5_callback_enable)(struct ptp_clock_info * , struct ptp_clock_request * , int ) ; int (*ldv_5_callback_gettime)(struct ptp_clock_info * , struct timespec * ) ; int (*ldv_5_callback_settime)(struct ptp_clock_info * , struct timespec * ) ; struct ptp_clock_info *ldv_5_container_struct_ptp_clock_info ; struct ptp_clock_request *ldv_5_container_struct_ptp_clock_request_ptr ; struct timespec *ldv_5_container_struct_timespec_ptr ; int ldv_5_ldv_param_12_2_default ; int ldv_5_ldv_param_3_1_default ; long long ldv_5_ldv_param_9_1_default ; struct ldv_struct_dummy_resourceless_instance_5 *data ; int tmp ; int tmp___0 ; { data = (struct ldv_struct_dummy_resourceless_instance_5 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_dummy_resourceless_instance_5 *)0)) { { ldv_5_container_struct_ptp_clock_info = data->arg0; ldv_free((void *)data); } } else { } goto ldv_call_5; return; ldv_call_5: { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_16(ldv_5_callback_settime, ldv_5_container_struct_ptp_clock_info, ldv_5_container_struct_timespec_ptr); } goto ldv_62322; case_2: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_15(ldv_5_callback_gettime, ldv_5_container_struct_ptp_clock_info, ldv_5_container_struct_timespec_ptr); } goto ldv_62322; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_12(ldv_5_callback_enable, ldv_5_container_struct_ptp_clock_info, ldv_5_container_struct_ptp_clock_request_ptr, ldv_5_ldv_param_12_2_default); } goto ldv_62322; case_4: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_9(ldv_5_callback_adjtime, ldv_5_container_struct_ptp_clock_info, ldv_5_ldv_param_9_1_default); } goto ldv_62322; case_5: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_3(ldv_5_callback_adjfreq, ldv_5_container_struct_ptp_clock_info, ldv_5_ldv_param_3_1_default); } goto ldv_62322; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_62322: ; goto ldv_call_5; } else { return; } return; } } void ldv_struct_sensor_device_attribute_dummy_resourceless_instance_6(void *arg0 ) { long (*ldv_6_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_6_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_6_container_struct_device_attribute ; struct device *ldv_6_container_struct_device_ptr ; char *ldv_6_ldv_param_3_2_default ; char *ldv_6_ldv_param_9_2_default ; unsigned long ldv_6_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_6; return; ldv_call_6: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_6_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_6_ldv_param_9_2_default = (char *)tmp___0; } if ((unsigned long )ldv_6_callback_store != (unsigned long )((long (*)(struct device * , struct device_attribute * , char * , unsigned long ))0)) { { ldv_dummy_resourceless_instance_callback_6_9(ldv_6_callback_store, ldv_6_container_struct_device_ptr, ldv_6_container_struct_device_attribute, ldv_6_ldv_param_9_2_default, ldv_6_ldv_param_9_3_default); } } else { } { ldv_free((void *)ldv_6_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_6_3(ldv_6_callback_show, ldv_6_container_struct_device_ptr, ldv_6_container_struct_device_attribute, ldv_6_ldv_param_3_2_default); } } { ldv_free((void *)ldv_6_ldv_param_3_2_default); } goto ldv_call_6; } else { return; } return; } } void ldv_timer_dummy_factory_8(void *arg0 ) { struct timer_list *ldv_8_container_timer_list ; { { ldv_dispatch_instance_register_8_3(ldv_8_container_timer_list); } return; return; } } void ldv_timer_instance_callback_7_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_timer_timer_instance_7(void *arg0 ) { struct timer_list *ldv_7_container_timer_list ; struct ldv_struct_timer_instance_7 *data ; { data = (struct ldv_struct_timer_instance_7 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_timer_instance_7 *)0)) { { ldv_7_container_timer_list = data->arg0; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); } if ((unsigned long )ldv_7_container_timer_list->function != (unsigned long )((void (*)(unsigned long ))0)) { { ldv_timer_instance_callback_7_2(ldv_7_container_timer_list->function, ldv_7_container_timer_list->data); } } else { } { ldv_switch_to_process_context(); } return; return; } } void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_15_netdev_net_device ; { { ldv_15_netdev_net_device = arg1; ldv_unregister_netdev_stop_15_2((ldv_15_netdev_net_device->netdev_ops)->ndo_stop, ldv_15_netdev_net_device); ldv_dispatch_deregister_15_1(ldv_15_netdev_net_device); } return; return; } } void ldv_unregister_netdev_stop_15_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { tg3_close(arg1); } return; } } __inline static long PTR_ERR(void const *ptr ) { long tmp ; { { tmp = ldv_ptr_err(ptr); } return (tmp); } } __inline static void *kmalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_malloc_unknown_size(); ldv_after_alloc(res); } return (res); } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = ldv_kzalloc(size, flags); } return (tmp); } } __inline static void *dma_zalloc_coherent(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } static struct sk_buff *ldv___netdev_alloc_skb_103(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return ((struct sk_buff *)tmp); } } static int ldv_pskb_expand_head_106(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return ((int )((long )tmp)); } } __inline static void ldv_spin_lock_109(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock__xmit_lock_of_netdev_queue(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_112(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock__xmit_lock_of_netdev_queue(); spin_unlock(lock); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_127(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_indirect_lock_of_tg3(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_128(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_indirect_lock_of_tg3(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_129(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_indirect_lock_of_tg3(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_131(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_indirect_lock_of_tg3(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_133(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_indirect_lock_of_tg3(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_135(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_indirect_lock_of_tg3(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_137(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_indirect_lock_of_tg3(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_lock_bh_139(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_tg3(); spin_lock_bh(lock); } return; } } __inline static void ldv_spin_unlock_bh_140(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_tg3(); spin_unlock_bh(lock); } return; } } __inline static void ldv_spin_lock_145(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_tg3(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_146(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_tg3(); spin_unlock(lock); } return; } } static struct sk_buff *ldv_skb_copy_151(struct sk_buff const *ldv_func_arg1 , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return ((struct sk_buff *)tmp); } } static struct sk_buff *ldv_skb_copy_expand_152(struct sk_buff const *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return ((struct sk_buff *)tmp); } } static int ldv_del_timer_sync_165(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv_rtnl_lock_166(void) { { { rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_lock(); } return; } } static void ldv_rtnl_unlock_167(void) { { { rtnl_unlock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } static void ldv_rtnl_unlock_168(void) { { { rtnl_unlock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } __inline static int ldv_request_irq_169(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_irq_170(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } __inline static int ldv_request_irq_171(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_irq_172(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv_free_irq_173(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv_free_irq_174(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv_free_irq_175(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv_free_irq_176(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv_free_irq_177(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv_iounmap_187(void volatile *ldv_func_arg1 ) { { { ldv_linux_arch_io_io_mem_unmap(); } return; } } static struct net_device *ldv_alloc_etherdev_mqs_188(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) { ldv_func_ret_type___4 ldv_func_res ; struct net_device *tmp ; struct net_device *tmp___0 ; { { tmp = alloc_etherdev_mqs(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv_alloc_etherdev_mqs(ldv_func_res, ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static int ldv_register_netdev_189(struct net_device *ldv_func_arg1 ) { ldv_func_ret_type___5 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = register_netdev(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_register_netdev(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static struct ptp_clock *ldv_ptp_clock_register_190(struct ptp_clock_info *ldv_func_arg1 , struct device *ldv_func_arg2 ) { ldv_func_ret_type___6 ldv_func_res ; struct ptp_clock *tmp ; struct ptp_clock *tmp___0 ; { { tmp = ptp_clock_register(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_ptp_clock_register(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static void ldv_iounmap_191(void volatile *ldv_func_arg1 ) { { { ldv_linux_arch_io_io_mem_unmap(); } return; } } static void ldv_iounmap_192(void volatile *ldv_func_arg1 ) { { { ldv_linux_arch_io_io_mem_unmap(); } return; } } static void ldv_free_netdev_193(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_unregister_netdev_194(struct net_device *ldv_func_arg1 ) { { { unregister_netdev(ldv_func_arg1); ldv_unregister_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_iounmap_195(void volatile *ldv_func_arg1 ) { { { ldv_linux_arch_io_io_mem_unmap(); } return; } } static void ldv_iounmap_196(void volatile *ldv_func_arg1 ) { { { ldv_linux_arch_io_io_mem_unmap(); } return; } } static void ldv_free_netdev_197(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_rtnl_lock_198(void) { { { rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_lock(); } return; } } static void ldv_rtnl_unlock_199(void) { { { rtnl_unlock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } static void ldv_rtnl_lock_200(void) { { { rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_lock(); } return; } } static void ldv_rtnl_unlock_201(void) { { { rtnl_unlock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } static void ldv_rtnl_lock_202(void) { { { rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_lock(); } return; } } static void ldv_rtnl_unlock_203(void) { { { rtnl_unlock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } static void ldv_rtnl_lock_204(void) { { { rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_lock(); } return; } } static void ldv_rtnl_unlock_205(void) { { { rtnl_unlock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } static void ldv_rtnl_lock_206(void) { { { rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_lock(); } return; } } static void ldv_rtnl_unlock_207(void) { { { rtnl_unlock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } static void ldv_rtnl_lock_208(void) { { { rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_lock(); } return; } } static void ldv_rtnl_unlock_209(void) { { { rtnl_unlock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } static int ldv___pci_register_driver_210(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___7 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___pci_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_pci_unregister_driver_211(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } static int ldv_ldv_post_init_212(int ldv_func_arg1 ) { int tmp ; { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); tmp = ldv_post_init(ldv_func_arg1); } return (tmp); } } static void ldv_ldv_check_final_state_213(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_check_final_state_214(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_initialize_215(void) { { { ldv_linux_lib_find_bit_initialize(); } return; } } static void ldv_ldv_pre_probe_216(void) { { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); ldv_pre_probe(); } return; } } static int ldv_ldv_post_probe_217(int retval ) { int tmp ; { { ldv_linux_net_register_check_return_value_probe(retval); ldv_linux_usb_register_check_return_value_probe(retval); tmp = ldv_post_probe(retval); } return (tmp); } } static void ldv_ldv_pre_probe_218(void) { { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); ldv_pre_probe(); } return; } } static int ldv_ldv_post_probe_219(int retval ) { int tmp ; { { ldv_linux_net_register_check_return_value_probe(retval); ldv_linux_usb_register_check_return_value_probe(retval); tmp = ldv_post_probe(retval); } return (tmp); } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) ; bool ldv_in_interrupt_context(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) { bool tmp ; int tmp___0 ; { { tmp = ldv_in_interrupt_context(); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } { ldv_assert_linux_alloc_irq__wrong_flags(tmp___0 || flags == 32U); } return; } } void ldv_linux_alloc_irq_check_alloc_nonatomic(void) { bool tmp ; { { tmp = ldv_in_interrupt_context(); } if ((int )tmp) { { ldv_assert_linux_alloc_irq__nonatomic(0); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_linux_alloc_spinlock_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_linux_alloc_spinlock_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) ; int ldv_linux_alloc_usb_lock_lock = 1; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) { { if (ldv_linux_alloc_usb_lock_lock == 2) { { ldv_assert_linux_alloc_usb_lock__wrong_flags(flags == 16U || flags == 32U); } } else { } return; } } void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) { { { ldv_assert_linux_alloc_usb_lock__nonatomic(ldv_linux_alloc_usb_lock_lock == 1); } return; } } void ldv_linux_alloc_usb_lock_usb_lock_device(void) { { ldv_linux_alloc_usb_lock_lock = 2; return; } } int ldv_linux_alloc_usb_lock_usb_trylock_device(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_alloc_usb_lock_usb_lock_device_for_reset(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (0); } else { return (-1); } } else { return (-1); } } } void ldv_linux_alloc_usb_lock_usb_unlock_device(void) { { ldv_linux_alloc_usb_lock_lock = 1; return; } } void ldv_linux_usb_dev_atomic_add(int i , atomic_t *v ) { { v->counter = v->counter + i; return; } } void ldv_linux_usb_dev_atomic_sub(int i , atomic_t *v ) { { v->counter = v->counter - i; return; } } int ldv_linux_usb_dev_atomic_sub_and_test(int i , atomic_t *v ) { { v->counter = v->counter - i; if (v->counter != 0) { return (0); } else { } return (1); } } void ldv_linux_usb_dev_atomic_inc(atomic_t *v ) { { v->counter = v->counter + 1; return; } } void ldv_linux_usb_dev_atomic_dec(atomic_t *v ) { { v->counter = v->counter - 1; return; } } int ldv_linux_usb_dev_atomic_dec_and_test(atomic_t *v ) { { v->counter = v->counter - 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_inc_and_test(atomic_t *v ) { { v->counter = v->counter + 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_add_return(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter); } } int ldv_linux_usb_dev_atomic_add_negative(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter < 0); } } int ldv_linux_usb_dev_atomic_inc_short(short *v ) { { *v = (short )((unsigned int )((unsigned short )*v) + 1U); return ((int )*v); } } void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) ; void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) ; void *ldv_undef_ptr(void) ; int ldv_linux_arch_io_iomem = 0; void *ldv_linux_arch_io_io_mem_remap(void) { void *ptr ; void *tmp ; { { tmp = ldv_undef_ptr(); ptr = tmp; } if ((unsigned long )ptr != (unsigned long )((void *)0)) { ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem + 1; return (ptr); } else { } return (ptr); } } void ldv_linux_arch_io_io_mem_unmap(void) { { { ldv_assert_linux_arch_io__less_initial_decrement(ldv_linux_arch_io_iomem > 0); ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem - 1; } return; } } void ldv_linux_arch_io_check_final_state(void) { { { ldv_assert_linux_arch_io__more_initial_at_exit(ldv_linux_arch_io_iomem == 0); } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) ; void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) ; void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) ; static int ldv_linux_block_genhd_disk_state = 0; struct gendisk *ldv_linux_block_genhd_alloc_disk(void) { struct gendisk *res ; void *tmp ; { { tmp = ldv_undef_ptr(); res = (struct gendisk *)tmp; ldv_assert_linux_block_genhd__double_allocation(ldv_linux_block_genhd_disk_state == 0); } if ((unsigned long )res != (unsigned long )((struct gendisk *)0)) { ldv_linux_block_genhd_disk_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_genhd_add_disk(void) { { { ldv_assert_linux_block_genhd__use_before_allocation(ldv_linux_block_genhd_disk_state == 1); ldv_linux_block_genhd_disk_state = 2; } return; } } void ldv_linux_block_genhd_del_gendisk(void) { { { ldv_assert_linux_block_genhd__delete_before_add(ldv_linux_block_genhd_disk_state == 2); ldv_linux_block_genhd_disk_state = 1; } return; } } void ldv_linux_block_genhd_put_disk(struct gendisk *disk ) { { if ((unsigned long )disk != (unsigned long )((struct gendisk *)0)) { { ldv_assert_linux_block_genhd__free_before_allocation(ldv_linux_block_genhd_disk_state > 0); ldv_linux_block_genhd_disk_state = 0; } } else { } return; } } void ldv_linux_block_genhd_check_final_state(void) { { { ldv_assert_linux_block_genhd__more_initial_at_exit(ldv_linux_block_genhd_disk_state == 0); } return; } } void ldv_assert_linux_block_queue__double_allocation(int expr ) ; void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_queue__use_before_allocation(int expr ) ; static int ldv_linux_block_queue_queue_state = 0; struct request_queue *ldv_linux_block_queue_request_queue(void) { struct request_queue *res ; void *tmp ; { { tmp = ldv_undef_ptr(); res = (struct request_queue *)tmp; ldv_assert_linux_block_queue__double_allocation(ldv_linux_block_queue_queue_state == 0); } if ((unsigned long )res != (unsigned long )((struct request_queue *)0)) { ldv_linux_block_queue_queue_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_queue_blk_cleanup_queue(void) { { { ldv_assert_linux_block_queue__use_before_allocation(ldv_linux_block_queue_queue_state == 1); ldv_linux_block_queue_queue_state = 0; } return; } } void ldv_linux_block_queue_check_final_state(void) { { { ldv_assert_linux_block_queue__more_initial_at_exit(ldv_linux_block_queue_queue_state == 0); } return; } } void ldv_assert_linux_block_request__double_get(int expr ) ; void ldv_assert_linux_block_request__double_put(int expr ) ; void ldv_assert_linux_block_request__get_at_exit(int expr ) ; long ldv_is_err(void const *ptr ) ; int ldv_linux_block_request_blk_rq = 0; struct request *ldv_linux_block_request_blk_get_request(gfp_t mask ) { struct request *res ; void *tmp ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_undef_ptr(); res = (struct request *)tmp; } if ((mask == 16U || mask == 208U) || mask == 16U) { { ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); } } else { } if ((unsigned long )res != (unsigned long )((struct request *)0)) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } struct request *ldv_linux_block_request_blk_make_request(gfp_t mask ) { struct request *res ; void *tmp ; long tmp___0 ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_undef_ptr(); res = (struct request *)tmp; ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); tmp___0 = ldv_is_err((void const *)res); } if (tmp___0 == 0L) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } void ldv_linux_block_request_put_blk_rq(void) { { { ldv_assert_linux_block_request__double_put(ldv_linux_block_request_blk_rq == 1); ldv_linux_block_request_blk_rq = 0; } return; } } void ldv_linux_block_request_check_final_state(void) { { { ldv_assert_linux_block_request__get_at_exit(ldv_linux_block_request_blk_rq == 0); } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) ; void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) ; int ldv_undef_int_nonpositive(void) ; int ldv_linux_drivers_base_class_usb_gadget_class = 0; void *ldv_linux_drivers_base_class_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_undef_ptr(); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_got); } } int ldv_linux_drivers_base_class_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_reg); } } void ldv_linux_drivers_base_class_unregister_class(void) { { { ldv_assert_linux_drivers_base_class__double_deregistration(ldv_linux_drivers_base_class_usb_gadget_class == 1); ldv_linux_drivers_base_class_usb_gadget_class = 0; } return; } } void ldv_linux_drivers_base_class_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_drivers_base_class_unregister_class(); } return; } } void ldv_linux_drivers_base_class_check_final_state(void) { { { ldv_assert_linux_drivers_base_class__registered_at_exit(ldv_linux_drivers_base_class_usb_gadget_class == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2176UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) ; void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) ; int ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; int ldv_linux_fs_char_dev_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_fs_char_dev_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } } else { } return (is_reg); } } void ldv_linux_fs_char_dev_unregister_chrdev_region(void) { { { ldv_assert_linux_fs_char_dev__double_deregistration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 1); ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; } return; } } void ldv_linux_fs_char_dev_check_final_state(void) { { { ldv_assert_linux_fs_char_dev__registered_at_exit(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); } return; } } void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) ; void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) ; int ldv_linux_fs_sysfs_sysfs = 0; int ldv_linux_fs_sysfs_sysfs_create_group(void) { int res ; int tmp ; { { tmp = ldv_undef_int_nonpositive(); res = tmp; } if (res == 0) { ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs + 1; return (0); } else { } return (res); } } void ldv_linux_fs_sysfs_sysfs_remove_group(void) { { { ldv_assert_linux_fs_sysfs__less_initial_decrement(ldv_linux_fs_sysfs_sysfs > 0); ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs - 1; } return; } } void ldv_linux_fs_sysfs_check_final_state(void) { { { ldv_assert_linux_fs_sysfs__more_initial_at_exit(ldv_linux_fs_sysfs_sysfs == 0); } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) ; int ldv_linux_kernel_locking_rwlock_rlock = 1; int ldv_linux_kernel_locking_rwlock_wlock = 1; void ldv_linux_kernel_locking_rwlock_read_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; } return; } } void ldv_linux_kernel_locking_rwlock_read_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(ldv_linux_kernel_locking_rwlock_rlock > 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + -1; } return; } } void ldv_linux_kernel_locking_rwlock_write_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_wlock = 2; } return; } } void ldv_linux_kernel_locking_rwlock_write_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(ldv_linux_kernel_locking_rwlock_wlock != 1); ldv_linux_kernel_locking_rwlock_wlock = 1; } return; } } int ldv_linux_kernel_locking_rwlock_read_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_kernel_locking_rwlock_write_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_wlock = 2; return (1); } else { return (0); } } else { return (0); } } } void ldv_linux_kernel_locking_rwlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(ldv_linux_kernel_locking_rwlock_rlock == 1); ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(ldv_linux_kernel_locking_rwlock_wlock == 1); } return; } } void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) ; void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) ; int ldv_linux_kernel_module_module_refcounter = 1; void ldv_linux_kernel_module_module_get(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; } else { } return; } } int ldv_linux_kernel_module_try_module_get(struct module *module ) { int tmp ; { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { tmp = ldv_undef_int(); } if (tmp == 1) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; return (1); } else { return (0); } } else { } return (0); } } void ldv_linux_kernel_module_module_put(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { ldv_assert_linux_kernel_module__less_initial_decrement(ldv_linux_kernel_module_module_refcounter > 1); ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter - 1; } } else { } return; } } void ldv_linux_kernel_module_module_put_and_exit(void) { { { ldv_linux_kernel_module_module_put((struct module *)1); } LDV_LINUX_KERNEL_MODULE_STOP: ; goto LDV_LINUX_KERNEL_MODULE_STOP; } } unsigned int ldv_linux_kernel_module_module_refcount(void) { { return ((unsigned int )(ldv_linux_kernel_module_module_refcounter + -1)); } } void ldv_linux_kernel_module_check_final_state(void) { { { ldv_assert_linux_kernel_module__more_initial_at_exit(ldv_linux_kernel_module_module_refcounter == 1); } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_srcu_srcu_nested = 0; void ldv_linux_kernel_rcu_srcu_srcu_read_lock(void) { { ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested + 1; return; } } void ldv_linux_kernel_rcu_srcu_srcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_srcu__more_unlocks(ldv_linux_kernel_rcu_srcu_srcu_nested > 0); ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_srcu_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = 0; void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_lock_bh(void) { { ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh + 1; return; } } void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_unlock_bh(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh > 0); ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = 0; void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_lock_sched(void) { { ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched + 1; return; } } void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_unlock_sched(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched > 0); ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_rcu_nested = 0; void ldv_linux_kernel_rcu_update_lock_rcu_read_lock(void) { { ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested + 1; return; } } void ldv_linux_kernel_rcu_update_lock_rcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(ldv_linux_kernel_rcu_update_lock_rcu_nested > 0); ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } static bool __ldv_in_interrupt_context = 0; void ldv_switch_to_interrupt_context(void) { { __ldv_in_interrupt_context = 1; return; } } void ldv_switch_to_process_context(void) { { __ldv_in_interrupt_context = 0; return; } } bool ldv_in_interrupt_context(void) { { return (__ldv_in_interrupt_context); } } void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) ; unsigned long ldv_undef_ulong(void) ; unsigned long ldv_linux_lib_find_bit_find_next_bit(unsigned long size , unsigned long offset ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assert_linux_lib_find_bit__offset_out_of_range(offset <= size); ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } unsigned long ldv_linux_lib_find_bit_find_first_bit(unsigned long size ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } void ldv_linux_lib_find_bit_initialize(void) { { { ldv_assume(nr_cpu_ids > 0); } return; } } void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) ; unsigned short ldv_linux_mmc_sdio_func_sdio_element = 0U; void ldv_linux_mmc_sdio_func_check_context(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__wrong_params((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); } return; } } void ldv_linux_mmc_sdio_func_sdio_claim_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__double_claim((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); ldv_linux_mmc_sdio_func_sdio_element = (unsigned short )((func->card)->host)->index; } return; } } void ldv_linux_mmc_sdio_func_sdio_release_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__release_without_claim((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); ldv_linux_mmc_sdio_func_sdio_element = 0U; } return; } } void ldv_linux_mmc_sdio_func_check_final_state(void) { { { ldv_assert_linux_mmc_sdio_func__unreleased_at_exit((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); } return; } } void ldv_assert_linux_net_register__wrong_return_value(int expr ) ; int ldv_linux_net_register_probe_state = 0; int ldv_pre_register_netdev(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_net_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_net_register_reset_error_counter(void) { { ldv_linux_net_register_probe_state = 0; return; } } void ldv_linux_net_register_check_return_value_probe(int retval ) { { if (ldv_linux_net_register_probe_state == 1) { { ldv_assert_linux_net_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_net_register_reset_error_counter(); } return; } } void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) ; void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) ; void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) ; int rtnllocknumber = 0; void ldv_linux_net_rtnetlink_past_rtnl_unlock(void) { { { ldv_assert_linux_net_rtnetlink__double_unlock(rtnllocknumber == 1); rtnllocknumber = 0; } return; } } void ldv_linux_net_rtnetlink_past_rtnl_lock(void) { { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); rtnllocknumber = 1; } return; } } void ldv_linux_net_rtnetlink_before_ieee80211_unregister_hw(void) { { { ldv_linux_net_rtnetlink_past_rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } int ldv_linux_net_rtnetlink_rtnl_is_locked(void) { int tmp ; { if (rtnllocknumber != 0) { return (rtnllocknumber); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_net_rtnetlink_rtnl_trylock(void) { int tmp ; { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); tmp = ldv_linux_net_rtnetlink_rtnl_is_locked(); } if (tmp == 0) { rtnllocknumber = 1; return (1); } else { return (0); } } } void ldv_linux_net_rtnetlink_check_final_state(void) { { { ldv_assert_linux_net_rtnetlink__lock_on_exit(rtnllocknumber == 0); } return; } } void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) ; void ldv_assert_linux_net_sock__double_release(int expr ) ; int locksocknumber = 0; void ldv_linux_net_sock_past_lock_sock_nested(void) { { locksocknumber = locksocknumber + 1; return; } } bool ldv_linux_net_sock_lock_sock_fast(void) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { locksocknumber = locksocknumber + 1; return (1); } else { } return (0); } } void ldv_linux_net_sock_unlock_sock_fast(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_before_release_sock(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_check_final_state(void) { { { ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(locksocknumber == 0); } return; } } void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) ; int ldv_linux_usb_coherent_coherent_state = 0; void *ldv_linux_usb_coherent_usb_alloc_coherent(void) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return (arbitrary_memory); } else { } ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + 1; return (arbitrary_memory); } } void ldv_linux_usb_coherent_usb_free_coherent(void *addr ) { { if ((unsigned long )addr != (unsigned long )((void *)0)) { { ldv_assert_linux_usb_coherent__less_initial_decrement(ldv_linux_usb_coherent_coherent_state > 0); ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + -1; } } else { } return; } } void ldv_linux_usb_coherent_check_final_state(void) { { { ldv_assert_linux_usb_coherent__more_initial_at_exit(ldv_linux_usb_coherent_coherent_state == 0); } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) ; void ldv_assert_linux_usb_dev__probe_failed(int expr ) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) ; ldv_map LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS ; struct usb_device *ldv_linux_usb_dev_usb_get_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0 ? LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + 1 : 1; } else { } return (dev); } } void ldv_linux_usb_dev_usb_put_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { { ldv_assert_linux_usb_dev__unincremented_counter_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0); ldv_assert_linux_usb_dev__less_initial_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 0); } if (LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 1) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + -1; } else { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; } } else { } return; } } void ldv_linux_usb_dev_check_return_value_probe(int retval ) { { if (retval != 0) { { ldv_assert_linux_usb_dev__probe_failed(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } } else { } return; } } void ldv_linux_usb_dev_initialize(void) { { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; return; } } void ldv_linux_usb_dev_check_final_state(void) { { { ldv_assert_linux_usb_dev__more_initial_at_exit(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) ; void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) ; int ldv_linux_usb_gadget_usb_gadget = 0; void *ldv_linux_usb_gadget_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_undef_ptr(); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_got); } } int ldv_linux_usb_gadget_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_class(void) { { { ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_linux_usb_gadget_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_usb_gadget_unregister_class(); } return; } } int ldv_linux_usb_gadget_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_usb_gadget_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_chrdev_region(void) { { { ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } int ldv_linux_usb_gadget_register_usb_gadget(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__double_usb_gadget_registration(ldv_linux_usb_gadget_usb_gadget == 0); ldv_linux_usb_gadget_usb_gadget = 1; } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_usb_gadget(void) { { { ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(ldv_linux_usb_gadget_usb_gadget == 1); ldv_linux_usb_gadget_usb_gadget = 0; } return; } } void ldv_linux_usb_gadget_check_final_state(void) { { { ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_assert_linux_usb_register__wrong_return_value(int expr ) ; int ldv_pre_usb_register_driver(void) ; int ldv_linux_usb_register_probe_state = 0; int ldv_pre_usb_register_driver(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_usb_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_usb_register_reset_error_counter(void) { { ldv_linux_usb_register_probe_state = 0; return; } } void ldv_linux_usb_register_check_return_value_probe(int retval ) { { if (ldv_linux_usb_register_probe_state == 1) { { ldv_assert_linux_usb_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_usb_register_reset_error_counter(); } return; } } void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) ; int ldv_linux_usb_urb_urb_state = 0; struct urb *ldv_linux_usb_urb_usb_alloc_urb(void) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return ((struct urb *)arbitrary_memory); } else { } ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + 1; return ((struct urb *)arbitrary_memory); } } void ldv_linux_usb_urb_usb_free_urb(struct urb *urb ) { { if ((unsigned long )urb != (unsigned long )((struct urb *)0)) { { ldv_assert_linux_usb_urb__less_initial_decrement(ldv_linux_usb_urb_urb_state > 0); ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + -1; } } else { } return; } } void ldv_linux_usb_urb_check_final_state(void) { { { ldv_assert_linux_usb_urb__more_initial_at_exit(ldv_linux_usb_urb_urb_state == 0); } return; } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *external_allocated_data(void) ; void *ldv_calloc_unknown_size(void) ; void *ldv_zalloc_unknown_size(void) ; void *ldv_xmalloc_unknown_size(size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; extern void *memset(void * , int , size_t ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_malloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; memset(res, 0, 8UL); ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc_unknown_size(void) { void *tmp ; { { tmp = ldv_calloc_unknown_size(); } return (tmp); } } void *ldv_xmalloc_unknown_size(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } int ldv_undef_int_negative(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { { tmp = __VERIFIER_nondet_pointer(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) ; ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode ; void ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock ; void ldv_linux_kernel_locking_mutex_mutex_lock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_lock(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device ; void ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; } return; } } void ldv_linux_kernel_locking_mutex_initialize(void) { { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; return; } } void ldv_linux_kernel_locking_mutex_check_final_state(void) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 1; void ldv_linux_kernel_locking_spinlock_spin_lock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 2); ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock__xmit_lock_of_netdev_queue(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked__xmit_lock_of_netdev_queue(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended__xmit_lock_of_netdev_queue(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock__xmit_lock_of_netdev_queue(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 2); ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_addr_list_lock_of_net_device(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_addr_list_lock_of_net_device(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_addr_list_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_addr_list_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_indirect_lock_of_tg3 = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_indirect_lock_of_tg3(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_indirect_lock_of_tg3 == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_indirect_lock_of_tg3 == 1); ldv_linux_kernel_locking_spinlock_spin_indirect_lock_of_tg3 = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_indirect_lock_of_tg3(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_indirect_lock_of_tg3 == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_indirect_lock_of_tg3 == 2); ldv_linux_kernel_locking_spinlock_spin_indirect_lock_of_tg3 = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_indirect_lock_of_tg3(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_indirect_lock_of_tg3 == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_indirect_lock_of_tg3 == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_indirect_lock_of_tg3 = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_indirect_lock_of_tg3(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_indirect_lock_of_tg3 == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_indirect_lock_of_tg3 == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_indirect_lock_of_tg3(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_indirect_lock_of_tg3 == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_indirect_lock_of_tg3(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_indirect_lock_of_tg3(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_indirect_lock_of_tg3(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_indirect_lock_of_tg3(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_indirect_lock_of_tg3 == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_indirect_lock_of_tg3 == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_indirect_lock_of_tg3 = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_linux_kernel_locking_spinlock_spin_lock = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_linux_kernel_locking_spinlock_spin_lock = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_tg3 = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_tg3(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_tg3 == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_tg3 == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_tg3 = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_tg3(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_tg3 == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_tg3 == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_tg3 = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_tg3(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_tg3 == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_tg3 == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_tg3 = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_tg3(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_tg3 == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_tg3 == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_tg3(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_tg3 == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_tg3(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_tg3(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_tg3(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_tg3(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_tg3 == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_tg3 == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_tg3 = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_ptl = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_linux_kernel_locking_spinlock_spin_ptl = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_linux_kernel_locking_spinlock_spin_ptl = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 2); ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_slock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_slock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_slock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_slock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_slock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_slock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 2); ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_tx_global_lock_of_net_device(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_tx_global_lock_of_net_device(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_tx_global_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_tx_global_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 2; return (1); } else { } return (0); } } void ldv_linux_kernel_locking_spinlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_indirect_lock_of_tg3 == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_tg3 == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_indirect_lock_of_tg3 == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_tg3 == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 2) { return (1); } else { } return (0); } } void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) ; void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) ; static int ldv_linux_kernel_sched_completion_completion = 0; void ldv_linux_kernel_sched_completion_init_completion(void) { { ldv_linux_kernel_sched_completion_completion = 1; return; } } void ldv_linux_kernel_sched_completion_init_completion_macro(void) { { { ldv_assert_linux_kernel_sched_completion__double_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 1; } return; } } void ldv_linux_kernel_sched_completion_wait_for_completion(void) { { { ldv_assert_linux_kernel_sched_completion__wait_without_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 2; } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) ; void ldv_assert_linux_lib_idr__double_init(int expr ) ; void ldv_assert_linux_lib_idr__more_at_exit(int expr ) ; void ldv_assert_linux_lib_idr__not_initialized(int expr ) ; static int ldv_linux_lib_idr_idr = 0; void ldv_linux_lib_idr_idr_init(void) { { { ldv_assert_linux_lib_idr__double_init(ldv_linux_lib_idr_idr == 0); ldv_linux_lib_idr_idr = 1; } return; } } void ldv_linux_lib_idr_idr_alloc(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_find(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_remove(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_destroy(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 3; } return; } } void ldv_linux_lib_idr_check_final_state(void) { { { ldv_assert_linux_lib_idr__more_at_exit(ldv_linux_lib_idr_idr == 0 || ldv_linux_lib_idr_idr == 3); } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_lib_idr__double_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__not_initialized(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__more_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_register__wrong_return_value(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_sock__double_release(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__probe_failed(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_request__double_get(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_request__double_put(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_request__get_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_queue__double_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_queue__use_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_register__wrong_return_value(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } }