/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ struct __va_list_tag; typedef struct __va_list_tag __va_list_tag; typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __le16; typedef __u16 __be16; typedef __u32 __le32; typedef __u32 __be32; typedef __u64 __le64; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct class; struct device; struct completion; struct gendisk; struct module; struct mutex; struct request_queue; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; typedef __builtin_va_list __gnuc_va_list[1U]; typedef __gnuc_va_list va_list[1U]; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_10 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_11 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_9 { struct __anonstruct____missing_field_name_10 __annonCompField5 ; struct __anonstruct____missing_field_name_11 __annonCompField6 ; }; struct desc_struct { union __anonunion____missing_field_name_9 __annonCompField7 ; }; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_12 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_12 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_13 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_13 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; typedef void (*ctor_fn_t)(void); struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned char flags ; }; struct net_device; struct file_operations; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_16 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_16 __annonCompField8 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_21 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_22 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_20 { struct __anonstruct____missing_field_name_21 __annonCompField12 ; struct __anonstruct____missing_field_name_22 __annonCompField13 ; }; union __anonunion____missing_field_name_23 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_20 __annonCompField14 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_23 __annonCompField15 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndreg { u64 lower_bound ; u64 upper_bound ; }; struct bndcsr { u64 bndcfgu ; u64 bndstatus ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndreg bndreg[4U] ; struct bndcsr bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_27 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_26 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_27 __annonCompField17 ; }; struct spinlock { union __anonunion____missing_field_name_26 __annonCompField18 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_28 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_28 rwlock_t; struct ldv_thread; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct optimistic_spin_queue { atomic_t tail ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct compat_timespec; struct __anonstruct_futex_30 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_31 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_32 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_29 { struct __anonstruct_futex_30 futex ; struct __anonstruct_nanosleep_31 nanosleep ; struct __anonstruct_poll_32 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_29 __annonCompField19 ; }; struct jump_entry; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_45 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_45 seqlock_t; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct notifier_block; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; union __anonunion____missing_field_name_46 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_46 __annonCompField20 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_47 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_47 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct user_namespace; struct __anonstruct_kuid_t_48 { uid_t val ; }; typedef struct __anonstruct_kuid_t_48 kuid_t; struct __anonstruct_kgid_t_49 { gid_t val ; }; typedef struct __anonstruct_kgid_t_49 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_50 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_50 nodemask_t; struct path; struct inode; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; }; struct ctl_table; struct pci_dev; struct pci_bus; struct __anonstruct_mm_context_t_115 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_115 mm_context_t; struct bio_vec; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct pm_qos_flags_request { struct list_head node ; s32 flags ; }; enum dev_pm_qos_req_type { DEV_PM_QOS_RESUME_LATENCY = 1, DEV_PM_QOS_LATENCY_TOLERANCE = 2, DEV_PM_QOS_FLAGS = 3 } ; union __anonunion_data_142 { struct plist_node pnode ; struct pm_qos_flags_request flr ; }; struct dev_pm_qos_request { enum dev_pm_qos_req_type type ; union __anonunion_data_142 data ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2, PM_QOS_SUM = 3 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; s32 no_constraint_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct pm_qos_flags { struct list_head list ; s32 effective_flags ; }; struct dev_pm_qos { struct pm_qos_constraints resume_latency ; struct pm_qos_constraints latency_tolerance ; struct pm_qos_flags flags ; struct dev_pm_qos_request *resume_latency_req ; struct dev_pm_qos_request *latency_tolerance_req ; struct dev_pm_qos_request *flags_req ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct kvec { void *iov_base ; size_t iov_len ; }; union __anonunion____missing_field_name_143 { struct iovec const *iov ; struct kvec const *kvec ; struct bio_vec const *bvec ; }; struct iov_iter { int type ; size_t iov_offset ; size_t count ; union __anonunion____missing_field_name_143 __annonCompField32 ; unsigned long nr_segs ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_149 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_150 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_148 { struct __anonstruct____missing_field_name_149 __annonCompField35 ; struct __anonstruct____missing_field_name_150 __annonCompField36 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_148 __annonCompField37 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; struct mem_cgroup; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_151 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_153 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_157 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_156 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_157 __annonCompField40 ; int units ; }; struct __anonstruct____missing_field_name_155 { union __anonunion____missing_field_name_156 __annonCompField41 ; atomic_t _count ; }; union __anonunion____missing_field_name_154 { unsigned long counters ; struct __anonstruct____missing_field_name_155 __annonCompField42 ; unsigned int active ; }; struct __anonstruct____missing_field_name_152 { union __anonunion____missing_field_name_153 __annonCompField39 ; union __anonunion____missing_field_name_154 __annonCompField43 ; }; struct __anonstruct____missing_field_name_159 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_160 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_158 { struct list_head lru ; struct __anonstruct____missing_field_name_159 __annonCompField45 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_160 __annonCompField46 ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_161 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_151 __annonCompField38 ; struct __anonstruct____missing_field_name_152 __annonCompField44 ; union __anonunion____missing_field_name_158 __annonCompField47 ; union __anonunion____missing_field_name_161 __annonCompField48 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_162 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_162 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct file_ra_state; struct user_struct; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *cow_page ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; struct page *(*find_special_page)(struct vm_area_struct * , unsigned long ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; typedef unsigned short __kernel_sa_family_t; struct pid; struct cred; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct msghdr { void *msg_name ; int msg_namelen ; struct iov_iter msg_iter ; void *msg_control ; __kernel_size_t msg_controllen ; unsigned int msg_flags ; }; struct __anonstruct_sync_serial_settings_165 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_165 sync_serial_settings; struct __anonstruct_te1_settings_166 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_166 te1_settings; struct __anonstruct_raw_hdlc_proto_167 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_167 raw_hdlc_proto; struct __anonstruct_fr_proto_168 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_168 fr_proto; struct __anonstruct_fr_proto_pvc_169 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_169 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_170 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_170 fr_proto_pvc_info; struct __anonstruct_cisco_proto_171 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_171 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_172 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_172 ifs_ifsu ; }; union __anonunion_ifr_ifrn_173 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_174 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_173 ifr_ifrn ; union __anonunion_ifr_ifru_174 ifr_ifru ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_177 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_176 { struct __anonstruct____missing_field_name_177 __annonCompField49 ; }; struct lockref { union __anonunion____missing_field_name_176 __annonCompField50 ; }; struct vfsmount; struct __anonstruct____missing_field_name_179 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_178 { struct __anonstruct____missing_field_name_179 __annonCompField51 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_178 __annonCompField52 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_180 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_180 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct __anonstruct____missing_field_name_182 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_181 { struct __anonstruct____missing_field_name_182 __annonCompField53 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_181 __annonCompField54 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct io_context; struct cgroup_subsys_state; struct bio_vec { struct page *bv_page ; unsigned int bv_len ; unsigned int bv_offset ; }; struct backing_dev_info; struct export_operations; struct nameidata; struct kiocb; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_185 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_185 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_186 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_186 __annonCompField56 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct hd_struct; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_189 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_190 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; struct cdev; union __anonunion____missing_field_name_191 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_189 __annonCompField57 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_190 __annonCompField58 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_191 __annonCompField59 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_192 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_192 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_get_owner)(struct file_lock * , struct file_lock * ) ; void (*lm_put_owner)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct net; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_194 { struct list_head link ; int state ; }; union __anonunion_fl_u_193 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_194 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_193 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; void (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; int (*dentry_open)(struct dentry * , struct file * , struct cred const * ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; typedef unsigned long cputime_t; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_195 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_195 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_197 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_198 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_199 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_200 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_202 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_201 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_202 _addr_bnd ; }; struct __anonstruct__sigpoll_203 { long _band ; int _fd ; }; struct __anonstruct__sigsys_204 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_196 { int _pad[28U] ; struct __anonstruct__kill_197 _kill ; struct __anonstruct__timer_198 _timer ; struct __anonstruct__rt_199 _rt ; struct __anonstruct__sigchld_200 _sigchld ; struct __anonstruct__sigfault_201 _sigfault ; struct __anonstruct__sigpoll_203 _sigpoll ; struct __anonstruct__sigsys_204 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_196 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int in_hrtirq ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct____missing_field_name_208 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion____missing_field_name_207 { struct __anonstruct____missing_field_name_208 __annonCompField60 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion____missing_field_name_207 __annonCompField61 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_209 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_210 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_212 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_211 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_212 __annonCompField64 ; }; union __anonunion_type_data_213 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_215 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_214 { union __anonunion_payload_215 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_209 __annonCompField62 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_210 __annonCompField63 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_211 __annonCompField65 ; union __anonunion_type_data_213 type_data ; union __anonunion____missing_field_name_214 __annonCompField66 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned char brk_randomized : 1 ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; }; typedef s32 compat_time_t; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_timespec { compat_time_t tv_sec ; s32 tv_nsec ; }; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; enum ldv_22782 { SS_FREE = 0, SS_UNCONNECTED = 1, SS_CONNECTING = 2, SS_CONNECTED = 3, SS_DISCONNECTING = 4 } ; typedef enum ldv_22782 socket_state; struct socket_wq { wait_queue_head_t wait ; struct fasync_struct *fasync_list ; struct callback_head rcu ; }; struct proto_ops; struct socket { socket_state state ; short type ; unsigned long flags ; struct socket_wq *wq ; struct file *file ; struct sock *sk ; struct proto_ops const *ops ; }; struct proto_ops { int family ; struct module *owner ; int (*release)(struct socket * ) ; int (*bind)(struct socket * , struct sockaddr * , int ) ; int (*connect)(struct socket * , struct sockaddr * , int , int ) ; int (*socketpair)(struct socket * , struct socket * ) ; int (*accept)(struct socket * , struct socket * , int ) ; int (*getname)(struct socket * , struct sockaddr * , int * , int ) ; unsigned int (*poll)(struct file * , struct socket * , struct poll_table_struct * ) ; int (*ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*listen)(struct socket * , int ) ; int (*shutdown)(struct socket * , int ) ; int (*setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct socket * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct socket * , int , int , char * , int * ) ; int (*sendmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t , int ) ; int (*mmap)(struct file * , struct socket * , struct vm_area_struct * ) ; ssize_t (*sendpage)(struct socket * , struct page * , int , size_t , int ) ; ssize_t (*splice_read)(struct socket * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*set_peek_off)(struct sock * , int ) ; }; struct exception_table_entry { int insn ; int fixup ; }; struct in6_addr; struct sk_buff; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; typedef u64 netdev_features_t; struct napi_struct; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; typedef unsigned int sk_buff_data_t; struct __anonstruct____missing_field_name_237 { u32 stamp_us ; u32 stamp_jiffies ; }; union __anonunion____missing_field_name_236 { u64 v64 ; struct __anonstruct____missing_field_name_237 __annonCompField71 ; }; struct skb_mstamp { union __anonunion____missing_field_name_236 __annonCompField72 ; }; union __anonunion____missing_field_name_240 { ktime_t tstamp ; struct skb_mstamp skb_mstamp ; }; struct __anonstruct____missing_field_name_239 { struct sk_buff *next ; struct sk_buff *prev ; union __anonunion____missing_field_name_240 __annonCompField73 ; }; union __anonunion____missing_field_name_238 { struct __anonstruct____missing_field_name_239 __annonCompField74 ; struct rb_node rbnode ; }; struct sec_path; struct __anonstruct____missing_field_name_242 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_241 { __wsum csum ; struct __anonstruct____missing_field_name_242 __annonCompField76 ; }; union __anonunion____missing_field_name_243 { unsigned int napi_id ; unsigned int sender_cpu ; }; union __anonunion____missing_field_name_244 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; union __anonunion____missing_field_name_245 { __be16 inner_protocol ; __u8 inner_ipproto ; }; struct sk_buff { union __anonunion____missing_field_name_238 __annonCompField75 ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; void (*destructor)(struct sk_buff * ) ; struct sec_path *sp ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; __u16 queue_mapping ; unsigned char cloned : 1 ; unsigned char nohdr : 1 ; unsigned char fclone : 2 ; unsigned char peeked : 1 ; unsigned char head_frag : 1 ; unsigned char xmit_more : 1 ; __u32 headers_start[0U] ; __u8 __pkt_type_offset[0U] ; unsigned char pkt_type : 3 ; unsigned char pfmemalloc : 1 ; unsigned char ignore_df : 1 ; unsigned char nfctinfo : 3 ; unsigned char nf_trace : 1 ; unsigned char ip_summed : 2 ; unsigned char ooo_okay : 1 ; unsigned char l4_hash : 1 ; unsigned char sw_hash : 1 ; unsigned char wifi_acked_valid : 1 ; unsigned char wifi_acked : 1 ; unsigned char no_fcs : 1 ; unsigned char encapsulation : 1 ; unsigned char encap_hdr_csum : 1 ; unsigned char csum_valid : 1 ; unsigned char csum_complete_sw : 1 ; unsigned char csum_level : 2 ; unsigned char csum_bad : 1 ; unsigned char ndisc_nodetype : 2 ; unsigned char ipvs_property : 1 ; unsigned char inner_protocol_type : 1 ; unsigned char remcsum_offload : 1 ; __u16 tc_index ; __u16 tc_verd ; union __anonunion____missing_field_name_241 __annonCompField77 ; __u32 priority ; int skb_iif ; __u32 hash ; __be16 vlan_proto ; __u16 vlan_tci ; union __anonunion____missing_field_name_243 __annonCompField78 ; __u32 secmark ; union __anonunion____missing_field_name_244 __annonCompField79 ; union __anonunion____missing_field_name_245 __annonCompField80 ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __be16 protocol ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; __u32 headers_end[0U] ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct rtable; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char erom_version[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_tunable { __u32 cmd ; __u32 id ; __u32 type_id ; __u32 len ; void *data[0U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_key_size)(struct net_device * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh)(struct net_device * , u32 * , u8 * , u8 * ) ; int (*set_rxfh)(struct net_device * , u32 const * , u8 const * , u8 const ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; int (*get_tunable)(struct net_device * , struct ethtool_tunable const * , void * ) ; int (*set_tunable)(struct net_device * , struct ethtool_tunable const * , void const * ) ; }; union __anonunion_in6_u_248 { __u8 u6_addr8[16U] ; __be16 u6_addr16[8U] ; __be32 u6_addr32[4U] ; }; struct in6_addr { union __anonunion_in6_u_248 in6_u ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6_mib_device { atomic_long_t mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6msg_mib_device { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[9U] ; }; struct linux_mib { unsigned long mibs[113U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct proc_dir_entry; struct netns_mib { struct tcp_mib *tcp_statistics ; struct ipstats_mib *ip_statistics ; struct linux_mib *net_statistics ; struct udp_mib *udp_statistics ; struct udp_mib *udplite_statistics ; struct icmp_mib *icmp_statistics ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6 ; struct udp_mib *udplite_stats_in6 ; struct ipstats_mib *ipv6_statistics ; struct icmpv6_mib *icmpv6_statistics ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct tcpm_hash_bucket; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; }; struct ping_group_range { seqlock_t lock ; kgid_t range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct inet_peer_base *peers ; struct tcpm_hash_bucket *tcp_metrics_hash ; unsigned int tcp_metrics_hash_log ; struct sock **tcp_sk ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports ip_local_ports ; int sysctl_tcp_ecn ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; int sysctl_ip_nonlocal_bind ; int sysctl_fwmark_reflect ; int sysctl_tcp_fwmark_accept ; int sysctl_tcp_mtu_probing ; int sysctl_tcp_base_mss ; struct ping_group_range ping_group_range ; atomic_t dev_addr_genid ; unsigned long *sysctl_local_reserved_ports ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int auto_flowlabels ; int icmpv6_time ; int anycast_src_echo_reply ; int fwmark_reflect ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t fib6_sernum ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct netns_sysctl_lowpan { struct ctl_table_header *frags_hdr ; }; struct netns_ieee802154_lowpan { struct netns_sysctl_lowpan sysctl ; struct netns_frags frags ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; struct nlattr; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ct_pcpu { spinlock_t lock ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct delayed_work ecache_dwork ; bool ecache_dwork_pending ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; seqcount_t generation ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct ct_pcpu *pcpu_lists ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; unsigned int base_seq ; u8 gencursor ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct tasklet_struct { struct tasklet_struct *next ; unsigned long state ; atomic_t count ; void (*func)(unsigned long ) ; unsigned long data ; }; struct flow_cache_percpu { struct hlist_head *hash_table ; int hash_count ; u32 hash_rnd ; int hash_rnd_recalc ; struct tasklet_struct flush_tasklet ; }; struct flow_cache { u32 hash_shift ; struct flow_cache_percpu *percpu ; struct notifier_block hotcpu_notifier ; int low_watermark ; int high_watermark ; struct timer_list rnd_timer ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; u8 dbits4 ; u8 sbits4 ; u8 dbits6 ; u8 sbits6 ; }; struct xfrm_policy_hthresh { struct work_struct work ; seqlock_t lock ; u8 lbits4 ; u8 rbits4 ; u8 lbits6 ; u8 rbits6 ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[3U] ; struct xfrm_policy_hash policy_bydst[3U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct xfrm_policy_hthresh policy_hthresh ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; struct flow_cache flow_cache_global ; atomic_t flow_cache_genid ; struct list_head flow_cache_gc_list ; spinlock_t flow_cache_gc_lock ; struct work_struct flow_cache_gc_work ; struct work_struct flow_cache_flush_work ; struct mutex flow_flush_sem ; }; struct proc_ns_operations; struct ns_common { atomic_long_t stashed ; struct proc_ns_operations const *ops ; unsigned int inum ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; struct idr netns_ids ; struct ns_common ns ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_ieee802154_lowpan ieee802154_lowpan ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; enum fwnode_type { FWNODE_INVALID = 0, FWNODE_OF = 1, FWNODE_ACPI = 2 } ; struct fwnode_handle { enum fwnode_type type ; }; typedef u32 phandle; struct property { char *name ; int length ; void *value ; struct property *next ; unsigned long _flags ; unsigned int unique_id ; struct bin_attribute attr ; }; struct device_node { char const *name ; char const *type ; phandle phandle ; char const *full_name ; struct fwnode_handle fwnode ; struct property *properties ; struct property *deadprops ; struct device_node *parent ; struct device_node *child ; struct device_node *sibling ; struct kobject kobj ; unsigned long _flags ; void *data ; }; enum ldv_27503 { PHY_INTERFACE_MODE_NA = 0, PHY_INTERFACE_MODE_MII = 1, PHY_INTERFACE_MODE_GMII = 2, PHY_INTERFACE_MODE_SGMII = 3, PHY_INTERFACE_MODE_TBI = 4, PHY_INTERFACE_MODE_REVMII = 5, PHY_INTERFACE_MODE_RMII = 6, PHY_INTERFACE_MODE_RGMII = 7, PHY_INTERFACE_MODE_RGMII_ID = 8, PHY_INTERFACE_MODE_RGMII_RXID = 9, PHY_INTERFACE_MODE_RGMII_TXID = 10, PHY_INTERFACE_MODE_RTBI = 11, PHY_INTERFACE_MODE_SMII = 12, PHY_INTERFACE_MODE_XGMII = 13, PHY_INTERFACE_MODE_MOCA = 14, PHY_INTERFACE_MODE_QSGMII = 15, PHY_INTERFACE_MODE_MAX = 16 } ; typedef enum ldv_27503 phy_interface_t; enum ldv_27556 { MDIOBUS_ALLOCATED = 1, MDIOBUS_REGISTERED = 2, MDIOBUS_UNREGISTERED = 3, MDIOBUS_RELEASED = 4 } ; struct phy_device; struct mii_bus { char const *name ; char id[17U] ; void *priv ; int (*read)(struct mii_bus * , int , int ) ; int (*write)(struct mii_bus * , int , int , u16 ) ; int (*reset)(struct mii_bus * ) ; struct mutex mdio_lock ; struct device *parent ; enum ldv_27556 state ; struct device dev ; struct phy_device *phy_map[32U] ; u32 phy_mask ; int *irq ; }; enum phy_state { PHY_DOWN = 0, PHY_STARTING = 1, PHY_READY = 2, PHY_PENDING = 3, PHY_UP = 4, PHY_AN = 5, PHY_RUNNING = 6, PHY_NOLINK = 7, PHY_FORCING = 8, PHY_CHANGELINK = 9, PHY_HALTED = 10, PHY_RESUMING = 11 } ; struct phy_c45_device_ids { u32 devices_in_package ; u32 device_ids[8U] ; }; struct phy_driver; struct phy_device { struct phy_driver *drv ; struct mii_bus *bus ; struct device dev ; u32 phy_id ; struct phy_c45_device_ids c45_ids ; bool is_c45 ; bool is_internal ; bool has_fixups ; bool suspended ; enum phy_state state ; u32 dev_flags ; phy_interface_t interface ; int addr ; int speed ; int duplex ; int pause ; int asym_pause ; int link ; u32 interrupts ; u32 supported ; u32 advertising ; u32 lp_advertising ; int autoneg ; int link_timeout ; int irq ; void *priv ; struct work_struct phy_queue ; struct delayed_work state_queue ; atomic_t irq_disable ; struct mutex lock ; struct net_device *attached_dev ; void (*adjust_link)(struct net_device * ) ; }; struct phy_driver { u32 phy_id ; char *name ; unsigned int phy_id_mask ; u32 features ; u32 flags ; void const *driver_data ; int (*soft_reset)(struct phy_device * ) ; int (*config_init)(struct phy_device * ) ; int (*probe)(struct phy_device * ) ; int (*suspend)(struct phy_device * ) ; int (*resume)(struct phy_device * ) ; int (*config_aneg)(struct phy_device * ) ; int (*aneg_done)(struct phy_device * ) ; int (*read_status)(struct phy_device * ) ; int (*ack_interrupt)(struct phy_device * ) ; int (*config_intr)(struct phy_device * ) ; int (*did_interrupt)(struct phy_device * ) ; void (*remove)(struct phy_device * ) ; int (*match_phy_device)(struct phy_device * ) ; int (*ts_info)(struct phy_device * , struct ethtool_ts_info * ) ; int (*hwtstamp)(struct phy_device * , struct ifreq * ) ; bool (*rxtstamp)(struct phy_device * , struct sk_buff * , int ) ; void (*txtstamp)(struct phy_device * , struct sk_buff * , int ) ; int (*set_wol)(struct phy_device * , struct ethtool_wolinfo * ) ; void (*get_wol)(struct phy_device * , struct ethtool_wolinfo * ) ; void (*link_change_notify)(struct phy_device * ) ; int (*read_mmd_indirect)(struct phy_device * , int , int , int ) ; void (*write_mmd_indirect)(struct phy_device * , int , int , int , u32 ) ; int (*module_info)(struct phy_device * , struct ethtool_modinfo * ) ; int (*module_eeprom)(struct phy_device * , struct ethtool_eeprom * , u8 * ) ; struct device_driver driver ; }; struct fixed_phy_status { int link ; int speed ; int duplex ; int pause ; int asym_pause ; }; enum dsa_tag_protocol { DSA_TAG_PROTO_NONE = 0, DSA_TAG_PROTO_DSA = 1, DSA_TAG_PROTO_TRAILER = 2, DSA_TAG_PROTO_EDSA = 3, DSA_TAG_PROTO_BRCM = 4 } ; struct dsa_chip_data { struct device *host_dev ; int sw_addr ; int eeprom_len ; struct device_node *of_node ; char *port_names[12U] ; struct device_node *port_dn[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct packet_type; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; int (*rcv)(struct sk_buff * , struct net_device * , struct packet_type * , struct net_device * ) ; enum dsa_tag_protocol tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct device *master_dev ; char hwmon_name[24U] ; struct device *hwmon_dev ; u32 dsa_port_mask ; u32 phys_port_mask ; u32 phys_mii_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; enum dsa_tag_protocol tag_protocol ; int priv_size ; char *(*probe)(struct device * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; u32 (*get_phy_flags)(struct dsa_switch * , int ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*adjust_link)(struct dsa_switch * , int , struct phy_device * ) ; void (*fixed_link_update)(struct dsa_switch * , int , struct fixed_phy_status * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; void (*get_wol)(struct dsa_switch * , int , struct ethtool_wolinfo * ) ; int (*set_wol)(struct dsa_switch * , int , struct ethtool_wolinfo * ) ; int (*suspend)(struct dsa_switch * ) ; int (*resume)(struct dsa_switch * ) ; int (*port_enable)(struct dsa_switch * , int , struct phy_device * ) ; void (*port_disable)(struct dsa_switch * , int , struct phy_device * ) ; int (*set_eee)(struct dsa_switch * , int , struct phy_device * , struct ethtool_eee * ) ; int (*get_eee)(struct dsa_switch * , int , struct ethtool_eee * ) ; int (*get_temp)(struct dsa_switch * , int * ) ; int (*get_temp_limit)(struct dsa_switch * , int * ) ; int (*set_temp_limit)(struct dsa_switch * , int ) ; int (*get_temp_alarm)(struct dsa_switch * , bool * ) ; int (*get_eeprom_len)(struct dsa_switch * ) ; int (*get_eeprom)(struct dsa_switch * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct dsa_switch * , struct ethtool_eeprom * , u8 * ) ; int (*get_regs_len)(struct dsa_switch * , int ) ; void (*get_regs)(struct dsa_switch * , int , struct ethtool_regs * , void * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; int (*setapp)(struct net_device * , u8 , u16 , u8 ) ; int (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_long_t count ; unsigned long percpu_count_ptr ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_switch ; bool force_atomic ; struct callback_head rcu ; }; struct cgroup_root; struct cgroup_subsys; struct cgroup; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; struct list_head sibling ; struct list_head children ; int id ; unsigned int flags ; u64 serial_nr ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct cgroup { struct cgroup_subsys_state self ; unsigned long flags ; int id ; int populated_cnt ; struct kernfs_node *kn ; struct kernfs_node *populated_kn ; unsigned int subtree_control ; unsigned int child_subsys_mask ; struct cgroup_subsys_state *subsys[12U] ; struct cgroup_root *root ; struct list_head cset_links ; struct list_head e_csets[12U] ; struct list_head pidlists ; struct mutex pidlist_mutex ; wait_queue_head_t offline_waitq ; struct work_struct release_agent_work ; }; struct cgroup_root { struct kernfs_root *kf_root ; unsigned int subsys_mask ; int hierarchy_id ; struct cgroup cgrp ; atomic_t nr_cgrps ; struct list_head root_list ; unsigned int flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head mg_tasks ; struct list_head cgrp_links ; struct cgroup *dfl_cgrp ; struct cgroup_subsys_state *subsys[12U] ; struct list_head mg_preload_node ; struct list_head mg_node ; struct cgroup *mg_src_cgrp ; struct css_set *mg_dst_cset ; struct list_head e_cset_node[12U] ; struct callback_head callback_head ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; struct list_head node ; struct kernfs_ops *kf_ops ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; struct lock_class_key lockdep_key ; }; struct cgroup_taskset; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_released)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; void (*css_reset)(struct cgroup_subsys_state * ) ; void (*css_e_css_changed)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; int id ; char const *name ; struct cgroup_root *root ; struct idr css_idr ; struct list_head cfts ; struct cftype *dfl_cftypes ; struct cftype *legacy_cftypes ; unsigned int depends_on ; }; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct xfrm_policy; struct xfrm_state; struct request_sock; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 spoofchk ; __u32 linkstate ; __u32 min_tx_rate ; __u32 max_tx_rate ; }; struct netpoll_info; struct wireless_dev; struct wpan_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr { struct list_head list ; unsigned char addr[32U] ; unsigned char type ; bool global_use ; int sync_cnt ; int refcount ; int synced ; struct callback_head callback_head ; }; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct hrtimer timer ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_item_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_rate)(struct net_device * , int , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * , u16 ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * , u16 ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_item_id * ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; int (*ndo_get_lock_subclass)(struct net_device * ) ; netdev_features_t (*ndo_features_check)(struct sk_buff * , struct net_device * , netdev_features_t ) ; int (*ndo_switch_parent_id_get)(struct net_device * , struct netdev_phys_item_id * ) ; int (*ndo_switch_port_stp_update)(struct net_device * , u8 ) ; }; struct __anonstruct_adj_list_264 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_265 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct forwarding_accel_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion____missing_field_name_266 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct list_head ptype_all ; struct list_head ptype_specific ; struct __anonstruct_adj_list_264 adj_list ; struct __anonstruct_all_adj_list_265 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; atomic_long_t tx_dropped ; atomic_t carrier_changes ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct forwarding_accel_ops const *fwd_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; unsigned short dev_port ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; unsigned char name_assign_type ; bool uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; struct wpan_dev *ieee802154_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; unsigned long gro_flush_timeout ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; unsigned char broadcast[32U] ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; struct cpu_rmap *rx_cpu_rmap ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; unsigned char reg_state ; bool dismantle ; unsigned short rtnl_link_state ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion____missing_field_name_266 __annonCompField86 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; u16 gso_min_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; int group ; struct pm_qos_request pm_qos_req ; }; struct packet_type { __be16 type ; struct net_device *dev ; int (*func)(struct sk_buff * , struct net_device * , struct packet_type * , struct net_device * ) ; bool (*id_match)(struct packet_type * , struct sock * ) ; void *af_packet_priv ; struct list_head list ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct pci_driver; union __anonunion____missing_field_name_267 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; unsigned char pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; u8 dma_alias_devfn ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned char pme_support : 5 ; unsigned char pme_interrupt : 1 ; unsigned char pme_poll : 1 ; unsigned char d1_support : 1 ; unsigned char d2_support : 1 ; unsigned char no_d1d2 : 1 ; unsigned char no_d3cold : 1 ; unsigned char d3cold_allowed : 1 ; unsigned char mmio_always_on : 1 ; unsigned char wakeup_prepared : 1 ; unsigned char runtime_d3cold : 1 ; unsigned char ignore_hotplug : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned char transparent : 1 ; unsigned char multifunction : 1 ; unsigned char is_added : 1 ; unsigned char is_busmaster : 1 ; unsigned char no_msi : 1 ; unsigned char no_64bit_msi : 1 ; unsigned char block_cfg_access : 1 ; unsigned char broken_parity_status : 1 ; unsigned char irq_reroute_variant : 2 ; unsigned char msi_enabled : 1 ; unsigned char msix_enabled : 1 ; unsigned char ari_enabled : 1 ; unsigned char is_managed : 1 ; unsigned char needs_freset : 1 ; unsigned char state_saved : 1 ; unsigned char is_physfn : 1 ; unsigned char is_virtfn : 1 ; unsigned char reset_fn : 1 ; unsigned char is_hotplug_bridge : 1 ; unsigned char __aer_firmware_first_valid : 1 ; unsigned char __aer_firmware_first : 1 ; unsigned char broken_intx_masking : 1 ; unsigned char io_window_1k : 1 ; unsigned char irq_managed : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_267 __annonCompField87 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; char *driver_override ; }; struct pci_ops; struct msi_controller; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_controller *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned char is_added : 1 ; }; struct pci_ops { void *(*map_bus)(struct pci_bus * , unsigned int , int ) ; int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*reset_notify)(struct pci_dev * , bool ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct msix_entry { u32 vector ; u16 entry ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_272 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_272 __annonCompField88 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct page_counter { atomic_long_t count ; unsigned long limit ; struct page_counter *parent ; unsigned long watermark ; unsigned long failcnt ; }; struct kioctx; typedef int kiocb_cancel_fn(struct kiocb * ); union __anonunion_ki_obj_277 { void *user ; struct task_struct *tsk ; }; struct eventfd_ctx; struct kiocb { struct file *ki_filp ; struct kioctx *ki_ctx ; kiocb_cancel_fn *ki_cancel ; void *private ; union __anonunion_ki_obj_277 ki_obj ; __u64 ki_user_data ; loff_t ki_pos ; size_t ki_nbytes ; struct list_head ki_list ; struct eventfd_ctx *ki_eventfd ; }; struct sock_filter { __u16 code ; __u8 jt ; __u8 jf ; __u32 k ; }; struct bpf_insn { __u8 code ; unsigned char dst_reg : 4 ; unsigned char src_reg : 4 ; __s16 off ; __s32 imm ; }; struct bpf_prog_aux; struct sock_fprog_kern { u16 len ; struct sock_filter *filter ; }; union __anonunion____missing_field_name_282 { struct sock_filter insns[0U] ; struct bpf_insn insnsi[0U] ; }; struct bpf_prog { u16 pages ; bool jited ; u32 len ; struct sock_fprog_kern *orig_prog ; struct bpf_prog_aux *aux ; unsigned int (*bpf_func)(struct sk_buff const * , struct bpf_insn const * ) ; union __anonunion____missing_field_name_282 __annonCompField93 ; }; struct sk_filter { atomic_t refcnt ; struct callback_head rcu ; struct bpf_prog *prog ; }; struct pollfd { int fd ; short events ; short revents ; }; struct poll_table_struct { void (*_qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long _key ; }; struct nla_policy { u16 type ; u16 len ; }; struct rtnl_link_ops { struct list_head list ; char const *kind ; size_t priv_size ; void (*setup)(struct net_device * ) ; int maxtype ; struct nla_policy const *policy ; int (*validate)(struct nlattr ** , struct nlattr ** ) ; int (*newlink)(struct net * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; int (*changelink)(struct net_device * , struct nlattr ** , struct nlattr ** ) ; void (*dellink)(struct net_device * , struct list_head * ) ; size_t (*get_size)(struct net_device const * ) ; int (*fill_info)(struct sk_buff * , struct net_device const * ) ; size_t (*get_xstats_size)(struct net_device const * ) ; int (*fill_xstats)(struct sk_buff * , struct net_device const * ) ; unsigned int (*get_num_tx_queues)(void) ; unsigned int (*get_num_rx_queues)(void) ; int slave_maxtype ; struct nla_policy const *slave_policy ; int (*slave_validate)(struct nlattr ** , struct nlattr ** ) ; int (*slave_changelink)(struct net_device * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; size_t (*get_slave_size)(struct net_device const * , struct net_device const * ) ; int (*fill_slave_info)(struct sk_buff * , struct net_device const * , struct net_device const * ) ; struct net *(*get_link_net)(struct net_device const * ) ; }; struct neigh_table; struct neigh_parms { struct net *net ; struct net_device *dev ; struct list_head list ; int (*neigh_setup)(struct neighbour * ) ; void (*neigh_cleanup)(struct neighbour * ) ; struct neigh_table *tbl ; void *sysctl_table ; int dead ; atomic_t refcnt ; struct callback_head callback_head ; int reachable_time ; int data[12U] ; unsigned long data_state[1U] ; }; struct neigh_statistics { unsigned long allocs ; unsigned long destroys ; unsigned long hash_grows ; unsigned long res_failed ; unsigned long lookups ; unsigned long hits ; unsigned long rcv_probes_mcast ; unsigned long rcv_probes_ucast ; unsigned long periodic_gc_runs ; unsigned long forced_gc_runs ; unsigned long unres_discards ; }; struct neigh_ops; struct neighbour { struct neighbour *next ; struct neigh_table *tbl ; struct neigh_parms *parms ; unsigned long confirmed ; unsigned long updated ; rwlock_t lock ; atomic_t refcnt ; struct sk_buff_head arp_queue ; unsigned int arp_queue_len_bytes ; struct timer_list timer ; unsigned long used ; atomic_t probes ; __u8 flags ; __u8 nud_state ; __u8 type ; __u8 dead ; seqlock_t ha_lock ; unsigned char ha[32U] ; struct hh_cache hh ; int (*output)(struct neighbour * , struct sk_buff * ) ; struct neigh_ops const *ops ; struct callback_head rcu ; struct net_device *dev ; u8 primary_key[0U] ; }; struct neigh_ops { int family ; void (*solicit)(struct neighbour * , struct sk_buff * ) ; void (*error_report)(struct neighbour * , struct sk_buff * ) ; int (*output)(struct neighbour * , struct sk_buff * ) ; int (*connected_output)(struct neighbour * , struct sk_buff * ) ; }; struct pneigh_entry { struct pneigh_entry *next ; struct net *net ; struct net_device *dev ; u8 flags ; u8 key[0U] ; }; struct neigh_hash_table { struct neighbour **hash_buckets ; unsigned int hash_shift ; __u32 hash_rnd[4U] ; struct callback_head rcu ; }; struct neigh_table { int family ; int entry_size ; int key_len ; __u32 (*hash)(void const * , struct net_device const * , __u32 * ) ; int (*constructor)(struct neighbour * ) ; int (*pconstructor)(struct pneigh_entry * ) ; void (*pdestructor)(struct pneigh_entry * ) ; void (*proxy_redo)(struct sk_buff * ) ; char *id ; struct neigh_parms parms ; struct list_head parms_list ; int gc_interval ; int gc_thresh1 ; int gc_thresh2 ; int gc_thresh3 ; unsigned long last_flush ; struct delayed_work gc_work ; struct timer_list proxy_timer ; struct sk_buff_head proxy_queue ; atomic_t entries ; rwlock_t lock ; unsigned long last_rand ; struct neigh_statistics *stats ; struct neigh_hash_table *nht ; struct pneigh_entry **phash_buckets ; }; struct dn_route; union __anonunion____missing_field_name_284 { struct dst_entry *next ; struct rtable *rt_next ; struct rt6_info *rt6_next ; struct dn_route *dn_next ; }; struct dst_entry { struct callback_head callback_head ; struct dst_entry *child ; struct net_device *dev ; struct dst_ops *ops ; unsigned long _metrics ; unsigned long expires ; struct dst_entry *path ; struct dst_entry *from ; struct xfrm_state *xfrm ; int (*input)(struct sk_buff * ) ; int (*output)(struct sock * , struct sk_buff * ) ; unsigned short flags ; unsigned short pending_confirm ; short error ; short obsolete ; unsigned short header_len ; unsigned short trailer_len ; __u32 tclassid ; long __pad_to_align_refcnt[2U] ; atomic_t __refcnt ; int __use ; unsigned long lastuse ; union __anonunion____missing_field_name_284 __annonCompField94 ; }; struct __anonstruct_socket_lock_t_285 { spinlock_t slock ; int owned ; wait_queue_head_t wq ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_socket_lock_t_285 socket_lock_t; struct proto; typedef __u32 __portpair; typedef __u64 __addrpair; struct __anonstruct____missing_field_name_287 { __be32 skc_daddr ; __be32 skc_rcv_saddr ; }; union __anonunion____missing_field_name_286 { __addrpair skc_addrpair ; struct __anonstruct____missing_field_name_287 __annonCompField95 ; }; union __anonunion____missing_field_name_288 { unsigned int skc_hash ; __u16 skc_u16hashes[2U] ; }; struct __anonstruct____missing_field_name_290 { __be16 skc_dport ; __u16 skc_num ; }; union __anonunion____missing_field_name_289 { __portpair skc_portpair ; struct __anonstruct____missing_field_name_290 __annonCompField98 ; }; union __anonunion____missing_field_name_291 { struct hlist_node skc_bind_node ; struct hlist_nulls_node skc_portaddr_node ; }; union __anonunion____missing_field_name_292 { struct hlist_node skc_node ; struct hlist_nulls_node skc_nulls_node ; }; struct sock_common { union __anonunion____missing_field_name_286 __annonCompField96 ; union __anonunion____missing_field_name_288 __annonCompField97 ; union __anonunion____missing_field_name_289 __annonCompField99 ; unsigned short skc_family ; unsigned char volatile skc_state ; unsigned char skc_reuse : 4 ; unsigned char skc_reuseport : 1 ; unsigned char skc_ipv6only : 1 ; int skc_bound_dev_if ; union __anonunion____missing_field_name_291 __annonCompField100 ; struct proto *skc_prot ; struct net *skc_net ; struct in6_addr skc_v6_daddr ; struct in6_addr skc_v6_rcv_saddr ; int skc_dontcopy_begin[0U] ; union __anonunion____missing_field_name_292 __annonCompField101 ; int skc_tx_queue_mapping ; atomic_t skc_refcnt ; int skc_dontcopy_end[0U] ; }; struct cg_proto; struct __anonstruct_sk_backlog_293 { atomic_t rmem_alloc ; int len ; struct sk_buff *head ; struct sk_buff *tail ; }; struct sock { struct sock_common __sk_common ; socket_lock_t sk_lock ; struct sk_buff_head sk_receive_queue ; struct __anonstruct_sk_backlog_293 sk_backlog ; int sk_forward_alloc ; __u32 sk_rxhash ; u16 sk_incoming_cpu ; __u32 sk_txhash ; unsigned int sk_napi_id ; unsigned int sk_ll_usec ; atomic_t sk_drops ; int sk_rcvbuf ; struct sk_filter *sk_filter ; struct socket_wq *sk_wq ; struct xfrm_policy *sk_policy[2U] ; unsigned long sk_flags ; struct dst_entry *sk_rx_dst ; struct dst_entry *sk_dst_cache ; spinlock_t sk_dst_lock ; atomic_t sk_wmem_alloc ; atomic_t sk_omem_alloc ; int sk_sndbuf ; struct sk_buff_head sk_write_queue ; unsigned char sk_shutdown : 2 ; unsigned char sk_no_check_tx : 1 ; unsigned char sk_no_check_rx : 1 ; unsigned char sk_userlocks : 4 ; unsigned char sk_protocol ; unsigned short sk_type ; int sk_wmem_queued ; gfp_t sk_allocation ; u32 sk_pacing_rate ; u32 sk_max_pacing_rate ; netdev_features_t sk_route_caps ; netdev_features_t sk_route_nocaps ; int sk_gso_type ; unsigned int sk_gso_max_size ; u16 sk_gso_max_segs ; int sk_rcvlowat ; unsigned long sk_lingertime ; struct sk_buff_head sk_error_queue ; struct proto *sk_prot_creator ; rwlock_t sk_callback_lock ; int sk_err ; int sk_err_soft ; unsigned short sk_ack_backlog ; unsigned short sk_max_ack_backlog ; __u32 sk_priority ; __u32 sk_cgrp_prioidx ; struct pid *sk_peer_pid ; struct cred const *sk_peer_cred ; long sk_rcvtimeo ; long sk_sndtimeo ; void *sk_protinfo ; struct timer_list sk_timer ; ktime_t sk_stamp ; u16 sk_tsflags ; u32 sk_tskey ; struct socket *sk_socket ; void *sk_user_data ; struct page_frag sk_frag ; struct sk_buff *sk_send_head ; __s32 sk_peek_off ; int sk_write_pending ; void *sk_security ; __u32 sk_mark ; u32 sk_classid ; struct cg_proto *sk_cgrp ; void (*sk_state_change)(struct sock * ) ; void (*sk_data_ready)(struct sock * ) ; void (*sk_write_space)(struct sock * ) ; void (*sk_error_report)(struct sock * ) ; int (*sk_backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*sk_destruct)(struct sock * ) ; }; struct request_sock_ops; struct timewait_sock_ops; struct inet_hashinfo; struct raw_hashinfo; struct udp_table; union __anonunion_h_294 { struct inet_hashinfo *hashinfo ; struct udp_table *udp_table ; struct raw_hashinfo *raw_hash ; }; struct proto { void (*close)(struct sock * , long ) ; int (*connect)(struct sock * , struct sockaddr * , int ) ; int (*disconnect)(struct sock * , int ) ; struct sock *(*accept)(struct sock * , int , int * ) ; int (*ioctl)(struct sock * , int , unsigned long ) ; int (*init)(struct sock * ) ; void (*destroy)(struct sock * ) ; void (*shutdown)(struct sock * , int ) ; int (*setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_ioctl)(struct sock * , unsigned int , unsigned long ) ; int (*sendmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t , int , int , int * ) ; int (*sendpage)(struct sock * , struct page * , int , size_t , int ) ; int (*bind)(struct sock * , struct sockaddr * , int ) ; int (*backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*release_cb)(struct sock * ) ; void (*hash)(struct sock * ) ; void (*unhash)(struct sock * ) ; void (*rehash)(struct sock * ) ; int (*get_port)(struct sock * , unsigned short ) ; void (*clear_sk)(struct sock * , int ) ; unsigned int inuse_idx ; bool (*stream_memory_free)(struct sock const * ) ; void (*enter_memory_pressure)(struct sock * ) ; atomic_long_t *memory_allocated ; struct percpu_counter *sockets_allocated ; int *memory_pressure ; long *sysctl_mem ; int *sysctl_wmem ; int *sysctl_rmem ; int max_header ; bool no_autobind ; struct kmem_cache *slab ; unsigned int obj_size ; int slab_flags ; struct percpu_counter *orphan_count ; struct request_sock_ops *rsk_prot ; struct timewait_sock_ops *twsk_prot ; union __anonunion_h_294 h ; struct module *owner ; char name[32U] ; struct list_head node ; int (*init_cgroup)(struct mem_cgroup * , struct cgroup_subsys * ) ; void (*destroy_cgroup)(struct mem_cgroup * ) ; struct cg_proto *(*proto_cgroup)(struct mem_cgroup * ) ; }; struct cg_proto { struct page_counter memory_allocated ; struct percpu_counter sockets_allocated ; int memory_pressure ; long sysctl_mem[3U] ; unsigned long flags ; struct mem_cgroup *memcg ; }; struct request_sock_ops { int family ; int obj_size ; struct kmem_cache *slab ; char *slab_name ; int (*rtx_syn_ack)(struct sock * , struct request_sock * ) ; void (*send_ack)(struct sock * , struct sk_buff * , struct request_sock * ) ; void (*send_reset)(struct sock * , struct sk_buff * ) ; void (*destructor)(struct request_sock * ) ; void (*syn_ack_timeout)(struct sock * , struct request_sock * ) ; }; struct request_sock { struct sock_common __req_common ; struct request_sock *dl_next ; u16 mss ; u8 num_retrans ; unsigned char cookie_ts : 1 ; unsigned char num_timeout : 7 ; u32 window_clamp ; u32 rcv_wnd ; u32 ts_recent ; unsigned long expires ; struct request_sock_ops const *rsk_ops ; struct sock *sk ; u32 secid ; u32 peer_secid ; }; struct timewait_sock_ops { struct kmem_cache *twsk_slab ; char *twsk_slab_name ; unsigned int twsk_obj_size ; int (*twsk_unique)(struct sock * , struct sock * , void * ) ; void (*twsk_destructor)(struct sock * ) ; }; struct ipv6_devconf { __s32 forwarding ; __s32 hop_limit ; __s32 mtu6 ; __s32 accept_ra ; __s32 accept_redirects ; __s32 autoconf ; __s32 dad_transmits ; __s32 rtr_solicits ; __s32 rtr_solicit_interval ; __s32 rtr_solicit_delay ; __s32 force_mld_version ; __s32 mldv1_unsolicited_report_interval ; __s32 mldv2_unsolicited_report_interval ; __s32 use_tempaddr ; __s32 temp_valid_lft ; __s32 temp_prefered_lft ; __s32 regen_max_retry ; __s32 max_desync_factor ; __s32 max_addresses ; __s32 accept_ra_defrtr ; __s32 accept_ra_pinfo ; __s32 accept_ra_rtr_pref ; __s32 rtr_probe_interval ; __s32 accept_ra_rt_info_max_plen ; __s32 proxy_ndp ; __s32 accept_source_route ; __s32 accept_ra_from_local ; __s32 optimistic_dad ; __s32 use_optimistic ; __s32 mc_forwarding ; __s32 disable_ipv6 ; __s32 accept_dad ; __s32 force_tllao ; __s32 ndisc_notify ; __s32 suppress_frag_ndisc ; __s32 accept_ra_mtu ; void *sysctl ; }; struct ip6_sf_list { struct ip6_sf_list *sf_next ; struct in6_addr sf_addr ; unsigned long sf_count[2U] ; unsigned char sf_gsresp ; unsigned char sf_oldin ; unsigned char sf_crcount ; }; struct ifmcaddr6 { struct in6_addr mca_addr ; struct inet6_dev *idev ; struct ifmcaddr6 *next ; struct ip6_sf_list *mca_sources ; struct ip6_sf_list *mca_tomb ; unsigned int mca_sfmode ; unsigned char mca_crcount ; unsigned long mca_sfcount[2U] ; struct timer_list mca_timer ; unsigned int mca_flags ; int mca_users ; atomic_t mca_refcnt ; spinlock_t mca_lock ; unsigned long mca_cstamp ; unsigned long mca_tstamp ; }; struct ifacaddr6 { struct in6_addr aca_addr ; struct inet6_dev *aca_idev ; struct rt6_info *aca_rt ; struct ifacaddr6 *aca_next ; int aca_users ; atomic_t aca_refcnt ; unsigned long aca_cstamp ; unsigned long aca_tstamp ; }; struct ipv6_devstat { struct proc_dir_entry *proc_dir_entry ; struct ipstats_mib *ipv6 ; struct icmpv6_mib_device *icmpv6dev ; struct icmpv6msg_mib_device *icmpv6msgdev ; }; struct inet6_dev { struct net_device *dev ; struct list_head addr_list ; struct ifmcaddr6 *mc_list ; struct ifmcaddr6 *mc_tomb ; spinlock_t mc_lock ; unsigned char mc_qrv ; unsigned char mc_gq_running ; unsigned char mc_ifc_count ; unsigned char mc_dad_count ; unsigned long mc_v1_seen ; unsigned long mc_qi ; unsigned long mc_qri ; unsigned long mc_maxdelay ; struct timer_list mc_gq_timer ; struct timer_list mc_ifc_timer ; struct timer_list mc_dad_timer ; struct ifacaddr6 *ac_list ; rwlock_t lock ; atomic_t refcnt ; __u32 if_flags ; int dead ; u8 rndid[8U] ; struct timer_list regen_timer ; struct list_head tempaddr_list ; struct in6_addr token ; struct neigh_parms *nd_parms ; struct ipv6_devconf cnf ; struct ipv6_devstat stats ; struct timer_list rs_timer ; __u8 rs_probes ; __u8 addr_gen_mode ; unsigned long tstamp ; struct callback_head rcu ; }; union __anonunion____missing_field_name_310 { __be32 a4 ; __be32 a6[4U] ; }; struct inetpeer_addr_base { union __anonunion____missing_field_name_310 __annonCompField103 ; }; struct inetpeer_addr { struct inetpeer_addr_base addr ; __u16 family ; }; union __anonunion____missing_field_name_311 { struct list_head gc_list ; struct callback_head gc_rcu ; }; struct __anonstruct____missing_field_name_313 { atomic_t rid ; }; union __anonunion____missing_field_name_312 { struct __anonstruct____missing_field_name_313 __annonCompField105 ; struct callback_head rcu ; struct inet_peer *gc_next ; }; struct inet_peer { struct inet_peer *avl_left ; struct inet_peer *avl_right ; struct inetpeer_addr daddr ; __u32 avl_height ; u32 metrics[16U] ; u32 rate_tokens ; unsigned long rate_last ; union __anonunion____missing_field_name_311 __annonCompField104 ; union __anonunion____missing_field_name_312 __annonCompField106 ; __u32 dtime ; atomic_t refcnt ; }; struct inet_peer_base { struct inet_peer *root ; seqlock_t lock ; int total ; }; struct uncached_list; struct rtable { struct dst_entry dst ; int rt_genid ; unsigned int rt_flags ; __u16 rt_type ; __u8 rt_is_input ; __u8 rt_uses_gateway ; int rt_iif ; __be32 rt_gateway ; u32 rt_pmtu ; struct list_head rt_uncached ; struct uncached_list *rt_uncached_list ; }; struct udp_hslot { struct hlist_nulls_head head ; int count ; spinlock_t lock ; }; struct udp_table { struct udp_hslot *hash ; struct udp_hslot *hash2 ; unsigned int mask ; unsigned int log ; }; enum i40e_status_code { I40E_SUCCESS = 0, I40E_ERR_NVM = -1, I40E_ERR_NVM_CHECKSUM = -2, I40E_ERR_PHY = -3, I40E_ERR_CONFIG = -4, I40E_ERR_PARAM = -5, I40E_ERR_MAC_TYPE = -6, I40E_ERR_UNKNOWN_PHY = -7, I40E_ERR_LINK_SETUP = -8, I40E_ERR_ADAPTER_STOPPED = -9, I40E_ERR_INVALID_MAC_ADDR = -10, I40E_ERR_DEVICE_NOT_SUPPORTED = -11, I40E_ERR_MASTER_REQUESTS_PENDING = -12, I40E_ERR_INVALID_LINK_SETTINGS = -13, I40E_ERR_AUTONEG_NOT_COMPLETE = -14, I40E_ERR_RESET_FAILED = -15, I40E_ERR_SWFW_SYNC = -16, I40E_ERR_NO_AVAILABLE_VSI = -17, I40E_ERR_NO_MEMORY = -18, I40E_ERR_BAD_PTR = -19, I40E_ERR_RING_FULL = -20, I40E_ERR_INVALID_PD_ID = -21, I40E_ERR_INVALID_QP_ID = -22, I40E_ERR_INVALID_CQ_ID = -23, I40E_ERR_INVALID_CEQ_ID = -24, I40E_ERR_INVALID_AEQ_ID = -25, I40E_ERR_INVALID_SIZE = -26, I40E_ERR_INVALID_ARP_INDEX = -27, I40E_ERR_INVALID_FPM_FUNC_ID = -28, I40E_ERR_QP_INVALID_MSG_SIZE = -29, I40E_ERR_QP_TOOMANY_WRS_POSTED = -30, I40E_ERR_INVALID_FRAG_COUNT = -31, I40E_ERR_QUEUE_EMPTY = -32, I40E_ERR_INVALID_ALIGNMENT = -33, I40E_ERR_FLUSHED_QUEUE = -34, I40E_ERR_INVALID_PUSH_PAGE_INDEX = -35, I40E_ERR_INVALID_IMM_DATA_SIZE = -36, I40E_ERR_TIMEOUT = -37, I40E_ERR_OPCODE_MISMATCH = -38, I40E_ERR_CQP_COMPL_ERROR = -39, I40E_ERR_INVALID_VF_ID = -40, I40E_ERR_INVALID_HMCFN_ID = -41, I40E_ERR_BACKING_PAGE_ERROR = -42, I40E_ERR_NO_PBLCHUNKS_AVAILABLE = -43, I40E_ERR_INVALID_PBLE_INDEX = -44, I40E_ERR_INVALID_SD_INDEX = -45, I40E_ERR_INVALID_PAGE_DESC_INDEX = -46, I40E_ERR_INVALID_SD_TYPE = -47, I40E_ERR_MEMCPY_FAILED = -48, I40E_ERR_INVALID_HMC_OBJ_INDEX = -49, I40E_ERR_INVALID_HMC_OBJ_COUNT = -50, I40E_ERR_INVALID_SRQ_ARM_LIMIT = -51, I40E_ERR_SRQ_ENABLED = -52, I40E_ERR_ADMIN_QUEUE_ERROR = -53, I40E_ERR_ADMIN_QUEUE_TIMEOUT = -54, I40E_ERR_BUF_TOO_SHORT = -55, I40E_ERR_ADMIN_QUEUE_FULL = -56, I40E_ERR_ADMIN_QUEUE_NO_WORK = -57, I40E_ERR_BAD_IWARP_CQE = -58, I40E_ERR_NVM_BLANK_MODE = -59, I40E_ERR_NOT_IMPLEMENTED = -60, I40E_ERR_PE_DOORBELL_NOT_ENABLED = -61, I40E_ERR_DIAG_TEST_FAILED = -62, I40E_ERR_NOT_READY = -63, I40E_NOT_SUPPORTED = -64, I40E_ERR_FIRMWARE_API_VERSION = -65 } ; struct i40e_dma_mem { void *va ; dma_addr_t pa ; u32 size ; }; struct i40e_virt_mem { void *va ; u32 size ; }; typedef enum i40e_status_code i40e_status; struct __anonstruct_internal_317 { __le32 param0 ; __le32 param1 ; __le32 param2 ; __le32 param3 ; }; struct __anonstruct_external_318 { __le32 param0 ; __le32 param1 ; __le32 addr_high ; __le32 addr_low ; }; union __anonunion_params_316 { struct __anonstruct_internal_317 internal ; struct __anonstruct_external_318 external ; u8 raw[16U] ; }; struct i40e_aq_desc { __le16 flags ; __le16 opcode ; __le16 datalen ; __le16 retval ; __le32 cookie_high ; __le32 cookie_low ; union __anonunion_params_316 params ; }; enum i40e_admin_queue_err { I40E_AQ_RC_OK = 0, I40E_AQ_RC_EPERM = 1, I40E_AQ_RC_ENOENT = 2, I40E_AQ_RC_ESRCH = 3, I40E_AQ_RC_EINTR = 4, I40E_AQ_RC_EIO = 5, I40E_AQ_RC_ENXIO = 6, I40E_AQ_RC_E2BIG = 7, I40E_AQ_RC_EAGAIN = 8, I40E_AQ_RC_ENOMEM = 9, I40E_AQ_RC_EACCES = 10, I40E_AQ_RC_EFAULT = 11, I40E_AQ_RC_EBUSY = 12, I40E_AQ_RC_EEXIST = 13, I40E_AQ_RC_EINVAL = 14, I40E_AQ_RC_ENOTTY = 15, I40E_AQ_RC_ENOSPC = 16, I40E_AQ_RC_ENOSYS = 17, I40E_AQ_RC_ERANGE = 18, I40E_AQ_RC_EFLUSHED = 19, I40E_AQ_RC_BAD_ADDR = 20, I40E_AQ_RC_EMODE = 21, I40E_AQ_RC_EFBIG = 22 } ; enum i40e_aq_phy_type { I40E_PHY_TYPE_SGMII = 0, I40E_PHY_TYPE_1000BASE_KX = 1, I40E_PHY_TYPE_10GBASE_KX4 = 2, I40E_PHY_TYPE_10GBASE_KR = 3, I40E_PHY_TYPE_40GBASE_KR4 = 4, I40E_PHY_TYPE_XAUI = 5, I40E_PHY_TYPE_XFI = 6, I40E_PHY_TYPE_SFI = 7, I40E_PHY_TYPE_XLAUI = 8, I40E_PHY_TYPE_XLPPI = 9, I40E_PHY_TYPE_40GBASE_CR4_CU = 10, I40E_PHY_TYPE_10GBASE_CR1_CU = 11, I40E_PHY_TYPE_10GBASE_AOC = 12, I40E_PHY_TYPE_40GBASE_AOC = 13, I40E_PHY_TYPE_100BASE_TX = 17, I40E_PHY_TYPE_1000BASE_T = 18, I40E_PHY_TYPE_10GBASE_T = 19, I40E_PHY_TYPE_10GBASE_SR = 20, I40E_PHY_TYPE_10GBASE_LR = 21, I40E_PHY_TYPE_10GBASE_SFPP_CU = 22, I40E_PHY_TYPE_10GBASE_CR1 = 23, I40E_PHY_TYPE_40GBASE_CR4 = 24, I40E_PHY_TYPE_40GBASE_SR4 = 25, I40E_PHY_TYPE_40GBASE_LR4 = 26, I40E_PHY_TYPE_1000BASE_SX = 27, I40E_PHY_TYPE_1000BASE_LX = 28, I40E_PHY_TYPE_1000BASE_T_OPTICAL = 29, I40E_PHY_TYPE_20GBASE_KR2 = 30, I40E_PHY_TYPE_MAX = 31 } ; enum i40e_aq_link_speed { I40E_LINK_SPEED_UNKNOWN = 0, I40E_LINK_SPEED_100MB = 2, I40E_LINK_SPEED_1GB = 4, I40E_LINK_SPEED_10GB = 8, I40E_LINK_SPEED_40GB = 16, I40E_LINK_SPEED_20GB = 32 } ; union __anonunion_r_322 { struct i40e_dma_mem *asq_bi ; struct i40e_dma_mem *arq_bi ; }; struct i40e_adminq_ring { struct i40e_virt_mem dma_head ; struct i40e_dma_mem desc_buf ; struct i40e_virt_mem cmd_buf ; union __anonunion_r_322 r ; u16 count ; u16 rx_buf_len ; u16 next_to_use ; u16 next_to_clean ; u32 head ; u32 tail ; u32 len ; u32 bah ; u32 bal ; }; struct i40e_arq_event_info { struct i40e_aq_desc desc ; u16 msg_len ; u16 buf_len ; u8 *msg_buf ; }; struct i40e_adminq_info { struct i40e_adminq_ring arq ; struct i40e_adminq_ring asq ; u32 asq_cmd_timeout ; u16 num_arq_entries ; u16 num_asq_entries ; u16 arq_buf_size ; u16 asq_buf_size ; u16 fw_maj_ver ; u16 fw_min_ver ; u16 api_maj_ver ; u16 api_min_ver ; bool nvm_release_on_done ; struct mutex asq_mutex ; struct mutex arq_mutex ; enum i40e_admin_queue_err asq_last_status ; enum i40e_admin_queue_err arq_last_status ; }; struct i40e_hw; struct i40e_hmc_obj_info { u64 base ; u32 max_cnt ; u32 cnt ; u64 size ; }; enum i40e_sd_entry_type { I40E_SD_TYPE_INVALID = 0, I40E_SD_TYPE_PAGED = 1, I40E_SD_TYPE_DIRECT = 2 } ; struct i40e_hmc_bp { enum i40e_sd_entry_type entry_type ; struct i40e_dma_mem addr ; u32 sd_pd_index ; u32 ref_cnt ; }; struct i40e_hmc_pd_entry { struct i40e_hmc_bp bp ; u32 sd_index ; bool valid ; }; struct i40e_hmc_pd_table { struct i40e_dma_mem pd_page_addr ; struct i40e_hmc_pd_entry *pd_entry ; struct i40e_virt_mem pd_entry_virt_mem ; u32 ref_cnt ; u32 sd_index ; }; union __anonunion_u_324 { struct i40e_hmc_pd_table pd_table ; struct i40e_hmc_bp bp ; }; struct i40e_hmc_sd_entry { enum i40e_sd_entry_type entry_type ; bool valid ; union __anonunion_u_324 u ; }; struct i40e_hmc_sd_table { struct i40e_virt_mem addr ; u32 sd_cnt ; u32 ref_cnt ; struct i40e_hmc_sd_entry *sd_entry ; }; struct i40e_hmc_info { u32 signature ; u8 hmc_fn_id ; u16 first_sd_index ; struct i40e_hmc_obj_info *hmc_obj ; struct i40e_virt_mem hmc_obj_virt_mem ; struct i40e_hmc_sd_table sd_table ; }; enum i40e_mac_type { I40E_MAC_UNKNOWN = 0, I40E_MAC_X710 = 1, I40E_MAC_XL710 = 2, I40E_MAC_VF = 3, I40E_MAC_GENERIC = 4 } ; enum i40e_media_type { I40E_MEDIA_TYPE_UNKNOWN = 0, I40E_MEDIA_TYPE_FIBER = 1, I40E_MEDIA_TYPE_BASET = 2, I40E_MEDIA_TYPE_BACKPLANE = 3, I40E_MEDIA_TYPE_CX4 = 4, I40E_MEDIA_TYPE_DA = 5, I40E_MEDIA_TYPE_VIRTUAL = 6 } ; enum i40e_fc_mode { I40E_FC_NONE = 0, I40E_FC_RX_PAUSE = 1, I40E_FC_TX_PAUSE = 2, I40E_FC_FULL = 3, I40E_FC_PFC = 4, I40E_FC_DEFAULT = 5 } ; enum i40e_vsi_type { I40E_VSI_MAIN = 0, I40E_VSI_VMDQ1 = 1, I40E_VSI_VMDQ2 = 2, I40E_VSI_CTRL = 3, I40E_VSI_FCOE = 4, I40E_VSI_MIRROR = 5, I40E_VSI_SRIOV = 6, I40E_VSI_FDIR = 7, I40E_VSI_TYPE_UNKNOWN = 8 } ; struct i40e_link_status { enum i40e_aq_phy_type phy_type ; enum i40e_aq_link_speed link_speed ; u8 link_info ; u8 an_info ; u8 ext_info ; u8 loopback ; bool an_enabled ; bool lse_enable ; u16 max_frame_size ; bool crc_enable ; u8 pacing ; }; struct i40e_phy_info { struct i40e_link_status link_info ; struct i40e_link_status link_info_old ; u32 autoneg_advertised ; u32 phy_id ; u32 module_type ; bool get_link_info ; enum i40e_media_type media_type ; }; struct i40e_hw_capabilities { u32 switch_mode ; u32 management_mode ; u32 npar_enable ; u32 os2bmc ; u32 valid_functions ; bool sr_iov_1_1 ; bool vmdq ; bool evb_802_1_qbg ; bool evb_802_1_qbh ; bool dcb ; bool fcoe ; bool iscsi ; bool mfp_mode_1 ; bool mgmt_cem ; bool ieee_1588 ; bool iwarp ; bool fd ; u32 fd_filters_guaranteed ; u32 fd_filters_best_effort ; bool rss ; u32 rss_table_size ; u32 rss_table_entry_width ; bool led[30U] ; bool sdp[30U] ; u32 nvm_image_type ; u32 num_flow_director_filters ; u32 num_vfs ; u32 vf_base_id ; u32 num_vsis ; u32 num_rx_qp ; u32 num_tx_qp ; u32 base_queue ; u32 num_msix_vectors ; u32 num_msix_vectors_vf ; u32 led_pin_num ; u32 sdp_pin_num ; u32 mdio_port_num ; u32 mdio_port_mode ; u8 rx_buf_chain_len ; u32 enabled_tcmap ; u32 maxtc ; }; struct i40e_mac_info { enum i40e_mac_type type ; u8 addr[6U] ; u8 perm_addr[6U] ; u8 san_addr[6U] ; u16 max_fcoeq ; }; struct i40e_nvm_info { u64 hw_semaphore_timeout ; u32 timeout ; u16 sr_size ; bool blank_nvm_mode ; u16 version ; u32 eetrack ; }; enum i40e_nvmupd_state { I40E_NVMUPD_STATE_INIT = 0, I40E_NVMUPD_STATE_READING = 1, I40E_NVMUPD_STATE_WRITING = 2 } ; enum i40e_bus_type { i40e_bus_type_unknown = 0, i40e_bus_type_pci = 1, i40e_bus_type_pcix = 2, i40e_bus_type_pci_express = 3, i40e_bus_type_reserved = 4 } ; enum i40e_bus_speed { i40e_bus_speed_unknown = 0, i40e_bus_speed_33 = 33, i40e_bus_speed_66 = 66, i40e_bus_speed_100 = 100, i40e_bus_speed_120 = 120, i40e_bus_speed_133 = 133, i40e_bus_speed_2500 = 2500, i40e_bus_speed_5000 = 5000, i40e_bus_speed_8000 = 8000, i40e_bus_speed_reserved = 8001 } ; enum i40e_bus_width { i40e_bus_width_unknown = 0, i40e_bus_width_pcie_x1 = 1, i40e_bus_width_pcie_x2 = 2, i40e_bus_width_pcie_x4 = 4, i40e_bus_width_pcie_x8 = 8, i40e_bus_width_32 = 32, i40e_bus_width_64 = 64, i40e_bus_width_reserved = 65 } ; struct i40e_bus_info { enum i40e_bus_speed speed ; enum i40e_bus_width width ; enum i40e_bus_type type ; u16 func ; u16 device ; u16 lan_id ; }; struct i40e_fc_info { enum i40e_fc_mode current_mode ; enum i40e_fc_mode requested_mode ; }; struct i40e_ieee_ets_config { u8 willing ; u8 cbs ; u8 maxtcs ; u8 prioritytable[8U] ; u8 tcbwtable[8U] ; u8 tsatable[8U] ; }; struct i40e_ieee_ets_recommend { u8 prioritytable[8U] ; u8 tcbwtable[8U] ; u8 tsatable[8U] ; }; struct i40e_ieee_pfc_config { u8 willing ; u8 mbc ; u8 pfccap ; u8 pfcenable ; }; struct i40e_ieee_app_priority_table { u8 priority ; u8 selector ; u16 protocolid ; }; struct i40e_dcbx_config { u32 numapps ; struct i40e_ieee_ets_config etscfg ; struct i40e_ieee_ets_recommend etsrec ; struct i40e_ieee_pfc_config pfc ; struct i40e_ieee_app_priority_table app[32U] ; }; struct i40e_hw { u8 *hw_addr ; void *back ; struct i40e_phy_info phy ; struct i40e_mac_info mac ; struct i40e_bus_info bus ; struct i40e_nvm_info nvm ; struct i40e_fc_info fc ; u16 device_id ; u16 vendor_id ; u16 subsystem_device_id ; u16 subsystem_vendor_id ; u8 revision_id ; u8 port ; bool adapter_stopped ; struct i40e_hw_capabilities dev_caps ; struct i40e_hw_capabilities func_caps ; u16 fdir_shared_filter_count ; u8 pf_id ; u16 main_vsi_seid ; u16 partition_id ; u16 num_partitions ; u16 num_ports ; u16 numa_node ; struct i40e_adminq_info aq ; enum i40e_nvmupd_state nvmupd_state ; struct i40e_hmc_info hmc ; u16 dcbx_status ; struct i40e_dcbx_config local_dcbx_config ; struct i40e_dcbx_config remote_dcbx_config ; u32 debug_mask ; }; struct i40e_tx_desc { __le64 buffer_addr ; __le64 cmd_type_offset_bsz ; }; struct i40e_eth_stats { u64 rx_bytes ; u64 rx_unicast ; u64 rx_multicast ; u64 rx_broadcast ; u64 rx_discards ; u64 rx_unknown_protocol ; u64 tx_bytes ; u64 tx_unicast ; u64 tx_multicast ; u64 tx_broadcast ; u64 tx_discards ; u64 tx_errors ; }; enum i40e_virtchnl_ops { I40E_VIRTCHNL_OP_UNKNOWN = 0, I40E_VIRTCHNL_OP_VERSION = 1, I40E_VIRTCHNL_OP_RESET_VF = 2, I40E_VIRTCHNL_OP_GET_VF_RESOURCES = 3, I40E_VIRTCHNL_OP_CONFIG_TX_QUEUE = 4, I40E_VIRTCHNL_OP_CONFIG_RX_QUEUE = 5, I40E_VIRTCHNL_OP_CONFIG_VSI_QUEUES = 6, I40E_VIRTCHNL_OP_CONFIG_IRQ_MAP = 7, I40E_VIRTCHNL_OP_ENABLE_QUEUES = 8, I40E_VIRTCHNL_OP_DISABLE_QUEUES = 9, I40E_VIRTCHNL_OP_ADD_ETHER_ADDRESS = 10, I40E_VIRTCHNL_OP_DEL_ETHER_ADDRESS = 11, I40E_VIRTCHNL_OP_ADD_VLAN = 12, I40E_VIRTCHNL_OP_DEL_VLAN = 13, I40E_VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE = 14, I40E_VIRTCHNL_OP_GET_STATS = 15, I40E_VIRTCHNL_OP_FCOE = 16, I40E_VIRTCHNL_OP_CONFIG_RSS = 17, I40E_VIRTCHNL_OP_EVENT = 18 } ; struct i40e_virtchnl_msg { u8 pad[8U] ; enum i40e_virtchnl_ops v_opcode ; i40e_status v_retval ; u32 vfid ; }; struct i40e_virtchnl_vsi_resource { u16 vsi_id ; u16 num_queue_pairs ; enum i40e_vsi_type vsi_type ; u16 qset_handle ; u8 default_mac_addr[6U] ; }; struct i40e_virtchnl_vf_resource { u16 num_vsis ; u16 num_queue_pairs ; u16 max_vectors ; u16 max_mtu ; u32 vf_offload_flags ; u32 max_fcoe_contexts ; u32 max_fcoe_filters ; struct i40e_virtchnl_vsi_resource vsi_res[1U] ; }; union __anonunion____missing_field_name_345 { struct sk_buff *skb ; void *raw_buf ; }; struct i40e_tx_buffer { struct i40e_tx_desc *next_to_watch ; unsigned long time_stamp ; union __anonunion____missing_field_name_345 __annonCompField108 ; unsigned int bytecount ; unsigned short gso_segs ; dma_addr_t dma ; __u32 len ; u32 tx_flags ; }; struct i40e_rx_buffer { struct sk_buff *skb ; dma_addr_t dma ; struct page *page ; dma_addr_t page_dma ; unsigned int page_offset ; }; struct i40e_queue_stats { u64 packets ; u64 bytes ; }; struct i40e_tx_queue_stats { u64 restart_queue ; u64 tx_busy ; u64 tx_done_old ; }; struct i40e_rx_queue_stats { u64 non_eop_descs ; u64 alloc_page_failed ; u64 alloc_buff_failed ; }; union __anonunion____missing_field_name_346 { struct i40e_tx_buffer *tx_bi ; struct i40e_rx_buffer *rx_bi ; }; union __anonunion____missing_field_name_347 { struct i40e_tx_queue_stats tx_stats ; struct i40e_rx_queue_stats rx_stats ; }; struct i40e_vsi; struct i40e_q_vector; struct i40e_ring { struct i40e_ring *next ; void *desc ; struct device *dev ; struct net_device *netdev ; union __anonunion____missing_field_name_346 __annonCompField109 ; unsigned long state ; u16 queue_index ; u8 dcb_tc ; u8 *tail ; u16 count ; u16 reg_idx ; u16 rx_hdr_len ; u16 rx_buf_len ; u8 dtype ; u8 hsplit ; u16 next_to_use ; u16 next_to_clean ; u8 atr_sample_rate ; u8 atr_count ; bool ring_active ; bool arm_wb ; struct i40e_queue_stats stats ; struct u64_stats_sync syncp ; union __anonunion____missing_field_name_347 __annonCompField110 ; unsigned int size ; dma_addr_t dma ; struct i40e_vsi *vsi ; struct i40e_q_vector *q_vector ; struct callback_head rcu ; }; enum i40e_latency_range { I40E_LOWEST_LATENCY = 0, I40E_LOW_LATENCY = 1, I40E_BULK_LATENCY = 2 } ; struct i40e_ring_container { struct i40e_ring *ring ; unsigned int total_bytes ; unsigned int total_packets ; u16 count ; enum i40e_latency_range latency_range ; u16 itr ; }; struct i40evf_adapter; struct i40e_vsi { struct i40evf_adapter *back ; struct net_device *netdev ; unsigned long active_vlans[64U] ; u16 seid ; u16 id ; unsigned long state ; int base_vector ; u16 work_limit ; u16 rx_itr_setting ; u16 tx_itr_setting ; }; struct i40e_q_vector { struct i40evf_adapter *adapter ; struct i40e_vsi *vsi ; struct napi_struct napi ; unsigned long reg_idx ; struct i40e_ring_container rx ; struct i40e_ring_container tx ; u32 ring_mask ; u8 num_ringpairs ; int v_idx ; char name[25U] ; cpumask_var_t affinity_mask ; }; struct i40evf_mac_filter { struct list_head list ; u8 macaddr[6U] ; bool remove ; bool add ; }; struct i40evf_vlan_filter { struct list_head list ; u16 vlan ; bool remove ; bool add ; }; enum i40evf_state_t { __I40EVF_STARTUP = 0, __I40EVF_REMOVE = 1, __I40EVF_INIT_VERSION_CHECK = 2, __I40EVF_INIT_GET_RESOURCES = 3, __I40EVF_INIT_SW = 4, __I40EVF_RESETTING = 5, __I40EVF_DOWN = 6, __I40EVF_TESTING = 7, __I40EVF_RUNNING = 8 } ; struct i40evf_adapter { struct timer_list watchdog_timer ; struct work_struct reset_task ; struct work_struct adminq_task ; struct delayed_work init_task ; struct i40e_q_vector *q_vector[4U] ; struct list_head vlan_filter_list ; char misc_vector_name[25U] ; int num_active_queues ; struct i40e_ring *tx_rings[16U] ; u32 tx_timeout_count ; struct list_head mac_filter_list ; u32 tx_desc_count ; struct i40e_ring *rx_rings[16U] ; u64 hw_csum_rx_error ; u32 rx_desc_count ; int num_msix_vectors ; struct msix_entry *msix_entries ; u32 flags ; u32 aq_required ; u32 aq_pending ; struct net_device *netdev ; struct pci_dev *pdev ; struct net_device_stats net_stats ; struct i40e_hw hw ; enum i40evf_state_t state ; unsigned long crit_section ; struct work_struct watchdog_task ; bool netdev_registered ; bool link_up ; enum i40e_virtchnl_ops current_op ; struct i40e_virtchnl_vf_resource *vf_res ; struct i40e_virtchnl_vsi_resource *vsi_res ; u16 msg_enable ; struct i40e_eth_stats current_stats ; struct i40e_vsi vsi ; u32 aq_wait_count ; }; struct ldv_struct_dummy_resourceless_instance_2 { struct net_device *arg0 ; int signal_pending ; }; struct ldv_struct_free_irq_7 { int arg0 ; int signal_pending ; }; struct ldv_struct_interrupt_instance_0 { int arg0 ; enum irqreturn (*arg1)(int , void * ) ; enum irqreturn (*arg2)(int , void * ) ; void *arg3 ; int signal_pending ; }; struct ldv_struct_pci_instance_3 { struct pci_driver *arg0 ; int signal_pending ; }; struct ldv_struct_timer_instance_4 { struct timer_list *arg0 ; int signal_pending ; }; typedef int ldv_func_ret_type___1; typedef int ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; typedef int ldv_func_ret_type___4; typedef int ldv_func_ret_type___5; typedef int ldv_func_ret_type___6; typedef int ldv_func_ret_type___7; typedef int ldv_func_ret_type___8; typedef struct net_device *ldv_func_ret_type___9; typedef int ldv_func_ret_type___10; typedef int ldv_func_ret_type___11; enum hrtimer_restart; struct i40evf_stats { char stat_string[32U] ; int stat_offset ; }; enum hrtimer_restart; struct i40e_asq_cmd_details { void *callback ; u64 cookie ; u16 flags_ena ; u16 flags_dis ; bool async ; bool postpone ; }; enum i40e_hmc_obj_rx_hsplit_0 { I40E_HMC_OBJ_RX_HSPLIT_0_NO_SPLIT = 0, I40E_HMC_OBJ_RX_HSPLIT_0_SPLIT_L2 = 1, I40E_HMC_OBJ_RX_HSPLIT_0_SPLIT_IP = 2, I40E_HMC_OBJ_RX_HSPLIT_0_SPLIT_TCP_UDP = 4, I40E_HMC_OBJ_RX_HSPLIT_0_SPLIT_SCTP = 8 } ; struct i40e_virtchnl_version_info { u32 major ; u32 minor ; }; struct i40e_virtchnl_txq_info { u16 vsi_id ; u16 queue_id ; u16 ring_len ; u16 headwb_enabled ; u64 dma_ring_addr ; u64 dma_headwb_addr ; }; struct i40e_virtchnl_rxq_info { u16 vsi_id ; u16 queue_id ; u32 ring_len ; u16 hdr_size ; u16 splithdr_enabled ; u32 databuffer_size ; u32 max_pkt_size ; u64 dma_ring_addr ; enum i40e_hmc_obj_rx_hsplit_0 rx_split_pos ; }; struct i40e_virtchnl_queue_pair_info { struct i40e_virtchnl_txq_info txq ; struct i40e_virtchnl_rxq_info rxq ; }; struct i40e_virtchnl_vsi_queue_config_info { u16 vsi_id ; u16 num_queue_pairs ; struct i40e_virtchnl_queue_pair_info qpair[1U] ; }; struct i40e_virtchnl_vector_map { u16 vsi_id ; u16 vector_id ; u16 rxq_map ; u16 txq_map ; u16 rxitr_idx ; u16 txitr_idx ; }; struct i40e_virtchnl_irq_map_info { u16 num_vectors ; struct i40e_virtchnl_vector_map vecmap[1U] ; }; struct i40e_virtchnl_queue_select { u16 vsi_id ; u16 pad ; u32 rx_queues ; u32 tx_queues ; }; struct i40e_virtchnl_ether_addr { u8 addr[6U] ; u8 pad[2U] ; }; struct i40e_virtchnl_ether_addr_list { u16 vsi_id ; u16 num_elements ; struct i40e_virtchnl_ether_addr list[1U] ; }; struct i40e_virtchnl_vlan_filter_list { u16 vsi_id ; u16 num_elements ; u16 vlan_id[1U] ; }; struct i40e_virtchnl_promisc_info { u16 vsi_id ; u16 flags ; }; enum i40e_virtchnl_event_codes { I40E_VIRTCHNL_EVENT_UNKNOWN = 0, I40E_VIRTCHNL_EVENT_LINK_CHANGE = 1, I40E_VIRTCHNL_EVENT_RESET_IMPENDING = 2, I40E_VIRTCHNL_EVENT_PF_DRIVER_CLOSE = 3 } ; struct __anonstruct_link_event_344 { enum i40e_aq_link_speed link_speed ; bool link_status ; }; union __anonunion_event_data_343 { struct __anonstruct_link_event_344 link_event ; }; struct i40e_virtchnl_pf_event { enum i40e_virtchnl_event_codes event ; union __anonunion_event_data_343 event_data ; int severity ; }; typedef __u16 __sum16; enum hrtimer_restart; struct skb_frag_struct; typedef struct skb_frag_struct skb_frag_t; struct __anonstruct_page_235 { struct page *p ; }; struct skb_frag_struct { struct __anonstruct_page_235 page ; __u32 page_offset ; __u32 size ; }; struct skb_shared_hwtstamps { ktime_t hwtstamp ; }; struct skb_shared_info { unsigned char nr_frags ; __u8 tx_flags ; unsigned short gso_size ; unsigned short gso_segs ; unsigned short gso_type ; struct sk_buff *frag_list ; struct skb_shared_hwtstamps hwtstamps ; u32 tskey ; __be32 ip6_frag_id ; atomic_t dataref ; void *destructor_arg ; skb_frag_t frags[17U] ; }; enum pkt_hash_types { PKT_HASH_TYPE_NONE = 0, PKT_HASH_TYPE_L2 = 1, PKT_HASH_TYPE_L3 = 2, PKT_HASH_TYPE_L4 = 3 } ; enum gro_result { GRO_MERGED = 0, GRO_MERGED_FREE = 1, GRO_HELD = 2, GRO_NORMAL = 3, GRO_DROP = 4 } ; typedef enum gro_result gro_result_t; enum skb_free_reason { SKB_REASON_CONSUMED = 0, SKB_REASON_DROPPED = 1 } ; struct vlan_hdr { __be16 h_vlan_TCI ; __be16 h_vlan_encapsulated_proto ; }; struct iphdr { unsigned char ihl : 4 ; unsigned char version : 4 ; __u8 tos ; __be16 tot_len ; __be16 id ; __be16 frag_off ; __u8 ttl ; __u8 protocol ; __sum16 check ; __be32 saddr ; __be32 daddr ; }; struct tcphdr { __be16 source ; __be16 dest ; __be32 seq ; __be32 ack_seq ; unsigned char res1 : 4 ; unsigned char doff : 4 ; unsigned char fin : 1 ; unsigned char syn : 1 ; unsigned char rst : 1 ; unsigned char psh : 1 ; unsigned char ack : 1 ; unsigned char urg : 1 ; unsigned char ece : 1 ; unsigned char cwr : 1 ; __be16 window ; __sum16 check ; __be16 urg_ptr ; }; struct ipv6hdr { unsigned char priority : 4 ; unsigned char version : 4 ; __u8 flow_lbl[3U] ; __be16 payload_len ; __u8 nexthdr ; __u8 hop_limit ; struct in6_addr saddr ; struct in6_addr daddr ; }; struct udphdr { __be16 source ; __be16 dest ; __be16 len ; __sum16 check ; }; struct __anonstruct_read_332 { __le64 pkt_addr ; __le64 hdr_addr ; __le64 rsvd1 ; __le64 rsvd2 ; }; union __anonunion_mirr_fcoe_336 { __le16 mirroring_status ; __le16 fcoe_ctx_id ; }; struct __anonstruct_lo_dword_335 { union __anonunion_mirr_fcoe_336 mirr_fcoe ; __le16 l2tag1 ; }; union __anonunion_hi_dword_337 { __le32 rss ; __le32 fcoe_param ; __le32 fd_id ; }; struct __anonstruct_qword0_334 { struct __anonstruct_lo_dword_335 lo_dword ; union __anonunion_hi_dword_337 hi_dword ; }; struct __anonstruct_qword1_338 { __le64 status_error_len ; }; struct __anonstruct_qword2_339 { __le16 ext_status ; __le16 rsvd ; __le16 l2tag2_1 ; __le16 l2tag2_2 ; }; union __anonunion_lo_dword_341 { __le32 flex_bytes_lo ; __le32 pe_status ; }; union __anonunion_hi_dword_342 { __le32 flex_bytes_hi ; __le32 fd_id ; }; struct __anonstruct_qword3_340 { union __anonunion_lo_dword_341 lo_dword ; union __anonunion_hi_dword_342 hi_dword ; }; struct __anonstruct_wb_333 { struct __anonstruct_qword0_334 qword0 ; struct __anonstruct_qword1_338 qword1 ; struct __anonstruct_qword2_339 qword2 ; struct __anonstruct_qword3_340 qword3 ; }; union i40e_32byte_rx_desc { struct __anonstruct_read_332 read ; struct __anonstruct_wb_333 wb ; }; struct i40e_rx_ptype_decoded { unsigned char ptype ; unsigned char known : 1 ; unsigned char outer_ip : 1 ; unsigned char outer_ip_ver : 1 ; unsigned char outer_frag : 1 ; unsigned char tunnel_type : 3 ; unsigned char tunnel_end_prot : 2 ; unsigned char tunnel_end_frag : 1 ; unsigned char inner_prot : 4 ; unsigned char payload_layer : 3 ; }; struct i40e_tx_context_desc { __le32 tunneling_params ; __le16 l2tag2 ; __le16 rsvd ; __le64 type_cmd_tso_mss ; }; enum hrtimer_restart; struct i40e_aqc_queue_shutdown { __le32 driver_unloading ; u8 reserved[12U] ; }; enum i40e_debug_mask { I40E_DEBUG_INIT = 1, I40E_DEBUG_RELEASE = 2, I40E_DEBUG_LINK = 16, I40E_DEBUG_PHY = 32, I40E_DEBUG_HMC = 64, I40E_DEBUG_NVM = 128, I40E_DEBUG_LAN = 256, I40E_DEBUG_FLOW = 512, I40E_DEBUG_DCB = 1024, I40E_DEBUG_DIAG = 2048, I40E_DEBUG_FD = 4096, I40E_DEBUG_AQ_MESSAGE = 16777216, I40E_DEBUG_AQ_DESCRIPTOR = 33554432, I40E_DEBUG_AQ_DESC_BUFFER = 67108864, I40E_DEBUG_AQ_COMMAND = 100663296, I40E_DEBUG_AQ = 251658240, I40E_DEBUG_USER = 4026531840U, I40E_DEBUG_ALL = 4294967295U } ; enum hrtimer_restart; struct request; struct device_private { void *driver_data ; }; typedef short s16; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; struct kthread_worker *worker ; }; struct dma_chan; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool (*can_dma)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool idling ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; bool cur_msg_mapped ; struct completion xfer_completion ; size_t max_dma_len ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; struct dma_chan *dma_tx ; struct dma_chan *dma_rx ; void *dummy_rx ; void *dummy_tx ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; struct sg_table tx_sg ; struct sg_table rx_sg ; unsigned char cs_change : 1 ; unsigned char tx_nbits : 3 ; unsigned char rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned char is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; enum hrtimer_restart; struct ratelimit_state { raw_spinlock_t lock ; int interval ; int burst ; int printed ; int missed ; unsigned long begin ; }; typedef unsigned int mmc_pm_flag_t; struct mmc_card; struct sdio_func; typedef void sdio_irq_handler_t(struct sdio_func * ); struct sdio_func_tuple { struct sdio_func_tuple *next ; unsigned char code ; unsigned char size ; unsigned char data[0U] ; }; struct sdio_func { struct mmc_card *card ; struct device dev ; sdio_irq_handler_t *irq_handler ; unsigned int num ; unsigned char class ; unsigned short vendor ; unsigned short device ; unsigned int max_blksize ; unsigned int cur_blksize ; unsigned int enable_timeout ; unsigned int state ; u8 tmpbuf[4U] ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; }; enum led_brightness { LED_OFF = 0, LED_HALF = 127, LED_FULL = 255 } ; struct led_trigger; struct led_classdev { char const *name ; enum led_brightness brightness ; enum led_brightness max_brightness ; int flags ; void (*brightness_set)(struct led_classdev * , enum led_brightness ) ; int (*brightness_set_sync)(struct led_classdev * , enum led_brightness ) ; enum led_brightness (*brightness_get)(struct led_classdev * ) ; int (*blink_set)(struct led_classdev * , unsigned long * , unsigned long * ) ; struct device *dev ; struct attribute_group const **groups ; struct list_head node ; char const *default_trigger ; unsigned long blink_delay_on ; unsigned long blink_delay_off ; struct timer_list blink_timer ; int blink_brightness ; void (*flash_resume)(struct led_classdev * ) ; struct work_struct set_brightness_work ; int delayed_set_value ; struct rw_semaphore trigger_lock ; struct led_trigger *trigger ; struct list_head trig_list ; void *trigger_data ; bool activated ; struct mutex led_access ; }; struct led_trigger { char const *name ; void (*activate)(struct led_classdev * ) ; void (*deactivate)(struct led_classdev * ) ; rwlock_t leddev_list_lock ; struct list_head led_cdevs ; struct list_head next_trig ; }; struct fault_attr { unsigned long probability ; unsigned long interval ; atomic_t times ; atomic_t space ; unsigned long verbose ; u32 task_filter ; unsigned long stacktrace_depth ; unsigned long require_start ; unsigned long require_end ; unsigned long reject_start ; unsigned long reject_end ; unsigned long count ; struct ratelimit_state ratelimit_state ; struct dentry *dname ; }; struct mmc_data; struct mmc_request; struct mmc_command { u32 opcode ; u32 arg ; u32 resp[4U] ; unsigned int flags ; unsigned int retries ; unsigned int error ; unsigned int busy_timeout ; bool sanitize_busy ; struct mmc_data *data ; struct mmc_request *mrq ; }; struct mmc_data { unsigned int timeout_ns ; unsigned int timeout_clks ; unsigned int blksz ; unsigned int blocks ; unsigned int error ; unsigned int flags ; unsigned int bytes_xfered ; struct mmc_command *stop ; struct mmc_request *mrq ; unsigned int sg_len ; struct scatterlist *sg ; s32 host_cookie ; }; struct mmc_host; struct mmc_request { struct mmc_command *sbc ; struct mmc_command *cmd ; struct mmc_data *data ; struct mmc_command *stop ; struct completion completion ; void (*done)(struct mmc_request * ) ; struct mmc_host *host ; }; struct mmc_async_req; struct mmc_cid { unsigned int manfid ; char prod_name[8U] ; unsigned char prv ; unsigned int serial ; unsigned short oemid ; unsigned short year ; unsigned char hwrev ; unsigned char fwrev ; unsigned char month ; }; struct mmc_csd { unsigned char structure ; unsigned char mmca_vsn ; unsigned short cmdclass ; unsigned short tacc_clks ; unsigned int tacc_ns ; unsigned int c_size ; unsigned int r2w_factor ; unsigned int max_dtr ; unsigned int erase_size ; unsigned int read_blkbits ; unsigned int write_blkbits ; unsigned int capacity ; unsigned char read_partial : 1 ; unsigned char read_misalign : 1 ; unsigned char write_partial : 1 ; unsigned char write_misalign : 1 ; unsigned char dsr_imp : 1 ; }; struct mmc_ext_csd { u8 rev ; u8 erase_group_def ; u8 sec_feature_support ; u8 rel_sectors ; u8 rel_param ; u8 part_config ; u8 cache_ctrl ; u8 rst_n_function ; u8 max_packed_writes ; u8 max_packed_reads ; u8 packed_event_en ; unsigned int part_time ; unsigned int sa_timeout ; unsigned int generic_cmd6_time ; unsigned int power_off_longtime ; u8 power_off_notification ; unsigned int hs_max_dtr ; unsigned int hs200_max_dtr ; unsigned int sectors ; unsigned int hc_erase_size ; unsigned int hc_erase_timeout ; unsigned int sec_trim_mult ; unsigned int sec_erase_mult ; unsigned int trim_timeout ; bool partition_setting_completed ; unsigned long long enhanced_area_offset ; unsigned int enhanced_area_size ; unsigned int cache_size ; bool hpi_en ; bool hpi ; unsigned int hpi_cmd ; bool bkops ; bool man_bkops_en ; unsigned int data_sector_size ; unsigned int data_tag_unit_size ; unsigned int boot_ro_lock ; bool boot_ro_lockable ; bool ffu_capable ; u8 fwrev[8U] ; u8 raw_exception_status ; u8 raw_partition_support ; u8 raw_rpmb_size_mult ; u8 raw_erased_mem_count ; u8 raw_ext_csd_structure ; u8 raw_card_type ; u8 out_of_int_time ; u8 raw_pwr_cl_52_195 ; u8 raw_pwr_cl_26_195 ; u8 raw_pwr_cl_52_360 ; u8 raw_pwr_cl_26_360 ; u8 raw_s_a_timeout ; u8 raw_hc_erase_gap_size ; u8 raw_erase_timeout_mult ; u8 raw_hc_erase_grp_size ; u8 raw_sec_trim_mult ; u8 raw_sec_erase_mult ; u8 raw_sec_feature_support ; u8 raw_trim_mult ; u8 raw_pwr_cl_200_195 ; u8 raw_pwr_cl_200_360 ; u8 raw_pwr_cl_ddr_52_195 ; u8 raw_pwr_cl_ddr_52_360 ; u8 raw_pwr_cl_ddr_200_360 ; u8 raw_bkops_status ; u8 raw_sectors[4U] ; unsigned int feature_support ; }; struct sd_scr { unsigned char sda_vsn ; unsigned char sda_spec3 ; unsigned char bus_widths ; unsigned char cmds ; }; struct sd_ssr { unsigned int au ; unsigned int erase_timeout ; unsigned int erase_offset ; }; struct sd_switch_caps { unsigned int hs_max_dtr ; unsigned int uhs_max_dtr ; unsigned int sd3_bus_mode ; unsigned int sd3_drv_type ; unsigned int sd3_curr_limit ; }; struct sdio_cccr { unsigned int sdio_vsn ; unsigned int sd_vsn ; unsigned char multi_block : 1 ; unsigned char low_speed : 1 ; unsigned char wide_bus : 1 ; unsigned char high_power : 1 ; unsigned char high_speed : 1 ; unsigned char disable_cd : 1 ; }; struct sdio_cis { unsigned short vendor ; unsigned short device ; unsigned short blksize ; unsigned int max_dtr ; }; struct mmc_ios; struct mmc_part { unsigned int size ; unsigned int part_cfg ; char name[20U] ; bool force_ro ; unsigned int area_type ; }; struct mmc_card { struct mmc_host *host ; struct device dev ; u32 ocr ; unsigned int rca ; unsigned int type ; unsigned int state ; unsigned int quirks ; unsigned int erase_size ; unsigned int erase_shift ; unsigned int pref_erase ; u8 erased_byte ; u32 raw_cid[4U] ; u32 raw_csd[4U] ; u32 raw_scr[2U] ; struct mmc_cid cid ; struct mmc_csd csd ; struct mmc_ext_csd ext_csd ; struct sd_scr scr ; struct sd_ssr ssr ; struct sd_switch_caps sw_caps ; unsigned int sdio_funcs ; struct sdio_cccr cccr ; struct sdio_cis cis ; struct sdio_func *sdio_func[7U] ; struct sdio_func *sdio_single_irq ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; unsigned int sd_bus_speed ; unsigned int mmc_avail_type ; struct dentry *debugfs_root ; struct mmc_part part[7U] ; unsigned int nr_parts ; }; struct mmc_ios { unsigned int clock ; unsigned short vdd ; unsigned char bus_mode ; unsigned char chip_select ; unsigned char power_mode ; unsigned char bus_width ; unsigned char timing ; unsigned char signal_voltage ; unsigned char drv_type ; }; struct mmc_host_ops { int (*enable)(struct mmc_host * ) ; int (*disable)(struct mmc_host * ) ; void (*post_req)(struct mmc_host * , struct mmc_request * , int ) ; void (*pre_req)(struct mmc_host * , struct mmc_request * , bool ) ; void (*request)(struct mmc_host * , struct mmc_request * ) ; void (*set_ios)(struct mmc_host * , struct mmc_ios * ) ; int (*get_ro)(struct mmc_host * ) ; int (*get_cd)(struct mmc_host * ) ; void (*enable_sdio_irq)(struct mmc_host * , int ) ; void (*init_card)(struct mmc_host * , struct mmc_card * ) ; int (*start_signal_voltage_switch)(struct mmc_host * , struct mmc_ios * ) ; int (*card_busy)(struct mmc_host * ) ; int (*execute_tuning)(struct mmc_host * , u32 ) ; int (*prepare_hs400_tuning)(struct mmc_host * , struct mmc_ios * ) ; int (*select_drive_strength)(unsigned int , int , int ) ; void (*hw_reset)(struct mmc_host * ) ; void (*card_event)(struct mmc_host * ) ; int (*multi_io_quirk)(struct mmc_card * , unsigned int , int ) ; }; struct mmc_async_req { struct mmc_request *mrq ; int (*err_check)(struct mmc_card * , struct mmc_async_req * ) ; }; struct mmc_slot { int cd_irq ; void *handler_priv ; }; struct mmc_context_info { bool is_done_rcv ; bool is_new_req ; bool is_waiting_last_req ; wait_queue_head_t wait ; spinlock_t lock ; }; struct regulator; struct mmc_pwrseq; struct mmc_supply { struct regulator *vmmc ; struct regulator *vqmmc ; }; struct mmc_bus_ops; struct mmc_host { struct device *parent ; struct device class_dev ; int index ; struct mmc_host_ops const *ops ; struct mmc_pwrseq *pwrseq ; unsigned int f_min ; unsigned int f_max ; unsigned int f_init ; u32 ocr_avail ; u32 ocr_avail_sdio ; u32 ocr_avail_sd ; u32 ocr_avail_mmc ; struct notifier_block pm_notify ; u32 max_current_330 ; u32 max_current_300 ; u32 max_current_180 ; u32 caps ; u32 caps2 ; mmc_pm_flag_t pm_caps ; int clk_requests ; unsigned int clk_delay ; bool clk_gated ; struct delayed_work clk_gate_work ; unsigned int clk_old ; spinlock_t clk_lock ; struct mutex clk_gate_mutex ; struct device_attribute clkgate_delay_attr ; unsigned long clkgate_delay ; unsigned int max_seg_size ; unsigned short max_segs ; unsigned short unused ; unsigned int max_req_size ; unsigned int max_blk_size ; unsigned int max_blk_count ; unsigned int max_busy_timeout ; spinlock_t lock ; struct mmc_ios ios ; unsigned char use_spi_crc : 1 ; unsigned char claimed : 1 ; unsigned char bus_dead : 1 ; unsigned char removed : 1 ; int rescan_disable ; int rescan_entered ; bool trigger_card_event ; struct mmc_card *card ; wait_queue_head_t wq ; struct task_struct *claimer ; int claim_cnt ; struct delayed_work detect ; int detect_change ; struct mmc_slot slot ; struct mmc_bus_ops const *bus_ops ; unsigned int bus_refs ; unsigned int sdio_irqs ; struct task_struct *sdio_irq_thread ; bool sdio_irq_pending ; atomic_t sdio_irq_thread_abort ; mmc_pm_flag_t pm_flags ; struct led_trigger *led ; bool regulator_enabled ; struct mmc_supply supply ; struct dentry *debugfs_root ; struct mmc_async_req *areq ; struct mmc_context_info context_info ; struct fault_attr fail_mmc_request ; unsigned int actual_clock ; unsigned int slotno ; int dsr_req ; u32 dsr ; unsigned long private[0U] ; }; typedef int ldv_map; struct usb_device; struct urb; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; typedef _Bool ldv_set; void ldv__builtin_va_end(__builtin_va_list ) ; long ldv__builtin_expect(long exp , long c ) ; void ldv__builtin_va_start(__builtin_va_list ) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_irq_check_alloc_nonatomic(void) ; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) ; void ldv_linux_arch_io_check_final_state(void) ; void ldv_linux_block_genhd_check_final_state(void) ; void ldv_linux_block_queue_check_final_state(void) ; void ldv_linux_block_request_check_final_state(void) ; void *ldv_linux_drivers_base_class_create_class(void) ; int ldv_linux_drivers_base_class_register_class(void) ; void ldv_linux_drivers_base_class_check_final_state(void) ; void ldv_linux_fs_char_dev_check_final_state(void) ; void ldv_linux_fs_sysfs_check_final_state(void) ; void ldv_linux_kernel_locking_rwlock_check_final_state(void) ; void ldv_linux_kernel_module_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_check_final_state(void) ; void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) ; void ldv_linux_kernel_rcu_srcu_check_final_state(void) ; void ldv_linux_lib_find_bit_initialize(void) ; void ldv_linux_lib_idr_check_final_state(void) ; void ldv_linux_mmc_sdio_func_check_final_state(void) ; void ldv_linux_net_register_reset_error_counter(void) ; void ldv_linux_net_register_check_return_value_probe(int retval ) ; void ldv_linux_net_rtnetlink_check_final_state(void) ; void ldv_linux_net_sock_check_final_state(void) ; void ldv_linux_usb_coherent_check_final_state(void) ; void *ldv_linux_usb_gadget_create_class(void) ; int ldv_linux_usb_gadget_register_class(void) ; void ldv_linux_usb_gadget_check_final_state(void) ; void ldv_linux_usb_register_reset_error_counter(void) ; void ldv_linux_usb_register_check_return_value_probe(int retval ) ; void ldv_linux_usb_urb_check_final_state(void) ; void ldv_check_alloc_nonatomic(void) { { { ldv_linux_alloc_irq_check_alloc_nonatomic(); ldv_linux_alloc_usb_lock_check_alloc_nonatomic(); } return; } } void ldv_check_alloc_flags(gfp_t flags ) { { { ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return; } } void ldv_check_for_read_section(void) { { { ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_check_for_read_section(); ldv_linux_kernel_rcu_srcu_check_for_read_section(); } return; } } void *ldv_create_class(void) { void *res1 ; void *tmp ; void *res2 ; void *tmp___0 ; { { tmp = ldv_linux_drivers_base_class_create_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_create_class(); res2 = tmp___0; ldv_assume((unsigned long )res1 == (unsigned long )res2); } return (res1); } } int ldv_register_class(void) { int res1 ; int tmp ; int res2 ; int tmp___0 ; { { tmp = ldv_linux_drivers_base_class_register_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_register_class(); res2 = tmp___0; ldv_assume(res1 == res2); } return (res1); } } void *ldv_kzalloc(size_t size , gfp_t flags ) ; int ldv_undef_int(void) ; void *ldv_linux_arch_io_io_mem_remap(void) ; void ldv_linux_arch_io_io_mem_unmap(void) ; static void ldv_ldv_initialize_153(void) ; int ldv_post_init(int init_ret_val ) ; static int ldv_ldv_post_init_150(int ldv_func_arg1 ) ; extern void ldv_pre_probe(void) ; static void ldv_ldv_pre_probe_154(void) ; int ldv_post_probe(int probe_ret_val ) ; static int ldv_ldv_post_probe_155(int retval ) ; int ldv_filter_err_code(int ret_val ) ; int ldv_pre_register_netdev(void) ; static void ldv_ldv_check_final_state_151(void) ; static void ldv_ldv_check_final_state_152(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; void *ldv_malloc_unknown_size(void) ; extern void ldv_after_alloc(void * ) ; void *ldv_alloc_macro(gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } void ldv_linux_net_rtnetlink_past_rtnl_lock(void) ; void ldv_linux_net_rtnetlink_past_rtnl_unlock(void) ; extern struct module __this_module ; extern struct pv_irq_ops pv_irq_ops ; __inline static void set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static int test_and_set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("":); return (0); return (1); } } __inline static int constant_test_bit(long nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr >> 6)) >> ((int )nr & 63)) & 1); } } extern int printk(char const * , ...) ; extern void __dynamic_dev_dbg(struct _ddebug * , struct device const * , char const * , ...) ; extern int snprintf(char * , size_t , char const * , ...) ; extern int vsnprintf(char * , size_t , char const * , __va_list_tag * ) ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void __list_add(struct list_head * , struct list_head * , struct list_head * ) ; __inline static void list_add(struct list_head *new , struct list_head *head ) { { { __list_add(new, head, head->next); } return; } } extern void list_del(struct list_head * ) ; extern void __bad_percpu_size(void) ; extern void __bad_size_call_parameter(void) ; extern void *__memset(void * , int , size_t ) ; extern int __bitmap_weight(unsigned long const * , unsigned int ) ; __inline static int bitmap_weight(unsigned long const *src , unsigned int nbits ) { int tmp___0 ; { { tmp___0 = __bitmap_weight(src, nbits); } return (tmp___0); } } extern void warn_slowpath_null(char const * , int const ) ; extern int nr_cpu_ids ; extern struct cpumask const * const cpu_online_mask ; __inline static unsigned int cpumask_weight(struct cpumask const *srcp ) { int tmp ; { { tmp = bitmap_weight((unsigned long const *)(& srcp->bits), (unsigned int )nr_cpu_ids); } return ((unsigned int )tmp); } } __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"./arch/x86/include/asm/paravirt.h"), "i" (804), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; void ldv_linux_kernel_locking_spinlock_spin_lock__xmit_lock_of_netdev_queue(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock__xmit_lock_of_netdev_queue(void) ; void ldv_switch_to_interrupt_context(void) ; void ldv_switch_to_process_context(void) ; extern int __preempt_count ; __inline static int preempt_count(void) { int pfo_ret__ ; { { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret__): "m" (__preempt_count)); goto ldv_7183; case_2: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_7183; case_4: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_7183; case_8: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_7183; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_7183: ; return (pfo_ret__ & 2147483647); } } extern void __local_bh_disable_ip(unsigned long , unsigned int ) ; __inline static void local_bh_disable(void) { { { __local_bh_disable_ip((unsigned long )((void *)0), 512U); } return; } } extern void __local_bh_enable_ip(unsigned long , unsigned int ) ; __inline static void local_bh_enable(void) { { { __local_bh_enable_ip((unsigned long )((void *)0), 512U); } return; } } extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; __inline static void spin_lock(spinlock_t *lock ) { { { _raw_spin_lock(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_lock_109(spinlock_t *lock ) ; __inline static void spin_unlock(spinlock_t *lock ) { { { _raw_spin_unlock(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_unlock_112(spinlock_t *lock ) ; extern void kfree_call_rcu(struct callback_head * , void (*)(struct callback_head * ) ) ; extern unsigned long volatile jiffies ; extern unsigned long msecs_to_jiffies(unsigned int const ) ; extern void init_timer_key(struct timer_list * , unsigned int , char const * , struct lock_class_key * ) ; extern int mod_timer(struct timer_list * , unsigned long ) ; static int ldv_mod_timer_133(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static int ldv_mod_timer_134(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static int ldv_mod_timer_135(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static int ldv_mod_timer_136(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; extern int mod_timer_pending(struct timer_list * , unsigned long ) ; static int ldv_mod_timer_pending_132(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; extern int del_timer_sync(struct timer_list * ) ; static int ldv_del_timer_sync_145(struct timer_list *ldv_func_arg1 ) ; extern void delayed_work_timer_fn(unsigned long ) ; extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *system_wq ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; extern bool queue_delayed_work_on(int , struct workqueue_struct * , struct delayed_work * , unsigned long ) ; extern void flush_scheduled_work(void) ; extern bool cancel_work_sync(struct work_struct * ) ; extern bool cancel_delayed_work_sync(struct delayed_work * ) ; __inline static bool queue_work(struct workqueue_struct *wq , struct work_struct *work ) { bool tmp ; { { tmp = queue_work_on(8192, wq, work); } return (tmp); } } __inline static bool queue_delayed_work(struct workqueue_struct *wq , struct delayed_work *dwork , unsigned long delay ) { bool tmp ; { { tmp = queue_delayed_work_on(8192, wq, dwork, delay); } return (tmp); } } __inline static bool schedule_work(struct work_struct *work ) { bool tmp ; { { tmp = queue_work(system_wq, work); } return (tmp); } } __inline static bool schedule_delayed_work(struct delayed_work *dwork , unsigned long delay ) { bool tmp ; { { tmp = queue_delayed_work(system_wq, dwork, delay); } return (tmp); } } __inline static unsigned int readl(void const volatile *addr ) { unsigned int ret ; { __asm__ volatile ("movl %1,%0": "=r" (ret): "m" (*((unsigned int volatile *)addr)): "memory"); return (ret); } } __inline static void writel(unsigned int val , void volatile *addr ) { { __asm__ volatile ("movl %0,%1": : "r" (val), "m" (*((unsigned int volatile *)addr)): "memory"); return; } } __inline static void *ioremap(resource_size_t offset , unsigned long size ) ; static void ldv_iounmap_146(void volatile *ldv_func_arg1 ) ; extern int cpu_number ; __inline static void *dev_get_drvdata(struct device const *dev ) { { return ((void *)dev->driver_data); } } __inline static void dev_set_drvdata(struct device *dev , void *data ) { { dev->driver_data = data; return; } } extern void dev_err(struct device const * , char const * , ...) ; extern void dev_warn(struct device const * , char const * , ...) ; extern void _dev_info(struct device const * , char const * , ...) ; extern void __const_udelay(unsigned long ) ; extern void msleep(unsigned int ) ; extern void usleep_range(unsigned long , unsigned long ) ; extern void get_random_bytes(void * , int ) ; extern void kfree(void const * ) ; __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; __inline static int is_device_dma_capable(struct device *dev ) { { return ((unsigned long )dev->dma_mask != (unsigned long )((u64 *)0ULL) && *(dev->dma_mask) != 0ULL); } } extern void debug_dma_alloc_coherent(struct device * , size_t , dma_addr_t , void * ) ; extern void debug_dma_free_coherent(struct device * , size_t , void * , dma_addr_t ) ; extern struct device x86_dma_fallback_dev ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); } if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } extern int dma_supported(struct device * , u64 ) ; extern int dma_set_mask(struct device * , u64 ) ; __inline static unsigned long dma_alloc_coherent_mask(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; { dma_mask = 0UL; dma_mask = (unsigned long )dev->coherent_dma_mask; if (dma_mask == 0UL) { dma_mask = (int )gfp & 1 ? 16777215UL : 4294967295UL; } else { } return (dma_mask); } } __inline static gfp_t dma_alloc_coherent_gfp_flags(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; unsigned long tmp ; { { tmp = dma_alloc_coherent_mask(dev, gfp); dma_mask = tmp; } if ((unsigned long long )dma_mask <= 16777215ULL) { gfp = gfp | 1U; } else { } if ((unsigned long long )dma_mask <= 4294967295ULL && (gfp & 1U) == 0U) { gfp = gfp | 4U; } else { } return (gfp); } } __inline static void *dma_alloc_attrs(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t gfp , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; void *memory ; int tmp___0 ; gfp_t tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; gfp = gfp & 4294967288U; } if ((unsigned long )dev == (unsigned long )((struct device *)0)) { dev = & x86_dma_fallback_dev; } else { } { tmp___0 = is_device_dma_capable(dev); } if (tmp___0 == 0) { return ((void *)0); } else { } if ((unsigned long )ops->alloc == (unsigned long )((void *(*)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ))0)) { return ((void *)0); } else { } { tmp___1 = dma_alloc_coherent_gfp_flags(dev, gfp); memory = (*(ops->alloc))(dev, size, dma_handle, tmp___1, attrs); debug_dma_alloc_coherent(dev, size, *dma_handle, memory); } return (memory); } } __inline static void dma_free_attrs(struct device *dev , size_t size , void *vaddr , dma_addr_t bus , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int __ret_warn_on ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; _flags = arch_local_save_flags(); tmp___0 = arch_irqs_disabled_flags(_flags); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("./arch/x86/include/asm/dma-mapping.h", 166); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); debug_dma_free_coherent(dev, size, vaddr, bus); } if ((unsigned long )ops->free != (unsigned long )((void (*)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ))0)) { { (*(ops->free))(dev, size, vaddr, bus, attrs); } } else { } return; } } __inline static int dma_set_coherent_mask(struct device *dev , u64 mask ) { int tmp ; { { tmp = dma_supported(dev, mask); } if (tmp == 0) { return (-5); } else { } dev->coherent_dma_mask = mask; return (0); } } __inline static int dma_set_mask_and_coherent(struct device *dev , u64 mask ) { int rc ; int tmp ; { { tmp = dma_set_mask(dev, mask); rc = tmp; } if (rc == 0) { { dma_set_coherent_mask(dev, mask); } } else { } return (rc); } } extern void synchronize_irq(unsigned int ) ; extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); } return (tmp); } } __inline static int ldv_request_irq_126(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; __inline static int ldv_request_irq_128(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; static void ldv_free_irq_127(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_129(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_130(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_131(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; extern int irq_set_affinity_hint(unsigned int , struct cpumask const * ) ; extern void __napi_schedule(struct napi_struct * ) ; __inline static bool napi_disable_pending(struct napi_struct *n ) { int tmp ; { { tmp = constant_test_bit(1L, (unsigned long const volatile *)(& n->state)); } return (tmp != 0); } } __inline static bool napi_schedule_prep(struct napi_struct *n ) { bool tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = napi_disable_pending(n); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { tmp___1 = test_and_set_bit(0L, (unsigned long volatile *)(& n->state)); } if (tmp___1 == 0) { tmp___2 = 1; } else { tmp___2 = 0; } } else { tmp___2 = 0; } return ((bool )tmp___2); } } __inline static void napi_schedule(struct napi_struct *n ) { bool tmp ; { { tmp = napi_schedule_prep(n); } if ((int )tmp) { { __napi_schedule(n); } } else { } return; } } extern void napi_disable(struct napi_struct * ) ; __inline static void napi_enable(struct napi_struct *n ) { int tmp ; long tmp___0 ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& n->state)); tmp___0 = ldv__builtin_expect(tmp == 0, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/netdevice.h"), "i" (508), "i" (12UL)); __builtin_unreachable(); } } else { } { __asm__ volatile ("": : : "memory"); clear_bit(0L, (unsigned long volatile *)(& n->state)); } return; } } __inline static struct netdev_queue *netdev_get_tx_queue(struct net_device const *dev , unsigned int index ) { { return ((struct netdev_queue *)dev->_tx + (unsigned long )index); } } __inline static void *netdev_priv(struct net_device const *dev ) { { return ((void *)dev + 3264U); } } extern void netif_napi_add(struct net_device * , struct napi_struct * , int (*)(struct napi_struct * , int ) , int ) ; extern void netif_napi_del(struct napi_struct * ) ; extern void free_netdev(struct net_device * ) ; static void ldv_free_netdev_139(struct net_device *ldv_func_arg1 ) ; static void ldv_free_netdev_147(struct net_device *ldv_func_arg1 ) ; __inline static void netif_tx_stop_queue(struct netdev_queue *dev_queue ) { int __ret_warn_on ; long tmp ; long tmp___0 ; { { __ret_warn_on = (unsigned long )dev_queue == (unsigned long )((struct netdev_queue *)0); tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("include/linux/netdevice.h", 2547); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { printk("\016netif_stop_queue() cannot be called before register_netdev()\n"); } return; } else { } { set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_tx_stop_all_queues(struct net_device *dev ) { unsigned int i ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { i = 0U; goto ldv_43482; ldv_43481: { tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; netif_tx_stop_queue(txq); i = i + 1U; } ldv_43482: ; if (i < dev->num_tx_queues) { goto ldv_43481; } else { } return; } } __inline static bool netif_running(struct net_device const *dev ) { int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev->state)); } return (tmp != 0); } } extern void netif_carrier_off(struct net_device * ) ; extern void netif_device_detach(struct net_device * ) ; extern void netif_device_attach(struct net_device * ) ; __inline static void __netif_tx_lock(struct netdev_queue *txq , int cpu ) { { { ldv_spin_lock_109(& txq->_xmit_lock); txq->xmit_lock_owner = cpu; } return; } } __inline static void __netif_tx_unlock(struct netdev_queue *txq ) { { { txq->xmit_lock_owner = -1; ldv_spin_unlock_112(& txq->_xmit_lock); } return; } } __inline static void netif_tx_disable(struct net_device *dev ) { unsigned int i ; int cpu ; int pscr_ret__ ; void const *__vpp_verify ; int pfo_ret__ ; int pfo_ret_____0 ; int pfo_ret_____1 ; int pfo_ret_____2 ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { { local_bh_disable(); __vpp_verify = (void const *)0; } { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2___0; } else { } if (4UL == 4UL) { goto case_4___1; } else { } if (4UL == 8UL) { goto case_8___2; } else { } goto switch_default___3; case_1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___0; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1___0: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret__): "m" (cpu_number)); goto ldv_44023; case_2: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_44023; case_4: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_44023; case_8: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_44023; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break___0: /* CIL Label */ ; } ldv_44023: pscr_ret__ = pfo_ret__; goto ldv_44029; case_2___0: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___1; } else { } if (4UL == 2UL) { goto case_2___1; } else { } if (4UL == 4UL) { goto case_4___0; } else { } if (4UL == 8UL) { goto case_8___0; } else { } goto switch_default___0; case_1___1: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____0): "m" (cpu_number)); goto ldv_44033; case_2___1: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_44033; case_4___0: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_44033; case_8___0: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_44033; switch_default___0: /* CIL Label */ { __bad_percpu_size(); } switch_break___1: /* CIL Label */ ; } ldv_44033: pscr_ret__ = pfo_ret_____0; goto ldv_44029; case_4___1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___2; } else { } if (4UL == 2UL) { goto case_2___2; } else { } if (4UL == 4UL) { goto case_4___2; } else { } if (4UL == 8UL) { goto case_8___1; } else { } goto switch_default___1; case_1___2: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____1): "m" (cpu_number)); goto ldv_44042; case_2___2: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_44042; case_4___2: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_44042; case_8___1: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_44042; switch_default___1: /* CIL Label */ { __bad_percpu_size(); } switch_break___2: /* CIL Label */ ; } ldv_44042: pscr_ret__ = pfo_ret_____1; goto ldv_44029; case_8___2: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___3; } else { } if (4UL == 2UL) { goto case_2___3; } else { } if (4UL == 4UL) { goto case_4___3; } else { } if (4UL == 8UL) { goto case_8___3; } else { } goto switch_default___2; case_1___3: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____2): "m" (cpu_number)); goto ldv_44051; case_2___3: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_44051; case_4___3: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_44051; case_8___3: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_44051; switch_default___2: /* CIL Label */ { __bad_percpu_size(); } switch_break___3: /* CIL Label */ ; } ldv_44051: pscr_ret__ = pfo_ret_____2; goto ldv_44029; switch_default___3: /* CIL Label */ { __bad_size_call_parameter(); } goto ldv_44029; switch_break: /* CIL Label */ ; } ldv_44029: cpu = pscr_ret__; i = 0U; goto ldv_44061; ldv_44060: { tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; __netif_tx_lock(txq, cpu); netif_tx_stop_queue(txq); __netif_tx_unlock(txq); i = i + 1U; } ldv_44061: ; if (i < dev->num_tx_queues) { goto ldv_44060; } else { } { local_bh_enable(); } return; } } extern int register_netdev(struct net_device * ) ; static int ldv_register_netdev_137(struct net_device *ldv_func_arg1 ) ; extern void unregister_netdev(struct net_device * ) ; static void ldv_unregister_netdev_144(struct net_device *ldv_func_arg1 ) ; extern void netdev_rss_key_fill(void * , size_t ) ; extern int pci_bus_read_config_byte(struct pci_bus * , unsigned int , int , u8 * ) ; __inline static int pci_read_config_byte(struct pci_dev const *dev , int where , u8 *val ) { int tmp ; { { tmp = pci_bus_read_config_byte(dev->bus, dev->devfn, where, val); } return (tmp); } } extern int pci_enable_device(struct pci_dev * ) ; extern int pci_enable_device_mem(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pci_save_state(struct pci_dev * ) ; extern void pci_restore_state(struct pci_dev * ) ; extern int pci_set_power_state(struct pci_dev * , pci_power_t ) ; extern int pci_request_regions(struct pci_dev * , char const * ) ; extern void pci_release_regions(struct pci_dev * ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; static int ldv___pci_register_driver_148(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; static void ldv_pci_unregister_driver_149(struct pci_driver *ldv_func_arg1 ) ; extern void pci_disable_msix(struct pci_dev * ) ; extern int pci_enable_msix_range(struct pci_dev * , struct msix_entry * , int , int ) ; __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { { tmp = dev_get_drvdata((struct device const *)(& pdev->dev)); } return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { { dev_set_drvdata(& pdev->dev, data); } return; } } extern int pci_enable_pcie_error_reporting(struct pci_dev * ) ; extern int pci_disable_pcie_error_reporting(struct pci_dev * ) ; extern int eth_validate_addr(struct net_device * ) ; extern struct net_device *alloc_etherdev_mqs(int , unsigned int , unsigned int ) ; static struct net_device *ldv_alloc_etherdev_mqs_138(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) ; __inline static bool is_zero_ether_addr(u8 const *addr ) { { return (((unsigned int )*((u32 const *)addr) | (unsigned int )*((u16 const *)addr + 4U)) == 0U); } } __inline static bool is_multicast_ether_addr(u8 const *addr ) { { return (((int )*addr & 1) != 0); } } __inline static bool is_valid_ether_addr(u8 const *addr ) { bool tmp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; { { tmp = is_multicast_ether_addr(addr); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { tmp___1 = is_zero_ether_addr(addr); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { tmp___3 = 1; } else { tmp___3 = 0; } } else { tmp___3 = 0; } return ((bool )tmp___3); } } __inline static void eth_random_addr(u8 *addr ) { { { get_random_bytes((void *)addr, 6); *addr = (unsigned int )*addr & 254U; *addr = (u8 )((unsigned int )*addr | 2U); } return; } } __inline static void ether_addr_copy(u8 *dst , u8 const *src ) { { *((u32 *)dst) = *((u32 const *)src); *((u16 *)dst + 4U) = *((u16 const *)src + 4U); return; } } __inline static bool ether_addr_equal(u8 const *addr1 , u8 const *addr2 ) { u32 fold ; { fold = ((unsigned int )*((u32 const *)addr1) ^ (unsigned int )*((u32 const *)addr2)) | (unsigned int )((int )((unsigned short )*((u16 const *)addr1 + 4U)) ^ (int )((unsigned short )*((u16 const *)addr2 + 4U))); return (fold == 0U); } } extern void rtnl_lock(void) ; static void ldv_rtnl_lock_140(void) ; static void ldv_rtnl_lock_142(void) ; extern void rtnl_unlock(void) ; static void ldv_rtnl_unlock_141(void) ; static void ldv_rtnl_unlock_143(void) ; void i40evf_debug_d(void *hw , u32 mask , char *fmt_str , ...) ; void i40evf_alloc_rx_buffers(struct i40e_ring *rx_ring , u16 cleaned_count ) ; netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb , struct net_device *netdev ) ; int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring ) ; int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring ) ; void i40evf_free_tx_resources(struct i40e_ring *tx_ring ) ; void i40evf_free_rx_resources(struct i40e_ring *rx_ring ) ; int i40evf_napi_poll(struct napi_struct *napi , int budget ) ; char i40evf_driver_name[7U] ; char const i40evf_driver_version[6U] ; void i40evf_down(struct i40evf_adapter *adapter ) ; void i40evf_reinit_locked(struct i40evf_adapter *adapter ) ; void i40evf_set_ethtool_ops(struct net_device *netdev ) ; void i40evf_reset_interrupt_capability(struct i40evf_adapter *adapter ) ; int i40evf_init_interrupt_scheme(struct i40evf_adapter *adapter ) ; void i40evf_irq_enable_queues(struct i40evf_adapter *adapter , u32 mask ) ; int i40evf_send_api_ver(struct i40evf_adapter *adapter ) ; int i40evf_verify_api_ver(struct i40evf_adapter *adapter ) ; int i40evf_send_vf_config_msg(struct i40evf_adapter *adapter ) ; int i40evf_get_vf_config(struct i40evf_adapter *adapter ) ; void i40evf_irq_enable(struct i40evf_adapter *adapter , bool flush ) ; void i40evf_configure_queues(struct i40evf_adapter *adapter ) ; void i40evf_enable_queues(struct i40evf_adapter *adapter ) ; void i40evf_disable_queues(struct i40evf_adapter *adapter ) ; void i40evf_map_queues(struct i40evf_adapter *adapter ) ; void i40evf_add_ether_addrs(struct i40evf_adapter *adapter ) ; void i40evf_del_ether_addrs(struct i40evf_adapter *adapter ) ; void i40evf_add_vlans(struct i40evf_adapter *adapter ) ; void i40evf_del_vlans(struct i40evf_adapter *adapter ) ; void i40evf_request_stats(struct i40evf_adapter *adapter ) ; void i40evf_request_reset(struct i40evf_adapter *adapter ) ; void i40evf_virtchnl_completion(struct i40evf_adapter *adapter , enum i40e_virtchnl_ops v_opcode , i40e_status v_retval , u8 *msg , u16 msglen ) ; i40e_status i40evf_allocate_dma_mem_d(struct i40e_hw *hw , struct i40e_dma_mem *mem , u64 size , u32 alignment ) ; i40e_status i40evf_free_dma_mem_d(struct i40e_hw *hw , struct i40e_dma_mem *mem ) ; i40e_status i40evf_allocate_virt_mem_d(struct i40e_hw *hw , struct i40e_virt_mem *mem , u32 size ) ; i40e_status i40evf_free_virt_mem_d(struct i40e_hw *hw , struct i40e_virt_mem *mem ) ; i40e_status i40evf_init_adminq(struct i40e_hw *hw ) ; i40e_status i40evf_shutdown_adminq(struct i40e_hw *hw ) ; i40e_status i40evf_clean_arq_element(struct i40e_hw *hw , struct i40e_arq_event_info *e , u16 *pending ) ; bool i40evf_asq_done(struct i40e_hw *hw ) ; i40e_status i40e_set_mac_type(struct i40e_hw *hw ) ; static int i40evf_setup_all_tx_resources(struct i40evf_adapter *adapter ) ; static int i40evf_setup_all_rx_resources(struct i40evf_adapter *adapter ) ; static void i40evf_free_all_tx_resources(struct i40evf_adapter *adapter ) ; static void i40evf_free_all_rx_resources(struct i40evf_adapter *adapter ) ; static int i40evf_close(struct net_device *netdev ) ; char i40evf_driver_name[7U] = { 'i', '4', '0', 'e', 'v', 'f', '\000'}; static char const i40evf_driver_string[52U] = { 'I', 'n', 't', 'e', 'l', '(', 'R', ')', ' ', 'X', 'L', '7', '1', '0', '/', 'X', '7', '1', '0', ' ', 'V', 'i', 'r', 't', 'u', 'a', 'l', ' ', 'F', 'u', 'n', 'c', 't', 'i', 'o', 'n', ' ', 'N', 'e', 't', 'w', 'o', 'r', 'k', ' ', 'D', 'r', 'i', 'v', 'e', 'r', '\000'}; char const i40evf_driver_version[6U] = { '1', '.', '2', '.', '0', '\000'}; static char const i40evf_copyright[45U] = { 'C', 'o', 'p', 'y', 'r', 'i', 'g', 'h', 't', ' ', '(', 'c', ')', ' ', '2', '0', '1', '3', ' ', '-', ' ', '2', '0', '1', '4', ' ', 'I', 'n', 't', 'e', 'l', ' ', 'C', 'o', 'r', 'p', 'o', 'r', 'a', 't', 'i', 'o', 'n', '.', '\000'}; static struct pci_device_id const i40evf_pci_tbl[2U] = { {32902U, 5452U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {0U, 0U, 0U, 0U, 0U, 0U, 0UL}}; struct pci_device_id const __mod_pci__i40evf_pci_tbl_device_table[2U] ; i40e_status i40evf_allocate_dma_mem_d(struct i40e_hw *hw , struct i40e_dma_mem *mem , u64 size , u32 alignment ) { struct i40evf_adapter *adapter ; { adapter = (struct i40evf_adapter *)hw->back; if ((unsigned long )mem == (unsigned long )((struct i40e_dma_mem *)0)) { return (-5); } else { } { mem->size = (((u32 )size + alignment) - 1U) & - alignment; mem->va = dma_alloc_attrs(& (adapter->pdev)->dev, (size_t )mem->size, & mem->pa, 208U, (struct dma_attrs *)0); } if ((unsigned long )mem->va != (unsigned long )((void *)0)) { return (0); } else { return (-18); } } } i40e_status i40evf_free_dma_mem_d(struct i40e_hw *hw , struct i40e_dma_mem *mem ) { struct i40evf_adapter *adapter ; { adapter = (struct i40evf_adapter *)hw->back; if ((unsigned long )mem == (unsigned long )((struct i40e_dma_mem *)0) || (unsigned long )mem->va == (unsigned long )((void *)0)) { return (-5); } else { } { dma_free_attrs(& (adapter->pdev)->dev, (size_t )mem->size, mem->va, mem->pa, (struct dma_attrs *)0); } return (0); } } i40e_status i40evf_allocate_virt_mem_d(struct i40e_hw *hw , struct i40e_virt_mem *mem , u32 size ) { { if ((unsigned long )mem == (unsigned long )((struct i40e_virt_mem *)0)) { return (-5); } else { } { mem->size = size; mem->va = kzalloc((size_t )size, 208U); } if ((unsigned long )mem->va != (unsigned long )((void *)0)) { return (0); } else { return (-18); } } } i40e_status i40evf_free_virt_mem_d(struct i40e_hw *hw , struct i40e_virt_mem *mem ) { { if ((unsigned long )mem == (unsigned long )((struct i40e_virt_mem *)0)) { return (-5); } else { } { kfree((void const *)mem->va); } return (0); } } void i40evf_debug_d(void *hw , u32 mask , char *fmt_str , ...) { char buf[512U] ; va_list argptr ; { if ((mask & ((struct i40e_hw *)hw)->debug_mask) == 0U) { return; } else { } { ldv__builtin_va_start((__va_list_tag *)(& argptr)); vsnprintf((char *)(& buf), 512UL, (char const *)fmt_str, (__va_list_tag *)(& argptr)); ldv__builtin_va_end((__va_list_tag *)(& argptr)); printk("\016%s", (char *)(& buf)); } return; } } static void i40evf_tx_timeout(struct net_device *netdev ) { struct i40evf_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct i40evf_adapter *)tmp; adapter->tx_timeout_count = adapter->tx_timeout_count + 1U; } if ((adapter->flags & 512U) == 0U) { { adapter->flags = adapter->flags | 1024U; schedule_work(& adapter->reset_task); } } else { } return; } } static void i40evf_misc_irq_disable(struct i40evf_adapter *adapter ) { struct i40e_hw *hw ; { { hw = & adapter->hw; writel(0U, (void volatile *)hw->hw_addr + 23552U); readl((void const volatile *)hw->hw_addr + 34816U); synchronize_irq((adapter->msix_entries)->vector); } return; } } static void i40evf_misc_irq_enable(struct i40evf_adapter *adapter ) { struct i40e_hw *hw ; { { hw = & adapter->hw; writel(25U, (void volatile *)hw->hw_addr + 23552U); writel(1073741824U, (void volatile *)hw->hw_addr + 20480U); readl((void const volatile *)hw->hw_addr + 34816U); } return; } } static void i40evf_irq_disable(struct i40evf_adapter *adapter ) { int i ; struct i40e_hw *hw ; { hw = & adapter->hw; if ((unsigned long )adapter->msix_entries == (unsigned long )((struct msix_entry *)0)) { return; } else { } i = 1; goto ldv_57661; ldv_57660: { writel(0U, (void volatile *)hw->hw_addr + (unsigned long )((i + 3583) * 4)); synchronize_irq((adapter->msix_entries + (unsigned long )i)->vector); i = i + 1; } ldv_57661: ; if (i < adapter->num_msix_vectors) { goto ldv_57660; } else { } { readl((void const volatile *)hw->hw_addr + 34816U); } return; } } void i40evf_irq_enable_queues(struct i40evf_adapter *adapter , u32 mask ) { struct i40e_hw *hw ; int i ; { hw = & adapter->hw; i = 1; goto ldv_57670; ldv_57669: ; if ((mask & (u32 )(1 << (i + -1))) != 0U) { { writel(3U, (void volatile *)hw->hw_addr + (unsigned long )((i + 3583) * 4)); } } else { } i = i + 1; ldv_57670: ; if (i < adapter->num_msix_vectors) { goto ldv_57669; } else { } return; } } static void i40evf_fire_sw_int(struct i40evf_adapter *adapter , u32 mask ) { struct i40e_hw *hw ; int i ; uint32_t dyn_ctl ; { hw = & adapter->hw; if ((int )mask & 1) { { dyn_ctl = readl((void const volatile *)hw->hw_addr + 23552U); dyn_ctl = dyn_ctl | 6U; writel(dyn_ctl, (void volatile *)hw->hw_addr + 23552U); } } else { } i = 1; goto ldv_57680; ldv_57679: ; if ((mask & (u32 )(1 << i)) != 0U) { { dyn_ctl = readl((void const volatile *)hw->hw_addr + (unsigned long )((i + 3583) * 4)); dyn_ctl = dyn_ctl | 6U; writel(dyn_ctl, (void volatile *)hw->hw_addr + (unsigned long )((i + 3583) * 4)); } } else { } i = i + 1; ldv_57680: ; if (i < adapter->num_msix_vectors) { goto ldv_57679; } else { } return; } } void i40evf_irq_enable(struct i40evf_adapter *adapter , bool flush ) { struct i40e_hw *hw ; { { hw = & adapter->hw; i40evf_misc_irq_enable(adapter); i40evf_irq_enable_queues(adapter, 4294967295U); } if ((int )flush) { { readl((void const volatile *)hw->hw_addr + 34816U); } } else { } return; } } static irqreturn_t i40evf_msix_aq(int irq , void *data ) { struct net_device *netdev ; struct i40evf_adapter *adapter ; void *tmp ; struct i40e_hw *hw ; u32 val ; u32 ena_mask ; { { netdev = (struct net_device *)data; tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct i40evf_adapter *)tmp; hw = & adapter->hw; val = readl((void const volatile *)hw->hw_addr + 18432U); ena_mask = readl((void const volatile *)hw->hw_addr + 20480U); val = readl((void const volatile *)hw->hw_addr + 23552U); val = val | 2U; writel(val, (void volatile *)hw->hw_addr + 23552U); schedule_work(& adapter->adminq_task); } return (1); } } static irqreturn_t i40evf_msix_clean_rings(int irq , void *data ) { struct i40e_q_vector *q_vector ; { q_vector = (struct i40e_q_vector *)data; if ((unsigned long )q_vector->tx.ring == (unsigned long )((struct i40e_ring *)0) && (unsigned long )q_vector->rx.ring == (unsigned long )((struct i40e_ring *)0)) { return (1); } else { } { napi_schedule(& q_vector->napi); } return (1); } } static void i40evf_map_vector_to_rxq(struct i40evf_adapter *adapter , int v_idx , int r_idx ) { struct i40e_q_vector *q_vector ; struct i40e_ring *rx_ring ; { q_vector = adapter->q_vector[v_idx]; rx_ring = adapter->rx_rings[r_idx]; rx_ring->q_vector = q_vector; rx_ring->next = q_vector->rx.ring; rx_ring->vsi = & adapter->vsi; q_vector->rx.ring = rx_ring; q_vector->rx.count = (u16 )((int )q_vector->rx.count + 1); q_vector->rx.latency_range = 1; return; } } static void i40evf_map_vector_to_txq(struct i40evf_adapter *adapter , int v_idx , int t_idx ) { struct i40e_q_vector *q_vector ; struct i40e_ring *tx_ring ; { q_vector = adapter->q_vector[v_idx]; tx_ring = adapter->tx_rings[t_idx]; tx_ring->q_vector = q_vector; tx_ring->next = q_vector->tx.ring; tx_ring->vsi = & adapter->vsi; q_vector->tx.ring = tx_ring; q_vector->tx.count = (u16 )((int )q_vector->tx.count + 1); q_vector->tx.latency_range = 1; q_vector->num_ringpairs = (u8 )((int )q_vector->num_ringpairs + 1); q_vector->ring_mask = q_vector->ring_mask | (u32 )(1 << t_idx); return; } } static int i40evf_map_rings_to_vectors(struct i40evf_adapter *adapter ) { int q_vectors ; int v_start ; int rxr_idx ; int txr_idx ; int rxr_remaining ; int txr_remaining ; int i ; int j ; int rqpv ; int tqpv ; int err ; { v_start = 0; rxr_idx = 0; txr_idx = 0; rxr_remaining = adapter->num_active_queues; txr_remaining = adapter->num_active_queues; err = 0; q_vectors = adapter->num_msix_vectors + -1; if (q_vectors == rxr_remaining * 2) { goto ldv_57730; ldv_57729: { i40evf_map_vector_to_rxq(adapter, v_start, rxr_idx); v_start = v_start + 1; rxr_idx = rxr_idx + 1; } ldv_57730: ; if (rxr_idx < rxr_remaining) { goto ldv_57729; } else { } goto ldv_57733; ldv_57732: { i40evf_map_vector_to_txq(adapter, v_start, txr_idx); v_start = v_start + 1; txr_idx = txr_idx + 1; } ldv_57733: ; if (txr_idx < txr_remaining) { goto ldv_57732; } else { } goto out; } else { } i = v_start; goto ldv_57740; ldv_57739: rqpv = ((rxr_remaining + (q_vectors - i)) + -1) / (q_vectors - i); j = 0; goto ldv_57737; ldv_57736: { i40evf_map_vector_to_rxq(adapter, i, rxr_idx); rxr_idx = rxr_idx + 1; rxr_remaining = rxr_remaining - 1; j = j + 1; } ldv_57737: ; if (j < rqpv) { goto ldv_57736; } else { } i = i + 1; ldv_57740: ; if (i < q_vectors) { goto ldv_57739; } else { } i = v_start; goto ldv_57746; ldv_57745: tqpv = ((txr_remaining + (q_vectors - i)) + -1) / (q_vectors - i); j = 0; goto ldv_57743; ldv_57742: { i40evf_map_vector_to_txq(adapter, i, txr_idx); txr_idx = txr_idx + 1; txr_remaining = txr_remaining - 1; j = j + 1; } ldv_57743: ; if (j < tqpv) { goto ldv_57742; } else { } i = i + 1; ldv_57746: ; if (i < q_vectors) { goto ldv_57745; } else { } out: adapter->aq_required = adapter->aq_required | 128U; return (err); } } static int i40evf_request_traffic_irqs(struct i40evf_adapter *adapter , char *basename ) { int vector ; int err ; int q_vectors ; int rx_int_idx ; int tx_int_idx ; struct i40e_q_vector *q_vector ; int tmp ; int tmp___0 ; int tmp___1 ; { { rx_int_idx = 0; tx_int_idx = 0; i40evf_irq_disable(adapter); q_vectors = adapter->num_msix_vectors + -1; vector = 0; } goto ldv_57762; ldv_57761: q_vector = adapter->q_vector[vector]; if ((unsigned long )q_vector->tx.ring != (unsigned long )((struct i40e_ring *)0) && (unsigned long )q_vector->rx.ring != (unsigned long )((struct i40e_ring *)0)) { { tmp = rx_int_idx; rx_int_idx = rx_int_idx + 1; snprintf((char *)(& q_vector->name), 24UL, "i40evf-%s-%s-%d", basename, (char *)"TxRx", tmp); tx_int_idx = tx_int_idx + 1; } } else if ((unsigned long )q_vector->rx.ring != (unsigned long )((struct i40e_ring *)0)) { { tmp___0 = rx_int_idx; rx_int_idx = rx_int_idx + 1; snprintf((char *)(& q_vector->name), 24UL, "i40evf-%s-%s-%d", basename, (char *)"rx", tmp___0); } } else if ((unsigned long )q_vector->tx.ring != (unsigned long )((struct i40e_ring *)0)) { { tmp___1 = tx_int_idx; tx_int_idx = tx_int_idx + 1; snprintf((char *)(& q_vector->name), 24UL, "i40evf-%s-%s-%d", basename, (char *)"tx", tmp___1); } } else { goto ldv_57758; } { err = ldv_request_irq_126((adapter->msix_entries + ((unsigned long )vector + 1UL))->vector, & i40evf_msix_clean_rings, 0UL, (char const *)(& q_vector->name), (void *)q_vector); } if (err != 0) { { _dev_info((struct device const *)(& (adapter->pdev)->dev), "%s: request_irq failed, error: %d\n", "i40evf_request_traffic_irqs", err); } goto free_queue_irqs; } else { } { irq_set_affinity_hint((adapter->msix_entries + ((unsigned long )vector + 1UL))->vector, (struct cpumask const *)q_vector->affinity_mask); } ldv_57758: vector = vector + 1; ldv_57762: ; if (vector < q_vectors) { goto ldv_57761; } else { } return (0); free_queue_irqs: ; goto ldv_57765; ldv_57764: { vector = vector - 1; irq_set_affinity_hint((adapter->msix_entries + ((unsigned long )vector + 1UL))->vector, (struct cpumask const *)0); ldv_free_irq_127((adapter->msix_entries + ((unsigned long )vector + 1UL))->vector, (void *)adapter->q_vector[vector]); } ldv_57765: ; if (vector != 0) { goto ldv_57764; } else { } return (err); } } static int i40evf_request_misc_irq(struct i40evf_adapter *adapter ) { struct net_device *netdev ; int err ; { { netdev = adapter->netdev; snprintf((char *)(& adapter->misc_vector_name), 24UL, "i40evf:mbx"); err = ldv_request_irq_128((adapter->msix_entries)->vector, & i40evf_msix_aq, 0UL, (char const *)(& adapter->misc_vector_name), (void *)netdev); } if (err != 0) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "request_irq for %s failed: %d\n", (char *)(& adapter->misc_vector_name), err); ldv_free_irq_129((adapter->msix_entries)->vector, (void *)netdev); } } else { } return (err); } } static void i40evf_free_traffic_irqs(struct i40evf_adapter *adapter ) { int i ; int q_vectors ; { q_vectors = adapter->num_msix_vectors + -1; i = 0; goto ldv_57778; ldv_57777: { irq_set_affinity_hint((adapter->msix_entries + ((unsigned long )i + 1UL))->vector, (struct cpumask const *)0); ldv_free_irq_130((adapter->msix_entries + ((unsigned long )i + 1UL))->vector, (void *)adapter->q_vector[i]); i = i + 1; } ldv_57778: ; if (i < q_vectors) { goto ldv_57777; } else { } return; } } static void i40evf_free_misc_irq(struct i40evf_adapter *adapter ) { struct net_device *netdev ; { { netdev = adapter->netdev; ldv_free_irq_131((adapter->msix_entries)->vector, (void *)netdev); } return; } } static void i40evf_configure_tx(struct i40evf_adapter *adapter ) { struct i40e_hw *hw ; int i ; { hw = & adapter->hw; i = 0; goto ldv_57790; ldv_57789: (adapter->tx_rings[i])->tail = hw->hw_addr + (unsigned long )(i * 4); i = i + 1; ldv_57790: ; if (i < adapter->num_active_queues) { goto ldv_57789; } else { } return; } } static void i40evf_configure_rx(struct i40evf_adapter *adapter ) { struct i40e_hw *hw ; struct net_device *netdev ; int max_frame ; int i ; int rx_buf_len ; { hw = & adapter->hw; netdev = adapter->netdev; max_frame = (int )(netdev->mtu + 18U); adapter->flags = adapter->flags & 4294967291U; adapter->flags = adapter->flags | 2U; if (netdev->mtu > 1500U) { if ((adapter->flags & 4U) != 0U) { adapter->flags = adapter->flags | 8U; } else { adapter->flags = adapter->flags & 4294967287U; } } else if ((adapter->flags & 2U) != 0U) { adapter->flags = adapter->flags & 4294967287U; } else { adapter->flags = adapter->flags | 8U; } if ((adapter->flags & 8U) != 0U) { rx_buf_len = 512; } else if (netdev->mtu <= 1500U) { rx_buf_len = 2048; } else { rx_buf_len = (max_frame + 1023) & -1024; } i = 0; goto ldv_57801; ldv_57800: (adapter->rx_rings[i])->tail = hw->hw_addr + (unsigned long )((i + 2048) * 4); (adapter->rx_rings[i])->rx_buf_len = (u16 )rx_buf_len; i = i + 1; ldv_57801: ; if (i < adapter->num_active_queues) { goto ldv_57800; } else { } return; } } static struct i40evf_vlan_filter *i40evf_find_vlan(struct i40evf_adapter *adapter , u16 vlan ) { struct i40evf_vlan_filter *f ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { __mptr = (struct list_head const *)adapter->vlan_filter_list.next; f = (struct i40evf_vlan_filter *)__mptr; goto ldv_57813; ldv_57812: ; if ((int )vlan == (int )f->vlan) { return (f); } else { } __mptr___0 = (struct list_head const *)f->list.next; f = (struct i40evf_vlan_filter *)__mptr___0; ldv_57813: ; if ((unsigned long )(& f->list) != (unsigned long )(& adapter->vlan_filter_list)) { goto ldv_57812; } else { } return ((struct i40evf_vlan_filter *)0); } } static struct i40evf_vlan_filter *i40evf_add_vlan(struct i40evf_adapter *adapter , u16 vlan ) { struct i40evf_vlan_filter *f ; void *tmp ; { { f = i40evf_find_vlan(adapter, (int )vlan); } if ((unsigned long )f == (unsigned long )((struct i40evf_vlan_filter *)0)) { { tmp = kzalloc(24UL, 32U); f = (struct i40evf_vlan_filter *)tmp; } if ((unsigned long )f == (unsigned long )((struct i40evf_vlan_filter *)0)) { return ((struct i40evf_vlan_filter *)0); } else { } { f->vlan = vlan; INIT_LIST_HEAD(& f->list); list_add(& f->list, & adapter->vlan_filter_list); f->add = 1; adapter->aq_required = adapter->aq_required | 8U; } } else { } return (f); } } static void i40evf_del_vlan(struct i40evf_adapter *adapter , u16 vlan ) { struct i40evf_vlan_filter *f ; { { f = i40evf_find_vlan(adapter, (int )vlan); } if ((unsigned long )f != (unsigned long )((struct i40evf_vlan_filter *)0)) { f->remove = 1; adapter->aq_required = adapter->aq_required | 32U; } else { } return; } } static int i40evf_vlan_rx_add_vid(struct net_device *netdev , __be16 proto , u16 vid ) { struct i40evf_adapter *adapter ; void *tmp ; struct i40evf_vlan_filter *tmp___0 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct i40evf_adapter *)tmp; tmp___0 = i40evf_add_vlan(adapter, (int )vid); } if ((unsigned long )tmp___0 == (unsigned long )((struct i40evf_vlan_filter *)0)) { return (-12); } else { } return (0); } } static int i40evf_vlan_rx_kill_vid(struct net_device *netdev , __be16 proto , u16 vid ) { struct i40evf_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct i40evf_adapter *)tmp; i40evf_del_vlan(adapter, (int )vid); } return (0); } } static struct i40evf_mac_filter *i40evf_find_filter(struct i40evf_adapter *adapter , u8 *macaddr ) { struct i40evf_mac_filter *f ; struct list_head const *__mptr ; bool tmp ; struct list_head const *__mptr___0 ; { if ((unsigned long )macaddr == (unsigned long )((u8 *)0U)) { return ((struct i40evf_mac_filter *)0); } else { } __mptr = (struct list_head const *)adapter->mac_filter_list.next; f = (struct i40evf_mac_filter *)__mptr; goto ldv_57847; ldv_57846: { tmp = ether_addr_equal((u8 const *)macaddr, (u8 const *)(& f->macaddr)); } if ((int )tmp) { return (f); } else { } __mptr___0 = (struct list_head const *)f->list.next; f = (struct i40evf_mac_filter *)__mptr___0; ldv_57847: ; if ((unsigned long )(& f->list) != (unsigned long )(& adapter->mac_filter_list)) { goto ldv_57846; } else { } return ((struct i40evf_mac_filter *)0); } } static struct i40evf_mac_filter *i40evf_add_filter(struct i40evf_adapter *adapter , u8 *macaddr ) { struct i40evf_mac_filter *f ; int tmp ; void *tmp___0 ; { if ((unsigned long )macaddr == (unsigned long )((u8 *)0U)) { return ((struct i40evf_mac_filter *)0); } else { } goto ldv_57855; ldv_57854: { __const_udelay(4295UL); } ldv_57855: { tmp = test_and_set_bit(0L, (unsigned long volatile *)(& adapter->crit_section)); } if (tmp != 0) { goto ldv_57854; } else { } { f = i40evf_find_filter(adapter, macaddr); } if ((unsigned long )f == (unsigned long )((struct i40evf_mac_filter *)0)) { { tmp___0 = kzalloc(24UL, 32U); f = (struct i40evf_mac_filter *)tmp___0; } if ((unsigned long )f == (unsigned long )((struct i40evf_mac_filter *)0)) { { clear_bit(0L, (unsigned long volatile *)(& adapter->crit_section)); } return ((struct i40evf_mac_filter *)0); } else { } { ether_addr_copy((u8 *)(& f->macaddr), (u8 const *)macaddr); list_add(& f->list, & adapter->mac_filter_list); f->add = 1; adapter->aq_required = adapter->aq_required | 4U; } } else { } { clear_bit(0L, (unsigned long volatile *)(& adapter->crit_section)); } return (f); } } static int i40evf_set_mac(struct net_device *netdev , void *p ) { struct i40evf_adapter *adapter ; void *tmp ; struct i40e_hw *hw ; struct i40evf_mac_filter *f ; struct sockaddr *addr ; bool tmp___0 ; int tmp___1 ; bool tmp___2 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct i40evf_adapter *)tmp; hw = & adapter->hw; addr = (struct sockaddr *)p; tmp___0 = is_valid_ether_addr((u8 const *)(& addr->sa_data)); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (-99); } else { } { tmp___2 = ether_addr_equal((u8 const *)netdev->dev_addr, (u8 const *)(& addr->sa_data)); } if ((int )tmp___2) { return (0); } else { } { f = i40evf_add_filter(adapter, (u8 *)(& addr->sa_data)); } if ((unsigned long )f != (unsigned long )((struct i40evf_mac_filter *)0)) { { ether_addr_copy((u8 *)(& hw->mac.addr), (u8 const *)(& addr->sa_data)); ether_addr_copy(netdev->dev_addr, (u8 const *)(& adapter->hw.mac.addr)); } } else { } return ((unsigned long )f == (unsigned long )((struct i40evf_mac_filter *)0) ? -12 : 0); } } static void i40evf_set_rx_mode(struct net_device *netdev ) { struct i40evf_adapter *adapter ; void *tmp ; struct i40evf_mac_filter *f ; struct i40evf_mac_filter *ftmp ; struct netdev_hw_addr *uca ; struct netdev_hw_addr *mca ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; struct list_head const *__mptr___2 ; int tmp___0 ; struct list_head const *__mptr___3 ; struct list_head const *__mptr___4 ; bool found ; struct list_head const *__mptr___5 ; bool tmp___1 ; struct list_head const *__mptr___6 ; struct list_head const *__mptr___7 ; bool tmp___2 ; struct list_head const *__mptr___8 ; bool tmp___3 ; struct list_head const *__mptr___9 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct i40evf_adapter *)tmp; __mptr = (struct list_head const *)netdev->uc.list.next; uca = (struct netdev_hw_addr *)__mptr; } goto ldv_57878; ldv_57877: { i40evf_add_filter(adapter, (u8 *)(& uca->addr)); __mptr___0 = (struct list_head const *)uca->list.next; uca = (struct netdev_hw_addr *)__mptr___0; } ldv_57878: ; if ((unsigned long )(& uca->list) != (unsigned long )(& netdev->uc.list)) { goto ldv_57877; } else { } __mptr___1 = (struct list_head const *)netdev->mc.list.next; mca = (struct netdev_hw_addr *)__mptr___1; goto ldv_57885; ldv_57884: { i40evf_add_filter(adapter, (u8 *)(& mca->addr)); __mptr___2 = (struct list_head const *)mca->list.next; mca = (struct netdev_hw_addr *)__mptr___2; } ldv_57885: ; if ((unsigned long )(& mca->list) != (unsigned long )(& netdev->mc.list)) { goto ldv_57884; } else { } goto ldv_57888; ldv_57887: { __const_udelay(4295UL); } ldv_57888: { tmp___0 = test_and_set_bit(0L, (unsigned long volatile *)(& adapter->crit_section)); } if (tmp___0 != 0) { goto ldv_57887; } else { } __mptr___3 = (struct list_head const *)adapter->mac_filter_list.next; f = (struct i40evf_mac_filter *)__mptr___3; __mptr___4 = (struct list_head const *)f->list.next; ftmp = (struct i40evf_mac_filter *)__mptr___4; goto ldv_57912; ldv_57911: { found = 0; tmp___3 = is_multicast_ether_addr((u8 const *)(& f->macaddr)); } if ((int )tmp___3) { __mptr___5 = (struct list_head const *)netdev->mc.list.next; mca = (struct netdev_hw_addr *)__mptr___5; goto ldv_57903; ldv_57902: { tmp___1 = ether_addr_equal((u8 const *)(& mca->addr), (u8 const *)(& f->macaddr)); } if ((int )tmp___1) { found = 1; goto ldv_57901; } else { } __mptr___6 = (struct list_head const *)mca->list.next; mca = (struct netdev_hw_addr *)__mptr___6; ldv_57903: ; if ((unsigned long )(& mca->list) != (unsigned long )(& netdev->mc.list)) { goto ldv_57902; } else { } ldv_57901: ; } else { __mptr___7 = (struct list_head const *)netdev->uc.list.next; uca = (struct netdev_hw_addr *)__mptr___7; goto ldv_57910; ldv_57909: { tmp___2 = ether_addr_equal((u8 const *)(& uca->addr), (u8 const *)(& f->macaddr)); } if ((int )tmp___2) { found = 1; goto ldv_57908; } else { } __mptr___8 = (struct list_head const *)uca->list.next; uca = (struct netdev_hw_addr *)__mptr___8; ldv_57910: ; if ((unsigned long )(& uca->list) != (unsigned long )(& netdev->uc.list)) { goto ldv_57909; } else { } ldv_57908: ; } if ((int )found) { f->remove = 1; adapter->aq_required = adapter->aq_required | 16U; } else { } f = ftmp; __mptr___9 = (struct list_head const *)ftmp->list.next; ftmp = (struct i40evf_mac_filter *)__mptr___9; ldv_57912: ; if ((unsigned long )(& f->list) != (unsigned long )(& adapter->mac_filter_list)) { goto ldv_57911; } else { } { clear_bit(0L, (unsigned long volatile *)(& adapter->crit_section)); } return; } } static void i40evf_napi_enable_all(struct i40evf_adapter *adapter ) { int q_idx ; struct i40e_q_vector *q_vector ; int q_vectors ; struct napi_struct *napi ; { q_vectors = adapter->num_msix_vectors + -1; q_idx = 0; goto ldv_57922; ldv_57921: { q_vector = adapter->q_vector[q_idx]; napi = & q_vector->napi; napi_enable(napi); q_idx = q_idx + 1; } ldv_57922: ; if (q_idx < q_vectors) { goto ldv_57921; } else { } return; } } static void i40evf_napi_disable_all(struct i40evf_adapter *adapter ) { int q_idx ; struct i40e_q_vector *q_vector ; int q_vectors ; { q_vectors = adapter->num_msix_vectors + -1; q_idx = 0; goto ldv_57931; ldv_57930: { q_vector = adapter->q_vector[q_idx]; napi_disable(& q_vector->napi); q_idx = q_idx + 1; } ldv_57931: ; if (q_idx < q_vectors) { goto ldv_57930; } else { } return; } } static void i40evf_configure(struct i40evf_adapter *adapter ) { struct net_device *netdev ; int i ; struct i40e_ring *ring ; { { netdev = adapter->netdev; i40evf_set_rx_mode(netdev); i40evf_configure_tx(adapter); i40evf_configure_rx(adapter); adapter->aq_required = adapter->aq_required | 64U; i = 0; } goto ldv_57940; ldv_57939: { ring = adapter->rx_rings[i]; i40evf_alloc_rx_buffers(ring, (int )ring->count); ring->next_to_use = (unsigned int )ring->count + 65535U; writel((unsigned int )ring->next_to_use, (void volatile *)ring->tail); i = i + 1; } ldv_57940: ; if (i < adapter->num_active_queues) { goto ldv_57939; } else { } return; } } static int i40evf_up_complete(struct i40evf_adapter *adapter ) { { { adapter->state = 8; clear_bit(6L, (unsigned long volatile *)(& adapter->vsi.state)); i40evf_napi_enable_all(adapter); adapter->aq_required = adapter->aq_required | 1U; ldv_mod_timer_pending_132(& adapter->watchdog_timer, (unsigned long )jiffies + 1UL); } return (0); } } void i40evf_down(struct i40evf_adapter *adapter ) { struct net_device *netdev ; struct i40evf_mac_filter *f ; int tmp ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; struct list_head const *__mptr___2 ; { netdev = adapter->netdev; if ((unsigned int )adapter->state == 6U) { return; } else { } goto ldv_57951; ldv_57950: { usleep_range(500UL, 1000UL); } ldv_57951: { tmp = test_and_set_bit(0L, (unsigned long volatile *)(& adapter->crit_section)); } if (tmp != 0) { goto ldv_57950; } else { } { i40evf_irq_disable(adapter); __mptr = (struct list_head const *)adapter->mac_filter_list.next; f = (struct i40evf_mac_filter *)__mptr; } goto ldv_57958; ldv_57957: f->remove = 1; __mptr___0 = (struct list_head const *)f->list.next; f = (struct i40evf_mac_filter *)__mptr___0; ldv_57958: ; if ((unsigned long )(& f->list) != (unsigned long )(& adapter->mac_filter_list)) { goto ldv_57957; } else { } __mptr___1 = (struct list_head const *)adapter->vlan_filter_list.next; f = (struct i40evf_mac_filter *)__mptr___1; goto ldv_57965; ldv_57964: f->remove = 1; __mptr___2 = (struct list_head const *)f->list.next; f = (struct i40evf_mac_filter *)__mptr___2; ldv_57965: ; if ((unsigned long )(& f->list) != (unsigned long )(& adapter->vlan_filter_list)) { goto ldv_57964; } else { } if ((adapter->flags & 256U) == 0U && (unsigned int )adapter->state != 5U) { adapter->current_op = 0; adapter->aq_pending = 0U; adapter->aq_required = 16U; adapter->aq_required = adapter->aq_required | 32U; adapter->aq_required = adapter->aq_required | 2U; } else { } { netif_tx_disable(netdev); netif_tx_stop_all_queues(netdev); i40evf_napi_disable_all(adapter); msleep(20U); netif_carrier_off(netdev); clear_bit(0L, (unsigned long volatile *)(& adapter->crit_section)); } return; } } static int i40evf_acquire_msix_vectors(struct i40evf_adapter *adapter , int vectors ) { int err ; int vector_threshold ; { { vector_threshold = 2; err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, vector_threshold, vectors); } if (err < 0) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "Unable to allocate MSI-X interrupts\n"); kfree((void const *)adapter->msix_entries); adapter->msix_entries = (struct msix_entry *)0; } return (err); } else { } adapter->num_msix_vectors = err; return (0); } } extern void __compiletime_assert_1053(void) ; static void i40evf_free_queues(struct i40evf_adapter *adapter ) { int i ; bool __cond ; { if ((unsigned long )adapter->vsi_res == (unsigned long )((struct i40e_virtchnl_vsi_resource *)0)) { return; } else { } i = 0; goto ldv_57983; ldv_57982: ; if ((unsigned long )adapter->tx_rings[i] != (unsigned long )((struct i40e_ring *)0)) { __cond = 0; if ((int )__cond) { { __compiletime_assert_1053(); } } else { } { kfree_call_rcu(& (adapter->tx_rings[i])->rcu, (void (*)(struct callback_head * ))160); } } else { } adapter->tx_rings[i] = (struct i40e_ring *)0; adapter->rx_rings[i] = (struct i40e_ring *)0; i = i + 1; ldv_57983: ; if (i < adapter->num_active_queues) { goto ldv_57982; } else { } return; } } static int i40evf_alloc_queues(struct i40evf_adapter *adapter ) { int i ; struct i40e_ring *tx_ring ; struct i40e_ring *rx_ring ; void *tmp ; { i = 0; goto ldv_57993; ldv_57992: { tmp = kzalloc(8192UL, 208U); tx_ring = (struct i40e_ring *)tmp; } if ((unsigned long )tx_ring == (unsigned long )((struct i40e_ring *)0)) { goto err_out; } else { } tx_ring->queue_index = (u16 )i; tx_ring->netdev = adapter->netdev; tx_ring->dev = & (adapter->pdev)->dev; tx_ring->count = (u16 )adapter->tx_desc_count; adapter->tx_rings[i] = tx_ring; rx_ring = tx_ring + 1UL; rx_ring->queue_index = (u16 )i; rx_ring->netdev = adapter->netdev; rx_ring->dev = & (adapter->pdev)->dev; rx_ring->count = (u16 )adapter->rx_desc_count; adapter->rx_rings[i] = rx_ring; i = i + 1; ldv_57993: ; if (i < adapter->num_active_queues) { goto ldv_57992; } else { } return (0); err_out: { i40evf_free_queues(adapter); } return (-12); } } static int i40evf_set_interrupt_capability(struct i40evf_adapter *adapter ) { int vector ; int v_budget ; int pairs ; int err ; int __min1 ; int __min2 ; unsigned int tmp ; int __min1___0 ; int __min2___0 ; void *tmp___0 ; { pairs = 0; err = 0; if ((unsigned long )adapter->vsi_res == (unsigned long )((struct i40e_virtchnl_vsi_resource *)0)) { err = -5; goto out; } else { } { pairs = adapter->num_active_queues; __min1 = pairs; tmp = cpumask_weight(cpu_online_mask); __min2 = (int )(tmp * 2U); v_budget = (__min1 < __min2 ? __min1 : __min2) + 1; __min1___0 = v_budget; __min2___0 = (int )(adapter->vf_res)->max_vectors; v_budget = __min1___0 < __min2___0 ? __min1___0 : __min2___0; tmp___0 = kcalloc((size_t )v_budget, 8UL, 208U); adapter->msix_entries = (struct msix_entry *)tmp___0; } if ((unsigned long )adapter->msix_entries == (unsigned long )((struct msix_entry *)0)) { err = -12; goto out; } else { } vector = 0; goto ldv_58010; ldv_58009: (adapter->msix_entries + (unsigned long )vector)->entry = (u16 )vector; vector = vector + 1; ldv_58010: ; if (vector < v_budget) { goto ldv_58009; } else { } { i40evf_acquire_msix_vectors(adapter, v_budget); } out: (adapter->netdev)->real_num_tx_queues = (unsigned int )pairs; return (err); } } static int i40evf_alloc_q_vectors(struct i40evf_adapter *adapter ) { int q_idx ; int num_q_vectors ; struct i40e_q_vector *q_vector ; void *tmp ; { num_q_vectors = adapter->num_msix_vectors + -1; q_idx = 0; goto ldv_58020; ldv_58019: { tmp = kzalloc(416UL, 208U); q_vector = (struct i40e_q_vector *)tmp; } if ((unsigned long )q_vector == (unsigned long )((struct i40e_q_vector *)0)) { goto err_out; } else { } { q_vector->adapter = adapter; q_vector->vsi = & adapter->vsi; q_vector->v_idx = q_idx; netif_napi_add(adapter->netdev, & q_vector->napi, & i40evf_napi_poll, 64); adapter->q_vector[q_idx] = q_vector; q_idx = q_idx + 1; } ldv_58020: ; if (q_idx < num_q_vectors) { goto ldv_58019; } else { } return (0); err_out: ; goto ldv_58023; ldv_58022: { q_idx = q_idx - 1; q_vector = adapter->q_vector[q_idx]; netif_napi_del(& q_vector->napi); kfree((void const *)q_vector); adapter->q_vector[q_idx] = (struct i40e_q_vector *)0; } ldv_58023: ; if (q_idx != 0) { goto ldv_58022; } else { } return (-12); } } static void i40evf_free_q_vectors(struct i40evf_adapter *adapter ) { int q_idx ; int num_q_vectors ; int napi_vectors ; struct i40e_q_vector *q_vector ; { num_q_vectors = adapter->num_msix_vectors + -1; napi_vectors = adapter->num_active_queues; q_idx = 0; goto ldv_58033; ldv_58032: q_vector = adapter->q_vector[q_idx]; adapter->q_vector[q_idx] = (struct i40e_q_vector *)0; if (q_idx < napi_vectors) { { netif_napi_del(& q_vector->napi); } } else { } { kfree((void const *)q_vector); q_idx = q_idx + 1; } ldv_58033: ; if (q_idx < num_q_vectors) { goto ldv_58032; } else { } return; } } void i40evf_reset_interrupt_capability(struct i40evf_adapter *adapter ) { { { pci_disable_msix(adapter->pdev); kfree((void const *)adapter->msix_entries); adapter->msix_entries = (struct msix_entry *)0; } return; } } int i40evf_init_interrupt_scheme(struct i40evf_adapter *adapter ) { int err ; { { err = i40evf_set_interrupt_capability(adapter); } if (err != 0) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "Unable to setup interrupt capabilities\n"); } goto err_set_interrupt; } else { } { err = i40evf_alloc_q_vectors(adapter); } if (err != 0) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "Unable to allocate memory for queue vectors\n"); } goto err_alloc_q_vectors; } else { } { err = i40evf_alloc_queues(adapter); } if (err != 0) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "Unable to allocate memory for queues\n"); } goto err_alloc_queues; } else { } { _dev_info((struct device const *)(& (adapter->pdev)->dev), "Multiqueue %s: Queue pair count = %u", adapter->num_active_queues > 1 ? (char *)"Enabled" : (char *)"Disabled", adapter->num_active_queues); } return (0); err_alloc_queues: { i40evf_free_q_vectors(adapter); } err_alloc_q_vectors: { i40evf_reset_interrupt_capability(adapter); } err_set_interrupt: ; return (err); } } static void i40evf_watchdog_timer(unsigned long data ) { struct i40evf_adapter *adapter ; { { adapter = (struct i40evf_adapter *)data; schedule_work(& adapter->watchdog_task); } return; } } static void i40evf_watchdog_task(struct work_struct *work ) { struct i40evf_adapter *adapter ; struct work_struct const *__mptr ; struct i40e_hw *hw ; uint32_t rstat_val ; int tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; struct _ddebug descriptor ; long tmp___2 ; bool tmp___3 ; int tmp___4 ; unsigned long tmp___5 ; { { __mptr = (struct work_struct const *)work; adapter = (struct i40evf_adapter *)__mptr + 0xfffffffffffff598UL; hw = & adapter->hw; tmp = test_and_set_bit(0L, (unsigned long volatile *)(& adapter->crit_section)); } if (tmp != 0) { goto restart_watchdog; } else { } if ((adapter->flags & 256U) != 0U) { { tmp___0 = readl((void const volatile *)hw->hw_addr + 34816U); rstat_val = tmp___0 & 3U; } if (rstat_val - 1U <= 1U) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "Hardware came out of reset. Attempting reinit.\n"); adapter->state = 0; adapter->flags = adapter->flags & 4294967039U; schedule_delayed_work(& adapter->init_task, 10UL); clear_bit(0L, (unsigned long volatile *)(& adapter->crit_section)); } return; } else { } adapter->aq_pending = 0U; adapter->aq_required = 0U; adapter->current_op = 0; goto watchdog_done; } else { } if ((unsigned int )adapter->state <= 5U || (adapter->flags & 512U) != 0U) { goto watchdog_done; } else { } { tmp___1 = readl((void const volatile *)hw->hw_addr + 34816U); rstat_val = tmp___1 & 3U; } if (((adapter->flags & 512U) == 0U && rstat_val != 2U) && rstat_val != 1U) { { adapter->state = 5; adapter->flags = adapter->flags | 512U; dev_err((struct device const *)(& (adapter->pdev)->dev), "Hardware reset detected\n"); schedule_work(& adapter->reset_task); adapter->aq_pending = 0U; adapter->aq_required = 0U; adapter->current_op = 0; } goto watchdog_done; } else { } if (adapter->aq_pending != 0U) { { tmp___3 = i40evf_asq_done(hw); } if (tmp___3) { tmp___4 = 0; } else { tmp___4 = 1; } if (tmp___4) { { descriptor.modname = "i40evf"; descriptor.function = "i40evf_watchdog_task"; descriptor.filename = "drivers/net/ethernet/intel/i40evf/i40evf_main.c"; descriptor.format = "Admin queue timeout\n"; descriptor.lineno = 1341U; descriptor.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___2 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (adapter->pdev)->dev), "Admin queue timeout\n"); } } else { } { i40evf_send_api_ver(adapter); } } else { } goto watchdog_done; } else { } if ((adapter->aq_required & 128U) != 0U) { { i40evf_map_queues(adapter); } goto watchdog_done; } else { } if ((adapter->aq_required & 4U) != 0U) { { i40evf_add_ether_addrs(adapter); } goto watchdog_done; } else { } if ((adapter->aq_required & 8U) != 0U) { { i40evf_add_vlans(adapter); } goto watchdog_done; } else { } if ((adapter->aq_required & 16U) != 0U) { { i40evf_del_ether_addrs(adapter); } goto watchdog_done; } else { } if ((adapter->aq_required & 32U) != 0U) { { i40evf_del_vlans(adapter); } goto watchdog_done; } else { } if ((adapter->aq_required & 2U) != 0U) { { i40evf_disable_queues(adapter); } goto watchdog_done; } else { } if ((adapter->aq_required & 64U) != 0U) { { i40evf_configure_queues(adapter); } goto watchdog_done; } else { } if ((int )adapter->aq_required & 1) { { i40evf_enable_queues(adapter); } goto watchdog_done; } else { } if ((unsigned int )adapter->state == 8U) { { i40evf_request_stats(adapter); } } else { } watchdog_done: ; if ((unsigned int )adapter->state == 8U) { { i40evf_irq_enable_queues(adapter, 4294967295U); i40evf_fire_sw_int(adapter, 255U); } } else { { i40evf_fire_sw_int(adapter, 1U); } } { clear_bit(0L, (unsigned long volatile *)(& adapter->crit_section)); } restart_watchdog: ; if ((unsigned int )adapter->state == 1U) { return; } else { } if (adapter->aq_required != 0U) { { tmp___5 = msecs_to_jiffies(20U); ldv_mod_timer_133(& adapter->watchdog_timer, (unsigned long )jiffies + tmp___5); } } else { { ldv_mod_timer_134(& adapter->watchdog_timer, (unsigned long )jiffies + 500UL); } } { schedule_work(& adapter->adminq_task); } return; } } static int next_queue(struct i40evf_adapter *adapter , int j ) { { j = j + 1; return (j < adapter->num_active_queues ? j : 0); } } static void i40evf_configure_rss(struct i40evf_adapter *adapter ) { u32 rss_key[13U] ; struct i40e_hw *hw ; u32 lut ; int i ; int j ; u64 hena ; { hw = & adapter->hw; lut = 0U; if (adapter->num_active_queues == 1) { { writel(0U, (void volatile *)hw->hw_addr + 50176U); writel(0U, (void volatile *)hw->hw_addr + 50180U); } return; } else { } { netdev_rss_key_fill((void *)(& rss_key), 52UL); i = 0; } goto ldv_58075; ldv_58074: { writel(rss_key[i], (void volatile *)hw->hw_addr + (unsigned long )((i + 13056) * 4)); i = i + 1; } ldv_58075: ; if (i <= 12) { goto ldv_58074; } else { } { hena = 0x80007a1e80000000ULL; writel((unsigned int )hena, (void volatile *)hw->hw_addr + 50176U); writel((unsigned int )(hena >> 32), (void volatile *)hw->hw_addr + 50180U); j = adapter->num_active_queues; i = 0; } goto ldv_58078; ldv_58077: { j = next_queue(adapter, j); lut = (u32 )j; j = next_queue(adapter, j); lut = lut | (u32 )(j << 8); j = next_queue(adapter, j); lut = lut | (u32 )(j << 16); j = next_queue(adapter, j); lut = lut | (u32 )(j << 24); writel(lut, (void volatile *)hw->hw_addr + (unsigned long )((i + 13312) * 4)); i = i + 1; } ldv_58078: ; if (i <= 15) { goto ldv_58077; } else { } { readl((void const volatile *)hw->hw_addr + 34816U); } return; } } static void i40evf_reset_task(struct work_struct *work ) { struct i40evf_adapter *adapter ; struct work_struct const *__mptr ; struct i40e_hw *hw ; int i ; int err ; uint32_t rstat_val ; int tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; struct i40evf_mac_filter *f ; struct i40evf_mac_filter *ftmp ; struct i40evf_vlan_filter *fv ; struct i40evf_vlan_filter *fvtmp ; bool tmp___2 ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; struct list_head const *__mptr___2 ; struct list_head const *__mptr___3 ; struct list_head const *__mptr___4 ; struct list_head const *__mptr___5 ; i40e_status tmp___3 ; i40e_status tmp___4 ; bool tmp___5 ; { __mptr = (struct work_struct const *)work; adapter = (struct i40evf_adapter *)__mptr + 0xffffffffffffff80UL; hw = & adapter->hw; i = 0; goto ldv_58091; ldv_58090: { usleep_range(500UL, 1000UL); } ldv_58091: { tmp = test_and_set_bit(0L, (unsigned long volatile *)(& adapter->crit_section)); } if (tmp != 0) { goto ldv_58090; } else { } if ((adapter->flags & 1024U) != 0U) { { _dev_info((struct device const *)(& (adapter->pdev)->dev), "Requesting reset from PF\n"); i40evf_request_reset(adapter); } } else { } i = 0; goto ldv_58095; ldv_58094: { tmp___0 = readl((void const volatile *)hw->hw_addr + 34816U); rstat_val = tmp___0 & 3U; } if (rstat_val - 1U > 1U) { goto ldv_58093; } else { } { msleep(100U); i = i + 1; } ldv_58095: ; if (i <= 199) { goto ldv_58094; } else { } ldv_58093: ; if (i == 200) { adapter->flags = adapter->flags & 4294966783U; goto continue_reset; } else { } i = 0; goto ldv_58099; ldv_58098: { tmp___1 = readl((void const volatile *)hw->hw_addr + 34816U); rstat_val = tmp___1 & 3U; } if (rstat_val - 1U <= 1U) { goto ldv_58097; } else { } { msleep(100U); i = i + 1; } ldv_58099: ; if (i <= 199) { goto ldv_58098; } else { } ldv_58097: ; if (i == 200) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "Reset never finished (%x)\n", rstat_val); adapter->flags = adapter->flags | 256U; tmp___2 = netif_running((struct net_device const *)adapter->netdev); } if ((int )tmp___2) { { set_bit(6L, (unsigned long volatile *)(& adapter->vsi.state)); i40evf_down(adapter); i40evf_free_traffic_irqs(adapter); i40evf_free_all_tx_resources(adapter); i40evf_free_all_rx_resources(adapter); } } else { } __mptr___0 = (struct list_head const *)adapter->mac_filter_list.next; f = (struct i40evf_mac_filter *)__mptr___0; __mptr___1 = (struct list_head const *)f->list.next; ftmp = (struct i40evf_mac_filter *)__mptr___1; goto ldv_58111; ldv_58110: { list_del(& f->list); kfree((void const *)f); f = ftmp; __mptr___2 = (struct list_head const *)ftmp->list.next; ftmp = (struct i40evf_mac_filter *)__mptr___2; } ldv_58111: ; if ((unsigned long )(& f->list) != (unsigned long )(& adapter->mac_filter_list)) { goto ldv_58110; } else { } __mptr___3 = (struct list_head const *)adapter->vlan_filter_list.next; fv = (struct i40evf_vlan_filter *)__mptr___3; __mptr___4 = (struct list_head const *)fv->list.next; fvtmp = (struct i40evf_vlan_filter *)__mptr___4; goto ldv_58120; ldv_58119: { list_del(& fv->list); kfree((void const *)fv); fv = fvtmp; __mptr___5 = (struct list_head const *)fvtmp->list.next; fvtmp = (struct i40evf_vlan_filter *)__mptr___5; } ldv_58120: ; if ((unsigned long )(& fv->list) != (unsigned long )(& adapter->vlan_filter_list)) { goto ldv_58119; } else { } { i40evf_free_misc_irq(adapter); i40evf_reset_interrupt_capability(adapter); i40evf_free_queues(adapter); i40evf_free_q_vectors(adapter); kfree((void const *)adapter->vf_res); i40evf_shutdown_adminq(hw); (adapter->netdev)->flags = (adapter->netdev)->flags & 4294967294U; clear_bit(0L, (unsigned long volatile *)(& adapter->crit_section)); } return; } else { } continue_reset: { adapter->flags = adapter->flags & 4294966783U; i40evf_down(adapter); adapter->state = 5; tmp___3 = i40evf_shutdown_adminq(hw); } if ((int )tmp___3 != 0) { { dev_warn((struct device const *)(& (adapter->pdev)->dev), "%s: Failed to destroy the Admin Queue resources\n", "i40evf_reset_task"); } } else { } { tmp___4 = i40evf_init_adminq(hw); err = (int )tmp___4; } if (err != 0) { { _dev_info((struct device const *)(& (adapter->pdev)->dev), "%s: init_adminq failed: %d\n", "i40evf_reset_task", err); } } else { } { adapter->aq_pending = 0U; adapter->aq_required = 0U; i40evf_map_queues(adapter); clear_bit(0L, (unsigned long volatile *)(& adapter->crit_section)); ldv_mod_timer_135(& adapter->watchdog_timer, (unsigned long )jiffies + 2UL); tmp___5 = netif_running((struct net_device const *)adapter->netdev); } if ((int )tmp___5) { { err = i40evf_setup_all_tx_resources(adapter); } if (err != 0) { goto reset_err; } else { } { err = i40evf_setup_all_rx_resources(adapter); } if (err != 0) { goto reset_err; } else { } { i40evf_configure(adapter); err = i40evf_up_complete(adapter); } if (err != 0) { goto reset_err; } else { } { i40evf_irq_enable(adapter, 1); } } else { } return; reset_err: { dev_err((struct device const *)(& (adapter->pdev)->dev), "failed to allocate resources during reinit\n"); i40evf_close(adapter->netdev); } return; } } static void i40evf_adminq_task(struct work_struct *work ) { struct i40evf_adapter *adapter ; struct work_struct const *__mptr ; struct i40e_hw *hw ; struct i40e_arq_event_info event ; struct i40e_virtchnl_msg *v_msg ; i40e_status ret ; u32 val ; u32 oldval ; u16 pending ; void *tmp ; { __mptr = (struct work_struct const *)work; adapter = (struct i40evf_adapter *)__mptr + 0xffffffffffffff30UL; hw = & adapter->hw; if ((adapter->flags & 256U) != 0U) { goto out; } else { } { event.buf_len = 4096U; tmp = kzalloc((size_t )event.buf_len, 208U); event.msg_buf = (u8 *)tmp; } if ((unsigned long )event.msg_buf == (unsigned long )((u8 *)0U)) { goto out; } else { } v_msg = (struct i40e_virtchnl_msg *)(& event.desc); ldv_58139: { ret = i40evf_clean_arq_element(hw, & event, & pending); } if ((int )ret != 0 || (unsigned int )v_msg->v_opcode == 0U) { goto ldv_58138; } else { } { i40evf_virtchnl_completion(adapter, v_msg->v_opcode, v_msg->v_retval, event.msg_buf, (int )event.msg_len); } if ((unsigned int )pending != 0U) { { __memset((void *)event.msg_buf, 0, 4096UL); } } else { } if ((unsigned int )pending != 0U) { goto ldv_58139; } else { } ldv_58138: { val = readl((void const volatile *)hw->hw_addr + (unsigned long )hw->aq.arq.len); oldval = val; } if ((val & 268435456U) != 0U) { { _dev_info((struct device const *)(& (adapter->pdev)->dev), "ARQ VF Error detected\n"); val = val & 4026531839U; } } else { } if ((val & 536870912U) != 0U) { { _dev_info((struct device const *)(& (adapter->pdev)->dev), "ARQ Overflow Error detected\n"); val = val & 3758096383U; } } else { } if ((val & 1073741824U) != 0U) { { _dev_info((struct device const *)(& (adapter->pdev)->dev), "ARQ Critical Error detected\n"); val = val & 3221225471U; } } else { } if (oldval != val) { { writel(val, (void volatile *)hw->hw_addr + (unsigned long )hw->aq.arq.len); } } else { } { val = readl((void const volatile *)hw->hw_addr + (unsigned long )hw->aq.asq.len); oldval = val; } if ((val & 268435456U) != 0U) { { _dev_info((struct device const *)(& (adapter->pdev)->dev), "ASQ VF Error detected\n"); val = val & 4026531839U; } } else { } if ((val & 536870912U) != 0U) { { _dev_info((struct device const *)(& (adapter->pdev)->dev), "ASQ Overflow Error detected\n"); val = val & 3758096383U; } } else { } if ((val & 1073741824U) != 0U) { { _dev_info((struct device const *)(& (adapter->pdev)->dev), "ASQ Critical Error detected\n"); val = val & 3221225471U; } } else { } if (oldval != val) { { writel(val, (void volatile *)hw->hw_addr + (unsigned long )hw->aq.asq.len); } } else { } { kfree((void const *)event.msg_buf); } out: { i40evf_misc_irq_enable(adapter); } return; } } static void i40evf_free_all_tx_resources(struct i40evf_adapter *adapter ) { int i ; { i = 0; goto ldv_58145; ldv_58144: ; if ((unsigned long )(adapter->tx_rings[i])->desc != (unsigned long )((void *)0)) { { i40evf_free_tx_resources(adapter->tx_rings[i]); } } else { } i = i + 1; ldv_58145: ; if (i < adapter->num_active_queues) { goto ldv_58144; } else { } return; } } static int i40evf_setup_all_tx_resources(struct i40evf_adapter *adapter ) { int i ; int err ; { err = 0; i = 0; goto ldv_58156; ldv_58155: { (adapter->tx_rings[i])->count = (u16 )adapter->tx_desc_count; err = i40evf_setup_tx_descriptors(adapter->tx_rings[i]); } if (err == 0) { goto ldv_58152; } else { } { dev_err((struct device const *)(& (adapter->pdev)->dev), "%s: Allocation for Tx Queue %u failed\n", "i40evf_setup_all_tx_resources", i); } goto ldv_58154; ldv_58152: i = i + 1; ldv_58156: ; if (i < adapter->num_active_queues) { goto ldv_58155; } else { } ldv_58154: ; return (err); } } static int i40evf_setup_all_rx_resources(struct i40evf_adapter *adapter ) { int i ; int err ; { err = 0; i = 0; goto ldv_58166; ldv_58165: { (adapter->rx_rings[i])->count = (u16 )adapter->rx_desc_count; err = i40evf_setup_rx_descriptors(adapter->rx_rings[i]); } if (err == 0) { goto ldv_58162; } else { } { dev_err((struct device const *)(& (adapter->pdev)->dev), "%s: Allocation for Rx Queue %u failed\n", "i40evf_setup_all_rx_resources", i); } goto ldv_58164; ldv_58162: i = i + 1; ldv_58166: ; if (i < adapter->num_active_queues) { goto ldv_58165; } else { } ldv_58164: ; return (err); } } static void i40evf_free_all_rx_resources(struct i40evf_adapter *adapter ) { int i ; { i = 0; goto ldv_58172; ldv_58171: ; if ((unsigned long )(adapter->rx_rings[i])->desc != (unsigned long )((void *)0)) { { i40evf_free_rx_resources(adapter->rx_rings[i]); } } else { } i = i + 1; ldv_58172: ; if (i < adapter->num_active_queues) { goto ldv_58171; } else { } return; } } static int i40evf_open(struct net_device *netdev ) { struct i40evf_adapter *adapter ; void *tmp ; int err ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct i40evf_adapter *)tmp; } if ((adapter->flags & 256U) != 0U) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "Unable to open device due to PF driver failure.\n"); } return (-5); } else { } if ((unsigned int )adapter->state != 6U) { return (-16); } else { } { err = i40evf_setup_all_tx_resources(adapter); } if (err != 0) { goto err_setup_tx; } else { } { err = i40evf_setup_all_rx_resources(adapter); } if (err != 0) { goto err_setup_rx; } else { } { err = i40evf_request_traffic_irqs(adapter, (char *)(& netdev->name)); } if (err != 0) { goto err_req_irq; } else { } { i40evf_configure(adapter); err = i40evf_up_complete(adapter); } if (err != 0) { goto err_req_irq; } else { } { i40evf_irq_enable(adapter, 1); } return (0); err_req_irq: { i40evf_down(adapter); i40evf_free_traffic_irqs(adapter); } err_setup_rx: { i40evf_free_all_rx_resources(adapter); } err_setup_tx: { i40evf_free_all_tx_resources(adapter); } return (err); } } static int i40evf_close(struct net_device *netdev ) { struct i40evf_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct i40evf_adapter *)tmp; } if ((unsigned int )adapter->state <= 6U) { return (0); } else { } { set_bit(6L, (unsigned long volatile *)(& adapter->vsi.state)); i40evf_down(adapter); adapter->state = 6; i40evf_free_traffic_irqs(adapter); i40evf_free_all_tx_resources(adapter); i40evf_free_all_rx_resources(adapter); } return (0); } } static struct net_device_stats *i40evf_get_stats(struct net_device *netdev ) { struct i40evf_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct i40evf_adapter *)tmp; } return (& adapter->net_stats); } } void i40evf_reinit_locked(struct i40evf_adapter *adapter ) { struct net_device *netdev ; int err ; int __ret_warn_on ; int tmp ; long tmp___0 ; { { netdev = adapter->netdev; tmp = preempt_count(); __ret_warn_on = ((unsigned long )tmp & 2096896UL) != 0UL; tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("drivers/net/ethernet/intel/i40evf/i40evf_main.c", 1889); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); i40evf_down(adapter); err = i40evf_setup_all_tx_resources(adapter); } if (err != 0) { goto err_reinit; } else { } { err = i40evf_setup_all_rx_resources(adapter); } if (err != 0) { goto err_reinit; } else { } { i40evf_configure(adapter); err = i40evf_up_complete(adapter); } if (err != 0) { goto err_reinit; } else { } { i40evf_irq_enable(adapter, 1); } return; err_reinit: { dev_err((struct device const *)(& (adapter->pdev)->dev), "failed to allocate resources during reinit\n"); i40evf_close(netdev); } return; } } static int i40evf_change_mtu(struct net_device *netdev , int new_mtu ) { struct i40evf_adapter *adapter ; void *tmp ; int max_frame ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct i40evf_adapter *)tmp; max_frame = new_mtu + 18; } if (new_mtu <= 67 || max_frame > 9728) { return (-22); } else { } { netdev->mtu = (unsigned int )new_mtu; i40evf_reinit_locked(adapter); } return (0); } } static struct net_device_ops const i40evf_netdev_ops = {0, 0, & i40evf_open, & i40evf_close, & i40evf_xmit_frame, 0, 0, & i40evf_set_rx_mode, & i40evf_set_mac, & eth_validate_addr, 0, 0, & i40evf_change_mtu, 0, & i40evf_tx_timeout, 0, & i40evf_get_stats, & i40evf_vlan_rx_add_vid, & i40evf_vlan_rx_kill_vid, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static int i40evf_check_reset_complete(struct i40e_hw *hw ) { u32 rstat ; int i ; unsigned int tmp ; { i = 0; goto ldv_58211; ldv_58210: { tmp = readl((void const volatile *)hw->hw_addr + 34816U); rstat = tmp & 3U; } if (rstat - 1U <= 1U) { return (0); } else { } { usleep_range(10UL, 20UL); i = i + 1; } ldv_58211: ; if (i <= 99) { goto ldv_58210; } else { } return (-16); } } static void i40evf_init_task(struct work_struct *work ) { struct i40evf_adapter *adapter ; struct work_struct const *__mptr ; struct net_device *netdev ; struct i40evf_mac_filter *f ; struct i40e_hw *hw ; struct pci_dev *pdev ; int i ; int err ; int bufsz ; i40e_status tmp ; i40e_status tmp___0 ; bool tmp___1 ; int tmp___2 ; void *tmp___3 ; bool tmp___4 ; int tmp___5 ; void *tmp___6 ; struct lock_class_key __key ; int __min1 ; int __min2 ; unsigned int tmp___7 ; unsigned long tmp___8 ; { __mptr = (struct work_struct const *)work; adapter = (struct i40evf_adapter *)__mptr + 0xfffffffffffffee0UL; netdev = adapter->netdev; hw = & adapter->hw; pdev = adapter->pdev; { if ((unsigned int )adapter->state == 0U) { goto case_0; } else { } if ((unsigned int )adapter->state == 2U) { goto case_2; } else { } if ((unsigned int )adapter->state == 3U) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ { adapter->flags = adapter->flags & 4294967039U; adapter->flags = adapter->flags & 4294966783U; tmp = i40e_set_mac_type(hw); err = (int )tmp; } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "Failed to set MAC type (%d)\n", err); } goto err; } else { } { err = i40evf_check_reset_complete(hw); } if (err != 0) { { _dev_info((struct device const *)(& pdev->dev), "Device is still in reset (%d), retrying\n", err); } goto err; } else { } { hw->aq.num_arq_entries = 32U; hw->aq.num_asq_entries = 32U; hw->aq.arq_buf_size = 4096U; hw->aq.asq_buf_size = 4096U; tmp___0 = i40evf_init_adminq(hw); err = (int )tmp___0; } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "Failed to init Admin Queue (%d)\n", err); } goto err; } else { } { err = i40evf_send_api_ver(adapter); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "Unable to send to PF (%d)\n", err); i40evf_shutdown_adminq(hw); } goto err; } else { } adapter->state = 2; goto restart; case_2: /* CIL Label */ { tmp___1 = i40evf_asq_done(hw); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { { dev_err((struct device const *)(& pdev->dev), "Admin queue command never completed\n"); i40evf_shutdown_adminq(hw); adapter->state = 0; } goto err; } else { } { err = i40evf_verify_api_ver(adapter); } if (err != 0) { if (err == -57) { { err = i40evf_send_api_ver(adapter); } } else { } goto err; } else { } { err = i40evf_send_vf_config_msg(adapter); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "Unable to send config request (%d)\n", err); } goto err; } else { } adapter->state = 3; goto restart; case_3: /* CIL Label */ ; if ((unsigned long )adapter->vf_res == (unsigned long )((struct i40e_virtchnl_vf_resource *)0)) { { bufsz = 84; tmp___3 = kzalloc((size_t )bufsz, 208U); adapter->vf_res = (struct i40e_virtchnl_vf_resource *)tmp___3; } if ((unsigned long )adapter->vf_res == (unsigned long )((struct i40e_virtchnl_vf_resource *)0)) { goto err; } else { } } else { } { err = i40evf_get_vf_config(adapter); } if (err == -57) { { err = i40evf_send_vf_config_msg(adapter); } goto err; } else { } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "Unable to get VF config (%d)\n", err); } goto err_alloc; } else { } adapter->state = 4; goto ldv_58232; switch_default: /* CIL Label */ ; goto err_alloc; switch_break: /* CIL Label */ ; } ldv_58232: i = 0; goto ldv_58235; ldv_58234: ; if ((unsigned int )(adapter->vf_res)->vsi_res[i].vsi_type == 6U) { adapter->vsi_res = (struct i40e_virtchnl_vsi_resource *)(& (adapter->vf_res)->vsi_res) + (unsigned long )i; } else { } i = i + 1; ldv_58235: ; if (i < (int )(adapter->vf_res)->num_vsis) { goto ldv_58234; } else { } if ((unsigned long )adapter->vsi_res == (unsigned long )((struct i40e_virtchnl_vsi_resource *)0)) { { dev_err((struct device const *)(& pdev->dev), "No LAN VSI found\n"); } goto err_alloc; } else { } { adapter->flags = adapter->flags | 1U; netdev->netdev_ops = & i40evf_netdev_ops; i40evf_set_ethtool_ops(netdev); netdev->watchdog_timeo = 1250; netdev->features = netdev->features | 18254741555ULL; } if (((adapter->vf_res)->vf_offload_flags & 65536U) != 0U) { netdev->vlan_features = netdev->features; netdev->features = netdev->features | 896ULL; } else { } { netdev->hw_features = netdev->hw_features | netdev->features; netdev->hw_features = netdev->hw_features & 0xfffffffbffffffffULL; tmp___4 = is_valid_ether_addr((u8 const *)(& adapter->hw.mac.addr)); } if (tmp___4) { tmp___5 = 0; } else { tmp___5 = 1; } if (tmp___5) { { _dev_info((struct device const *)(& pdev->dev), "Invalid MAC address %pM, using random\n", (u8 *)(& adapter->hw.mac.addr)); eth_random_addr((u8 *)(& adapter->hw.mac.addr)); } } else { } { ether_addr_copy(netdev->dev_addr, (u8 const *)(& adapter->hw.mac.addr)); ether_addr_copy((u8 *)(& netdev->perm_addr), (u8 const *)(& adapter->hw.mac.addr)); tmp___6 = kzalloc(24UL, 32U); f = (struct i40evf_mac_filter *)tmp___6; } if ((unsigned long )f == (unsigned long )((struct i40evf_mac_filter *)0)) { goto err_sw_init; } else { } { ether_addr_copy((u8 *)(& f->macaddr), (u8 const *)(& adapter->hw.mac.addr)); f->add = 1; adapter->aq_required = adapter->aq_required | 4U; list_add(& f->list, & adapter->mac_filter_list); init_timer_key(& adapter->watchdog_timer, 0U, "(&adapter->watchdog_timer)", & __key); adapter->watchdog_timer.function = & i40evf_watchdog_timer; adapter->watchdog_timer.data = (unsigned long )adapter; ldv_mod_timer_136(& adapter->watchdog_timer, (unsigned long )jiffies + 1UL); __min1 = (int )(adapter->vsi_res)->num_queue_pairs; tmp___7 = cpumask_weight(cpu_online_mask); __min2 = (int )tmp___7; adapter->num_active_queues = __min1 < __min2 ? __min1 : __min2; adapter->tx_desc_count = 512U; adapter->rx_desc_count = 512U; err = i40evf_init_interrupt_scheme(adapter); } if (err != 0) { goto err_sw_init; } else { } { i40evf_map_rings_to_vectors(adapter); i40evf_configure_rss(adapter); err = i40evf_request_misc_irq(adapter); } if (err != 0) { goto err_sw_init; } else { } { netif_carrier_off(netdev); adapter->vsi.id = (adapter->vsi_res)->vsi_id; adapter->vsi.seid = (adapter->vsi_res)->vsi_id; adapter->vsi.back = adapter; adapter->vsi.base_vector = 1; adapter->vsi.work_limit = 256U; adapter->vsi.rx_itr_setting = 32892U; adapter->vsi.tx_itr_setting = 33012U; adapter->vsi.netdev = adapter->netdev; } if (! adapter->netdev_registered) { { err = ldv_register_netdev_137(netdev); } if (err != 0) { goto err_register; } else { } } else { } { adapter->netdev_registered = 1; netif_tx_stop_all_queues(netdev); _dev_info((struct device const *)(& pdev->dev), "MAC address: %pM\n", (u8 *)(& adapter->hw.mac.addr)); } if ((netdev->features & 16384ULL) != 0ULL) { { _dev_info((struct device const *)(& pdev->dev), "GRO is enabled\n"); } } else { } { _dev_info((struct device const *)(& pdev->dev), "%s\n", (char const *)(& i40evf_driver_string)); adapter->state = 6; set_bit(6L, (unsigned long volatile *)(& adapter->vsi.state)); i40evf_misc_irq_enable(adapter); } return; restart: { tmp___8 = msecs_to_jiffies(50U); schedule_delayed_work(& adapter->init_task, tmp___8); } return; err_register: { i40evf_free_misc_irq(adapter); } err_sw_init: { i40evf_reset_interrupt_capability(adapter); } err_alloc: { kfree((void const *)adapter->vf_res); adapter->vf_res = (struct i40e_virtchnl_vf_resource *)0; } err: adapter->aq_wait_count = adapter->aq_wait_count + 1U; if (adapter->aq_wait_count > 10U) { { dev_err((struct device const *)(& pdev->dev), "Failed to communicate with PF; giving up\n"); adapter->flags = adapter->flags | 256U; } return; } else { } { schedule_delayed_work(& adapter->init_task, 750UL); } return; } } static void i40evf_shutdown(struct pci_dev *pdev ) { struct net_device *netdev ; void *tmp ; struct i40evf_adapter *adapter ; void *tmp___0 ; bool tmp___1 ; { { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct i40evf_adapter *)tmp___0; netif_device_detach(netdev); tmp___1 = netif_running((struct net_device const *)netdev); } if ((int )tmp___1) { { i40evf_close(netdev); } } else { } { adapter->state = 1; adapter->aq_required = 0U; adapter->aq_pending = 0U; pci_save_state(pdev); pci_disable_device(pdev); } return; } } static int i40evf_probe(struct pci_dev *pdev , struct pci_device_id const *ent ) { struct net_device *netdev ; struct i40evf_adapter *adapter ; struct i40e_hw *hw ; int err ; void *tmp ; void *tmp___0 ; struct lock_class_key __key ; atomic_long_t __constr_expr_0 ; struct lock_class_key __key___0 ; atomic_long_t __constr_expr_1 ; struct lock_class_key __key___1 ; atomic_long_t __constr_expr_2 ; struct lock_class_key __key___2 ; atomic_long_t __constr_expr_3 ; struct lock_class_key __key___3 ; { { adapter = (struct i40evf_adapter *)0; hw = (struct i40e_hw *)0; err = pci_enable_device(pdev); } if (err != 0) { return (err); } else { } { err = dma_set_mask_and_coherent(& pdev->dev, 0xffffffffffffffffULL); } if (err != 0) { { err = dma_set_mask_and_coherent(& pdev->dev, 4294967295ULL); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "DMA configuration failed: 0x%x\n", err); } goto err_dma; } else { } } else { } { err = pci_request_regions(pdev, (char const *)(& i40evf_driver_name)); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "pci_request_regions failed 0x%x\n", err); } goto err_pci_reg; } else { } { pci_enable_pcie_error_reporting(pdev); pci_set_master(pdev); netdev = ldv_alloc_etherdev_mqs_138(3440, 8U, 8U); } if ((unsigned long )netdev == (unsigned long )((struct net_device *)0)) { err = -12; goto err_alloc_etherdev; } else { } { netdev->dev.parent = & pdev->dev; pci_set_drvdata(pdev, (void *)netdev); tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct i40evf_adapter *)tmp; adapter->netdev = netdev; adapter->pdev = pdev; hw = & adapter->hw; hw->back = (void *)adapter; adapter->msg_enable = 7U; adapter->state = 0; pci_save_state(pdev); tmp___0 = ioremap(pdev->resource[0].start, pdev->resource[0].start != 0ULL || pdev->resource[0].end != pdev->resource[0].start ? (unsigned long )((pdev->resource[0].end - pdev->resource[0].start) + 1ULL) : 0UL); hw->hw_addr = (u8 *)tmp___0; } if ((unsigned long )hw->hw_addr == (unsigned long )((u8 *)0U)) { err = -5; goto err_ioremap; } else { } { hw->vendor_id = pdev->vendor; hw->device_id = pdev->device; pci_read_config_byte((struct pci_dev const *)pdev, 8, & hw->revision_id); hw->subsystem_vendor_id = pdev->subsystem_vendor; hw->subsystem_device_id = pdev->subsystem_device; hw->bus.device = (unsigned int )((u16 )(pdev->devfn >> 3)) & 31U; hw->bus.func = (unsigned int )((u16 )pdev->devfn) & 7U; INIT_LIST_HEAD(& adapter->mac_filter_list); INIT_LIST_HEAD(& adapter->vlan_filter_list); __init_work(& adapter->reset_task, 0); __constr_expr_0.counter = 137438953408L; adapter->reset_task.data = __constr_expr_0; lockdep_init_map(& adapter->reset_task.lockdep_map, "(&adapter->reset_task)", & __key, 0); INIT_LIST_HEAD(& adapter->reset_task.entry); adapter->reset_task.func = & i40evf_reset_task; __init_work(& adapter->adminq_task, 0); __constr_expr_1.counter = 137438953408L; adapter->adminq_task.data = __constr_expr_1; lockdep_init_map(& adapter->adminq_task.lockdep_map, "(&adapter->adminq_task)", & __key___0, 0); INIT_LIST_HEAD(& adapter->adminq_task.entry); adapter->adminq_task.func = & i40evf_adminq_task; __init_work(& adapter->watchdog_task, 0); __constr_expr_2.counter = 137438953408L; adapter->watchdog_task.data = __constr_expr_2; lockdep_init_map(& adapter->watchdog_task.lockdep_map, "(&adapter->watchdog_task)", & __key___1, 0); INIT_LIST_HEAD(& adapter->watchdog_task.entry); adapter->watchdog_task.func = & i40evf_watchdog_task; __init_work(& adapter->init_task.work, 0); __constr_expr_3.counter = 137438953408L; adapter->init_task.work.data = __constr_expr_3; lockdep_init_map(& adapter->init_task.work.lockdep_map, "(&(&adapter->init_task)->work)", & __key___2, 0); INIT_LIST_HEAD(& adapter->init_task.work.entry); adapter->init_task.work.func = & i40evf_init_task; init_timer_key(& adapter->init_task.timer, 2U, "(&(&adapter->init_task)->timer)", & __key___3); adapter->init_task.timer.function = & delayed_work_timer_fn; adapter->init_task.timer.data = (unsigned long )(& adapter->init_task); schedule_delayed_work(& adapter->init_task, 10UL); } return (0); err_ioremap: { ldv_free_netdev_139(netdev); } err_alloc_etherdev: { pci_release_regions(pdev); } err_pci_reg: ; err_dma: { pci_disable_device(pdev); } return (err); } } static int i40evf_suspend(struct pci_dev *pdev , pm_message_t state ) { struct net_device *netdev ; void *tmp ; struct i40evf_adapter *adapter ; void *tmp___0 ; int retval ; bool tmp___1 ; { { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct i40evf_adapter *)tmp___0; retval = 0; netif_device_detach(netdev); tmp___1 = netif_running((struct net_device const *)netdev); } if ((int )tmp___1) { { ldv_rtnl_lock_140(); i40evf_down(adapter); ldv_rtnl_unlock_141(); } } else { } { i40evf_free_misc_irq(adapter); i40evf_reset_interrupt_capability(adapter); retval = pci_save_state(pdev); } if (retval != 0) { return (retval); } else { } { pci_disable_device(pdev); } return (0); } } static int i40evf_resume(struct pci_dev *pdev ) { struct i40evf_adapter *adapter ; void *tmp ; struct net_device *netdev ; u32 err ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = pci_get_drvdata(pdev); adapter = (struct i40evf_adapter *)tmp; netdev = adapter->netdev; pci_set_power_state(pdev, 0); pci_restore_state(pdev); pci_save_state(pdev); tmp___0 = pci_enable_device_mem(pdev); err = (u32 )tmp___0; } if (err != 0U) { { dev_err((struct device const *)(& pdev->dev), "Cannot enable PCI device from suspend.\n"); } return ((int )err); } else { } { pci_set_master(pdev); ldv_rtnl_lock_142(); tmp___1 = i40evf_set_interrupt_capability(adapter); err = (u32 )tmp___1; } if (err != 0U) { { dev_err((struct device const *)(& pdev->dev), "Cannot enable MSI-X interrupts.\n"); } return ((int )err); } else { } { tmp___2 = i40evf_request_misc_irq(adapter); err = (u32 )tmp___2; ldv_rtnl_unlock_143(); } if (err != 0U) { { dev_err((struct device const *)(& pdev->dev), "Cannot get interrupt vector.\n"); } return ((int )err); } else { } { schedule_work(& adapter->reset_task); netif_device_attach(netdev); } return ((int )err); } } static void i40evf_remove(struct pci_dev *pdev ) { struct net_device *netdev ; void *tmp ; struct i40evf_adapter *adapter ; void *tmp___0 ; struct i40evf_mac_filter *f ; struct i40evf_mac_filter *ftmp ; struct i40e_hw *hw ; bool tmp___1 ; int tmp___2 ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; struct list_head const *__mptr___2 ; struct list_head const *__mptr___3 ; struct list_head const *__mptr___4 ; { { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct i40evf_adapter *)tmp___0; hw = & adapter->hw; cancel_delayed_work_sync(& adapter->init_task); cancel_work_sync(& adapter->reset_task); } if ((int )adapter->netdev_registered) { { ldv_unregister_netdev_144(netdev); adapter->netdev_registered = 0; } } else { } { adapter->state = 1; adapter->aq_required = 0U; adapter->aq_pending = 0U; i40evf_request_reset(adapter); msleep(20U); tmp___1 = i40evf_asq_done(hw); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { { i40evf_request_reset(adapter); msleep(20U); } } else { } if ((unsigned long )adapter->msix_entries != (unsigned long )((struct msix_entry *)0)) { { i40evf_misc_irq_disable(adapter); i40evf_free_misc_irq(adapter); i40evf_reset_interrupt_capability(adapter); i40evf_free_q_vectors(adapter); } } else { } if ((unsigned long )adapter->watchdog_timer.function != (unsigned long )((void (*)(unsigned long ))0)) { { ldv_del_timer_sync_145(& adapter->watchdog_timer); } } else { } { flush_scheduled_work(); } if ((unsigned int )hw->aq.asq.count != 0U) { { i40evf_shutdown_adminq(hw); } } else { } { ldv_iounmap_146((void volatile *)hw->hw_addr); pci_release_regions(pdev); i40evf_free_queues(adapter); kfree((void const *)adapter->vf_res); __mptr = (struct list_head const *)adapter->mac_filter_list.next; f = (struct i40evf_mac_filter *)__mptr; __mptr___0 = (struct list_head const *)f->list.next; ftmp = (struct i40evf_mac_filter *)__mptr___0; } goto ldv_58297; ldv_58296: { list_del(& f->list); kfree((void const *)f); f = ftmp; __mptr___1 = (struct list_head const *)ftmp->list.next; ftmp = (struct i40evf_mac_filter *)__mptr___1; } ldv_58297: ; if ((unsigned long )(& f->list) != (unsigned long )(& adapter->mac_filter_list)) { goto ldv_58296; } else { } __mptr___2 = (struct list_head const *)adapter->vlan_filter_list.next; f = (struct i40evf_mac_filter *)__mptr___2; __mptr___3 = (struct list_head const *)f->list.next; ftmp = (struct i40evf_mac_filter *)__mptr___3; goto ldv_58306; ldv_58305: { list_del(& f->list); kfree((void const *)f); f = ftmp; __mptr___4 = (struct list_head const *)ftmp->list.next; ftmp = (struct i40evf_mac_filter *)__mptr___4; } ldv_58306: ; if ((unsigned long )(& f->list) != (unsigned long )(& adapter->vlan_filter_list)) { goto ldv_58305; } else { } { ldv_free_netdev_147(netdev); pci_disable_pcie_error_reporting(pdev); pci_disable_device(pdev); } return; } } static struct pci_driver i40evf_driver = {{0, 0}, (char const *)(& i40evf_driver_name), (struct pci_device_id const *)(& i40evf_pci_tbl), & i40evf_probe, & i40evf_remove, & i40evf_suspend, 0, 0, & i40evf_resume, & i40evf_shutdown, 0, 0, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int i40evf_init_module(void) { int ret ; { { printk("\016i40evf: %s - version %s\n", (char const *)(& i40evf_driver_string), (char const *)(& i40evf_driver_version)); printk("\016%s\n", (char const *)(& i40evf_copyright)); ret = ldv___pci_register_driver_148(& i40evf_driver, & __this_module, "i40evf"); } return (ret); } } static void i40evf_exit_module(void) { { { ldv_pci_unregister_driver_149(& i40evf_driver); } return; } } void ldv_EMGentry_exit_i40evf_exit_module_17_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_i40evf_init_module_17_7(int (*arg0)(void) ) ; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) ; struct net_device *ldv_alloc_etherdev_mqs(struct net_device *arg0 , int arg1 , unsigned int arg2 , unsigned int arg3 ) ; int ldv_del_timer_sync(int arg0 , struct timer_list *arg1 ) ; void ldv_dispatch_deregister_14_1(struct net_device *arg0 ) ; void ldv_dispatch_deregister_15_1(struct pci_driver *arg0 ) ; void ldv_dispatch_instance_deregister_6_1(struct timer_list *arg0 ) ; void ldv_dispatch_instance_register_9_2(struct timer_list *arg0 ) ; void ldv_dispatch_irq_deregister_7_1(int arg0 ) ; void ldv_dispatch_irq_register_12_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_irq_register_13_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_register_11_4(struct net_device *arg0 ) ; void ldv_dispatch_register_16_2(struct pci_driver *arg0 ) ; void ldv_dummy_resourceless_instance_callback_2_12(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_13(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_14(void (*arg0)(struct net_device * , struct ethtool_ringparam * ) , struct net_device *arg1 , struct ethtool_ringparam *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_15(int (*arg0)(struct net_device * , unsigned int * , unsigned char * , unsigned char * ) , struct net_device *arg1 , unsigned int *arg2 , unsigned char *arg3 , unsigned char *arg4 ) ; void ldv_dummy_resourceless_instance_callback_2_18(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_19(int (*arg0)(struct net_device * , struct ethtool_rxnfc * , unsigned int * ) , struct net_device *arg1 , struct ethtool_rxnfc *arg2 , unsigned int *arg3 ) ; void ldv_dummy_resourceless_instance_callback_2_22(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_23(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_26(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_2_29(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_3(void (*arg0)(struct net_device * , struct ethtool_channels * ) , struct net_device *arg1 , struct ethtool_channels *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_32(struct net_device_stats *(*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_33(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_34(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_35(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_36(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_37(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_38(int (*arg0)(struct net_device * , unsigned short , unsigned short ) , struct net_device *arg1 , unsigned short arg2 , unsigned short arg3 ) ; void ldv_dummy_resourceless_instance_callback_2_41(int (*arg0)(struct net_device * , unsigned short , unsigned short ) , struct net_device *arg1 , unsigned short arg2 , unsigned short arg3 ) ; void ldv_dummy_resourceless_instance_callback_2_44(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_45(void (*arg0)(struct net_device * , unsigned int ) , struct net_device *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_48(int (*arg0)(struct net_device * , struct ethtool_ringparam * ) , struct net_device *arg1 , struct ethtool_ringparam *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_49(int (*arg0)(struct net_device * , unsigned int * , unsigned char * , unsigned char ) , struct net_device *arg1 , unsigned int *arg2 , unsigned char *arg3 , unsigned char arg4 ) ; void ldv_dummy_resourceless_instance_callback_2_52(int (*arg0)(struct net_device * , struct ethtool_rxnfc * ) , struct net_device *arg1 , struct ethtool_rxnfc *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_7(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_8(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_9(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) ; void ldv_entry_EMGentry_17(void *arg0 ) ; int main(void) ; void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) ; void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) ; enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; enum irqreturn ldv_interrupt_instance_handler_1_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_1_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_interrupt_instance_0(void *arg0 ) ; void ldv_interrupt_interrupt_instance_1(void *arg0 ) ; int ldv_mod_timer(int arg0 , struct timer_list *arg1 , unsigned long arg2 ) ; int ldv_mod_timer_pending(int arg0 , struct timer_list *arg1 , unsigned long arg2 ) ; void ldv_net_dummy_resourceless_instance_2(void *arg0 ) ; int ldv_pci_instance_probe_3_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_3_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_3_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_3_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_3_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_3_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_3_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_3(void *arg0 ) ; void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) ; int ldv_register_netdev(int arg0 , struct net_device *arg1 ) ; int ldv_register_netdev_open_11_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) ; void ldv_timer_instance_callback_4_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) ; void ldv_timer_timer_instance_4(void *arg0 ) ; void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) ; void ldv_unregister_netdev_stop_14_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; struct ldv_thread ldv_thread_0 ; struct ldv_thread ldv_thread_1 ; struct ldv_thread ldv_thread_17 ; struct ldv_thread ldv_thread_2 ; struct ldv_thread ldv_thread_3 ; struct ldv_thread ldv_thread_4 ; void ldv_EMGentry_exit_i40evf_exit_module_17_2(void (*arg0)(void) ) { { { i40evf_exit_module(); } return; } } int ldv_EMGentry_init_i40evf_init_module_17_7(int (*arg0)(void) ) { int tmp ; { { tmp = i40evf_init_module(); } return (tmp); } } int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) { struct pci_driver *ldv_16_pci_driver_pci_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_16_pci_driver_pci_driver = arg1; ldv_dispatch_register_16_2(ldv_16_pci_driver_pci_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } struct net_device *ldv_alloc_etherdev_mqs(struct net_device *arg0 , int arg1 , unsigned int arg2 , unsigned int arg3 ) { struct net_device *ldv_5_netdev_net_device ; void *tmp ; int tmp___0 ; { { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { tmp = ldv_xmalloc(3264UL); ldv_5_netdev_net_device = (struct net_device *)tmp; } return (ldv_5_netdev_net_device); return (arg0); } else { return ((struct net_device *)0); return (arg0); } return (arg0); } } int ldv_del_timer_sync(int arg0 , struct timer_list *arg1 ) { struct timer_list *ldv_6_timer_list_timer_list ; { { ldv_6_timer_list_timer_list = arg1; ldv_dispatch_instance_deregister_6_1(ldv_6_timer_list_timer_list); } return (arg0); return (arg0); } } void ldv_dispatch_deregister_14_1(struct net_device *arg0 ) { { return; } } void ldv_dispatch_deregister_15_1(struct pci_driver *arg0 ) { { return; } } void ldv_dispatch_instance_deregister_6_1(struct timer_list *arg0 ) { { return; } } void ldv_dispatch_instance_register_9_2(struct timer_list *arg0 ) { struct ldv_struct_timer_instance_4 *cf_arg_4 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_4 = (struct ldv_struct_timer_instance_4 *)tmp; cf_arg_4->arg0 = arg0; ldv_timer_timer_instance_4((void *)cf_arg_4); } return; } } void ldv_dispatch_irq_deregister_7_1(int arg0 ) { int tmp ; { { tmp = ldv_undef_int(); } return; } } void ldv_dispatch_irq_register_12_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { struct ldv_struct_interrupt_instance_0 *cf_arg_0 ; struct ldv_struct_interrupt_instance_0 *cf_arg_1 ; void *tmp ; void *tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = ldv_xmalloc(40UL); cf_arg_0 = (struct ldv_struct_interrupt_instance_0 *)tmp; cf_arg_0->arg0 = arg0; cf_arg_0->arg1 = arg1; cf_arg_0->arg2 = arg2; cf_arg_0->arg3 = arg3; ldv_interrupt_interrupt_instance_0((void *)cf_arg_0); } } else { { tmp___0 = ldv_xmalloc(40UL); cf_arg_1 = (struct ldv_struct_interrupt_instance_0 *)tmp___0; cf_arg_1->arg0 = arg0; cf_arg_1->arg1 = arg1; cf_arg_1->arg2 = arg2; cf_arg_1->arg3 = arg3; ldv_interrupt_interrupt_instance_1((void *)cf_arg_1); } } return; } } void ldv_dispatch_irq_register_13_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { struct ldv_struct_interrupt_instance_0 *cf_arg_0 ; struct ldv_struct_interrupt_instance_0 *cf_arg_1 ; void *tmp ; void *tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = ldv_xmalloc(40UL); cf_arg_0 = (struct ldv_struct_interrupt_instance_0 *)tmp; cf_arg_0->arg0 = arg0; cf_arg_0->arg1 = arg1; cf_arg_0->arg2 = arg2; cf_arg_0->arg3 = arg3; ldv_interrupt_interrupt_instance_0((void *)cf_arg_0); } } else { { tmp___0 = ldv_xmalloc(40UL); cf_arg_1 = (struct ldv_struct_interrupt_instance_0 *)tmp___0; cf_arg_1->arg0 = arg0; cf_arg_1->arg1 = arg1; cf_arg_1->arg2 = arg2; cf_arg_1->arg3 = arg3; ldv_interrupt_interrupt_instance_1((void *)cf_arg_1); } } return; } } void ldv_dispatch_register_11_4(struct net_device *arg0 ) { struct ldv_struct_dummy_resourceless_instance_2 *cf_arg_2 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_2 = (struct ldv_struct_dummy_resourceless_instance_2 *)tmp; cf_arg_2->arg0 = arg0; ldv_net_dummy_resourceless_instance_2((void *)cf_arg_2); } return; } } void ldv_dispatch_register_16_2(struct pci_driver *arg0 ) { struct ldv_struct_pci_instance_3 *cf_arg_3 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_3 = (struct ldv_struct_pci_instance_3 *)tmp; cf_arg_3->arg0 = arg0; ldv_pci_pci_instance_3((void *)cf_arg_3); } return; } } void ldv_dummy_resourceless_instance_callback_2_29(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { i40evf_change_mtu(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_32(struct net_device_stats *(*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { i40evf_get_stats(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_33(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) { { { i40evf_set_mac(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_34(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { i40evf_set_rx_mode(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_35(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) { { { i40evf_xmit_frame(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_36(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { i40evf_tx_timeout(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_37(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { eth_validate_addr(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_38(int (*arg0)(struct net_device * , unsigned short , unsigned short ) , struct net_device *arg1 , unsigned short arg2 , unsigned short arg3 ) { { { i40evf_vlan_rx_add_vid(arg1, (int )arg2, (int )arg3); } return; } } void ldv_dummy_resourceless_instance_callback_2_41(int (*arg0)(struct net_device * , unsigned short , unsigned short ) , struct net_device *arg1 , unsigned short arg2 , unsigned short arg3 ) { { { i40evf_vlan_rx_kill_vid(arg1, (int )arg2, (int )arg3); } return; } } void ldv_entry_EMGentry_17(void *arg0 ) { void (*ldv_17_exit_i40evf_exit_module_default)(void) ; int (*ldv_17_init_i40evf_init_module_default)(void) ; int ldv_17_ret_default ; int tmp ; { { ldv_17_ret_default = ldv_EMGentry_init_i40evf_init_module_17_7(ldv_17_init_i40evf_init_module_default); ldv_17_ret_default = ldv_ldv_post_init_150(ldv_17_ret_default); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_17_ret_default != 0); ldv_ldv_check_final_state_151(); ldv_stop(); } return; } else { { ldv_assume(ldv_17_ret_default == 0); ldv_EMGentry_exit_i40evf_exit_module_17_2(ldv_17_exit_i40evf_exit_module_default); ldv_ldv_check_final_state_152(); ldv_stop(); } return; } return; } } int main(void) { { { ldv_ldv_initialize_153(); ldv_entry_EMGentry_17((void *)0); } return 0; } } void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) { int ldv_7_line_line ; { { ldv_7_line_line = arg1; ldv_dispatch_irq_deregister_7_1(ldv_7_line_line); } return; return; } } void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_8_netdev_net_device ; { { ldv_8_netdev_net_device = arg1; ldv_free((void *)ldv_8_netdev_net_device); } return; return; } } enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = i40evf_msix_aq(arg1, arg2); } return (tmp); } } enum irqreturn ldv_interrupt_instance_handler_1_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = i40evf_msix_clean_rings(arg1, arg2); } return (tmp); } } void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_instance_thread_1_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_interrupt_instance_0(void *arg0 ) { enum irqreturn (*ldv_0_callback_handler)(int , void * ) ; void *ldv_0_data_data ; int ldv_0_line_line ; enum irqreturn ldv_0_ret_val_default ; enum irqreturn (*ldv_0_thread_thread)(int , void * ) ; struct ldv_struct_interrupt_instance_0 *data ; int tmp ; { data = (struct ldv_struct_interrupt_instance_0 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_interrupt_instance_0 *)0)) { { ldv_0_line_line = data->arg0; ldv_0_callback_handler = data->arg1; ldv_0_thread_thread = data->arg2; ldv_0_data_data = data->arg3; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); ldv_0_ret_val_default = ldv_interrupt_instance_handler_0_5(ldv_0_callback_handler, ldv_0_line_line, ldv_0_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume((unsigned int )ldv_0_ret_val_default == 2U); } if ((unsigned long )ldv_0_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_0_3(ldv_0_thread_thread, ldv_0_line_line, ldv_0_data_data); } } else { } } else { { ldv_assume((unsigned int )ldv_0_ret_val_default != 2U); } } return; return; } } void ldv_interrupt_interrupt_instance_1(void *arg0 ) { enum irqreturn (*ldv_1_callback_handler)(int , void * ) ; void *ldv_1_data_data ; int ldv_1_line_line ; enum irqreturn ldv_1_ret_val_default ; enum irqreturn (*ldv_1_thread_thread)(int , void * ) ; struct ldv_struct_interrupt_instance_0 *data ; int tmp ; { data = (struct ldv_struct_interrupt_instance_0 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_interrupt_instance_0 *)0)) { { ldv_1_line_line = data->arg0; ldv_1_callback_handler = data->arg1; ldv_1_thread_thread = data->arg2; ldv_1_data_data = data->arg3; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); ldv_1_ret_val_default = ldv_interrupt_instance_handler_1_5(ldv_1_callback_handler, ldv_1_line_line, ldv_1_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume((unsigned int )ldv_1_ret_val_default == 2U); } if ((unsigned long )ldv_1_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_1_3(ldv_1_thread_thread, ldv_1_line_line, ldv_1_data_data); } } else { } } else { { ldv_assume((unsigned int )ldv_1_ret_val_default != 2U); } } return; return; } } int ldv_mod_timer(int arg0 , struct timer_list *arg1 , unsigned long arg2 ) { struct timer_list *ldv_9_timer_list_timer_list ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_9_timer_list_timer_list = arg1; ldv_dispatch_instance_register_9_2(ldv_9_timer_list_timer_list); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } int ldv_mod_timer_pending(int arg0 , struct timer_list *arg1 , unsigned long arg2 ) { struct timer_list *ldv_10_timer_list_timer_list ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_10_timer_list_timer_list = arg1; } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_net_dummy_resourceless_instance_2(void *arg0 ) { void (*ldv_2_callback_get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*ldv_2_callback_get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*ldv_2_callback_get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; void (*ldv_2_callback_get_ethtool_stats)(struct net_device * , struct ethtool_stats * , unsigned long long * ) ; unsigned int (*ldv_2_callback_get_link)(struct net_device * ) ; unsigned int (*ldv_2_callback_get_msglevel)(struct net_device * ) ; void (*ldv_2_callback_get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*ldv_2_callback_get_rxfh)(struct net_device * , unsigned int * , unsigned char * , unsigned char * ) ; unsigned int (*ldv_2_callback_get_rxfh_indir_size)(struct net_device * ) ; int (*ldv_2_callback_get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , unsigned int * ) ; int (*ldv_2_callback_get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*ldv_2_callback_get_sset_count)(struct net_device * , int ) ; void (*ldv_2_callback_get_strings)(struct net_device * , unsigned int , unsigned char * ) ; int (*ldv_2_callback_ndo_change_mtu)(struct net_device * , int ) ; struct net_device_stats *(*ldv_2_callback_ndo_get_stats)(struct net_device * ) ; int (*ldv_2_callback_ndo_set_mac_address)(struct net_device * , void * ) ; void (*ldv_2_callback_ndo_set_rx_mode)(struct net_device * ) ; enum netdev_tx (*ldv_2_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; void (*ldv_2_callback_ndo_tx_timeout)(struct net_device * ) ; int (*ldv_2_callback_ndo_validate_addr)(struct net_device * ) ; int (*ldv_2_callback_ndo_vlan_rx_add_vid)(struct net_device * , unsigned short , unsigned short ) ; int (*ldv_2_callback_ndo_vlan_rx_kill_vid)(struct net_device * , unsigned short , unsigned short ) ; int (*ldv_2_callback_set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*ldv_2_callback_set_msglevel)(struct net_device * , unsigned int ) ; int (*ldv_2_callback_set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*ldv_2_callback_set_rxfh)(struct net_device * , unsigned int * , unsigned char * , unsigned char ) ; int (*ldv_2_callback_set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; struct net_device *ldv_2_container_net_device ; struct ethtool_channels *ldv_2_container_struct_ethtool_channels_ptr ; struct ethtool_cmd *ldv_2_container_struct_ethtool_cmd_ptr ; struct ethtool_coalesce *ldv_2_container_struct_ethtool_coalesce_ptr ; struct ethtool_drvinfo *ldv_2_container_struct_ethtool_drvinfo_ptr ; struct ethtool_ringparam *ldv_2_container_struct_ethtool_ringparam_ptr ; struct ethtool_rxnfc *ldv_2_container_struct_ethtool_rxnfc_ptr ; struct ethtool_stats *ldv_2_container_struct_ethtool_stats_ptr ; struct sk_buff *ldv_2_container_struct_sk_buff_ptr ; unsigned int *ldv_2_ldv_param_15_1_default ; unsigned char *ldv_2_ldv_param_15_2_default ; unsigned char *ldv_2_ldv_param_15_3_default ; unsigned int *ldv_2_ldv_param_19_2_default ; int ldv_2_ldv_param_23_1_default ; unsigned int ldv_2_ldv_param_26_1_default ; unsigned char *ldv_2_ldv_param_26_2_default ; int ldv_2_ldv_param_29_1_default ; unsigned short ldv_2_ldv_param_38_1_default ; unsigned short ldv_2_ldv_param_38_2_default ; unsigned short ldv_2_ldv_param_41_1_default ; unsigned short ldv_2_ldv_param_41_2_default ; unsigned int ldv_2_ldv_param_45_1_default ; unsigned int *ldv_2_ldv_param_49_1_default ; unsigned char *ldv_2_ldv_param_49_2_default ; unsigned char ldv_2_ldv_param_49_3_default ; unsigned long long *ldv_2_ldv_param_9_2_default ; struct ldv_struct_dummy_resourceless_instance_2 *data ; int tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; { data = (struct ldv_struct_dummy_resourceless_instance_2 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_dummy_resourceless_instance_2 *)0)) { { ldv_2_container_net_device = data->arg0; ldv_free((void *)data); } } else { } goto ldv_call_2; return; ldv_call_2: { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } if (tmp == 9) { goto case_9; } else { } if (tmp == 10) { goto case_10; } else { } if (tmp == 11) { goto case_11; } else { } if (tmp == 12) { goto case_12; } else { } if (tmp == 13) { goto case_13; } else { } if (tmp == 14) { goto case_14; } else { } if (tmp == 15) { goto case_15; } else { } if (tmp == 16) { goto case_16; } else { } if (tmp == 17) { goto case_17; } else { } if (tmp == 18) { goto case_18; } else { } if (tmp == 19) { goto case_19; } else { } if (tmp == 20) { goto case_20; } else { } if (tmp == 21) { goto case_21; } else { } if (tmp == 22) { goto case_22; } else { } if (tmp == 23) { goto case_23; } else { } if (tmp == 24) { goto case_24; } else { } if (tmp == 25) { goto case_25; } else { } if (tmp == 26) { goto case_26; } else { } if (tmp == 27) { goto case_27; } else { } if (tmp == 28) { goto case_28; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_52(ldv_2_callback_set_rxnfc, ldv_2_container_net_device, ldv_2_container_struct_ethtool_rxnfc_ptr); } goto ldv_call_2; case_2: /* CIL Label */ { tmp___0 = ldv_xmalloc(4UL); ldv_2_ldv_param_49_1_default = (unsigned int *)tmp___0; tmp___1 = ldv_xmalloc(1UL); ldv_2_ldv_param_49_2_default = (unsigned char *)tmp___1; ldv_dummy_resourceless_instance_callback_2_49(ldv_2_callback_set_rxfh, ldv_2_container_net_device, ldv_2_ldv_param_49_1_default, ldv_2_ldv_param_49_2_default, (int )ldv_2_ldv_param_49_3_default); ldv_free((void *)ldv_2_ldv_param_49_1_default); ldv_free((void *)ldv_2_ldv_param_49_2_default); } goto ldv_call_2; goto ldv_call_2; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_48(ldv_2_callback_set_ringparam, ldv_2_container_net_device, ldv_2_container_struct_ethtool_ringparam_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_4: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_45(ldv_2_callback_set_msglevel, ldv_2_container_net_device, ldv_2_ldv_param_45_1_default); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_5: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_44(ldv_2_callback_set_coalesce, ldv_2_container_net_device, ldv_2_container_struct_ethtool_coalesce_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_6: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_41(ldv_2_callback_ndo_vlan_rx_kill_vid, ldv_2_container_net_device, (int )ldv_2_ldv_param_41_1_default, (int )ldv_2_ldv_param_41_2_default); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_7: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_38(ldv_2_callback_ndo_vlan_rx_add_vid, ldv_2_container_net_device, (int )ldv_2_ldv_param_38_1_default, (int )ldv_2_ldv_param_38_2_default); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_8: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_37(ldv_2_callback_ndo_validate_addr, ldv_2_container_net_device); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_9: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_36(ldv_2_callback_ndo_tx_timeout, ldv_2_container_net_device); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_10: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_35(ldv_2_callback_ndo_start_xmit, ldv_2_container_struct_sk_buff_ptr, ldv_2_container_net_device); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_11: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_34(ldv_2_callback_ndo_set_rx_mode, ldv_2_container_net_device); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_12: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_33(ldv_2_callback_ndo_set_mac_address, ldv_2_container_net_device, (void *)ldv_2_container_struct_ethtool_channels_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_13: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_32(ldv_2_callback_ndo_get_stats, ldv_2_container_net_device); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_14: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_29(ldv_2_callback_ndo_change_mtu, ldv_2_container_net_device, ldv_2_ldv_param_29_1_default); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_15: /* CIL Label */ { tmp___2 = ldv_xmalloc(1UL); ldv_2_ldv_param_26_2_default = (unsigned char *)tmp___2; ldv_dummy_resourceless_instance_callback_2_26(ldv_2_callback_get_strings, ldv_2_container_net_device, ldv_2_ldv_param_26_1_default, ldv_2_ldv_param_26_2_default); ldv_free((void *)ldv_2_ldv_param_26_2_default); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_16: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_23(ldv_2_callback_get_sset_count, ldv_2_container_net_device, ldv_2_ldv_param_23_1_default); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_17: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_22(ldv_2_callback_get_settings, ldv_2_container_net_device, ldv_2_container_struct_ethtool_cmd_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_18: /* CIL Label */ { tmp___3 = ldv_xmalloc(4UL); ldv_2_ldv_param_19_2_default = (unsigned int *)tmp___3; ldv_dummy_resourceless_instance_callback_2_19(ldv_2_callback_get_rxnfc, ldv_2_container_net_device, ldv_2_container_struct_ethtool_rxnfc_ptr, ldv_2_ldv_param_19_2_default); ldv_free((void *)ldv_2_ldv_param_19_2_default); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_19: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_18(ldv_2_callback_get_rxfh_indir_size, ldv_2_container_net_device); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_20: /* CIL Label */ { tmp___4 = ldv_xmalloc(4UL); ldv_2_ldv_param_15_1_default = (unsigned int *)tmp___4; tmp___5 = ldv_xmalloc(1UL); ldv_2_ldv_param_15_2_default = (unsigned char *)tmp___5; tmp___6 = ldv_xmalloc(1UL); ldv_2_ldv_param_15_3_default = (unsigned char *)tmp___6; ldv_dummy_resourceless_instance_callback_2_15(ldv_2_callback_get_rxfh, ldv_2_container_net_device, ldv_2_ldv_param_15_1_default, ldv_2_ldv_param_15_2_default, ldv_2_ldv_param_15_3_default); ldv_free((void *)ldv_2_ldv_param_15_1_default); ldv_free((void *)ldv_2_ldv_param_15_2_default); ldv_free((void *)ldv_2_ldv_param_15_3_default); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_21: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_14(ldv_2_callback_get_ringparam, ldv_2_container_net_device, ldv_2_container_struct_ethtool_ringparam_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_22: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_13(ldv_2_callback_get_msglevel, ldv_2_container_net_device); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_23: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_12(ldv_2_callback_get_link, ldv_2_container_net_device); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_24: /* CIL Label */ { tmp___7 = ldv_xmalloc(8UL); ldv_2_ldv_param_9_2_default = (unsigned long long *)tmp___7; ldv_dummy_resourceless_instance_callback_2_9(ldv_2_callback_get_ethtool_stats, ldv_2_container_net_device, ldv_2_container_struct_ethtool_stats_ptr, ldv_2_ldv_param_9_2_default); ldv_free((void *)ldv_2_ldv_param_9_2_default); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_25: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_8(ldv_2_callback_get_drvinfo, ldv_2_container_net_device, ldv_2_container_struct_ethtool_drvinfo_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_26: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_7(ldv_2_callback_get_coalesce, ldv_2_container_net_device, ldv_2_container_struct_ethtool_coalesce_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_27: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_3(ldv_2_callback_get_channels, ldv_2_container_net_device, ldv_2_container_struct_ethtool_channels_ptr); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_28: /* CIL Label */ ; return; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } int ldv_pci_instance_probe_3_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = i40evf_probe(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_3_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { i40evf_remove(arg1); } return; } } void ldv_pci_instance_resume_3_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { i40evf_resume(arg1); } return; } } void ldv_pci_instance_resume_early_3_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_3_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { i40evf_shutdown(arg1); } return; } } int ldv_pci_instance_suspend_3_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = i40evf_suspend(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_3_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_3(void *arg0 ) { struct pci_driver *ldv_3_container_pci_driver ; struct pci_dev *ldv_3_resource_dev ; struct pm_message ldv_3_resource_pm_message ; struct pci_device_id *ldv_3_resource_struct_pci_device_id_ptr ; int ldv_3_ret_default ; struct ldv_struct_pci_instance_3 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { data = (struct ldv_struct_pci_instance_3 *)arg0; ldv_3_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_pci_instance_3 *)0)) { { ldv_3_container_pci_driver = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(2968UL); ldv_3_resource_dev = (struct pci_dev *)tmp; tmp___0 = ldv_xmalloc(32UL); ldv_3_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___0; } goto ldv_main_3; return; ldv_main_3: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_ldv_pre_probe_154(); ldv_3_ret_default = ldv_pci_instance_probe_3_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_3_container_pci_driver->probe, ldv_3_resource_dev, ldv_3_resource_struct_pci_device_id_ptr); ldv_3_ret_default = ldv_ldv_post_probe_155(ldv_3_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { ldv_assume(ldv_3_ret_default == 0); } goto ldv_call_3; } else { { ldv_assume(ldv_3_ret_default != 0); } goto ldv_main_3; } } else { { ldv_free((void *)ldv_3_resource_dev); ldv_free((void *)ldv_3_resource_struct_pci_device_id_ptr); } return; } return; ldv_call_3: { tmp___3 = ldv_undef_int(); } { if (tmp___3 == 1) { goto case_1; } else { } if (tmp___3 == 2) { goto case_2; } else { } if (tmp___3 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_call_3; case_2: /* CIL Label */ { ldv_3_ret_default = ldv_pci_instance_suspend_3_8(ldv_3_container_pci_driver->suspend, ldv_3_resource_dev, ldv_3_resource_pm_message); ldv_3_ret_default = ldv_filter_err_code(ldv_3_ret_default); } if ((unsigned long )ldv_3_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_3_ret_default = ldv_pci_instance_suspend_late_3_7(ldv_3_container_pci_driver->suspend_late, ldv_3_resource_dev, ldv_3_resource_pm_message); } } else { } { ldv_3_ret_default = ldv_filter_err_code(ldv_3_ret_default); } if ((unsigned long )ldv_3_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_3_6(ldv_3_container_pci_driver->resume_early, ldv_3_resource_dev); } } else { } { ldv_pci_instance_resume_3_5(ldv_3_container_pci_driver->resume, ldv_3_resource_dev); } goto ldv_call_3; case_3: /* CIL Label */ { ldv_pci_instance_shutdown_3_3(ldv_3_container_pci_driver->shutdown, ldv_3_resource_dev); ldv_pci_instance_release_3_2(ldv_3_container_pci_driver->remove, ldv_3_resource_dev); } goto ldv_main_3; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) { struct pci_driver *ldv_15_pci_driver_pci_driver ; { { ldv_15_pci_driver_pci_driver = arg1; ldv_dispatch_deregister_15_1(ldv_15_pci_driver_pci_driver); } return; return; } } int ldv_register_netdev(int arg0 , struct net_device *arg1 ) { struct net_device *ldv_11_netdev_net_device ; int ldv_11_ret_default ; int tmp ; int tmp___0 ; { { ldv_11_ret_default = 1; ldv_11_ret_default = ldv_pre_register_netdev(); ldv_11_netdev_net_device = arg1; tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_11_ret_default == 0); ldv_11_ret_default = ldv_register_netdev_open_11_6((ldv_11_netdev_net_device->netdev_ops)->ndo_open, ldv_11_netdev_net_device); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_11_ret_default == 0); ldv_dispatch_register_11_4(ldv_11_netdev_net_device); } } else { { ldv_assume(ldv_11_ret_default != 0); } } } else { { ldv_assume(ldv_11_ret_default != 0); } } return (ldv_11_ret_default); return (arg0); return (arg0); } } int ldv_register_netdev_open_11_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { int tmp ; { { tmp = i40evf_open(arg1); } return (tmp); } } int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) { enum irqreturn (*ldv_13_callback_handler)(int , void * ) ; void *ldv_13_data_data ; int ldv_13_line_line ; enum irqreturn (*ldv_13_thread_thread)(int , void * ) ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_13_line_line = (int )arg1; ldv_13_callback_handler = arg2; ldv_13_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_13_data_data = arg5; ldv_dispatch_irq_register_13_2(ldv_13_line_line, ldv_13_callback_handler, ldv_13_thread_thread, ldv_13_data_data); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_timer_instance_callback_4_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_timer_timer_instance_4(void *arg0 ) { struct timer_list *ldv_4_container_timer_list ; struct ldv_struct_timer_instance_4 *data ; { data = (struct ldv_struct_timer_instance_4 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_timer_instance_4 *)0)) { { ldv_4_container_timer_list = data->arg0; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); } if ((unsigned long )ldv_4_container_timer_list->function != (unsigned long )((void (*)(unsigned long ))0)) { { ldv_timer_instance_callback_4_2(ldv_4_container_timer_list->function, ldv_4_container_timer_list->data); } } else { } { ldv_switch_to_process_context(); } return; return; } } void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_14_netdev_net_device ; { { ldv_14_netdev_net_device = arg1; ldv_unregister_netdev_stop_14_2((ldv_14_netdev_net_device->netdev_ops)->ndo_stop, ldv_14_netdev_net_device); ldv_dispatch_deregister_14_1(ldv_14_netdev_net_device); } return; return; } } void ldv_unregister_netdev_stop_14_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { i40evf_close(arg1); } return; } } __inline static void *ioremap(resource_size_t offset , unsigned long size ) { void *tmp ; { { tmp = ldv_linux_arch_io_io_mem_remap(); } return (tmp); } } __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_malloc_unknown_size(); ldv_after_alloc(res); } return (res); } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = ldv_kzalloc(size, flags); } return (tmp); } } __inline static void ldv_spin_lock_109(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock__xmit_lock_of_netdev_queue(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_112(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock__xmit_lock_of_netdev_queue(); spin_unlock(lock); } return; } } __inline static int ldv_request_irq_126(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_irq_127(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } __inline static int ldv_request_irq_128(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_irq_129(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv_free_irq_130(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv_free_irq_131(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static int ldv_mod_timer_pending_132(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer_pending(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer_pending(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static int ldv_mod_timer_133(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static int ldv_mod_timer_134(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___5 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static int ldv_mod_timer_135(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___6 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static int ldv_mod_timer_136(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___7 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static int ldv_register_netdev_137(struct net_device *ldv_func_arg1 ) { ldv_func_ret_type___8 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = register_netdev(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_register_netdev(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static struct net_device *ldv_alloc_etherdev_mqs_138(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) { ldv_func_ret_type___9 ldv_func_res ; struct net_device *tmp ; struct net_device *tmp___0 ; { { tmp = alloc_etherdev_mqs(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv_alloc_etherdev_mqs(ldv_func_res, ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_netdev_139(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_rtnl_lock_140(void) { { { rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_lock(); } return; } } static void ldv_rtnl_unlock_141(void) { { { rtnl_unlock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } static void ldv_rtnl_lock_142(void) { { { rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_lock(); } return; } } static void ldv_rtnl_unlock_143(void) { { { rtnl_unlock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } static void ldv_unregister_netdev_144(struct net_device *ldv_func_arg1 ) { { { unregister_netdev(ldv_func_arg1); ldv_unregister_netdev((void *)0, ldv_func_arg1); } return; } } static int ldv_del_timer_sync_145(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___10 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv_iounmap_146(void volatile *ldv_func_arg1 ) { { { ldv_linux_arch_io_io_mem_unmap(); } return; } } static void ldv_free_netdev_147(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static int ldv___pci_register_driver_148(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___11 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___pci_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_pci_unregister_driver_149(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } static int ldv_ldv_post_init_150(int ldv_func_arg1 ) { int tmp ; { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); tmp = ldv_post_init(ldv_func_arg1); } return (tmp); } } static void ldv_ldv_check_final_state_151(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_check_final_state_152(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_initialize_153(void) { { { ldv_linux_lib_find_bit_initialize(); } return; } } static void ldv_ldv_pre_probe_154(void) { { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); ldv_pre_probe(); } return; } } static int ldv_ldv_post_probe_155(int retval ) { int tmp ; { { ldv_linux_net_register_check_return_value_probe(retval); ldv_linux_usb_register_check_return_value_probe(retval); tmp = ldv_post_probe(retval); } return (tmp); } } extern void *__memcpy(void * , void const * , size_t ) ; extern size_t strlcpy(char * , char const * , size_t ) ; __inline static char const *kobject_name(struct kobject const *kobj ) { { return ((char const *)kobj->name); } } __inline static char const *dev_name(struct device const *dev ) { char const *tmp ; { if ((unsigned long )dev->init_name != (unsigned long )((char const */* const */)0)) { return ((char const *)dev->init_name); } else { } { tmp = kobject_name(& dev->kobj); } return (tmp); } } extern u32 ethtool_op_get_link(struct net_device * ) ; __inline static char const *pci_name(struct pci_dev const *pdev ) { char const *tmp ; { { tmp = dev_name(& pdev->dev); } return (tmp); } } static struct i40evf_stats const i40evf_gstrings_stats[12U] = { {{'r', 'x', '_', 'b', 'y', 't', 'e', 's', '\000'}, 2776}, {{'r', 'x', '_', 'u', 'n', 'i', 'c', 'a', 's', 't', '\000'}, 2784}, {{'r', 'x', '_', 'm', 'u', 'l', 't', 'i', 'c', 'a', 's', 't', '\000'}, 2792}, {{'r', 'x', '_', 'b', 'r', 'o', 'a', 'd', 'c', 'a', 's', 't', '\000'}, 2800}, {{'r', 'x', '_', 'd', 'i', 's', 'c', 'a', 'r', 'd', 's', '\000'}, 2808}, {{'r', 'x', '_', 'u', 'n', 'k', 'n', 'o', 'w', 'n', '_', 'p', 'r', 'o', 't', 'o', 'c', 'o', 'l', '\000'}, 2816}, {{'t', 'x', '_', 'b', 'y', 't', 'e', 's', '\000'}, 2824}, {{'t', 'x', '_', 'u', 'n', 'i', 'c', 'a', 's', 't', '\000'}, 2832}, {{'t', 'x', '_', 'm', 'u', 'l', 't', 'i', 'c', 'a', 's', 't', '\000'}, 2840}, {{'t', 'x', '_', 'b', 'r', 'o', 'a', 'd', 'c', 'a', 's', 't', '\000'}, 2848}, {{'t', 'x', '_', 'd', 'i', 's', 'c', 'a', 'r', 'd', 's', '\000'}, 2856}, {{'t', 'x', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 2864}}; static int i40evf_get_settings(struct net_device *netdev , struct ethtool_cmd *ecmd ) { { ecmd->supported = 0U; ecmd->autoneg = 0U; ecmd->transceiver = 2U; ecmd->port = 239U; return (0); } } static int i40evf_get_sset_count(struct net_device *netdev , int sset ) { void *tmp ; { if (sset == 1) { { tmp = netdev_priv((struct net_device const *)netdev); } return ((int )((unsigned int )((unsigned long )((struct i40evf_adapter *)tmp)->num_active_queues + 3UL) * 4U)); } else { return (-22); } } } static void i40evf_get_ethtool_stats(struct net_device *netdev , struct ethtool_stats *stats , u64 *data ) { struct i40evf_adapter *adapter ; void *tmp ; int i ; int j ; char *p ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct i40evf_adapter *)tmp; i = 0; } goto ldv_57352; ldv_57351: p = (char *)adapter + (unsigned long )i40evf_gstrings_stats[i].stat_offset; *(data + (unsigned long )i) = *((u64 *)p); i = i + 1; ldv_57352: ; if ((unsigned int )i <= 11U) { goto ldv_57351; } else { } j = 0; goto ldv_57355; ldv_57354: tmp___0 = i; i = i + 1; *(data + (unsigned long )tmp___0) = (adapter->tx_rings[j])->stats.packets; tmp___1 = i; i = i + 1; *(data + (unsigned long )tmp___1) = (adapter->tx_rings[j])->stats.bytes; j = j + 1; ldv_57355: ; if (j < adapter->num_active_queues) { goto ldv_57354; } else { } j = 0; goto ldv_57358; ldv_57357: tmp___2 = i; i = i + 1; *(data + (unsigned long )tmp___2) = (adapter->rx_rings[j])->stats.packets; tmp___3 = i; i = i + 1; *(data + (unsigned long )tmp___3) = (adapter->rx_rings[j])->stats.bytes; j = j + 1; ldv_57358: ; if (j < adapter->num_active_queues) { goto ldv_57357; } else { } return; } } static void i40evf_get_strings(struct net_device *netdev , u32 sset , u8 *data ) { struct i40evf_adapter *adapter ; void *tmp ; u8 *p ; int i ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct i40evf_adapter *)tmp; p = data; } if (sset == 1U) { i = 0; goto ldv_57371; ldv_57370: { __memcpy((void *)p, (void const *)(& i40evf_gstrings_stats[i].stat_string), 32UL); p = p + 32UL; i = i + 1; } ldv_57371: ; if ((unsigned int )i <= 11U) { goto ldv_57370; } else { } i = 0; goto ldv_57374; ldv_57373: { snprintf((char *)p, 32UL, "tx-%u.packets", i); p = p + 32UL; snprintf((char *)p, 32UL, "tx-%u.bytes", i); p = p + 32UL; i = i + 1; } ldv_57374: ; if (i < adapter->num_active_queues) { goto ldv_57373; } else { } i = 0; goto ldv_57377; ldv_57376: { snprintf((char *)p, 32UL, "rx-%u.packets", i); p = p + 32UL; snprintf((char *)p, 32UL, "rx-%u.bytes", i); p = p + 32UL; i = i + 1; } ldv_57377: ; if (i < adapter->num_active_queues) { goto ldv_57376; } else { } } else { } return; } } static u32 i40evf_get_msglevel(struct net_device *netdev ) { struct i40evf_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct i40evf_adapter *)tmp; } return ((u32 )adapter->msg_enable); } } static void i40evf_set_msglevel(struct net_device *netdev , u32 data ) { struct i40evf_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct i40evf_adapter *)tmp; adapter->msg_enable = (u16 )data; } return; } } static void i40evf_get_drvinfo(struct net_device *netdev , struct ethtool_drvinfo *drvinfo ) { struct i40evf_adapter *adapter ; void *tmp ; char const *tmp___0 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct i40evf_adapter *)tmp; strlcpy((char *)(& drvinfo->driver), (char const *)(& i40evf_driver_name), 32UL); strlcpy((char *)(& drvinfo->version), (char const *)(& i40evf_driver_version), 32UL); tmp___0 = pci_name((struct pci_dev const *)adapter->pdev); strlcpy((char *)(& drvinfo->bus_info), tmp___0, 32UL); } return; } } static void i40evf_get_ringparam(struct net_device *netdev , struct ethtool_ringparam *ring ) { struct i40evf_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct i40evf_adapter *)tmp; ring->rx_max_pending = 4096U; ring->tx_max_pending = 4096U; ring->rx_pending = adapter->rx_desc_count; ring->tx_pending = adapter->tx_desc_count; } return; } } static int i40evf_set_ringparam(struct net_device *netdev , struct ethtool_ringparam *ring ) { struct i40evf_adapter *adapter ; void *tmp ; u32 new_rx_count ; u32 new_tx_count ; u32 __min1 ; u32 __max1 ; u32 __max2 ; u32 __min2 ; u32 __min1___0 ; u32 __max1___0 ; u32 __max2___0 ; u32 __min2___0 ; bool tmp___0 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct i40evf_adapter *)tmp; } if (ring->rx_mini_pending != 0U || ring->rx_jumbo_pending != 0U) { return (-22); } else { } __max1 = ring->tx_pending; __max2 = 64U; __min1 = __max1 > __max2 ? __max1 : __max2; __min2 = 4096U; new_tx_count = __min1 < __min2 ? __min1 : __min2; new_tx_count = (new_tx_count + 31U) & 4294967264U; __max1___0 = ring->rx_pending; __max2___0 = 64U; __min1___0 = __max1___0 > __max2___0 ? __max1___0 : __max2___0; __min2___0 = 4096U; new_rx_count = __min1___0 < __min2___0 ? __min1___0 : __min2___0; new_rx_count = (new_rx_count + 31U) & 4294967264U; if (new_tx_count == adapter->tx_desc_count && new_rx_count == adapter->rx_desc_count) { return (0); } else { } { adapter->tx_desc_count = new_tx_count; adapter->rx_desc_count = new_rx_count; tmp___0 = netif_running((struct net_device const *)netdev); } if ((int )tmp___0) { { i40evf_reinit_locked(adapter); } } else { } return (0); } } static int i40evf_get_coalesce(struct net_device *netdev , struct ethtool_coalesce *ec ) { struct i40evf_adapter *adapter ; void *tmp ; struct i40e_vsi *vsi ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct i40evf_adapter *)tmp; vsi = & adapter->vsi; ec->tx_max_coalesced_frames = (__u32 )vsi->work_limit; ec->rx_max_coalesced_frames = (__u32 )vsi->work_limit; } if ((int )((short )vsi->rx_itr_setting) < 0) { ec->use_adaptive_rx_coalesce = 1U; } else { } if ((int )((short )vsi->tx_itr_setting) < 0) { ec->use_adaptive_tx_coalesce = 1U; } else { } ec->rx_coalesce_usecs = (__u32 )vsi->rx_itr_setting & 4294934527U; ec->tx_coalesce_usecs = (__u32 )vsi->tx_itr_setting & 4294934527U; return (0); } } static int i40evf_set_coalesce(struct net_device *netdev , struct ethtool_coalesce *ec ) { struct i40evf_adapter *adapter ; void *tmp ; struct i40e_hw *hw ; struct i40e_vsi *vsi ; struct i40e_q_vector *q_vector ; int i ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct i40evf_adapter *)tmp; hw = & adapter->hw; vsi = & adapter->vsi; } if (ec->tx_max_coalesced_frames_irq != 0U || ec->rx_max_coalesced_frames_irq != 0U) { vsi->work_limit = (u16 )ec->tx_max_coalesced_frames_irq; } else { } if (ec->rx_coalesce_usecs - 2U <= 8158U) { vsi->rx_itr_setting = (u16 )ec->rx_coalesce_usecs; } else { return (-22); } if (ec->tx_coalesce_usecs - 2U <= 8158U) { vsi->tx_itr_setting = (u16 )ec->tx_coalesce_usecs; } else if (ec->use_adaptive_tx_coalesce != 0U) { vsi->tx_itr_setting = 32892U; } else { return (-22); } if (ec->use_adaptive_rx_coalesce != 0U) { vsi->rx_itr_setting = (u16 )((unsigned int )vsi->rx_itr_setting | 32768U); } else { vsi->rx_itr_setting = (unsigned int )vsi->rx_itr_setting & 32767U; } if (ec->use_adaptive_tx_coalesce != 0U) { vsi->tx_itr_setting = (u16 )((unsigned int )vsi->tx_itr_setting | 32768U); } else { vsi->tx_itr_setting = (unsigned int )vsi->tx_itr_setting & 32767U; } i = 0; goto ldv_57433; ldv_57432: { q_vector = adapter->q_vector[i]; q_vector->rx.itr = (u16 )(((int )vsi->rx_itr_setting & -32769) >> 1); writel((unsigned int )q_vector->rx.itr, (void volatile *)hw->hw_addr + (unsigned long )((i + 2560) * 4)); q_vector->tx.itr = (u16 )(((int )vsi->tx_itr_setting & -32769) >> 1); writel((unsigned int )q_vector->tx.itr, (void volatile *)hw->hw_addr + (unsigned long )((i + 2576) * 4)); readl((void const volatile *)hw->hw_addr + 34816U); i = i + 1; } ldv_57433: ; if (i < adapter->num_msix_vectors + -1) { goto ldv_57432; } else { } return (0); } } static int i40evf_get_rss_hash_opts(struct i40evf_adapter *adapter , struct ethtool_rxnfc *cmd ) { struct i40e_hw *hw ; u64 hena ; unsigned int tmp ; unsigned int tmp___0 ; { { hw = & adapter->hw; tmp = readl((void const volatile *)hw->hw_addr + 50176U); tmp___0 = readl((void const volatile *)hw->hw_addr + 50180U); hena = (unsigned long long )tmp | ((unsigned long long )tmp___0 << 32); cmd->data = 48ULL; } { if (cmd->flow_type == 1U) { goto case_1; } else { } if (cmd->flow_type == 2U) { goto case_2; } else { } if (cmd->flow_type == 3U) { goto case_3; } else { } if (cmd->flow_type == 4U) { goto case_4; } else { } if (cmd->flow_type == 9U) { goto case_9; } else { } if (cmd->flow_type == 10U) { goto case_10; } else { } if (cmd->flow_type == 16U) { goto case_16; } else { } if (cmd->flow_type == 5U) { goto case_5; } else { } if (cmd->flow_type == 6U) { goto case_6; } else { } if (cmd->flow_type == 7U) { goto case_7; } else { } if (cmd->flow_type == 8U) { goto case_8; } else { } if (cmd->flow_type == 11U) { goto case_11; } else { } if (cmd->flow_type == 12U) { goto case_12; } else { } if (cmd->flow_type == 17U) { goto case_17; } else { } goto switch_default; case_1: /* CIL Label */ ; if ((hena & 8589934592ULL) != 0ULL) { cmd->data = cmd->data | 192ULL; } else { } goto ldv_57442; case_2: /* CIL Label */ ; if ((hena & 2147483648ULL) != 0ULL) { cmd->data = cmd->data | 192ULL; } else { } goto ldv_57442; case_3: /* CIL Label */ ; case_4: /* CIL Label */ ; case_9: /* CIL Label */ ; case_10: /* CIL Label */ ; case_16: /* CIL Label */ ; goto ldv_57442; case_5: /* CIL Label */ ; if ((hena & 8796093022208ULL) != 0ULL) { cmd->data = cmd->data | 192ULL; } else { } goto ldv_57442; case_6: /* CIL Label */ ; if ((hena & 2199023255552ULL) != 0ULL) { cmd->data = cmd->data | 192ULL; } else { } goto ldv_57442; case_7: /* CIL Label */ ; case_8: /* CIL Label */ ; case_11: /* CIL Label */ ; case_12: /* CIL Label */ ; case_17: /* CIL Label */ ; goto ldv_57442; switch_default: /* CIL Label */ cmd->data = 0ULL; return (-22); switch_break: /* CIL Label */ ; } ldv_57442: ; return (0); } } static int i40evf_get_rxnfc(struct net_device *netdev , struct ethtool_rxnfc *cmd , u32 *rule_locs ) { struct i40evf_adapter *adapter ; void *tmp ; int ret ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct i40evf_adapter *)tmp; ret = -95; } { if (cmd->cmd == 45U) { goto case_45; } else { } if (cmd->cmd == 41U) { goto case_41; } else { } goto switch_default; case_45: /* CIL Label */ cmd->data = (__u64 )adapter->num_active_queues; ret = 0; goto ldv_57465; case_41: /* CIL Label */ { ret = i40evf_get_rss_hash_opts(adapter, cmd); } goto ldv_57465; switch_default: /* CIL Label */ ; goto ldv_57465; switch_break: /* CIL Label */ ; } ldv_57465: ; return (ret); } } static int i40evf_set_rss_hash_opt(struct i40evf_adapter *adapter , struct ethtool_rxnfc *nfc ) { struct i40e_hw *hw ; u64 hena ; unsigned int tmp ; unsigned int tmp___0 ; { { hw = & adapter->hw; tmp = readl((void const volatile *)hw->hw_addr + 50176U); tmp___0 = readl((void const volatile *)hw->hw_addr + 50180U); hena = (unsigned long long )tmp | ((unsigned long long )tmp___0 << 32); } if ((nfc->data & 0xffffffffffffff0fULL) != 0ULL) { return (-22); } else { } if (*((unsigned long *)nfc + 1UL) != 48UL) { return (-22); } else { } { if (nfc->flow_type == 1U) { goto case_1; } else { } if (nfc->flow_type == 5U) { goto case_5; } else { } if (nfc->flow_type == 2U) { goto case_2; } else { } if (nfc->flow_type == 6U) { goto case_6; } else { } if (nfc->flow_type == 4U) { goto case_4; } else { } if (nfc->flow_type == 9U) { goto case_9; } else { } if (nfc->flow_type == 10U) { goto case_10; } else { } if (nfc->flow_type == 3U) { goto case_3; } else { } if (nfc->flow_type == 8U) { goto case_8; } else { } if (nfc->flow_type == 11U) { goto case_11; } else { } if (nfc->flow_type == 12U) { goto case_12; } else { } if (nfc->flow_type == 7U) { goto case_7; } else { } if (nfc->flow_type == 16U) { goto case_16; } else { } if (nfc->flow_type == 17U) { goto case_17; } else { } goto switch_default___3; case_1: /* CIL Label */ ; { if ((nfc->data & 192ULL) == 0ULL) { goto case_0; } else { } if ((nfc->data & 192ULL) == 192ULL) { goto case_192; } else { } goto switch_default; case_0: /* CIL Label */ hena = hena & 0xfffffffdffffffffULL; goto ldv_57476; case_192: /* CIL Label */ hena = hena | 8589934592ULL; goto ldv_57476; switch_default: /* CIL Label */ ; return (-22); switch_break___0: /* CIL Label */ ; } ldv_57476: ; goto ldv_57479; case_5: /* CIL Label */ ; { if ((nfc->data & 192ULL) == 0ULL) { goto case_0___0; } else { } if ((nfc->data & 192ULL) == 192ULL) { goto case_192___0; } else { } goto switch_default___0; case_0___0: /* CIL Label */ hena = hena & 0xfffff7ffffffffffULL; goto ldv_57482; case_192___0: /* CIL Label */ hena = hena | 8796093022208ULL; goto ldv_57482; switch_default___0: /* CIL Label */ ; return (-22); switch_break___1: /* CIL Label */ ; } ldv_57482: ; goto ldv_57479; case_2: /* CIL Label */ ; { if ((nfc->data & 192ULL) == 0ULL) { goto case_0___1; } else { } if ((nfc->data & 192ULL) == 192ULL) { goto case_192___1; } else { } goto switch_default___1; case_0___1: /* CIL Label */ hena = hena & 0xffffffef7fffffffULL; goto ldv_57487; case_192___1: /* CIL Label */ hena = hena | 70866960384ULL; goto ldv_57487; switch_default___1: /* CIL Label */ ; return (-22); switch_break___2: /* CIL Label */ ; } ldv_57487: ; goto ldv_57479; case_6: /* CIL Label */ ; { if ((nfc->data & 192ULL) == 0ULL) { goto case_0___2; } else { } if ((nfc->data & 192ULL) == 192ULL) { goto case_192___2; } else { } goto switch_default___2; case_0___2: /* CIL Label */ hena = hena & 0xffffbdffffffffffULL; goto ldv_57492; case_192___2: /* CIL Label */ hena = hena | 72567767433216ULL; goto ldv_57492; switch_default___2: /* CIL Label */ ; return (-22); switch_break___3: /* CIL Label */ ; } ldv_57492: ; goto ldv_57479; case_4: /* CIL Label */ ; case_9: /* CIL Label */ ; case_10: /* CIL Label */ ; case_3: /* CIL Label */ ; if (*((unsigned long *)nfc + 1UL) != 0UL) { return (-22); } else { } hena = hena | 34359738368ULL; goto ldv_57479; case_8: /* CIL Label */ ; case_11: /* CIL Label */ ; case_12: /* CIL Label */ ; case_7: /* CIL Label */ ; if (*((unsigned long *)nfc + 1UL) != 0UL) { return (-22); } else { } hena = hena | 35184372088832ULL; goto ldv_57479; case_16: /* CIL Label */ hena = hena | 103079215104ULL; goto ldv_57479; case_17: /* CIL Label */ hena = hena | 105553116266496ULL; goto ldv_57479; switch_default___3: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } ldv_57479: { writel((unsigned int )hena, (void volatile *)hw->hw_addr + 50176U); writel((unsigned int )(hena >> 32), (void volatile *)hw->hw_addr + 50180U); readl((void const volatile *)hw->hw_addr + 34816U); } return (0); } } static int i40evf_set_rxnfc(struct net_device *netdev , struct ethtool_rxnfc *cmd ) { struct i40evf_adapter *adapter ; void *tmp ; int ret ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct i40evf_adapter *)tmp; ret = -95; } { if (cmd->cmd == 42U) { goto case_42; } else { } goto switch_default; case_42: /* CIL Label */ { ret = i40evf_set_rss_hash_opt(adapter, cmd); } goto ldv_57513; switch_default: /* CIL Label */ ; goto ldv_57513; switch_break: /* CIL Label */ ; } ldv_57513: ; return (ret); } } static void i40evf_get_channels(struct net_device *netdev , struct ethtool_channels *ch ) { struct i40evf_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct i40evf_adapter *)tmp; ch->max_combined = (__u32 )adapter->num_active_queues; ch->max_other = 1U; ch->other_count = 1U; ch->combined_count = (__u32 )adapter->num_active_queues; } return; } } static u32 i40evf_get_rxfh_indir_size(struct net_device *netdev ) { { return (64U); } } static int i40evf_get_rxfh(struct net_device *netdev , u32 *indir , u8 *key , u8 *hfunc ) { struct i40evf_adapter *adapter ; void *tmp ; struct i40e_hw *hw ; u32 hlut_val ; int i ; int j ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct i40evf_adapter *)tmp; hw = & adapter->hw; } if ((unsigned long )hfunc != (unsigned long )((u8 *)0U)) { *hfunc = 1U; } else { } if ((unsigned long )indir == (unsigned long )((u32 *)0U)) { return (0); } else { } i = 0; j = 0; goto ldv_57535; ldv_57534: { hlut_val = readl((void const volatile *)hw->hw_addr + (unsigned long )((i + 13312) * 4)); tmp___0 = j; j = j + 1; *(indir + (unsigned long )tmp___0) = hlut_val & 255U; tmp___1 = j; j = j + 1; *(indir + (unsigned long )tmp___1) = (hlut_val >> 8) & 255U; tmp___2 = j; j = j + 1; *(indir + (unsigned long )tmp___2) = (hlut_val >> 16) & 255U; tmp___3 = j; j = j + 1; *(indir + (unsigned long )tmp___3) = hlut_val >> 24; i = i + 1; } ldv_57535: ; if (i <= 15) { goto ldv_57534; } else { } return (0); } } static int i40evf_set_rxfh(struct net_device *netdev , u32 const *indir , u8 const *key , u8 const hfunc ) { struct i40evf_adapter *adapter ; void *tmp ; struct i40e_hw *hw ; u32 hlut_val ; int i ; int j ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct i40evf_adapter *)tmp; hw = & adapter->hw; } if ((unsigned long )key != (unsigned long )((u8 const *)0U) || (unsigned int )hfunc > 1U) { return (-95); } else { } if ((unsigned long )indir == (unsigned long )((u32 const *)0U)) { return (0); } else { } i = 0; j = 0; goto ldv_57549; ldv_57548: { tmp___0 = j; j = j + 1; hlut_val = *(indir + (unsigned long )tmp___0); tmp___1 = j; j = j + 1; hlut_val = hlut_val | (u32 )(*(indir + (unsigned long )tmp___1) << 8); tmp___2 = j; j = j + 1; hlut_val = hlut_val | (u32 )(*(indir + (unsigned long )tmp___2) << 16); tmp___3 = j; j = j + 1; hlut_val = hlut_val | (u32 )(*(indir + (unsigned long )tmp___3) << 24); writel(hlut_val, (void volatile *)hw->hw_addr + (unsigned long )((i + 13312) * 4)); i = i + 1; } ldv_57549: ; if (i <= 15) { goto ldv_57548; } else { } return (0); } } static struct ethtool_ops const i40evf_ethtool_ops = {& i40evf_get_settings, 0, & i40evf_get_drvinfo, 0, 0, 0, 0, & i40evf_get_msglevel, & i40evf_set_msglevel, 0, & ethtool_op_get_link, 0, 0, 0, & i40evf_get_coalesce, & i40evf_set_coalesce, & i40evf_get_ringparam, & i40evf_set_ringparam, 0, 0, 0, & i40evf_get_strings, 0, & i40evf_get_ethtool_stats, 0, 0, 0, 0, & i40evf_get_sset_count, & i40evf_get_rxnfc, & i40evf_set_rxnfc, 0, 0, 0, & i40evf_get_rxfh_indir_size, & i40evf_get_rxfh, & i40evf_set_rxfh, & i40evf_get_channels, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; void i40evf_set_ethtool_ops(struct net_device *netdev ) { { netdev->ethtool_ops = & i40evf_ethtool_ops; return; } } void ldv_dummy_resourceless_instance_callback_2_12(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { ethtool_op_get_link(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_13(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { i40evf_get_msglevel(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_14(void (*arg0)(struct net_device * , struct ethtool_ringparam * ) , struct net_device *arg1 , struct ethtool_ringparam *arg2 ) { { { i40evf_get_ringparam(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_15(int (*arg0)(struct net_device * , unsigned int * , unsigned char * , unsigned char * ) , struct net_device *arg1 , unsigned int *arg2 , unsigned char *arg3 , unsigned char *arg4 ) { { { i40evf_get_rxfh(arg1, arg2, arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_2_18(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { i40evf_get_rxfh_indir_size(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_19(int (*arg0)(struct net_device * , struct ethtool_rxnfc * , unsigned int * ) , struct net_device *arg1 , struct ethtool_rxnfc *arg2 , unsigned int *arg3 ) { { { i40evf_get_rxnfc(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_2_22(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) { { { i40evf_get_settings(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_23(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { i40evf_get_sset_count(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_26(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) { { { i40evf_get_strings(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_2_3(void (*arg0)(struct net_device * , struct ethtool_channels * ) , struct net_device *arg1 , struct ethtool_channels *arg2 ) { { { i40evf_get_channels(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_44(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) { { { i40evf_set_coalesce(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_45(void (*arg0)(struct net_device * , unsigned int ) , struct net_device *arg1 , unsigned int arg2 ) { { { i40evf_set_msglevel(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_48(int (*arg0)(struct net_device * , struct ethtool_ringparam * ) , struct net_device *arg1 , struct ethtool_ringparam *arg2 ) { { { i40evf_set_ringparam(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_49(int (*arg0)(struct net_device * , unsigned int * , unsigned char * , unsigned char ) , struct net_device *arg1 , unsigned int *arg2 , unsigned char *arg3 , unsigned char arg4 ) { { { i40evf_set_rxfh(arg1, (u32 const *)arg2, (u8 const *)arg3, (int )arg4); } return; } } void ldv_dummy_resourceless_instance_callback_2_52(int (*arg0)(struct net_device * , struct ethtool_rxnfc * ) , struct net_device *arg1 , struct ethtool_rxnfc *arg2 ) { { { i40evf_set_rxnfc(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_7(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) { { { i40evf_get_coalesce(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_8(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) { { { i40evf_get_drvinfo(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_9(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) { { { i40evf_get_ethtool_stats(arg1, arg2, arg3); } return; } } __inline static void *kzalloc(size_t size , gfp_t flags ) ; __inline static void netif_tx_start_queue(struct netdev_queue *dev_queue ) { { { clear_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_tx_start_all_queues(struct net_device *dev ) { unsigned int i ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { i = 0U; goto ldv_43317; ldv_43316: { tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; netif_tx_start_queue(txq); i = i + 1U; } ldv_43317: ; if (i < dev->num_tx_queues) { goto ldv_43316; } else { } return; } } extern void netif_tx_wake_queue(struct netdev_queue * ) ; __inline static void netif_tx_wake_all_queues(struct net_device *dev ) { unsigned int i ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { i = 0U; goto ldv_43330; ldv_43329: { tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; netif_tx_wake_queue(txq); i = i + 1U; } ldv_43330: ; if (i < dev->num_tx_queues) { goto ldv_43329; } else { } return; } } __inline static void netif_tx_stop_all_queues___0(struct net_device *dev ) { unsigned int i ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { i = 0U; goto ldv_43346; ldv_43345: { tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; netif_tx_stop_queue(txq); i = i + 1U; } ldv_43346: ; if (i < dev->num_tx_queues) { goto ldv_43345; } else { } return; } } __inline static bool netif_carrier_ok(struct net_device const *dev ) { int tmp ; { { tmp = constant_test_bit(2L, (unsigned long const volatile *)(& dev->state)); } return (tmp == 0); } } extern void netif_carrier_on(struct net_device * ) ; void i40evf_set_promiscuous(struct i40evf_adapter *adapter , int flags ) ; void i40e_vf_parse_hw_config(struct i40e_hw *hw , struct i40e_virtchnl_vf_resource *msg ) ; i40e_status i40e_aq_send_msg_to_pf(struct i40e_hw *hw , enum i40e_virtchnl_ops v_opcode , i40e_status v_retval , u8 *msg , u16 msglen , struct i40e_asq_cmd_details *cmd_details ) ; static int i40evf_send_pf_msg(struct i40evf_adapter *adapter , enum i40e_virtchnl_ops op , u8 *msg , u16 len ) { struct i40e_hw *hw ; i40e_status err ; { hw = & adapter->hw; if ((adapter->flags & 256U) != 0U) { return (0); } else { } { err = i40e_aq_send_msg_to_pf(hw, op, 0, msg, (int )len, (struct i40e_asq_cmd_details *)0); } if ((int )err != 0) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "Unable to send opcode %d to PF, error %d, aq status %d\n", (unsigned int )op, (int )err, (unsigned int )hw->aq.asq_last_status); } } else { } return ((int )err); } } int i40evf_send_api_ver(struct i40evf_adapter *adapter ) { struct i40e_virtchnl_version_info vvi ; int tmp ; { { vvi.major = 1U; vvi.minor = 0U; tmp = i40evf_send_pf_msg(adapter, 1, (u8 *)(& vvi), 8); } return (tmp); } } int i40evf_verify_api_ver(struct i40evf_adapter *adapter ) { struct i40e_virtchnl_version_info *pf_vvi ; struct i40e_hw *hw ; struct i40e_arq_event_info event ; enum i40e_virtchnl_ops op ; i40e_status err ; void *tmp ; { { hw = & adapter->hw; event.buf_len = 4096U; tmp = kzalloc((size_t )event.buf_len, 208U); event.msg_buf = (u8 *)tmp; } if ((unsigned long )event.msg_buf == (unsigned long )((u8 *)0U)) { err = -12; goto out; } else { } ldv_57438: { err = i40evf_clean_arq_element(hw, & event, (u16 *)0U); } if ((int )err != 0) { goto out_alloc; } else { } op = (enum i40e_virtchnl_ops )event.desc.cookie_high; if ((unsigned int )op == 1U) { goto ldv_57437; } else { } goto ldv_57438; ldv_57437: err = (enum i40e_status_code )event.desc.cookie_low; if ((int )err != 0) { goto out_alloc; } else { } if ((unsigned int )op != 1U) { { _dev_info((struct device const *)(& (adapter->pdev)->dev), "Invalid reply type %d from PF\n", (unsigned int )op); err = -5; } goto out_alloc; } else { } pf_vvi = (struct i40e_virtchnl_version_info *)event.msg_buf; if (pf_vvi->major != 1U || pf_vvi->minor != 0U) { err = -5; } else { } out_alloc: { kfree((void const *)event.msg_buf); } out: ; return ((int )err); } } int i40evf_send_vf_config_msg(struct i40evf_adapter *adapter ) { int tmp ; { { tmp = i40evf_send_pf_msg(adapter, 3, (u8 *)0U, 0); } return (tmp); } } int i40evf_get_vf_config(struct i40evf_adapter *adapter ) { struct i40e_hw *hw ; struct i40e_arq_event_info event ; enum i40e_virtchnl_ops op ; i40e_status err ; u16 len ; void *tmp ; u16 _min1 ; u16 _min2 ; { { hw = & adapter->hw; len = 84U; event.buf_len = len; tmp = kzalloc((size_t )event.buf_len, 208U); event.msg_buf = (u8 *)tmp; } if ((unsigned long )event.msg_buf == (unsigned long )((u8 *)0U)) { err = -12; goto out; } else { } ldv_57453: { err = i40evf_clean_arq_element(hw, & event, (u16 *)0U); } if ((int )err != 0) { goto out_alloc; } else { } op = (enum i40e_virtchnl_ops )event.desc.cookie_high; if ((unsigned int )op == 3U) { goto ldv_57452; } else { } goto ldv_57453; ldv_57452: { err = (enum i40e_status_code )event.desc.cookie_low; _min1 = event.msg_len; _min2 = len; __memcpy((void *)adapter->vf_res, (void const *)event.msg_buf, (size_t )((int )_min1 < (int )_min2 ? _min1 : _min2)); i40e_vf_parse_hw_config(hw, adapter->vf_res); } out_alloc: { kfree((void const *)event.msg_buf); } out: ; return ((int )err); } } void i40evf_configure_queues(struct i40evf_adapter *adapter ) { struct i40e_virtchnl_vsi_queue_config_info *vqci ; struct i40e_virtchnl_queue_pair_info *vqpi ; int pairs ; int i ; int len ; void *tmp ; { pairs = adapter->num_active_queues; if ((unsigned int )adapter->current_op != 0U) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "%s: command %d pending\n", "i40evf_configure_queues", (unsigned int )adapter->current_op); } return; } else { } { adapter->current_op = 6; len = (int )((unsigned int )((unsigned long )pairs) * 64U + 72U); tmp = kzalloc((size_t )len, 32U); vqci = (struct i40e_virtchnl_vsi_queue_config_info *)tmp; } if ((unsigned long )vqci == (unsigned long )((struct i40e_virtchnl_vsi_queue_config_info *)0)) { return; } else { } vqci->vsi_id = (adapter->vsi_res)->vsi_id; vqci->num_queue_pairs = (u16 )pairs; vqpi = (struct i40e_virtchnl_queue_pair_info *)(& vqci->qpair); i = 0; goto ldv_57467; ldv_57466: vqpi->txq.vsi_id = vqci->vsi_id; vqpi->txq.queue_id = (u16 )i; vqpi->txq.ring_len = (adapter->tx_rings[i])->count; vqpi->txq.dma_ring_addr = (adapter->tx_rings[i])->dma; vqpi->txq.headwb_enabled = 1U; vqpi->txq.dma_headwb_addr = vqpi->txq.dma_ring_addr + (unsigned long long )((unsigned long )vqpi->txq.ring_len * 16UL); vqpi->rxq.vsi_id = vqci->vsi_id; vqpi->rxq.queue_id = (u16 )i; vqpi->rxq.ring_len = (u32 )(adapter->rx_rings[i])->count; vqpi->rxq.dma_ring_addr = (adapter->rx_rings[i])->dma; vqpi->rxq.max_pkt_size = (adapter->netdev)->mtu + 22U; vqpi->rxq.databuffer_size = (u32 )(adapter->rx_rings[i])->rx_buf_len; vqpi = vqpi + 1; i = i + 1; ldv_57467: ; if (i < pairs) { goto ldv_57466; } else { } { adapter->aq_pending = adapter->aq_pending | 64U; adapter->aq_required = adapter->aq_required & 4294967231U; i40evf_send_pf_msg(adapter, 6, (u8 *)vqci, (int )((u16 )len)); kfree((void const *)vqci); } return; } } void i40evf_enable_queues(struct i40evf_adapter *adapter ) { struct i40e_virtchnl_queue_select vqs ; { if ((unsigned int )adapter->current_op != 0U) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "%s: command %d pending\n", "i40evf_enable_queues", (unsigned int )adapter->current_op); } return; } else { } { adapter->current_op = 8; vqs.vsi_id = (adapter->vsi_res)->vsi_id; vqs.tx_queues = (u32 )((1 << adapter->num_active_queues) + -1); vqs.rx_queues = vqs.tx_queues; adapter->aq_pending = adapter->aq_pending | 1U; adapter->aq_required = adapter->aq_required & 4294967294U; i40evf_send_pf_msg(adapter, 8, (u8 *)(& vqs), 12); } return; } } void i40evf_disable_queues(struct i40evf_adapter *adapter ) { struct i40e_virtchnl_queue_select vqs ; { if ((unsigned int )adapter->current_op != 0U) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "%s: command %d pending\n", "i40evf_disable_queues", (unsigned int )adapter->current_op); } return; } else { } { adapter->current_op = 9; vqs.vsi_id = (adapter->vsi_res)->vsi_id; vqs.tx_queues = (u32 )((1 << adapter->num_active_queues) + -1); vqs.rx_queues = vqs.tx_queues; adapter->aq_pending = adapter->aq_pending | 2U; adapter->aq_required = adapter->aq_required & 4294967293U; i40evf_send_pf_msg(adapter, 9, (u8 *)(& vqs), 12); } return; } } void i40evf_map_queues(struct i40evf_adapter *adapter ) { struct i40e_virtchnl_irq_map_info *vimi ; int v_idx ; int q_vectors ; int len ; struct i40e_q_vector *q_vector ; void *tmp ; { if ((unsigned int )adapter->current_op != 0U) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "%s: command %d pending\n", "i40evf_map_queues", (unsigned int )adapter->current_op); } return; } else { } { adapter->current_op = 7; q_vectors = adapter->num_msix_vectors + -1; len = (int )((unsigned int )((unsigned long )adapter->num_msix_vectors) * 12U + 14U); tmp = kzalloc((size_t )len, 32U); vimi = (struct i40e_virtchnl_irq_map_info *)tmp; } if ((unsigned long )vimi == (unsigned long )((struct i40e_virtchnl_irq_map_info *)0)) { return; } else { } vimi->num_vectors = (u16 )adapter->num_msix_vectors; v_idx = 0; goto ldv_57489; ldv_57488: q_vector = adapter->q_vector[v_idx]; vimi->vecmap[v_idx].vsi_id = (adapter->vsi_res)->vsi_id; vimi->vecmap[v_idx].vector_id = (unsigned int )((u16 )v_idx) + 1U; vimi->vecmap[v_idx].txq_map = (u16 )q_vector->ring_mask; vimi->vecmap[v_idx].rxq_map = (u16 )q_vector->ring_mask; v_idx = v_idx + 1; ldv_57489: ; if (v_idx < q_vectors) { goto ldv_57488; } else { } { vimi->vecmap[v_idx].vsi_id = (adapter->vsi_res)->vsi_id; vimi->vecmap[v_idx].vector_id = 0U; vimi->vecmap[v_idx].txq_map = 0U; vimi->vecmap[v_idx].rxq_map = 0U; adapter->aq_pending = adapter->aq_pending | 128U; adapter->aq_required = adapter->aq_required & 4294967167U; i40evf_send_pf_msg(adapter, 7, (u8 *)vimi, (int )((u16 )len)); kfree((void const *)vimi); } return; } } void i40evf_add_ether_addrs(struct i40evf_adapter *adapter ) { struct i40e_virtchnl_ether_addr_list *veal ; int len ; int i ; int count ; struct i40evf_mac_filter *f ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; void *tmp ; struct list_head const *__mptr___1 ; struct list_head const *__mptr___2 ; { i = 0; count = 0; if ((unsigned int )adapter->current_op != 0U) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "%s: command %d pending\n", "i40evf_add_ether_addrs", (unsigned int )adapter->current_op); } return; } else { } __mptr = (struct list_head const *)adapter->mac_filter_list.next; f = (struct i40evf_mac_filter *)__mptr; goto ldv_57505; ldv_57504: ; if ((int )f->add) { count = count + 1; } else { } __mptr___0 = (struct list_head const *)f->list.next; f = (struct i40evf_mac_filter *)__mptr___0; ldv_57505: ; if ((unsigned long )(& f->list) != (unsigned long )(& adapter->mac_filter_list)) { goto ldv_57504; } else { } if (count == 0) { adapter->aq_required = adapter->aq_required & 4294967291U; return; } else { } adapter->current_op = 10; len = (int )((unsigned int )((unsigned long )count) * 8U + 12U); if (len > 4096) { { dev_warn((struct device const *)(& (adapter->pdev)->dev), "%s: Too many MAC address changes in one request\n", "i40evf_add_ether_addrs"); count = 510; len = 4096; } } else { } { tmp = kzalloc((size_t )len, 32U); veal = (struct i40e_virtchnl_ether_addr_list *)tmp; } if ((unsigned long )veal == (unsigned long )((struct i40e_virtchnl_ether_addr_list *)0)) { return; } else { } veal->vsi_id = (adapter->vsi_res)->vsi_id; veal->num_elements = (u16 )count; __mptr___1 = (struct list_head const *)adapter->mac_filter_list.next; f = (struct i40evf_mac_filter *)__mptr___1; goto ldv_57512; ldv_57511: ; if ((int )f->add) { { ether_addr_copy((u8 *)(& veal->list[i].addr), (u8 const *)(& f->macaddr)); i = i + 1; f->add = 0; } } else { } __mptr___2 = (struct list_head const *)f->list.next; f = (struct i40evf_mac_filter *)__mptr___2; ldv_57512: ; if ((unsigned long )(& f->list) != (unsigned long )(& adapter->mac_filter_list)) { goto ldv_57511; } else { } { adapter->aq_pending = adapter->aq_pending | 4U; adapter->aq_required = adapter->aq_required & 4294967291U; i40evf_send_pf_msg(adapter, 10, (u8 *)veal, (int )((u16 )len)); kfree((void const *)veal); } return; } } void i40evf_del_ether_addrs(struct i40evf_adapter *adapter ) { struct i40e_virtchnl_ether_addr_list *veal ; struct i40evf_mac_filter *f ; struct i40evf_mac_filter *ftmp ; int len ; int i ; int count ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; void *tmp ; struct list_head const *__mptr___1 ; struct list_head const *__mptr___2 ; struct list_head const *__mptr___3 ; { i = 0; count = 0; if ((unsigned int )adapter->current_op != 0U) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "%s: command %d pending\n", "i40evf_del_ether_addrs", (unsigned int )adapter->current_op); } return; } else { } __mptr = (struct list_head const *)adapter->mac_filter_list.next; f = (struct i40evf_mac_filter *)__mptr; goto ldv_57529; ldv_57528: ; if ((int )f->remove) { count = count + 1; } else { } __mptr___0 = (struct list_head const *)f->list.next; f = (struct i40evf_mac_filter *)__mptr___0; ldv_57529: ; if ((unsigned long )(& f->list) != (unsigned long )(& adapter->mac_filter_list)) { goto ldv_57528; } else { } if (count == 0) { adapter->aq_required = adapter->aq_required & 4294967279U; return; } else { } adapter->current_op = 11; len = (int )((unsigned int )((unsigned long )count) * 8U + 12U); if (len > 4096) { { dev_warn((struct device const *)(& (adapter->pdev)->dev), "%s: Too many MAC address changes in one request\n", "i40evf_del_ether_addrs"); count = 510; len = 4096; } } else { } { tmp = kzalloc((size_t )len, 32U); veal = (struct i40e_virtchnl_ether_addr_list *)tmp; } if ((unsigned long )veal == (unsigned long )((struct i40e_virtchnl_ether_addr_list *)0)) { return; } else { } veal->vsi_id = (adapter->vsi_res)->vsi_id; veal->num_elements = (u16 )count; __mptr___1 = (struct list_head const *)adapter->mac_filter_list.next; f = (struct i40evf_mac_filter *)__mptr___1; __mptr___2 = (struct list_head const *)f->list.next; ftmp = (struct i40evf_mac_filter *)__mptr___2; goto ldv_57538; ldv_57537: ; if ((int )f->remove) { { ether_addr_copy((u8 *)(& veal->list[i].addr), (u8 const *)(& f->macaddr)); i = i + 1; list_del(& f->list); kfree((void const *)f); } } else { } f = ftmp; __mptr___3 = (struct list_head const *)ftmp->list.next; ftmp = (struct i40evf_mac_filter *)__mptr___3; ldv_57538: ; if ((unsigned long )(& f->list) != (unsigned long )(& adapter->mac_filter_list)) { goto ldv_57537; } else { } { adapter->aq_pending = adapter->aq_pending | 16U; adapter->aq_required = adapter->aq_required & 4294967279U; i40evf_send_pf_msg(adapter, 11, (u8 *)veal, (int )((u16 )len)); kfree((void const *)veal); } return; } } void i40evf_add_vlans(struct i40evf_adapter *adapter ) { struct i40e_virtchnl_vlan_filter_list *vvfl ; int len ; int i ; int count ; struct i40evf_vlan_filter *f ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; void *tmp ; struct list_head const *__mptr___1 ; struct list_head const *__mptr___2 ; { i = 0; count = 0; if ((unsigned int )adapter->current_op != 0U) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "%s: command %d pending\n", "i40evf_add_vlans", (unsigned int )adapter->current_op); } return; } else { } __mptr = (struct list_head const *)adapter->vlan_filter_list.next; f = (struct i40evf_vlan_filter *)__mptr; goto ldv_57554; ldv_57553: ; if ((int )f->add) { count = count + 1; } else { } __mptr___0 = (struct list_head const *)f->list.next; f = (struct i40evf_vlan_filter *)__mptr___0; ldv_57554: ; if ((unsigned long )(& f->list) != (unsigned long )(& adapter->vlan_filter_list)) { goto ldv_57553; } else { } if (count == 0) { adapter->aq_required = adapter->aq_required & 4294967287U; return; } else { } adapter->current_op = 12; len = (int )((unsigned int )((unsigned long )count + 3UL) * 2U); if (len > 4096) { { dev_warn((struct device const *)(& (adapter->pdev)->dev), "%s: Too many VLAN changes in one request\n", "i40evf_add_vlans"); count = 2045; len = 4096; } } else { } { tmp = kzalloc((size_t )len, 32U); vvfl = (struct i40e_virtchnl_vlan_filter_list *)tmp; } if ((unsigned long )vvfl == (unsigned long )((struct i40e_virtchnl_vlan_filter_list *)0)) { return; } else { } vvfl->vsi_id = (adapter->vsi_res)->vsi_id; vvfl->num_elements = (u16 )count; __mptr___1 = (struct list_head const *)adapter->vlan_filter_list.next; f = (struct i40evf_vlan_filter *)__mptr___1; goto ldv_57561; ldv_57560: ; if ((int )f->add) { vvfl->vlan_id[i] = f->vlan; i = i + 1; f->add = 0; } else { } __mptr___2 = (struct list_head const *)f->list.next; f = (struct i40evf_vlan_filter *)__mptr___2; ldv_57561: ; if ((unsigned long )(& f->list) != (unsigned long )(& adapter->vlan_filter_list)) { goto ldv_57560; } else { } { adapter->aq_pending = adapter->aq_pending | 8U; adapter->aq_required = adapter->aq_required & 4294967287U; i40evf_send_pf_msg(adapter, 12, (u8 *)vvfl, (int )((u16 )len)); kfree((void const *)vvfl); } return; } } void i40evf_del_vlans(struct i40evf_adapter *adapter ) { struct i40e_virtchnl_vlan_filter_list *vvfl ; struct i40evf_vlan_filter *f ; struct i40evf_vlan_filter *ftmp ; int len ; int i ; int count ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; void *tmp ; struct list_head const *__mptr___1 ; struct list_head const *__mptr___2 ; struct list_head const *__mptr___3 ; { i = 0; count = 0; if ((unsigned int )adapter->current_op != 0U) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "%s: command %d pending\n", "i40evf_del_vlans", (unsigned int )adapter->current_op); } return; } else { } __mptr = (struct list_head const *)adapter->vlan_filter_list.next; f = (struct i40evf_vlan_filter *)__mptr; goto ldv_57578; ldv_57577: ; if ((int )f->remove) { count = count + 1; } else { } __mptr___0 = (struct list_head const *)f->list.next; f = (struct i40evf_vlan_filter *)__mptr___0; ldv_57578: ; if ((unsigned long )(& f->list) != (unsigned long )(& adapter->vlan_filter_list)) { goto ldv_57577; } else { } if (count == 0) { adapter->aq_required = adapter->aq_required & 4294967263U; return; } else { } adapter->current_op = 13; len = (int )((unsigned int )((unsigned long )count + 3UL) * 2U); if (len > 4096) { { dev_warn((struct device const *)(& (adapter->pdev)->dev), "%s: Too many VLAN changes in one request\n", "i40evf_del_vlans"); count = 2045; len = 4096; } } else { } { tmp = kzalloc((size_t )len, 32U); vvfl = (struct i40e_virtchnl_vlan_filter_list *)tmp; } if ((unsigned long )vvfl == (unsigned long )((struct i40e_virtchnl_vlan_filter_list *)0)) { return; } else { } vvfl->vsi_id = (adapter->vsi_res)->vsi_id; vvfl->num_elements = (u16 )count; __mptr___1 = (struct list_head const *)adapter->vlan_filter_list.next; f = (struct i40evf_vlan_filter *)__mptr___1; __mptr___2 = (struct list_head const *)f->list.next; ftmp = (struct i40evf_vlan_filter *)__mptr___2; goto ldv_57587; ldv_57586: ; if ((int )f->remove) { { vvfl->vlan_id[i] = f->vlan; i = i + 1; list_del(& f->list); kfree((void const *)f); } } else { } f = ftmp; __mptr___3 = (struct list_head const *)ftmp->list.next; ftmp = (struct i40evf_vlan_filter *)__mptr___3; ldv_57587: ; if ((unsigned long )(& f->list) != (unsigned long )(& adapter->vlan_filter_list)) { goto ldv_57586; } else { } { adapter->aq_pending = adapter->aq_pending | 32U; adapter->aq_required = adapter->aq_required & 4294967263U; i40evf_send_pf_msg(adapter, 13, (u8 *)vvfl, (int )((u16 )len)); kfree((void const *)vvfl); } return; } } void i40evf_set_promiscuous(struct i40evf_adapter *adapter , int flags ) { struct i40e_virtchnl_promisc_info vpi ; { if ((unsigned int )adapter->current_op != 0U) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "%s: command %d pending\n", "i40evf_set_promiscuous", (unsigned int )adapter->current_op); } return; } else { } { adapter->current_op = 14; vpi.vsi_id = (adapter->vsi_res)->vsi_id; vpi.flags = (u16 )flags; i40evf_send_pf_msg(adapter, 14, (u8 *)(& vpi), 4); } return; } } void i40evf_request_stats(struct i40evf_adapter *adapter ) { struct i40e_virtchnl_queue_select vqs ; int tmp ; { if ((unsigned int )adapter->current_op != 0U) { return; } else { } { adapter->current_op = 15; vqs.vsi_id = (adapter->vsi_res)->vsi_id; tmp = i40evf_send_pf_msg(adapter, 15, (u8 *)(& vqs), 12); } if (tmp != 0) { adapter->current_op = 0; } else { } return; } } void i40evf_request_reset(struct i40evf_adapter *adapter ) { { { i40evf_send_pf_msg(adapter, 2, (u8 *)0U, 0); adapter->current_op = 0; } return; } } void i40evf_virtchnl_completion(struct i40evf_adapter *adapter , enum i40e_virtchnl_ops v_opcode , i40e_status v_retval , u8 *msg , u16 msglen ) { struct net_device *netdev ; struct i40e_virtchnl_pf_event *vpe ; bool tmp ; int tmp___0 ; struct i40e_eth_stats *stats ; { netdev = adapter->netdev; if ((unsigned int )v_opcode == 18U) { vpe = (struct i40e_virtchnl_pf_event *)msg; { if ((unsigned int )vpe->event == 1U) { goto case_1; } else { } if ((unsigned int )vpe->event == 2U) { goto case_2; } else { } goto switch_default; case_1: /* CIL Label */ adapter->link_up = vpe->event_data.link_event.link_status; if ((int )adapter->link_up) { { tmp = netif_carrier_ok((struct net_device const *)netdev); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { _dev_info((struct device const *)(& (adapter->pdev)->dev), "NIC Link is Up\n"); netif_carrier_on(netdev); netif_tx_wake_all_queues(netdev); } } else { goto _L; } } else _L: /* CIL Label */ if (! adapter->link_up) { { _dev_info((struct device const *)(& (adapter->pdev)->dev), "NIC Link is Down\n"); netif_carrier_off(netdev); netif_tx_stop_all_queues___0(netdev); } } else { } goto ldv_57612; case_2: /* CIL Label */ { _dev_info((struct device const *)(& (adapter->pdev)->dev), "PF reset warning received\n"); } if ((adapter->flags & 512U) == 0U) { { adapter->flags = adapter->flags | 512U; _dev_info((struct device const *)(& (adapter->pdev)->dev), "Scheduling reset task\n"); schedule_work(& adapter->reset_task); } } else { } goto ldv_57612; switch_default: /* CIL Label */ { dev_err((struct device const *)(& (adapter->pdev)->dev), "%s: Unknown event %d from pf\n", "i40evf_virtchnl_completion", (unsigned int )vpe->event); } goto ldv_57612; switch_break: /* CIL Label */ ; } ldv_57612: ; return; } else { } if ((int )v_retval != 0) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "%s: PF returned error %d to our request %d\n", "i40evf_virtchnl_completion", (int )v_retval, (unsigned int )v_opcode); } } else { } { if ((unsigned int )v_opcode == 1U) { goto case_1___0; } else { } if ((unsigned int )v_opcode == 15U) { goto case_15; } else { } if ((unsigned int )v_opcode == 10U) { goto case_10; } else { } if ((unsigned int )v_opcode == 11U) { goto case_11; } else { } if ((unsigned int )v_opcode == 12U) { goto case_12; } else { } if ((unsigned int )v_opcode == 13U) { goto case_13; } else { } if ((unsigned int )v_opcode == 8U) { goto case_8; } else { } if ((unsigned int )v_opcode == 9U) { goto case_9; } else { } if ((unsigned int )v_opcode == 6U) { goto case_6; } else { } if ((unsigned int )v_opcode == 7U) { goto case_7; } else { } goto switch_default___0; case_1___0: /* CIL Label */ ; goto ldv_57617; case_15: /* CIL Label */ stats = (struct i40e_eth_stats *)msg; adapter->net_stats.rx_packets = (unsigned long )((stats->rx_unicast + stats->rx_multicast) + stats->rx_broadcast); adapter->net_stats.tx_packets = (unsigned long )((stats->tx_unicast + stats->tx_multicast) + stats->tx_broadcast); adapter->net_stats.rx_bytes = (unsigned long )stats->rx_bytes; adapter->net_stats.tx_bytes = (unsigned long )stats->tx_bytes; adapter->net_stats.tx_errors = (unsigned long )stats->tx_errors; adapter->net_stats.rx_dropped = (unsigned long )stats->rx_discards; adapter->net_stats.tx_dropped = (unsigned long )stats->tx_discards; adapter->current_stats = *stats; goto ldv_57617; case_10: /* CIL Label */ adapter->aq_pending = adapter->aq_pending & 4294967291U; goto ldv_57617; case_11: /* CIL Label */ adapter->aq_pending = adapter->aq_pending & 4294967279U; goto ldv_57617; case_12: /* CIL Label */ adapter->aq_pending = adapter->aq_pending & 4294967287U; goto ldv_57617; case_13: /* CIL Label */ adapter->aq_pending = adapter->aq_pending & 4294967263U; goto ldv_57617; case_8: /* CIL Label */ { adapter->aq_pending = adapter->aq_pending & 4294967294U; i40evf_irq_enable(adapter, 1); netif_tx_start_all_queues(adapter->netdev); netif_carrier_on(adapter->netdev); } goto ldv_57617; case_9: /* CIL Label */ adapter->aq_pending = adapter->aq_pending & 4294967293U; goto ldv_57617; case_6: /* CIL Label */ adapter->aq_pending = adapter->aq_pending & 4294967231U; goto ldv_57617; case_7: /* CIL Label */ adapter->aq_pending = adapter->aq_pending & 4294967167U; goto ldv_57617; switch_default___0: /* CIL Label */ { _dev_info((struct device const *)(& (adapter->pdev)->dev), "Received unexpected message %d from PF\n", (unsigned int )v_opcode); } goto ldv_57617; switch_break___0: /* CIL Label */ ; } ldv_57617: adapter->current_op = 0; return; } } void __builtin_prefetch(void const * , ...) ; void ldv_linux_usb_dev_atomic_inc(atomic_t *v ) ; __inline static __u16 __fswab16(__u16 val ) { { return ((__u16 )((int )((short )((int )val << 8)) | (int )((short )((int )val >> 8)))); } } extern unsigned long __phys_addr(unsigned long ) ; __inline static int atomic_read(atomic_t const *v ) { int __var ; { __var = 0; return ((int )*((int const volatile *)(& v->counter))); } } __inline static void atomic_inc(atomic_t *v ) ; extern void dump_page(struct page * , char const * ) ; extern int numa_node ; __inline static int numa_node_id(void) { int pscr_ret__ ; void const *__vpp_verify ; int pfo_ret__ ; int pfo_ret_____0 ; int pfo_ret_____1 ; int pfo_ret_____2 ; { __vpp_verify = (void const *)0; { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2___0; } else { } if (4UL == 4UL) { goto case_4___1; } else { } if (4UL == 8UL) { goto case_8___2; } else { } goto switch_default___3; case_1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___0; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1___0: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret__): "m" (numa_node)); goto ldv_15194; case_2: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret__): "m" (numa_node)); goto ldv_15194; case_4: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret__): "m" (numa_node)); goto ldv_15194; case_8: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret__): "m" (numa_node)); goto ldv_15194; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break___0: /* CIL Label */ ; } ldv_15194: pscr_ret__ = pfo_ret__; goto ldv_15200; case_2___0: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___1; } else { } if (4UL == 2UL) { goto case_2___1; } else { } if (4UL == 4UL) { goto case_4___0; } else { } if (4UL == 8UL) { goto case_8___0; } else { } goto switch_default___0; case_1___1: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____0): "m" (numa_node)); goto ldv_15204; case_2___1: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (numa_node)); goto ldv_15204; case_4___0: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (numa_node)); goto ldv_15204; case_8___0: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (numa_node)); goto ldv_15204; switch_default___0: /* CIL Label */ { __bad_percpu_size(); } switch_break___1: /* CIL Label */ ; } ldv_15204: pscr_ret__ = pfo_ret_____0; goto ldv_15200; case_4___1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___2; } else { } if (4UL == 2UL) { goto case_2___2; } else { } if (4UL == 4UL) { goto case_4___2; } else { } if (4UL == 8UL) { goto case_8___1; } else { } goto switch_default___1; case_1___2: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____1): "m" (numa_node)); goto ldv_15213; case_2___2: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (numa_node)); goto ldv_15213; case_4___2: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (numa_node)); goto ldv_15213; case_8___1: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (numa_node)); goto ldv_15213; switch_default___1: /* CIL Label */ { __bad_percpu_size(); } switch_break___2: /* CIL Label */ ; } ldv_15213: pscr_ret__ = pfo_ret_____1; goto ldv_15200; case_8___2: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___3; } else { } if (4UL == 2UL) { goto case_2___3; } else { } if (4UL == 4UL) { goto case_4___3; } else { } if (4UL == 8UL) { goto case_8___3; } else { } goto switch_default___2; case_1___3: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____2): "m" (numa_node)); goto ldv_15222; case_2___3: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (numa_node)); goto ldv_15222; case_4___3: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (numa_node)); goto ldv_15222; case_8___3: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (numa_node)); goto ldv_15222; switch_default___2: /* CIL Label */ { __bad_percpu_size(); } switch_break___3: /* CIL Label */ ; } ldv_15222: pscr_ret__ = pfo_ret_____2; goto ldv_15200; switch_default___3: /* CIL Label */ { __bad_size_call_parameter(); } goto ldv_15200; switch_break: /* CIL Label */ ; } ldv_15200: ; return (pscr_ret__); } } __inline static struct page *alloc_pages(gfp_t flags , unsigned int order ) ; extern void __free_pages(struct page * , unsigned int ) ; __inline static int PageTail(struct page const *page ) { int tmp ; { { tmp = constant_test_bit(15L, (unsigned long const volatile *)(& page->flags)); } return (tmp); } } __inline static struct page *compound_head_by_tail(struct page *tail ) { struct page *head ; int tmp ; long tmp___0 ; { { head = tail->__annonCompField48.first_page; __asm__ volatile ("": : : "memory"); tmp = PageTail((struct page const *)tail); tmp___0 = ldv__builtin_expect(tmp != 0, 1L); } if (tmp___0 != 0L) { return (head); } else { } return (tail); } } __inline static struct page *compound_head(struct page *page ) { struct page *tmp ; int tmp___0 ; long tmp___1 ; { { tmp___0 = PageTail((struct page const *)page); tmp___1 = ldv__builtin_expect(tmp___0 != 0, 0L); } if (tmp___1 != 0L) { { tmp = compound_head_by_tail(page); } return (tmp); } else { } return (page); } } __inline static int page_count(struct page *page ) { struct page *tmp ; int tmp___0 ; { { tmp = compound_head(page); tmp___0 = atomic_read((atomic_t const *)(& tmp->__annonCompField44.__annonCompField43.__annonCompField42._count)); } return (tmp___0); } } extern bool __get_page_tail(struct page * ) ; __inline static void get_page(struct page *page ) { bool tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; int tmp___3 ; long tmp___4 ; { { tmp___1 = PageTail((struct page const *)page); tmp___2 = ldv__builtin_expect(tmp___1 != 0, 0L); } if (tmp___2 != 0L) { { tmp = __get_page_tail(page); tmp___0 = ldv__builtin_expect((long )tmp, 1L); } if (tmp___0 != 0L) { return; } else { } } else { } { tmp___3 = atomic_read((atomic_t const *)(& page->__annonCompField44.__annonCompField43.__annonCompField42._count)); tmp___4 = ldv__builtin_expect(tmp___3 <= 0, 0L); } if (tmp___4 != 0L) { { dump_page(page, "VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0)"); __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/mm.h"), "i" (548), "i" (12UL)); __builtin_unreachable(); } } else { } { atomic_inc(& page->__annonCompField44.__annonCompField43.__annonCompField42._count); } return; } } __inline static int page_to_nid(struct page const *page ) { { return ((int )(page->flags >> 54)); } } __inline static void *lowmem_page_address(struct page const *page ) { { return ((void *)((unsigned long )((unsigned long long )(((long )page + 24189255811072L) / 64L) << 12) + 0xffff880000000000UL)); } } __inline static void dql_queued(struct dql *dql , unsigned int count ) { long tmp ; { { tmp = ldv__builtin_expect(count > 268435455U, 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/dynamic_queue_limits.h"), "i" (74), "i" (12UL)); __builtin_unreachable(); } } else { } dql->last_obj_cnt = count; __asm__ volatile ("": : : "memory"); dql->num_queued = dql->num_queued + count; return; } } __inline static int dql_avail(struct dql const *dql ) { unsigned int __var ; unsigned int __var___0 ; { __var = 0U; __var___0 = 0U; return ((int )((unsigned int )*((unsigned int const volatile *)(& dql->adj_limit)) - (unsigned int )*((unsigned int const volatile *)(& dql->num_queued)))); } } extern void dql_completed(struct dql * , unsigned int ) ; extern void dql_reset(struct dql * ) ; __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } __inline static void *kzalloc(size_t size , gfp_t flags ) ; __inline static __sum16 csum_fold(__wsum sum ) { { __asm__ (" addl %1,%0\n adcl $0xffff,%0": "=r" (sum): "r" (sum << 16), "0" (sum & 4294901760U)); return ((__sum16 )(~ sum >> 16)); } } __inline static __wsum csum_tcpudp_nofold(__be32 saddr , __be32 daddr , unsigned short len , unsigned short proto , __wsum sum ) { { __asm__ (" addl %1, %0\n adcl %2, %0\n adcl %3, %0\n adcl $0, %0\n": "=r" (sum): "g" (daddr), "g" (saddr), "g" (((int )len + (int )proto) << 8), "0" (sum)); return (sum); } } __inline static __sum16 csum_tcpudp_magic(__be32 saddr , __be32 daddr , unsigned short len , unsigned short proto , __wsum sum ) { __wsum tmp ; __sum16 tmp___0 ; { { tmp = csum_tcpudp_nofold(saddr, daddr, (int )len, (int )proto, sum); tmp___0 = csum_fold(tmp); } return (tmp___0); } } extern __wsum csum_partial(void const * , int , __wsum ) ; extern __sum16 csum_ipv6_magic(struct in6_addr const * , struct in6_addr const * , __u32 , unsigned short , __wsum ) ; __inline static unsigned int add32_with_carry(unsigned int a , unsigned int b ) { { __asm__ ("addl %2,%0\n\tadcl $0,%0": "=r" (a): "0" (a), "rm" (b)); return (a); } } __inline static __wsum csum_add(__wsum csum , __wsum addend ) { unsigned int tmp ; { { tmp = add32_with_carry(csum, addend); } return (tmp); } } __inline static int valid_dma_direction(int dma_direction ) { { return ((unsigned int )dma_direction <= 2U); } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_mapping_error(struct device * , dma_addr_t ) ; extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; __inline static dma_addr_t dma_map_single_attrs(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, (struct page *)-24189255811072L + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, (struct page *)-24189255811072L + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); } return (addr); } } __inline static void dma_unmap_single_attrs(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (36), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, attrs); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 1); } return; } } __inline static dma_addr_t dma_map_page(struct device *dev , struct page *page , size_t offset , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; void *tmp___0 ; int tmp___1 ; long tmp___2 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = lowmem_page_address((struct page const *)page); kmemcheck_mark_initialized(tmp___0 + offset, (unsigned int )size); tmp___1 = valid_dma_direction((int )dir); tmp___2 = ldv__builtin_expect(tmp___1 == 0, 0L); } if (tmp___2 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (79), "i" (12UL)); __builtin_unreachable(); } } else { } { addr = (*(ops->map_page))(dev, page, offset, size, dir, (struct dma_attrs *)0); debug_dma_map_page(dev, page, offset, size, (int )dir, addr, 0); } return (addr); } } __inline static void dma_unmap_page(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (91), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, (struct dma_attrs *)0); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 0); } return; } } __inline static int dma_mapping_error(struct device *dev , dma_addr_t dma_addr ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; { { tmp = get_dma_ops(dev); ops = tmp; debug_dma_mapping_error(dev, dma_addr); } if ((unsigned long )ops->mapping_error != (unsigned long )((int (*)(struct device * , dma_addr_t ))0)) { { tmp___0 = (*(ops->mapping_error))(dev, dma_addr); } return (tmp___0); } else { } return (dma_addr == 0ULL); } } __inline static unsigned int skb_frag_size(skb_frag_t const *frag ) { { return ((unsigned int )frag->size); } } __inline static void skb_frag_size_set(skb_frag_t *frag , unsigned int size ) { { frag->size = size; return; } } extern void consume_skb(struct sk_buff * ) ; static int ldv_pskb_expand_head_106(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) ; extern int skb_pad(struct sk_buff * , int ) ; __inline static void skb_set_hash(struct sk_buff *skb , __u32 hash , enum pkt_hash_types type ) { { skb->l4_hash = (unsigned int )type == 3U; skb->sw_hash = 0U; skb->hash = hash; return; } } __inline static unsigned char *skb_end_pointer(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->end); } } __inline static int skb_header_cloned(struct sk_buff const *skb ) { int dataref ; unsigned char *tmp ; { if ((unsigned int )*((unsigned char *)skb + 142UL) == 0U) { return (0); } else { } { tmp = skb_end_pointer(skb); dataref = atomic_read((atomic_t const *)(& ((struct skb_shared_info *)tmp)->dataref)); dataref = (dataref & 65535) - (dataref >> 16); } return (dataref != 1); } } __inline static unsigned int skb_headlen(struct sk_buff const *skb ) { { return ((unsigned int )skb->len - (unsigned int )skb->data_len); } } __inline static void __skb_fill_page_desc(struct sk_buff *skb , int i , struct page *page , int off , int size ) { skb_frag_t *frag ; unsigned char *tmp ; { { tmp = skb_end_pointer((struct sk_buff const *)skb); frag = (skb_frag_t *)(& ((struct skb_shared_info *)tmp)->frags) + (unsigned long )i; frag->page.p = page; frag->page_offset = (__u32 )off; skb_frag_size_set(frag, (unsigned int )size); page = compound_head(page); } if ((int )page->__annonCompField44.__annonCompField39.pfmemalloc && (unsigned long )page->__annonCompField38.mapping == (unsigned long )((struct address_space *)0)) { skb->pfmemalloc = 1U; } else { } return; } } __inline static void skb_fill_page_desc(struct sk_buff *skb , int i , struct page *page , int off , int size ) { unsigned char *tmp ; { { __skb_fill_page_desc(skb, i, page, off, size); tmp = skb_end_pointer((struct sk_buff const *)skb); ((struct skb_shared_info *)tmp)->nr_frags = (unsigned int )((unsigned char )i) + 1U; } return; } } __inline static void skb_reset_tail_pointer(struct sk_buff *skb ) { { skb->tail = (sk_buff_data_t )((long )skb->data) - (sk_buff_data_t )((long )skb->head); return; } } __inline static void skb_set_tail_pointer(struct sk_buff *skb , int const offset ) { { { skb_reset_tail_pointer(skb); skb->tail = skb->tail + (sk_buff_data_t )offset; } return; } } extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; extern unsigned char *__pskb_pull_tail(struct sk_buff * , int ) ; __inline static int pskb_may_pull(struct sk_buff *skb , unsigned int len ) { unsigned int tmp ; long tmp___0 ; long tmp___1 ; unsigned int tmp___2 ; unsigned char *tmp___3 ; { { tmp = skb_headlen((struct sk_buff const *)skb); tmp___0 = ldv__builtin_expect(len <= tmp, 1L); } if (tmp___0 != 0L) { return (1); } else { } { tmp___1 = ldv__builtin_expect(len > skb->len, 0L); } if (tmp___1 != 0L) { return (0); } else { } { tmp___2 = skb_headlen((struct sk_buff const *)skb); tmp___3 = __pskb_pull_tail(skb, (int )(len - tmp___2)); } return ((unsigned long )tmp___3 != (unsigned long )((unsigned char *)0U)); } } __inline static unsigned int skb_headroom(struct sk_buff const *skb ) { { return ((unsigned int )((long )skb->data) - (unsigned int )((long )skb->head)); } } __inline static unsigned char *skb_inner_transport_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->inner_transport_header); } } __inline static unsigned char *skb_inner_network_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->inner_network_header); } } __inline static unsigned char *skb_transport_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->transport_header); } } __inline static unsigned char *skb_network_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->network_header); } } __inline static int skb_transport_offset(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_transport_header(skb); } return ((int )((unsigned int )((long )tmp) - (unsigned int )((long )skb->data))); } } __inline static u32 skb_network_header_len(struct sk_buff const *skb ) { { return ((u32 )((int )skb->transport_header - (int )skb->network_header)); } } __inline static u32 skb_inner_network_header_len(struct sk_buff const *skb ) { { return ((u32 )((int )skb->inner_transport_header - (int )skb->inner_network_header)); } } __inline static int skb_network_offset(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_network_header(skb); } return ((int )((unsigned int )((long )tmp) - (unsigned int )((long )skb->data))); } } __inline static int skb_inner_network_offset(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_inner_network_header(skb); } return ((int )((unsigned int )((long )tmp) - (unsigned int )((long )skb->data))); } } static struct sk_buff *ldv___netdev_alloc_skb_105(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; __inline static struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev , unsigned int length , gfp_t gfp ) { struct sk_buff *skb ; struct sk_buff *tmp ; { { tmp = ldv___netdev_alloc_skb_105(dev, length, gfp); skb = tmp; } return (skb); } } __inline static struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev , unsigned int length ) { struct sk_buff *tmp ; { { tmp = __netdev_alloc_skb_ip_align(dev, length, 32U); } return (tmp); } } __inline static struct page *skb_frag_page(skb_frag_t const *frag ) { { return ((struct page *)frag->page.p); } } __inline static dma_addr_t skb_frag_dma_map(struct device *dev , skb_frag_t const *frag , size_t offset , size_t size , enum dma_data_direction dir ) { struct page *tmp ; dma_addr_t tmp___0 ; { { tmp = skb_frag_page(frag); tmp___0 = dma_map_page(dev, tmp, (size_t )frag->page_offset + offset, size, dir); } return (tmp___0); } } __inline static int __skb_cow(struct sk_buff *skb , unsigned int headroom , int cloned ) { int delta ; unsigned int tmp ; unsigned int tmp___0 ; int _max1 ; int _max2 ; int _max1___0 ; int _max2___0 ; int tmp___1 ; { { delta = 0; tmp___0 = skb_headroom((struct sk_buff const *)skb); } if (headroom > tmp___0) { { tmp = skb_headroom((struct sk_buff const *)skb); delta = (int )(headroom - tmp); } } else { } if ((delta | cloned) != 0) { { _max1 = 32; _max2 = 64; _max1___0 = 32; _max2___0 = 64; tmp___1 = ldv_pskb_expand_head_106(skb, (delta + ((_max1 > _max2 ? _max1 : _max2) + -1)) & - (_max1___0 > _max2___0 ? _max1___0 : _max2___0), 0, 32U); } return (tmp___1); } else { } return (0); } } __inline static int skb_cow_head(struct sk_buff *skb , unsigned int headroom ) { int tmp ; int tmp___0 ; { { tmp = skb_header_cloned((struct sk_buff const *)skb); tmp___0 = __skb_cow(skb, headroom, tmp); } return (tmp___0); } } extern int skb_copy_bits(struct sk_buff const * , int , void * , int ) ; __inline static void *__skb_header_pointer(struct sk_buff const *skb , int offset , int len , void *data , int hlen , void *buffer ) { int tmp ; { if (hlen - offset >= len) { return (data + (unsigned long )offset); } else { } if ((unsigned long )skb == (unsigned long )((struct sk_buff const *)0)) { return ((void *)0); } else { { tmp = skb_copy_bits(skb, offset, buffer, len); } if (tmp < 0) { return ((void *)0); } else { } } return (buffer); } } __inline static void *skb_header_pointer(struct sk_buff const *skb , int offset , int len , void *buffer ) { unsigned int tmp ; void *tmp___0 ; { { tmp = skb_headlen(skb); tmp___0 = __skb_header_pointer(skb, offset, len, (void *)skb->data, (int )tmp, buffer); } return (tmp___0); } } extern void skb_clone_tx_timestamp(struct sk_buff * ) ; extern void skb_tstamp_tx(struct sk_buff * , struct skb_shared_hwtstamps * ) ; __inline static void sw_tx_timestamp(struct sk_buff *skb ) { unsigned char *tmp ; unsigned char *tmp___0 ; { { tmp = skb_end_pointer((struct sk_buff const *)skb); } if (((int )((struct skb_shared_info *)tmp)->tx_flags & 2) != 0) { { tmp___0 = skb_end_pointer((struct sk_buff const *)skb); } if (((int )((struct skb_shared_info *)tmp___0)->tx_flags & 4) == 0) { { skb_tstamp_tx(skb, (struct skb_shared_hwtstamps *)0); } } else { } } else { } return; } } __inline static void skb_tx_timestamp(struct sk_buff *skb ) { { { skb_clone_tx_timestamp(skb); sw_tx_timestamp(skb); } return; } } __inline static void skb_record_rx_queue(struct sk_buff *skb , u16 rx_queue ) { { skb->queue_mapping = (unsigned int )rx_queue + 1U; return; } } __inline static bool skb_is_gso(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_end_pointer(skb); } return ((unsigned int )((struct skb_shared_info *)tmp)->gso_size != 0U); } } __inline static bool skb_is_gso_v6(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_end_pointer(skb); } return (((int )((struct skb_shared_info *)tmp)->gso_type & 16) != 0); } } __inline static void u64_stats_update_begin(struct u64_stats_sync *syncp ) { { return; } } __inline static void napi_complete(struct napi_struct *n ) { { return; } } extern void netif_schedule_queue(struct netdev_queue * ) ; __inline static bool netif_tx_queue_stopped(struct netdev_queue const *dev_queue ) { int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev_queue->state)); } return (tmp != 0); } } __inline static void netdev_tx_sent_queue(struct netdev_queue *dev_queue , unsigned int bytes ) { int tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; { { dql_queued(& dev_queue->dql, bytes); tmp = dql_avail((struct dql const *)(& dev_queue->dql)); tmp___0 = ldv__builtin_expect(tmp >= 0, 1L); } if (tmp___0 != 0L) { return; } else { } { set_bit(1L, (unsigned long volatile *)(& dev_queue->state)); __asm__ volatile ("mfence": : : "memory"); tmp___1 = dql_avail((struct dql const *)(& dev_queue->dql)); tmp___2 = ldv__builtin_expect(tmp___1 >= 0, 0L); } if (tmp___2 != 0L) { { clear_bit(1L, (unsigned long volatile *)(& dev_queue->state)); } } else { } return; } } __inline static void netdev_tx_completed_queue(struct netdev_queue *dev_queue , unsigned int pkts , unsigned int bytes ) { long tmp ; int tmp___0 ; int tmp___1 ; { { tmp = ldv__builtin_expect(bytes == 0U, 0L); } if (tmp != 0L) { return; } else { } { dql_completed(& dev_queue->dql, bytes); __asm__ volatile ("mfence": : : "memory"); tmp___0 = dql_avail((struct dql const *)(& dev_queue->dql)); } if (tmp___0 < 0) { return; } else { } { tmp___1 = test_and_set_bit(1L, (unsigned long volatile *)(& dev_queue->state)); } if (tmp___1 != 0) { { netif_schedule_queue(dev_queue); } } else { } return; } } __inline static void netdev_tx_reset_queue(struct netdev_queue *q ) { { { clear_bit(1L, (unsigned long volatile *)(& q->state)); dql_reset(& q->dql); } return; } } __inline static void netif_start_subqueue(struct net_device *dev , u16 queue_index ) { struct netdev_queue *txq ; struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, (unsigned int )queue_index); txq = tmp; netif_tx_start_queue(txq); } return; } } __inline static void netif_stop_subqueue(struct net_device *dev , u16 queue_index ) { struct netdev_queue *txq ; struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, (unsigned int )queue_index); txq = tmp; netif_tx_stop_queue(txq); } return; } } __inline static bool __netif_subqueue_stopped(struct net_device const *dev , u16 queue_index ) { struct netdev_queue *txq ; struct netdev_queue *tmp ; bool tmp___0 ; { { tmp = netdev_get_tx_queue(dev, (unsigned int )queue_index); txq = tmp; tmp___0 = netif_tx_queue_stopped((struct netdev_queue const *)txq); } return (tmp___0); } } extern void netif_wake_subqueue(struct net_device * , u16 ) ; extern void __dev_kfree_skb_any(struct sk_buff * , enum skb_free_reason ) ; __inline static void dev_kfree_skb_any(struct sk_buff *skb ) { { { __dev_kfree_skb_any(skb, 1); } return; } } extern int netif_rx(struct sk_buff * ) ; extern gro_result_t napi_gro_receive(struct napi_struct * , struct sk_buff * ) ; extern __be16 eth_type_trans(struct sk_buff * , struct net_device * ) ; __inline static void __vlan_hwaccel_put_tag(struct sk_buff *skb , __be16 vlan_proto , u16 vlan_tci ) { { skb->vlan_proto = vlan_proto; skb->vlan_tci = (__u16 )((unsigned int )vlan_tci | 4096U); return; } } __inline static __be16 __vlan_get_protocol(struct sk_buff *skb , __be16 type , int *depth ) { unsigned int vlan_depth ; int __ret_warn_on ; long tmp ; long tmp___0 ; struct vlan_hdr *vh ; int tmp___1 ; long tmp___2 ; { vlan_depth = (unsigned int )skb->mac_len; if ((unsigned int )type == 129U || (unsigned int )type == 43144U) { if (vlan_depth != 0U) { { __ret_warn_on = vlan_depth <= 3U; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("include/linux/if_vlan.h", 492); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { return (0U); } else { } vlan_depth = vlan_depth - 4U; } else { vlan_depth = 14U; } ldv_47571: { tmp___1 = pskb_may_pull(skb, vlan_depth + 4U); tmp___2 = ldv__builtin_expect(tmp___1 == 0, 0L); } if (tmp___2 != 0L) { return (0U); } else { } vh = (struct vlan_hdr *)skb->data + (unsigned long )vlan_depth; type = vh->h_vlan_encapsulated_proto; vlan_depth = vlan_depth + 4U; if ((unsigned int )type == 129U || (unsigned int )type == 43144U) { goto ldv_47571; } else { } } else { } if ((unsigned long )depth != (unsigned long )((int *)0)) { *depth = (int )vlan_depth; } else { } return (type); } } __inline static __be16 vlan_get_protocol(struct sk_buff *skb ) { __be16 tmp ; { { tmp = __vlan_get_protocol(skb, (int )skb->protocol, (int *)0); } return (tmp); } } __inline static struct iphdr *ip_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_network_header(skb); } return ((struct iphdr *)tmp); } } __inline static struct iphdr *inner_ip_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_inner_network_header(skb); } return ((struct iphdr *)tmp); } } __inline static struct tcphdr *tcp_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_transport_header(skb); } return ((struct tcphdr *)tmp); } } __inline static unsigned int tcp_hdrlen(struct sk_buff const *skb ) { struct tcphdr *tmp ; { { tmp = tcp_hdr(skb); } return ((unsigned int )((int )tmp->doff * 4)); } } __inline static struct tcphdr *inner_tcp_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_inner_transport_header(skb); } return ((struct tcphdr *)tmp); } } __inline static unsigned int inner_tcp_hdrlen(struct sk_buff const *skb ) { struct tcphdr *tmp ; { { tmp = inner_tcp_hdr(skb); } return ((unsigned int )((int )tmp->doff * 4)); } } __inline static struct udphdr *udp_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_transport_header(skb); } return ((struct udphdr *)tmp); } } __inline static struct ipv6hdr *ipv6_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_network_header(skb); } return ((struct ipv6hdr *)tmp); } } __inline static struct ipv6hdr *inner_ipv6_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_inner_network_header(skb); } return ((struct ipv6hdr *)tmp); } } __inline static __wsum udp_csum(struct sk_buff *skb ) { __wsum csum ; unsigned char *tmp ; __wsum tmp___0 ; unsigned char *tmp___1 ; { { tmp = skb_transport_header((struct sk_buff const *)skb); tmp___0 = csum_partial((void const *)tmp, 8, skb->__annonCompField77.csum); csum = tmp___0; tmp___1 = skb_end_pointer((struct sk_buff const *)skb); skb = ((struct skb_shared_info *)tmp___1)->frag_list; } goto ldv_54625; ldv_54624: { csum = csum_add(csum, skb->__annonCompField77.csum); skb = skb->__annonCompField75.__annonCompField74.next; } ldv_54625: ; if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { goto ldv_54624; } else { } return (csum); } } void i40evf_clean_tx_ring(struct i40e_ring *tx_ring ) ; void i40evf_clean_rx_ring(struct i40e_ring *rx_ring ) ; struct i40e_rx_ptype_decoded i40evf_ptype_lookup[256U] ; __inline static struct i40e_rx_ptype_decoded decode_rx_desc_ptype(u8 ptype ) { { return (i40evf_ptype_lookup[(int )ptype]); } } __inline static __le64 build_ctob(u32 td_cmd , u32 td_offset , unsigned int size , u32 td_tag ) { { return (((((unsigned long long )td_cmd << 4) | ((unsigned long long )td_offset << 16)) | ((unsigned long long )size << 34)) | ((unsigned long long )td_tag << 48)); } } static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring , struct i40e_tx_buffer *tx_buffer ) { { if ((unsigned long )tx_buffer->__annonCompField108.skb != (unsigned long )((struct sk_buff *)0)) { if ((tx_buffer->tx_flags & 512U) != 0U) { { kfree((void const *)tx_buffer->__annonCompField108.raw_buf); } } else { { dev_kfree_skb_any(tx_buffer->__annonCompField108.skb); } } if (tx_buffer->len != 0U) { { dma_unmap_single_attrs(ring->dev, tx_buffer->dma, (size_t )tx_buffer->len, 1, (struct dma_attrs *)0); } } else { } } else if (tx_buffer->len != 0U) { { dma_unmap_page(ring->dev, tx_buffer->dma, (size_t )tx_buffer->len, 1); } } else { } tx_buffer->next_to_watch = (struct i40e_tx_desc *)0; tx_buffer->__annonCompField108.skb = (struct sk_buff *)0; tx_buffer->len = 0U; return; } } void i40evf_clean_tx_ring(struct i40e_ring *tx_ring ) { unsigned long bi_size ; u16 i ; struct netdev_queue *tmp ; { if ((unsigned long )tx_ring->__annonCompField109.tx_bi == (unsigned long )((struct i40e_tx_buffer *)0)) { return; } else { } i = 0U; goto ldv_57431; ldv_57430: { i40e_unmap_and_free_tx_resource(tx_ring, tx_ring->__annonCompField109.tx_bi + (unsigned long )i); i = (u16 )((int )i + 1); } ldv_57431: ; if ((int )i < (int )tx_ring->count) { goto ldv_57430; } else { } { bi_size = (unsigned long )tx_ring->count * 48UL; __memset((void *)tx_ring->__annonCompField109.tx_bi, 0, bi_size); __memset(tx_ring->desc, 0, (size_t )tx_ring->size); tx_ring->next_to_use = 0U; tx_ring->next_to_clean = 0U; } if ((unsigned long )tx_ring->netdev == (unsigned long )((struct net_device *)0)) { return; } else { } { tmp = netdev_get_tx_queue((struct net_device const *)tx_ring->netdev, (unsigned int )tx_ring->queue_index); netdev_tx_reset_queue(tmp); } return; } } void i40evf_free_tx_resources(struct i40e_ring *tx_ring ) { { { i40evf_clean_tx_ring(tx_ring); kfree((void const *)tx_ring->__annonCompField109.tx_bi); tx_ring->__annonCompField109.tx_bi = (struct i40e_tx_buffer *)0; } if ((unsigned long )tx_ring->desc != (unsigned long )((void *)0)) { { dma_free_attrs(tx_ring->dev, (size_t )tx_ring->size, tx_ring->desc, tx_ring->dma, (struct dma_attrs *)0); tx_ring->desc = (void *)0; } } else { } return; } } static u32 i40e_get_tx_pending(struct i40e_ring *ring ) { u32 ntu ; { ntu = (int )ring->next_to_clean <= (int )ring->next_to_use ? (u32 )ring->next_to_use : (u32 )((int )ring->next_to_use + (int )ring->count); return (ntu - (u32 )ring->next_to_clean); } } static bool i40e_check_tx_hang(struct i40e_ring *tx_ring ) { u32 tx_pending ; u32 tmp ; bool ret ; int tmp___0 ; { { tmp = i40e_get_tx_pending(tx_ring); tx_pending = tmp; ret = 0; clear_bit(2L, (unsigned long volatile *)(& tx_ring->state)); } if (tx_ring->__annonCompField110.tx_stats.tx_done_old == tx_ring->stats.packets && tx_pending > 3U) { { tmp___0 = test_and_set_bit(3L, (unsigned long volatile *)(& tx_ring->state)); ret = tmp___0 != 0; } } else if ((tx_ring->__annonCompField110.tx_stats.tx_done_old != tx_ring->stats.packets || tx_pending > 3U) || tx_pending == 0U) { { tx_ring->__annonCompField110.tx_stats.tx_done_old = tx_ring->stats.packets; clear_bit(3L, (unsigned long volatile *)(& tx_ring->state)); } } else { } return (ret); } } __inline static u32 i40e_get_head(struct i40e_ring *tx_ring ) { void *head ; { head = tx_ring->desc + (unsigned long )tx_ring->count; return ((u32 )*((__le32 volatile *)head)); } } static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring , int budget ) { u16 i ; struct i40e_tx_buffer *tx_buf ; struct i40e_tx_desc *tx_head ; struct i40e_tx_desc *tx_desc ; unsigned int total_packets ; unsigned int total_bytes ; u32 tmp ; struct i40e_tx_desc *eop_desc ; long tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; bool tmp___5 ; struct netdev_queue *tmp___6 ; bool tmp___7 ; int tmp___8 ; long tmp___9 ; bool tmp___10 ; long tmp___11 ; int tmp___12 ; long tmp___13 ; { { i = tx_ring->next_to_clean; total_packets = 0U; total_bytes = 0U; tx_buf = tx_ring->__annonCompField109.tx_bi + (unsigned long )i; tx_desc = (struct i40e_tx_desc *)tx_ring->desc + (unsigned long )i; i = (int )i - (int )tx_ring->count; tmp = i40e_get_head(tx_ring); tx_head = (struct i40e_tx_desc *)tx_ring->desc + (unsigned long )tmp; } ldv_57464: eop_desc = tx_buf->next_to_watch; if ((unsigned long )eop_desc == (unsigned long )((struct i40e_tx_desc *)0)) { goto ldv_57460; } else { } if ((unsigned long )tx_head == (unsigned long )tx_desc) { goto ldv_57460; } else { } { tx_buf->next_to_watch = (struct i40e_tx_desc *)0; total_bytes = total_bytes + tx_buf->bytecount; total_packets = total_packets + (unsigned int )tx_buf->gso_segs; dev_kfree_skb_any(tx_buf->__annonCompField108.skb); dma_unmap_single_attrs(tx_ring->dev, tx_buf->dma, (size_t )tx_buf->len, 1, (struct dma_attrs *)0); tx_buf->__annonCompField108.skb = (struct sk_buff *)0; tx_buf->len = 0U; } goto ldv_57462; ldv_57461: { tx_buf = tx_buf + 1; tx_desc = tx_desc + 1; i = (u16 )((int )i + 1); tmp___0 = ldv__builtin_expect((unsigned int )i == 0U, 0L); } if (tmp___0 != 0L) { i = (int )i - (int )tx_ring->count; tx_buf = tx_ring->__annonCompField109.tx_bi; tx_desc = (struct i40e_tx_desc *)tx_ring->desc; } else { } if (tx_buf->len != 0U) { { dma_unmap_page(tx_ring->dev, tx_buf->dma, (size_t )tx_buf->len, 1); tx_buf->len = 0U; } } else { } ldv_57462: ; if ((unsigned long )tx_desc != (unsigned long )eop_desc) { goto ldv_57461; } else { } { tx_buf = tx_buf + 1; tx_desc = tx_desc + 1; i = (u16 )((int )i + 1); tmp___1 = ldv__builtin_expect((unsigned int )i == 0U, 0L); } if (tmp___1 != 0L) { i = (int )i - (int )tx_ring->count; tx_buf = tx_ring->__annonCompField109.tx_bi; tx_desc = (struct i40e_tx_desc *)tx_ring->desc; } else { } { budget = budget - 1; tmp___2 = ldv__builtin_expect(budget != 0, 1L); } if (tmp___2 != 0L) { goto ldv_57464; } else { } ldv_57460: { i = (int )i + (int )tx_ring->count; tx_ring->next_to_clean = i; u64_stats_update_begin(& tx_ring->syncp); tx_ring->stats.bytes = tx_ring->stats.bytes + (u64 )total_bytes; tx_ring->stats.packets = tx_ring->stats.packets + (u64 )total_packets; u64_stats_update_begin(& tx_ring->syncp); (tx_ring->q_vector)->tx.total_bytes = (tx_ring->q_vector)->tx.total_bytes + total_bytes; (tx_ring->q_vector)->tx.total_packets = (tx_ring->q_vector)->tx.total_packets + total_packets; } if (budget != 0 && ((int )i & 3) != 3) { { tmp___3 = constant_test_bit(6L, (unsigned long const volatile *)(& (tx_ring->vsi)->state)); } if (tmp___3 == 0) { if (((((int )tx_ring->next_to_clean <= (int )tx_ring->next_to_use ? (int )tx_ring->count : 0) + (int )tx_ring->next_to_clean) - (int )tx_ring->next_to_use) + -1 != (int )tx_ring->count) { tx_ring->arm_wb = 1; } else { tx_ring->arm_wb = 0; } } else { tx_ring->arm_wb = 0; } } else { tx_ring->arm_wb = 0; } { tmp___4 = constant_test_bit(2L, (unsigned long const volatile *)(& tx_ring->state)); } if (tmp___4 != 0) { { tmp___5 = i40e_check_tx_hang(tx_ring); } if ((int )tmp___5) { { _dev_info((struct device const *)tx_ring->dev, "Detected Tx Unit Hang\n VSI <%d>\n Tx Queue <%d>\n next_to_use <%x>\n next_to_clean <%x>\n", (int )(tx_ring->vsi)->seid, (int )tx_ring->queue_index, (int )tx_ring->next_to_use, (int )i); _dev_info((struct device const *)tx_ring->dev, "tx_bi[next_to_clean]\n time_stamp <%lx>\n jiffies <%lx>\n", (tx_ring->__annonCompField109.tx_bi + (unsigned long )i)->time_stamp, jiffies); netif_stop_subqueue(tx_ring->netdev, (int )tx_ring->queue_index); _dev_info((struct device const *)tx_ring->dev, "tx hang detected on queue %d, resetting adapter\n", (int )tx_ring->queue_index); (*(((tx_ring->netdev)->netdev_ops)->ndo_tx_timeout))(tx_ring->netdev); } return (1); } else { } } else { } { tmp___6 = netdev_get_tx_queue((struct net_device const *)tx_ring->netdev, (unsigned int )tx_ring->queue_index); netdev_tx_completed_queue(tmp___6, total_packets, total_bytes); tmp___9 = ldv__builtin_expect(total_packets != 0U, 0L); } if (tmp___9 != 0L) { { tmp___10 = netif_carrier_ok((struct net_device const *)tx_ring->netdev); tmp___11 = ldv__builtin_expect((long )tmp___10, 0L); } if (tmp___11 != 0L) { tmp___12 = 1; } else { tmp___12 = 0; } } else { tmp___12 = 0; } if (tmp___12 != 0) { { tmp___13 = ldv__builtin_expect((unsigned int )(((((int )tx_ring->next_to_clean <= (int )tx_ring->next_to_use ? (int )tx_ring->count : 0) + (int )tx_ring->next_to_clean) - (int )tx_ring->next_to_use) + -1) > 41U, 0L); } if (tmp___13 != 0L) { { __asm__ volatile ("mfence": : : "memory"); tmp___7 = __netif_subqueue_stopped((struct net_device const *)tx_ring->netdev, (int )tx_ring->queue_index); } if ((int )tmp___7) { { tmp___8 = constant_test_bit(6L, (unsigned long const volatile *)(& (tx_ring->vsi)->state)); } if (tmp___8 == 0) { { netif_wake_subqueue(tx_ring->netdev, (int )tx_ring->queue_index); tx_ring->__annonCompField110.tx_stats.restart_queue = tx_ring->__annonCompField110.tx_stats.restart_queue + 1ULL; } } else { } } else { } } else { } } else { } return (budget > 0); } } static void i40e_force_wb(struct i40e_vsi *vsi , struct i40e_q_vector *q_vector ) { u32 val ; { { val = 16777221U; writel(val, (void volatile *)(vsi->back)->hw.hw_addr + (unsigned long )(((q_vector->v_idx + vsi->base_vector) + 3583) * 4)); } return; } } static void i40e_set_new_dynamic_itr(struct i40e_ring_container *rc ) { enum i40e_latency_range new_latency_range ; u32 new_itr ; int bytes_per_int ; { new_latency_range = rc->latency_range; new_itr = (u32 )rc->itr; if (rc->total_packets == 0U || (unsigned int )rc->itr == 0U) { return; } else { } bytes_per_int = (int )(rc->total_bytes / (unsigned int )rc->itr); { if ((int )rc->itr == 0) { goto case_0; } else { } if ((int )rc->itr == 1) { goto case_1; } else { } if ((int )rc->itr == 2) { goto case_2; } else { } goto switch_break; case_0: /* CIL Label */ ; if (bytes_per_int > 10) { new_latency_range = 1; } else { } goto ldv_57477; case_1: /* CIL Label */ ; if (bytes_per_int > 20) { new_latency_range = 2; } else if (bytes_per_int <= 10) { new_latency_range = 0; } else { } goto ldv_57477; case_2: /* CIL Label */ ; if (bytes_per_int <= 20) { rc->latency_range = 1; } else { } goto ldv_57477; switch_break: /* CIL Label */ ; } ldv_57477: ; { if ((unsigned int )new_latency_range == 0U) { goto case_0___0; } else { } if ((unsigned int )new_latency_range == 1U) { goto case_1___0; } else { } if ((unsigned int )new_latency_range == 2U) { goto case_2___0; } else { } goto switch_default; case_0___0: /* CIL Label */ new_itr = 5U; goto ldv_57481; case_1___0: /* CIL Label */ new_itr = 25U; goto ldv_57481; case_2___0: /* CIL Label */ new_itr = 62U; goto ldv_57481; switch_default: /* CIL Label */ ; goto ldv_57481; switch_break___0: /* CIL Label */ ; } ldv_57481: ; if (new_itr != (u32 )rc->itr) { new_itr = ((new_itr * (u32 )rc->itr) * 10U) / (new_itr * 9U + (u32 )rc->itr); rc->itr = (unsigned int )((u16 )new_itr) & 4080U; } else { } rc->total_bytes = 0U; rc->total_packets = 0U; return; } } static void i40e_update_dynamic_itr(struct i40e_q_vector *q_vector ) { u16 vector ; struct i40e_hw *hw ; u32 reg_addr ; u16 old_itr ; { { vector = (int )((u16 )(q_vector->vsi)->base_vector) + (int )((u16 )q_vector->v_idx); hw = & ((q_vector->vsi)->back)->hw; reg_addr = (u32 )(((int )vector + 2559) * 4); old_itr = q_vector->rx.itr; i40e_set_new_dynamic_itr(& q_vector->rx); } if ((int )old_itr != (int )q_vector->rx.itr) { { writel((unsigned int )q_vector->rx.itr, (void volatile *)hw->hw_addr + (unsigned long )reg_addr); } } else { } { reg_addr = (u32 )(((int )vector + 2575) * 4); old_itr = q_vector->tx.itr; i40e_set_new_dynamic_itr(& q_vector->tx); } if ((int )old_itr != (int )q_vector->tx.itr) { { writel((unsigned int )q_vector->tx.itr, (void volatile *)hw->hw_addr + (unsigned long )reg_addr); } } else { } return; } } int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring ) { struct device *dev ; int bi_size ; void *tmp ; { dev = tx_ring->dev; if ((unsigned long )dev == (unsigned long )((struct device *)0)) { return (-12); } else { } { bi_size = (int )((unsigned int )tx_ring->count * 48U); tmp = kzalloc((size_t )bi_size, 208U); tx_ring->__annonCompField109.tx_bi = (struct i40e_tx_buffer *)tmp; } if ((unsigned long )tx_ring->__annonCompField109.tx_bi == (unsigned long )((struct i40e_tx_buffer *)0)) { goto err; } else { } { tx_ring->size = (unsigned int )tx_ring->count * 16U; tx_ring->size = tx_ring->size + 4U; tx_ring->size = (tx_ring->size + 4095U) & 4294963200U; tx_ring->desc = dma_alloc_attrs(dev, (size_t )tx_ring->size, & tx_ring->dma, 208U, (struct dma_attrs *)0); } if ((unsigned long )tx_ring->desc == (unsigned long )((void *)0)) { { _dev_info((struct device const *)dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", tx_ring->size); } goto err; } else { } tx_ring->next_to_use = 0U; tx_ring->next_to_clean = 0U; return (0); err: { kfree((void const *)tx_ring->__annonCompField109.tx_bi); tx_ring->__annonCompField109.tx_bi = (struct i40e_tx_buffer *)0; } return (-12); } } void i40evf_clean_rx_ring(struct i40e_ring *rx_ring ) { struct device *dev ; struct i40e_rx_buffer *rx_bi ; unsigned long bi_size ; u16 i ; { dev = rx_ring->dev; if ((unsigned long )rx_ring->__annonCompField109.rx_bi == (unsigned long )((struct i40e_rx_buffer *)0)) { return; } else { } i = 0U; goto ldv_57506; ldv_57505: rx_bi = rx_ring->__annonCompField109.rx_bi + (unsigned long )i; if (rx_bi->dma != 0ULL) { { dma_unmap_single_attrs(dev, rx_bi->dma, (size_t )rx_ring->rx_buf_len, 2, (struct dma_attrs *)0); rx_bi->dma = 0ULL; } } else { } if ((unsigned long )rx_bi->skb != (unsigned long )((struct sk_buff *)0)) { { consume_skb(rx_bi->skb); rx_bi->skb = (struct sk_buff *)0; } } else { } if ((unsigned long )rx_bi->page != (unsigned long )((struct page *)0)) { if (rx_bi->page_dma != 0ULL) { { dma_unmap_page(dev, rx_bi->page_dma, 2048UL, 2); rx_bi->page_dma = 0ULL; } } else { } { __free_pages(rx_bi->page, 0U); rx_bi->page = (struct page *)0; rx_bi->page_offset = 0U; } } else { } i = (u16 )((int )i + 1); ldv_57506: ; if ((int )i < (int )rx_ring->count) { goto ldv_57505; } else { } { bi_size = (unsigned long )rx_ring->count * 40UL; __memset((void *)rx_ring->__annonCompField109.rx_bi, 0, bi_size); __memset(rx_ring->desc, 0, (size_t )rx_ring->size); rx_ring->next_to_clean = 0U; rx_ring->next_to_use = 0U; } return; } } void i40evf_free_rx_resources(struct i40e_ring *rx_ring ) { { { i40evf_clean_rx_ring(rx_ring); kfree((void const *)rx_ring->__annonCompField109.rx_bi); rx_ring->__annonCompField109.rx_bi = (struct i40e_rx_buffer *)0; } if ((unsigned long )rx_ring->desc != (unsigned long )((void *)0)) { { dma_free_attrs(rx_ring->dev, (size_t )rx_ring->size, rx_ring->desc, rx_ring->dma, (struct dma_attrs *)0); rx_ring->desc = (void *)0; } } else { } return; } } int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring ) { struct device *dev ; int bi_size ; void *tmp ; int tmp___0 ; { { dev = rx_ring->dev; bi_size = (int )((unsigned int )rx_ring->count * 40U); tmp = kzalloc((size_t )bi_size, 208U); rx_ring->__annonCompField109.rx_bi = (struct i40e_rx_buffer *)tmp; } if ((unsigned long )rx_ring->__annonCompField109.rx_bi == (unsigned long )((struct i40e_rx_buffer *)0)) { goto err; } else { } { tmp___0 = constant_test_bit(5L, (unsigned long const volatile *)(& rx_ring->state)); rx_ring->size = tmp___0 != 0 ? (unsigned int )rx_ring->count * 16U : (unsigned int )rx_ring->count * 32U; rx_ring->size = (rx_ring->size + 4095U) & 4294963200U; rx_ring->desc = dma_alloc_attrs(dev, (size_t )rx_ring->size, & rx_ring->dma, 208U, (struct dma_attrs *)0); } if ((unsigned long )rx_ring->desc == (unsigned long )((void *)0)) { { _dev_info((struct device const *)dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", rx_ring->size); } goto err; } else { } rx_ring->next_to_clean = 0U; rx_ring->next_to_use = 0U; return (0); err: { kfree((void const *)rx_ring->__annonCompField109.rx_bi); rx_ring->__annonCompField109.rx_bi = (struct i40e_rx_buffer *)0; } return (-12); } } __inline static void i40e_release_rx_desc(struct i40e_ring *rx_ring , u32 val ) { { { rx_ring->next_to_use = (u16 )val; __asm__ volatile ("sfence": : : "memory"); writel(val, (void volatile *)rx_ring->tail); } return; } } void i40evf_alloc_rx_buffers(struct i40e_ring *rx_ring , u16 cleaned_count ) { u16 i ; union i40e_32byte_rx_desc *rx_desc ; struct i40e_rx_buffer *bi ; struct sk_buff *skb ; int tmp ; int tmp___0 ; int tmp___1 ; u16 tmp___2 ; { i = rx_ring->next_to_use; if ((unsigned long )rx_ring->netdev == (unsigned long )((struct net_device *)0) || (unsigned int )cleaned_count == 0U) { return; } else { } goto ldv_57531; ldv_57530: rx_desc = (union i40e_32byte_rx_desc *)rx_ring->desc + (unsigned long )i; bi = rx_ring->__annonCompField109.rx_bi + (unsigned long )i; skb = bi->skb; if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { { skb = netdev_alloc_skb_ip_align(rx_ring->netdev, (unsigned int )rx_ring->rx_buf_len); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { rx_ring->__annonCompField110.rx_stats.alloc_buff_failed = rx_ring->__annonCompField110.rx_stats.alloc_buff_failed + 1ULL; goto no_buffers; } else { } { skb_record_rx_queue(skb, (int )rx_ring->queue_index); bi->skb = skb; } } else { } if (bi->dma == 0ULL) { { bi->dma = dma_map_single_attrs(rx_ring->dev, (void *)skb->data, (size_t )rx_ring->rx_buf_len, 2, (struct dma_attrs *)0); tmp = dma_mapping_error(rx_ring->dev, bi->dma); } if (tmp != 0) { rx_ring->__annonCompField110.rx_stats.alloc_buff_failed = rx_ring->__annonCompField110.rx_stats.alloc_buff_failed + 1ULL; bi->dma = 0ULL; goto no_buffers; } else { } } else { } { tmp___1 = constant_test_bit(4L, (unsigned long const volatile *)(& rx_ring->state)); } if (tmp___1 != 0) { if ((unsigned long )bi->page == (unsigned long )((struct page *)0)) { { bi->page = alloc_pages(32U, 0U); } if ((unsigned long )bi->page == (unsigned long )((struct page *)0)) { rx_ring->__annonCompField110.rx_stats.alloc_page_failed = rx_ring->__annonCompField110.rx_stats.alloc_page_failed + 1ULL; goto no_buffers; } else { } } else { } if (bi->page_dma == 0ULL) { { bi->page_offset = bi->page_offset ^ 2048U; bi->page_dma = dma_map_page(rx_ring->dev, bi->page, (size_t )bi->page_offset, 2048UL, 2); tmp___0 = dma_mapping_error(rx_ring->dev, bi->page_dma); } if (tmp___0 != 0) { rx_ring->__annonCompField110.rx_stats.alloc_page_failed = rx_ring->__annonCompField110.rx_stats.alloc_page_failed + 1ULL; bi->page_dma = 0ULL; goto no_buffers; } else { } } else { } rx_desc->read.pkt_addr = bi->page_dma; rx_desc->read.hdr_addr = bi->dma; } else { rx_desc->read.pkt_addr = bi->dma; rx_desc->read.hdr_addr = 0ULL; } i = (u16 )((int )i + 1); if ((int )i == (int )rx_ring->count) { i = 0U; } else { } ldv_57531: tmp___2 = cleaned_count; cleaned_count = (u16 )((int )cleaned_count - 1); if ((unsigned int )tmp___2 != 0U) { goto ldv_57530; } else { } no_buffers: ; if ((int )rx_ring->next_to_use != (int )i) { { i40e_release_rx_desc(rx_ring, (u32 )i); } } else { } return; } } static void i40e_receive_skb(struct i40e_ring *rx_ring , struct sk_buff *skb , u16 vlan_tag ) { struct i40e_q_vector *q_vector ; struct i40e_vsi *vsi ; u64 flags ; { q_vector = rx_ring->q_vector; vsi = rx_ring->vsi; flags = (u64 )(vsi->back)->flags; if (((int )vlan_tag & 4095) != 0) { { __vlan_hwaccel_put_tag(skb, 129, (int )vlan_tag); } } else { } if ((flags & 16ULL) != 0ULL) { { netif_rx(skb); } } else { { napi_gro_receive(& q_vector->napi, skb); } } return; } } __inline static void i40e_rx_checksum(struct i40e_vsi *vsi , struct sk_buff *skb , u32 rx_status , u32 rx_error , u16 rx_ptype ) { struct i40e_rx_ptype_decoded decoded ; struct i40e_rx_ptype_decoded tmp ; bool ipv4 ; bool ipv6 ; bool ipv4_tunnel ; bool ipv6_tunnel ; __wsum rx_udp_csum ; struct iphdr *iph ; __sum16 csum ; struct iphdr *tmp___0 ; int tmp___1 ; struct udphdr *tmp___2 ; { { tmp = decode_rx_desc_ptype((int )((u8 )rx_ptype)); decoded = tmp; ipv4 = 0; ipv6 = 0; ipv4_tunnel = (unsigned int )rx_ptype - 59U <= 27U; ipv6_tunnel = (unsigned int )rx_ptype - 125U <= 27U; skb->ip_summed = 0U; } if (((vsi->netdev)->features & 17179869184ULL) == 0ULL) { return; } else { } if ((rx_status & 8U) == 0U) { return; } else { } if ((unsigned int )*((unsigned char *)(& decoded) + 1UL) != 3U) { return; } else { } if ((unsigned int )*((unsigned char *)(& decoded) + 1UL) == 2U) { ipv4 = 1; } else if ((unsigned int )*((unsigned char *)(& decoded) + 1UL) == 6U) { ipv6 = 1; } else { } if ((int )ipv4 && (rx_error & 40U) != 0U) { goto checksum_fail; } else { } if ((int )ipv6 && (rx_status & 32768U) != 0U) { return; } else { } if ((rx_error & 16U) != 0U) { goto checksum_fail; } else { } if ((rx_error & 128U) != 0U) { return; } else { } if (((int )ipv4_tunnel && (unsigned int )*((unsigned char *)(& decoded) + 2UL) != 4U) && (rx_status & 262144U) == 0U) { { tmp___0 = ip_hdr((struct sk_buff const *)skb); skb->transport_header = ((unsigned int )skb->mac_header + (unsigned int )((__u16 )tmp___0->ihl) * 4U) + 14U; skb->transport_header = (unsigned int )skb->transport_header + ((unsigned int )skb->protocol == 129U || (unsigned int )skb->protocol == 43144U ? 4U : 0U); rx_udp_csum = udp_csum(skb); iph = ip_hdr((struct sk_buff const *)skb); tmp___1 = skb_transport_offset((struct sk_buff const *)skb); csum = csum_tcpudp_magic(iph->saddr, iph->daddr, (int )((unsigned short )skb->len) - (int )((unsigned short )tmp___1), 17, rx_udp_csum); tmp___2 = udp_hdr((struct sk_buff const *)skb); } if ((int )tmp___2->check != (int )csum) { goto checksum_fail; } else { } } else { } skb->ip_summed = 1U; skb->csum_level = (unsigned char )((int )ipv4_tunnel || (int )ipv6_tunnel); return; checksum_fail: (vsi->back)->hw_csum_rx_error = (vsi->back)->hw_csum_rx_error + 1ULL; return; } } __inline static u32 i40e_rx_hash(struct i40e_ring *ring , union i40e_32byte_rx_desc *rx_desc ) { __le64 rss_mask ; { rss_mask = 12288ULL; if (((ring->netdev)->features & 8589934592ULL) != 0ULL && (rx_desc->wb.qword1.status_error_len & 12288ULL) == 12288ULL) { return (rx_desc->wb.qword0.hi_dword.rss); } else { return (0U); } } } __inline static enum pkt_hash_types i40e_ptype_to_hash(u8 ptype ) { struct i40e_rx_ptype_decoded decoded ; struct i40e_rx_ptype_decoded tmp ; { { tmp = decode_rx_desc_ptype((int )ptype); decoded = tmp; } if ((unsigned int )*((unsigned char *)(& decoded) + 1UL) == 0U) { return (0); } else { } if (*((unsigned int *)(& decoded) + 0UL) == 12583424U) { return (3); } else if (*((unsigned int *)(& decoded) + 0UL) == 8389120U) { return (2); } else { return (1); } } } static int i40e_clean_rx_irq(struct i40e_ring *rx_ring , int budget ) { unsigned int total_rx_bytes ; unsigned int total_rx_packets ; u16 rx_packet_len ; u16 rx_header_len ; u16 rx_sph ; u16 rx_hbo ; u16 cleaned_count ; int current_node ; int tmp ; struct i40e_vsi *vsi ; u16 i ; union i40e_32byte_rx_desc *rx_desc ; u32 rx_error ; u32 rx_status ; u8 rx_ptype ; u64 qword ; union i40e_32byte_rx_desc *next_rxd ; struct i40e_rx_buffer *rx_bi ; struct sk_buff *skb ; u16 vlan_tag ; u16 len ; unsigned char *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; struct i40e_rx_buffer *next_buffer ; int tmp___4 ; long tmp___5 ; long tmp___6 ; enum pkt_hash_types tmp___7 ; u32 tmp___8 ; { { total_rx_bytes = 0U; total_rx_packets = 0U; cleaned_count = ((((int )rx_ring->next_to_clean <= (int )rx_ring->next_to_use ? rx_ring->count : 0U) + (unsigned int )rx_ring->next_to_clean) - (unsigned int )rx_ring->next_to_use) + 65535U; tmp = numa_node_id(); current_node = tmp; vsi = rx_ring->vsi; i = rx_ring->next_to_clean; rx_desc = (union i40e_32byte_rx_desc *)rx_ring->desc + (unsigned long )i; qword = rx_desc->wb.qword1.status_error_len; rx_status = (u32 )qword & 524287U; } goto ldv_57594; ldv_57593: { rx_bi = rx_ring->__annonCompField109.rx_bi + (unsigned long )i; skb = rx_bi->skb; __builtin_prefetch((void const *)skb->data); rx_packet_len = (u16 )((qword & 4503324749463552ULL) >> 38); rx_header_len = (u16 )((qword & 9218868437227405312ULL) >> 52); rx_sph = (u16 )(qword >> 63); rx_error = (u32 )((qword & 133693440ULL) >> 19); rx_hbo = (unsigned int )((u16 )rx_error) & 4U; rx_error = rx_error & 4294967291U; rx_ptype = (u8 )((qword & 273804165120ULL) >> 30); rx_bi->skb = (struct sk_buff *)0; __asm__ volatile ("lfence": : : "memory"); } if (rx_bi->dma != 0ULL) { if ((unsigned int )rx_hbo != 0U) { len = 512U; } else if ((unsigned int )rx_sph != 0U) { len = rx_header_len; } else if ((unsigned int )rx_packet_len != 0U) { len = rx_packet_len; } else { len = rx_header_len; } { skb_put(skb, (unsigned int )len); dma_unmap_single_attrs(rx_ring->dev, rx_bi->dma, (size_t )rx_ring->rx_buf_len, 2, (struct dma_attrs *)0); rx_bi->dma = 0ULL; } } else { } { tmp___3 = constant_test_bit(4L, (unsigned long const volatile *)(& rx_ring->state)); } if (tmp___3 != 0 && (unsigned int )rx_packet_len != 0U) { { tmp___0 = skb_end_pointer((struct sk_buff const *)skb); skb_fill_page_desc(skb, (int )((struct skb_shared_info *)tmp___0)->nr_frags, rx_bi->page, (int )rx_bi->page_offset, (int )rx_packet_len); skb->len = skb->len + (unsigned int )rx_packet_len; skb->data_len = skb->data_len + (unsigned int )rx_packet_len; skb->truesize = skb->truesize + (unsigned int )rx_packet_len; tmp___1 = page_count(rx_bi->page); } if (tmp___1 == 1) { { tmp___2 = page_to_nid((struct page const *)rx_bi->page); } if (tmp___2 == current_node) { { get_page(rx_bi->page); } } else { rx_bi->page = (struct page *)0; } } else { rx_bi->page = (struct page *)0; } { dma_unmap_page(rx_ring->dev, rx_bi->page_dma, 2048UL, 2); rx_bi->page_dma = 0ULL; } } else { } i = (u16 )((int )i + 1); if ((int )i == (int )rx_ring->count) { i = 0U; } else { } { next_rxd = (union i40e_32byte_rx_desc *)rx_ring->desc + (unsigned long )i; __builtin_prefetch((void const *)next_rxd); tmp___5 = ldv__builtin_expect((rx_status & 2U) == 0U, 0L); } if (tmp___5 != 0L) { { next_buffer = rx_ring->__annonCompField109.rx_bi + (unsigned long )i; tmp___4 = constant_test_bit(4L, (unsigned long const volatile *)(& rx_ring->state)); } if (tmp___4 != 0) { rx_bi->skb = next_buffer->skb; rx_bi->dma = next_buffer->dma; next_buffer->skb = skb; next_buffer->dma = 0ULL; } else { } rx_ring->__annonCompField110.rx_stats.non_eop_descs = rx_ring->__annonCompField110.rx_stats.non_eop_descs + 1ULL; goto next_desc; } else { } { tmp___6 = ldv__builtin_expect((long )((int )rx_error) & 1L, 0L); } if (tmp___6 != 0L) { { dev_kfree_skb_any(skb); } goto next_desc; } else { } { tmp___7 = i40e_ptype_to_hash((int )rx_ptype); tmp___8 = i40e_rx_hash(rx_ring, rx_desc); skb_set_hash(skb, tmp___8, tmp___7); total_rx_bytes = total_rx_bytes + skb->len; total_rx_packets = total_rx_packets + 1U; skb->protocol = eth_type_trans(skb, rx_ring->netdev); i40e_rx_checksum(vsi, skb, rx_status, rx_error, (int )rx_ptype); vlan_tag = (rx_status & 4U) != 0U ? rx_desc->wb.qword0.lo_dword.l2tag1 : 0U; i40e_receive_skb(rx_ring, skb, (int )vlan_tag); (rx_ring->netdev)->last_rx = jiffies; budget = budget - 1; } next_desc: rx_desc->wb.qword1.status_error_len = 0ULL; if (budget == 0) { goto ldv_57592; } else { } cleaned_count = (u16 )((int )cleaned_count + 1); if ((unsigned int )cleaned_count > 15U) { { i40evf_alloc_rx_buffers(rx_ring, (int )cleaned_count); cleaned_count = 0U; } } else { } rx_desc = next_rxd; qword = rx_desc->wb.qword1.status_error_len; rx_status = (u32 )qword & 524287U; ldv_57594: ; if ((int )rx_status & 1) { goto ldv_57593; } else { } ldv_57592: { rx_ring->next_to_clean = i; u64_stats_update_begin(& rx_ring->syncp); rx_ring->stats.packets = rx_ring->stats.packets + (u64 )total_rx_packets; rx_ring->stats.bytes = rx_ring->stats.bytes + (u64 )total_rx_bytes; u64_stats_update_begin(& rx_ring->syncp); (rx_ring->q_vector)->rx.total_packets = (rx_ring->q_vector)->rx.total_packets + total_rx_packets; (rx_ring->q_vector)->rx.total_bytes = (rx_ring->q_vector)->rx.total_bytes + total_rx_bytes; } if ((unsigned int )cleaned_count != 0U) { { i40evf_alloc_rx_buffers(rx_ring, (int )cleaned_count); } } else { } return (budget > 0); } } int i40evf_napi_poll(struct napi_struct *napi , int budget ) { struct i40e_q_vector *q_vector ; struct napi_struct const *__mptr ; struct i40e_vsi *vsi ; struct i40e_ring *ring ; bool clean_complete ; bool arm_wb ; int budget_per_ring ; int tmp ; bool tmp___0 ; int _max1 ; int _max2 ; int tmp___1 ; int tmp___2 ; { { __mptr = (struct napi_struct const *)napi; q_vector = (struct i40e_q_vector *)__mptr + 0xfffffffffffffff0UL; vsi = q_vector->vsi; clean_complete = 1; arm_wb = 0; tmp = constant_test_bit(6L, (unsigned long const volatile *)(& vsi->state)); } if (tmp != 0) { { napi_complete(napi); } return (0); } else { } ring = q_vector->tx.ring; goto ldv_57608; ldv_57607: { tmp___0 = i40e_clean_tx_irq(ring, (int )vsi->work_limit); clean_complete = ((int )clean_complete & (int )tmp___0) != 0; arm_wb = ((int )arm_wb | (int )ring->arm_wb) != 0; ring = ring->next; } ldv_57608: ; if ((unsigned long )ring != (unsigned long )((struct i40e_ring *)0)) { goto ldv_57607; } else { } _max1 = budget / (int )q_vector->num_ringpairs; _max2 = 1; budget_per_ring = _max1 > _max2 ? _max1 : _max2; ring = q_vector->rx.ring; goto ldv_57614; ldv_57613: { tmp___1 = i40e_clean_rx_irq(ring, budget_per_ring); clean_complete = ((int )clean_complete & tmp___1) != 0; ring = ring->next; } ldv_57614: ; if ((unsigned long )ring != (unsigned long )((struct i40e_ring *)0)) { goto ldv_57613; } else { } if (! clean_complete) { if ((int )arm_wb) { { i40e_force_wb(vsi, q_vector); } } else { } return (budget); } else { } { napi_complete(napi); } if ((int )((short )vsi->rx_itr_setting) < 0 || (int )((short )vsi->tx_itr_setting) < 0) { { i40e_update_dynamic_itr(q_vector); } } else { } { tmp___2 = constant_test_bit(6L, (unsigned long const volatile *)(& vsi->state)); } if (tmp___2 == 0) { { i40evf_irq_enable_queues(vsi->back, (u32 )(1 << q_vector->v_idx)); } } else { } return (0); } } static int i40e_tx_prepare_vlan_flags(struct sk_buff *skb , struct i40e_ring *tx_ring , u32 *flags ) { __be16 protocol ; u32 tx_flags ; struct vlan_hdr *vhdr ; struct vlan_hdr _vhdr ; void *tmp ; __u16 tmp___0 ; { protocol = skb->protocol; tx_flags = 0U; if (((int )skb->vlan_tci & 4096) != 0) { tx_flags = tx_flags | (u32 )(((int )skb->vlan_tci & -4097) << 16); tx_flags = tx_flags | 2U; } else if ((unsigned int )protocol == 129U) { { tmp = skb_header_pointer((struct sk_buff const *)skb, 14, 4, (void *)(& _vhdr)); vhdr = (struct vlan_hdr *)tmp; } if ((unsigned long )vhdr == (unsigned long )((struct vlan_hdr *)0)) { return (-22); } else { } { protocol = vhdr->h_vlan_encapsulated_proto; tmp___0 = __fswab16((int )vhdr->h_vlan_TCI); tx_flags = tx_flags | (u32 )((int )tmp___0 << 16); tx_flags = tx_flags | 4U; } } else { } *flags = tx_flags; return (0); } } static int i40e_tso(struct i40e_ring *tx_ring , struct sk_buff *skb , u32 tx_flags , __be16 protocol , u8 *hdr_len , u64 *cd_type_cmd_tso_mss , u32 *cd_tunneling ) { u32 cd_cmd ; u32 cd_tso_len ; u32 cd_mss ; struct ipv6hdr *ipv6h ; struct tcphdr *tcph ; struct iphdr *iph ; u32 l4len ; int err ; bool tmp ; int tmp___0 ; struct iphdr *tmp___1 ; struct iphdr *tmp___2 ; struct tcphdr *tmp___3 ; struct tcphdr *tmp___4 ; __sum16 tmp___5 ; struct ipv6hdr *tmp___6 ; struct ipv6hdr *tmp___7 ; struct tcphdr *tmp___8 ; struct tcphdr *tmp___9 ; __sum16 tmp___10 ; bool tmp___11 ; unsigned int tmp___12 ; unsigned int tmp___13 ; unsigned char *tmp___14 ; int tmp___15 ; int tmp___16 ; unsigned char *tmp___17 ; { { tmp = skb_is_gso((struct sk_buff const *)skb); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (0); } else { } { err = skb_cow_head(skb, 0U); } if (err < 0) { return (err); } else { } if ((unsigned int )protocol == 8U) { if ((unsigned int )*((unsigned char *)skb + 146UL) != 0U) { { tmp___1 = inner_ip_hdr((struct sk_buff const *)skb); iph = tmp___1; } } else { { tmp___2 = ip_hdr((struct sk_buff const *)skb); iph = tmp___2; } } if ((unsigned int )*((unsigned char *)skb + 146UL) != 0U) { { tmp___3 = inner_tcp_hdr((struct sk_buff const *)skb); tcph = tmp___3; } } else { { tmp___4 = tcp_hdr((struct sk_buff const *)skb); tcph = tmp___4; } } { iph->tot_len = 0U; iph->check = 0U; tmp___5 = csum_tcpudp_magic(iph->saddr, iph->daddr, 0, 6, 0U); tcph->check = ~ ((int )tmp___5); } } else { { tmp___11 = skb_is_gso_v6((struct sk_buff const *)skb); } if ((int )tmp___11) { if ((unsigned int )*((unsigned char *)skb + 146UL) != 0U) { { tmp___6 = inner_ipv6_hdr((struct sk_buff const *)skb); ipv6h = tmp___6; } } else { { tmp___7 = ipv6_hdr((struct sk_buff const *)skb); ipv6h = tmp___7; } } if ((unsigned int )*((unsigned char *)skb + 146UL) != 0U) { { tmp___8 = inner_tcp_hdr((struct sk_buff const *)skb); tcph = tmp___8; } } else { { tmp___9 = tcp_hdr((struct sk_buff const *)skb); tcph = tmp___9; } } { ipv6h->payload_len = 0U; tmp___10 = csum_ipv6_magic((struct in6_addr const *)(& ipv6h->saddr), (struct in6_addr const *)(& ipv6h->daddr), 0U, 6, 0U); tcph->check = ~ ((int )tmp___10); } } else { } } if ((unsigned int )*((unsigned char *)skb + 146UL) != 0U) { { tmp___12 = inner_tcp_hdrlen((struct sk_buff const *)skb); l4len = tmp___12; } } else { { tmp___13 = tcp_hdrlen((struct sk_buff const *)skb); l4len = tmp___13; } } if ((unsigned int )*((unsigned char *)skb + 146UL) != 0U) { { tmp___14 = skb_inner_transport_header((struct sk_buff const *)skb); tmp___16 = (int )((u8 )((long )tmp___14)) - (int )((u8 )((long )skb->data)); } } else { { tmp___15 = skb_transport_offset((struct sk_buff const *)skb); tmp___16 = (u8 )tmp___15; } } { *hdr_len = tmp___16 + (int )((u8 )l4len); cd_cmd = 1U; cd_tso_len = skb->len - (unsigned int )*hdr_len; tmp___17 = skb_end_pointer((struct sk_buff const *)skb); cd_mss = (u32 )((struct skb_shared_info *)tmp___17)->gso_size; *cd_type_cmd_tso_mss = *cd_type_cmd_tso_mss | ((((unsigned long long )cd_cmd << 4) | ((unsigned long long )cd_tso_len << 30)) | ((unsigned long long )cd_mss << 50)); } return (1); } } static void i40e_tx_enable_csum(struct sk_buff *skb , u32 tx_flags , u32 *td_cmd , u32 *td_offset , struct i40e_ring *tx_ring , u32 *cd_tunneling ) { struct ipv6hdr *this_ipv6_hdr ; unsigned int this_tcp_hdrlen ; struct iphdr *this_ip_hdr ; u32 network_hdr_len ; u8 l4_hdr ; struct iphdr *tmp ; struct iphdr *tmp___0 ; u32 tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; { l4_hdr = 0U; if ((unsigned int )*((unsigned char *)skb + 146UL) != 0U) { { network_hdr_len = skb_inner_network_header_len((struct sk_buff const *)skb); this_ip_hdr = inner_ip_hdr((struct sk_buff const *)skb); this_ipv6_hdr = inner_ipv6_hdr((struct sk_buff const *)skb); this_tcp_hdrlen = inner_tcp_hdrlen((struct sk_buff const *)skb); } if ((tx_flags & 16U) != 0U) { if ((tx_flags & 8U) != 0U) { { *cd_tunneling = *cd_tunneling | 3U; tmp = ip_hdr((struct sk_buff const *)skb); tmp->check = 0U; } } else { *cd_tunneling = *cd_tunneling | 2U; } } else if ((tx_flags & 32U) != 0U) { if ((tx_flags & 8U) != 0U) { { *cd_tunneling = *cd_tunneling | 1U; tmp___0 = ip_hdr((struct sk_buff const *)skb); tmp___0->check = 0U; } } else { *cd_tunneling = *cd_tunneling | 2U; } } else { } { tmp___1 = skb_network_header_len((struct sk_buff const *)skb); tmp___2 = skb_inner_network_offset((struct sk_buff const *)skb); tmp___3 = skb_transport_offset((struct sk_buff const *)skb); *cd_tunneling = (*cd_tunneling | ((tmp___1 & 4294966780U) | (u32 )(((tmp___2 - tmp___3) >> 1) << 12))) | 512U; } } else { { network_hdr_len = skb_network_header_len((struct sk_buff const *)skb); this_ip_hdr = ip_hdr((struct sk_buff const *)skb); this_ipv6_hdr = ipv6_hdr((struct sk_buff const *)skb); this_tcp_hdrlen = tcp_hdrlen((struct sk_buff const *)skb); } } if ((tx_flags & 16U) != 0U) { l4_hdr = this_ip_hdr->protocol; if ((tx_flags & 8U) != 0U) { *td_cmd = *td_cmd | 96U; this_ip_hdr->check = 0U; } else { *td_cmd = *td_cmd | 64U; } *td_offset = (network_hdr_len >> 2) << 7; } else if ((tx_flags & 32U) != 0U) { l4_hdr = this_ipv6_hdr->nexthdr; *td_cmd = *td_cmd | 32U; *td_offset = (network_hdr_len >> 2) << 7; } else { } { tmp___4 = skb_network_offset((struct sk_buff const *)skb); *td_offset = *td_offset | (u32 )(tmp___4 >> 1); } { if ((int )l4_hdr == 6) { goto case_6; } else { } if ((int )l4_hdr == 132) { goto case_132; } else { } if ((int )l4_hdr == 17) { goto case_17; } else { } goto switch_default; case_6: /* CIL Label */ *td_cmd = *td_cmd | 256U; *td_offset = *td_offset | ((this_tcp_hdrlen >> 2) << 14); goto ldv_57656; case_132: /* CIL Label */ *td_cmd = *td_cmd | 512U; *td_offset = *td_offset | 49152U; goto ldv_57656; case_17: /* CIL Label */ *td_cmd = *td_cmd | 768U; *td_offset = *td_offset | 32768U; goto ldv_57656; switch_default: /* CIL Label */ ; goto ldv_57656; switch_break: /* CIL Label */ ; } ldv_57656: ; return; } } static void i40e_create_tx_ctx(struct i40e_ring *tx_ring , u64 const cd_type_cmd_tso_mss , u32 const cd_tunneling , u32 const cd_l2tag2 ) { struct i40e_tx_context_desc *context_desc ; int i ; { i = (int )tx_ring->next_to_use; if (((unsigned long long )cd_type_cmd_tso_mss == 1ULL && (unsigned int )cd_tunneling == 0U) && (unsigned int )cd_l2tag2 == 0U) { return; } else { } context_desc = (struct i40e_tx_context_desc *)tx_ring->desc + (unsigned long )i; i = i + 1; tx_ring->next_to_use = i < (int )tx_ring->count ? (u16 )i : 0U; context_desc->tunneling_params = cd_tunneling; context_desc->l2tag2 = (unsigned short )cd_l2tag2; context_desc->rsvd = 0U; context_desc->type_cmd_tso_mss = cd_type_cmd_tso_mss; return; } } static void i40e_tx_map(struct i40e_ring *tx_ring , struct sk_buff *skb , struct i40e_tx_buffer *first , u32 tx_flags , u8 const hdr_len , u32 td_cmd , u32 td_offset ) { unsigned int data_len ; unsigned int size ; unsigned int tmp ; struct skb_frag_struct *frag ; struct i40e_tx_buffer *tx_bi ; struct i40e_tx_desc *tx_desc ; u16 i ; u32 td_tag ; dma_addr_t dma ; u16 gso_segs ; unsigned char *tmp___0 ; unsigned char *tmp___1 ; int tmp___2 ; long tmp___3 ; long tmp___4 ; __le64 tmp___5 ; __le64 tmp___6 ; struct netdev_queue *tmp___7 ; { { data_len = skb->data_len; tmp = skb_headlen((struct sk_buff const *)skb); size = tmp; i = tx_ring->next_to_use; td_tag = 0U; } if ((tx_flags & 2U) != 0U) { td_cmd = td_cmd | 8U; td_tag = tx_flags >> 16; } else { } if ((tx_flags & 136U) != 0U) { { tmp___0 = skb_end_pointer((struct sk_buff const *)skb); gso_segs = ((struct skb_shared_info *)tmp___0)->gso_segs; } } else { gso_segs = 1U; } { first->bytecount = (skb->len - (unsigned int )hdr_len) + (unsigned int )((int )gso_segs * (int )hdr_len); first->gso_segs = gso_segs; first->__annonCompField108.skb = skb; first->tx_flags = tx_flags; dma = dma_map_single_attrs(tx_ring->dev, (void *)skb->data, (size_t )size, 1, (struct dma_attrs *)0); tx_desc = (struct i40e_tx_desc *)tx_ring->desc + (unsigned long )i; tx_bi = first; tmp___1 = skb_end_pointer((struct sk_buff const *)skb); frag = (struct skb_frag_struct *)(& ((struct skb_shared_info *)tmp___1)->frags); } ldv_57691: { tmp___2 = dma_mapping_error(tx_ring->dev, dma); } if (tmp___2 != 0) { goto dma_error; } else { } tx_bi->len = size; tx_bi->dma = dma; tx_desc->buffer_addr = dma; goto ldv_57688; ldv_57687: { tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, 8192U, td_tag); tx_desc = tx_desc + 1; i = (u16 )((int )i + 1); } if ((int )i == (int )tx_ring->count) { tx_desc = (struct i40e_tx_desc *)tx_ring->desc; i = 0U; } else { } dma = dma + 8192ULL; size = size - 8192U; tx_desc->buffer_addr = dma; ldv_57688: { tmp___3 = ldv__builtin_expect(size > 8192U, 0L); } if (tmp___3 != 0L) { goto ldv_57687; } else { } { tmp___4 = ldv__builtin_expect(data_len == 0U, 1L); } if (tmp___4 != 0L) { goto ldv_57690; } else { } { tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, size, td_tag); tx_desc = tx_desc + 1; i = (u16 )((int )i + 1); } if ((int )i == (int )tx_ring->count) { tx_desc = (struct i40e_tx_desc *)tx_ring->desc; i = 0U; } else { } { size = skb_frag_size((skb_frag_t const *)frag); data_len = data_len - size; dma = skb_frag_dma_map(tx_ring->dev, (skb_frag_t const *)frag, 0UL, (size_t )size, 1); tx_bi = tx_ring->__annonCompField109.tx_bi + (unsigned long )i; frag = frag + 1; } goto ldv_57691; ldv_57690: ; if ((((int )i & 3) != 3 && (unsigned long )first <= (unsigned long )(tx_ring->__annonCompField109.tx_bi + (unsigned long )i)) && (unsigned long )first >= (unsigned long )(tx_ring->__annonCompField109.tx_bi + (unsigned long )((int )i & -4))) { { tmp___5 = build_ctob(td_cmd, td_offset, size, td_tag); tx_desc->cmd_type_offset_bsz = tmp___5 | 16ULL; } } else { { tmp___6 = build_ctob(td_cmd, td_offset, size, td_tag); tx_desc->cmd_type_offset_bsz = tmp___6 | 48ULL; } } { tmp___7 = netdev_get_tx_queue((struct net_device const *)tx_ring->netdev, (unsigned int )tx_ring->queue_index); netdev_tx_sent_queue(tmp___7, first->bytecount); first->time_stamp = jiffies; __asm__ volatile ("sfence": : : "memory"); first->next_to_watch = tx_desc; i = (u16 )((int )i + 1); } if ((int )i == (int )tx_ring->count) { i = 0U; } else { } { tx_ring->next_to_use = i; writel((unsigned int )i, (void volatile *)tx_ring->tail); } return; dma_error: { _dev_info((struct device const *)tx_ring->dev, "TX DMA map failed\n"); } ldv_57693: { tx_bi = tx_ring->__annonCompField109.tx_bi + (unsigned long )i; i40e_unmap_and_free_tx_resource(tx_ring, tx_bi); } if ((unsigned long )tx_bi == (unsigned long )first) { goto ldv_57692; } else { } if ((unsigned int )i == 0U) { i = tx_ring->count; } else { } i = (u16 )((int )i - 1); goto ldv_57693; ldv_57692: tx_ring->next_to_use = i; return; } } __inline static int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring , int size ) { long tmp ; { { netif_stop_subqueue(tx_ring->netdev, (int )tx_ring->queue_index); __asm__ volatile ("mfence": : : "memory"); tmp = ldv__builtin_expect(((((int )tx_ring->next_to_clean <= (int )tx_ring->next_to_use ? (int )tx_ring->count : 0) + (int )tx_ring->next_to_clean) - (int )tx_ring->next_to_use) + -1 < size, 1L); } if (tmp != 0L) { return (-16); } else { } { netif_start_subqueue(tx_ring->netdev, (int )tx_ring->queue_index); tx_ring->__annonCompField110.tx_stats.restart_queue = tx_ring->__annonCompField110.tx_stats.restart_queue + 1ULL; } return (0); } } static int i40e_maybe_stop_tx(struct i40e_ring *tx_ring , int size ) { long tmp ; int tmp___0 ; { { tmp = ldv__builtin_expect(((((int )tx_ring->next_to_clean <= (int )tx_ring->next_to_use ? (int )tx_ring->count : 0) + (int )tx_ring->next_to_clean) - (int )tx_ring->next_to_use) + -1 >= size, 1L); } if (tmp != 0L) { return (0); } else { } { tmp___0 = __i40e_maybe_stop_tx(tx_ring, size); } return (tmp___0); } } static int i40e_xmit_descriptor_count(struct sk_buff *skb , struct i40e_ring *tx_ring ) { unsigned int f ; int count ; unsigned char *tmp ; unsigned char *tmp___0 ; unsigned int tmp___1 ; int tmp___2 ; { count = 0; f = 0U; goto ldv_57709; ldv_57708: { tmp = skb_end_pointer((struct sk_buff const *)skb); count = (int )((__u32 )count + (((struct skb_shared_info *)tmp)->frags[f].size + 8191U) / 8192U); f = f + 1U; } ldv_57709: { tmp___0 = skb_end_pointer((struct sk_buff const *)skb); } if (f < (unsigned int )((struct skb_shared_info *)tmp___0)->nr_frags) { goto ldv_57708; } else { } { tmp___1 = skb_headlen((struct sk_buff const *)skb); count = (int )((unsigned int )count + (tmp___1 + 8191U) / 8192U); tmp___2 = i40e_maybe_stop_tx(tx_ring, count + 5); } if (tmp___2 != 0) { tx_ring->__annonCompField110.tx_stats.tx_busy = tx_ring->__annonCompField110.tx_stats.tx_busy + 1ULL; return (0); } else { } return (count); } } static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb , struct i40e_ring *tx_ring ) { u64 cd_type_cmd_tso_mss ; u32 cd_tunneling ; u32 cd_l2tag2 ; struct i40e_tx_buffer *first ; u32 td_offset ; u32 tx_flags ; __be16 protocol ; u32 td_cmd ; u8 hdr_len ; int tso ; int tmp ; int tmp___0 ; { { cd_type_cmd_tso_mss = 1ULL; cd_tunneling = 0U; cd_l2tag2 = 0U; td_offset = 0U; tx_flags = 0U; td_cmd = 0U; hdr_len = 0U; tmp = i40e_xmit_descriptor_count(skb, tx_ring); } if (tmp == 0) { return (16); } else { } { tmp___0 = i40e_tx_prepare_vlan_flags(skb, tx_ring, & tx_flags); } if (tmp___0 != 0) { goto out_drop; } else { } { protocol = vlan_get_protocol(skb); first = tx_ring->__annonCompField109.tx_bi + (unsigned long )tx_ring->next_to_use; } if ((unsigned int )protocol == 8U) { tx_flags = tx_flags | 16U; } else if ((unsigned int )protocol == 56710U) { tx_flags = tx_flags | 32U; } else { } { tso = i40e_tso(tx_ring, skb, tx_flags, (int )protocol, & hdr_len, & cd_type_cmd_tso_mss, & cd_tunneling); } if (tso < 0) { goto out_drop; } else if (tso != 0) { tx_flags = tx_flags | 8U; } else { } { skb_tx_timestamp(skb); td_cmd = td_cmd | 4U; } if ((unsigned int )*((unsigned char *)skb + 145UL) == 6U) { { tx_flags = tx_flags | 1U; i40e_tx_enable_csum(skb, tx_flags, & td_cmd, & td_offset, tx_ring, & cd_tunneling); } } else { } { i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss, cd_tunneling, cd_l2tag2); i40e_tx_map(tx_ring, skb, first, tx_flags, (int )hdr_len, td_cmd, td_offset); i40e_maybe_stop_tx(tx_ring, 21); } return (0); out_drop: { dev_kfree_skb_any(skb); } return (0); } } netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb , struct net_device *netdev ) { struct i40evf_adapter *adapter ; void *tmp ; struct i40e_ring *tx_ring ; int tmp___0 ; long tmp___1 ; netdev_tx_t tmp___2 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct i40evf_adapter *)tmp; tx_ring = adapter->tx_rings[(int )skb->queue_mapping]; tmp___1 = ldv__builtin_expect(skb->len <= 16U, 0L); } if (tmp___1 != 0L) { { tmp___0 = skb_pad(skb, (int )(17U - skb->len)); } if (tmp___0 != 0) { return (0); } else { } { skb->len = 17U; skb_set_tail_pointer(skb, 17); } } else { } { tmp___2 = i40e_xmit_frame_ring(skb, tx_ring); } return (tmp___2); } } __inline static void atomic_inc(atomic_t *v ) { { { ldv_linux_usb_dev_atomic_inc(v); } return; } } __inline static struct page *alloc_pages(gfp_t flags , unsigned int order ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return ((struct page *)tmp); } } static struct sk_buff *ldv___netdev_alloc_skb_105(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return ((struct sk_buff *)tmp); } } static int ldv_pskb_expand_head_106(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return ((int )((long )tmp)); } } void i40evf_fill_default_direct_cmd_desc(struct i40e_aq_desc *desc , u16 opcode ) ; i40e_status i40evf_asq_send_command(struct i40e_hw *hw , struct i40e_aq_desc *desc , void *buff , u16 buff_size , struct i40e_asq_cmd_details *cmd_details ) ; void i40evf_debug_aq(struct i40e_hw *hw , enum i40e_debug_mask mask , void *desc , void *buffer , u16 buf_len ) ; bool i40evf_check_asq_alive(struct i40e_hw *hw ) ; i40e_status i40evf_aq_queue_shutdown(struct i40e_hw *hw , bool unloading ) ; i40e_status i40e_vf_reset(struct i40e_hw *hw ) ; i40e_status i40e_set_mac_type(struct i40e_hw *hw ) { i40e_status status ; { status = 0; if ((unsigned int )hw->vendor_id == 32902U) { { if ((int )hw->device_id == 5490) { goto case_5490; } else { } if ((int )hw->device_id == 5492) { goto case_5492; } else { } if ((int )hw->device_id == 5503) { goto case_5503; } else { } if ((int )hw->device_id == 5504) { goto case_5504; } else { } if ((int )hw->device_id == 5505) { goto case_5505; } else { } if ((int )hw->device_id == 5507) { goto case_5507; } else { } if ((int )hw->device_id == 5508) { goto case_5508; } else { } if ((int )hw->device_id == 5509) { goto case_5509; } else { } if ((int )hw->device_id == 5510) { goto case_5510; } else { } if ((int )hw->device_id == 5452) { goto case_5452; } else { } if ((int )hw->device_id == 5489) { goto case_5489; } else { } goto switch_default; case_5490: /* CIL Label */ ; case_5492: /* CIL Label */ ; case_5503: /* CIL Label */ ; case_5504: /* CIL Label */ ; case_5505: /* CIL Label */ ; case_5507: /* CIL Label */ ; case_5508: /* CIL Label */ ; case_5509: /* CIL Label */ ; case_5510: /* CIL Label */ hw->mac.type = 2; goto ldv_53419; case_5452: /* CIL Label */ ; case_5489: /* CIL Label */ hw->mac.type = 3; goto ldv_53419; switch_default: /* CIL Label */ hw->mac.type = 4; goto ldv_53419; switch_break: /* CIL Label */ ; } ldv_53419: ; } else { status = -11; } return (status); } } void i40evf_debug_aq(struct i40e_hw *hw , enum i40e_debug_mask mask , void *desc , void *buffer , u16 buf_len ) { struct i40e_aq_desc *aq_desc ; u16 len ; u8 *aq_buffer ; u32 data[4U] ; u32 i ; { aq_desc = (struct i40e_aq_desc *)desc; len = aq_desc->datalen; aq_buffer = (u8 *)buffer; i = 0U; if (((unsigned int )mask & hw->debug_mask) == 0U || (unsigned long )desc == (unsigned long )((void *)0)) { return; } else { } { i40evf_debug_d((void *)hw, (u32 )mask, (char *)"AQ CMD: opcode 0x%04X, flags 0x%04X, datalen 0x%04X, retval 0x%04X\n", (int )aq_desc->opcode, (int )aq_desc->flags, (int )aq_desc->datalen, (int )aq_desc->retval); i40evf_debug_d((void *)hw, (u32 )mask, (char *)"\tcookie (h,l) 0x%08X 0x%08X\n", aq_desc->cookie_high, aq_desc->cookie_low); i40evf_debug_d((void *)hw, (u32 )mask, (char *)"\tparam (0,1) 0x%08X 0x%08X\n", aq_desc->params.internal.param0, aq_desc->params.internal.param1); i40evf_debug_d((void *)hw, (u32 )mask, (char *)"\taddr (h,l) 0x%08X 0x%08X\n", aq_desc->params.external.addr_high, aq_desc->params.external.addr_low); } if ((unsigned long )buffer != (unsigned long )((void *)0) && (unsigned int )aq_desc->datalen != 0U) { { __memset((void *)(& data), 0, 16UL); i40evf_debug_d((void *)hw, (u32 )mask, (char *)"AQ CMD Buffer:\n"); } if ((int )buf_len < (int )len) { len = buf_len; } else { } i = 0U; goto ldv_53436; ldv_53435: data[(i & 15U) / 4U] = data[(i & 15U) / 4U] | ((unsigned int )*(aq_buffer + (unsigned long )i) << (int )((i & 3U) * 8U)); if ((i & 15U) == 15U) { { i40evf_debug_d((void *)hw, (u32 )mask, (char *)"\t0x%04X %08X %08X %08X %08X\n", i - 15U, data[0], data[1], data[2], data[3]); __memset((void *)(& data), 0, 16UL); } } else { } i = i + 1U; ldv_53436: ; if (i < (u32 )len) { goto ldv_53435; } else { } if ((i & 15U) != 0U) { { i40evf_debug_d((void *)hw, (u32 )mask, (char *)"\t0x%04X %08X %08X %08X %08X\n", i & 4294967280U, data[0], data[1], data[2], data[3]); } } else { } } else { } return; } } bool i40evf_check_asq_alive(struct i40e_hw *hw ) { unsigned int tmp ; { if (hw->aq.asq.len != 0U) { { tmp = readl((void const volatile *)hw->hw_addr + (unsigned long )hw->aq.asq.len); } return ((int )tmp < 0); } else { return (0); } } } i40e_status i40evf_aq_queue_shutdown(struct i40e_hw *hw , bool unloading ) { struct i40e_aq_desc desc ; struct i40e_aqc_queue_shutdown *cmd ; i40e_status status ; { { cmd = (struct i40e_aqc_queue_shutdown *)(& desc.params.raw); i40evf_fill_default_direct_cmd_desc(& desc, 3); } if ((int )unloading) { cmd->driver_unloading = 1U; } else { } { status = i40evf_asq_send_command(hw, & desc, (void *)0, 0, (struct i40e_asq_cmd_details *)0); } return (status); } } struct i40e_rx_ptype_decoded i40evf_ptype_lookup[256U] = { {0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {1U, 1U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 1U}, {2U, 1U, 0U, 0U, 0U, 0U, 0U, 0U, 5U, 1U}, {3U, 1U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 1U}, {4U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {5U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {6U, 1U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 1U}, {7U, 1U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 1U}, {8U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {9U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {10U, 1U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 1U}, {11U, 1U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {12U, 1U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 2U}, {13U, 1U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 2U}, {14U, 1U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 2U}, {15U, 1U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 2U}, {16U, 1U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 2U}, {17U, 1U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 2U}, {18U, 1U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 2U}, {19U, 1U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 2U}, {20U, 1U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 2U}, {21U, 1U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 2U}, {22U, 1U, 1U, 0U, 1U, 0U, 0U, 0U, 0U, 2U}, {23U, 1U, 1U, 0U, 0U, 0U, 0U, 0U, 0U, 2U}, {24U, 1U, 1U, 0U, 0U, 0U, 0U, 0U, 1U, 3U}, {25U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {26U, 1U, 1U, 0U, 0U, 0U, 0U, 0U, 2U, 3U}, {27U, 1U, 1U, 0U, 0U, 0U, 0U, 0U, 3U, 3U}, {28U, 1U, 1U, 0U, 0U, 0U, 0U, 0U, 4U, 3U}, {29U, 1U, 1U, 0U, 0U, 1U, 1U, 1U, 0U, 2U}, {30U, 1U, 1U, 0U, 0U, 1U, 1U, 0U, 0U, 2U}, {31U, 1U, 1U, 0U, 0U, 1U, 1U, 0U, 1U, 3U}, {32U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {33U, 1U, 1U, 0U, 0U, 1U, 1U, 0U, 2U, 3U}, {34U, 1U, 1U, 0U, 0U, 1U, 1U, 0U, 3U, 3U}, {35U, 1U, 1U, 0U, 0U, 1U, 1U, 0U, 4U, 3U}, {36U, 1U, 1U, 0U, 0U, 1U, 2U, 1U, 0U, 2U}, {37U, 1U, 1U, 0U, 0U, 1U, 2U, 0U, 0U, 2U}, {38U, 1U, 1U, 0U, 0U, 1U, 2U, 0U, 1U, 3U}, {39U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {40U, 1U, 1U, 0U, 0U, 1U, 2U, 0U, 2U, 3U}, {41U, 1U, 1U, 0U, 0U, 1U, 2U, 0U, 3U, 3U}, {42U, 1U, 1U, 0U, 0U, 1U, 2U, 0U, 4U, 3U}, {43U, 1U, 1U, 0U, 0U, 2U, 0U, 0U, 0U, 2U}, {44U, 1U, 1U, 0U, 0U, 2U, 1U, 1U, 0U, 2U}, {45U, 1U, 1U, 0U, 0U, 2U, 1U, 0U, 0U, 2U}, {46U, 1U, 1U, 0U, 0U, 2U, 1U, 0U, 1U, 3U}, {47U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {48U, 1U, 1U, 0U, 0U, 2U, 1U, 0U, 2U, 3U}, {49U, 1U, 1U, 0U, 0U, 2U, 1U, 0U, 3U, 3U}, {50U, 1U, 1U, 0U, 0U, 2U, 1U, 0U, 4U, 3U}, {51U, 1U, 1U, 0U, 0U, 2U, 2U, 1U, 0U, 2U}, {52U, 1U, 1U, 0U, 0U, 2U, 2U, 0U, 0U, 2U}, {53U, 1U, 1U, 0U, 0U, 2U, 2U, 0U, 1U, 3U}, {54U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {55U, 1U, 1U, 0U, 0U, 2U, 2U, 0U, 2U, 3U}, {56U, 1U, 1U, 0U, 0U, 2U, 2U, 0U, 3U, 3U}, {57U, 1U, 1U, 0U, 0U, 2U, 2U, 0U, 4U, 3U}, {58U, 1U, 1U, 0U, 0U, 3U, 0U, 0U, 0U, 2U}, {59U, 1U, 1U, 0U, 0U, 3U, 1U, 1U, 0U, 2U}, {60U, 1U, 1U, 0U, 0U, 3U, 1U, 0U, 0U, 2U}, {61U, 1U, 1U, 0U, 0U, 3U, 1U, 0U, 1U, 3U}, {62U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {63U, 1U, 1U, 0U, 0U, 3U, 1U, 0U, 2U, 3U}, {64U, 1U, 1U, 0U, 0U, 3U, 1U, 0U, 3U, 3U}, {65U, 1U, 1U, 0U, 0U, 3U, 1U, 0U, 4U, 3U}, {66U, 1U, 1U, 0U, 0U, 3U, 2U, 1U, 0U, 2U}, {67U, 1U, 1U, 0U, 0U, 3U, 2U, 0U, 0U, 2U}, {68U, 1U, 1U, 0U, 0U, 3U, 2U, 0U, 1U, 3U}, {69U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {70U, 1U, 1U, 0U, 0U, 3U, 2U, 0U, 2U, 3U}, {71U, 1U, 1U, 0U, 0U, 3U, 2U, 0U, 3U, 3U}, {72U, 1U, 1U, 0U, 0U, 3U, 2U, 0U, 4U, 3U}, {73U, 1U, 1U, 0U, 0U, 4U, 0U, 0U, 0U, 2U}, {74U, 1U, 1U, 0U, 0U, 4U, 1U, 1U, 0U, 2U}, {75U, 1U, 1U, 0U, 0U, 4U, 1U, 0U, 0U, 2U}, {76U, 1U, 1U, 0U, 0U, 4U, 1U, 0U, 1U, 3U}, {77U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {78U, 1U, 1U, 0U, 0U, 4U, 1U, 0U, 2U, 3U}, {79U, 1U, 1U, 0U, 0U, 4U, 1U, 0U, 3U, 3U}, {80U, 1U, 1U, 0U, 0U, 4U, 1U, 0U, 4U, 3U}, {81U, 1U, 1U, 0U, 0U, 4U, 2U, 1U, 0U, 2U}, {82U, 1U, 1U, 0U, 0U, 4U, 2U, 0U, 0U, 2U}, {83U, 1U, 1U, 0U, 0U, 4U, 2U, 0U, 1U, 3U}, {84U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {85U, 1U, 1U, 0U, 0U, 4U, 2U, 0U, 2U, 3U}, {86U, 1U, 1U, 0U, 0U, 4U, 2U, 0U, 3U, 3U}, {87U, 1U, 1U, 0U, 0U, 4U, 2U, 0U, 4U, 3U}, {88U, 1U, 1U, 1U, 1U, 0U, 0U, 0U, 0U, 2U}, {89U, 1U, 1U, 1U, 0U, 0U, 0U, 0U, 0U, 2U}, {90U, 1U, 1U, 1U, 0U, 0U, 0U, 0U, 1U, 2U}, {91U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {92U, 1U, 1U, 1U, 0U, 0U, 0U, 0U, 2U, 3U}, {93U, 1U, 1U, 1U, 0U, 0U, 0U, 0U, 3U, 3U}, {94U, 1U, 1U, 1U, 0U, 0U, 0U, 0U, 4U, 3U}, {95U, 1U, 1U, 1U, 0U, 1U, 1U, 1U, 0U, 2U}, {96U, 1U, 1U, 1U, 0U, 1U, 1U, 0U, 0U, 2U}, {97U, 1U, 1U, 1U, 0U, 1U, 1U, 0U, 1U, 3U}, {98U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {99U, 1U, 1U, 1U, 0U, 1U, 1U, 0U, 2U, 3U}, {100U, 1U, 1U, 1U, 0U, 1U, 1U, 0U, 3U, 3U}, {101U, 1U, 1U, 1U, 0U, 1U, 1U, 0U, 4U, 3U}, {102U, 1U, 1U, 1U, 0U, 1U, 2U, 1U, 0U, 2U}, {103U, 1U, 1U, 1U, 0U, 1U, 2U, 0U, 0U, 2U}, {104U, 1U, 1U, 1U, 0U, 1U, 2U, 0U, 1U, 3U}, {105U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {106U, 1U, 1U, 1U, 0U, 1U, 2U, 0U, 2U, 3U}, {107U, 1U, 1U, 1U, 0U, 1U, 2U, 0U, 3U, 3U}, {108U, 1U, 1U, 1U, 0U, 1U, 2U, 0U, 4U, 3U}, {109U, 1U, 1U, 1U, 0U, 2U, 0U, 0U, 0U, 2U}, {110U, 1U, 1U, 1U, 0U, 2U, 1U, 1U, 0U, 2U}, {111U, 1U, 1U, 1U, 0U, 2U, 1U, 0U, 0U, 2U}, {112U, 1U, 1U, 1U, 0U, 2U, 1U, 0U, 1U, 3U}, {113U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {114U, 1U, 1U, 1U, 0U, 2U, 1U, 0U, 2U, 3U}, {115U, 1U, 1U, 1U, 0U, 2U, 1U, 0U, 3U, 3U}, {116U, 1U, 1U, 1U, 0U, 2U, 1U, 0U, 4U, 3U}, {117U, 1U, 1U, 1U, 0U, 2U, 2U, 1U, 0U, 2U}, {118U, 1U, 1U, 1U, 0U, 2U, 2U, 0U, 0U, 2U}, {119U, 1U, 1U, 1U, 0U, 2U, 2U, 0U, 1U, 3U}, {120U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {121U, 1U, 1U, 1U, 0U, 2U, 2U, 0U, 2U, 3U}, {122U, 1U, 1U, 1U, 0U, 2U, 2U, 0U, 3U, 3U}, {123U, 1U, 1U, 1U, 0U, 2U, 2U, 0U, 4U, 3U}, {124U, 1U, 1U, 1U, 0U, 3U, 0U, 0U, 0U, 2U}, {125U, 1U, 1U, 1U, 0U, 3U, 1U, 1U, 0U, 2U}, {126U, 1U, 1U, 1U, 0U, 3U, 1U, 0U, 0U, 2U}, {127U, 1U, 1U, 1U, 0U, 3U, 1U, 0U, 1U, 3U}, {128U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {129U, 1U, 1U, 1U, 0U, 3U, 1U, 0U, 2U, 3U}, {130U, 1U, 1U, 1U, 0U, 3U, 1U, 0U, 3U, 3U}, {131U, 1U, 1U, 1U, 0U, 3U, 1U, 0U, 4U, 3U}, {132U, 1U, 1U, 1U, 0U, 3U, 2U, 1U, 0U, 2U}, {133U, 1U, 1U, 1U, 0U, 3U, 2U, 0U, 0U, 2U}, {134U, 1U, 1U, 1U, 0U, 3U, 2U, 0U, 1U, 3U}, {135U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {136U, 1U, 1U, 1U, 0U, 3U, 2U, 0U, 2U, 3U}, {137U, 1U, 1U, 1U, 0U, 3U, 2U, 0U, 3U, 3U}, {138U, 1U, 1U, 1U, 0U, 3U, 2U, 0U, 4U, 3U}, {139U, 1U, 1U, 1U, 0U, 4U, 0U, 0U, 0U, 2U}, {140U, 1U, 1U, 1U, 0U, 4U, 1U, 1U, 0U, 2U}, {141U, 1U, 1U, 1U, 0U, 4U, 1U, 0U, 0U, 2U}, {142U, 1U, 1U, 1U, 0U, 4U, 1U, 0U, 1U, 3U}, {143U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {144U, 1U, 1U, 1U, 0U, 4U, 1U, 0U, 2U, 3U}, {145U, 1U, 1U, 1U, 0U, 4U, 1U, 0U, 3U, 3U}, {146U, 1U, 1U, 1U, 0U, 4U, 1U, 0U, 4U, 3U}, {147U, 1U, 1U, 1U, 0U, 4U, 2U, 1U, 0U, 2U}, {148U, 1U, 1U, 1U, 0U, 4U, 2U, 0U, 0U, 2U}, {149U, 1U, 1U, 1U, 0U, 4U, 2U, 0U, 1U, 3U}, {150U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {151U, 1U, 1U, 1U, 0U, 4U, 2U, 0U, 2U, 3U}, {152U, 1U, 1U, 1U, 0U, 4U, 2U, 0U, 3U, 3U}, {153U, 1U, 1U, 1U, 0U, 4U, 2U, 0U, 4U, 3U}, {154U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {155U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {156U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {157U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {158U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {159U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {160U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {161U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {162U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {163U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {164U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {165U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {166U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {167U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {168U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {169U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {170U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {171U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {172U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {173U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {174U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {175U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {176U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {177U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {178U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {179U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {180U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {181U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {182U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {183U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {184U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {185U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {186U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {187U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {188U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {189U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {190U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {191U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {192U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {193U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {194U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {195U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {196U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {197U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {198U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {199U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {200U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {201U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {202U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {203U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {204U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {205U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {206U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {207U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {208U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {209U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {210U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {211U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {212U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {213U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {214U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {215U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {216U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {217U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {218U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {219U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {220U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {221U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {222U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {223U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {224U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {225U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {226U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {227U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {228U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {229U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {230U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {231U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {232U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {233U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {234U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {235U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {236U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {237U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {238U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {239U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {240U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {241U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {242U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {243U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {244U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {245U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {246U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {247U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {248U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {249U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {250U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {251U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {252U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {253U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {254U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, {255U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}}; i40e_status i40e_aq_send_msg_to_pf(struct i40e_hw *hw , enum i40e_virtchnl_ops v_opcode , i40e_status v_retval , u8 *msg , u16 msglen , struct i40e_asq_cmd_details *cmd_details ) { struct i40e_aq_desc desc ; struct i40e_asq_cmd_details details ; i40e_status status ; { { i40evf_fill_default_direct_cmd_desc(& desc, 2049); desc.flags = (__le16 )((unsigned int )desc.flags | 8192U); desc.cookie_high = (unsigned int )v_opcode; desc.cookie_low = (unsigned int )v_retval; } if ((unsigned int )msglen != 0U) { desc.flags = (__le16 )((unsigned int )desc.flags | 5120U); if ((unsigned int )msglen > 512U) { desc.flags = (__le16 )((unsigned int )desc.flags | 512U); } else { } desc.datalen = msglen; } else { } if ((unsigned long )cmd_details == (unsigned long )((struct i40e_asq_cmd_details *)0)) { { __memset((void *)(& details), 0, 24UL); details.async = 1; cmd_details = & details; } } else { } { status = i40evf_asq_send_command(hw, & desc, (void *)msg, (int )msglen, cmd_details); } return (status); } } void i40e_vf_parse_hw_config(struct i40e_hw *hw , struct i40e_virtchnl_vf_resource *msg ) { struct i40e_virtchnl_vsi_resource *vsi_res ; int i ; { vsi_res = (struct i40e_virtchnl_vsi_resource *)(& msg->vsi_res); hw->dev_caps.num_vsis = (u32 )msg->num_vsis; hw->dev_caps.num_rx_qp = (u32 )msg->num_queue_pairs; hw->dev_caps.num_tx_qp = (u32 )msg->num_queue_pairs; hw->dev_caps.num_msix_vectors_vf = (u32 )msg->max_vectors; hw->dev_caps.dcb = (msg->vf_offload_flags & 1U) != 0U; hw->dev_caps.fcoe = (msg->vf_offload_flags & 4U) != 0U; i = 0; goto ldv_53467; ldv_53466: ; if ((unsigned int )vsi_res->vsi_type == 6U) { { __memcpy((void *)(& hw->mac.perm_addr), (void const *)(& vsi_res->default_mac_addr), 6UL); __memcpy((void *)(& hw->mac.addr), (void const *)(& vsi_res->default_mac_addr), 6UL); } } else { } vsi_res = vsi_res + 1; i = i + 1; ldv_53467: ; if (i < (int )msg->num_vsis) { goto ldv_53466; } else { } return; } } i40e_status i40e_vf_reset(struct i40e_hw *hw ) { i40e_status tmp ; { { tmp = i40e_aq_send_msg_to_pf(hw, 2, 0, (u8 *)0U, 0, (struct i40e_asq_cmd_details *)0); } return (tmp); } } static void ldv_mutex_lock_126(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_128(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_130(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_132(struct mutex *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_mutex_mutex_lock_arq_mutex_of_i40e_adminq_info(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_arq_mutex_of_i40e_adminq_info(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_lock_asq_mutex_of_i40e_adminq_info(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_asq_mutex_of_i40e_adminq_info(struct mutex *lock ) ; extern void __mutex_init(struct mutex * , char const * , struct lock_class_key * ) ; static void ldv_mutex_unlock_127(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_129(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_131(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_133(struct mutex *ldv_func_arg1 ) ; __inline static bool i40e_is_vf(struct i40e_hw *hw ) { { return ((unsigned int )hw->mac.type == 3U); } } void i40evf_resume_aq(struct i40e_hw *hw ) ; static void i40e_adminq_init_regs(struct i40e_hw *hw ) { bool tmp ; { { tmp = i40e_is_vf(hw); } if ((int )tmp) { hw->aq.asq.tail = 33792U; hw->aq.asq.head = 25600U; hw->aq.asq.len = 26624U; hw->aq.asq.bal = 31744U; hw->aq.asq.bah = 30720U; hw->aq.arq.tail = 28672U; hw->aq.arq.head = 29696U; hw->aq.arq.len = 32768U; hw->aq.arq.bal = 27648U; hw->aq.arq.bah = 24576U; } else { hw->aq.asq.tail = 525312U; hw->aq.asq.head = 525056U; hw->aq.asq.len = 524800U; hw->aq.asq.bal = 524288U; hw->aq.asq.bah = 524544U; hw->aq.arq.tail = 525440U; hw->aq.arq.head = 525184U; hw->aq.arq.len = 524928U; hw->aq.arq.bal = 524416U; hw->aq.arq.bah = 524672U; } return; } } static i40e_status i40e_alloc_adminq_asq_ring(struct i40e_hw *hw ) { i40e_status ret_code ; { { ret_code = i40evf_allocate_dma_mem_d(hw, & hw->aq.asq.desc_buf, (u64 )((unsigned long )hw->aq.num_asq_entries * 32UL), 4096U); } if ((int )ret_code != 0) { return (ret_code); } else { } { ret_code = i40evf_allocate_virt_mem_d(hw, & hw->aq.asq.cmd_buf, (u32 )hw->aq.num_asq_entries * 24U); } if ((int )ret_code != 0) { { i40evf_free_dma_mem_d(hw, & hw->aq.asq.desc_buf); } return (ret_code); } else { } return (ret_code); } } static i40e_status i40e_alloc_adminq_arq_ring(struct i40e_hw *hw ) { i40e_status ret_code ; { { ret_code = i40evf_allocate_dma_mem_d(hw, & hw->aq.arq.desc_buf, (u64 )((unsigned long )hw->aq.num_arq_entries * 32UL), 4096U); } return (ret_code); } } static void i40e_free_adminq_asq(struct i40e_hw *hw ) { { { i40evf_free_dma_mem_d(hw, & hw->aq.asq.desc_buf); } return; } } static void i40e_free_adminq_arq(struct i40e_hw *hw ) { { { i40evf_free_dma_mem_d(hw, & hw->aq.arq.desc_buf); } return; } } static i40e_status i40e_alloc_arq_bufs(struct i40e_hw *hw ) { i40e_status ret_code ; struct i40e_aq_desc *desc ; struct i40e_dma_mem *bi ; int i ; { { ret_code = i40evf_allocate_virt_mem_d(hw, & hw->aq.arq.dma_head, (u32 )hw->aq.num_arq_entries * 20U); } if ((int )ret_code != 0) { goto alloc_arq_bufs; } else { } hw->aq.arq.r.arq_bi = (struct i40e_dma_mem *)hw->aq.arq.dma_head.va; i = 0; goto ldv_53468; ldv_53467: { bi = hw->aq.arq.r.arq_bi + (unsigned long )i; ret_code = i40evf_allocate_dma_mem_d(hw, bi, (u64 )hw->aq.arq_buf_size, 4096U); } if ((int )ret_code != 0) { goto unwind_alloc_arq_bufs; } else { } desc = (struct i40e_aq_desc *)hw->aq.arq.desc_buf.va + (unsigned long )i; desc->flags = 4096U; if ((unsigned int )hw->aq.arq_buf_size > 512U) { desc->flags = (__le16 )((unsigned int )desc->flags | 512U); } else { } desc->opcode = 0U; desc->datalen = (unsigned short )bi->size; desc->retval = 0U; desc->cookie_high = 0U; desc->cookie_low = 0U; desc->params.external.addr_high = (unsigned int )(bi->pa >> 32ULL); desc->params.external.addr_low = (unsigned int )bi->pa; desc->params.external.param0 = 0U; desc->params.external.param1 = 0U; i = i + 1; ldv_53468: ; if (i < (int )hw->aq.num_arq_entries) { goto ldv_53467; } else { } alloc_arq_bufs: ; return (ret_code); unwind_alloc_arq_bufs: i = i - 1; goto ldv_53471; ldv_53470: { i40evf_free_dma_mem_d(hw, hw->aq.arq.r.arq_bi + (unsigned long )i); i = i - 1; } ldv_53471: ; if (i >= 0) { goto ldv_53470; } else { } { i40evf_free_virt_mem_d(hw, & hw->aq.arq.dma_head); } return (ret_code); } } static i40e_status i40e_alloc_asq_bufs(struct i40e_hw *hw ) { i40e_status ret_code ; struct i40e_dma_mem *bi ; int i ; { { ret_code = i40evf_allocate_virt_mem_d(hw, & hw->aq.asq.dma_head, (u32 )hw->aq.num_asq_entries * 20U); } if ((int )ret_code != 0) { goto alloc_asq_bufs; } else { } hw->aq.asq.r.asq_bi = (struct i40e_dma_mem *)hw->aq.asq.dma_head.va; i = 0; goto ldv_53482; ldv_53481: { bi = hw->aq.asq.r.asq_bi + (unsigned long )i; ret_code = i40evf_allocate_dma_mem_d(hw, bi, (u64 )hw->aq.asq_buf_size, 4096U); } if ((int )ret_code != 0) { goto unwind_alloc_asq_bufs; } else { } i = i + 1; ldv_53482: ; if (i < (int )hw->aq.num_asq_entries) { goto ldv_53481; } else { } alloc_asq_bufs: ; return (ret_code); unwind_alloc_asq_bufs: i = i - 1; goto ldv_53485; ldv_53484: { i40evf_free_dma_mem_d(hw, hw->aq.asq.r.asq_bi + (unsigned long )i); i = i - 1; } ldv_53485: ; if (i >= 0) { goto ldv_53484; } else { } { i40evf_free_virt_mem_d(hw, & hw->aq.asq.dma_head); } return (ret_code); } } static void i40e_free_arq_bufs(struct i40e_hw *hw ) { int i ; { i = 0; goto ldv_53492; ldv_53491: { i40evf_free_dma_mem_d(hw, hw->aq.arq.r.arq_bi + (unsigned long )i); i = i + 1; } ldv_53492: ; if (i < (int )hw->aq.num_arq_entries) { goto ldv_53491; } else { } { i40evf_free_dma_mem_d(hw, & hw->aq.arq.desc_buf); i40evf_free_virt_mem_d(hw, & hw->aq.arq.dma_head); } return; } } static void i40e_free_asq_bufs(struct i40e_hw *hw ) { int i ; { i = 0; goto ldv_53499; ldv_53498: ; if ((hw->aq.asq.r.asq_bi + (unsigned long )i)->pa != 0ULL) { { i40evf_free_dma_mem_d(hw, hw->aq.asq.r.asq_bi + (unsigned long )i); } } else { } i = i + 1; ldv_53499: ; if (i < (int )hw->aq.num_asq_entries) { goto ldv_53498; } else { } { i40evf_free_virt_mem_d(hw, & hw->aq.asq.cmd_buf); i40evf_free_dma_mem_d(hw, & hw->aq.asq.desc_buf); i40evf_free_virt_mem_d(hw, & hw->aq.asq.dma_head); } return; } } static i40e_status i40e_config_asq_regs(struct i40e_hw *hw ) { i40e_status ret_code ; u32 reg ; { { ret_code = 0; reg = 0U; writel(0U, (void volatile *)hw->hw_addr + (unsigned long )hw->aq.asq.head); writel(0U, (void volatile *)hw->hw_addr + (unsigned long )hw->aq.asq.tail); writel((unsigned int )((long )((int )hw->aq.num_asq_entries) | (-0x7FFFFFFF-1)), (void volatile *)hw->hw_addr + (unsigned long )hw->aq.asq.len); writel((unsigned int )hw->aq.asq.desc_buf.pa, (void volatile *)hw->hw_addr + (unsigned long )hw->aq.asq.bal); writel((unsigned int )(hw->aq.asq.desc_buf.pa >> 32ULL), (void volatile *)hw->hw_addr + (unsigned long )hw->aq.asq.bah); reg = readl((void const volatile *)hw->hw_addr + (unsigned long )hw->aq.asq.bal); } if (reg != (u32 )hw->aq.asq.desc_buf.pa) { ret_code = -53; } else { } return (ret_code); } } static i40e_status i40e_config_arq_regs(struct i40e_hw *hw ) { i40e_status ret_code ; u32 reg ; { { ret_code = 0; reg = 0U; writel(0U, (void volatile *)hw->hw_addr + (unsigned long )hw->aq.arq.head); writel(0U, (void volatile *)hw->hw_addr + (unsigned long )hw->aq.arq.tail); writel((unsigned int )((long )((int )hw->aq.num_arq_entries) | (-0x7FFFFFFF-1)), (void volatile *)hw->hw_addr + (unsigned long )hw->aq.arq.len); writel((unsigned int )hw->aq.arq.desc_buf.pa, (void volatile *)hw->hw_addr + (unsigned long )hw->aq.arq.bal); writel((unsigned int )(hw->aq.arq.desc_buf.pa >> 32ULL), (void volatile *)hw->hw_addr + (unsigned long )hw->aq.arq.bah); writel((unsigned int )((int )hw->aq.num_arq_entries + -1), (void volatile *)hw->hw_addr + (unsigned long )hw->aq.arq.tail); reg = readl((void const volatile *)hw->hw_addr + (unsigned long )hw->aq.arq.bal); } if (reg != (u32 )hw->aq.arq.desc_buf.pa) { ret_code = -53; } else { } return (ret_code); } } static i40e_status i40e_init_asq(struct i40e_hw *hw ) { i40e_status ret_code ; { ret_code = 0; if ((unsigned int )hw->aq.asq.count != 0U) { ret_code = -63; goto init_adminq_exit; } else { } if ((unsigned int )hw->aq.num_asq_entries == 0U || (unsigned int )hw->aq.asq_buf_size == 0U) { ret_code = -4; goto init_adminq_exit; } else { } { hw->aq.asq.next_to_use = 0U; hw->aq.asq.next_to_clean = 0U; hw->aq.asq.count = hw->aq.num_asq_entries; ret_code = i40e_alloc_adminq_asq_ring(hw); } if ((int )ret_code != 0) { goto init_adminq_exit; } else { } { ret_code = i40e_alloc_asq_bufs(hw); } if ((int )ret_code != 0) { goto init_adminq_free_rings; } else { } { ret_code = i40e_config_asq_regs(hw); } if ((int )ret_code != 0) { goto init_adminq_free_rings; } else { } goto init_adminq_exit; init_adminq_free_rings: { i40e_free_adminq_asq(hw); } init_adminq_exit: ; return (ret_code); } } static i40e_status i40e_init_arq(struct i40e_hw *hw ) { i40e_status ret_code ; { ret_code = 0; if ((unsigned int )hw->aq.arq.count != 0U) { ret_code = -63; goto init_adminq_exit; } else { } if ((unsigned int )hw->aq.num_arq_entries == 0U || (unsigned int )hw->aq.arq_buf_size == 0U) { ret_code = -4; goto init_adminq_exit; } else { } { hw->aq.arq.next_to_use = 0U; hw->aq.arq.next_to_clean = 0U; hw->aq.arq.count = hw->aq.num_arq_entries; ret_code = i40e_alloc_adminq_arq_ring(hw); } if ((int )ret_code != 0) { goto init_adminq_exit; } else { } { ret_code = i40e_alloc_arq_bufs(hw); } if ((int )ret_code != 0) { goto init_adminq_free_rings; } else { } { ret_code = i40e_config_arq_regs(hw); } if ((int )ret_code != 0) { goto init_adminq_free_rings; } else { } goto init_adminq_exit; init_adminq_free_rings: { i40e_free_adminq_arq(hw); } init_adminq_exit: ; return (ret_code); } } static i40e_status i40e_shutdown_asq(struct i40e_hw *hw ) { i40e_status ret_code ; { ret_code = 0; if ((unsigned int )hw->aq.asq.count == 0U) { return (-63); } else { } { writel(0U, (void volatile *)hw->hw_addr + (unsigned long )hw->aq.asq.head); writel(0U, (void volatile *)hw->hw_addr + (unsigned long )hw->aq.asq.tail); writel(0U, (void volatile *)hw->hw_addr + (unsigned long )hw->aq.asq.len); writel(0U, (void volatile *)hw->hw_addr + (unsigned long )hw->aq.asq.bal); writel(0U, (void volatile *)hw->hw_addr + (unsigned long )hw->aq.asq.bah); ldv_mutex_lock_126(& hw->aq.asq_mutex); hw->aq.asq.count = 0U; i40e_free_asq_bufs(hw); ldv_mutex_unlock_127(& hw->aq.asq_mutex); } return (ret_code); } } static i40e_status i40e_shutdown_arq(struct i40e_hw *hw ) { i40e_status ret_code ; { ret_code = 0; if ((unsigned int )hw->aq.arq.count == 0U) { return (-63); } else { } { writel(0U, (void volatile *)hw->hw_addr + (unsigned long )hw->aq.arq.head); writel(0U, (void volatile *)hw->hw_addr + (unsigned long )hw->aq.arq.tail); writel(0U, (void volatile *)hw->hw_addr + (unsigned long )hw->aq.arq.len); writel(0U, (void volatile *)hw->hw_addr + (unsigned long )hw->aq.arq.bal); writel(0U, (void volatile *)hw->hw_addr + (unsigned long )hw->aq.arq.bah); ldv_mutex_lock_128(& hw->aq.arq_mutex); hw->aq.arq.count = 0U; i40e_free_arq_bufs(hw); ldv_mutex_unlock_129(& hw->aq.arq_mutex); } return (ret_code); } } i40e_status i40evf_init_adminq(struct i40e_hw *hw ) { i40e_status ret_code ; struct lock_class_key __key ; struct lock_class_key __key___0 ; { if ((((unsigned int )hw->aq.num_arq_entries == 0U || (unsigned int )hw->aq.num_asq_entries == 0U) || (unsigned int )hw->aq.arq_buf_size == 0U) || (unsigned int )hw->aq.asq_buf_size == 0U) { ret_code = -4; goto init_adminq_exit; } else { } { __mutex_init(& hw->aq.asq_mutex, "&hw->aq.asq_mutex", & __key); __mutex_init(& hw->aq.arq_mutex, "&hw->aq.arq_mutex", & __key___0); i40e_adminq_init_regs(hw); hw->aq.asq_cmd_timeout = 250U; ret_code = i40e_init_asq(hw); } if ((int )ret_code != 0) { goto init_adminq_destroy_locks; } else { } { ret_code = i40e_init_arq(hw); } if ((int )ret_code != 0) { goto init_adminq_free_asq; } else { } goto init_adminq_exit; init_adminq_free_asq: { i40e_shutdown_asq(hw); } init_adminq_destroy_locks: ; init_adminq_exit: ; return (ret_code); } } i40e_status i40evf_shutdown_adminq(struct i40e_hw *hw ) { i40e_status ret_code ; bool tmp ; { { ret_code = 0; tmp = i40evf_check_asq_alive(hw); } if ((int )tmp) { { i40evf_aq_queue_shutdown(hw, 1); } } else { } { i40e_shutdown_asq(hw); i40e_shutdown_arq(hw); } return (ret_code); } } static u16 i40e_clean_asq(struct i40e_hw *hw ) { struct i40e_adminq_ring *asq ; struct i40e_asq_cmd_details *details ; u16 ntc ; struct i40e_aq_desc desc_cb ; struct i40e_aq_desc *desc ; unsigned int tmp ; void (*cb_func)(struct i40e_hw * , struct i40e_aq_desc * ) ; unsigned int tmp___0 ; { asq = & hw->aq.asq; ntc = asq->next_to_clean; desc = (struct i40e_aq_desc *)asq->desc_buf.va + (unsigned long )ntc; details = (struct i40e_asq_cmd_details *)asq->cmd_buf.va + (unsigned long )ntc; goto ldv_53555; ldv_53554: { tmp = readl((void const volatile *)hw->hw_addr + (unsigned long )hw->aq.asq.head); i40evf_debug_d((void *)hw, 16777216U, (char *)"%s: ntc %d head %d.\n", "i40e_clean_asq", (int )ntc, tmp); } if ((unsigned long )details->callback != (unsigned long )((void *)0)) { { cb_func = (void (*)(struct i40e_hw * , struct i40e_aq_desc * ))details->callback; desc_cb = *desc; (*cb_func)(hw, & desc_cb); } } else { } { __memset((void *)desc, 0, 32UL); __memset((void *)details, 0, 24UL); ntc = (u16 )((int )ntc + 1); } if ((int )ntc == (int )asq->count) { ntc = 0U; } else { } desc = (struct i40e_aq_desc *)asq->desc_buf.va + (unsigned long )ntc; details = (struct i40e_asq_cmd_details *)asq->cmd_buf.va + (unsigned long )ntc; ldv_53555: { tmp___0 = readl((void const volatile *)hw->hw_addr + (unsigned long )hw->aq.asq.head); } if (tmp___0 != (unsigned int )ntc) { goto ldv_53554; } else { } asq->next_to_clean = ntc; return (((((int )asq->next_to_clean <= (int )asq->next_to_use ? asq->count : 0U) + (unsigned int )asq->next_to_clean) - (unsigned int )asq->next_to_use) + 65535U); } } bool i40evf_asq_done(struct i40e_hw *hw ) { unsigned int tmp ; { { tmp = readl((void const volatile *)hw->hw_addr + (unsigned long )hw->aq.asq.head); } return (tmp == (unsigned int )hw->aq.asq.next_to_use); } } i40e_status i40evf_asq_send_command(struct i40e_hw *hw , struct i40e_aq_desc *desc , void *buff , u16 buff_size , struct i40e_asq_cmd_details *cmd_details ) { i40e_status status ; struct i40e_dma_mem *dma_buff ; struct i40e_asq_cmd_details *details ; struct i40e_aq_desc *desc_on_ring ; bool cmd_completed ; u16 retval ; u32 val ; u16 tmp ; u32 total_delay ; bool tmp___0 ; bool tmp___1 ; { { status = 0; dma_buff = (struct i40e_dma_mem *)0; cmd_completed = 0; retval = 0U; val = 0U; val = readl((void const volatile *)hw->hw_addr + (unsigned long )hw->aq.asq.head); } if (val >= (u32 )hw->aq.num_asq_entries) { { i40evf_debug_d((void *)hw, 16777216U, (char *)"AQTX: head overrun at %d\n", val); status = -32; } goto asq_send_command_exit; } else { } if ((unsigned int )hw->aq.asq.count == 0U) { { i40evf_debug_d((void *)hw, 16777216U, (char *)"AQTX: Admin queue not initialized.\n"); status = -32; } goto asq_send_command_exit; } else { } details = (struct i40e_asq_cmd_details *)hw->aq.asq.cmd_buf.va + (unsigned long )hw->aq.asq.next_to_use; if ((unsigned long )cmd_details != (unsigned long )((struct i40e_asq_cmd_details *)0)) { *details = *cmd_details; if (details->cookie != 0ULL) { desc->cookie_high = (unsigned int )(details->cookie >> 32ULL); desc->cookie_low = (unsigned int )details->cookie; } else { } } else { { __memset((void *)details, 0, 24UL); } } { desc->flags = (__le16 )((int )((short )desc->flags) & ~ ((int )((short )details->flags_dis))); desc->flags = (__le16 )((int )desc->flags | (int )details->flags_ena); ldv_mutex_lock_130(& hw->aq.asq_mutex); } if ((int )buff_size > (int )hw->aq.asq_buf_size) { { i40evf_debug_d((void *)hw, 16777216U, (char *)"AQTX: Invalid buffer size: %d.\n", (int )buff_size); status = -26; } goto asq_send_command_error; } else { } if ((int )details->postpone && ! details->async) { { i40evf_debug_d((void *)hw, 16777216U, (char *)"AQTX: Async flag not set along with postpone flag"); status = -5; } goto asq_send_command_error; } else { } { tmp = i40e_clean_asq(hw); } if ((unsigned int )tmp == 0U) { { i40evf_debug_d((void *)hw, 16777216U, (char *)"AQTX: Error queue is full.\n"); status = -56; } goto asq_send_command_error; } else { } desc_on_ring = (struct i40e_aq_desc *)hw->aq.asq.desc_buf.va + (unsigned long )hw->aq.asq.next_to_use; *desc_on_ring = *desc; if ((unsigned long )buff != (unsigned long )((void *)0)) { { dma_buff = hw->aq.asq.r.asq_bi + (unsigned long )hw->aq.asq.next_to_use; __memcpy(dma_buff->va, (void const *)buff, (size_t )buff_size); desc_on_ring->datalen = buff_size; desc_on_ring->params.external.addr_high = (unsigned int )(dma_buff->pa >> 32ULL); desc_on_ring->params.external.addr_low = (unsigned int )dma_buff->pa; } } else { } { i40evf_debug_d((void *)hw, 16777216U, (char *)"AQTX: desc and buffer:\n"); i40evf_debug_aq(hw, 100663296, (void *)desc_on_ring, buff, (int )buff_size); hw->aq.asq.next_to_use = (u16 )((int )hw->aq.asq.next_to_use + 1); } if ((int )hw->aq.asq.next_to_use == (int )hw->aq.asq.count) { hw->aq.asq.next_to_use = 0U; } else { } if (! details->postpone) { { writel((unsigned int )hw->aq.asq.next_to_use, (void volatile *)hw->hw_addr + (unsigned long )hw->aq.asq.tail); } } else { } if (! details->async && ! details->postpone) { total_delay = 0U; ldv_53578: { tmp___0 = i40evf_asq_done(hw); } if ((int )tmp___0) { goto ldv_53577; } else { } { usleep_range(1000UL, 2000UL); total_delay = total_delay + 1U; } if (total_delay < hw->aq.asq_cmd_timeout) { goto ldv_53578; } else { } ldv_53577: ; } else { } { tmp___1 = i40evf_asq_done(hw); } if ((int )tmp___1) { *desc = *desc_on_ring; if ((unsigned long )buff != (unsigned long )((void *)0)) { { __memcpy(buff, (void const *)dma_buff->va, (size_t )buff_size); } } else { } retval = desc->retval; if ((unsigned int )retval != 0U) { { i40evf_debug_d((void *)hw, 16777216U, (char *)"AQTX: Command completed with error 0x%X.\n", (int )retval); retval = (unsigned int )retval & 255U; } } else { } cmd_completed = 1; if ((unsigned int )retval == 0U) { status = 0; } else { status = -53; } hw->aq.asq_last_status = (enum i40e_admin_queue_err )retval; } else { } { i40evf_debug_d((void *)hw, 16777216U, (char *)"AQTX: desc and buffer writeback:\n"); i40evf_debug_aq(hw, 100663296, (void *)desc, buff, (int )buff_size); } if (! cmd_completed && (! details->async && ! details->postpone)) { { i40evf_debug_d((void *)hw, 16777216U, (char *)"AQTX: Writeback timeout.\n"); status = -54; } } else { } asq_send_command_error: { ldv_mutex_unlock_131(& hw->aq.asq_mutex); } asq_send_command_exit: ; return (status); } } void i40evf_fill_default_direct_cmd_desc(struct i40e_aq_desc *desc , u16 opcode ) { { { __memset((void *)desc, 0, 32UL); desc->opcode = opcode; desc->flags = 8192U; } return; } } i40e_status i40evf_clean_arq_element(struct i40e_hw *hw , struct i40e_arq_event_info *e , u16 *pending ) { i40e_status ret_code ; u16 ntc ; struct i40e_aq_desc *desc ; struct i40e_dma_mem *bi ; u16 desc_idx ; u16 datalen ; u16 flags ; u16 ntu ; unsigned int tmp ; u16 _min1 ; u16 _min2 ; { { ret_code = 0; ntc = hw->aq.arq.next_to_clean; ldv_mutex_lock_132(& hw->aq.arq_mutex); tmp = readl((void const volatile *)hw->hw_addr + (unsigned long )hw->aq.arq.head); ntu = (unsigned int )((u16 )tmp) & 1023U; } if ((int )ntu == (int )ntc) { ret_code = -57; goto clean_arq_element_out; } else { } desc = (struct i40e_aq_desc *)hw->aq.arq.desc_buf.va + (unsigned long )ntc; desc_idx = ntc; flags = desc->flags; if (((int )flags & 4) != 0) { { ret_code = -53; hw->aq.arq_last_status = (enum i40e_admin_queue_err )desc->retval; i40evf_debug_d((void *)hw, 16777216U, (char *)"AQRX: Event received with error 0x%X.\n", (unsigned int )hw->aq.arq_last_status); } } else { } e->desc = *desc; datalen = desc->datalen; _min1 = datalen; _min2 = e->buf_len; e->msg_len = (u16 )((int )_min1 < (int )_min2 ? _min1 : _min2); if ((unsigned long )e->msg_buf != (unsigned long )((u8 *)0U) && (unsigned int )e->msg_len != 0U) { { __memcpy((void *)e->msg_buf, (void const *)(hw->aq.arq.r.arq_bi + (unsigned long )desc_idx)->va, (size_t )e->msg_len); } } else { } { i40evf_debug_d((void *)hw, 16777216U, (char *)"AQRX: desc and buffer:\n"); i40evf_debug_aq(hw, 100663296, (void *)desc, (void *)e->msg_buf, (int )hw->aq.arq_buf_size); bi = hw->aq.arq.r.arq_bi + (unsigned long )ntc; __memset((void *)desc, 0, 32UL); desc->flags = 4096U; } if ((unsigned int )hw->aq.arq_buf_size > 512U) { desc->flags = (__le16 )((unsigned int )desc->flags | 512U); } else { } { desc->datalen = (unsigned short )bi->size; desc->params.external.addr_high = (unsigned int )(bi->pa >> 32ULL); desc->params.external.addr_low = (unsigned int )bi->pa; writel((unsigned int )ntc, (void volatile *)hw->hw_addr + (unsigned long )hw->aq.arq.tail); ntc = (u16 )((int )ntc + 1); } if ((int )ntc == (int )hw->aq.num_arq_entries) { ntc = 0U; } else { } hw->aq.arq.next_to_clean = ntc; hw->aq.arq.next_to_use = ntu; clean_arq_element_out: ; if ((unsigned long )pending != (unsigned long )((u16 *)0U)) { *pending = ((int )ntc > (int )ntu ? hw->aq.arq.count : 0U) + (unsigned int )((int )ntu - (int )ntc); } else { } { ldv_mutex_unlock_133(& hw->aq.arq_mutex); } return (ret_code); } } void i40evf_resume_aq(struct i40e_hw *hw ) { { { hw->aq.asq.next_to_use = 0U; hw->aq.asq.next_to_clean = 0U; i40e_config_asq_regs(hw); hw->aq.arq.next_to_use = 0U; hw->aq.arq.next_to_clean = 0U; i40e_config_arq_regs(hw); } return; } } static void ldv_mutex_lock_126(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_asq_mutex_of_i40e_adminq_info(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_127(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_asq_mutex_of_i40e_adminq_info(ldv_func_arg1); } return; } } static void ldv_mutex_lock_128(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_arq_mutex_of_i40e_adminq_info(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_129(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_arq_mutex_of_i40e_adminq_info(ldv_func_arg1); } return; } } static void ldv_mutex_lock_130(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_asq_mutex_of_i40e_adminq_info(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_131(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_asq_mutex_of_i40e_adminq_info(ldv_func_arg1); } return; } } static void ldv_mutex_lock_132(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_arq_mutex_of_i40e_adminq_info(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_133(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_arq_mutex_of_i40e_adminq_info(ldv_func_arg1); } return; } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) ; bool ldv_in_interrupt_context(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) { bool tmp ; int tmp___0 ; { { tmp = ldv_in_interrupt_context(); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } { ldv_assert_linux_alloc_irq__wrong_flags(tmp___0 || flags == 32U); } return; } } void ldv_linux_alloc_irq_check_alloc_nonatomic(void) { bool tmp ; { { tmp = ldv_in_interrupt_context(); } if ((int )tmp) { { ldv_assert_linux_alloc_irq__nonatomic(0); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_linux_alloc_spinlock_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_linux_alloc_spinlock_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) ; int ldv_linux_alloc_usb_lock_lock = 1; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) { { if (ldv_linux_alloc_usb_lock_lock == 2) { { ldv_assert_linux_alloc_usb_lock__wrong_flags(flags == 16U || flags == 32U); } } else { } return; } } void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) { { { ldv_assert_linux_alloc_usb_lock__nonatomic(ldv_linux_alloc_usb_lock_lock == 1); } return; } } void ldv_linux_alloc_usb_lock_usb_lock_device(void) { { ldv_linux_alloc_usb_lock_lock = 2; return; } } int ldv_linux_alloc_usb_lock_usb_trylock_device(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_alloc_usb_lock_usb_lock_device_for_reset(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (0); } else { return (-1); } } else { return (-1); } } } void ldv_linux_alloc_usb_lock_usb_unlock_device(void) { { ldv_linux_alloc_usb_lock_lock = 1; return; } } void ldv_linux_usb_dev_atomic_add(int i , atomic_t *v ) { { v->counter = v->counter + i; return; } } void ldv_linux_usb_dev_atomic_sub(int i , atomic_t *v ) { { v->counter = v->counter - i; return; } } int ldv_linux_usb_dev_atomic_sub_and_test(int i , atomic_t *v ) { { v->counter = v->counter - i; if (v->counter != 0) { return (0); } else { } return (1); } } void ldv_linux_usb_dev_atomic_inc(atomic_t *v ) { { v->counter = v->counter + 1; return; } } void ldv_linux_usb_dev_atomic_dec(atomic_t *v ) { { v->counter = v->counter - 1; return; } } int ldv_linux_usb_dev_atomic_dec_and_test(atomic_t *v ) { { v->counter = v->counter - 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_inc_and_test(atomic_t *v ) { { v->counter = v->counter + 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_add_return(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter); } } int ldv_linux_usb_dev_atomic_add_negative(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter < 0); } } int ldv_linux_usb_dev_atomic_inc_short(short *v ) { { *v = (short )((unsigned int )((unsigned short )*v) + 1U); return ((int )*v); } } void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) ; void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) ; void *ldv_undef_ptr(void) ; int ldv_linux_arch_io_iomem = 0; void *ldv_linux_arch_io_io_mem_remap(void) { void *ptr ; void *tmp ; { { tmp = ldv_undef_ptr(); ptr = tmp; } if ((unsigned long )ptr != (unsigned long )((void *)0)) { ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem + 1; return (ptr); } else { } return (ptr); } } void ldv_linux_arch_io_io_mem_unmap(void) { { { ldv_assert_linux_arch_io__less_initial_decrement(ldv_linux_arch_io_iomem > 0); ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem - 1; } return; } } void ldv_linux_arch_io_check_final_state(void) { { { ldv_assert_linux_arch_io__more_initial_at_exit(ldv_linux_arch_io_iomem == 0); } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) ; void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) ; void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) ; static int ldv_linux_block_genhd_disk_state = 0; struct gendisk *ldv_linux_block_genhd_alloc_disk(void) { struct gendisk *res ; void *tmp ; { { tmp = ldv_undef_ptr(); res = (struct gendisk *)tmp; ldv_assert_linux_block_genhd__double_allocation(ldv_linux_block_genhd_disk_state == 0); } if ((unsigned long )res != (unsigned long )((struct gendisk *)0)) { ldv_linux_block_genhd_disk_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_genhd_add_disk(void) { { { ldv_assert_linux_block_genhd__use_before_allocation(ldv_linux_block_genhd_disk_state == 1); ldv_linux_block_genhd_disk_state = 2; } return; } } void ldv_linux_block_genhd_del_gendisk(void) { { { ldv_assert_linux_block_genhd__delete_before_add(ldv_linux_block_genhd_disk_state == 2); ldv_linux_block_genhd_disk_state = 1; } return; } } void ldv_linux_block_genhd_put_disk(struct gendisk *disk ) { { if ((unsigned long )disk != (unsigned long )((struct gendisk *)0)) { { ldv_assert_linux_block_genhd__free_before_allocation(ldv_linux_block_genhd_disk_state > 0); ldv_linux_block_genhd_disk_state = 0; } } else { } return; } } void ldv_linux_block_genhd_check_final_state(void) { { { ldv_assert_linux_block_genhd__more_initial_at_exit(ldv_linux_block_genhd_disk_state == 0); } return; } } void ldv_assert_linux_block_queue__double_allocation(int expr ) ; void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_queue__use_before_allocation(int expr ) ; static int ldv_linux_block_queue_queue_state = 0; struct request_queue *ldv_linux_block_queue_request_queue(void) { struct request_queue *res ; void *tmp ; { { tmp = ldv_undef_ptr(); res = (struct request_queue *)tmp; ldv_assert_linux_block_queue__double_allocation(ldv_linux_block_queue_queue_state == 0); } if ((unsigned long )res != (unsigned long )((struct request_queue *)0)) { ldv_linux_block_queue_queue_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_queue_blk_cleanup_queue(void) { { { ldv_assert_linux_block_queue__use_before_allocation(ldv_linux_block_queue_queue_state == 1); ldv_linux_block_queue_queue_state = 0; } return; } } void ldv_linux_block_queue_check_final_state(void) { { { ldv_assert_linux_block_queue__more_initial_at_exit(ldv_linux_block_queue_queue_state == 0); } return; } } void ldv_assert_linux_block_request__double_get(int expr ) ; void ldv_assert_linux_block_request__double_put(int expr ) ; void ldv_assert_linux_block_request__get_at_exit(int expr ) ; long ldv_is_err(void const *ptr ) ; int ldv_linux_block_request_blk_rq = 0; struct request *ldv_linux_block_request_blk_get_request(gfp_t mask ) { struct request *res ; void *tmp ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_undef_ptr(); res = (struct request *)tmp; } if ((mask == 16U || mask == 208U) || mask == 16U) { { ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); } } else { } if ((unsigned long )res != (unsigned long )((struct request *)0)) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } struct request *ldv_linux_block_request_blk_make_request(gfp_t mask ) { struct request *res ; void *tmp ; long tmp___0 ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_undef_ptr(); res = (struct request *)tmp; ldv_assume((unsigned long )res != (unsigned long )((struct request *)0)); tmp___0 = ldv_is_err((void const *)res); } if (tmp___0 == 0L) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } void ldv_linux_block_request_put_blk_rq(void) { { { ldv_assert_linux_block_request__double_put(ldv_linux_block_request_blk_rq == 1); ldv_linux_block_request_blk_rq = 0; } return; } } void ldv_linux_block_request_check_final_state(void) { { { ldv_assert_linux_block_request__get_at_exit(ldv_linux_block_request_blk_rq == 0); } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) ; void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) ; int ldv_undef_int_nonpositive(void) ; int ldv_linux_drivers_base_class_usb_gadget_class = 0; void *ldv_linux_drivers_base_class_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_undef_ptr(); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_got); } } int ldv_linux_drivers_base_class_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_reg); } } void ldv_linux_drivers_base_class_unregister_class(void) { { { ldv_assert_linux_drivers_base_class__double_deregistration(ldv_linux_drivers_base_class_usb_gadget_class == 1); ldv_linux_drivers_base_class_usb_gadget_class = 0; } return; } } void ldv_linux_drivers_base_class_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_drivers_base_class_unregister_class(); } return; } } void ldv_linux_drivers_base_class_check_final_state(void) { { { ldv_assert_linux_drivers_base_class__registered_at_exit(ldv_linux_drivers_base_class_usb_gadget_class == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2176UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) ; void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) ; int ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; int ldv_linux_fs_char_dev_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_fs_char_dev_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } } else { } return (is_reg); } } void ldv_linux_fs_char_dev_unregister_chrdev_region(void) { { { ldv_assert_linux_fs_char_dev__double_deregistration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 1); ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; } return; } } void ldv_linux_fs_char_dev_check_final_state(void) { { { ldv_assert_linux_fs_char_dev__registered_at_exit(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); } return; } } void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) ; void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) ; int ldv_linux_fs_sysfs_sysfs = 0; int ldv_linux_fs_sysfs_sysfs_create_group(void) { int res ; int tmp ; { { tmp = ldv_undef_int_nonpositive(); res = tmp; } if (res == 0) { ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs + 1; return (0); } else { } return (res); } } void ldv_linux_fs_sysfs_sysfs_remove_group(void) { { { ldv_assert_linux_fs_sysfs__less_initial_decrement(ldv_linux_fs_sysfs_sysfs > 0); ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs - 1; } return; } } void ldv_linux_fs_sysfs_check_final_state(void) { { { ldv_assert_linux_fs_sysfs__more_initial_at_exit(ldv_linux_fs_sysfs_sysfs == 0); } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) ; int ldv_linux_kernel_locking_rwlock_rlock = 1; int ldv_linux_kernel_locking_rwlock_wlock = 1; void ldv_linux_kernel_locking_rwlock_read_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; } return; } } void ldv_linux_kernel_locking_rwlock_read_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(ldv_linux_kernel_locking_rwlock_rlock > 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + -1; } return; } } void ldv_linux_kernel_locking_rwlock_write_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_wlock = 2; } return; } } void ldv_linux_kernel_locking_rwlock_write_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(ldv_linux_kernel_locking_rwlock_wlock != 1); ldv_linux_kernel_locking_rwlock_wlock = 1; } return; } } int ldv_linux_kernel_locking_rwlock_read_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_kernel_locking_rwlock_write_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_wlock = 2; return (1); } else { return (0); } } else { return (0); } } } void ldv_linux_kernel_locking_rwlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(ldv_linux_kernel_locking_rwlock_rlock == 1); ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(ldv_linux_kernel_locking_rwlock_wlock == 1); } return; } } void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) ; void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) ; int ldv_linux_kernel_module_module_refcounter = 1; void ldv_linux_kernel_module_module_get(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; } else { } return; } } int ldv_linux_kernel_module_try_module_get(struct module *module ) { int tmp ; { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { tmp = ldv_undef_int(); } if (tmp == 1) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; return (1); } else { return (0); } } else { } return (0); } } void ldv_linux_kernel_module_module_put(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { ldv_assert_linux_kernel_module__less_initial_decrement(ldv_linux_kernel_module_module_refcounter > 1); ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter - 1; } } else { } return; } } void ldv_linux_kernel_module_module_put_and_exit(void) { { { ldv_linux_kernel_module_module_put((struct module *)1); } LDV_LINUX_KERNEL_MODULE_STOP: ; goto LDV_LINUX_KERNEL_MODULE_STOP; } } unsigned int ldv_linux_kernel_module_module_refcount(void) { { return ((unsigned int )(ldv_linux_kernel_module_module_refcounter + -1)); } } void ldv_linux_kernel_module_check_final_state(void) { { { ldv_assert_linux_kernel_module__more_initial_at_exit(ldv_linux_kernel_module_module_refcounter == 1); } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_srcu_srcu_nested = 0; void ldv_linux_kernel_rcu_srcu_srcu_read_lock(void) { { ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested + 1; return; } } void ldv_linux_kernel_rcu_srcu_srcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_srcu__more_unlocks(ldv_linux_kernel_rcu_srcu_srcu_nested > 0); ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_srcu_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = 0; void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_lock_bh(void) { { ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh + 1; return; } } void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_unlock_bh(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh > 0); ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = 0; void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_lock_sched(void) { { ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched + 1; return; } } void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_unlock_sched(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched > 0); ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_rcu_nested = 0; void ldv_linux_kernel_rcu_update_lock_rcu_read_lock(void) { { ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested + 1; return; } } void ldv_linux_kernel_rcu_update_lock_rcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(ldv_linux_kernel_rcu_update_lock_rcu_nested > 0); ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } static bool __ldv_in_interrupt_context = 0; void ldv_switch_to_interrupt_context(void) { { __ldv_in_interrupt_context = 1; return; } } void ldv_switch_to_process_context(void) { { __ldv_in_interrupt_context = 0; return; } } bool ldv_in_interrupt_context(void) { { return (__ldv_in_interrupt_context); } } void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) ; unsigned long ldv_undef_ulong(void) ; unsigned long ldv_linux_lib_find_bit_find_next_bit(unsigned long size , unsigned long offset ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assert_linux_lib_find_bit__offset_out_of_range(offset <= size); ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } unsigned long ldv_linux_lib_find_bit_find_first_bit(unsigned long size ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assume(nondet <= size); ldv_assume(1); } return (nondet); } } void ldv_linux_lib_find_bit_initialize(void) { { { ldv_assume(nr_cpu_ids > 0); } return; } } void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) ; unsigned short ldv_linux_mmc_sdio_func_sdio_element = 0U; void ldv_linux_mmc_sdio_func_check_context(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__wrong_params((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); } return; } } void ldv_linux_mmc_sdio_func_sdio_claim_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__double_claim((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); ldv_linux_mmc_sdio_func_sdio_element = (unsigned short )((func->card)->host)->index; } return; } } void ldv_linux_mmc_sdio_func_sdio_release_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__release_without_claim((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); ldv_linux_mmc_sdio_func_sdio_element = 0U; } return; } } void ldv_linux_mmc_sdio_func_check_final_state(void) { { { ldv_assert_linux_mmc_sdio_func__unreleased_at_exit((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); } return; } } void ldv_assert_linux_net_register__wrong_return_value(int expr ) ; int ldv_linux_net_register_probe_state = 0; int ldv_pre_register_netdev(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_net_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_net_register_reset_error_counter(void) { { ldv_linux_net_register_probe_state = 0; return; } } void ldv_linux_net_register_check_return_value_probe(int retval ) { { if (ldv_linux_net_register_probe_state == 1) { { ldv_assert_linux_net_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_net_register_reset_error_counter(); } return; } } void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) ; void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) ; void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) ; int rtnllocknumber = 0; void ldv_linux_net_rtnetlink_past_rtnl_unlock(void) { { { ldv_assert_linux_net_rtnetlink__double_unlock(rtnllocknumber == 1); rtnllocknumber = 0; } return; } } void ldv_linux_net_rtnetlink_past_rtnl_lock(void) { { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); rtnllocknumber = 1; } return; } } void ldv_linux_net_rtnetlink_before_ieee80211_unregister_hw(void) { { { ldv_linux_net_rtnetlink_past_rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } int ldv_linux_net_rtnetlink_rtnl_is_locked(void) { int tmp ; { if (rtnllocknumber != 0) { return (rtnllocknumber); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_net_rtnetlink_rtnl_trylock(void) { int tmp ; { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); tmp = ldv_linux_net_rtnetlink_rtnl_is_locked(); } if (tmp == 0) { rtnllocknumber = 1; return (1); } else { return (0); } } } void ldv_linux_net_rtnetlink_check_final_state(void) { { { ldv_assert_linux_net_rtnetlink__lock_on_exit(rtnllocknumber == 0); } return; } } void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) ; void ldv_assert_linux_net_sock__double_release(int expr ) ; int locksocknumber = 0; void ldv_linux_net_sock_past_lock_sock_nested(void) { { locksocknumber = locksocknumber + 1; return; } } bool ldv_linux_net_sock_lock_sock_fast(void) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { locksocknumber = locksocknumber + 1; return (1); } else { } return (0); } } void ldv_linux_net_sock_unlock_sock_fast(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_before_release_sock(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_check_final_state(void) { { { ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(locksocknumber == 0); } return; } } void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) ; int ldv_linux_usb_coherent_coherent_state = 0; void *ldv_linux_usb_coherent_usb_alloc_coherent(void) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return (arbitrary_memory); } else { } ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + 1; return (arbitrary_memory); } } void ldv_linux_usb_coherent_usb_free_coherent(void *addr ) { { if ((unsigned long )addr != (unsigned long )((void *)0)) { { ldv_assert_linux_usb_coherent__less_initial_decrement(ldv_linux_usb_coherent_coherent_state > 0); ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + -1; } } else { } return; } } void ldv_linux_usb_coherent_check_final_state(void) { { { ldv_assert_linux_usb_coherent__more_initial_at_exit(ldv_linux_usb_coherent_coherent_state == 0); } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) ; void ldv_assert_linux_usb_dev__probe_failed(int expr ) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) ; ldv_map LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS ; struct usb_device *ldv_linux_usb_dev_usb_get_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0 ? LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + 1 : 1; } else { } return (dev); } } void ldv_linux_usb_dev_usb_put_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { { ldv_assert_linux_usb_dev__unincremented_counter_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0); ldv_assert_linux_usb_dev__less_initial_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 0); } if (LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 1) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + -1; } else { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; } } else { } return; } } void ldv_linux_usb_dev_check_return_value_probe(int retval ) { { if (retval != 0) { { ldv_assert_linux_usb_dev__probe_failed(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } } else { } return; } } void ldv_linux_usb_dev_initialize(void) { { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; return; } } void ldv_linux_usb_dev_check_final_state(void) { { { ldv_assert_linux_usb_dev__more_initial_at_exit(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) ; void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) ; int ldv_linux_usb_gadget_usb_gadget = 0; void *ldv_linux_usb_gadget_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_undef_ptr(); ldv_assume((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_got); } } int ldv_linux_usb_gadget_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_class(void) { { { ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_linux_usb_gadget_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_usb_gadget_unregister_class(); } return; } } int ldv_linux_usb_gadget_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } if (major == 0) { { is_reg = ldv_undef_int(); ldv_assume(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_usb_gadget_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_chrdev_region(void) { { { ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } int ldv_linux_usb_gadget_register_usb_gadget(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__double_usb_gadget_registration(ldv_linux_usb_gadget_usb_gadget == 0); ldv_linux_usb_gadget_usb_gadget = 1; } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_usb_gadget(void) { { { ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(ldv_linux_usb_gadget_usb_gadget == 1); ldv_linux_usb_gadget_usb_gadget = 0; } return; } } void ldv_linux_usb_gadget_check_final_state(void) { { { ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_assert_linux_usb_register__wrong_return_value(int expr ) ; int ldv_pre_usb_register_driver(void) ; int ldv_linux_usb_register_probe_state = 0; int ldv_pre_usb_register_driver(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_usb_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_usb_register_reset_error_counter(void) { { ldv_linux_usb_register_probe_state = 0; return; } } void ldv_linux_usb_register_check_return_value_probe(int retval ) { { if (ldv_linux_usb_register_probe_state == 1) { { ldv_assert_linux_usb_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_usb_register_reset_error_counter(); } return; } } void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) ; int ldv_linux_usb_urb_urb_state = 0; struct urb *ldv_linux_usb_urb_usb_alloc_urb(void) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return ((struct urb *)arbitrary_memory); } else { } ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + 1; return ((struct urb *)arbitrary_memory); } } void ldv_linux_usb_urb_usb_free_urb(struct urb *urb ) { { if ((unsigned long )urb != (unsigned long )((struct urb *)0)) { { ldv_assert_linux_usb_urb__less_initial_decrement(ldv_linux_usb_urb_urb_state > 0); ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + -1; } } else { } return; } } void ldv_linux_usb_urb_check_final_state(void) { { { ldv_assert_linux_usb_urb__more_initial_at_exit(ldv_linux_usb_urb_urb_state == 0); } return; } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *external_allocated_data(void) ; void *ldv_calloc_unknown_size(void) ; void *ldv_zalloc_unknown_size(void) ; void *ldv_xmalloc_unknown_size(size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; extern void *memset(void * , int , size_t ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_malloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; memset(res, 0, 8UL); ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc_unknown_size(void) { void *tmp ; { { tmp = ldv_calloc_unknown_size(); } return (tmp); } } void *ldv_xmalloc_unknown_size(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } int ldv_undef_int_negative(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { { tmp = __VERIFIER_nondet_pointer(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) ; ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_arq_mutex_of_i40e_adminq_info ; void ldv_linux_kernel_locking_mutex_mutex_lock_arq_mutex_of_i40e_adminq_info(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_arq_mutex_of_i40e_adminq_info); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_arq_mutex_of_i40e_adminq_info = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_arq_mutex_of_i40e_adminq_info(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_arq_mutex_of_i40e_adminq_info); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_arq_mutex_of_i40e_adminq_info = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_arq_mutex_of_i40e_adminq_info(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_arq_mutex_of_i40e_adminq_info) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_arq_mutex_of_i40e_adminq_info(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_arq_mutex_of_i40e_adminq_info); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_arq_mutex_of_i40e_adminq_info(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_arq_mutex_of_i40e_adminq_info = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_arq_mutex_of_i40e_adminq_info(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_arq_mutex_of_i40e_adminq_info(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_arq_mutex_of_i40e_adminq_info(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_arq_mutex_of_i40e_adminq_info); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_arq_mutex_of_i40e_adminq_info = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_asq_mutex_of_i40e_adminq_info ; void ldv_linux_kernel_locking_mutex_mutex_lock_asq_mutex_of_i40e_adminq_info(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_asq_mutex_of_i40e_adminq_info); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_asq_mutex_of_i40e_adminq_info = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_asq_mutex_of_i40e_adminq_info(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_asq_mutex_of_i40e_adminq_info); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_asq_mutex_of_i40e_adminq_info = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_asq_mutex_of_i40e_adminq_info(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_asq_mutex_of_i40e_adminq_info) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_asq_mutex_of_i40e_adminq_info(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_asq_mutex_of_i40e_adminq_info); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_asq_mutex_of_i40e_adminq_info(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_asq_mutex_of_i40e_adminq_info = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_asq_mutex_of_i40e_adminq_info(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_asq_mutex_of_i40e_adminq_info(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_asq_mutex_of_i40e_adminq_info(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_asq_mutex_of_i40e_adminq_info); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_asq_mutex_of_i40e_adminq_info = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode ; void ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock ; void ldv_linux_kernel_locking_mutex_mutex_lock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_lock(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device ; void ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; } return; } } void ldv_linux_kernel_locking_mutex_initialize(void) { { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_arq_mutex_of_i40e_adminq_info = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_asq_mutex_of_i40e_adminq_info = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; return; } } void ldv_linux_kernel_locking_mutex_check_final_state(void) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_arq_mutex_of_i40e_adminq_info); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_asq_mutex_of_i40e_adminq_info); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 1; void ldv_linux_kernel_locking_spinlock_spin_lock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 2); ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock__xmit_lock_of_netdev_queue(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked__xmit_lock_of_netdev_queue(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended__xmit_lock_of_netdev_queue(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock__xmit_lock_of_netdev_queue(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 2); ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_addr_list_lock_of_net_device(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_addr_list_lock_of_net_device(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_addr_list_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_addr_list_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_linux_kernel_locking_spinlock_spin_lock = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_linux_kernel_locking_spinlock_spin_lock = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_ptl = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_linux_kernel_locking_spinlock_spin_ptl = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_linux_kernel_locking_spinlock_spin_ptl = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 2); ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_slock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_slock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_slock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_slock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_slock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_slock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 2); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 2); ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_tx_global_lock_of_net_device(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_tx_global_lock_of_net_device(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_tx_global_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_tx_global_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 2; return (1); } else { } return (0); } } void ldv_linux_kernel_locking_spinlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 2) { return (1); } else { } return (0); } } void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) ; void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) ; static int ldv_linux_kernel_sched_completion_completion = 0; void ldv_linux_kernel_sched_completion_init_completion(void) { { ldv_linux_kernel_sched_completion_completion = 1; return; } } void ldv_linux_kernel_sched_completion_init_completion_macro(void) { { { ldv_assert_linux_kernel_sched_completion__double_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 1; } return; } } void ldv_linux_kernel_sched_completion_wait_for_completion(void) { { { ldv_assert_linux_kernel_sched_completion__wait_without_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 2; } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) ; void ldv_assert_linux_lib_idr__double_init(int expr ) ; void ldv_assert_linux_lib_idr__more_at_exit(int expr ) ; void ldv_assert_linux_lib_idr__not_initialized(int expr ) ; static int ldv_linux_lib_idr_idr = 0; void ldv_linux_lib_idr_idr_init(void) { { { ldv_assert_linux_lib_idr__double_init(ldv_linux_lib_idr_idr == 0); ldv_linux_lib_idr_idr = 1; } return; } } void ldv_linux_lib_idr_idr_alloc(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_find(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_remove(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_destroy(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 3; } return; } } void ldv_linux_lib_idr_check_final_state(void) { { { ldv_assert_linux_lib_idr__more_at_exit(ldv_linux_lib_idr_idr == 0 || ldv_linux_lib_idr_idr == 3); } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_lib_idr__double_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__not_initialized(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_lib_idr__more_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_register__wrong_return_value(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_net_sock__double_release(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__probe_failed(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_request__double_get(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_request__double_put(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_request__get_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_queue__double_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_queue__use_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_register__wrong_return_value(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } }